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1. Introduction    
 

Wireless sensor networks have garnered significant attention in recent years.  According to 
(The Mobile Internet, 2004), more than half a billion nodes will be shipped for wireless 
sensor applications in 2010, for an end user market worth at least $7 billion. 
Wireless sensor networks are one of the first real-world examples of pervasive computing, 
the notion that small, smart, computing and cheap sensing devices will eventually permeate 
the environment (Bulusu & Jha, 2005).  The combination of distributed sensing, low power 
processors and wireless communication enables such technology to be used in a wide array 
of applications such as habitat monitoring and environment monitoring, military solutions, 
such as battlefield surveillance, and commercial applications, such as monitoring material 
fatigue and managing inventory. 
A wireless sensor network consists of hundreds or thousands of low-power, low-cost multi-
functioning sensor nodes operating in an unattended environment with a limited supply of 
energy. The latter is one of the main constraints of each sensor node together with the 
limited processing power. These limitations, coupled with the deployment of a large 
number of sensor nodes, pose a number of challenges to the design and management of 
these networks, requiring energy-awareness at all layers of the networking protocol stack.  
The issues related to the physical and link layers are generally common for all sensor 
applications and therefore research in these areas focused on system-level energy awareness 
such as dynamic voltage scaling (Heinzelman et al, 2000a), radio communication hardware 
(Min et al, 2000), low duty-cycle issues (Woo & Culler, 2001), system partitioning (Ye et al, 
2002) and energy-aware MAC protocols (Shih et al, 2001).  At the network layer, energy 
efficient route setup protocols are necessary to reliably relay data from the sensor nodes to 
the sink whilst maximising the lifetime of the network. This chapter will focus on such a 
solution based on sensor node clustering, whereby the topology is decided through an SOM 
neural network. 
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2. Related Work 
 

Since wireless sensor networks often consist of a large number of sensor nodes which have 
to be networked together, conventional techniques such as the direct transmission protocol 
have to be avoided because the energy loss incurred can be quite large, depending on the 
location of the sensor node relative to the base station.  Furthermore, using a conventional 
multi-hop routing protocol such as Minimum Transmission Energy (MTE) (Ettus, 1998; 
Shepard, 1996) will also result in an equally undesirable effect.  This is due to the fact that in 
MTE, the intermediate nodes are chosen in such a way that the sum of squared distances 
(and thus the total transmit energy, assuming 2d  power loss) is minimised.  Hence for the 
configuration shown in Figure 1, node A would transmit to node C through node B if and 
only if: 

                   ( ) ( ) ( )transmit AB transmit BC transmit ACE d d E d d E d d                           (1)     
 

or assuming a 2

1
d

attenuation model, 

                                                                    2 2 2
AB BC ACd d d                                                              (2) 

 

 
Fig. 1. Minimum Transmission Energy 
 
Thus in MTE, the nodes closest to the base station will rapidly drain their energy resources 
since they are involved in routing of a large number of messages (on behalf of other nodes) 
to the base station. 
In order to minimise these problems, various routing protocols have been proposed for 
wireless sensor networks.  An in-depth survey of such protocols is presented in (Akkaya & 
Younis, 2005).  Here, Akkaya and Younis classify routing protocols into 3 main categories 
namely: Location-based protocols, Data-centric protocols and Cluster-based protocols. 
 
Location-based protocols 
These protocols utilise the position information to relay data to the desired regions rather 
than the whole network.  An example of location-based protocols is Geographic Adaptive 
Fidelity (GAF) (Xu et al, 2001). 
 
Data centric protocols 
These protocols depend on labelling of the desired data thereby eliminating many 
redundant transmissions.  Two well-known network layer protocols based on data centric 
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routing are Sensor Protocols for Information via Negotiation (SPIN) (Heinzelman et al, 1999) 
and directed diffusion (Intanagonwiwat et al, 2000).  Although the data centric routing 
approach provides a reliable and robust solution to wireless sensor networks, there are still 
some shortcomings associated with it since both SPIN and directed diffusion suffer from the 
amount of overhead energy spent in activities such as advertising, requesting and gradient 
setup.  Furthermore, the excessive time spent in such activities might not suit applications 
that require the sensor nodes to respond quickly to an emergency situation. 
 
Cluster-based protocols  
In cluster-based routing protocols, nodes are grouped into clusters and each cluster head 
node collects, processes and forwards the data from all the sensor nodes within its cluster to 
the base station.  The application of clustering-based protocols reduces energy dissipation 
by selecting optimal cluster heads, thereby reducing transmission distance, and by reducing 
the amount of information that needs to be transmitted through data aggregation.  Research 
in recent years focused on developing algorithms that select optimal cluster heads in order 
to reduce the energy dissipation thereby increasing the lifetime of the system.    
Cluster-based routing algorithms are generally divided into two categories; centralised and 
distributed algorithms.  One of the most popular cluster-based distributed algorithms is 
Low-Energy Adaptive Clustering Hierarchy (LEACH) (Heinzelman et al, 2000b). The 
operation of LEACH is organized in rounds, where each round is composed of a cluster 
setup phase and a data transmission phase.  During the cluster setup phase, nodes organize 
themselves into clusters with one node serving as the cluster head in each cluster.  The 
selection of a cluster head is decided locally within each node, making LEACH a completely 
distributed algorithm requiring no global knowledge of the network.  To become a cluster 
head, each node n selects a random number between 0 and 1 and if the number is less than 
the threshold T(n) the node is elected as a cluster head for the current round.  The threshold 
T(n) is given by: 
 

           

        


    if n  G
11 mod( )

0                             otherwise

P

P rT n P                                     (3) 

 
where, P is the cluster head probability, r is the number of the current round and G is the set 
of nodes that have not been cluster-heads in the last 1

P . 

