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1. Introduction     
 

In general, most complex systems, which are constructed by collecting more than one part to 
perform either single or multiple functions, are usually repaired rather than replaced after 
failures, since such systems can be restored to fully implement the required functions by 
methods other than replacing the entire system (Ascher & Feingold, 1984). However, the 
successive times between failures are not necessarily identically distributed, as in renewal 
processes. More generally, they can become smaller (an indication of deterioration), or 
conversely larger and larger (an indication of reliability growth) (Barlow & Proschan, 1965). 
If deterioration is detected, then the decision of when to overhaul or discard the system, 
given the costs of repairs and failures, is of fundamental importance.  
At the time of the decision, the degree of future deterioration, which is likely to be uncertain, 
is of primary interest for the decision maker. Decision analysis seems to be able to provide 
methods to deal with such uncertain situation. However, the decision structure is usually 
formulated in such a way as to imposingly quantify particular qualitative characteristics on 
human being as decision rules (Freeling, 1984). The most important of these characteristics is 
that of human ability to precisely specify numerical values of ends and means in a decision 
process. These non-fuzzy decision rules are useful; however, they are limited in their 
applicability to real world situations where nearly all real human decision problems are 
imprecise, ill-definedness and vagueness (Dompere, 1982). In such situations, decision-
making depends on numerous factors which limit human ability and increase difficulties to 
deal with (Asai & Okuda, 1975). Therefore, the use of fuzzy method may be very helpful in 
solving the decision making problems of deteriorating repairable systems (Bellman & 
Zadeh, 1970).  In section 2, describes some related researches about modeling deteriorating 
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issue. In addition, the nonhomogeneous Poisson process (NHPP) was introduced. In section 
3, delineates the implementation procedure for fuzzy Bayesian decision process. For the 
sake of information value analysis, we will discuss Bayesian decision process when the 
collected information is assumed to be fuzzy. Section 4, we will describes some fuzzy 
aggregation operations researches method and process. Further, section 5 a case study to 
illustrate the use of the models developed in the previous sections. Finally, section 6 
discusses the work items and contributions of this study. 

 
2. Deteriorating Repairable Systems 
 

In order to model deterioration in repairable systems, the Non-Homogeneous Poisson 
Process (NHPP) was introduced since it seems more plausible for systems consisting of 
many components (Härtler, 1989). The system failure process is time-dependent and its 
intensity function of the failure process is usually assumed to be of the form    xhx ;0   , 

where 0 is the scale factor,  is the deteriorating rate, x  is the elapsed time, and h(.) can be 
any function that reflects the deteriorating process. Suppose we have a system whose failure 
process is given by a non-homogeneous Poisson process and with a power law intensity 
function of the form (Ascher & Feingold, 1984): 
 

1
0)(   xx , 0> 0, > 0                                                      (1) 

 
The likelihood function of the first N=n failure times for the case of time-truncated data is 
given by 
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Huang and Bier (1998) proposed a natural conjugate prior distribution for the power law 
failure model, which is given by 
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Comparing with other approaches, this natural conjugate prior distribution has many 
desirable properties, which are summarized as follows: 

 
(1) The marginal distribution of  is a gamma distribution with parameters m and , 

expectation  /m , and coefficient of variation CV m/1 . 
(2)  The conditional distribution of 0 given  is a gamma distribution with parameters m 
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These properties provide guidance on how to choose the parameters , m, ym and c to 
achieve joint distributions with the desired prior moments. For example, m can be chosen to 
give the desired value of CV,  can be selected to give the desired value for , ym can be 
selected to give the desired value for CV0

 and c can be selected to give the desired value for 
0

. 

 
3. Fuzzy Bayesian Decision Process 
 

Generally, the information is expressed by means of numerical values in a quantitative 
setting (Crow, 1974). However, in a qualitative setting, which is filled with vague or 
imprecise knowledge, the information cannot be estimated with an exact numerical value 
(Herrera & Herrera, 2000). In such case, a more realistic approach may be used for linguistic 
assessments instead of numerical values, that is, to presume that the variables involved in 
the problem are assessed by means of linguistic terms (Hisdal, 1984; Tong & Bonissone, 
1984). This approach is appropriate since it allows a representation of information in a more 
realistic and adequate form when precision is not achievable. 
In real Bayesian decision problems there are two different types of vagueness: states and 
information (Fruhwirth-Schnatter, 1993). In this section we will discuss decision models for 
the cases in which only the states are fuzzified and both the states and additional 
information are fuzzified (Roubens, 1997; Stephen & Donnell, 1979). Finally, we will also 
present the decision flowchart and the decision analysis process. 
As mentioned in the previous section, Huang and Bier (1998) developed the joint natural 
conjugate prior distributions for 0 and . This proposed conjugate prior distribution 
provides guidance on how to choose the parameters , m, ym and c by collecting the experts’ 
knowledge and observed data about the prior moments (i.e., , CV, 0

