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1. Introduction  
 

The idea of a piezoelectric transformer (PT) was first implemented by Rosen (Rosen, 1956), 
as shown in Fig.1. It used the coupling effect between electrical and mechanical energy of 
piezoelectric materials. A sinusoidal signal is used to excite mechanical vibrations by the 
inverse piezoelectric effect via the driver section.  An output voltage can be induced in the 
generator part due to the direct piezoelectric effect.  The PT offers many advantages over the 
conventional electromagnetic transformer such as high power-to-volume ratio, 
electromagnetic field immunity, and nonflammable. 
Due to the demand on miniaturization of power supplying systems of electrical equipment, 
the study of PT has become a very active research area in engineering.  In literatures (Sasaki, 
1993; Bishop, 1998), many piezoelectric transformers have been proposed and a few of them 
found practical applications.  Apart from switching power supply system, a Roson-type PT 
has been adopted in cold cathode fluorescent lamp inverters for liquid-crystal display.  The 
PT with multilayer structure to provide high-output power may be used in various kinds of 
power supply units.  Recently, PT of ring (Hu, 2001) or disk (Laoratanakul, 2002) shapes 
have been proposed and investigated.  Their main advantages are simple structure and 
small size.  In comparing with the structure of a ring and a disk, the PZT ring offers higher 
electromechanical coupling implies that a ring structure is more efficient in converting 
mechanical energy to electrical energy, and vice versa, which is essential for a high 
performance PT. 
Different from all the conventional PT, the ring-type PT requires only a single poling process 
and a proper electrode pattern, and it was fabricated by a PZT ring by dividing one of the 
electrodes into two concentric circular regions.  Because of the mode coupling effect and the 
complexity of vibration modes at high frequency, the conventional lumped-equivalent 
circuit method may not accurately predict the dynamic behaviors of the PT. 
In this chapter, an electromechanical model for a ring-type PT is obtained based on 
Hamilton’s principle. In order to establish the model, vibration characteristics of the 
piezoelectric ring with free boundary conditions are analyzed in advance, and the natural 
frequencies and mode shapes are obtained.  In addition, an equivalent circuit model of the 
PT is obtained based on the equations of the motion for the coupling electromechanical 
system.  Furthermore, the voltage step-up ratio, input impedance, output impedance, input 
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power, output power, and efficiency for the PT will be conducted.  Then, the optimal load 
resistance and the maximum efficiency for the PT will be calculated.   
 

 
Fig. 1. Structure of a Rosen-type piezoelectric transformer. 
 

 
Fig. 2. Structure of a ring-type piezoelectric transformer. 

 
2. Theoretical Analysis 
 

2.1 Vibration Analysis of the Piezoelectric Ring 
Fig.2 shows the geometric configuration of a ring-type PT with external radius Ro, internal 
radius Ri, and thickness h. The ring is assumed to be thin, h << Ri.  The cylindrical coordinate 
system is adopted where the r-θ plane is coincident with the mid-plane of the undeformed 
ring, and the origin is in the center of the ring.  The piezoelectric ring is polarized in the 
thickness direction, and two opposite surfaces are covered by electrodes.   The constitutive 
equations for a piezoelectric material with crystal symmetry class C6v can be expressed as 
follows. 
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where σr, σθ, σz, τθz, τzr, τθr  are the components of the stress, εr, εθ, εz, γθz, γzr, γθr are the 
components of the strain, and all the components are functions of r, θ, z, and t.   s11

E, s12
E, s13

E, 
s33

E, s44
E, s66

E are the compliance constants, d15, d31, d33 are the piezoelectric constants, ε11
T, ε33

T 
are the dielectric constants, Dr, Dθ, Dz are the components of the electrical displacement, and 
Er, Eθ, Ez are the components of the electrical field.  The piezoelectric material is isotropic in 
the plane normal to the z-axis.  The charge equation of electrostatics is represented as: 
 

011













z
DD

r
D

rr
D z

r
r


  (2) 

  
The electric field-electric potential relations are given by: 
 

r
Er 




 , 



 



r

E 1 ,  
z

E z 



 , (3) 