During the transmission phase, the self elected cluster heads collect data from nodes within 
their respective clusters and apply data fusion before forwarding the fused data directly to 
the base station.  At the end of a given round, a new set of nodes become cluster heads for 
the subsequent round.  This cluster head rotation mechanism coupled with data fusion in 
the cluster head results in LEACH achieving a factor of 7 reduction in energy dissipation 
compared to direct communication and a factor of 4 - 8 reduction in energy when compared 
to the minimum transmission energy routing protocol (Akkaya & Younis 2005).   
Although LEACH is normally considered as a benchmark protocol, the algorithm used in 
the selection of cluster heads has a number of disadvantages: 
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1. Since each node uses probability techniques to decide whether or not to become a 
cluster head, there might be cases were two cluster heads are in close proximity of 
each other increasing the overall energy dissipation in the network. 

2. The number of cluster head nodes generated is not fixed and so in some rounds it 
may be more or less than the optimal value. 

3. The nodes selected can be located in areas which are not densely populated 
resulting in further energy expenditure to transmit data to that cluster head. 

4. Each node has to calculate the threshold and generate the random number in each 
round, consuming CPU cycles. 

5. LEACH stochastic cluster head selection is prone to lead to energy imbalance in the 
network.  This results in nodes dying at an early stage reducing the network 
lifetime significantly. 

In order to tackle some of the disadvantages found in LEACH, the authors of (Heinzelman 
et al, 2002) proposed a centralized version called LEACH-C.  Unlike LEACH, where nodes 
self-configure into clusters, LEACH-C uses the base station for cluster formation.  During 
the cluster setup phase, each node sends information about its current location, using a GPS 
receiver, and energy level to the base station.  The energy level is used by the base station to 
ensure that only the nodes with relatively high energy are participating in the cluster head 
selection.  Using these high energy nodes, the base station uses the simulated annealing 
algorithm (Maruta & Ishibuchi, 1994) to find k optimal cluster heads in order to minimize 
the amount of energy dissipation required by the other nodes to transmit their data to the 
cluster head. 
Although the data transmission phase of LEACH-C is identical to that of LEACH, results 
indicate a 40% increase in data per unit energy over LEACH.  The authors of (Heinzelman et 
al, 2002) cite two key reasons for this improvement:   

1. The base station utilises its global knowledge of the network to produce better 
clusters which require less energy for data transmission. 

2. The number of cluster heads in each round of LEACH-C equals a predetermined 
optimal value, whereas for LEACH the number of cluster heads varies from round 
to round due to the lack of global coordination among nodes. 

Nevertheless, this improvement comes at the expense of having all the sensors equipped 
with GPS receivers which apart from increasing the cost of each sensor, introduces further 
energy dissipation. 

 
3. Algorithm Design 
 

3.1 Requirements and Assumptions 
In order to find a good compromise between the centralised and distributed approaches, we 
will now present an SOM neural network-based clustering algorithm. In this solution, the 
sensor nodes collect network topological information, through localised interactions, which 
is then transferred to the base station through a low energy cost network initialisation phase.  
As opposed to other centralised algorithms such as LEACH-C, the initialisation phase 
allows the base station to have updated network topology awareness without the use of 
GPS-assisted sensors and without high energy cost procedures. 
The design of the algorithm needs to achieve the following targets: 

 

 Ease of deployment: Sensor networks may contain hundreds of nodes and may 
need to be deployed in remote and dangerous environments.  Thus nodes must be 
small, cheap and able to self-configure with limited global control to setup or 
maintain the network. 

 System lifetime: Sensor nodes must have low energy consumption in order to allow 
the network to operate for as long a period as possible. Moreover, the energy 
balancing mechanisms help in extending the system’s lifetime. 

 Latency:  Data from sensor networks is typically time-sensitive, so it is important to 
receive the data in a timely manner.  Long delays due to processing or 
communication may be unacceptable. 

In order to reach these goals, the algorithm mechanisms described below and illustrated in 
Figure 2 can be applied. 
System Lifetime: To improve system lifetime, mechanisms need to be developed to minimise 
energy dissipation and improve energy balancing between the nodes.  Such mechanisms 
include: Data reduction algorithms based on classic adaptive filters, cluster head separation, 
neural assisted cluster head election, cluster head rotation and load balancing cost functions. 
Latency:  Network latency increases as number of nodes between source and destination 
increases.  To reduce latency, the single hop mode of operation can be used for intra-cluster 
communication, thereby allowing the base station to receive data in a timely manner.  
Furthermore, the use of data reduction algorithms discussed later on, allow the base station 
to predict sensor measurements itself thus eliminating any latency issues. 
Ease of deployment:  The use of a homogenous network structure whereby all the sensor 
nodes are identical in terms of battery energy and hardware complexity allows for a fast and 
easy deployment.  Moreover, the algorithm can be designed in such a way that nodes self-
configure with limited global control to setup or maintain the network. 
 