, CV0
). In other 

words, in order to apply the joint natural conjugate prior distribution into the decision 
process, the experts need to specify a specific value for each of these four moments, 
respectively. However, this is not necessarily realistic for real world cases, since it is usually 
a tough task for the experts to specify a value to a prior moment with sufficient confidence. 
Instead, the experts often think of a prior moment as a fuzzy number, that is, a range of 
numbers and each number within the range has a different membership value. Furthermore, 
since the prior moments are not exactly provided by the experts, the parameters (i.e., , m, c, 
and ym) are therefore formed as the functions of these fuzzy numbers. From the properties of 
the joint natural conjugate prior in the previous section, we can have (Huang & Chang, 
2004) 
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issue. In addition, the nonhomogeneous Poisson process (NHPP) was introduced. In section 
3, delineates the implementation procedure for fuzzy Bayesian decision process. For the 
sake of information value analysis, we will discuss Bayesian decision process when the 
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illustrate the use of the models developed in the previous sections. Finally, section 6 
discusses the work items and contributions of this study. 
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Based on the above discussion and Equations (4) to (7), we start the discrimination problem 
with fuzzy states space F=(, CV, 0

, CV0
) and exact observation space X = {x} (Dompere, 

1982). Consider a sequence of observations x(n)=( nxxx ,...,, 21 ), therefore the fuzzy prior 
distribution of the fuzzy state Fj for the deteriorating repairable system is given by 
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jF   denotes the membership functions for the four fuzzy 

numbers, respectively, and f(Fj) is the fuzzy integral over the fuzzy hyper space of four 
dimensions. Similar argument can be applied to the fuzzy posterior distribution derived 
from the fuzzy state Fj along with the additional exact data for the deteriorating repairable 
system, and which is given by 
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where ),,,( 21 nxxx   means we observe the additional exact data until the nth failures. 
Furthermore, in the part of observe additional fuzzy data, the fuzzy likelihood function of 
observing the nth failure times is given by  
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Note that K, K’and K’’ in Equations (8), (9) and (11) are normalizing factors. Figure 1 shows 
a fuzzy Bayesian analysis in deteriorating repairable systems with experts’ prior knowledge. 
The same decision elements proposed by Huang (2001) of a Bayesian decision analysis for a 
deteriorating repairable system are as follows: 

(a) Parameter space :{(0,)| 0>0}. 
(b) Action space A:{a1,a2}, where a1 is the status quo, and a2 is the risk reduction action. 
(c) Loss function L: a real function defined on A. If we decide to keep the system 

operating, then the loss we face is L(,a1); if we decide to take the risk reduction 
action, then the loss we face is L(,a2). 

(d) Sample space X: The additional information available to be collected (e.g., 
successive failure times). The cost of collecting this additional data or information 
should also be reflected in the decision process. 

We assume (i) that the status of system after a repair is essentially the same as it was 
immediately before failure occurred (as good as old); and (ii) that the repair times can be 
neglected. The following terminology will be used in the decision analysis process: 

CF: the cost of a failure if it occurs. 
CR: the cost of the proposed risk reduction action. 
CI: the cost of collecting additional information. 
: the reduction in failure rate that would result from the proposed risk reduction 

action (0<<1). 
T: the time horizon under consideration. 
t: the time at which the decision is being made. 
: the expected number of failures during the time period [t, T] under the status quo. 
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a fuzzy Bayesian analysis in deteriorating repairable systems with experts’ prior knowledge. 
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(c) Loss function L: a real function defined on A. If we decide to keep the system 

operating, then the loss we face is L(,a1); if we decide to take the risk reduction 
action, then the loss we face is L(,a2). 

(d) Sample space X: The additional information available to be collected (e.g., 
successive failure times). The cost of collecting this additional data or information 
should also be reflected in the decision process. 

