
Selection of our books indexed in the Book Citation Index 

in Web of Science™ Core Collection (BKCI)

Interested in publishing with us? 
Contact book.department@intechopen.com

Numbers displayed above are based on latest data collected. 

For more information visit www.intechopen.com

Open access books available

Countries delivered to Contributors from top 500 universities

International  authors and editors

Our authors are among the

most cited scientists

Downloads

We are IntechOpen,
the world’s leading publisher of

Open Access books
Built by scientists, for scientists

12.2%

186,000 200M

TOP 1%154

6,900



Robust Shaping Indirect Field Oriented Control for Induction Motor 59

Robust Shaping Indirect Field Oriented Control for Induction Motor

M. Boukhnifer, C. Larouci and A. Chaibet

X 
 

Robust Shaping Indirect Field Oriented  
Control for Induction Motor   

 
M. Boukhnifer, C. Larouci and A. Chaibet 

Laboratoire Commande et Systèmes, 
ESTACA, 34-36 rue Victor Hugo,  

92 300 Levallois-Perret, France 
{mboukhnifer, clarouci, achaibet}@estaca.fr 

 
1. Introduction   
 

Over the past years, thanks to the systematic use of digital microprocessors in industry, we 
have seen a very significant development in the regulation controls of the asynchronous 
machine. The latter is widely used in industry for its diversity of use and its ability to 
withstand great variations in its nominal regime. 
Currently, several types of control are proposed. Nonlinear controls such as linearization 
input-output (Benchaib & Edwards, 2000) (Chan et al., 1990) (De Luca & Ulivi, 1989) 
(Marina & Valigi, 1991), the controls resulting from the theory of passivity (Nicklasson et al., 
1997) (Gokdere, 1996) which generally require the measurement of all system states 
(currents and flux). As the flux of the motor cannot be measured, a great part of the 
literature is devoted to the control problem coupled with a nonlinear flux observer 
(Kanellakopoulos et al., 1992). Other controls using only the exit returns (rotor speed and 
stator currents) were developed resulting in controls of the passive type (Abdel Fattah &  
Loparo, 2003), other controls using the technique of backstepping or the techniques derived 
from the orientation of the flux field (Peresada et al., 1999) (Barambones et al., 2003). 
The parameters of such controls must be selected in order to ensure total stability for a given 
nominal running and nominal values of the parameters. Thus, different robust controls with 
parameter uncertainties, such as the discontinuous or adaptive controls, were developed 
(Marina et al., 1998). These techniques adapt the controls to the variations of resistances and 
the load couple. A control which is very common in industry is the indirect field oriented 
control (FOC) based on the orientation of the field of rotor flux. This control allows the 
decoupling of speed and flux, and we obtain linear differential equations similar to the D.C. 
machine. The regulation is carried out finally by simple controller PI (cf Fig. 1). 
However, the decoupling observed is only asymptotic. The behaviour of the transient 
regime and the total stability of the system remain a major problem. In addition, the 
modifications of parameters such as rotor resistance or resistive torque deteriorate the 
quality of decoupling. 
In this paper, we propose a diagram of H  regulation, linked to the field oriented control 
allowing a correct transient regime and good robustness against parameter variation to be 
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ensured. This Paper is divided into several parts: The first one describes the model of the 
asynchronous machine, using the assumptions of Park. In the second part, we present the 
field oriented control principles, as well as regulation simulations, using PI.  The third part 
is devoted to the problems of the H control and the loop shaping design procedure 
approach originally proposed in (McFarlane et al., 1988) and further developed in 
(McFarlane & Glover, 1988) and (McFarlane & Glover, 1989) which incorporates the 
characteristics of both loop shaping and H design.  Specifically, we make use of the so-
called normalized coprime factor H robust stabilization problem which has been solved in 
(Glover & McFarlane, 1988) (Glover & McFarlane, 1989) and is equivalent to the gap metric 
robustness optimization as in (McFarlane & Glover, 1992). The design technique has two 
main stages: 1) loop shaping is used to shape the nominal plant singular values to give 
desired open-loop properties at frequencies of high and low loop gain; 2) the normalized 
coprime factor H problem mentioned above is used to robustly stabilize this shaped plant. 
Finally, the last part shows how to integrate the loop shaping design procedure into the field 
oriented control with the Luenberger observer and proposes simulations results. 