 
Fig. 2. Algorithm Mechanisms 
 
Prior to a detailed description of the algorithm, it is worth noting the following general 
assumptions: 

 N sensors are uniformly dispersed within a square field of size M x M. 
 All sensors and base station are stationary after deployment. 
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 The intra-cluster communication is based on the single-hop mode of operation. 
 Communication is symmetric and a sensor can compute the approximate distance 

based on the received signal strength if the transmission power is given.  If the 
transmission power is not known, the received signal strength is used as a distance 
metric. 

 All sensors are of equal significance having equal energy and hardware complexity 
– homogenous network. 

 All sensors are location-unaware. 

 
3.2 Radio Propagation Model 
The transmission of data from the sensors uses air as a medium and therefore we need a 
model to estimate the signal levels reaching the receivers. The standard radio model used in 
wireless sensor networks is based on the fact that the propagation of electromagnetic waves 
can be modelled as a decaying power law function of the distance between the transmitter 
and the receiver.  Furthermore, if there is no direct line-of-sight path between the transmitter 
and the receiver, the electromagnetic wave will undergo reflection, diffraction and 
scattering off objects in the environment.  This will result in electromagnetic waves arriving 
at the receiver from different paths and at different times, leading to multi-path fading, 
which again can be roughly modelled as a power law function of the distance between the 
transmitter and the receiver (Heinzelman et al, 2000b). 
The radio model commonly adopted to model propagation in wireless sensor networks uses 
both the free space model and the multi-path fading model, depending on the distance 
between the transmitter and the receiver.  If the distance between the transmitter and a 
receiver is less than a certain crossover distance crossoverd , the Friss free space model is used 
whereas if the distance is greater than crossoverd , the two-ray ground propagation model is 
used (Heinzelman et al, 2000b).  The crossover distance is defined as follows (Heinzelman et 
al, 2000b): 
 

 



4 T R

crossover
Lh hd                                                      (4) 

 
where, 
L   1 is the system loss factor and is not related to propagation, 

Th  is the height of the transmitting antenna above ground level in metres, 

Rh  is the height of the receiving antenna above ground level in metres, 
  is the wavelength of the carrier signal in metres. 
When the transmitter and receiver have direct line-of-sight communication, which will only 
occur if the transmitter and receiver are close to each other (i.e.  crossoverd d ), the transmit 
power is attenuated according to the Friss free space equation as follows (Rappaport, 1996):   
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where, 
( )rP d  is the received power given a transmitter-receiver separation of d in metres, 

tP  is the transmit power, 

tG  is the gain of the transmitting antenna, 

rG  is the gain of the receiving antenna, 
d  is the distance between the transmitter and the receiver in metres. 
If the distance is greater than crossoverd , the transmit power is attenuated according to the two-
ray ground propagation equation as follows (Heinzelman et al, 2000b): 
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In this case, the received signal comes from both the direct path and a ground-reflection 
path leading to a higher transmit power attenuation rate proportional to 4d . 
Although the standard radio model is widely used in modelling and simulation of wireless 
sensor networks, it is rather simplistic. As the credibility of high level protocol simulation 
results depends on the accuracy of the physical layer model (Kotz et al, 2004), more accurate 
radio models are required. A review of studies carried out in this area reveals a general lack 
of near-ground channel measurements, as the vast majority of the studies place antennas at 
heights which are greater than one metre. However, recently studies were carried out in this 
area and radio models based on field measurements were specifically developed for 
wireless sensor network.  In (Fanimokun & Frolik, 2003), Fanimokun and Frolik present 
specific models for near ground wireless sensor networks operating in the 915 MHz ISM 
band based on the single slope log normal shadowing model.  Similarly in (Molina-Garcia-
Pardo et al, 2005), the authors present models for an operational frequency of 868 MHz 
based on the two slope log normal models.  Although these models are more accurate than 
the standard radio model discussed earlier, they are specific to the environment in which 
the measurements were taken and therefore they cannot be reliably applied to different 
scenarios. 

 
3.3 Energy Model 
The standard energy consumption model used in wireless sensor networks is that 
developed by (Heinzelman et al, 2000b). Heinzelmann adopts a simple energy model where 
the transmitter dissipates energy to run the radio electronics and the power amplifier, whilst 
the receiver dissipates energy to run the electronics as shown in Figure 3.  
Furthermore, this energy model makes use of the standard propagation model whereby the 
power attenuation depends on the distance between the transmitter and receiver.  Power 
control is used to invert this loss by adjusting the power amplifier to ensure that a certain 
signal power level reaches the receiver.   
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path leading to a higher transmit power attenuation rate proportional to 4d . 
Although the standard radio model is widely used in modelling and simulation of wireless 
sensor networks, it is rather simplistic. As the credibility of high level protocol simulation 
results depends on the accuracy of the physical layer model (Kotz et al, 2004), more accurate 
radio models are required. A review of studies carried out in this area reveals a general lack 
of near-ground channel measurements, as the vast majority of the studies place antennas at 
heights which are greater than one metre. However, recently studies were carried out in this 
area and radio models based on field measurements were specifically developed for 
wireless sensor network.  In (Fanimokun & Frolik, 2003), Fanimokun and Frolik present 
specific models for near ground wireless sensor networks operating in the 915 MHz ISM 
band based on the single slope log normal shadowing model.  Similarly in (Molina-Garcia-
Pardo et al, 2005), the authors present models for an operational frequency of 868 MHz 
based on the two slope log normal models.  Although these models are more accurate than 
the standard radio model discussed earlier, they are specific to the environment in which 
the measurements were taken and therefore they cannot be reliably applied to different 
scenarios. 

