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1. Introduction    
 

Vision guide for a manipulator has been one of the major research issues in robotics. 
Coordination schemes of visuo-motor systems can be classified on the basis of the 
knowledge about manipulator kinematics and camera parameters. Many researchers have 
proposed a number of systems that deal with unknown manipulator kinematics and 
unknown camera parameters. In the studies, visuo-motor models are either estimated 
analytically during the execution of tasks on-line or learned prior to the execution off-line. 
Artificial neural networks can be used to learn the non-linear relationships between features 
in images and the manipulator joint angles. Miller et al. proposed a neural network based on 
the learning control system, where a cerebeller model arithmetic computer memory was 
employed for the learning (Miller, 1989). Carusone et al. used a network to train an un-
calibrated industrial robot (Carusone & Eleurterio, 1998). In their systems, neural networks 
provided the estimation of the poses of targets in the manipulator coordinate frames, and 
the poses were used to guide the manipulator to grasp the objects. However, supervisors 
were needed in the systems. 
Self-organizing map (SOM) based on the Kohonen algorithm is an important unsupervised 
artificial neural network model (Kohonen, 1998). It has shown great potential in application 
fields such as motor control, pattern recognition, optimization, and so on, and also has 
provided insights into how mammalian brains are organized (Wiener et al., 2000) (Behera & 
Kirubanandan, 1999). During the past years it has been demonstrated that the SOM can 
solve the inverse kinematics problem for visuo-motor control. Buessler et al. determined 
arm movements by tracking an image target (Buessler & Urban, 1998) (Buessler et al., 1999). 
The correlation between an image-defined error and the joint movement was learned on-line 
using self-organizing algorithm for making the error zero. Multiple neural maps were 
combined to simplify neural learning in their study. Martinetz et al. and Walter et al. used a 
three dimensional lattice to learn the nonlinear transformation that specifies the joint angles 
of a 3-DOF manipulator so that the angles take the tip of the manipulator to a target point 
given in the coordinates provided by two cameras (Marinetz et al., 1990) (Walter & Schulten, 
1993). In all of these studies, however, they solved the visuo-motor coordination problems 
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with non-redundant manipulators in an environment without obstacles. Such obstacle 
avoidance problems are important for manipulators that work in real environments. Zeller 
et al. developed a motion planning for a non-redundant manipulator to avoid collision with 
obstacles in a cluttered environment by using the TRN model (Zeller et al., 1997). They used 
a fact that a locally optimized path can be determined by minimizing the Euclidean distance 
from the current position to a given goal. Collision check was performed not in the self-
organizing process but in the path planning process afterwards. Collobert developed a new 
organizing principle for perceptual systems based on multiple Kohonen self organizing 
maps. (Collobert, 2006) These maps are arranged in order to model the global brain activity 
as seen on tomography pictures. In contrast to these precedent studies, our system is not 
only for precise positioning of the end-effector but also for ensuring obstacle free poses of 
the manipulator using multiple SOMs. We intend to realize coordination for a visuo-motor 
system with a redundant manipulator in a cluttered environment. The redundancy is then 
used to make the manipulator take obstacle free poses and achieve high manipulability. 
In the previous researches, Zha et al. used a SOM to coordinate a visuo-motor system in an 
environment with obstacles (Zha et al., 1996). Collisions between the links and obstacles 
were, however, not well considered. We introduced a potential field to avoid such collisions 
only in a 2D space (Okada et al., 1999). Han et al. realized collision avoidance for a visuo-
motor system in a 3D space (Han et al., 2003). The occlusion problem was, however, not 
solved effectively even in the system. 
Vision systems are generally classified by the number of cameras, camera configurations, 
the level of calibration and some a priori knowledge about the scene. The binocular 
configuration is a commonly used configuration. In comparison with the eye-in-hand 
configuration, it allows a wide field of view and then it makes easy to observe both the 
manipulator and targets simultaneously. Such a vision system was employed in Han et al.’s 
work. However, since they treated spaces occluded by obstacles in the image space as 
unreachable spaces for the manipulator, the workspace was restricted. 
In order to handle the occlusion problem, we have developed a visuo-motor system with 
multiple related SOMs and a redundant camera system in this paper. The SOMs are directly 
connected to the cameras and learn to perform manipulator control. Based on the visibility 
of a target given in the workspace, the appropriate map is selected. The map outputs a joint 
angle vector which makes the manipulator reach the target with an obstacle free pose. The 
proposed learning algorithm ensures that the manipulator moves smoothly and consistently 
in the whole workspace no matter which map is selected. The advantages of the proposed 
method are: (1) By employing multiple maps, the system overcomes the occlusion problems 
in cluttered environments. The cooperation and complementation of maps make the 
manipulator consistently move in the whole workspace. (2) In our self-organizing learning 
procedure, the visuo-motor system learns not only to position the end-effector precisely but 
also ensure that the manipulator takes obstacle free poses. 