We assume (i) that the status of system after a repair is essentially the same as it was 
immediately before failure occurred (as good as old); and (ii) that the repair times can be 
neglected. The following terminology will be used in the decision analysis process: 

CF: the cost of a failure if it occurs. 
CR: the cost of the proposed risk reduction action. 
CI: the cost of collecting additional information. 
: the reduction in failure rate that would result from the proposed risk reduction 

action (0<<1). 
T: the time horizon under consideration. 
t: the time at which the decision is being made. 
: the expected number of failures during the time period [t, T] under the status quo. 
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Fig. 1. Flowchart for Fuzzy Bayesian Decision Process 

 
Suppose that the repairable system has a planned lifetime (i.e., time horizon) T, and the 
decision of whether to maintain the status quo or perform some risk reduction action must 
be made at time t. The decision variable we are dealing with is then the expected number of 
failures during the time period [t, T]. Since the system failure times are assumed to be drawn 
from a non-homogeneous Poisson process with power law intensity function, the expected 
number of failures in [t, T] under the status quo is given by 

 

(T,t,0,)=   T
t

T
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Suppose that the risk reduction action will reduce the failure intensity by a fraction , where 

1<<0  . Then the expected number of failures in [t, T] if the risk reduction action is 
performed is given by 
 

 T
t ds)1)(s( =(1-)                                                  (13) 

 

On the basis of the assumptions given above, we therefore have a two-action problem with a 
linear loss function, where the loss for taking action a1 (i.e., continuing with the status quo) 
is CF and the loss for taking action a2 (i.e., undertaking the risk reduction action) is 

RF CC +)-1(  . The expected loss for the status quo is simply CFE{}, and the expected loss 
for the risk reduction action is 

RF CC +})E{ρ-1(  . Since the fuzzy prior and posterior density 
functions for  are available by using defuzzified techniques and bivariate transformation 
for Equations (8), (9) and (11), respectively, the prior and posterior mean values of  can be 
evaluated. Therefore, Fuzzy Bayesian decision analyses can be performed by comparing the 
prior and posterior mean values of  with the cutoff value C=CR/(CF). If the relevant 
mean is smaller than C, then we should keep the system operating as in the status quo; if 
not, then we should perform the risk reduction action. 

 
4. Fuzzy Aggregation Operation Methods 
 

Generally, changing one’s beliefs when new information becomes available is a common 
mode of human reasoning. It is observed in the deliberate gathering of pertinent evidence 
during industrial troubleshooting, or medical diagnosis and so on. In another word, if one 
can make independence assumptions, many of the problems disappear, and in fact, this is 
often the method of choice even when it is obviously incorrect. There are different 
methodologies for dealing with this problem, e.g., maximal entropy and Dempster-Shafer 
Theory (Oberkampf et al., 2004). However, it still left some the Challenge Problems to solve, 
these questions were (Ferson et al., 2004; Fetz & Oberguggenberger, 2004): (1) How should 
epistemic uncertainty about a quantity be represented? (2) How can epistemic and aleatory 
uncertainty about a quantity be combined and propagated in calculations? (3) How should 
multiple estimates of uncertain quantities be aggregated before calculation? (4) How should 
the technical issue of repeated uncertain parameters be handled in practical calculations? (5) 
How might various approaches be adapted for use in practical calculations based on 
sampling strategies?  
This section reviews the (1) to (3) of five technical issues addressed by the Challenge 
Problems that are commonly involved in computational problems involving epistemic 
uncertainty. In a sense, this is a problem of too much information because it means the 
analyst must decide how to combine this information before proceeding with the analysis. 
In point of problem, we will examine the fuzzy entropy aggregation operators in two ways: 
through the fuzziness of the prior moments 

00
,,,   CVCV  and through the fuzziness of 

failure data set. A fuzzy number is not a measurement. In other word, a fuzzy number is a 
subjective valuation assigned by one or more human operators. In addition, defuzzification 
methods have been widely studied for several years and were applied to fuzzy arithmetic 
(Kandel, 1986; Kim et al., 1998; Ma et al., 2002). The major idea behind these methods was to 
obtain a typical value from a given fuzzy set according to some specified characters, such as 
central gravity, median, etc. In other words, each defuzzification method provides a 
correspondence from the set of all fuzzy sets into the set of real numbers (Roychowdhury & 
Pedrycz, 2001). Therefore, in order to transfer the subjective valuation into real valuation, 
we have to use the fuzzy concept of entropy measure method (Chang, 2008). It should lend 
itself to probabilistic updating formulas by allowing heuristic estimation of the degree of 
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often the method of choice even when it is obviously incorrect. There are different 
methodologies for dealing with this problem, e.g., maximal entropy and Dempster-Shafer 
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How might various approaches be adapted for use in practical calculations based on 
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uncertainty. In a sense, this is a problem of too much information because it means the 
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central gravity, median, etc. In other words, each defuzzification method provides a 
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we have to use the fuzzy concept of entropy measure method (Chang, 2008). It should lend 
itself to probabilistic updating formulas by allowing heuristic estimation of the degree of 
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independence. After describing these formulae, one example illustrates how fuzzy entropy 
might be applied. 
 