 
3.3 Energy Model 
The standard energy consumption model used in wireless sensor networks is that 
developed by (Heinzelman et al, 2000b). Heinzelmann adopts a simple energy model where 
the transmitter dissipates energy to run the radio electronics and the power amplifier, whilst 
the receiver dissipates energy to run the electronics as shown in Figure 3.  
Furthermore, this energy model makes use of the standard propagation model whereby the 
power attenuation depends on the distance between the transmitter and receiver.  Power 
control is used to invert this loss by adjusting the power amplifier to ensure that a certain 
signal power level reaches the receiver.   
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Fig. 3. Radio energy dissipation model (Heinzelman et al, 2000b) 
 
Thus, to transmit an l-bit message a distance d, the radio expends: 
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And to receive this message, the radio expends: 
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The electronics energy ElecE depends on factors such as digital coding, modulation and 
filtering of the signal before it is sent to the transmit amplifier.  The typical value used for 

ElecE is 50 nJ/bit (Heinzelman et al, 2000b).  The parameters  fs and mp depend on the 
receiver sensitivity and noise figure, as the transmit power needs to be adjusted so that the 
power at the receiver is above a certain threshold ThresholdP (Heinzelman et al, 2000b). 
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3.4 Algorithm Details 
The general operation of the clustering algorithm is divided into three phases as shown in 
Figure 4. 
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Similar to LEACH, the operation of the algorithm is divided into rounds.  Each round 
begins with a cluster setup phase were the clusters are organised, followed by a data 
transmission phase during which data is transferred from the nodes to the cluster head 
which aggregates all the data received together with its own data and forwards it to the base 
station. 
Initialisation Phase 
During the initialisation phase, the base station calculates important network parameters 
and collects topological information from the nodes through localised interaction.  This 
phase needs to consume very little energy and therefore it must be designed to use small 
control packets and minimise the number of transmissions.  The operation of the 
initialisation phase is as follows: 

1. The base station calculates the optimal number of cluster heads Kopt and the 
minimum cluster head separation distance Rsep . 

2. The base station broadcasts a “Network Initialisation” message to all nodes in the 
network at a fixed power PBroadcast which includes the minimum separation distance 
Rsep . 

3. All the nodes in the network receive this broadcast and use it as a ‘beacon’ signal to 
calculate their distance from the base station dTOBS by considering the received signal 
strength as a distance metric. 

4. Each node then broadcasts a “Neighbourhood Search” message including their node 
ID within a range Rsep  by setting the transmit power to PSearch. 

5. All the nodes in the network listen for the “Neighbourhood Search” messages and 
record all the received messages, storing the Node ID and received signal strength.   

6. Following the “Neighbourhood Search” procedure, each node uses the recorded 
“Neighbourhood Search” messages to calculate its node centrality and concentration 
as in (Gupta et al, 2005).  These parameters together with the list of neighbouring 
nodes and the distance metric to each node are then transmitted to the base station. 
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Optimum number of cluster heads  
The optimal number of cluster heads, Kopt, can be analytically determined using the 
computation and communication energy models as in LEACH (Heinzelman et al, 2000b).  
The authors of (Heinzelman et al, 2000b), considered the case where the cluster head 
aggregates all the received data into a single packet by performing data aggregation.  
However, this is not realistic and the case where the cluster head compresses all the received 
data into a packet of size l is considered. 
Assume that there are N nodes distributed uniformly in an M x M region.  If there are k  
clusters, each cluster has an average of N/k nodes (one cluster head and (N/k) - 1 non-cluster 
head nodes).  Now, let  [0,1]  be the compression factor, l be the length of data packets 
transmitted from the node to the cluster head, P be the number of non-cluster head nodes in 
a cluster and LM be the length of the compressed data packet transmitted from the cluster 
head to the base station.   
Then, 
 

                 1ML P P l                                                      (11) 
 
Since the base station is typically far from the nodes, it is assumed that the energy 
dissipation of the cluster head follows the multi-path model ( 4d  power loss).  Thus, the 
energy dissipated in the cluster head during a single frame is given by: 
 

                                               
 

41
mp TOBSCH elec M elec
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                                      (12) 

 
where elecE  is the electronics energy taken to be 50nJ/bit (Heinzelman et al, 2000b), mp  
depends on the receiver sensitivity and noise figure, and dTOBS  is the distance from the 
cluster head node to the base station. 
Each non-cluster head node transmits its data to the cluster head once during a frame.  As 
the distance to the cluster head is small, it is assumed that the energy dissipation of the non-
cluster head node follows the Friss free space model ( 2d power loss).  Thus the energy 
dissipated in each non-cluster head node is: 
 

