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Abstract: 
As the result of recent advent and rapid growth of the Internet, there have been an 
increasing number of corporations relying on computers and networks for communications 
and critical business transactions.  Because of the network complexity and advanced 
hacking techniques, such reliance on computer networks often presents unanticipated risks 
and vulnerabilities. A huge volume of attacks on major sites and networks have been 
recently reported including those of private companies, government agencies and even 
military classified networks. Therefore, it is important to deploy protection measures for 
networks and their services from unauthorized modification, destruction, or disclosure of 
sensitive information. Intrusion detection systems (IDS) have emerged as an important part 
of today’s network security infrastructure which can monitor the network traffic and detect 
possible attacks. Currently existing IDS suffer from low detection accuracy and system 
robustness for new and rare security breaches. To improve detection capability of IDS, this 
chapter proposes an innovative Machine Learning (ML) framework in which different types 
of intrusions will be detected with different classifiers, including different attribute 
selections and learning algorithms. Outputs of these classifiers are then combined by 
appropriate voting techniques. Experiments on the KDD-99 dataset show that our approach 
obtains superior performance in comparison with other state-of-the-art detection methods, 
achieving low learning bias and improved generalization at an affordable computational 
cost. 

 
1. Introduction 
 

As a result of the revolutionary advances in computing science and the wide spread 
deployment of the Internet, people are encouraged to communicate and exchange 
information over the computer-mediated environment. This provides convenience and 
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benefits such as shortening the effective geographical distances and sharing information 
efficiently. On the other hand, information exchange in such environments pose a problem, 
which is that, intruders or malicious users may compromise the communications. The 
safeguarding of security is becoming even more difficult, because the possible technologies 
of attacks are very sophisticated; at the same time, less technical ability is required for the 
novice attackers due to easy access to proven past methods through the Web. A traditional 
approach to defend computer networks was based on static defense mechanisms in which 
software, such as the operating system, was kept up-to-date to prevent the exploitation of 
security holes; and the firewalls deployed at critical network segments to improve the 
security at the entry level. However, firewalls aim to regulate and control the flow of 
information into and out of a network rather than detecting whether or not the network is 
under attack. To complement simple firewalls, Intrusion Detection Systems (IDS) are 
normally used to gather and analyze network data to identify possible security breaches, 
which include both intrusions (attacks from outside the organization) and misuse (attacks 
from within the organization). Although IDS have become an important part of most 
network security architectures which provides essential second line of defense, the majority 
of them face a number of challenges such as low detection rates which can miss serious 
intrusion attacks and high false alarm rates, which falsely classifies a normal connection as 
an attack and therefore obstructs legitimate user access to the network resources (Sommer, 
2008). These problems are due to the sophistication of the attacks and their intended 
similarities to normal behavior.  
Most IDS utilize some Machine Learning (ML) techniques to obtain high detection capability 
for novel attacks and automation to save human labor from manually constructing 
signatures of attacks or specifying the normal behavior of a sensor node. Theoretically, it is 
possible for a ML algorithm to achieve the best performance, i.e. it can minimize the false 
alarm rate and maximize the detection accuracy; however, this normally requires infinite 
training sample sizes (Kononenko & Kukar, 2007). In practice, such condition is impossible 
due to limited computing resources and real-time response requirement of IDS. Intrusion 
detection, therefore, remains very challenging. In this chapter, a learning framework is 
proposed to enhance the performance of intrusion detection for rare and complicated 
attacks; that is, the framework can increase the detection accuracy and decrease false alarm 
with acceptable computational expenses. In particular, characteristics of different anomaly 
categories are captured using different strategies, also referred to as local experts, with 
different feature extraction schemes and advanced learning methods.  The outputs of these 
experts are then fused by appropriate voting techniques. In addition to this framework, we 
also introduce a highly performing ML algorithm that combines a light-weight Radial Basis 
Function Neural Network and an Ensemble Learning technique. This algorithm is compared 
against other learning methods for the purpose of local expert creation. This work falls well 
under the category of bias-variance-computations tradeoff problem. In general, we wish to 
reduce bias (for higher accuracy), variance (for fewer false alarms) and computations (for 
fast real time response). An extensive empirical analysis conducted on the Knowledge 
Discovery and Data Mining (KDD-99) intrusion detection data suggests that the proposed 
framework obtains noticeable performance improvement compared with other state-of-the-
art techniques, in terms of detection accuracy, system robustness and total cost.  
This chapter starts with an overview of network intrusion detection technology and the 
related works of ML approaches for Network Security domain, followed by a study of the 

Radial Basis Function Neural Network (RBKNN) family which has been reported for great 
successes in many applications. Emphasis is put on the Generalized Regression Neural 
Network (GRNN) and Vector-Quantized GRNN (VQ-GRNN) for their typical learning and 
system robustness properties. We also provide an overview of Ensemble Learning methods 
in which multiple classifiers are trained to solve the same problem and their decisions are 
then aggregated in some manner. Such methods can be used to boost predictive 
performance of some learning algorithms. Next, the Multiple-Expert Classification 
Framework (MECF) with implementation of advanced voting techniques is presented. The 
usefulness of this model is then illustrated through its application to the network intrusion 
detection problem, focusing on detection capability on rare attack categories. Finally, this 
chapter is concluded with future research direction discussed.   

 
2. Intrusion Detection and Machine Learning techniques 
 

2.1. Intrusion Detection Systems 
As more and more corporations rely on computers and networks for communications and 
critical business transactions, securing digital information has become one of the largest 
concerns of the business community. A powerful security system is not only a requirement 
but essential to the livelihood of enterprises (Kemmerer & Vigna, 2002). In recent years, 
there has been a great deal of research conducted in this area to develop intelligent and 
automated security tools which can fight the latest cyber attacks. The security achieved must 
be reasonable yet sufficient, balancing needs for accountability with equally important 
needs for privacy and accessibility. Alongside the existing techniques for preventing 
intrusions such as encryption and firewalls, Intrusion Detection technology has established 
itself as an emerging research field that is concerned with detecting unauthorized access and 
abuse of computer systems from both internal users and external offenders. An Intrusion 
Detection System (IDS) is defined as a protection system that monitors computers or 
networks for unauthorized activities based on network traffic or system usage behaviors, 
thereby detecting if a system is targeted by a network attack such as a denial of service 
attack  (McHugh, Christie, & Allen, 2000). In response to those identified adversarial 
transactions, IDS can inform relevant authorities to take corrective actions. 
There are a large number of IDS available on the market to complement firewalls and other 
defense techniques. These systems are categorized into two types of IDS, namely (1) misuse-
based detection in which events are compared against pre-defined patterns of known 
attacks and (2) anomaly-based detection which relies on detecting the activities deviating 
from system “normal” operations.  

 
2.2. Application of Machine Learning to Intrusion Detection 
Artificial Intelligence (AI) is the key technology in many of today's novel applications, 
ranging from banking systems that detect attempted credit card fraud or a robot that can 
sense and respond to human emotions, to software systems that can work as a human 
expert to offer appropriate advice when needed. These technologies would not exist without 
the knowledge gained from AI research. As a major part of AI, Machine Learning (ML) 
refers to algorithmic mechanisms that allow computers to learn from experience, examples 
and analogy (Mitchell, 1997). The output of this learning process is actionable knowledge 
that can be used to solve a specific problem. In the case of Intrusion Detection, learning 
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benefits such as shortening the effective geographical distances and sharing information 
efficiently. On the other hand, information exchange in such environments pose a problem, 
which is that, intruders or malicious users may compromise the communications. The 
safeguarding of security is becoming even more difficult, because the possible technologies 
of attacks are very sophisticated; at the same time, less technical ability is required for the 
novice attackers due to easy access to proven past methods through the Web. A traditional 
approach to defend computer networks was based on static defense mechanisms in which 
software, such as the operating system, was kept up-to-date to prevent the exploitation of 
security holes; and the firewalls deployed at critical network segments to improve the 
security at the entry level. However, firewalls aim to regulate and control the flow of 
information into and out of a network rather than detecting whether or not the network is 
under attack. To complement simple firewalls, Intrusion Detection Systems (IDS) are 
normally used to gather and analyze network data to identify possible security breaches, 
which include both intrusions (attacks from outside the organization) and misuse (attacks 
from within the organization). Although IDS have become an important part of most 
network security architectures which provides essential second line of defense, the majority 
of them face a number of challenges such as low detection rates which can miss serious 
intrusion attacks and high false alarm rates, which falsely classifies a normal connection as 
an attack and therefore obstructs legitimate user access to the network resources (Sommer, 
2008). These problems are due to the sophistication of the attacks and their intended 
similarities to normal behavior.  
Most IDS utilize some Machine Learning (ML) techniques to obtain high detection capability 
for novel attacks and automation to save human labor from manually constructing 
signatures of attacks or specifying the normal behavior of a sensor node. Theoretically, it is 
possible for a ML algorithm to achieve the best performance, i.e. it can minimize the false 
alarm rate and maximize the detection accuracy; however, this normally requires infinite 
training sample sizes (Kononenko & Kukar, 2007). In practice, such condition is impossible 
due to limited computing resources and real-time response requirement of IDS. Intrusion 
detection, therefore, remains very challenging. In this chapter, a learning framework is 
proposed to enhance the performance of intrusion detection for rare and complicated 
attacks; that is, the framework can increase the detection accuracy and decrease false alarm 
with acceptable computational expenses. In particular, characteristics of different anomaly 
categories are captured using different strategies, also referred to as local experts, with 
different feature extraction schemes and advanced learning methods.  The outputs of these 
experts are then fused by appropriate voting techniques. In addition to this framework, we 
also introduce a highly performing ML algorithm that combines a light-weight Radial Basis 
Function Neural Network and an Ensemble Learning technique. This algorithm is compared 
against other learning methods for the purpose of local expert creation. This work falls well 
under the category of bias-variance-computations tradeoff problem. In general, we wish to 
reduce bias (for higher accuracy), variance (for fewer false alarms) and computations (for 
fast real time response). An extensive empirical analysis conducted on the Knowledge 
Discovery and Data Mining (KDD-99) intrusion detection data suggests that the proposed 
framework obtains noticeable performance improvement compared with other state-of-the-
art techniques, in terms of detection accuracy, system robustness and total cost.  
This chapter starts with an overview of network intrusion detection technology and the 
related works of ML approaches for Network Security domain, followed by a study of the 

Radial Basis Function Neural Network (RBKNN) family which has been reported for great 
successes in many applications. Emphasis is put on the Generalized Regression Neural 
Network (GRNN) and Vector-Quantized GRNN (VQ-GRNN) for their typical learning and 
system robustness properties. We also provide an overview of Ensemble Learning methods 
in which multiple classifiers are trained to solve the same problem and their decisions are 
then aggregated in some manner. Such methods can be used to boost predictive 
performance of some learning algorithms. Next, the Multiple-Expert Classification 
Framework (MECF) with implementation of advanced voting techniques is presented. The 
usefulness of this model is then illustrated through its application to the network intrusion 
detection problem, focusing on detection capability on rare attack categories. Finally, this 
chapter is concluded with future research direction discussed.   