4.1 Uncertainty measure of Entropy  
Entropy is a measure of the amount of uncertainty in the outcome of a random experiment, 
or equivalently, a measure of the information obtained when the outcome is observed. This 
concept has been defined in various ways (Shannon, 1948; Renyi, 1961; Kosko, 1986; Pal & 
Chakraborty, 1986) and generalized in different applied fields, such as communication 
theory, mathematics, statistical thermodynamics, and economics (Belahut, 1987; Cover & 
Thomas, 1992; Ching et al., 1995). Of these various definitions, Shannon contributed the 
broadest and the most fundamental definition of the entropy measure in information theory. 
In Shannon’s entropy, entropy can be considered as a measure of the uncertainty of a 
random variable x . Let x  be a discrete random variable with a finite alphabet set 
containing N symbols given by  110 ,...,, Nxxx . If an output 

jx  occurs with probability )( jxp , 

then the amount of information associated with the known occurrence of output 
jx  is 

defined as 
 

)(log)( 2 jj xpxI                                                          (14) 

 
That is, for a discrete source, the information generated in selecting symbol jx  is 

)(log 2 jxp  bits. On average, the symbol jx  will be selected )( jxpn   times in a total of N 

selections, so the average amount of information obtained from n source outputs is 
 

)(log)()(log)()(log)( 121121020  NN xpxpnxpxpnxpxpn           (15)   
 

Dividing (15) by n, we obtain the average amount of information per source output symbol. 
This is known as the average information, the uncertainty, or the entropy, and is defined: 
The entropy H(X) of a discrete random variable x is defined as (Shannon, 1948) 
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where 
jp  denotes )( jxp . 

Hence, entropy is a function of the distribution of X. Further, this amount of information is 
estimated by the average weighted information provided by the expected probabilities of 
occurrence of the events as follows (Kosko, 1986): 





n

i
ii pp

1

ln                                                              (18) 

where
ip is the probability of occurrence of event i and n is the number of events.  

 

Equation (18) is also called Entropy as its form suggests, one can realize that when 
maximizing entropy, not only the probabilities of the events will affect the quantity of 
information, but also the number of events will cause certain impacts. Since these events will 
provide information, they are the factors concerning the information of the system and thus, 
their probabilities of occurrence are the weights of importance of these factors.  
Several important properties regarding this Entropy model (Kosko, 1990; Kosko, 1997) 
which will be quoted by as below: 
(1) The objective function is a continuous function of

nppp ,,2,1 ... . Therefore, small changes in

nppp ,,2,1 ... will causes small changes in 
nH .This means that information provided by 

factor i will be changed when the probability of occurrence of factor i changes. 
(2) 

nH  is a symmetric function of its arguments. Therefore, the amounts of information will 
not be changed by the different orders of factors. 

(3) )...()0...( ,,2,1,,,2,11 nnnn pppHpppH 
.Thus, the amount of information is not changed if 

an impossible outcome is added to the probability scheme. That is, if a factor i with 
probability of occurrence equal 0, it will not give any contribution to the expected 
information and thus it can be deleted. 

(4) 
nH  will be reach the maximum when nppp n /1...21  , and the maximum 

information by giving the outcomes equal probabilities of occurrence when the 
maximum uncertainty is faced. 

(5)  The maximum value of nH equals ln(n) . The maximum value of nH  increase as n 
increased. So, when we investigate more factors of a system, the expected information 
about the system will increase. 
In what follows, we will propose the fuzzy entropy measure which is an extension of 

Shannon’s definition. 