   2
non CH elec fs TOCHE lE l d                                                     (13)                     

 
where  fs  depends on the receiver sensitivity and noise figure and TOCHd  is the distance 
from the non-cluster head node to the cluster head.  As shown in (Heinzelman et al, 2000b), 
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Therefore, the energy dissipation of the non-cluster heads is given by: 
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Furthermore, the total energy dissipated in a cluster during a frame is: 
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Hence the total energy dissipated in a frame is given by: 
 


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                                                (17)     

               
Substituting (12) and (13) in (17) yields: 
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The optimal number of cluster heads is found by setting the derivative of totalE with respect 
to k to zero, yielding: 
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Minimum cluster head separation distance  
In order to reduce the energy dissipation of the sensor nodes, cluster heads are spread 
across the whole field by considering a minimum cluster head separation distance, Rsep.  This 
ensures that no two cluster heads are in close proximity of each other, thereby increasing 
network lifetime. 
Consider Kopt cluster heads distributed uniformly in an M x M region.  The minimum cluster 
head separation distance Rsep  is given by: 
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k

                                                 (20) 

 
Determining PBroadcast and PSearch  
With reference to equations (6), (7), (8) and assuming the following radio parameters:             
f = 914MHz,  = 0.328m, GT = GR = 1, L = 1, hT = hR = 1.5m (Heinzelman et al, 2000b), the 
crossover distance is given by:  
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Minimum cluster head separation distance  
In order to reduce the energy dissipation of the sensor nodes, cluster heads are spread 
across the whole field by considering a minimum cluster head separation distance, Rsep.  This 
ensures that no two cluster heads are in close proximity of each other, thereby increasing 
network lifetime. 
Consider Kopt cluster heads distributed uniformly in an M x M region.  The minimum cluster 
head separation distance Rsep  is given by: 
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Determining PBroadcast and PSearch  
With reference to equations (6), (7), (8) and assuming the following radio parameters:             
f = 914MHz,  = 0.328m, GT = GR = 1, L = 1, hT = hR = 1.5m (Heinzelman et al, 2000b), the 
crossover distance is given by:  
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Assuming that the receiver’s thermal noise floor is 99dBm, the receiver noise figure is 17dB 
and assuming that an SNR of at least 30dB is required to receive the signal with no errors, 
then the minimum received signal level for successful reception is given by (Heinzelman et 
al, 2000b): PR  -99 + 17 + 30 = -52dBm → 6.3W. 
Substituting PR  in (22) yields, 
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In general, to determine PSearch we consider  crossoverd d whereas to determine PBroadcast we 
consider  crossoverd d . 
Cluster Setup Phase 
During the cluster setup phase, the base station has to elect Kopt cluster heads.  This decision 
is based on four parameters, namely: 

 Node Residual Energy:  The elected node must have a high residual energy as the 
cluster heads are involved in high energy consumption operations.  These nodes 
have to aggregate the data and transmit larger packets to the base station. 

 Centrality: The node centrality defines a value which classifies the node importance 
based on how central the node is to the cluster.  The elected node needs to have a 
low centrality value indicating that the node is central in relation to the 
surrounding nodes thereby reducing the energy dissipation between the nodes and 
the cluster head. 

 Concentration:  This defines the number of nodes present in the vicinity. The elected 
node must have a high node concentration thereby ensuring that cluster heads are 
elected where they are mostly required. 

 Cluster head frequency:  In order to avoid electing the same node repeatedly, the base 
station has to keep a record of the number of times each node was elected as cluster 
head.   

The election of cluster heads is carried out using an SOM neural network (Kohnen, 1995).  
The neural network uses the above mentioned parameters to partition the nodes according 
to their cluster head quality.  From this we define high quality cluster heads as those sensor 
nodes that present high residual energy, low centrality, high concentration and low cluster 
head frequency. 
A 4 input - 16 output neuron SOM topology is adequate to solve this cluster head selection 
problem (Cordina & Debono, 2008). The network is used to partition data into 16 categories 

 

depending on the cluster head quality as shown in Figure 5.  The weights Wi,j are initially set 
such that neuron Y1 corresponds to high quality nodes whereas neuron Y16 corresponds to 
low quality nodes.  These weights are then fine tuned using the standard SOM training 
methodology based on 10,000 normalised test vectors. 
 

 
Fig. 5. Self Organising Map structure 
 
The general operation of the cluster head election mechanism is shown in Figure 6. 
 

 
Fig. 6. Cluster head election mechanism 
 
The output from the neural network is a list of clustered nodes sorted according to their 
cluster head quality.  This list is then applied to a minimum separation filter which ensures 
that a minimum separation distance is guaranteed between the elected cluster heads.  This 
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yields Kopt  high quality cluster heads which are separated by the defined minimum distance 
Rsep. 
The operation of the cluster setup phase is as follows: 

1. During the initialisation phase, the base station collects all the information sent 
from the nodes and compiles a table as shown in Table 1.  Note that the initial 
energy of each node is predefined and the cluster head frequency, which defines 
the number of times the node is elected as cluster head, is initially set to zero. 
 