 
2. Mathematical model of asynchronous machine  
 

We use some simplifying assumptions and Park transformation. The stator currents ),( qsds II , 
the rotor flux )( , qrdr  and the rotation speed mw  are considered as state variables. The model 
of the asynchronous machine in the reference axes d, q related to the rotating field is given 
in the form:   

BUxfX  )(
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Where J  is the moment of inertia. sr LL , and mL  are respectively  rotor inductance,  stator 
inductance and  mutual inductance. rR and sR  are respectively the resistance of the rotor 
and of the stator , P  is the number of pole pairs of the machine, fk  is the friction coefficient 
and   is Blondel’s dispersion coefficient .  

 
3. Indirect field oriented control    
 

The aims of this method of frequency control (Slipway Frequency Control) consist in not 
using the flux rotor amplitude but simply its position calculated according to the reference 
variables (Peresada et al., 1999) (Blaschke, 1972). This method does not use a flux sensor 
(physical sensor or dynamic model) but needs the rotor speed sensor. 
Fig.1 shows an example of an applied indirect field control  with a type PI regulation on the 
asynchronous machine fed by an inverter controlled by the triangulo-sinusoidal strategy 
with four bipolar carriers.  

 
3.1 Field oriented control  
The FOC (Field Oriented Control) is an arithmetic block which has two inputs ( *

r  and *
emC ) 

and generates the five variables of the inverter ),,,( *
,

****
qsdssqsds IIwVV . It is defined by leading the 

static regime for which the rotor flux and the electromagnetic couple are maintained 
constant equal to their reference values. If we do not take into account the variations of the 
direct currents and the squaring component, the equations of this block are deduced in the 
following way: 
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This method consists to control the direct component I ds and the squaring I qs stator current in 
order to obtain the electromagnetic couple and the flux desired in the machine. 
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This method consists to control the direct component I ds and the squaring I qs stator current in 
order to obtain the electromagnetic couple and the flux desired in the machine. 
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Fig. 1. Indirect field control of asynchronous machine 

 
3.2 Simulation of field oriented control 
The best-known inverters up to now are the two level inverters. However, some 
applications such as electric traction require three-phase asynchronous variators functioning 
at very high power and/or speeds. These two level inverters are limited in tension (1,4kV) 
and power (1MVA). To increase power and tension, we use a multilevel inverter. In our 
work, the multilevel inverter used is controlled by the triangulo-sinusoidal strategy with 
four bipolar carriers (Boukhnifer, 2007). 
Fig.2 shows the results of the indirect field control of an asynchronous machine fed by this 
inverter. The decoupling is maintained and the speed follows the reference very well and is 
not affected by the application of a resistive torque. In the next section, we will explain 
briefly the principles of the H control and how it can be integrated into the indirect field 
control. 

 
4. Robust control  
 

4.1 H∞ Control  
For given P(s) and  >0, the H standard problem is to find K(s) which: 
- Stabilize the loop system in Fig. 3 internally. 
- Maintain the norm 


),( KPFL  

with FL(P, K) defined as the transfer function of exits Z according to  entries W. 

