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1. Introduction     
 

Control of a helicopter model is a problem of both theoretical and practical interest.  
With the proliferation of autonomous unmanned aerial vehicles (UAVs) (Castillo et al., 2005; 
Valavanis, 2007) autopilot modes have become very important. Dynamic properties of  
a controlled helicopter depend on both its structure and aerodynamic qualities as well as on 
the control law applied. The problem of output regulation has received much attention and 
especially during the last decade, its nonlinear version has been intensively developed 
(Isidori & Byrnes, 1990), (Slotine & Li, 1991). The well known approach to decoupling 
problem solution based on the Non-linear Inverse Dynamics (NID) method (Balas et al., 
1995) may be used if the parameters of the plant model and external disturbances are exactly 
known. Usually, incomplete information about systems in real practical tasks takes place.  
In this case adaptive control methods (Astrom & Wittenmark, 1994) or control systems with 
sliding mode (Utkin, 1992) may be used for solving this control problem. A crucial feature of 
the sliding mode techniques is that in the sliding phase the motion of the system is 
insensitive to parameter variation and disturbances in the system. A way of the algorithmic 
solution of this problem under condition of incomplete information about varying 
parameters of the plant and unknown external disturbances is the application of the 
Localization Method (LM) (Vostrikov & Yurkevich, 1993), which allows to provide the 
desired transients for nonlinear time-varying systems. A development of LM is applied in 
the present paper, and proposed in (Błachuta et al., 1999; Czyba & Błachuta, 2003; 
Yurkevich, 2004), method which based on two ideas. The first – the use of high gain in 
feedback to suppress the disturbances and varying parameters; the second – the use of 
higher order output derivatives in the feedback loop. The high gain and ”dynamics” of the 
controller are separated by means of the summing junction with set point signal placed 
between them. This structure is the implementation of the model reference control with the 
reference model transfer function which is equal to the inverse of the controller ”dynamics”. 
It becomes that the proposed structure and method is insensitive to plant parameters 
changes and external disturbances, and works well both lineal, nonlinear, stationary and 
nonstationary objects. In the present paper, the proposed method is applied to control of the 
helicopter model, which is treated as a multivariable system. 
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In general, the goal of the design of a helicopter model control system is to provide 
decoupling, i.e. each output should be independently controlled by a single input, and to 
provide desired output transients under assumption of incomplete information about 
varying parameters of the plant and unknown external disturbances. In addition, we require 
that transient processes have desired dynamic properties and are mutually independent. 
The paper is part of a continuing effort of analytical and experimental studies on aircraft 
control (Czyba & Błachuta, 2003), and BLDC motor control (Szafrański & Czyba, 2008). The 
main aim of this research effort is to examine the effectiveness of a designed control system 
for real physical plant  laboratory model of the helicopter. The paper is organized as 
follows. First, a mathematical description of the helicopter model is introduced. Section 3 
includes a background of the discussed method and the method itself are summarized. The 
next section contains the design of the controller, and finally the results of experiments are 
shown. The conclusions are briefly discussed in the last section. 

 
2. Helicopter model 
 

The CE150 helicopter model was designed by Humusoft for the theoretical study and 
practical investigation of basic and advanced control engineering principles. The helicopter 
model (Fig.1) consists of a body, carrying two propellers driven by DC motors, and massive 
support. The body has two degrees of freedom. The axes of the body rotation are 
perpendicular as well as the axes of the motors. Both body position angles, i.e. azimuth 
angle in horizontal and elevation angle in vertical plane are influenced by the rotating 
propellers simultaneously. The DC motors for driving propellers are controlled 
proportionally to the output signals of the computer. The helicopter model is a multivariable 
dynamical system with two manipulated inputs and two measured outputs. The system is 
essentially nonlinear, naturally unstable with significant crosscouplings. 
 

              
Fig. 1.  CE150 Helicopter model (Horacek, 1993) 
 
In this section a mathematical model by considering the force balances is presented 
(Horacek, 1993). Assuming that the helicopter model is a rigid body with two degrees of  
freedom, the following output and control vectors are adopted: 

 

 , TY    (1) 

 1 2, Tu u u  (2) 
 
where:  - elevation angle (pitch angle);  - azimuth angle (yaw angle); 1u - voltage of main 
motor; 2u - voltage of tail motor. 