 
2. Our Visuo-Motor System 
 

Our visuo-motor system is illustrated in Fig.1. The system contains a 4-DOF redundant 
manipulator, multiple CCD cameras, and multiple related SOMs. The CCD cameras are 
used to get the target positions, the locations of the end-effector and the manipulator poses. 
They also acquire information about obstacles by using simple image technique. From visual 

 

information provided by the cameras, the SOMs learn projections that convert the position 
vectors of the targets in the image spaces into the joint angle vectors of the manipulator. 
Although stereo camera systems can provide 3D information and we have used such a 
system in our previous works, the system could not well deal with spaces occluded by 
obstacles. They introduced 3-cameras system to overcome the situation (Han et al., 2006). 
However, the result was limited. To deal with the occlusion problem, a multiple camera 
system is presented in this paper. The valid workspace is extended by using the cameras at 
multiple viewpoints. Related SOMs are simultaneously employed in the visuo-motor 
system. 
Assume that the projections of a target point in the camera images are ut-S1, ut-S2, ut-S3 (side 
camera1, 2, 3) and ut-T (top camera). A pair of image coordinates of the top camera and 
another side camera is combined into a 4-dimensional vector ut-SOMn, and then it is used as 
an input to one of SOMs. Since the valid workspaces of the maps are different from each 
other, the maps are alternately used. 

 
Fig. 1. Outline of our visuo-motor system 
 
As shown in Fig.2, each SOM consists of neurons, which are distributed in 2 image spaces 
that correspond to cameras used as inputs. Each neuron has the following 4 parameters. 
1. W: Position of the neuron in 2 image spaces. 
2. J: Jacobi matrix from the manipulator joint angle space to the image spaces. 
3. θ: Joint angle at W. 
4. ξ: Gradient vector of the evaluation function H. 
When a target ut is given in the workspace, one of the maps is selected based on which 
camera can see the target. In the selected map, then, the neuron nearest to the projection of 
the target is chosen. The manipulator joint angle vector is finally calculated obeying the 
linear function (1).  
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with non-redundant manipulators in an environment without obstacles. Such obstacle 
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obstacles in a cluttered environment by using the TRN model (Zeller et al., 1997). They used 
a fact that a locally optimized path can be determined by minimizing the Euclidean distance 
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maps. (Collobert, 2006) These maps are arranged in order to model the global brain activity 
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Vision systems are generally classified by the number of cameras, camera configurations, 
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configuration is a commonly used configuration. In comparison with the eye-in-hand 
configuration, it allows a wide field of view and then it makes easy to observe both the 
manipulator and targets simultaneously. Such a vision system was employed in Han et al.’s 
work. However, since they treated spaces occluded by obstacles in the image space as 
unreachable spaces for the manipulator, the workspace was restricted. 
In order to handle the occlusion problem, we have developed a visuo-motor system with 
multiple related SOMs and a redundant camera system in this paper. The SOMs are directly 
connected to the cameras and learn to perform manipulator control. Based on the visibility 
of a target given in the workspace, the appropriate map is selected. The map outputs a joint 
angle vector which makes the manipulator reach the target with an obstacle free pose. The 
proposed learning algorithm ensures that the manipulator moves smoothly and consistently 
in the whole workspace no matter which map is selected. The advantages of the proposed 
method are: (1) By employing multiple maps, the system overcomes the occlusion problems 
in cluttered environments. The cooperation and complementation of maps make the 
manipulator consistently move in the whole workspace. (2) In our self-organizing learning 
procedure, the visuo-motor system learns not only to position the end-effector precisely but 
also ensure that the manipulator takes obstacle free poses. 