 
4.2 H Coprime factorization approach 
An approach was developed by McFarlane and Glover (McFarlane & Glover, 1988) 
(McFarlane & Glover, 1989) starting from the concept of the coprime factorization of a 
transfer matrix. This approach presents an interesting properties and its implementation 
uses traditional notions of automatics. 
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Fig. 2.  Simulation of the indirect field control of asynchronous machine 
 
4.3 Robust controller design using normalized coprime factor 
We define the nominal model of the system to be controlled from the coprime factors on the 
left: NMG ~~ 1   . Then the uncertainties of the model are taken into consideration so that (see 
Fig. 4) 
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where G~  is a left coprime factorization (LCF) of G, and  NM  ,  are unknown and stable 
transfer functions representing the uncertainty.  We can then define a family of models as 
follows: 
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Where max  represents the margin of maximum stability. The robust stability problem is 
thus to find the greatest value of max  , so that all the models belonging to  can be 
stabilized by the same corrector K.  The problem of robust stability H amounts to finding 

min  and K(s) stabilizing G(s) so that: 
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However, McFarlane and Glover (McFarlane & Glover, 1992) showed that the minimal 
value of  is given by: 
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stabilizing all the models belonging to  is given by: 
where A, B and C are state matrices of the system defined by the function G and X, Y are the 
positive definite matrices and the solution of the Ricatti equation : 
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4.4 Loop-shaping design procedure 
Contrary to the approach of Glover-Doyle, no weight function can be introduced into the 
problem. The adjustment of the performances is obtained by affecting an open modelling 
(loop-shaping) process before calculating the corrector. The design procedure is as follows: 

 
Fig. 5. The loop-shaping design procedure  
 
We add to the matrix G(s) of the system to be controlled a pre-compensator W1 and/or a 
post-compensator W2, the singular values of the nominal plant are shaped to give a desired 
open-loop shape. The nominal plant G(s) and shaping functions W1 and W2 are combined in 
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the Bode plan. 
From coprime factorizations of )(sGa , we apply the previous results to calculate max , and 
then synthesise a stabilizing controller K ensuring a value of slightly lower than max : 
 

 


 1)()( 12
1

12 










 WGWIWGWKI
K
I                      (10) 

 
The final feedback controller is obtained by combining the H controller K with the shaping 
functions W1 and W2 so that Ga(s) = W1GW2. (See Fig.5). 
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the electromagnetic couple can be written in the form: 
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By using the transform of Laplace, we can write that: 
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The equation (13) shows that we can act independently on rotor flux and the 
electromagnetic couple by means of components dsI  and qsI  respectively of the stator 
current. The goal consists in controlling the direct component dsI  and in squaring 
component qsI  of the stator current in order to obtain the electromagnetic couple and the 
flux desired in the machine. We can represent our system by combining equations (3) and 
(13) in two sub-systems with the transfer functions described below, See (Boukhnifer, 2007) 
for details: 
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where G~  is a left coprime factorization (LCF) of G, and  NM  ,  are unknown and stable 
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The final feedback controller is obtained by combining the H controller K with the shaping 
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The equation (13) shows that we can act independently on rotor flux and the 
electromagnetic couple by means of components dsI  and qsI  respectively of the stator 
current. The goal consists in controlling the direct component dsI  and in squaring 
component qsI  of the stator current in order to obtain the electromagnetic couple and the 
flux desired in the machine. We can represent our system by combining equations (3) and 
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for details: 
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In order to ensure a high gain in low frequencies and a low gain  in high frequencies, we 
add the weight functions for flux and speed respectively so that . 
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5.1 Loop shaping controller  
The calculation of the flux controller by MATLAB® software gives: 
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Fig. 6. Robust control of asynchronous motor 

 
5.2 Simulation of the robust control    
To illustrate the performances of the H∞ control, we simulated a no-load start with 
application of the load (nominal load Cr=10Nm) at t1 = 1.5Sec to t2 = 2.5Sec. Then the 
machine is subjected to an inversion of the instruction between 100 rad/sec at t3=3Sec 
(Fig.7). 
The speed regulation presents better performances with respect to the pursuit and the 
rejection of the disturbances. We note that the current is limited to acceptable maximum 
values. The decoupling is maintained and the speed follows the reference well and is not 
affected by the application of a resistive torque. 