Node ID Centrality Concentration Energy CH Frequency Distance to BS Neighbours 

1 0.34 1 0.5 0 80.5 54 

2 0.532 3 0.5 0 75.2 5, 10, 14 

3 0.784 2 0.5 0 97.6 65, 88 

… … … ... … … … 

… … … ... … … … 

Table 1. Information collected by the base station 
 

2. The Centrality, Concentration, Energy and CH frequency for all the nodes are 
extracted from Table 1, normalised (Doherty et al, 2007) and applied to the neural 
network to cluster the nodes according to their cluster head quality.  Following the 
clustering process, the filtering algorithm is applied to the output of the neural 
network. 

3. Using Table 1, the base station computes the cost function parameters _ mingd  and 

_ maxgd  on the chosen CHs as follows 
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4. The base station informs the selected cluster head nodes for the current round and 
also includes the cost function parameters. 

5. The selected cluster heads broadcast an “Advert CH” message to all the nodes in 
the network at a fixed power PBroadcast including their Node ID and cost function 
parameters. 

6. Nodes in the network receive the “Advert CH” messages and compute the cost for 
each cluster head.  Various cost functions can be used, two of which are shown 
here: 

Standard cost function based on received signal strength – In most of the algorithms, nodes 
choose the cluster heads based on the received signal strength in order to lower their energy 
consumption.  However as discussed in (Ye et al, 2005), this approach may lead cluster head 
nodes to exhaust their energy rapidly during the data transmission phase as cluster head 
nodes which are further away from the base station have a higher energy consumption 
compared to those being in the vicinity of the base station. 
Advanced cost function based on a weighted distance-energy metric – This cost function presented 
in (Cordina & Debono, 2009) considers both the distance metric and the energy of the cluster 
head node relative to that of the node.  Thus, the cost of a cluster head node which is far 

 

away from the base station is offset according to the energy of the cluster head node relative 
to that of the node.  The cost function is given by: 
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where, ECH and ENode are the cluster head and node residual energy respectively, w1 and w2 
are the distance and energy cost function weights respectively, _ mingd  and _ maxgd are cost 
function distance parameters described earlier and _ max [max{ ( , )}]f j id Ex d P CH  is a 
normalising factor for the distance between the node Pj and the cluster head CHi. 

7. Each node selects the cluster head which has the minimum cost and sends a “Join 
Request” message to the selected cluster head node including Node ID, cost and 
status of the exclusive flag.  The latter is used by the node to inform the cluster 
head that it has received only one “Advert CH” message, this indicates that the 
node is on the fringe of the network.  The exclusive flag is then used to prioritise 
between the nodes. 

8. Cluster heads receive the “Join Request” messages and notify the nodes of their 
acceptance.  

The nodes whose energy level falls below the Critical Energy Level whilst in the cluster 
setup phase send a “Node dead” message directly to the base station.  Similarly, elected 
cluster head nodes whose energy level falls below the Critical Energy Level during the 
cluster setup phase, send a “Cluster Head dead” message directly to the base station.  This 
allows the base station to update the status of the nodes in the network during the cluster 
setup phase.  If the base station detects that a cluster head is ‘dead’, it marks its status ‘dead’ 
and broadcasts a re-cluster message to the whole network indicating that a re-cluster is 
necessary.  On receiving a ‘Re-clustering’ message, all the nodes disassociate themselves 
from their cluster head and the cluster setup phase is re-started. 
Data Transmission Phase and cluster head rotation 
During the data transmission phase, the nodes perform measurements and append status 
and residual energy information to each packet before transmitting it to their cluster head. 
The cluster heads receive this data, append their status and residual energy information, 
compress it and forward the resulting packet to the base station. This allows the base station 
to update the energy level and status of all the nodes in the network. Whenever the base 
station detects that a cluster head is ‘dead’, it broadcasts the re-cluster message.  
As there is a cost in terms of time and energy associated with the cluster setup phase, the 
data transmission phase should be long when compared to this phase to reduce the effect of 
the overhead incurred during cluster formation on the overall performance. On the other 
hand, as the energy at each node is limited, running the data transmission phase for too long 
drains the energy of the cluster head node and curtails communication between the non-
cluster head nodes that still have energy and the base station. For this reason, a cluster head 
rotation mechanism is employed to balance energy between the nodes. In this algorithm, a 
cluster head rotation is triggered when the cluster head residual energy in the current round 
falls below the residual energy in the previous round by some percentage hysteresis. On a 
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yields Kopt  high quality cluster heads which are separated by the defined minimum distance 
Rsep. 
The operation of the cluster setup phase is as follows: 

1. During the initialisation phase, the base station collects all the information sent 
from the nodes and compiles a table as shown in Table 1.  Note that the initial 
energy of each node is predefined and the cluster head frequency, which defines 
the number of times the node is elected as cluster head, is initially set to zero. 
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1 0.34 1 0.5 0 80.5 54 

2 0.532 3 0.5 0 75.2 5, 10, 14 
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the network at a fixed power PBroadcast including their Node ID and cost function 
parameters. 