 
2. Intrusion Detection and Machine Learning techniques 
 

2.1. Intrusion Detection Systems 
As more and more corporations rely on computers and networks for communications and 
critical business transactions, securing digital information has become one of the largest 
concerns of the business community. A powerful security system is not only a requirement 
but essential to the livelihood of enterprises (Kemmerer & Vigna, 2002). In recent years, 
there has been a great deal of research conducted in this area to develop intelligent and 
automated security tools which can fight the latest cyber attacks. The security achieved must 
be reasonable yet sufficient, balancing needs for accountability with equally important 
needs for privacy and accessibility. Alongside the existing techniques for preventing 
intrusions such as encryption and firewalls, Intrusion Detection technology has established 
itself as an emerging research field that is concerned with detecting unauthorized access and 
abuse of computer systems from both internal users and external offenders. An Intrusion 
Detection System (IDS) is defined as a protection system that monitors computers or 
networks for unauthorized activities based on network traffic or system usage behaviors, 
thereby detecting if a system is targeted by a network attack such as a denial of service 
attack  (McHugh, Christie, & Allen, 2000). In response to those identified adversarial 
transactions, IDS can inform relevant authorities to take corrective actions. 
There are a large number of IDS available on the market to complement firewalls and other 
defense techniques. These systems are categorized into two types of IDS, namely (1) misuse-
based detection in which events are compared against pre-defined patterns of known 
attacks and (2) anomaly-based detection which relies on detecting the activities deviating 
from system “normal” operations.  

 
2.2. Application of Machine Learning to Intrusion Detection 
Artificial Intelligence (AI) is the key technology in many of today's novel applications, 
ranging from banking systems that detect attempted credit card fraud or a robot that can 
sense and respond to human emotions, to software systems that can work as a human 
expert to offer appropriate advice when needed. These technologies would not exist without 
the knowledge gained from AI research. As a major part of AI, Machine Learning (ML) 
refers to algorithmic mechanisms that allow computers to learn from experience, examples 
and analogy (Mitchell, 1997). The output of this learning process is actionable knowledge 
that can be used to solve a specific problem. In the case of Intrusion Detection, learning 
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involves discovering patterns of normal behavior or intrusive behavior by analyzing the 
sample data of such activities. This sample data is also called a training set. It should be 
sufficient to represent the whole population of patterns to be discovered. The learned 
models can then be used to make classification on a new data instance based on its similarity 
to normal behavior (anomaly detection) or known attack signatures (misuse detection). 
Many security systems have implemented ML to achieve a generalization capability from 
limited training data. That means, given known intrusion signatures, a security system 
should be able to detect similar or new attacks. 

 
2.2.1. Related works 
One of the rule-based methods which is commonly used by early IDS is the Expert System 
(ES) (Bauer & Koblentz, 1988; Ilgun, 1995). In such systems, the knowledge of human 
experts is encoded into a set of rules. This allows more effective knowledge management 
than that of a human expert in terms of reproducibility, consistency and completeness in 
identifying activities that match the defined characteristics of misuse and attacks. However, 
ES suffers from low flexibility and robustness. Unlike ES, Data Mining approach derives 
association rules and frequent episodes from available sample data, not from human 
experts. It utilizes statistical techniques to discover subtle relationships between data items, 
and from that, constructs predictive models. Using the derived rules, Lee et. al. developed a 
data mining framework for the purpose of intrusion detection (W. Lee, Stolfo, & Mok, 1999a, 
1999b).  In particular, system usage behaviors are recorded and analyzed to generate rules 
which can recognize misuse attacks. The drawback of such frameworks is that they tend to 
produce a large number of rules and thereby, increase the complexity of the system. 
Decision Trees are one of the most commonly used supervised learning algorithms in IDS 
(Amor, Benferhat, & Elouedi, 2004; J.-H. Lee, Lee, Sohn, Ryu, & Chung, 2008; Levin, 2000a; 
V. Miheev, Vopilov, & Shabalin, 2000; Pfahringer, 2000a) due to its simplicity, high detection 
accuracy and fast adaptation. Another highly performing method is Artificial Neural 
Networks (ANN) which can model both linear and non-linear patterns. The resulting model 
can generate a probability estimate of whether given data matches the characteristics that it 
has been trained to recognize. Cannady (1998) developed a network-based detection system 
in which 9-packet-level network data was retrieved from the RealSecure database and then 
classified by a feed-forward neural network (Cannady, 1998). Though this prototype is not a 
complete IDS, the results clearly demonstrate the potential of an ANN in detecting network 
attacks. Latter ANN-based IDS (Mukkamala, 2002; Zhang, Li, Manikopoulos, Jorgenson, & 
Ucles, 2001) have reportedly achieved great successes in detecting difficult attacks. For 
unsupervised intrusion detection, data clustering methods can be applied (Shah, 
Undercoffer, & Joshi, 2003). These methods involve computing a distance between numeric 
features and therefore they cannot easily deal with symbolic attributes, resulting in 
inaccuracy. Another well-known ML technique used in IDS is Naïve Bayes classifiers (Amor 
et al., 2004). Because Naïve Bayes assumes the conditional independence of data features, 
which is often not the case for intrusion detection, correlated features may degrade its 
performance. In (Kruegel, Mutz, Robertson, & Valeur, 2003), the authors apply a Bayesian 
network for IDS. The network appears to be attack specific and its size grows rapidly as the 
number of features and attack types increase. Beside popular decision trees and ANN, 
Support Vector Machines (SVMs) are also a good candidate for intrusion detection systems 
(Ambwani, 2003) which can provide real-time detection capability, deal with large 

dimensionality of data. SVMs plot the training vectors in high dimensional feature space 
through nonlinear mapping and labeling each vector by its class. The data is then classified 
by determining a set of support vectors, which are members of the set of training inputs that 
outline a hyperplane in the feature space. SVMs are scalable as they are relatively insensitive 
to the number of data points (Ambwani, 2003).   

 
2.2.2. The Knowledge Discovery and Data Mining Benchmark 
Current security systems are facing two fundamental challenges. First, the unbalanced 
nature of security dataset indicates dramatic changes in the distribution of classes compared 
with the normal trends i.e., some classes dominate others with their overwhelming 
occurrences (Kemmerer & Vigna, 2002). This will bias the resultant predictive models to 
favor the dominant classes. Second, increased dimensionality, especially when noise is 
involved, can degrade learning significantly (Kemmerer & Vigna, 2002). Together, these two 
characteristics make the detecting intrusive activities very challenging. 
In order to facilitate the comparison of advanced research in the area of network security, 
the Lincoln Laboratory at the Massachusetts Institute of Technology (MIT) conducted the 
1998 and 1999 evaluations of intrusion detection (McHugh et al., 2000). Funded by The 
Defense Advanced Research Projects Agency (DARPA), the purpose of the evaluation 
program is to provide a basis for making comparisons of existing IDS under a common set 
of circumstances and assumptions. Data obtained from these programs were then used as 
the benchmark training and test data sets for “Classifier Learning Contest” organized in 
conjunction with the 5th ACM SIGKDD International Conference on Knowledge Discovery 
& Data Mining in 1999 (KDD-99). 
The KDD-99 dataset has simulated the two challenging problems discussed earlier, namely, 
the unbalanced nature and high dimensionality of security data. It contains 7 weeks of 
training traffic data and 2 weeks of testing data (McHugh et al., 2000). Preprocessing was 
applied to abstract and summarize the raw tcpdump data to form network connections.  
a) Attack types and categories 
Each connection record in the KDD-99 dataset is labeled as either normal or one type of 
attack. There are totally 39 types of attacks which are grouped into 4 major categories 
(McHugh et al., 2000): Probe, Denial of Service (DoS), User to Root (U2R) and Remote to 
Local (R2L). In particular, Probe attacks refer to the incidents in which some malicious 
programs can automatically scan a network of computers to gather sensitive information or 
search for security vulnerabilities while a DoS attack prevents normal use of network 
resources for legitimate purposes by consuming the bandwidth or overloading the 
computational resources of the victim system. The R2L attacks occur when an intruder who 
has no valid account on a machine can exploit some system vulnerabilities to gain local 
access as a legitimate user by sending packets over a network. In contrast, U2R attacks 
assume that the attacker has already access to a system as a normal user and he can exploit 
some security holes to gain user root privileges.   
b) Features 
41 features were used to summarize the connection information. These features are grouped 
as basic features and additional features respectively (McHugh et al., 2000).  
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involves discovering patterns of normal behavior or intrusive behavior by analyzing the 
sample data of such activities. This sample data is also called a training set. It should be 
sufficient to represent the whole population of patterns to be discovered. The learned 
models can then be used to make classification on a new data instance based on its similarity 
to normal behavior (anomaly detection) or known attack signatures (misuse detection). 
Many security systems have implemented ML to achieve a generalization capability from 
limited training data. That means, given known intrusion signatures, a security system 
should be able to detect similar or new attacks. 

 
2.2.1. Related works 
One of the rule-based methods which is commonly used by early IDS is the Expert System 
(ES) (Bauer & Koblentz, 1988; Ilgun, 1995). In such systems, the knowledge of human 
experts is encoded into a set of rules. This allows more effective knowledge management 
than that of a human expert in terms of reproducibility, consistency and completeness in 
identifying activities that match the defined characteristics of misuse and attacks. However, 
ES suffers from low flexibility and robustness. Unlike ES, Data Mining approach derives 
association rules and frequent episodes from available sample data, not from human 
experts. It utilizes statistical techniques to discover subtle relationships between data items, 
and from that, constructs predictive models. Using the derived rules, Lee et. al. developed a 
data mining framework for the purpose of intrusion detection (W. Lee, Stolfo, & Mok, 1999a, 
1999b).  In particular, system usage behaviors are recorded and analyzed to generate rules 
which can recognize misuse attacks. The drawback of such frameworks is that they tend to 
produce a large number of rules and thereby, increase the complexity of the system. 
Decision Trees are one of the most commonly used supervised learning algorithms in IDS 
(Amor, Benferhat, & Elouedi, 2004; J.-H. Lee, Lee, Sohn, Ryu, & Chung, 2008; Levin, 2000a; 
V. Miheev, Vopilov, & Shabalin, 2000; Pfahringer, 2000a) due to its simplicity, high detection 
accuracy and fast adaptation. Another highly performing method is Artificial Neural 
Networks (ANN) which can model both linear and non-linear patterns. The resulting model 
can generate a probability estimate of whether given data matches the characteristics that it 
has been trained to recognize. Cannady (1998) developed a network-based detection system 
in which 9-packet-level network data was retrieved from the RealSecure database and then 
classified by a feed-forward neural network (Cannady, 1998). Though this prototype is not a 
complete IDS, the results clearly demonstrate the potential of an ANN in detecting network 
attacks. Latter ANN-based IDS (Mukkamala, 2002; Zhang, Li, Manikopoulos, Jorgenson, & 
Ucles, 2001) have reportedly achieved great successes in detecting difficult attacks. For 
unsupervised intrusion detection, data clustering methods can be applied (Shah, 
Undercoffer, & Joshi, 2003). These methods involve computing a distance between numeric 
features and therefore they cannot easily deal with symbolic attributes, resulting in 
inaccuracy. Another well-known ML technique used in IDS is Naïve Bayes classifiers (Amor 
et al., 2004). Because Naïve Bayes assumes the conditional independence of data features, 
which is often not the case for intrusion detection, correlated features may degrade its 
performance. In (Kruegel, Mutz, Robertson, & Valeur, 2003), the authors apply a Bayesian 
network for IDS. The network appears to be attack specific and its size grows rapidly as the 
number of features and attack types increase. Beside popular decision trees and ANN, 
Support Vector Machines (SVMs) are also a good candidate for intrusion detection systems 
(Ambwani, 2003) which can provide real-time detection capability, deal with large 

dimensionality of data. SVMs plot the training vectors in high dimensional feature space 
through nonlinear mapping and labeling each vector by its class. The data is then classified 
by determining a set of support vectors, which are members of the set of training inputs that 
outline a hyperplane in the feature space. SVMs are scalable as they are relatively insensitive 
to the number of data points (Ambwani, 2003).   