 
2. Our Visuo-Motor System 
 

Our visuo-motor system is illustrated in Fig.1. The system contains a 4-DOF redundant 
manipulator, multiple CCD cameras, and multiple related SOMs. The CCD cameras are 
used to get the target positions, the locations of the end-effector and the manipulator poses. 
They also acquire information about obstacles by using simple image technique. From visual 

 

information provided by the cameras, the SOMs learn projections that convert the position 
vectors of the targets in the image spaces into the joint angle vectors of the manipulator. 
Although stereo camera systems can provide 3D information and we have used such a 
system in our previous works, the system could not well deal with spaces occluded by 
obstacles. They introduced 3-cameras system to overcome the situation (Han et al., 2006). 
However, the result was limited. To deal with the occlusion problem, a multiple camera 
system is presented in this paper. The valid workspace is extended by using the cameras at 
multiple viewpoints. Related SOMs are simultaneously employed in the visuo-motor 
system. 
Assume that the projections of a target point in the camera images are ut-S1, ut-S2, ut-S3 (side 
camera1, 2, 3) and ut-T (top camera). A pair of image coordinates of the top camera and 
another side camera is combined into a 4-dimensional vector ut-SOMn, and then it is used as 
an input to one of SOMs. Since the valid workspaces of the maps are different from each 
other, the maps are alternately used. 

 
Fig. 1. Outline of our visuo-motor system 
 
As shown in Fig.2, each SOM consists of neurons, which are distributed in 2 image spaces 
that correspond to cameras used as inputs. Each neuron has the following 4 parameters. 
1. W: Position of the neuron in 2 image spaces. 
2. J: Jacobi matrix from the manipulator joint angle space to the image spaces. 
3. θ: Joint angle at W. 
4. ξ: Gradient vector of the evaluation function H. 
When a target ut is given in the workspace, one of the maps is selected based on which 
camera can see the target. In the selected map, then, the neuron nearest to the projection of 
the target is chosen. The manipulator joint angle vector is finally calculated obeying the 
linear function (1).  
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Here J† is a pseudo-inverse matrix of J. Even though the projection from the image spaces to 
the joint angle space is not linear for a PUMA type manipulator, such a linear 
approximation can still be used in a small areas. In our SOMs, since many neurons are 
distributed in the image spaces, the area controlled by a neuron will be small enough. 
 

 
Fig. 2. A self-organizing map used in our system 
 
In our actual system, weighted sum of outputs from multiple neurons around the target is 
used instead of (1). Where gn is the weight defined by the following equation. 
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In the equation, n is the order of the neuron determined according to the distance between 
the neuron and the target. Nearer the target it has a larger value and farther it has a smaller 
value. The symbols λ and ε are values for defining the number of neurons that can affect θout. 

 
3. Learning Procedure Of The Self-Organizing Maps 
 

3.1 Reason for multiple SOMs 
In our system, multiple SOMs are employed. If we utilize one SOM to corresponding to 
multiple cameras, the SOM will have a high dimensional space and be computationally 
difficultly. On the other hand, the distance between neurons in the SOM will be too huge to 
use a linear approximation. In addition, when a camera cannot see a target, the input of the 
SOM will become incomplete, therefore, the neurons cannot be all updated. To solve these 
problems, we utilize multiple SOMs. 
If these multiple SOMs learn separately, therefore, outputs from them will be different with 
each other even for the same target in the workspace. This will result in that when the 

