
Selection of our books indexed in the Book Citation Index

in Web of Science™ Core Collection (BKCI)

Interested in publishing with us?
Contact book.department@intechopen.com

Numbers displayed above are based on latest data collected.

For more information visit www.intechopen.com

Open access books available

Countries delivered to Contributors from top 500 universities

International authors and editors

Our authors are among the

most cited scientists

Downloads

We are IntechOpen,
the world’s leading publisher of

Open Access books
Built by scientists, for scientists

12.2%

186,000 200M

TOP 1%154

6,900

Reliability Analysis Methods for an Embedded Open Source Software 239

Reliability Analysis Methods for an Embedded Open Source Software

Yoshinobu Tamura and Shigeru Yamada

x

Reliability Analysis Methods for an
Embedded Open Source Software

Yoshinobu Tamura† and Shigeru Yamada‡

Graduate School of Science and Engineering, Yamaguchi University†
Graduate School of Engineering, Tottori University‡

1. Introduction

Many software systems have been produced under host-concentrated development
environment. In such host-concentrated one, the progress of software development tools has
caused several issues. For instance, one of them is that all of software development
management has to be suspended when the host computer is down. Since the late 1980s,
personal computers have been spread on our daily life instead of conventional mainframe
machines, because the price and performance of personal computers have been extremely
improved. Hence, computer systems which aid the software development have been also
changing into UNIX workstations or personal computers to reduce the development cost. A
Client/Server System (CSS) which is a new development method have come into existence
as a result of the progress of networking technology by UNIX systems. Such CSS's have
been used more and more in the period of network computing. The CSS's are horizontally
distributed systems which consist of a server and client computers. The CSS's differ from
conventional host/terminal computer systems from the point of view that the CSS's have
the property that each computer on network can be a server or client as well. Thus, the CSS's
have expanded with the technique of internet. At present, the software development
environment has been changing into distributed one because of such progress of network
computing technologies. For instance, basic CSS's which consists of 2-layers structure have
been expanded to

N -layers one, because such CSS's can be easily and rapidly introduced
for the purpose of software development with low cost. The recent progress of network
technologies in social systems is remarkable. As a result of the progress, software
development environment has been changing into new development paradigm in such
CSS's and distributed development by using network computing technologies (Takahashi,
1998; Umar, 1993; Vaughn, 1994).
The methodology of the object-oriented design and analysis is a feature of such distributed
development environment and greatly successful in the field of programming-language,
simulation, GUI (graphical user interface), and constructing on database in the software
development. A general idea of object-oriented design and analysis is developed as a
technique which can easily construct and maintain the complex systems. Therefore, the
distributed development paradigm based on such an object-oriented methodology will
rapidly grow in the future, because this technique is expected as a very effective approach to

13

www.intechopen.com

Mechatronic Systems, Simulation, Modelling and Control240

improve software quality and productivity. Software composition by object-oriented
technologies is expected as a very effective approach to improve software quality and
productivity. Considering the software composition, it is expected that even the host-
concentrated development environment can yield the quality of software system to some
extent regardless of the content of applications, because the software system is structured on
a single hardware environment. On the other hand, it is known that software systems under
distributed development environment are difficult to be developed, since the architecture of
such systems can have different development styles.
As mentioned above, software development environment has been changing into new
development paradigms such as concurrent distributed development environment and the
so-called open source project by using network computing technologies. Especially, such
Open Source Software (OSS) systems which serve as key components of critical
infrastructures in the society are still ever-expanding now (E-Soft Inc.).
Software reliability growth models (SRGM's) (Misra, 1983; Musa et al. 1987; Yamada &
Osaki, 1989; Yamada, 1991; Yamada 1994) have been applied to assess the reliability for
quality management and testing-progress control of software development. On the other
hand, the effective method of testing management for the new distributed development
paradigm as typified by the open source project has only a few presented (Kuk, 2006; Li et
al. 2004; MacCormack et al. 2006; Zhoum & Davis, 2005). In case of considering the effect of
the debugging process on an entire system in the development of a method of reliability
assessment for the OSS, it is necessary to grasp the deeply-intertwined factors, such as
programming paths, size of each component, skill of fault-reporters, and so on.
In this chapter, we discuss a useful reliability assessment method of an embedded OSS
developed under open source project. In order to consider the effect of each software
component on the reliability of an entire system under such open source project, we apply a
neural network (Karunanithi & Malaiya, 1996; Lippmann, 1987). Also, we propose a
software reliability growth model based on stochastic differential equations in order to
consider the active state of the open source project. Especially, we apply the intensity of
inherent software failures which means the software failure-occurrence rate or the fault
detection rate for the i -th component importance level to the interaction among
components by introducing an acceleration parameters. Also, we assume that the software
failure intensity depends on the time, and the software fault-reporting phenomena on the
bug tracking system keep an irregular state in terms of the number of detected faults.
Moreover, in order to consider the effect of each software component on the reliability of an
entire system under such open source software, we propose a method of reliability
assessment based on the Bayesian network (BN) for OSS. Furthermore, we analyze actual
software fault-detection count data to show numerical examples of software reliability
assessment considering the component importance levels for the open source project.