6. Nodes in the network receive the “Advert CH” messages and compute the cost for 
each cluster head.  Various cost functions can be used, two of which are shown 
here: 

Standard cost function based on received signal strength – In most of the algorithms, nodes 
choose the cluster heads based on the received signal strength in order to lower their energy 
consumption.  However as discussed in (Ye et al, 2005), this approach may lead cluster head 
nodes to exhaust their energy rapidly during the data transmission phase as cluster head 
nodes which are further away from the base station have a higher energy consumption 
compared to those being in the vicinity of the base station. 
Advanced cost function based on a weighted distance-energy metric – This cost function presented 
in (Cordina & Debono, 2009) considers both the distance metric and the energy of the cluster 
head node relative to that of the node.  Thus, the cost of a cluster head node which is far 

 

away from the base station is offset according to the energy of the cluster head node relative 
to that of the node.  The cost function is given by: 
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where, ECH and ENode are the cluster head and node residual energy respectively, w1 and w2 
are the distance and energy cost function weights respectively, _ mingd  and _ maxgd are cost 
function distance parameters described earlier and _ max [max{ ( , )}]f j id Ex d P CH  is a 
normalising factor for the distance between the node Pj and the cluster head CHi. 

7. Each node selects the cluster head which has the minimum cost and sends a “Join 
Request” message to the selected cluster head node including Node ID, cost and 
status of the exclusive flag.  The latter is used by the node to inform the cluster 
head that it has received only one “Advert CH” message, this indicates that the 
node is on the fringe of the network.  The exclusive flag is then used to prioritise 
between the nodes. 

8. Cluster heads receive the “Join Request” messages and notify the nodes of their 
acceptance.  

The nodes whose energy level falls below the Critical Energy Level whilst in the cluster 
setup phase send a “Node dead” message directly to the base station.  Similarly, elected 
cluster head nodes whose energy level falls below the Critical Energy Level during the 
cluster setup phase, send a “Cluster Head dead” message directly to the base station.  This 
allows the base station to update the status of the nodes in the network during the cluster 
setup phase.  If the base station detects that a cluster head is ‘dead’, it marks its status ‘dead’ 
and broadcasts a re-cluster message to the whole network indicating that a re-cluster is 
necessary.  On receiving a ‘Re-clustering’ message, all the nodes disassociate themselves 
from their cluster head and the cluster setup phase is re-started. 
Data Transmission Phase and cluster head rotation 
During the data transmission phase, the nodes perform measurements and append status 
and residual energy information to each packet before transmitting it to their cluster head. 
The cluster heads receive this data, append their status and residual energy information, 
compress it and forward the resulting packet to the base station. This allows the base station 
to update the energy level and status of all the nodes in the network. Whenever the base 
station detects that a cluster head is ‘dead’, it broadcasts the re-cluster message.  
As there is a cost in terms of time and energy associated with the cluster setup phase, the 
data transmission phase should be long when compared to this phase to reduce the effect of 
the overhead incurred during cluster formation on the overall performance. On the other 
hand, as the energy at each node is limited, running the data transmission phase for too long 
drains the energy of the cluster head node and curtails communication between the non-
cluster head nodes that still have energy and the base station. For this reason, a cluster head 
rotation mechanism is employed to balance energy between the nodes. In this algorithm, a 
cluster head rotation is triggered when the cluster head residual energy in the current round 
falls below the residual energy in the previous round by some percentage hysteresis. On a 
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cluster setup phase re-start, the base station has an updated status of the network and 
recalculates the optimal number of cluster heads Kopt to ensure optimality throughout the 
lifetime of the network. All these energy overheads related to the initialisation phase, cluster 
setup phase, associated re-clustering procedures and the appending of status/residual 
energy to the transmitted packets must be considered in the simulations. 

 
3.5 Results 
Prior to fully testing the algorithm, the two SOM neural network parameters, namely the 
learning rate and sigma, need to be optimised.  Simulations are initially carried out on a 
fixed network in order to determine these optimal parameters.  The clustering performance 
of the neural network is assessed by computing the overall cluster quality index as defined 
in (He et al, 2003).  With reference to Figure 7, the optimal SOM neural network parameters 
are: learning rate=0.1 and sigma=0.2. 
 

 
Fig. 7. Overall cluster quality index 
 
Using these optimal SOM neural network parameters, the full algorithm can be tested in a 
wireless sensor network simulator, in this example the simulator is implemented in 
MATLAB®.  Simulations were performed on 100 nodes uniformly dispersed in a 100m by 
100m field with the base station located at coordinates (150m, 50m).  The energy parameters 
used in this simulation are tabulated in Table 2. 
 
 
 
 
 

 

Initial Battery energy 0.5 Joules 

Energy model parameter, εfs 1*10-11 

Energy model parameter, εmp 1.3*10-15 

Electronics Energy, Eelec 50nJ/bit 

Data packet length 4000bits 

Control packet length 200 bits 
Table 2. Assumed energy parameters 
 
The performance of the algorithm can be assessed along three metrics. These are (1) First 
Node Dies (FND) which defines the time taken for the first node to die, (2) Half Nodes Alive 
(HNA) which defines when half the network has died, and (3) Transmitted Packets (TP) which 
gives the total number of transmitted packets by the sensor nodes at FND.  To evaluate the 
validity and performance of the algorithm, simulations are carried out over 50 randomly 
generated 100 node networks. The improvement over LEACH in terms of mean and 
standard deviation values of the performance metrics is shown in Table 3. 
  