 
2.2.2. The Knowledge Discovery and Data Mining Benchmark 
Current security systems are facing two fundamental challenges. First, the unbalanced 
nature of security dataset indicates dramatic changes in the distribution of classes compared 
with the normal trends i.e., some classes dominate others with their overwhelming 
occurrences (Kemmerer & Vigna, 2002). This will bias the resultant predictive models to 
favor the dominant classes. Second, increased dimensionality, especially when noise is 
involved, can degrade learning significantly (Kemmerer & Vigna, 2002). Together, these two 
characteristics make the detecting intrusive activities very challenging. 
In order to facilitate the comparison of advanced research in the area of network security, 
the Lincoln Laboratory at the Massachusetts Institute of Technology (MIT) conducted the 
1998 and 1999 evaluations of intrusion detection (McHugh et al., 2000). Funded by The 
Defense Advanced Research Projects Agency (DARPA), the purpose of the evaluation 
program is to provide a basis for making comparisons of existing IDS under a common set 
of circumstances and assumptions. Data obtained from these programs were then used as 
the benchmark training and test data sets for “Classifier Learning Contest” organized in 
conjunction with the 5th ACM SIGKDD International Conference on Knowledge Discovery 
& Data Mining in 1999 (KDD-99). 
The KDD-99 dataset has simulated the two challenging problems discussed earlier, namely, 
the unbalanced nature and high dimensionality of security data. It contains 7 weeks of 
training traffic data and 2 weeks of testing data (McHugh et al., 2000). Preprocessing was 
applied to abstract and summarize the raw tcpdump data to form network connections.  
a) Attack types and categories 
Each connection record in the KDD-99 dataset is labeled as either normal or one type of 
attack. There are totally 39 types of attacks which are grouped into 4 major categories 
(McHugh et al., 2000): Probe, Denial of Service (DoS), User to Root (U2R) and Remote to 
Local (R2L). In particular, Probe attacks refer to the incidents in which some malicious 
programs can automatically scan a network of computers to gather sensitive information or 
search for security vulnerabilities while a DoS attack prevents normal use of network 
resources for legitimate purposes by consuming the bandwidth or overloading the 
computational resources of the victim system. The R2L attacks occur when an intruder who 
has no valid account on a machine can exploit some system vulnerabilities to gain local 
access as a legitimate user by sending packets over a network. In contrast, U2R attacks 
assume that the attacker has already access to a system as a normal user and he can exploit 
some security holes to gain user root privileges.   
b) Features 
41 features were used to summarize the connection information. These features are grouped 
as basic features and additional features respectively (McHugh et al., 2000).  
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Basic Features 
Bro is used as the network analyzer to derive the 9 basic features from packet headers 
without inspecting the packet contents (Kemmerer & Vigna, 2002). Some examples of basic 
features include duration of connection, protocol types and service types.  
Additional Features 

 Content features: The payload of TCP packets is assessed by applying the domain 
knowledge. Examples of content-based features include the number of 
unsuccessful logins and whether the root access was gained or not. 

 Time based features: It is important to inspect the packets within some time interval 
to cope with the temporal nature of network attacks. These features are designed to 
capture properties within a 2 second temporal window. Number of connections to 
the same host is an example of time-based features.  

 Host based features: Utilize a historical window estimated over the number of 
connections (100 connections in KDD-99) instead of time. Host based features are 
therefore used to assess attacks which span over intervals longer than 2 seconds. 

c) Learning methods that use KDD-99 dataset 
Among intrusion detection models tested on KDD-99 dataset, most of them are reported to 
provide unacceptably low detection capability for U2R and R2L attacks. Some typical 
examples of such models include a rule-based predictive model (PNrule) (Agarwal, 2000) 
which is studied to effectively detect DoS and Probe attacks; the winning entry of KDD99 
contest (Pfahringer, 2000b) which is composed from 50×10 C5 decision trees fused by cost-
sensitive bagged boosting. Similar techniques are also developed such as a decision tree 
forest constructed by Kernel Miner (KM) tool (Levin, 2000b) and two layers of voting 
decision trees augmented with human security expertise (V. Miheev, Vopilov, A. Shabalin, 
I., 2000). Due to poor performance of these approaches on some sophisticated attacks, we are 
motivated to develop a new learning method to improve the overall detection performance 
on KDD 99 benchmark.  

 
3. Artificial Neural Network and Ensemble Learning 
 

Unlike other pattern recognition tasks which may sacrifice accuracy for system robustness 
and stability, Intrusion Detection requires very high accuracy which implies both high 
detection rate and low false alarm rate (Sommer, 2008). An undetected intrusion can cause 
serious damage to computer networks. In this regards, high detection accuracy is of great 
importance for new security systems. In addition to accuracy, security systems must be also 
fast enough not to cause bottlenecks in communication networks. That is, network 
administrators should be alerted that their systems have been penetrated or have been used 
as springboards for attacks on other systems right after the incidences have occurred. In 
general, security system with high accuracy requires heavy computations. In our approach, 
we develop a system that achieves high accuracy for real time IDS but requires relatively 
small computational complexity. This ensures that the systems can both perform accurately 
and respond to incidences in a timely fashion. 

 
3.1. Bias-Variance Dilemma 
Though several ML techniques have been adopted in the Network Security domain with 
certain success, there remain performance limitations including low detection accuracy and 

high false alarm rates, especially for rare and complicated attacks. For instance, the winning 
entries of KDD-99 competition do not provide satisfactory performance on U2R and R2L 
attack categories due to their low frequency and complicated nature. Several learning 
methods have been developed to increase the detection capability including ANN models. 
As a flexible “model-free" learning method, ANN can fit training data very well and thus 
provide a low learning bias. However, they are also susceptible to the overfitting problem, 
which can cause instability in generalization (Mitchell, 1997). This degraded performance is 
the consequence of the overfitting or overtraining problem, in which data sensitivity causes 
the resulting classifier to have small bias but large variance. 
The learning bias is defined as the measure of how accurately the model fits the available 
sample data while the generalization variance measures how stably the model performs for 
prediction or classification tasks (Mitchell, 1997). To avoid overfitting, some methods which 
are less dependent on available data are introduced, but they may misrepresent the true 
functional relationships and have a large bias. The bias and variance hence are said to be 
inversely related (Mitchell, 1997), i.e. with a fixed data set, reducing one will inevitably 
cause the other to increase.  
Some approaches are proposed to improve the generalization stability by reducing 
generalization variance at the cost of higher learning bias, i.e. allowing underfitting. This 
would deteriorate the overall performance to a certain level. In critical modeling 
applications, underfitting is not acceptable because a miss in detection may be very costly, 
i.e. causing the whole computer network compromised. Therefore, a sensible detection 
system which can achieve both stable generalization and accurate data learning is very 
much desirable. Theoretically, both bias and variance may be reduced at the same time 
given infinite sized models. Nevertheless, this condition is generally infeasible since the 
model complexity must be limited in real life. In this research, we seek a compromise 
solution which can retain the desirable data-fitting capacity of ANN while reducing 
generalization variance at a minimal computational cost. A learning algorithm is proposed 
by combining a radial basis function neural network with an adaptive boosting method. An 
overview of these relevant technologies is provided in the next 2 sections.  

 
3.2. Overview on VQ-GRNN  
A family of ANN models, RBFNN, has recently drawn great research attention due to its 
good generalization ability and a simple network structure that avoids unnecessary and 
lengthy calculations as compared to the Multilayer Feedforward Networks (MFN) (Zaknich, 
2003). Considering the node characteristics and the training algorithms, RBFNN are very 
different from MFN. The node characteristics for MFN are usually chosen as sigmoidal 
functions while for RBFNN, as indicated in the name, radial basis functions are employed. A 
popular algorithm in RFBNN family is the Generalized Regression Neural Network 
(GRNN) proposed by Specht (Spetch, 1991) which contains a hidden layer of radial units. 
Each radial unit models a Gaussian response surface which can be determined by its center 
point and a radius. Because these functions are nonlinear, it is enough for a single hidden 
layer to describe any shape of function. The output of these Gaussians is then linearly 
weighted to produce the desirable response. The following is the general form of GRNN: 
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Basic Features 
Bro is used as the network analyzer to derive the 9 basic features from packet headers 
without inspecting the packet contents (Kemmerer & Vigna, 2002). Some examples of basic 
features include duration of connection, protocol types and service types.  
Additional Features 

 Content features: The payload of TCP packets is assessed by applying the domain 
knowledge. Examples of content-based features include the number of 
unsuccessful logins and whether the root access was gained or not. 

 Time based features: It is important to inspect the packets within some time interval 
to cope with the temporal nature of network attacks. These features are designed to 
capture properties within a 2 second temporal window. Number of connections to 
the same host is an example of time-based features.  

 Host based features: Utilize a historical window estimated over the number of 
connections (100 connections in KDD-99) instead of time. Host based features are 
therefore used to assess attacks which span over intervals longer than 2 seconds. 

c) Learning methods that use KDD-99 dataset 
Among intrusion detection models tested on KDD-99 dataset, most of them are reported to 
provide unacceptably low detection capability for U2R and R2L attacks. Some typical 
examples of such models include a rule-based predictive model (PNrule) (Agarwal, 2000) 
which is studied to effectively detect DoS and Probe attacks; the winning entry of KDD99 
contest (Pfahringer, 2000b) which is composed from 50×10 C5 decision trees fused by cost-
sensitive bagged boosting. Similar techniques are also developed such as a decision tree 
forest constructed by Kernel Miner (KM) tool (Levin, 2000b) and two layers of voting 
decision trees augmented with human security expertise (V. Miheev, Vopilov, A. Shabalin, 
I., 2000). Due to poor performance of these approaches on some sophisticated attacks, we are 
motivated to develop a new learning method to improve the overall detection performance 
on KDD 99 benchmark.  

 
3. Artificial Neural Network and Ensemble Learning 
 

Unlike other pattern recognition tasks which may sacrifice accuracy for system robustness 
and stability, Intrusion Detection requires very high accuracy which implies both high 
detection rate and low false alarm rate (Sommer, 2008). An undetected intrusion can cause 
serious damage to computer networks. In this regards, high detection accuracy is of great 
importance for new security systems. In addition to accuracy, security systems must be also 
fast enough not to cause bottlenecks in communication networks. That is, network 
administrators should be alerted that their systems have been penetrated or have been used 
as springboards for attacks on other systems right after the incidences have occurred. In 
general, security system with high accuracy requires heavy computations. In our approach, 
we develop a system that achieves high accuracy for real time IDS but requires relatively 
small computational complexity. This ensures that the systems can both perform accurately 
and respond to incidences in a timely fashion. 