 
4.2 Fuzzy Entropy  
In general, the membership function of a fuzzy set is determined by the users subjectively, 
which means that the membership function specified for the same concept by different 
persons may vary considerably. The shapes of the membership functions always present the 
knowledge grade of the elements in the fuzzy sets for the users (Zadeh, 1983). In other 
words, every membership function also presents the fuzziness of the corresponding fuzzy 
set in the idea of users. Therefore, it is necessary for us to have some measurements to 
measure the fuzziness of fuzzy sets. According to Szmidt and Kacprzyk (2000), fuzziness, a 
feature of imperfect information, results from the lack of crisp distinction between the 
elements belonging and not belonging to a set (i.e. the boundaries of the set under 
consideration are not sharply defined). A measure of fuzziness often used and cited in the 
literature is entropy first mentioned in 1965 by Zadeh (1965). The name entropy was chosen 
due to an intrinsic similarity of equations to the ones in the Shannon entropy. However, the 
two functions measure fundamentally different types of uncertainty. Basically, the Shannon 
entropy measures the average uncertainty in bits associated with the prediction of outcomes 
in a random experiment. Until now, there are several typical methods to be used to measure 
the fuzziness of fuzzy sets. In 1972, De Luca and Termini (1972) introduced some 
requirements which capture human intuitive comprehension of the degree of fuzziness. 
Kaufmann (1975) proposed that the fuzziness of a fuzzy set can be measured through the 
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independence. After describing these formulae, one example illustrates how fuzzy entropy 
might be applied. 
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Thomas, 1992; Ching et al., 1995). Of these various definitions, Shannon contributed the 
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In Shannon’s entropy, entropy can be considered as a measure of the uncertainty of a 
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Hence, entropy is a function of the distribution of X. Further, this amount of information is 
estimated by the average weighted information provided by the expected probabilities of 
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provide information, they are the factors concerning the information of the system and thus, 
their probabilities of occurrence are the weights of importance of these factors.  
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which will be quoted by as below: 
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In general, the membership function of a fuzzy set is determined by the users subjectively, 
which means that the membership function specified for the same concept by different 
persons may vary considerably. The shapes of the membership functions always present the 
knowledge grade of the elements in the fuzzy sets for the users (Zadeh, 1983). In other 
words, every membership function also presents the fuzziness of the corresponding fuzzy 
set in the idea of users. Therefore, it is necessary for us to have some measurements to 
measure the fuzziness of fuzzy sets. According to Szmidt and Kacprzyk (2000), fuzziness, a 
feature of imperfect information, results from the lack of crisp distinction between the 
elements belonging and not belonging to a set (i.e. the boundaries of the set under 
consideration are not sharply defined). A measure of fuzziness often used and cited in the 
literature is entropy first mentioned in 1965 by Zadeh (1965). The name entropy was chosen 
due to an intrinsic similarity of equations to the ones in the Shannon entropy. However, the 
two functions measure fundamentally different types of uncertainty. Basically, the Shannon 
entropy measures the average uncertainty in bits associated with the prediction of outcomes 
in a random experiment. Until now, there are several typical methods to be used to measure 
the fuzziness of fuzzy sets. In 1972, De Luca and Termini (1972) introduced some 
requirements which capture human intuitive comprehension of the degree of fuzziness. 
Kaufmann (1975) proposed that the fuzziness of a fuzzy set can be measured through the 
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distance between the fuzzy set and its nearest non-fuzzy set. Another way given by Yager 
(1979) suggested the measure of fuzziness can be expressed by the distances between the 
fuzzy set and its complement. De Luca and Termini (1972) utilized the conception of the 
entropy to indicate the fuzziness of a fuzzy set. Kosko (1997) investigated the fuzzy entropy 
in relation to a measure of subsethood.  
In order to elicit expert’s knowledge, and advances in numerical methods and computation 
have made it possible to implement fuzzy Bayesian analysis in ways previously research 
(Chang & Cheng, 2007). The fuzzy mutual entropy and explores the information theoretic 
structure of fuzzy cubes was be applied (we will explore it more in detail at following 
context). The fuzzy mutual entropy of a fuzzy set F acts as a type of distance measure 
between F and its set complement cF . The logistic map equates the sum of a real vector’s n 
components with the mutual entropy of some fuzzy set F and its complement cF . This cube 
geometry motivates the ratio measure of fuzziness baFE /)(  (Kosko, 1986), where a is 
the distance ),(1

nearFF from F to the nearest vertex nearF and b is the distance ),(1
farFF  

from F to the farthest vertex farF . The fuzzy entropy theorem reduces this ratio of distances 

to a ratio of counts in Equation (19) and Figure 2 shows the fuzzy entropy theorem in the 
unit square. 

)(
)()( c
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Fig. 2.  Geometry of fuzzy entropy theorem (Data Source: Kosko, 1986) 
 
Fuzzy cubes map smooth onto extended real spaces of the same dimension and vice versa. 
The n2 infinite limits of extended real space n],[   map to the n2  binary corners of the 

fuzzy cube nI . The real origin 0 maps to the cube midpoint. Each real point x will mapping 
to a unique fuzzy set F as Figure 3 shows. 