Metric Standard Cost Function Advanced Cost Function 

 Mean Std. Deviation Mean Std. Deviation 

FND 51.1% 4.8% 65.2% 4.6% 

HNA 34.% 0.9% 32.8% 0.8% 

TP 27.6% 4% 36.1% 3.3% 
Table 3. Performance Metrics 
 

Algorithm Improvement over LEACH 

EEPSC (Zahmati et al, 2007) 45% 

LEACH-C (Heinzelman, 2002) 62.5% 

LEACH-Deterministic (Handy et al, 2003) 30% 

This SOM-based Algorithm 65.2% 
Table 4. Performance Improvement of various algorithms 
 
These results show that the algorithm is capable of creating better clusters, increasing the 
energy balancing between the nodes whilst lowering the rate of energy dissipation. This in 
turn results in a significant improvement in the FND and HNA, leading to an increase in the 
number of packets received by the base station. Furthermore, the use of a cost function 
based on a weighted distance-energy metric (with w1 and w2 set to 0.9) further optimises the 
energy dissipation and energy distribution between the nodes leading to an additional 
improvement in the network lifetime, with an increase of up to 65.2% in FND over LEACH 
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MATLAB®.  Simulations were performed on 100 nodes uniformly dispersed in a 100m by 
100m field with the base station located at coordinates (150m, 50m).  The energy parameters 
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Energy model parameter, εfs 1*10-11 

Energy model parameter, εmp 1.3*10-15 

Electronics Energy, Eelec 50nJ/bit 

Data packet length 4000bits 

Control packet length 200 bits 
Table 2. Assumed energy parameters 
 
The performance of the algorithm can be assessed along three metrics. These are (1) First 
Node Dies (FND) which defines the time taken for the first node to die, (2) Half Nodes Alive 
(HNA) which defines when half the network has died, and (3) Transmitted Packets (TP) which 
gives the total number of transmitted packets by the sensor nodes at FND.  To evaluate the 
validity and performance of the algorithm, simulations are carried out over 50 randomly 
generated 100 node networks. The improvement over LEACH in terms of mean and 
standard deviation values of the performance metrics is shown in Table 3. 
  

Metric Standard Cost Function Advanced Cost Function 
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FND 51.1% 4.8% 65.2% 4.6% 

HNA 34.% 0.9% 32.8% 0.8% 

TP 27.6% 4% 36.1% 3.3% 
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Algorithm Improvement over LEACH 

EEPSC (Zahmati et al, 2007) 45% 

LEACH-C (Heinzelman, 2002) 62.5% 

LEACH-Deterministic (Handy et al, 2003) 30% 

This SOM-based Algorithm 65.2% 
Table 4. Performance Improvement of various algorithms 
 
These results show that the algorithm is capable of creating better clusters, increasing the 
energy balancing between the nodes whilst lowering the rate of energy dissipation. This in 
turn results in a significant improvement in the FND and HNA, leading to an increase in the 
number of packets received by the base station. Furthermore, the use of a cost function 
based on a weighted distance-energy metric (with w1 and w2 set to 0.9) further optimises the 
energy dissipation and energy distribution between the nodes leading to an additional 
improvement in the network lifetime, with an increase of up to 65.2% in FND over LEACH 
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as shown in Table 3, and a reduction in the FND to HNA transition time. A graphical 
representation comparing LEACH with the proposed algorithm is illustrated in Figure 8 
while the superiority of this algorithm, based on an SOM neural network, with respect to 
other solutions is shown in Table 4. 
 

 
Fig. 8. Network Lifetime 

 
4. Conclusion 
 

We have presented a cluster-based routing algorithm developed using an SOM neural 
network architecture together with a cost function based on a weighted distance-energy 
metric.  Simulation results show the efficacy of the algorithm as it manages to improve the 
system lifetime by up to 65.2% when compared to LEACH.  Furthermore, by optimising the 
distribution of the energy between the nodes, a reduced FND to HNA transition time is 
achieved thereby improving the network quality.  This solution makes wireless sensor 
networks more attractive as they can remain operational for a longer period of time. 
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The Self-Organizing Map (SOM) is a neural network algorithm, which uses a competitive learning technique to

train itself in an unsupervised manner. SOMs are different from other artificial neural networks in the sense

that they use a neighborhood function to preserve the topological properties of the input space and they have

been used to create an ordered representation of multi-dimensional data which simplifies complexity and

reveals meaningful relationships. Prof. T. Kohonen in the early 1980s first established the relevant theory and

explored possible applications of SOMs. Since then, a number of theoretical and practical applications of

SOMs have been reported including clustering, prediction, data representation, classification, visualization, etc.

This book was prompted by the desire to bring together some of the more recent theoretical and practical

developments on SOMs and to provide the background for future developments in promising directions. The

book comprises of 25 Chapters which can be categorized into three broad areas: methodology, visualization

and practical applications.
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