 
3.1. Bias-Variance Dilemma 
Though several ML techniques have been adopted in the Network Security domain with 
certain success, there remain performance limitations including low detection accuracy and 

high false alarm rates, especially for rare and complicated attacks. For instance, the winning 
entries of KDD-99 competition do not provide satisfactory performance on U2R and R2L 
attack categories due to their low frequency and complicated nature. Several learning 
methods have been developed to increase the detection capability including ANN models. 
As a flexible “model-free" learning method, ANN can fit training data very well and thus 
provide a low learning bias. However, they are also susceptible to the overfitting problem, 
which can cause instability in generalization (Mitchell, 1997). This degraded performance is 
the consequence of the overfitting or overtraining problem, in which data sensitivity causes 
the resulting classifier to have small bias but large variance. 
The learning bias is defined as the measure of how accurately the model fits the available 
sample data while the generalization variance measures how stably the model performs for 
prediction or classification tasks (Mitchell, 1997). To avoid overfitting, some methods which 
are less dependent on available data are introduced, but they may misrepresent the true 
functional relationships and have a large bias. The bias and variance hence are said to be 
inversely related (Mitchell, 1997), i.e. with a fixed data set, reducing one will inevitably 
cause the other to increase.  
Some approaches are proposed to improve the generalization stability by reducing 
generalization variance at the cost of higher learning bias, i.e. allowing underfitting. This 
would deteriorate the overall performance to a certain level. In critical modeling 
applications, underfitting is not acceptable because a miss in detection may be very costly, 
i.e. causing the whole computer network compromised. Therefore, a sensible detection 
system which can achieve both stable generalization and accurate data learning is very 
much desirable. Theoretically, both bias and variance may be reduced at the same time 
given infinite sized models. Nevertheless, this condition is generally infeasible since the 
model complexity must be limited in real life. In this research, we seek a compromise 
solution which can retain the desirable data-fitting capacity of ANN while reducing 
generalization variance at a minimal computational cost. A learning algorithm is proposed 
by combining a radial basis function neural network with an adaptive boosting method. An 
overview of these relevant technologies is provided in the next 2 sections.  

 
3.2. Overview on VQ-GRNN  
A family of ANN models, RBFNN, has recently drawn great research attention due to its 
good generalization ability and a simple network structure that avoids unnecessary and 
lengthy calculations as compared to the Multilayer Feedforward Networks (MFN) (Zaknich, 
2003). Considering the node characteristics and the training algorithms, RBFNN are very 
different from MFN. The node characteristics for MFN are usually chosen as sigmoidal 
functions while for RBFNN, as indicated in the name, radial basis functions are employed. A 
popular algorithm in RFBNN family is the Generalized Regression Neural Network 
(GRNN) proposed by Specht (Spetch, 1991) which contains a hidden layer of radial units. 
Each radial unit models a Gaussian response surface which can be determined by its center 
point and a radius. Because these functions are nonlinear, it is enough for a single hidden 
layer to describe any shape of function. The output of these Gaussians is then linearly 
weighted to produce the desirable response. The following is the general form of GRNN: 
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Where 
x    : Input vector (under line refers to vector) 

nx  : All other training vectors in the input space 
   : Single smoothing parameter chosen during network training 

ny  : Scalar output related to nx  
NV : Total number of training vectors 
In many applications, GRNN provides high accuracy. However, it is computationally 
expensive as well as sensitive to the selection of variances for smoothing functions. In fact, 
GRNN incorporates each and every training example { }i ix y  into its architecture, i.e. all 
of the training vectors needs to be processed and Gaussian function’s parameters such as 
centers and variance will need to be computed with respect to all other surrounding vectors. 
In order to overcome this problem, an approximation of GRNN, namely, the Vector 
Quantized – Generalized Regression Neural Network (VQ-GRNN) is proposed by Zaknich 
(Zaknich, 1998) for application to general signal processing and pattern recognition 
problems. VQ-GRNN is a generalization of Probabilistic Neural Network (PNN) and is 
related to Generalized Regression Neural Network (GRNN) classifiers (Spetch, 1991). In 
particular, this method approximates GRNN by quantizing the data space into clusters and 
associate a specific weight for each of these clusters.  
If there exists a corresponding scalar output iy  for each local region (cluster) which is 
represented by a center vector ic , then a GRNN can be approximated by a VQ-GRNN 
formulated as follow: 
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Where 

ic  = center vector for cluster i in the input space 

iy  = scalar output related to ic  

iZ = number of input vectors jx  within cluster ic  

  = single smoothing parameter chosen during network training 
M  = number of unique centers ic  
Comparing Equation 2 and Equation 1 of GRNN, we can find the only difference is that VQ-
GRNN applies its computation on a smaller number of clusters of input vectors represented 
by centers vectors ic  rather than working on individual input vectors nx . Though VQ-
GRNN has minimal computational overheads and hence, more stable than GRNN, it may be 
less accurate in predicting attacks with low frequency of occurrence. The next section 
discusses a possible approach to enhance the predictive power of VQ-GRNN.   
 

3.3. Overview on Ensemble Learning  
The goal of learning algorithms is to discover the underlying functional relationship of input 
variables. Ordinary ML methods work by searching through a space of possible functions, 
called hypotheses, to find the best approximation to the unknown function. The best 
hypothesis can be identified based on how well it fits the training data and how consistent it 
is with any available prior knowledge about the problem. Ensemble learning algorithms 
take a different approach. Rather than finding one best learner to explain the data, they 
construct a set of learners, called a committee or ensemble, and then have those learners vote 
in some manner to predict the label of new data points. Even though the component learners 
within the ensemble are all attempting to solve the same problem, it is likely that each of 
them would have different strengths and weaknesses in different situations. Realizing and 
managing the situations in which the learner do not perform as well as expected is the key 
challenge for ensemble research (Costa, Filippi, & Pasero, 1995). A number of research 
(Windeatt & Roli, 2003) has supported a widespread view that for an ensemble to achieve 
best performance on a task, the component predictors should exhibit “diverse errors”, 
meaning that they should have different error rates. However, in achieving this, the 
individual accuracy may be affected. Therefore, training an ensemble is actually a balancing 
act between error diversity and individual accuracy.  
Due to the significant performance improvements over single classifiers, ensemble 
construction has become one of the most active fields of AI and has received immense 
research attention. In particular, ensemble algorithms iteratively run a base learning 
algorithm (called base learner) and then form a vote out of the resulting hypotheses 
(Schapire, 1999). There are two main approaches to producing these component hypotheses. 
The first approach, namely bagging, is to construct each hypothesis independently in such a 
way that the resulting set of hypotheses is accurate and diverse, that is, each individual 
hypothesis has reasonably low error rate for making new predictions and yet the hypotheses 
disagree with each other in many of their predictions. It is empirically shown that an 
ensemble of those hypotheses is more accurate than any of its component classifiers, because 
their disagreements will “cancel out” when the ensemble comes to the joint classification 
stage (Optiz & Maclin, 1999). 
Unlike bagging, which relies on resampling the training dataset randomly with a uniform 
probability distribution, boosting (Schapire, 1999)  guides changes of the training data to 
direct further classifiers toward more “difficult cases”. This method is a stepwise technique 
that combines learners in such a way that the composite – boosted learner – outperforms the 
single learner. Amongst popular boosting variants, Adaptive Boosting or AdaBoost is the 
most widely adopted method which allows the designer to continue adding weak learners 
until some desired low training error has been achieved (weak learners have accuracy only 
slightly better than chance whereas weak hypotheses are generated based on the 
performance of previous ones). AdaBoost is “adaptive” in the sense that it does not require 
prior knowledge of the accuracy of these hypotheses (Schapire, 1999). Instead, it measures 
the accuracy of a base hypothesis at each iteration and sets its parameters accordingly.  
Without loss of generality, let us consider the standard two-class supervised ML problem: 
given a set of N independent and identically distributed (i.i.d) training examples ���� ���, n 
= 1,…,N, with �� � � and �� � � � ��1� �1�, we would like to learn a function �� � � � that 
is able to generalize well on unseen data generated from the same distribution as the 
training data. To obtain such a function, the boosting algorithm iteratively trains a weak 
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Where 
x    : Input vector (under line refers to vector) 

nx  : All other training vectors in the input space 
   : Single smoothing parameter chosen during network training 

ny  : Scalar output related to nx  
NV : Total number of training vectors 
In many applications, GRNN provides high accuracy. However, it is computationally 
expensive as well as sensitive to the selection of variances for smoothing functions. In fact, 
GRNN incorporates each and every training example { }i ix y  into its architecture, i.e. all 
of the training vectors needs to be processed and Gaussian function’s parameters such as 
centers and variance will need to be computed with respect to all other surrounding vectors. 
In order to overcome this problem, an approximation of GRNN, namely, the Vector 
Quantized – Generalized Regression Neural Network (VQ-GRNN) is proposed by Zaknich 
(Zaknich, 1998) for application to general signal processing and pattern recognition 
problems. VQ-GRNN is a generalization of Probabilistic Neural Network (PNN) and is 
related to Generalized Regression Neural Network (GRNN) classifiers (Spetch, 1991). In 
particular, this method approximates GRNN by quantizing the data space into clusters and 
associate a specific weight for each of these clusters.  
If there exists a corresponding scalar output iy  for each local region (cluster) which is 
represented by a center vector ic , then a GRNN can be approximated by a VQ-GRNN 
formulated as follow: 
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Where 

ic  = center vector for cluster i in the input space 

iy  = scalar output related to ic  

iZ = number of input vectors jx  within cluster ic  

  = single smoothing parameter chosen during network training 
M  = number of unique centers ic  
Comparing Equation 2 and Equation 1 of GRNN, we can find the only difference is that VQ-
GRNN applies its computation on a smaller number of clusters of input vectors represented 
by centers vectors ic  rather than working on individual input vectors nx . Though VQ-
GRNN has minimal computational overheads and hence, more stable than GRNN, it may be 
less accurate in predicting attacks with low frequency of occurrence. The next section 
discusses a possible approach to enhance the predictive power of VQ-GRNN.   
 