 

 
Fig. 3.  Diffeomap from extended real space to fuzzy space (Data Source: Kosko, 1986) 

 
Fuzzy mutual entropy equals the negative of the divergence of Shannon entropy. 
Uncertainty descriptions define points in the fuzzy cube parameter space. Versions of both 
extended Shannon entropy and fuzzy mutual entropy define vector fields on the fuzzy cube. 
As to the methods of defuzzification, there have been widely studied for decades and 
effectively utilized to the applications of fuzzy arithmetic (Kandel, 1986; Kim et al., 1998; Ma 
et al., 2002). The foremost idea behind these methods was to obtain a typical value from a 
given fuzzy set according to some specified characters, such as central gravity, mean, or 
median, etc. In other words, each defuzzification method provides a correspondence from 
the set of all fuzzy sets into the set of real numbers (Roychowdhury & Pedrycz, 2001). 
Therefore, in order to transfer the subjective valuation into real valuation, we have planning 
to apply the intuitionistic fuzzy sets and discuss the extension of Luca–Termini Axioms for 
the measurement of entropy-based defuzzification method. The following will be explored 
both contents more in detail:   
First, a geometric interpretation of intuitionistic fuzzy sets and fuzzy sets is presented in 
Figure 4 which summarizes considerations presented in (Szmidt & Kacprzyk, 2000). 
Basically, an intuitionistic fuzzy set X is mapped into the triangle ABD in that each element 
of X corresponds to an element of ABD, as an example, a point 'x  ABD corresponding to 
'x X is marked. In Figure 4, this condition is fulfilled only on the segment AB. Segment 

AB may be therefore viewed to represent a fuzzy set. The orthogonal projection of the 
triangle ABD gives the representation of an intuitionistic fuzzy set on the plane. (The 
orthogonal projection transfers 'x ABD into ''x ABC.) The interior of the triangle ABC 
=ABD’ is the area where  >0. Segment AB represents a fuzzy set described by two 
parameters:   and v . The orthogonal projection of the segment AB on the axis   (the 
segment [0; 1] is only considered) gives the fuzzy set represented by one parameter   only. 

(The orthogonal projection transfers ''x ABC into '''x CA.) As it was shown in Szmidt and 
Kacprzyk (2000), distances between intuitionistic fuzzy sets should be calculated taking into 
account three parameters describing an intuitionistic fuzzy set. 
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Fig. 5.  Two cases of pattern distribution with corresponding membership functions (The 
symbol of ★ and ○ stand for the degree of membership functions; 

1C ,
2C ,

3C  denote the 
center of three triangular fuzzy sets, respectively) 

 
As mentioned above, the match degree

jD  in fuzzy entropy is based on mapped 

membership values of elements. Assume we begin by assigning three triangular 
membership functions with overlapped regions in the pattern space of [0, 1], as shown in 
Figure 5. The value of a membership function can be viewed as the degree to which a 
pattern belongs to a specified pattern space. The fuzzy entropy of the interval [ 21,ii ] for the 
degree of membership functions as show follows: 
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Further, we can obtain the whole fuzzy entropy via summation of all corresponding fuzzy 
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From the above illustration, the entropy-based defuzzification method will be able to 
discriminate the actual distribution of patterns better. By employing membership functions 
for measure match degrees, the value of entropy not only considers the number of patterns 
but also takes the actual distribution of patterns into account. 
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5. Application 
 

In this section we will show the discrimination problems with both cases of fuzzy states and 
exact information and exact states and fuzzy information, which are studied from the 
viewpoint of fuzzy arithmetic measures. 

 
5.1 Fuzzy States and Exact Information 
Suppose that the states spaces of the four fuzzy moments and the linguistic importance 
weight of each value assigned by experts are assessed and shown in Table 1.  