 
2.1 Elevation dynamics 
Let us consider the forces in the vertical plane acting on the vertical helicopter body, whose 
dynamics are given by the following nonlinear equation: 
 

 
 1

2
1 1f m GI 

           (3) 

with                                          
1

2
1 1k   (4) 

 
  1

211 sin 2
2

ml

    (5) 

   1 1
1f C sign B      (6) 

sinm mgl   (7) 
 1

1 cosG GK     (8) 
 

where: 
I  -  moment of inertia around horizontal axis 

1  - elevation driving torque 

 1
  - centrifugal torque 

1f  - friction torque (Coulomb and viscous) 

m  - gravitational torque 

G  - gyroscopic torque 

1  - angular velocity of the main propeller 
m  - mass 
g  - gravity 
l  - distance from z-axis to main rotor 

1
k  - constant for the main rotor 

GK  - gyroscopic coefficient 
B  - viscous friction coefficient (around y-axis) 
C  - Coulomb friction coefficient (around y-axis) 
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2.2 Azimuth dynamics 
Let us consider the forces in the horizontal plane, taking into account the main forces acting 
on the helicopter body in the direction of   angle, whose dynamics are given by the 
following nonlinear equation: 
 

 2
2 2f rI       (9) 

with                                                     sinI I    (10) 

2

2
2 2k   (11) 

   1 1
2f C sign B      (12) 

 
where: 

I  -  moment of inertia around vertical axis 

2  - stabilizing motor driving torque 

2f  - friction torque (Coulomb and viscous) 

r  - main rotor reaction torque 

2
k  - constant for the tail rotor 

2  - angular velocity of the tail rotor 
B  - viscous friction coefficient (around z-axis) 
C  - Coulomb friction coefficient (around z-axis) 

 
2.3 DC motor and propeller dynamics modeling 
The propulsion system consists two independently working DC electrical engines. The 
model of a DC motor dynamics is achieved based on the following assumptions: 
Assumption1: The armature inductance is very low. 
Assumption2: Coulomb friction and resistive torque generated by rotating propeller in the air 

are significant. 
Assumption3: The resistive torque generated by rotating propeller depends on  in low and 

2 in high rpm. 
 
Taking this into account, the equations are following: 
 

 1
j j j cj j j pjI B         (13) 

with                                                          j ij jK i   (14) 

 1
j j bj j

j
i u K

R
   (15) 

 cj j jC sign   (16) 

 

2
pj pj j pj jB D     (17) 

where: 
1, 2j   - motor number (1- main, 2- tail) 

jI  - rotor and propeller moment of inertia 

j  - motor torque 

cj  - Coulomb friction load torque 

pj  - air resistance load torque 

jB  - viscous-friction coefficient 

ijK  - torque constant 

ji  - armature current 

jR  - armature resistance 

ju  - control input voltage 

bjK  - back-emf constant 

jC  - Coulomb friction coefficient 

pjB  - air resistance coefficient (laminar flow) 

pjD  - air resistance coefficient (turbulent flow) 
 

Block diagram of nonlinear dynamics of a complete system is to be assembled from the 
above derivations and the result is in Fig.2. 

 
Fig. 2.  Block diagram of a complete system dynamics 
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3. Control scheme 
 

Let us consider a nonlinear time-varying system in the following form: 
 

        1 , ,x t h x t u t t ,       00x x  (18) 

    ,y t g t x t  (19) 
 

where  tx  is n–dimensional state vector,  ty  is p–dimensional output vector and  tu  is  

p-dimensional control vector. The elements of the   ,f t x t ,   ,B t x t  and   ,g t x t  are 

differentiable functions. 
 