3.3. Overview on Ensemble Learning  
The goal of learning algorithms is to discover the underlying functional relationship of input 
variables. Ordinary ML methods work by searching through a space of possible functions, 
called hypotheses, to find the best approximation to the unknown function. The best 
hypothesis can be identified based on how well it fits the training data and how consistent it 
is with any available prior knowledge about the problem. Ensemble learning algorithms 
take a different approach. Rather than finding one best learner to explain the data, they 
construct a set of learners, called a committee or ensemble, and then have those learners vote 
in some manner to predict the label of new data points. Even though the component learners 
within the ensemble are all attempting to solve the same problem, it is likely that each of 
them would have different strengths and weaknesses in different situations. Realizing and 
managing the situations in which the learner do not perform as well as expected is the key 
challenge for ensemble research (Costa, Filippi, & Pasero, 1995). A number of research 
(Windeatt & Roli, 2003) has supported a widespread view that for an ensemble to achieve 
best performance on a task, the component predictors should exhibit “diverse errors”, 
meaning that they should have different error rates. However, in achieving this, the 
individual accuracy may be affected. Therefore, training an ensemble is actually a balancing 
act between error diversity and individual accuracy.  
Due to the significant performance improvements over single classifiers, ensemble 
construction has become one of the most active fields of AI and has received immense 
research attention. In particular, ensemble algorithms iteratively run a base learning 
algorithm (called base learner) and then form a vote out of the resulting hypotheses 
(Schapire, 1999). There are two main approaches to producing these component hypotheses. 
The first approach, namely bagging, is to construct each hypothesis independently in such a 
way that the resulting set of hypotheses is accurate and diverse, that is, each individual 
hypothesis has reasonably low error rate for making new predictions and yet the hypotheses 
disagree with each other in many of their predictions. It is empirically shown that an 
ensemble of those hypotheses is more accurate than any of its component classifiers, because 
their disagreements will “cancel out” when the ensemble comes to the joint classification 
stage (Optiz & Maclin, 1999). 
Unlike bagging, which relies on resampling the training dataset randomly with a uniform 
probability distribution, boosting (Schapire, 1999)  guides changes of the training data to 
direct further classifiers toward more “difficult cases”. This method is a stepwise technique 
that combines learners in such a way that the composite – boosted learner – outperforms the 
single learner. Amongst popular boosting variants, Adaptive Boosting or AdaBoost is the 
most widely adopted method which allows the designer to continue adding weak learners 
until some desired low training error has been achieved (weak learners have accuracy only 
slightly better than chance whereas weak hypotheses are generated based on the 
performance of previous ones). AdaBoost is “adaptive” in the sense that it does not require 
prior knowledge of the accuracy of these hypotheses (Schapire, 1999). Instead, it measures 
the accuracy of a base hypothesis at each iteration and sets its parameters accordingly.  
Without loss of generality, let us consider the standard two-class supervised ML problem: 
given a set of N independent and identically distributed (i.i.d) training examples ���� ���, n 
= 1,…,N, with �� � � and �� � � � ��1� �1�, we would like to learn a function �� � � � that 
is able to generalize well on unseen data generated from the same distribution as the 
training data. To obtain such a function, the boosting algorithm iteratively trains a weak 
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hypothesis on a weighted data sample. As boosting progresses, training examples that are 
hard to predict correctly, get incrementally higher weights than the other examples. The 
intended effect is to force the weak learner to concentrate on examples and labels that will 
be most beneficial to the overall goal of finding a highly accurate classification rule. This 
update process is repeated, until a certain stopping condition is met (e.g a given number of 
weak classifiers are trained or the learning error reaches a desirable level). The final joint 
classification is the linear weighted combination of the base hypotheses (Huang, Ertekin, 
Song, Zha, & Giles, 2007): ����� � �����∑ ��  ������ ����    
Motivated by the need of an accurate detection system for network security applications, we 
seek a learning algorithm which provides a good tradeoff for learning bias, generalization 
variance and computational requirement. In theory, the GRNN can achieve the optimal 
Bayesian estimate (with infinity network size) but with a cost of extremely demanding 
computation resource. The VQ-GRNN reduces the computationally extensive 
nonparametric GRNN to a semiparametric neural network by applying vector quantization 
techniques on the input space. This reduction significantly improves the robustness of the 
algorithm (low variance), but also affects its learning accuracy to some extent. To overcome 
this limitation, AdaBoost is used to boost its performance. The boosted version of VQ-
GRNN which is referred to as Boosted VQ-GRNN will be implemented in the Multi-Expert 
Classification Framework.  

 
4. Multi-Expert Classification Framework  
 

Different learning algorithms behave variably on different classes. They may obtain superior 
performance on some classes but present unacceptable low accuracy for others. The 
imbalance of predictive performance motivates this research to construct an intelligent 
multi-expert learning framework which can aggregate expert knowledge from class-specific 
models, i.e. classifiers specialized in detecting a specific class. There is a good deal of 
research that shows the potentials of models that combines classification results from 
individual sub-models. Basically, there are two forms of classifier combination, the multi-
stage (or hierarchical) (Vuurpijl, 2000) methods and the ensemble (or late fusion) (Kuncheva, 
2002.) methods. In the first approach, the classifiers are placed in a multi-layered 
architecture where the output of one layer affects the model selection in the next layer. On 
the other hand, the second approach explores ensembles of classifiers, trained on different 
distributions of the original dataset and using different or similar features and learning 
algorithms. The outputs of these classifiers are then fused into one compound classification 
using voting techniques.  
For a multi-class classification problem such as network intrusion detection, instead of 
trying to design a learning algorithm that is accurate over the entire space, we can focus on 
creating a model that can predict well for a specific portion within the space. We then 
combine such models to obtain a joint classifier which performs accurately on many classes. 
Under this light, a Multi-Expert Classification Framework (MECF) combining different 
classifiers for different types of attacks is proposed. Its sub-models are trained in an attack-
specific manner and then integrated to accumulate their specializations. Boosted VQ-GRNN 
will be compared with several algorithms and then used for creating component classifiers.  
 

4.1. Framework description 

Fig.1. Multi-expert classifier for Intrusion Detection 
 
Fig.1 describes a generic predictive model which combines different classifiers; each with 
special expertise in detecting a specific attack type. Each of these classifiers will be trained 
on different subsets of an underlying universal dataset. These subsets differ from each other 
in terms of attribute selections (Feature selectors) and attack-specific encoding schemes 
(Encoder). We aim to construct the class-specific classifiers, called experts, which have high 
Detection Rate on specific classes. To do so, several combinations of different attributes will 
be tested to gain the best performance for a particular attack category. We then train those 
classifiers on the dataset whose labels indicate whether a data instance belongs to a 
particular attack category or not. For example, if a classifier is created to recognize Probe 
attacks (Probe expert), then the data labels will be encoded as Probe for instances belonging 
to probe category or Non-probe otherwise. This has an effect of reducing a multi-class 
learning problem into a multiple binary classifications. The learning speed will be faster and 
the resulting classifier will be more “specialized” in detecting particular categories of attacks 
and less prone to overfitting problem.  
Another useful aspect of this approach originates from the fact that even when different 
classifiers are trained on the same dataset and have comparable performance on the test set, 
they still have different “inductive biases” (Mitchell, 1997). This prevents these models from 
generalizing in identical ways. Under the proposed arrangement, component classifiers are 
very different from each other in terms of their biases. From experiments, it is shown that if 
a classifier is trained with a dataset which emphasizes a particular attack, it will have good 
detection rate for that particular attack but does not detect other attacks well.  One of the 
widely used approaches is the cross-validation which perceives the different “inductive 
biases” as an indication to select “super” classifiers which perform best on all classes. As a 
result, some models will be discarded because of their low performance. This leads to a 
potential loss of useful information and effort. In contrast, an ensemble can effectively make 
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hypothesis on a weighted data sample. As boosting progresses, training examples that are 
hard to predict correctly, get incrementally higher weights than the other examples. The 
intended effect is to force the weak learner to concentrate on examples and labels that will 
be most beneficial to the overall goal of finding a highly accurate classification rule. This 
update process is repeated, until a certain stopping condition is met (e.g a given number of 
weak classifiers are trained or the learning error reaches a desirable level). The final joint 
classification is the linear weighted combination of the base hypotheses (Huang, Ertekin, 
Song, Zha, & Giles, 2007): ����� � �����∑ ��  ������ ����    
Motivated by the need of an accurate detection system for network security applications, we 
seek a learning algorithm which provides a good tradeoff for learning bias, generalization 
variance and computational requirement. In theory, the GRNN can achieve the optimal 
Bayesian estimate (with infinity network size) but with a cost of extremely demanding 
computation resource. The VQ-GRNN reduces the computationally extensive 
nonparametric GRNN to a semiparametric neural network by applying vector quantization 
techniques on the input space. This reduction significantly improves the robustness of the 
algorithm (low variance), but also affects its learning accuracy to some extent. To overcome 
this limitation, AdaBoost is used to boost its performance. The boosted version of VQ-
GRNN which is referred to as Boosted VQ-GRNN will be implemented in the Multi-Expert 
Classification Framework.  

 
4. Multi-Expert Classification Framework  
 

Different learning algorithms behave variably on different classes. They may obtain superior 
performance on some classes but present unacceptable low accuracy for others. The 
imbalance of predictive performance motivates this research to construct an intelligent 
multi-expert learning framework which can aggregate expert knowledge from class-specific 
models, i.e. classifiers specialized in detecting a specific class. There is a good deal of 
research that shows the potentials of models that combines classification results from 
individual sub-models. Basically, there are two forms of classifier combination, the multi-
stage (or hierarchical) (Vuurpijl, 2000) methods and the ensemble (or late fusion) (Kuncheva, 
2002.) methods. In the first approach, the classifiers are placed in a multi-layered 
architecture where the output of one layer affects the model selection in the next layer. On 
the other hand, the second approach explores ensembles of classifiers, trained on different 
distributions of the original dataset and using different or similar features and learning 
algorithms. The outputs of these classifiers are then fused into one compound classification 
using voting techniques.  
For a multi-class classification problem such as network intrusion detection, instead of 
trying to design a learning algorithm that is accurate over the entire space, we can focus on 
creating a model that can predict well for a specific portion within the space. We then 
combine such models to obtain a joint classifier which performs accurately on many classes. 
Under this light, a Multi-Expert Classification Framework (MECF) combining different 
classifiers for different types of attacks is proposed. Its sub-models are trained in an attack-
specific manner and then integrated to accumulate their specializations. Boosted VQ-GRNN 
will be compared with several algorithms and then used for creating component classifiers.  
 

4.1. Framework description 

Fig.1. Multi-expert classifier for Intrusion Detection 
 
Fig.1 describes a generic predictive model which combines different classifiers; each with 
special expertise in detecting a specific attack type. Each of these classifiers will be trained 
on different subsets of an underlying universal dataset. These subsets differ from each other 
in terms of attribute selections (Feature selectors) and attack-specific encoding schemes 
(Encoder). We aim to construct the class-specific classifiers, called experts, which have high 
Detection Rate on specific classes. To do so, several combinations of different attributes will 
be tested to gain the best performance for a particular attack category. We then train those 
classifiers on the dataset whose labels indicate whether a data instance belongs to a 
particular attack category or not. For example, if a classifier is created to recognize Probe 
attacks (Probe expert), then the data labels will be encoded as Probe for instances belonging 
to probe category or Non-probe otherwise. This has an effect of reducing a multi-class 
learning problem into a multiple binary classifications. The learning speed will be faster and 
the resulting classifier will be more “specialized” in detecting particular categories of attacks 
and less prone to overfitting problem.  
Another useful aspect of this approach originates from the fact that even when different 
classifiers are trained on the same dataset and have comparable performance on the test set, 
they still have different “inductive biases” (Mitchell, 1997). This prevents these models from 
generalizing in identical ways. Under the proposed arrangement, component classifiers are 
very different from each other in terms of their biases. From experiments, it is shown that if 
a classifier is trained with a dataset which emphasizes a particular attack, it will have good 
detection rate for that particular attack but does not detect other attacks well.  One of the 
widely used approaches is the cross-validation which perceives the different “inductive 
biases” as an indication to select “super” classifiers which perform best on all classes. As a 
result, some models will be discarded because of their low performance. This leads to a 
potential loss of useful information and effort. In contrast, an ensemble can effectively make 
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use of such complementary information to reduce model variance and bias (Tumer & 
Ghosh, 1995). The meta-learner in this framework could be as simple as a lookup table to a 
more advanced voting techniques. A brief review of related voting methods is given in the 
next section. 