 
where φ is the electrical potential.  The differential equations of equilibrium for three-
dimensional problems in cylindrical coordinates are: 
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where ur(r,θ,z,t), uθ(r,θ,z,t), uz(r,θ,z,t) are the displacements of the ring in the radial, tangential, 
and transverse direction, respectively.  And ρ is the material density.  The strain-
displacement relations for three-dimensional problems in cylindrical coordinates are given 
by: 
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Because the piezoelectric disk is thin and the deformation is small, the kirchoff assumption 
is made.  The kirchoff assumptions are as follows: 
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where u0, v0, w0 represent the radial, the tangential, and the transverse displacements of the 
middle surface of the plane, respectively.  After inserting (6)-(8) into (5a), (5b), the strain-
displacement relations can be obtained as: 
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Since the ring is thin, stress σz can be neglected relative to the other stresses, and strain γθz, γzr 
can also be neglected.  Thus, the constitutive equations of (1a), (1b) can be simplified as: 
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where ν is the Poisson’s ratio.  In the piezoelectric transformer, the radial extensional 
vibration can be generated by driving the input electrode with AC voltage.  The radial 
extensional vibration is supposed to be axisymmetric, and the radial extensional 
displacement of the middle plane can be assumed to be: 
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where ν is the Poisson’s ratio.  In the piezoelectric transformer, the radial extensional 
vibration can be generated by driving the input electrode with AC voltage.  The radial 
extensional vibration is supposed to be axisymmetric, and the radial extensional 
displacement of the middle plane can be assumed to be: 
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Substituting (15),(16) into (4a), the governing equation of extensional vibrations can be 
obtained: 
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2.2 Impedance of the Piezoelectric Transformer 
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From (24), the resonant frequencies can be determined when the output current Io 
approaches infinity.  The characteristic equation of resonant frequencies for extensional 
vibrations is given by: 
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From (27), the resonant frequencies can be determined when the input current Ii approaches 
infinity.  The characteristic equation of resonant frequencies can be obtained, which is the 
same with (26).  It is noted that the resonant frequencies of the PT can be obtained based on 
the measured impedance spectrum, and the same results will be obtained in spite of the 
measured electrodes are in the input part or in the output part.  According to (19) and (26), 
the resonant frequencies for ring-type PT can be expressed as: 
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3. Electromechanical Model 
 

3.1 Electromechanical Model of the PT 
The PT is not only a mechanical system but also electrical system.  In this section, the 
electromechanical model for piezoelectrically coupled electromechanical systems will be 
derived.  From Hagood’s paper (Hagood, 1990), we have a generalized form of Hamilton’s 
principle for a coupled electromechanical system: 
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where ρ is the density of the piezoelectric material.  ϕi and qi are the electric potential and 
the applied charge in the driving portion, respectively.  ϕo and qi are the electric potential 
and the applied charge in the receiving portion.  By substituting Eqs.(31)-(34) into Eq.(30), 
the equations of motion for the PT can be written in Laplace transform as 
 

 

iioonnn VAVAXksdsm  )( 2 , (35) 
 

iiii IVsCXsA  , (36) 
 

oooo IVsCXsA  , (37) 
 
where Vi and Ii represent the input voltage and current in the driving portion, Vo and Io 
represent the output voltage and current in the receiving port.  The mass mn , the stiffness kn, 
input turn ratio Ai, output turn ratio Ao for the equivalent circuit of piezoelectric transformer 
can be obtained from the follows. 
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According to Eqs.(35)-(37), equivalent circuit model of the PT is shown in Fig.3.  From the 
equivalent circuit model, we can see that Eq.(35) satisfy Kirchhoff’s voltage law equation, 
which shows that the input voltage AiVi is the sum of the output voltage AoVo and the 
voltage difference (mns2+dns+kn)X.  Eq.(36) satisfy Kirchhoff’s current law equation in the 
driving portion, which shows that the input current Ii is the sum of the current flowing 
through (mns2+dns+kn) and the current flowing through Ci.  Eq.(37) satisfy Kirchhoff’s current 
law equation in the receiving portion, which shows that the current flowing through 
(mns2+dns+kn) is the sum of the current flowing through  Co and the output current Io. 
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electromechanical model for piezoelectrically coupled electromechanical systems will be 
derived.  From Hagood’s paper (Hagood, 1990), we have a generalized form of Hamilton’s 
principle for a coupled electromechanical system: 
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where T is the kinetic energy, U is the potential energy of the system, W1 is the applied 
electric energy in the driving portion, and W2 is the applied electric energy in the receiving 
portion.  T, U, W1, W2 can be written as 
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where ρ is the density of the piezoelectric material.  ϕi and qi are the electric potential and 
the applied charge in the driving portion, respectively.  ϕo and qi are the electric potential 
and the applied charge in the receiving portion.  By substituting Eqs.(31)-(34) into Eq.(30), 
the equations of motion for the PT can be written in Laplace transform as 
 