 
The Prior Moments of  Interval Observations Linguistic Weight 

0
 =  7.0,4.0

0
 L[0.1,0.3,0.5] 

0
CV =  9.0,3.0

0
cv M[0.3,0.5,0.7] 

 =  8.0,6.0


 M[0.3,0.5,0.7] 

CV =  6.0,4.0


 cv H[0.5,0.7,0.9] 
Table 1. The fuzzy prior moments provided by experts 
 
Furthermore, by applying the fuzzy entropy method, the fuzzy number can be defuzzified 
into the crisp value. For example the defuzzified value of  9.0,3.0

0
cv

 is attainable as shown 

in Figure 6.  
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(3). From the corresponding membership function
~

M ,  
The total membership degree of “○” is 75.00075.0   
Total membership degree of “◎” is 85.050.035.0    
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~
LFE

jC
 for the patterns of the interval [0.3, 0.9] in the feature 

dimension 
0
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~
LFE )(

~

1
LFEC
+ )(

~

2
LFEC
+ 994.05173.04767.00)(

~

3
LFEC  

(3). From the corresponding membership function
~

M ,  
The total membership degree of “○” is 75.00075.0   
Total membership degree of “◎” is 85.050.035.0    
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Total membership degree of “☉” is 95.004.055.0   
The match degree of “○” is 294.0

95.085.075.0
75.0

1 


D  

The match degree of “◎” is 333.0
95.085.075.0

85.0
2 


D  

The match degree of “☉” is 373.0
95.085.075.0

5.0
3 


D  

The fuzzy entropy of )(
~

MFE
jC
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~

1
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5283.0)333.0(log333.0)( 2

~

2
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5307.0)373.0(log373.0)( 2

~

3
MFEC

 
Hence, the fuzzy entropy of )(

~
MFE

jC
 for the patterns of the interval [0.3, 0.9] in the feature 

dimension 
0

cv
 is         

)(
~

MFE )(
~

1
MFEC + )(

~

2
MFEC + 5782.15307.05283.05192.0)(

~

3
MFEC  

(4). From the corresponding membership function
~
H ,  

The total membership degree of “○” is 85.02.05.015.0   
Total membership degree of “◎” is 40.040.00.0   
Total membership degree of “☉” is 4.16.08.00.0   
The match degree of “○” is 32.0

4.140.085.0
85.0

1 


D  

The match degree of “◎” is 15.0
4.140.085.0

40.0
2 


D  

The match degree of “☉” is 53.0
4.140.085.0

14.0
3 


D  

The fuzzy entropy of )(
~
HFE

jC
 

5260.0)32.0(log32.0)( 2

~

1
HFEC

 

4105.0)15.0(log15.0)( 2

~

2
HFEC

 

4854.0)53.0(log53.0)( 2

~

3
HFEC

 
Hence, the fuzzy entropy of )(

~
HFE

jC
 for the patterns of the interval [0.3, 0.9] in the feature 

dimension 
0

cv  is       

)(
~
HFE )(

~

1
HFEC

+ )(
~

2
HFEC

+ 4219.14854.04105.05260.0)(
~

3
HFEC

 
(5). From the corresponding membership function

~
VH ,  

 

The total membership degree of “○” is 3.18.05.00.0   
Total membership degree of “◎” is 0.00.00.0   
Total membership degree of “☉” is 45.045.00.00.0   
The match degree of “○” is 74.0

45.00.03.1
3.1

1 


D  

The match degree of “◎” is 0.0
45.00.03.1

0.0
2 


D  

The match degree of “☉” is 26.0
45.00.03.1

45.0
3 


D  

The fuzzy entropy of )(
~

VHFE
jC

 

3214.0)74.0(log74.0)( 2

~

1
VHFEC

 

0.0)0.0(log0.0)( 2

~

2
VHFEC

 

5053.0)26.0(log26.0)( 2

~

3
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Hence, the fuzzy entropy of )(

~
VHFE

jC
 for the patterns of the interval [0.3, 0.9] in the feature 

dimension 
0

cv  is     

  )(
~

VHFE )(
~

1
VHFEC

+ )(
~

2
VHFEC

+ 8267.05053.00.03214.0)(
~

3
VHFEC

 
Finally, we can obtain the whole fuzzy entropy via summation of all corresponding fuzzy 
entropies as follows: 

FE )(
~

VLFE + )(
~
LFE + )(

~
MFE + )()(

~~
VHFEHFE 

8208.4
8267.04219.15782.1994.00.0


  

Finally, Equations (8) and (9) can be used to study the prior and posterior decision for the 
decision maker when dealing with the decision problem for deteriorating repairable 
systems. 

 
5.2 Fuzzy States and Fuzzy Information 
When the states and the addition information are both fuzzy, besides the work for the fuzzy 
prior as described in the previous case, we have to also deal with the problem of 
defuzzifying the failure data as shown in Table 2.  