 
6. Luenberger observer  
 

We apply the Luenberger observer method for the estimation of the rotor flux components 
(Orlawska-Kowalska, 1989). The model of the reference machine linked to the stator field is 

linear in the electromagnetic states. The two stator current components are measurable. We 
will consider them as outputs of the model: 
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Fig. 7.  Simulation results of robust control of asynchronous motor 
For the observation of the states rx 3   and rx 4  we use the following Luenberger 
observer:  
 

          HukyzFz  ˆˆ                                                  (21) 
 
The dimensions of the vectors and matrices which appeared in this relation are: 
 

     ).2,2(),2,2(),2,2(),1,3( HkFz                                      (22) 
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Fig. 7.  Simulation results of robust control of asynchronous motor 
For the observation of the states rx 3   and rx 4  we use the following Luenberger 
observer:  
 

          HukyzFz  ˆˆ                                                  (21) 
 
The dimensions of the vectors and matrices which appeared in this relation are: 
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Vector Z is related to the initial state vector x by the transformation matrix T: 
 

          Z=Tx                                                              (23) 
 
To determine the relations between the matrices of system A,B and C and the matrices of the 
observer F, K and H, the equation of error is calculated :)ˆ( Txze   
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To give the equation of error the form: 
 

    Fee                                                              (25) 
 
We must check the relation: 
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The error dynamics (25) is described by the eigenvalue of the state matrix of observer F. We 
impose to this matrix the following form: 
 

   ),( 21 diagF                                            (27) 
 
In order to stabilize the error dynamics, λ 1 and  λ2 must be negative. With this choice of F, 
the explicit equations of the observer are given by: 
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We impose to the transformation matrix T the following form: 
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The elements of the T, K matrix and H are obtained from the equations (25): 
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From equation (23), we obtain the original states 4.3 xx  in the form: 
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thus rotor flux : 
 

      22
rrr                                                          (32) 

 
6.1 Simulations results   
The results of simulations show that the Luenberger observer gives an error tends to zero 
and the flux observed follows very well the real flux of the machine and has a better 
robustness as regards parametric variations (variations of rotor resistance). The results of 
simulations of robust control are present in (Fig. 9) and we note clearly that decoupling is 
maintained and the speed follows the reference well and is not affected by the application of 
a resistive torque. 

 
7. Conclusion 
 

In this paper, we have studied the robustness of H  control applied to an induction motor 
and by using the Luenberger observer for the observation of rotor flux. The obtained results 
showed the robustness of the variables flux and speed against external disturbances and 
uncertainties of modelling. This method enabled us to ensure a good robustness/stability 
compromise as well as satisfactory performances. 
The use of the Luenberger observer enables us to avoid the use of the direct methods of 
measurements weakening the mechanical engineering of the system. 
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robustness as regards parametric variations (variations of rotor resistance). The results of 
simulations of robust control are present in (Fig. 9) and we note clearly that decoupling is 
maintained and the speed follows the reference well and is not affected by the application of 
a resistive torque. 

 
7. Conclusion 
 

In this paper, we have studied the robustness of H  control applied to an induction motor 
and by using the Luenberger observer for the observation of rotor flux. The obtained results 
showed the robustness of the variables flux and speed against external disturbances and 
uncertainties of modelling. This method enabled us to ensure a good robustness/stability 
compromise as well as satisfactory performances. 
The use of the Luenberger observer enables us to avoid the use of the direct methods of 
measurements weakening the mechanical engineering of the system. 
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(a) (b) 

Fig. 8. Luenberger observer (a) with no variation of Rr and (b) with increase of Rr 100% 
 

 
Fig. 9. Robust control with Luenberger observer 

 
8. References 
 

Benchaib, A. & Edwards, C. (2000). Nonlinear sliding mode control of an induction motor. 
International Journal of Adaptive Control and Signal Processing, Vol.14, No.2-3., (Mar 
2000) page numbers (201-221) 