 
4.2. Voting techniques for pattern recognition 
In human society, voting is a common concept in which voters indicate their preference 
choices from multiple options (candidates) by means of a vote (Parhami, 1994). These votes 
are then integrated into one final decision (the winner). This process is called an election. In 
the context of classifier combination, the voters are the individual classifiers that can 
generate a single class or a ranked list of all classes as a vote; the possible classes are the 
candidates and an election is the classification of one sample. The winner is the candidate 
that is chosen as result of the classification procedure of the sample by the combination of 
classifiers. There are a number of families of voting techniques.  
Firstly, the un-weighted voting methods consider each vote equally and the only 
differentiation between the candidates is the number of votes they have received. As a 
consequence, voters cannot express the degree of preference of one candidate over another 
(Parhami, 1994). Apart from this limitation, un-weighted voting such as majority voting is 
still commonly used, due to its simplicity and relatively good performance. Particularly, 
every voter has one vote that can be cast for any one candidate and the candidate that 
obtained the majority of the votes will win the election.  
The second family of voting methods is confidence voting in which voters can express the 
degree of their preference for a candidate by assigning a confidence value to candidates. The 
higher the total confidence value a candidate received, the more it is preferred by the voter. 
In our experiments, confidence value is equivalent to probabilities of class membership that 
are generated by local experts. There are 3 common ways of computing the total confidence 
votes: (1) summing up all confidence values (Sum rule); (2) multiplying all confidence 
values (Product rule); (3) repeatedly applying a majority vote based on the highest ranked 
candidate of each voter’s preference ranking and transferring votes between candidates 
(Single transferable vote-STV) (Doron, 1977). The basic principle of STV is that voters rank 
the candidates in order of preference. In order to be elected, a candidate must achieve a 
computed quota. The votes can be transferred in two cases:  

 Excess votes over the quota are appropriately down-weighted and allocated to the 
next preference of voters (this is not applicable in our case because we terminate 
voting when a winner is selected).  

 If no candidate reaches the quota, the candidate with the least number of votes is 
eliminated and their votes transferred to next preferences. 

In the context of classifier combination, voting techniques like STV are necessary because it 
can better integrate the preference choices of the local experts.  For example, if no expert has 
enough confidence to classify an input vector, instead of marking it as an “unknown” 
instance which implies overheads for further investigation, the least voted candidate class is 
eliminated and its votes will be transferred to other classes. By this means, we not only 
utilize the votes that are otherwise wasted but also reduce the need for further processing of 
the unknown instances.  In our experiments on the KDD-99 dataset, we attempt to use 
different voting methods and examine their behaviors in a multi-expert framework.  
 

5. Experimental analysis 
 

5.1. Cost-based Analysis 
The KDD-99 dataset takes the cost sensitivity into consideration in evaluating learning 
methods. An error on a particular class may not be equally serious as errors on other classes. 
To make comparison between intrusion detection methods sensitive to cost, a cost matrix 
(CostM) is given for different attack categories.  
 

       Predicted      
Actual 

Normal (0) Probe (1) DoS (2) U2R (3) R2L (4) 

Normal (0) 0 1 2 2 2 
Probe (1) 1 0 2 2 2 
DoS (2) 2 1 0 2 2 
U2R (3) 3 2 2 0 2 
R2L (4) 4 2 2 2 0 

Table 1.  Cost matrix for the KDD-99 dataset (Levin, 2000a)  
 
In this table, rows correspond to actual categories, while columns correspond to classified 
values. The Normal category is symbolized as class 0, Probe as 1 and so forth. According to 
this cost matrix, if a R2L attack is falsely classified as Normal connection, the incurred 
penalty cost is 4 while misclassification of a Probe attack as normal has a cost of 1. This 
suggests that R2L attacks are more serious than Probes.  
During the testing phase, the outputs of a classifier will be generated in form of a Confusion 
Matrix (ConfM) which summarizes the classification results. The difference between CostM 
and ConfM is that an entry at row i and column j in the cost matrix, CostM(i,j), represents 
the cost associated with a connection which actually belongs to class i and is classified as 
class j while the same position in the confusion matrix, ConfM(i.j), displays the number of 
connections of type i and is classified (correctly or incorrectly) as class j. Given a test set, the 
average cost of a classifier is calculated as below (McHugh et al., 2000): 
 ���� � 1� � � �������� �� � �������� ���

���
�

���  

 
Where 
N: total number of connections in the dataset 
ConfM(i,j): the entry at row i, column j in the confusion matrix. 
CostM(i,j): the entry at row i, column j in the cost matrix. 

 
5.2. Experiment design 
We are motivated to explore how different learning algorithms perform for different attack 
categories, i.e. to check weather a certain algorithm may achieve superior performance for a 
specific attack category. In the light of this possibility, we compare several detection models 
using different pattern recognition methods and select the best performing algorithms as 
well as the most discriminant features for each attack category. A multi-classifier system 
then evolves which improves the overall detection performance on the KDD-99 benchmark. 
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use of such complementary information to reduce model variance and bias (Tumer & 
Ghosh, 1995). The meta-learner in this framework could be as simple as a lookup table to a 
more advanced voting techniques. A brief review of related voting methods is given in the 
next section. 

 
4.2. Voting techniques for pattern recognition 
In human society, voting is a common concept in which voters indicate their preference 
choices from multiple options (candidates) by means of a vote (Parhami, 1994). These votes 
are then integrated into one final decision (the winner). This process is called an election. In 
the context of classifier combination, the voters are the individual classifiers that can 
generate a single class or a ranked list of all classes as a vote; the possible classes are the 
candidates and an election is the classification of one sample. The winner is the candidate 
that is chosen as result of the classification procedure of the sample by the combination of 
classifiers. There are a number of families of voting techniques.  
Firstly, the un-weighted voting methods consider each vote equally and the only 
differentiation between the candidates is the number of votes they have received. As a 
consequence, voters cannot express the degree of preference of one candidate over another 
(Parhami, 1994). Apart from this limitation, un-weighted voting such as majority voting is 
still commonly used, due to its simplicity and relatively good performance. Particularly, 
every voter has one vote that can be cast for any one candidate and the candidate that 
obtained the majority of the votes will win the election.  
The second family of voting methods is confidence voting in which voters can express the 
degree of their preference for a candidate by assigning a confidence value to candidates. The 
higher the total confidence value a candidate received, the more it is preferred by the voter. 
In our experiments, confidence value is equivalent to probabilities of class membership that 
are generated by local experts. There are 3 common ways of computing the total confidence 
votes: (1) summing up all confidence values (Sum rule); (2) multiplying all confidence 
values (Product rule); (3) repeatedly applying a majority vote based on the highest ranked 
candidate of each voter’s preference ranking and transferring votes between candidates 
(Single transferable vote-STV) (Doron, 1977). The basic principle of STV is that voters rank 
the candidates in order of preference. In order to be elected, a candidate must achieve a 
computed quota. The votes can be transferred in two cases:  

 Excess votes over the quota are appropriately down-weighted and allocated to the 
next preference of voters (this is not applicable in our case because we terminate 
voting when a winner is selected).  

 If no candidate reaches the quota, the candidate with the least number of votes is 
eliminated and their votes transferred to next preferences. 

In the context of classifier combination, voting techniques like STV are necessary because it 
can better integrate the preference choices of the local experts.  For example, if no expert has 
enough confidence to classify an input vector, instead of marking it as an “unknown” 
instance which implies overheads for further investigation, the least voted candidate class is 
eliminated and its votes will be transferred to other classes. By this means, we not only 
utilize the votes that are otherwise wasted but also reduce the need for further processing of 
the unknown instances.  In our experiments on the KDD-99 dataset, we attempt to use 
different voting methods and examine their behaviors in a multi-expert framework.  
 

5. Experimental analysis 
 

5.1. Cost-based Analysis 
The KDD-99 dataset takes the cost sensitivity into consideration in evaluating learning 
methods. An error on a particular class may not be equally serious as errors on other classes. 
To make comparison between intrusion detection methods sensitive to cost, a cost matrix 
(CostM) is given for different attack categories.  
 

       Predicted      
Actual 

Normal (0) Probe (1) DoS (2) U2R (3) R2L (4) 

Normal (0) 0 1 2 2 2 
Probe (1) 1 0 2 2 2 
DoS (2) 2 1 0 2 2 
U2R (3) 3 2 2 0 2 
R2L (4) 4 2 2 2 0 

Table 1.  Cost matrix for the KDD-99 dataset (Levin, 2000a)  
 
In this table, rows correspond to actual categories, while columns correspond to classified 
values. The Normal category is symbolized as class 0, Probe as 1 and so forth. According to 
this cost matrix, if a R2L attack is falsely classified as Normal connection, the incurred 
penalty cost is 4 while misclassification of a Probe attack as normal has a cost of 1. This 
suggests that R2L attacks are more serious than Probes.  
During the testing phase, the outputs of a classifier will be generated in form of a Confusion 
Matrix (ConfM) which summarizes the classification results. The difference between CostM 
and ConfM is that an entry at row i and column j in the cost matrix, CostM(i,j), represents 
the cost associated with a connection which actually belongs to class i and is classified as 
class j while the same position in the confusion matrix, ConfM(i.j), displays the number of 
connections of type i and is classified (correctly or incorrectly) as class j. Given a test set, the 
average cost of a classifier is calculated as below (McHugh et al., 2000): 
 ���� � 1� � � �������� �� � �������� ���
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Where 
N: total number of connections in the dataset 
ConfM(i,j): the entry at row i, column j in the confusion matrix. 
CostM(i,j): the entry at row i, column j in the cost matrix. 

 
5.2. Experiment design 
We are motivated to explore how different learning algorithms perform for different attack 
categories, i.e. to check weather a certain algorithm may achieve superior performance for a 
specific attack category. In the light of this possibility, we compare several detection models 
using different pattern recognition methods and select the best performing algorithms as 
well as the most discriminant features for each attack category. A multi-classifier system 
then evolves which improves the overall detection performance on the KDD-99 benchmark. 
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A generic ensemble model is developed as in Fig.1, containing 5 classifiers (experts) which 
specialize in detecting certain classes (Normal, Probe, DoS, U2R and R2L). There are 3 major 
phases in this model: 

Fig. 2. Multi-expert classification framework (MECF) 

 
5.2.1. Data preprocessing  
The KDD-99 dataset contains attributes of different forms such as continuous, discrete and 
symbolic with varying resolutions and ranges. In order to build predictive models, this data 
is first converted into a compatible format. Several preprocessing techniques include data 
reduction (removing duplicated data and sampling data into smaller sets), data encoding 
and normalization (mapping k-value nominal and ordinal attributes into k integers, re-
scaling numeric attributes), dimensionality reduction (extract most informative attributes by 
adapting Protocol-based Logistic Regression (PLR) (Yu, Wu, & Wong, 2008)).   

 
5.2.2. Local expert creation 
Local experts (detectors) are constructed by selecting the best performing learning 
algorithms and best disriminant features for specific attack types. For each class (normal and 
attack categories), a specialized classifier is created by three steps:  
a) Apply class-specific encoding schemes on data 
For example, to produce a DoS detector, each data record is encoded to indicate whether it is 
actually a DoS attack or not, i.e. its label is assigned to 1 if it belongs to this class, or 0 
otherwise.  
Given a dataset S in which the input features are represented by vector x and the output (or 
target) class is denoted by label c where c=1,…,K and K is the number of possible labeling (in 
KDD-99, K=5). To construct a local classifier which is specialized in detecting a specific class 

k, the label c should be recoded to �௞ such that: ൜�௞ � 1 �� ܿ � ݇�௞ � Ͳ �� ܿ ് ݇ 

b) Select important features from the input data 

We train some classifiers with different combinations of attributes in the encoded data. The 
combination which gives the best performance will be selected for that particular class.   
c) Choose the best performing classifier 
The learning algorithm with the best trade-off between high detection capability and low 
false alarm rate will be selected.  