Each output  iy t  can be differentiated im  times until the control input appears. Which 
results in the following equation: 
 

           , ,my t f t x t B t x t u t   (20) 

 

where:     1 2 ( )( ) ( )
1 2, ,..., pmm m m

py t y y y    , 

   max, ,        1,  2,.....,i if t x f i p  , 

    det , 0B t x t  . 

The value im  is a relative order of the system (18), (19) with respect to the output  iy t  (or 

so called the order of  a relative higher derivative). In this case the value ( )im
iy  depends 

explicitly on the input  u t . 
 

The significant feature of the approach discussed here is that the control problem is stated as 
a problem of determining the root of an equation by introducing reference differential 
equation whose structure is in accordance with the structure of the plant model equations. 
So the control problem can be solved if behaviour of the ( )im

iy  fulfills the reference model 
which is given in the form of the following stable differential equation: 
 

        ,i
i  M i  M i  M
m

iy t F y t r t  (21) 
 

where: i MF  is called the desired dynamics of  iy t ,      11, ,..., i
Tm

i  M i  M i  M My t y y y     ,  ir t  

is the reference value and the condition i iy r  takes place for an equilibrium point. 
 
Denote the tracking error as follows: 
 

     t r t y t   . (22) 

 

The task of a control system is stated so as to provide that 
 

  0
t

t

  . (23) 

 
Moreover, transients  iy t  should have the desired behavior defined in (21) which does not 
depend either on the external disturbances or on the possibly varying parameters of system 
in equations (18), (19). Let us denote 
 

        , mF
MF y t r t y t    (24) 

 

where: F  is the error of the desired dynamics realization, 1 2  , ,...,
T

M M M p MF F F F     is 

a vector of desired dynamics. 
 
As a result of (20), (21), (24) the desired behaviour of  iy t  will be provided if the following 
condition is fulfilled: 
 

        , , , , 0F x t y t r t u t t  . (25) 
 
So the control action  tu  which provides the control problem solution is the root of 
equation (25). Above expression is the insensitivity condition of the output transient 
performance indices with respect to disturbances and varying parameters of the system in 
(18), (19). 
 
The solution of the control problem (25) bases on the application of the higher order output 
derivatives jointly with high gain in the controller. The control law in the form of a stable 
differential equation is constructed such that its stable equilibrium is the solution of 
equation (25). Such equation can be presented in the following form (Yurkevich, 2004) 
 

   

 

1

,
0

,00

i
ii

q
q jq j F

i i i i j i i
j

i i

d k   

 




  




 (26) 

 

where: 
 1,...,i p , 

      1 1, ,..., i
Tq

i i i it        - new output of the controller, 

 i  - small positive parameter i > 0, 
 k - gain, 
 ,0 , 1,...,

ii i qd d   - diagonal matrices. 
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To decoupling of control channel during the fast motions let us use the following output 
controller equation: 
 

   0 1u t K K t  (27) 
 

where: 

  1 1 2, ,..., pK diag k k k  is a matrix of gains, 

 0K  is a nonsingular matching matrix (such that 0BK  is positive definite). 
 
Let us assume that there is a sufficient time-scale separation, represented by a small 
parameter i , between the fast and slow modes in the closed loop system. Methods of 
singularly perturbed equations can then be used to analyze the closed loop system and, as  
a result, slow and fast motion subsystems can be analyzed separately. The fast motions refer 
to the processes in the controller, whereas the slow motions refer to the controlled object. 
 
Remark 1: It is assumed that the relative order of the system (18), (19), determined in (20), 
and reference model (21) is the same im . 
Remark 2: Assuming that i iq m  (where 1,2,...,i p ), then the control law (26) is proper 
and it can be realized without any differentiation. 
Remark 3: The asymptotically stability and desired transients of  i t  are provided by 

choosing ,0 ,1 , 1, , , ,...,
ii i i i qk d d d  . 

Remark 4: Assuming that ,0 0id   in equation (26), then the controller includes the 
integration and it provides that the closed-loop system is type I with respect to reference 
signal. 
Remark 5: If the order of reference model (21) is 1im  , such that the relative order of the 
open loop system is equal one, then we obtain sliding mode control. 