Chan, C. C., Leung, W. S. & Ng, C.W. (1990). Adaptive decoupling control of induction 
motor drives. IEEE Transactions on Industry Electronics, Vol.37, No.01, (Feb. 1990) 
page numbers( 41–47) 

De Luca, A.  & Ulivi, G. (1989). Design of an exact nonlinear controller for induction motors. 
IEEE Transactions on Automatic Control, Vol. 34, No.12, (Dec 1989) page numbers  
(1304 – 1307) 

Marina, R. & Valigi, P. (1991). Nonlinear control of induction motors: a simulation study. 
European Control Conference, pp. 1057-1062, Grenoble, 2-5 July, France 

Nicklasson, P.J. Ortega, R. & Espinosa-Perez, G. (1997). Passivity based control of a class of 
Blondel-Park transformable electric machines. IEEE Transactions on Automatic 
Control, Vol.42, No.5, (May 1997) page numbers (629-647) 

Gokdere, L.U. (1996). Passivity based methods for control of induction motors. Ph.D. Thesis, 
University of Pittsburgh, 1996 

Kanellakopoulos, I. Krein, P.T. & Disilvestro, F. (1992). Nonlinear flux observer based 
control of induction motors, American Control Conference, pp.1700–1704, Chicago, 
(June 1992). USA 

Abdel Fattah, H. A. &  Loparo, K. A. (2003). Passivity based torque and flux tracking for 
induction motors with magnetic saturation. Auotmatica, Vol.39, No.12, (December 
2003), page numbers (2123-2130)  

Peresada, S. Tonielli, A. & Morici, R. (1999).High-performance indirect field-oriented 
output-feedback control of induction motors, Automatica , Vol.35, No.6, (June 1999) 
page numbers (1033-1048) 

Barambones, O.  Garrido, A.J. & Maseda, F.J. (2003). A sensorless robust vector control of 
induction motor drives. IEEE International Conference on Emerging Technologies  and 
Factory Automation, Lisbon, (September 2003). Portugal 

Marina, R Peresada, S & Tomei, P. (1998).Adaptive output feedback control of current-fed 
induction motors with uncertain rotor resistance, Automatica, Vol. 34, No. 5, (Oct 
1998) page numbers (617-624), ISSN 0005-1098  

McFarlane, D. Glover, K. & Noton, M. (1988). Robust stabilization of a flexible space 
platform: an H∞ coprime factor approach, International Conference on Control, pp 
(677-682), ISBN  0-85296-360-2, Oxford, UK, April 1988.  

McFarlane, D. & Glover, K. (1988). An H design procedure using robust stabilization of 
normalized coprime factors, IEEE Conference on Decision and Control, pp (1343-1348), 
INSPEC 3371748, Austin, TX, USA, December 1988. 

McFarlane,  D & Glover, K. (1989). Robust controller design using normalised coprime factor 
plant descriptions, lecture Notes in Control and information Sciences, Springer Verlag, 
(138), Berlin, Germany  

Glover, K. & McFarlane, D. (1988). Robust stabilization of normalized coprime factors: An 
explicit H∞ solution, IEEE International American Control Conference, pp(842 – 847), 
Atlanta, Ga, USA, June 1988.   

Glover, K. & McFarlane, D. (1989). Robust stabilization of normalized coprime factor plant 
descriptions with H bounded uncertainly, IEEE Transactions on Automatic Control, 
Vol. 34, No.08, (Aug.1989) page numbers (821-830) 

McFarlane, D. & Glover, K. (1992). A loop shaping design procedure using H∞ synthesis, 
IEEE Transactions on Automatic Control, Vol. 37, No.06, (June 1992) page numbers 
(759-769) 

www.intechopen.com



Robust Shaping Indirect Field Oriented Control for Induction Motor 71

 
(a) (b) 

Fig. 8. Luenberger observer (a) with no variation of Rr and (b) with increase of Rr 100% 
 