 

system switches the outputs used for the manipulator control, the manipulator moves 
inconsistently. The problem should be effectively removed in the learning process. Then the 
problem can be described as: the learning algorithm has to guarantee that the manipulator 
moves smoothly and consistently in the whole workspace no matter which SOM is used for 
control. 
Our learning procedure is explained using Fig.3. In the learning process, a target position ut 
is randomly given in the workspace and the cameras obtain the position. At first we assume 
that the top camera (Fig.1) can always see the target in our former system. Each SOM is 
respectively related to a side camera and it receives target information from the side camera 
and the top camera (therefore the information is a 4-dimensional vector). Depending upon 
which side cameras can see the target, corresponding maps update their parameters. When 
only one side camera can see the target the corresponding SOM updates its parameter by 
itself. When more than 2 cameras can see it, the corresponding SOMs learn under influences 
from others. In the case, one of SOMs is arbitrary chosen to output the joint angles θout, and 
the manipulator is driven by it. Then all cameras that can see the end-effector obtain its 
position v. Finally each SOM related to the camera updates its parameters using ut, θout and 
v. To remove the assumption that the top camera can always see the target, we increased the 
number of SOMs. The outputs from every 2 cameras form one SOM. The camera which can 
see the target is treated as the top camera of our former system. The SOMs learn using the 
learning algorithm motioned above. If more than 1 camera can see the target, the 
corresponding SOMs learn simultaneously. The updating algorithms will be described in 
the following subsections. The learning is done by iterating the above process for many 
targets. 
 

 
Fig. 3. Relation of multiple SOMs in the learning process 
 
This learning procedure results in that the neurons of the multiple SOMs for a target possess 
similar values of θout in the end of learning even though other parameters may differ from 
each other. Thus the outputs from any SOMs will ensure the manipulator takes the same 
pose. By one of the major features of SOM, an assignment of similar joint angles to adjacent 
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This learning procedure results in that the neurons of the multiple SOMs for a target possess 
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each other. Thus the outputs from any SOMs will ensure the manipulator takes the same 
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targets is also achieved. Both features bring out a continuous and smooth transformation 
from the input image spaces of target positions to the output spaces of joint angles. Hence 
the SOMs guarantee smooth and consistent movements of the manipulator in the whole 
workspace. 

 
3.2 SOM’s learning procedure 
A. Evaluation function 
Calculating the inverse kinematics for a given end-effector position is a hard problem for 
redundant manipulators since it is an ill-posed problem that has many possible solutions. 
We introduced evaluation functions to resolve the under-determination into the system. In 
addition to making the end-effector reach the target position, the system outputs the joint 
angle configuration that optimizes the functions. One evaluation function is to achieve high 
manipulability, and the other is to make the manipulator take an obstacle free pose. The 
functions are respectively shown in (3) and (4). The total evaluation function is defined as 
the weighted sum of HM and HO (5). The function HM is for manipulator with high 
manipulability, the other function HO for manipulators with free obstacle poses. 
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Here d is the shortest distance from each link to the obstacles, and D0 is the predefined value 
that provides the effective area of the potential. α1 and α2 are weights which are determined 
depending on the desirability of the individual functions.  
B. Learning Algorithm 
Initial neuron parameters of SOMs are randomly set at the beginning of the learning 
process. Then the joint angle outputs will lead the end-effector to wrong positions and make 
the manipulator take inadequate poses. By giving an arbitrary target in the workspace, they 
update the parameters. After many times iteration of the updating, an appropriate relation 
between the image spaces and the joint angle space will be established. 
For N-th iteration, the SOMs updates their parameters using the learning flow mentioned 
below. 
1) A target ut is arbitrarily given in the workspace. The target positions in the camera images 
are extracted and transferred to SOMs. 
2) Each SOM sorts its neurons in the ascending order of the distances between the target and 
W of the neurons. 
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Here λn is the number of neurons that will be updated in the n-th iteration. 