 

iioonnn VAVAXksdsm  )( 2 , (35) 
 

iiii IVsCXsA  , (36) 
 

oooo IVsCXsA  , (37) 
 
where Vi and Ii represent the input voltage and current in the driving portion, Vo and Io 
represent the output voltage and current in the receiving port.  The mass mn , the stiffness kn, 
input turn ratio Ai, output turn ratio Ao for the equivalent circuit of piezoelectric transformer 
can be obtained from the follows. 
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According to Eqs.(35)-(37), equivalent circuit model of the PT is shown in Fig.3.  From the 
equivalent circuit model, we can see that Eq.(35) satisfy Kirchhoff’s voltage law equation, 
which shows that the input voltage AiVi is the sum of the output voltage AoVo and the 
voltage difference (mns2+dns+kn)X.  Eq.(36) satisfy Kirchhoff’s current law equation in the 
driving portion, which shows that the input current Ii is the sum of the current flowing 
through (mns2+dns+kn) and the current flowing through Ci.  Eq.(37) satisfy Kirchhoff’s current 
law equation in the receiving portion, which shows that the current flowing through 
(mns2+dns+kn) is the sum of the current flowing through  Co and the output current Io. 
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Fig. 3. Equivalent circuit of the piezoelectric transformer. 

 
3.2 Characteristics of the PT 
There is no output current in the receiving portion when the electrodes are open-circuited. 
Thus, voltage step-up ratio for the PT can be obtained based on Eqs.(35)(37). Substituting Io 
=0 into Eq.(37) and eliminating X(s) from Eqs. (35)(37) gives 
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When a load resistance RL is connected between the electrodes in the receiving portion of the 
PT, Eq.(45) can be obtained by substituting Io=Vo/RL into Eq.(37). 
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The voltage step-up ratio for the PT with a load resistance RL in the receiving portion can be 
obtained based on Eqs.(35)(45) as the following. 
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If the electrodes in the receiving portion of the PT is short-circuited, the voltage step-up ratio 
for the PT can be obtained as zero by substituting RL=0 into Eq.(46).  In addition, Eq.(46) 
shows that the higher the load resistance RL, the higher the voltage step-up ratio. The 
maximum voltage step-up ratio can be obtained as Eq.(44) when the load resistance RL 
approach infinite.  On the other hand, the output power of the PT can be calculated by the 
power consumption of the load resistance RL as the following: 
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If the natural frequency is chosen as the operating frequency in the PT, then the voltage 
step-up ratio can be rewritten as 
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Therefore, the output power of the PT can be obtained by substituting Eq.(48) into Eq.(47). 
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According to equivalent circuit of the PT shown as in Fig.3, the input power of the PT can be 
calculated by the sum of the power consumption of the damping dn and that of the load 
resistance RL.  Eq.(37) shows that the current flowing through dn is (sCoVo+Io)/Ao, thus the 
input power of the PT can be obtained as 
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Therefore, the efficiency of the PT can be obtained as 
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The maximum efficiency can be calculated by the differential of Eq.(50).  Thus, the 
maximum efficiency can be obtained when the optimal load resistance RL,opt is 
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Substituting Eq.(52) into Eq.(51) gives the maximum efficiency. 
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It is note that the smaller the damping coefficient dn, the higher the maximum efficiency. 

 
4. Simulation and Experiment 
 

4.1 Experimental Setup and the Impedance Measurements 
To verify the electromechanical model, a ring-type PT with 16mm in outer diameter, 8mm in 
inner diameter, and 1mm in thickness was used.  The PT is has silver electrodes on two 
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4. Simulation and Experiment 
 

4.1 Experimental Setup and the Impedance Measurements 
To verify the electromechanical model, a ring-type PT with 16mm in outer diameter, 8mm in 
inner diameter, and 1mm in thickness was used.  The PT is has silver electrodes on two 
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opposite surfaces and is poled along its thickness direction.  One of the electrodes of the PT 
is split into two regions on the diameter of 11mm.  The transformer structure was fabricated 
using the piezoelectric material APC840 by APC International, USA.  The material 
properties provided by the supplier are listed in Table I.  The displacement distributions of 
the mode shapes based on theoretical analysis for the PT are presented in Fig.4.  Also, to 
easily realize the dynamic behavior of the PT, a finite element method analysis of the 
vibration of the PT is conducted.  And the results of the extensional vibration modes of the 
PT are shown in Fig.5(a)(b)(c). 
A HP 4194A Impedance Analyzer was used to measure the input impedance and output 
impedance, and results are shown in Fig.6.  The input impedance was measured for the 
shorted electrodes in the receiving portion, and the output impedance was measured for the 
shorted electrodes in the driving portion.  This transformer was designed to operate in the 
first vibration mode.  For the input impedance of the PT, the first resonant frequency is 91.2 
kHz, the first anti-resonant frequency is 94.05 kHz. For the output impedance of the PT, the 
first resonant frequency is 91.2 kHz, the first anti-resonant frequency is 93.6 kHz in the input 
impedance of the PT.  It shows that nearly the same resonant frequency were obtained in 
spite of the impedance was measured from the driving portion or the receiving portion.  The 
results are the same with theoretical analysis of Eqs. (24) and (27). 
Basd on Eqs.(34)-(36), input impedance as a function of frequency at different load 
resistances are calculated and shown in Fig.7.  And the experimental results are shown in 
Fig.8.  In the input impedance of the PT with load resistance varied from short (RL=0) to 
open (RL=∞), it shows that the peak frequency is changed from 94.05 kHz to 97.85 kHz.  The 
peak frequency is increased as the load resistance is increased.  Also, there exists an optimal 
load resistance RL,opt , which shows the maximum damping ratio in the input impedance 
when compared with the other different load resistances.  We can also calculated the 
optimal load resistance RL,opt =2.6 kΩ from Eq.(52).  It should be noted that efficiency of the 
PT approaches to the maximum efficiency when the load resistance RL approaches the 
optimal load resistance RL,opt. 
 