 
4. Helicopter controller design 
 

The helicopter model described by equations (1)(17), will be used to design the control 
system that achieves the tracking of a reference signal. The control task is stated as  
a tracking problem for the following variables: 
 

   0lim 0
t

t t 
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     (28) 

   0lim 0
t

t t 


     (29) 

 
where    0 0,t  t   are the desired values of the considered variables. 
In addition, we require that transient processes have desired dynamic properties, are 
mutually independent and are independent of helicopter parameters and disturbances. 

 

The inverse dynamics of (18), (19) are constructed by differentiating the individual elements 
of y  sufficient number of times until a term containing u  appears in (20). From equations 
of helicopter motion (3)(17) it follows that: 
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Following (20), the above relationship becomes: 
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where values of 1, 2f  f  are bounded, and the matrix B  is given in the following form 
 

11

21 22

0b
B

b b
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 

. (33) 

 

In normal flight conditions we have    det , 0B t x t  . This is a sufficient condition for 

the existence of an inverse system model to (18), (19). 
 
Let us assume that the desired dynamics are determined by a set of mutually independent 
differential equations: 
 

3 (3) 2 (2) 2 (1)
03 3                   (34) 

3 (3) 2 (2) 2 (1)
03 3                   (35) 

 
Parameters i  and i  ( ,i   ) have very well known physical meaning and their 
particular values have to be specified by the designer. 
 
The output controller equation from (27) is as follows: 
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where  1 ,K diag k k   and assume that   1
0K B   because matrix 0BK  must be positive 

definite. Moreover IBK 0  assures decoupling of fast mode channels, which makes 
controller’s tuning simpler. 
 
The dynamic part of the control law from (26) has the following form: 
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The entire closed loop system is presented in Fig.3. 

 

 
Fig. 3.  Closed-loop system 

 
5. Results of control experiments 
 

In this section, we present the results of experiment which was conducted on the helicopter 
model HUMUSOFT CE150, to evaluate the performance of a designed control system.  
As the user communicates with the system via Matlab Real Time Toolbox interface, all 
input/output signals are scaled into the interval <-1,+1>, where value ”1” is called Machine 
Unit and such a signal has no physical dimension. This will be referred in the following text 
as MU. 
The presented maneuver (experiment 1) consisted in transition with predefined dynamics 
from one steady-state angular position to another. Hereby, the control system accomplished 
a tracking task of reference signal. The second experiment was chosen to expose  
a robustness of the controller under transient and steady-state  conditions. During the 
experiment, the entire control system was subjected to external disturbances in the form of  
a wind gust. Practically this perturbation was realized mechanically by pushing the 
helicopter body in required direction with suitable force. The helicopter was disturbed twice 
during the test:  1 130 ,t s  2 170 t s . 

 

5.1 Experiment 1 − tracking of a reference trajectory 

 
Fig. 4.  Time history of pitch angle   
 

 

Fig. 5.  Time history of yaw angle   
 

 

Fig. 6.  Time history of main motor voltage 1u  

 
Fig. 7.  Time history of tail motor voltage 2u  
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5.2 Experiment 2 − influence of a wind gust in vertical plane 

 
Fig. 8.  Time history of pitch angle   

 
Fig. 9.  Time history of yaw angle   

 
Fig. 10.  Time history of main motor voltage 1u  

 
Fig. 11.  Time history of tail motor voltage 2u  
 

 

6. Conclusion 
 

The applied method allows to create the expected outputs for multi-input multi-output 
nonlinear time-varying physical object, like an exemplary laboratory model of helicopter, 
and provides independent desired dynamics in control channels. The peculiarity of the 
propose approach is the application of the higher order derivatives jointly with high gain in 
the control law. This approach and structure of the control system is the implementation of 
the model reference control. The resulting controller is a combination of a low-order linear 
dynamical system and a matrix whose entries depend non-linearly on some known process 
variables. It becomes that the proposed structure and method is insensitive to external 
disturbances and also plant parameter changes, and hereby possess a robustness aspects. 
The results suggest that the approach we were concerned with can be applied in some 
region of automation, for example in power electronics. 
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