3) One SOM is chosen and outputs the joint angles out
0θ  by (7). The manipulator moves 
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Here n
iorder  is the order of i-th neuron. Since appropriate neuron parameters have not 

been obtained yet, however, the joint angles lead the end-effector to a wrong position. Then 
the cameras obtain the new end-effector position v0 . 
4) The SOM improves the output by (8) so that it can reduce the positioning error. 
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The cameras obtain the new end-effector position v1. 
5) The SOMs update their neuron parameters as following subsection. 
6) The system iterates the above process for defined times. 
C. Updating the Parameters 
Each neuron parameters are updated using ut, θout, and v. 
1) Updating W 
W is updated by (9). 
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Here n
W  is the learning coefficient for W. It has a large value for early stages of learning 

and has a small value for late stages. By updating W the neurons will be distributed all over 
the image spaces. 
2) Updating J 
J is updated by (10). 
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targets is also achieved. Both features bring out a continuous and smooth transformation 
from the input image spaces of target positions to the output spaces of joint angles. Hence 
the SOMs guarantee smooth and consistent movements of the manipulator in the whole 
workspace. 
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manipulability, and the other is to make the manipulator take an obstacle free pose. The 
functions are respectively shown in (3) and (4). The total evaluation function is defined as 
the weighted sum of HM and HO (5). The function HM is for manipulator with high 
manipulability, the other function HO for manipulators with free obstacle poses. 
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The cameras obtain the new end-effector position v1. 
5) The SOMs update their neuron parameters as following subsection. 
6) The system iterates the above process for defined times. 
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  nit
nn

i
n
W

n
i

n
i orderg WuWW   ,1  (9) 
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Here n
J  is the learning coefficient for J, and it changes just like W . n
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become to output more appropriate θout. 
3) Updating ξ 
ξ is the gradient vector of the evaluation function. 
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Here ξM is the gradient vector of HM, ξO is the gradient vector of HO. 
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Here j is the ID number of the neuron that is the closest to the target, and k is the ID number 

of the 2nd neuron. Then n
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ξO is updated by (17). 
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Here n
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Here HO,0 and HO,1 are respectively the potential values for v0 and v1. Then n
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Here 0,1,01, OOO HHH  , nnn
0101 θθθ  , and 
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By updating ξ using (14) and (17), the SOMs become to output joint angles that make the 
manipulator achieve high manipulability and take obstacle free poses. 
4) Updating θ 
θ is updated by (20). 
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Here n
  is the learning coefficient similar to n
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Here n
pK  is a positive coefficient, it is introduced to realize high manipulability and 

obstacle free poses. It also decreases with learning times in order to enable fine tuning of the 

system. Then n
iθ  becomes as following. 
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By updating ξ using (14) and (17), the SOMs become to output joint angles that make the 
manipulator achieve high manipulability and take obstacle free poses. 
4) Updating θ 
θ is updated by (20). 
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By updating θ using (20), the SOMs become to output θout so that the manipulator moves its 
hand-effector with less error, that it achieves high manipulability, and that it takes obstacle 
free poses. 

 
4. Path Planning 
 

Collision avoidance in our system is realized on the basis of the following idea. While the 
path projections in any one camera images do not interfere with the obstacle projections, the 
path does not collide with the obstacle in 3-dimensional space. Also the SOMs determine 
joint angles of the manipulator so that it takes obstacle free poses for given target position. 
By combining the SOMs and a simple path planning system, then, we can realize collision 
avoidance. The path planning system only has to make a trajectory that does not collide 
with obstacles in the camera images. To control the manipulator by the SOMs outputs for 
points on the trajectory is to realize obstacle avoidance. The idea is different from most of 
existing algorithms that uses configuration space. Our planning system plans paths in 2-
dimensional spaces and then the computational cost is lower than them. The system adopts 
Laplace potential method. The method can avoid local minima. For detail, please refer to 
our previous study (Han et al., 2006). 