 
5.2.3. Expert Combination 
Given an input vector, each local expert computes an array of probabilities (ranging from 0 
to 1) of class membership for each available class. These probabilities are merged by voting 
methods to decide the final classification of the input vector. Several voting approaches will 
be implemented and their performance will be compared in the next section.   

 
5.3. Experiment results 
 

5.3.1. Constructing MECF 
To construct local experts, different predictive models are trained with different 
combinations of data feature groups including basic group (B), content-based group (C) and 
traffic-based group (T) for basic, content-based and traffic based features respectively. In 
particular, the semi-parametric algorithms such as Boosted VQ-GRNN will be compared 
against the parametric models such as decision trees (linear discriminant), boosted trees and 
non-parametric methods (MLP, GRNN).The boosted tree algorithm is the combination of J48 
and AdaBoostM1 methods which are available from the Weka package. For the GRNN and 
Boosted VQ-GRNN models, a similar model size was chosen with one hidden layer 
containing 15 hidden nodes. The MLP has a structure of three layers with the number of 
input neurons equal to the number of input features, five hidden neurons and five output 
neurons (1 for each class).  The above numbers of hidden nodes are selected from multiple 
experiments (number of hidden nodes varying from 5 to 55 with steps of 10) by choosing the 
setting with lowest bias and variance.  
 
Model B T C B+T B+C T+C

Detection rate for Normal (%)
J48 Tree 81.1 11.4 11.2 79.9 80.2 41.2 

Boosted J48  94.6 12.5 13.1 92.0 92.2 43.2 

MLP 85.6 8.6 8.5 85.5 86.7 30.4 

SVM 90.4 10.9 10.4 91.2 91.5 29.8 

GRNN 95.1 13.5 12.5 93.8 94.6 40.2 

Boosted VQ-GRNN 95.6 14.5 13.5 95.1 95.2 33.8 

Detection rate for Probe (%)
J48 Tree 46.2 20.7 22.4 86.1 56.4 39.1 

Boosted J48  45.1 25.1 23.1 90.7 56.8 33.2 

MLP 39.1 27.7 11.3 82.3 40.1 32.1 

SVM 42.7 30.8 16.9 87.5 50.6 68.3 

GRNN 44.6 25.1 21.7 84.3 47.8 44.1 

Boosted VQ-GRNN 45.1 29.1 20.3 86.2 50.2 43.5 
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A generic ensemble model is developed as in Fig.1, containing 5 classifiers (experts) which 
specialize in detecting certain classes (Normal, Probe, DoS, U2R and R2L). There are 3 major 
phases in this model: 

Fig. 2. Multi-expert classification framework (MECF) 

 
5.2.1. Data preprocessing  
The KDD-99 dataset contains attributes of different forms such as continuous, discrete and 
symbolic with varying resolutions and ranges. In order to build predictive models, this data 
is first converted into a compatible format. Several preprocessing techniques include data 
reduction (removing duplicated data and sampling data into smaller sets), data encoding 
and normalization (mapping k-value nominal and ordinal attributes into k integers, re-
scaling numeric attributes), dimensionality reduction (extract most informative attributes by 
adapting Protocol-based Logistic Regression (PLR) (Yu, Wu, & Wong, 2008)).   

 
5.2.2. Local expert creation 
Local experts (detectors) are constructed by selecting the best performing learning 
algorithms and best disriminant features for specific attack types. For each class (normal and 
attack categories), a specialized classifier is created by three steps:  
a) Apply class-specific encoding schemes on data 
For example, to produce a DoS detector, each data record is encoded to indicate whether it is 
actually a DoS attack or not, i.e. its label is assigned to 1 if it belongs to this class, or 0 
otherwise.  
Given a dataset S in which the input features are represented by vector x and the output (or 
target) class is denoted by label c where c=1,…,K and K is the number of possible labeling (in 
KDD-99, K=5). To construct a local classifier which is specialized in detecting a specific class 

k, the label c should be recoded to �௞ such that: ൜�௞ � 1 �� ܿ � ݇�௞ � Ͳ �� ܿ ് ݇ 

b) Select important features from the input data 

We train some classifiers with different combinations of attributes in the encoded data. The 
combination which gives the best performance will be selected for that particular class.   
c) Choose the best performing classifier 
The learning algorithm with the best trade-off between high detection capability and low 
false alarm rate will be selected.  

 
5.2.3. Expert Combination 
Given an input vector, each local expert computes an array of probabilities (ranging from 0 
to 1) of class membership for each available class. These probabilities are merged by voting 
methods to decide the final classification of the input vector. Several voting approaches will 
be implemented and their performance will be compared in the next section.   

 
5.3. Experiment results 
 

5.3.1. Constructing MECF 
To construct local experts, different predictive models are trained with different 
combinations of data feature groups including basic group (B), content-based group (C) and 
traffic-based group (T) for basic, content-based and traffic based features respectively. In 
particular, the semi-parametric algorithms such as Boosted VQ-GRNN will be compared 
against the parametric models such as decision trees (linear discriminant), boosted trees and 
non-parametric methods (MLP, GRNN).The boosted tree algorithm is the combination of J48 
and AdaBoostM1 methods which are available from the Weka package. For the GRNN and 
Boosted VQ-GRNN models, a similar model size was chosen with one hidden layer 
containing 15 hidden nodes. The MLP has a structure of three layers with the number of 
input neurons equal to the number of input features, five hidden neurons and five output 
neurons (1 for each class).  The above numbers of hidden nodes are selected from multiple 
experiments (number of hidden nodes varying from 5 to 55 with steps of 10) by choosing the 
setting with lowest bias and variance.  
 
Model B T C B+T B+C T+C

Detection rate for Normal (%)
J48 Tree 81.1 11.4 11.2 79.9 80.2 41.2 

Boosted J48  94.6 12.5 13.1 92.0 92.2 43.2 

MLP 85.6 8.6 8.5 85.5 86.7 30.4 

SVM 90.4 10.9 10.4 91.2 91.5 29.8 

GRNN 95.1 13.5 12.5 93.8 94.6 40.2 

Boosted VQ-GRNN 95.6 14.5 13.5 95.1 95.2 33.8 

Detection rate for Probe (%)
J48 Tree 46.2 20.7 22.4 86.1 56.4 39.1 

Boosted J48  45.1 25.1 23.1 90.7 56.8 33.2 

MLP 39.1 27.7 11.3 82.3 40.1 32.1 

SVM 42.7 30.8 16.9 87.5 50.6 68.3 

GRNN 44.6 25.1 21.7 84.3 47.8 44.1 

Boosted VQ-GRNN 45.1 29.1 20.3 86.2 50.2 43.5 
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Detection rate for DoS (%) 
J48 Tree 78.2 17.2 34.7 88.6 76.1 51.3 

Boosted J48  79.0 24.1 50.1 90.3 77.3 53.7 

MLP 66.7 15.7 40.1 87.6 60.1 49.1 

SVM 78.2 20.2 33.5 85.6 58.3 50.3 

GRNN 78.1 22.2 44.8 92.0 75.7 51.4 

Boosted VQ-GRNN 78.2 23.1 43.2 92.3 78.2 50.5 

Detection rate for U2R (%)
J48 Tree 0.4 0.0 5.0 0.3 22.3 7.6 

Boosted J48  0.1 0.1 4.3 1.1 27.2 7.8 

MLP 0.3 0.8 6.7 0.1 18.1 7.1 

SVM 0.0 0.5 4.6 0.2 11.6 6.6 

GRNN 0.1 3.2 7.2 0.1 28.6 6.0 

Boosted VQ-GRNN 0.0 3.2 7.2 0.4 27.2 6.1 

Detection rate for R2L (%)
J48 Tree 0.9 0.0 2.9 0.0 34.0 2.8 

Boosted J48  0.5 0.0 2.8 0.0 35.2 2.3 

MLP 0.0 0.1 2.1 0.1 22.1 3.0 

SVM 0.0 0.0 1.5 0.0 33.8 2.5 

GRNN 0.9 0.1 2.3 0.3 36.2 3.3 

Boosted VQ-GRNN 0.1 0.1 2.1 0.3 41.2 3.1 

Table 2. Detection rate for different classes and features 
 
From the results in Table 2, for each type of attacks, the best performing combination of 
features and learning algorithms will be chosen and highlighted. For example, the 
combination of basic and traffic features with the Boosted J48 Tree achieve the highest 
detection rate for Probe attacks (90.7%). Note that, these models are trained on the data 
which is encoded for specific categories. Therefore, their detection rates are only valid on the 
encoded data. The Table 3 shows the best performing strategies (feature combination, 
attack-specific encoding scheme and learning algorithm) selected. 
 
Model Features used Encoding scheme used Algorithm used 
Normal Expert Basic 1 (Normal) ; 0(non- Normal) Boosted VQ-GRNN 
Probe Expert Basic + Traffic 1 (Probe) ; 0(non-probe) Boosted J48 Tree 
DoS Expert Basic + Traffic 1 (DoS) ; 0(non- DoS) Boosted VQ-GRNN 

U2R Expert Basic + Content 1 (U2R) ; 0(non-U2R) GRNN 
R2L Expert Basic + Content  1 (R2L) ; 0(non- R2L) Boosted VQ-GRNN 

Table 3. Local experts’ configuration 

 
5.3.2. Performance evaluation 
The classification results of the constructed local experts are combined in the Multi-Expert 
Classification Framework (MECF) using different voting strategies including majority vote 
(MECF–MV), sum rule (MECF–SR), product rule (MECF–PR) and Single Transferable Vote 

(MECF–STV) voting methods. These models are then compared against other existing 
methods, including the KDD-99 winner (Pfahringer, 2000a), the rule-based PNrule approach  
(Agarwal, 2000) and the Columbia Model (W.  Lee & Stolfo, 2000). Results from some of 
these techniques may not be complete (e.g. FAR is not available or results of Normal class 
are not provided).  The comparison between learning algorithms is presented Table 4 where 
for each class, the highest DR and lowest FAR are in bold and the best performing method is 
highlighted.  
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KDD 99 winner 
(Pfahringer, 2000a) 

99.5 83.3 97.1 13.2 8.4 DR 
27.0 35.2 0.1 28.6 1.2 FAR 

PNrule(Agarwal, 2000) 99.5 73.2 96.9 6.6 10.7 DR 
27.0 7.5 0.05 89.5 12.0 FAR 

Columbia Model (W.  Lee 
& Stolfo, 2000) 