 
Fig. 9. Robust control with Luenberger observer 

 
8. References 
 

Benchaib, A. & Edwards, C. (2000). Nonlinear sliding mode control of an induction motor. 
International Journal of Adaptive Control and Signal Processing, Vol.14, No.2-3., (Mar 
2000) page numbers (201-221) 

Chan, C. C., Leung, W. S. & Ng, C.W. (1990). Adaptive decoupling control of induction 
motor drives. IEEE Transactions on Industry Electronics, Vol.37, No.01, (Feb. 1990) 
page numbers( 41–47) 

De Luca, A.  & Ulivi, G. (1989). Design of an exact nonlinear controller for induction motors. 
IEEE Transactions on Automatic Control, Vol. 34, No.12, (Dec 1989) page numbers  
(1304 – 1307) 

Marina, R. & Valigi, P. (1991). Nonlinear control of induction motors: a simulation study. 
European Control Conference, pp. 1057-1062, Grenoble, 2-5 July, France 

Nicklasson, P.J. Ortega, R. & Espinosa-Perez, G. (1997). Passivity based control of a class of 
Blondel-Park transformable electric machines. IEEE Transactions on Automatic 
Control, Vol.42, No.5, (May 1997) page numbers (629-647) 

Gokdere, L.U. (1996). Passivity based methods for control of induction motors. Ph.D. Thesis, 
University of Pittsburgh, 1996 

Kanellakopoulos, I. Krein, P.T. & Disilvestro, F. (1992). Nonlinear flux observer based 
control of induction motors, American Control Conference, pp.1700–1704, Chicago, 
(June 1992). USA 

Abdel Fattah, H. A. &  Loparo, K. A. (2003). Passivity based torque and flux tracking for 
induction motors with magnetic saturation. Auotmatica, Vol.39, No.12, (December 
2003), page numbers (2123-2130)  

Peresada, S. Tonielli, A. & Morici, R. (1999).High-performance indirect field-oriented 
output-feedback control of induction motors, Automatica , Vol.35, No.6, (June 1999) 
page numbers (1033-1048) 

Barambones, O.  Garrido, A.J. & Maseda, F.J. (2003). A sensorless robust vector control of 
induction motor drives. IEEE International Conference on Emerging Technologies  and 
Factory Automation, Lisbon, (September 2003). Portugal 

Marina, R Peresada, S & Tomei, P. (1998).Adaptive output feedback control of current-fed 
induction motors with uncertain rotor resistance, Automatica, Vol. 34, No. 5, (Oct 
1998) page numbers (617-624), ISSN 0005-1098  

McFarlane, D. Glover, K. & Noton, M. (1988). Robust stabilization of a flexible space 
platform: an H∞ coprime factor approach, International Conference on Control, pp 
(677-682), ISBN  0-85296-360-2, Oxford, UK, April 1988.  

McFarlane, D. & Glover, K. (1988). An H design procedure using robust stabilization of 
normalized coprime factors, IEEE Conference on Decision and Control, pp (1343-1348), 
INSPEC 3371748, Austin, TX, USA, December 1988. 

McFarlane,  D & Glover, K. (1989). Robust controller design using normalised coprime factor 
plant descriptions, lecture Notes in Control and information Sciences, Springer Verlag, 
(138), Berlin, Germany  

Glover, K. & McFarlane, D. (1988). Robust stabilization of normalized coprime factors: An 
explicit H∞ solution, IEEE International American Control Conference, pp(842 – 847), 
Atlanta, Ga, USA, June 1988.   

Glover, K. & McFarlane, D. (1989). Robust stabilization of normalized coprime factor plant 
descriptions with H bounded uncertainly, IEEE Transactions on Automatic Control, 
Vol. 34, No.08, (Aug.1989) page numbers (821-830) 

McFarlane, D. & Glover, K. (1992). A loop shaping design procedure using H∞ synthesis, 
IEEE Transactions on Automatic Control, Vol. 37, No.06, (June 1992) page numbers 
(759-769) 

www.intechopen.com



Mechatronic Systems, Simulation, Modelling and Control72

Blaschke, F. (1972). The principle of field orientation as applied to the new transvektor 
closed-loop control system for rotating-field machines, Siemens Review, Vol.34, pp ( 
217–220), Mai 1972. 