 
5. Simulation Results 
 

We have constructed an experimental system. The outline of the system is shown in Fig.4. 
By simulation and experiments, we have also revealed that a visuo-motor system with 3 
CCD cameras and 2 SOMs can control a redundant manipulator and realize collision 
avoidance in an environment with obstacles. 
 

 
Fig. 4. Outline of our experimental system 

 

In this paper, we aim at a system with 4 CCD cameras and a 4-DOF redundant manipulator, 
and show its validity by simulation. The cameras are assumed to be orthographic models 
and each camera has 640*480 pixel resolution. The simulation model is illustrated in Fig. 5. 
The length of each link is 120, 135, 110 and 140 pixels in the image spaces. Each SOM 
involves 240 neurons. 15000 targets were given in the learning process and they were 
distributed within 200*200 pixel rage with a focus on the obstacle. The time required for the 
learning was about 10 minutes using a PC with 3.0GHz Pentium4. The learning parameters 
are listed in Table 1.  
 

 
Fig. 5. Assumed simulation environment illustrated in the image space of the right camera 
 
After the learning, 45 target positions were given randomly to evaluate the positioning error 
of the end-effector and to confirm the poses of the manipulator. The following figures show 
the positions of the end-effector and poses of the manipulator obtained by each camera. “x” 
marks are positions of the end-effector, and “o” are the projected targets. 
 

 λ ξW ξO Kp α1 α2 

Initial value 48 1.0 0.3 0.24 5.0 0.3 
Final value 1 1.0 1.0 0.0012 

Table 1. Learning parameters used in the simulation 
 
Fig.6 shows targets that are visible from all cameras and poses of the manipulator. It can be 
seen that there are some poses that touch the obstacle in the image spaces of side cameras. 
However, the manipulator does not collide with the obstacle with the poses indeed, since 
they are obstacle-free poses in the image space of the top camera. The figures also show that 
each SOM keeps continuousness with each other. The average positioning error of the end-
effector was 1.89 pixels. 
When both the initial and the goal positions can be observed in one side camera, the 
collision avoidance can be performed by using the only the corresponding SOM. An 
example of path planning is shown in Fig.7. The path planning system planned a collision-
free path of the end-effector in the top camera image using Laplace potential method, and 
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the positions of the end-effector and poses of the manipulator obtained by each camera. “x” 
marks are positions of the end-effector, and “o” are the projected targets. 
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However, the manipulator does not collide with the obstacle with the poses indeed, since 
they are obstacle-free poses in the image space of the top camera. The figures also show that 
each SOM keeps continuousness with each other. The average positioning error of the end-
effector was 1.89 pixels. 
When both the initial and the goal positions can be observed in one side camera, the 
collision avoidance can be performed by using the only the corresponding SOM. An 
example of path planning is shown in Fig.7. The path planning system planned a collision-
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determined the shortest path in another camera image. Then the planning system divided 
the path into 34 positions and the SOMs outputted the collision-free poses for the positions. 
The figures show that the planned path avoided the obstacle. Also, they show that the 
system controlled the manipulator switching outputs from the SOMs in an environment 
where occlusion occurred. 
 

 
The image of side camera 1                                The image of side camera 3 

 
               The image of side camera 3                                The image of top camera 
Fig. 6. Targets and manipulator poses after the learning process 
 

    
The image of side camera 1                                The image of top camera 

Fig. 7. Collision avoidance by the simulation 
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6. Conclusions 
 

We developed a visuo-motor system with multiple self-organizing maps. The system 
consists of a redundant manipulator, multiple cameras and multiple SOMs corresponding to 
the cameras. By using the cameras, the system can control the manipulator in an 
environment with obstacles. To realize the system, we also developed a learning method of 
the SOMs. The learning method can keep consistency of outputs among the SOMs. We then 
combined the SOMs and a path planning system to achieve collision avoidance. Since the 
SOMs outputs collision free poses, the path planning system became very simple. 
Simulation results showed that the SOMs control the manipulator with obstacle free poses 
and that the collision avoidance was realized. 
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