 
Fig. 4. Mode shapes of the piezoelectric transformer. 
 
 

 

 
(a) 1st vibration mode              (b) 2nd vibration mode              (c) 3rd vibration mode 

Fig. 5. Vibration modes of piezoelectric transformer. 
 

 
Fig. 6. Input and output impedance 

 
4.2 Voltage Step-up Ratio, Output Power, and Efficiency 
The experimental setup for the measurement of the voltage step-up ratio and output power 
of the PT is illustrated in Fig.9.  A function generator (NF Corporation, WF1943) and a high 
frequency amplifier (NF Corporation, HSA4011) were used for driving power supply.  The 
variation in electric characteristics with load resistance and driving frequency were 
measured with a multi-meter (Agilent 34401A).  The voltage step-up ratios as a function of 
frequency at different load resistances were measured and compared with theoretical 
analysis, as shown in Fig.10.  It shows that the experimental results are in a good agreement 
with the theoretical results, so the proposed electromechanical model for the PT was 
verified. 
 

 
Fig. 7. Experimental setup 
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Piezoelectric coefficient d31 -125×10-12 C/N 
Coupling factor kp 0.59 
Mechanical quality factor Qm 500 
Dielectric constant ε33/ε0 1694 
Density ρ 7600 g/cm3 
Young’s modulus Y11E 8×1010 N/m2 

Table 1. Properties of piezoelectric material. 
 

Input piezoelectric capacitance Ci 1.5nF 
Output piezoelectric capacitance Co 671.5pF 
Input turn ratio Ai 0.1198 
Output turn ratio Ao 0.07545 
Effective mass m1 4.773×10-4 kg 
Effective damping d1 1.868 N-s/m 
Effective stiffness k1 1.569×108 N/m 

Table 2. Parameters of the equivalent circuit 
 

 
Fig. 8. Calculated input impedance                                
 
 

 

 
Fig. 9. Measured input impedance 
 

 
Fig. 10. Voltage step-up ratio 

 
 

www.intechopen.com



Electromechanical Analysis of a Ring-type Piezoelectric Transformer 15

 

Piezoelectric coefficient d31 -125×10-12 C/N 
Coupling factor kp 0.59 
Mechanical quality factor Qm 500 
Dielectric constant ε33/ε0 1694 
Density ρ 7600 g/cm3 
Young’s modulus Y11E 8×1010 N/m2 

Table 1. Properties of piezoelectric material. 
 

Input piezoelectric capacitance Ci 1.5nF 
Output piezoelectric capacitance Co 671.5pF 
Input turn ratio Ai 0.1198 
Output turn ratio Ao 0.07545 
Effective mass m1 4.773×10-4 kg 
Effective damping d1 1.868 N-s/m 
Effective stiffness k1 1.569×108 N/m 

Table 2. Parameters of the equivalent circuit 
 

 
Fig. 8. Calculated input impedance                                
 
 

 

 
Fig. 9. Measured input impedance 
 

 
Fig. 10. Voltage step-up ratio 

 
 

www.intechopen.com



Mechatronic Systems, Simulation, Modelling and Control16

 

5. Conclusion 
 

In this chapter, an electromechanical model for ring-type PT is presented. An equivalent 
circuit of the PT is shown based on the electromechanical model. Also, the voltage step-up 
ratio, input impedance, output impedance, and output power of the PT are calculated, and 
the optimal load resistance and the maximum efficiency for the PT have been obtained.  In 
the last, some simulated results of the electromechanical model are compared with the 
experimental results for verification.  The model presented here lays foundation for a 
general framework capable of serving a useful design tool for optimizing the configuration 
of the PT. 
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