Boukhnifer, M. (2007). Commande robuste d’une machine asynchrone alimentée par un à 
onduleur multi-niveaux, Revue Internationale en Génie électrique, Vol 10, No.06, 
(November –December 2007) page numbers (717-749). 

Orlawska-Kowalska, M. (1989). Application of extended luenberger observer for flux and 
rotor time constant estimation in induction motor drive. IEE Control Theory and 
Applications, Vol.136, No.6, (Nov 1989) page numbers (324–330), ISSN: 0143-7054 

www.intechopen.com



Mechatronic Systems Simulation Modeling and Control

Edited by Annalisa Milella Donato Di Paola and Grazia Cicirelli

ISBN 978-953-307-041-4

Hard cover, 298 pages

Publisher InTech

Published online 01, March, 2010

Published in print edition March, 2010

InTech Europe

University Campus STeP Ri 

InTech China

Unit 405, Office Block, Hotel Equatorial Shanghai 

This book collects fifteen relevant papers in the field of mechatronic systems. Mechatronics, the synergistic

blend of mechanics, electronics, and computer science, integrates the best design practices with the most

advanced technologies to realize high-quality products, guaranteeing at the same time a substantial reduction

in development time and cost. Topics covered in this book include simulation, modelling and control of

electromechanical machines, machine components, and mechatronic vehicles. New software tools, integrated

development environments, and systematic design methods are also introduced. The editors are extremely

grateful to all the authors for their valuable contributions. The book begins with eight chapters related to

modelling and control of electromechanical machines and machine components. Chapter 9 presents a

nonlinear model for the control of a three-DOF helicopter. A helicopter model and a control method of the

model are also presented and validated experimentally in Chapter 10. Chapter 11 introduces a planar

laboratory testbed for the simulation of autonomous proximity manoeuvres of a uniquely control actuator

configured spacecraft. Integrated methods of simulation and Real-Time control aiming at improving the

efficiency of an iterative design process of control systems are presented in Chapter 12. Reliability analysis

methods for an embedded Open Source Software (OSS) are discussed in Chapter 13. A new specification

technique for the conceptual design of self-optimizing mechatronic systems is presented in Chapter 14.

Chapter 15 provides a general overview of design specificities including mechanical and control considerations

for micro-mechatronic structures. It also presents an example of a new optimal synthesis method to design

topology and associated robust control methodologies for monolithic compliant microstructures.

How to reference

In order to correctly reference this scholarly work, feel free to copy and paste the following:

M. Boukhnifer, C. Larouci and A. Chaibet (2010). Robust Shaping Indirect Field Oriented Control for Induction

Motor, Mechatronic Systems Simulation Modeling and Control, Annalisa Milella Donato Di Paola and Grazia

Cicirelli (Ed.), ISBN: 978-953-307-041-4, InTech, Available from:

http://www.intechopen.com/books/mechatronic-systems-simulation-modeling-and-control/robust-shaping-

indirect-field-oriented-control-for-induction-motor

www.intechopen.com



Slavka Krautzeka 83/A 

51000 Rijeka, Croatia 

Phone: +385 (51) 770 447 

Fax: +385 (51) 686 166

www.intechopen.com

No.65, Yan An Road (West), Shanghai, 200040, China 

Phone: +86-21-62489820 

Fax: +86-21-62489821



© 2010 The Author(s). Licensee IntechOpen. This chapter is distributed

under the terms of the Creative Commons Attribution-NonCommercial-

ShareAlike-3.0 License, which permits use, distribution and reproduction for

non-commercial purposes, provided the original is properly cited and

derivative works building on this content are distributed under the same

license.