 96.7 24.3 81.8 5.9 DR 

MECF–MV 99.4 88.0 97.2 29.3 11.9 DR 
30.2 40.1 2.8 14.5 20.0 FAR 

MECF–SR 99.5 92.0 96.7 21.8 17.1 DR 
3.3 6.7 0.09 7.1 8.7 FAR 

MECF–PR 82.1 85.3 98.0 11.4 6.8 DR 
5.2 21.4 0.56 4.3 15.7 FAR 

MECF–STV 99.8 99.3 98.1 89.7 48.2 DR
3.6 1.1 0.06 0.03 0.19 FAR

Table 4. Detection Rate (DR %) and False Alarm Rate (FAR %) comparison 
 
Across the classes, in comparison with existing techniques, MECF using simple majority 
vote (MECF-MV) does not provide noticeable improvement in DR while its FAR is quite 
high in most cases (Probe, U2R, R2L and Normal). The product rule voting technique (in 
MECF-PR) is found unstable because it suddenly increases DR for the DoS attack (98.0%) 
while its results for the remaining classes are largely degraded. The MECF-SR, on the other 
hand, has a stable performance with fairly high DR and low FAR for most of the classes (it 
has lowest FAR for the Normal class).  
Among the methods considered here, our classification framework that uses STV technique 
(MECF-STV) and the LCRF (Gupta, Nath, & Kotagiri, 2008) are the most recent and they 
seem to be the most accurate models (high DR and low FAR). Most methods do not perform 
well for the U2R attacks (DR is lower than 30%), except for a dramatic increase in DR is 
noted for Decision Tree (J.-H. Lee et al., 2008) (58.8%), Columbia Model (W.  Lee & Stolfo, 
2000) (81.8%), LCRF (Gupta et al., 2008) (86.30%) and MECF-STV (89.7%). For the R2L 
category, only MECF-STV provides a significantly high DR (48.2%) and lowest FAR (0.19%).   
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Detection rate for DoS (%) 
J48 Tree 78.2 17.2 34.7 88.6 76.1 51.3 

Boosted J48  79.0 24.1 50.1 90.3 77.3 53.7 

MLP 66.7 15.7 40.1 87.6 60.1 49.1 

SVM 78.2 20.2 33.5 85.6 58.3 50.3 

GRNN 78.1 22.2 44.8 92.0 75.7 51.4 

Boosted VQ-GRNN 78.2 23.1 43.2 92.3 78.2 50.5 

Detection rate for U2R (%)
J48 Tree 0.4 0.0 5.0 0.3 22.3 7.6 

Boosted J48  0.1 0.1 4.3 1.1 27.2 7.8 

MLP 0.3 0.8 6.7 0.1 18.1 7.1 

SVM 0.0 0.5 4.6 0.2 11.6 6.6 

GRNN 0.1 3.2 7.2 0.1 28.6 6.0 

Boosted VQ-GRNN 0.0 3.2 7.2 0.4 27.2 6.1 

Detection rate for R2L (%)
J48 Tree 0.9 0.0 2.9 0.0 34.0 2.8 

Boosted J48  0.5 0.0 2.8 0.0 35.2 2.3 

MLP 0.0 0.1 2.1 0.1 22.1 3.0 

SVM 0.0 0.0 1.5 0.0 33.8 2.5 

GRNN 0.9 0.1 2.3 0.3 36.2 3.3 

Boosted VQ-GRNN 0.1 0.1 2.1 0.3 41.2 3.1 

Table 2. Detection rate for different classes and features 
 
From the results in Table 2, for each type of attacks, the best performing combination of 
features and learning algorithms will be chosen and highlighted. For example, the 
combination of basic and traffic features with the Boosted J48 Tree achieve the highest 
detection rate for Probe attacks (90.7%). Note that, these models are trained on the data 
which is encoded for specific categories. Therefore, their detection rates are only valid on the 
encoded data. The Table 3 shows the best performing strategies (feature combination, 
attack-specific encoding scheme and learning algorithm) selected. 
 
Model Features used Encoding scheme used Algorithm used 
Normal Expert Basic 1 (Normal) ; 0(non- Normal) Boosted VQ-GRNN 
Probe Expert Basic + Traffic 1 (Probe) ; 0(non-probe) Boosted J48 Tree 
DoS Expert Basic + Traffic 1 (DoS) ; 0(non- DoS) Boosted VQ-GRNN 

U2R Expert Basic + Content 1 (U2R) ; 0(non-U2R) GRNN 
R2L Expert Basic + Content  1 (R2L) ; 0(non- R2L) Boosted VQ-GRNN 

Table 3. Local experts’ configuration 

 
5.3.2. Performance evaluation 
The classification results of the constructed local experts are combined in the Multi-Expert 
Classification Framework (MECF) using different voting strategies including majority vote 
(MECF–MV), sum rule (MECF–SR), product rule (MECF–PR) and Single Transferable Vote 

(MECF–STV) voting methods. These models are then compared against other existing 
methods, including the KDD-99 winner (Pfahringer, 2000a), the rule-based PNrule approach  
(Agarwal, 2000) and the Columbia Model (W.  Lee & Stolfo, 2000). Results from some of 
these techniques may not be complete (e.g. FAR is not available or results of Normal class 
are not provided).  The comparison between learning algorithms is presented Table 4 where 
for each class, the highest DR and lowest FAR are in bold and the best performing method is 
highlighted.  
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KDD 99 winner 
(Pfahringer, 2000a) 

99.5 83.3 97.1 13.2 8.4 DR 
27.0 35.2 0.1 28.6 1.2 FAR 

PNrule(Agarwal, 2000) 99.5 73.2 96.9 6.6 10.7 DR 
27.0 7.5 0.05 89.5 12.0 FAR 

Columbia Model (W.  Lee 
& Stolfo, 2000) 

 96.7 24.3 81.8 5.9 DR 

MECF–MV 99.4 88.0 97.2 29.3 11.9 DR 
30.2 40.1 2.8 14.5 20.0 FAR 

MECF–SR 99.5 92.0 96.7 21.8 17.1 DR 
3.3 6.7 0.09 7.1 8.7 FAR 

MECF–PR 82.1 85.3 98.0 11.4 6.8 DR 
5.2 21.4 0.56 4.3 15.7 FAR 

MECF–STV 99.8 99.3 98.1 89.7 48.2 DR
3.6 1.1 0.06 0.03 0.19 FAR

Table 4. Detection Rate (DR %) and False Alarm Rate (FAR %) comparison 
 
Across the classes, in comparison with existing techniques, MECF using simple majority 
vote (MECF-MV) does not provide noticeable improvement in DR while its FAR is quite 
high in most cases (Probe, U2R, R2L and Normal). The product rule voting technique (in 
MECF-PR) is found unstable because it suddenly increases DR for the DoS attack (98.0%) 
while its results for the remaining classes are largely degraded. The MECF-SR, on the other 
hand, has a stable performance with fairly high DR and low FAR for most of the classes (it 
has lowest FAR for the Normal class).  
Among the methods considered here, our classification framework that uses STV technique 
(MECF-STV) and the LCRF (Gupta, Nath, & Kotagiri, 2008) are the most recent and they 
seem to be the most accurate models (high DR and low FAR). Most methods do not perform 
well for the U2R attacks (DR is lower than 30%), except for a dramatic increase in DR is 
noted for Decision Tree (J.-H. Lee et al., 2008) (58.8%), Columbia Model (W.  Lee & Stolfo, 
2000) (81.8%), LCRF (Gupta et al., 2008) (86.30%) and MECF-STV (89.7%). For the R2L 
category, only MECF-STV provides a significantly high DR (48.2%) and lowest FAR (0.19%).   
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Fig. 3. Detection Rate comparision  

Fig. 4. False Alarm comparision 
 
Though no model can provide both highest DR and lowest FAR for all the classes, our 
MECF-STV is the most promising model which makes the best combination of detection 
capability (DR) and system robustness (FAR). That is, MECF-STV can achieve highest DR 
for all the classes and its FAR for the two rare U2R and R2L categories are the lowest. In the 
case that other models obtain lower FAR, the performance difference between that model 
and MECF-STV is very small. Moreover, the average cost of MECF-STV is 0.1089 per test 
sample, which is much lower than the KDD winner (0.2332). It is also important to note that 
the test data used in our experiments follows a different distribution than in the training 
data and contains an additional 14 attack types not included in the training data. Therefore, 
achieving high DR on this test dataset suggests that our model is robust to data distribution 
changes and is able to detect unseen attacks. Fig. 3 and Fig. 4 visualize DR and FAR of the 
classifiers on the KDD-99 dataset.  
In summary, our proposed MECF-STV (multi-expert classification framework using single 
transferable voting) can significantly reduce the total misclassification cost compared with 
KDD-99 winner. Its detection rates are the highest for Normal, U2R and R2L categories and 
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very close to that of the best performing classifiers for Probe and DoS categories. Finally, 
False alarm rates obtained by MECF-STV are often the lowest compared to other methods.  

 
6. Conclusions and Future work 
 

6.1. Conclusion remarks 
Motivated by the low detection rates on rare and complicated attacks in the KDD-99 
benchmark, we develop the Multi-Expert Classification Framework (MECF) in which Vector 
Quantized Generalized Regression Neural Network (VQ-GRNN) and Adaptive Boosting 
(AdaBoost) are deployed. It is shown that some learning algorithms that use certain sets of 
features and class-specific encoding schemes can achieve superior detection capability for a 
given attack category. Consequently, MECF aims to capture the characteristics of different 
intrusive classes and normal instances by constructing a set of five local classifiers (experts) 
to classify data into five different classes including Normal, Probe, DoS, U2R and R2L. For 
each of these classes, a tailored learning strategy (an expert) is employed. The outcomes of 
these experts will then be combined using high performance voting methods. Experimental 
results indicate that the weighted voting strategies outperform simple majority voting. 
Using the transferable voting approach, our Multi-Expert Classification Framework using 
Single Transferable Voting (MECF-STV) model can significantly improve the detection rates 
of not only minority and distributed U2R and R2L attacks but also majority classes 
compared with other techniques. Moreover, this model achieves a low detection cost. 
In conclusion, the empirical analysis from this research suggests that our proposed 
framework performs very well in the intrusion detection problem in terms of accuracy and 
system robustness while offering “affordable” computation compared with existing state-of-
the-art techniques. However, no system is absolutely secure given the best possible 
detection algorithms. That is true as long as the system is connected to other networks. The 
absolute security can only be achieved by disconnecting the system from the outside world 
which is against the principal benefits of internetworking – accessibility of information. This 
means that protecting our resources from network attacks is an ongoing task and computer 
security is always an active and challenging research area.  

 
6.2. Future works 
Increasingly-intense distributed denial-of-service (DDoS) attacks on Internet Service 
Provider (ISP) backbones are surpassing providers' capacity and knocking customers offline 
(Kemmerer & Vigna, 2002). Such attacks are more dangerous than traditional DoS due to its 
complex and distributed nature. To fight these attacks, the generic IDS examined here can be 
extended to a multi-level agent detection system for distributed networks. Literature in this 
area has highlighted several generic limitations associated with Distributed Intrusion 
Detection System (DIDS) such as inability to cope with huge amount of data in different 
formats and ineffective coordination between distributed sensors and agents (Kemmerer & 
Vigna, 2002). Some of these problems were outlined and different approaches have been 
implemented to solve those problems. It is interesting to explore the applicability of our 
framework in such distributed context, i.e. using the MECF-STV to develop a multi-level 
agent framework to construct a robust, distributed, error tolerant and self protecting DIDS. 
To design such DIDS, an appropriate design of centralization and decentralization of data 
processing and detection capabilities needs to be considered.  
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