Failure Data Fuzzy interval ( Hour / 24) Linguistic Weight 
1989.07.06 ( 1ADD ) [0.33,0.50] L[0.1,0.3,0.5] 
1989.10.23 ( 2ADD ) [0.42,0.58] M[0.3,0.5,0.7] 
1990.01.12 ( 3ADD ) [0.58,0.66] M[0.3,0.5,0.7] 
1990.09.08 ( 4ADD ) [0.42,0.50] H[0.5,0.7,0.9] 
1990.11.14 ( 5ADD )  [0.54,0.63] H[0.5,0.7,0.9] 

Table 2. The fuzziness of the added failure data 
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Total membership degree of “☉” is 45.045.00.00.0   
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Finally, we can obtain the whole fuzzy entropy via summation of all corresponding fuzzy 
entropies as follows: 
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Finally, Equations (8) and (9) can be used to study the prior and posterior decision for the 
decision maker when dealing with the decision problem for deteriorating repairable 
systems. 

 
5.2 Fuzzy States and Fuzzy Information 
When the states and the addition information are both fuzzy, besides the work for the fuzzy 
prior as described in the previous case, we have to also deal with the problem of 
defuzzifying the failure data as shown in Table 2.  

Failure Data Fuzzy interval ( Hour / 24) Linguistic Weight 
1989.07.06 ( 1ADD ) [0.33,0.50] L[0.1,0.3,0.5] 
1989.10.23 ( 2ADD ) [0.42,0.58] M[0.3,0.5,0.7] 
1990.01.12 ( 3ADD ) [0.58,0.66] M[0.3,0.5,0.7] 
1990.09.08 ( 4ADD ) [0.42,0.50] H[0.5,0.7,0.9] 
1990.11.14 ( 5ADD )  [0.54,0.63] H[0.5,0.7,0.9] 

Table 2. The fuzziness of the added failure data 
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The fuzzy numbers of failure data can also be defuzzified into crisp values and form the 
likelihood function. Equations (8) and (11) can be used to study the prior and posterior 
decision for the decision maker when dealing with the decision problem for deteriorating 
repairable systems. The decision problems for both the previous two cases can be assessed; 
however, the computing problem in Huang (2001) for the posterior mean of the decision 
variable is also encountered. If the expected number of failures from the decision time until 
the system is discarded is used as the decision variable, the numerical integration is still 
needed for evaluating the values and therefore making the decision. 

 
6. Conclusion 
 

In this chapter, we have presented a method to solve the decision problem of deteriorating 
repairable systems and we also present an approach to illustrate the fuzzy entropy-based 
arithmetic approach for modeling experts’ epistemic uncertainty in deteriorating repairable 
systems. The decision process is useful in selecting the best alternative when the 
deteriorating repairable system associated with alternatives are known in terms of linguistic 
variables (Zadeh, 1975), in particular, when these linguistic variables can be modeled by 
fuzzy numbers. In real world situations, the deteriorating phenomena are usually expressed 
as some degrees of severity. In such case, the proposed decision process can provide more 
realistic solutions. In this chapter, we have assumed that the importance weights of different 
criteria are assessed in linguistic terms represented by triangular fuzzy numbers. However, 
there are still several limitations and further study may undergo by considering other kinds 
of fuzzy membership function, since it still leaves lots of space for extension. 
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The fuzzy numbers of failure data can also be defuzzified into crisp values and form the 
likelihood function. Equations (8) and (11) can be used to study the prior and posterior 
decision for the decision maker when dealing with the decision problem for deteriorating 
repairable systems. The decision problems for both the previous two cases can be assessed; 
however, the computing problem in Huang (2001) for the posterior mean of the decision 
variable is also encountered. If the expected number of failures from the decision time until 
the system is discarded is used as the decision variable, the numerical integration is still 
needed for evaluating the values and therefore making the decision. 

 
6. Conclusion 
 

In this chapter, we have presented a method to solve the decision problem of deteriorating 
repairable systems and we also present an approach to illustrate the fuzzy entropy-based 
arithmetic approach for modeling experts’ epistemic uncertainty in deteriorating repairable 
systems. The decision process is useful in selecting the best alternative when the 
deteriorating repairable system associated with alternatives are known in terms of linguistic 
variables (Zadeh, 1975), in particular, when these linguistic variables can be modeled by 
fuzzy numbers. In real world situations, the deteriorating phenomena are usually expressed 
as some degrees of severity. In such case, the proposed decision process can provide more 
realistic solutions. In this chapter, we have assumed that the importance weights of different 
criteria are assessed in linguistic terms represented by triangular fuzzy numbers. However, 
there are still several limitations and further study may undergo by considering other kinds 
of fuzzy membership function, since it still leaves lots of space for extension. 
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