2. Reliability Assessment Method

2.1 Weight parameter for each component
In case of considering the effect of debugging process on an entire system on software
reliability assessment for open source development paradigm, it is necessary to grasp the
deeply-intertwined factors, such as programming paths, size of each component, skill of
fault-reporters, and so on.

In this chapter, we propose a method of reliability assessment based on the neural network
in terms of estimating the effect of each component on the entire system in a complicated
situation. Especially, we consider that our method based on neural network is useful to
assess the software reliability by using only data sets in bug tracking system on the website.
Also, we can apply the importance level of faults detected during the testing of each
component, the size of component, the skill of fault-reporters and so on, to the input data of
neural network.
We assume that ()JjIiwij ,,2,1;,,2,11  == are the connection weights from i -th unit on the

sensory layer to j -th unit on the association layer, and denote the
connection weights from j -th unit on the association layer to k -th unit on the response
layer. Moreover, ()Iixi ,,2,1 = represent the normalized input values of i -th unit on the
sensory layer, and ()Kkyk ,,2,1 = are the output values. We apply the normalized values of
fault level, operating system, fault repairer, fault reporter to the input values ()Iixi ,,2,1 = .
Then, the input-output rules of each unit on each layer are given by

h j = f wij
1 x i

i=1

I

∑








 , (1)

2

1
,

J

k jk j
j

y f w h
=

 
=  

 
∑ (2)

where a logistic activation function ()⋅f which is widely-known as a sigmoid function given
by the following equation:

f x()=
1

1+ e−θx , (3)

where θ is the gain of sigmoid function. We apply the multi-layered neural networks by
back-propagation in order to learn the interaction among software components (Karunanithi
& Malaiya, 1996; Lippmann, 1987). We define the error function by the following equation:

E =
1
2

yk − dk()2

k=1

K

∑ , (4)

where ()Kkd k ,,2,1 = are the target input values for the output values. We apply the
normalized values of the total number of detected faults for each component to the target
input values ()Kkd k ,,2,1 = for the output values, i.e., we consider the estimation and
prediction model so that the property of the interaction among software components
accumulates on the connection weights of neural networks.
By using the output values, , derived from above mentioned method, we
can obtain the total weight parameter kp which represents the level of importance for each
component by using the following equation:

www.intechopen.com

Reliability Analysis Methods for an Embedded Open Source Software 241

improve software quality and productivity. Software composition by object-oriented
technologies is expected as a very effective approach to improve software quality and
productivity. Considering the software composition, it is expected that even the host-
concentrated development environment can yield the quality of software system to some
extent regardless of the content of applications, because the software system is structured on
a single hardware environment. On the other hand, it is known that software systems under
distributed development environment are difficult to be developed, since the architecture of
such systems can have different development styles.
As mentioned above, software development environment has been changing into new
development paradigms such as concurrent distributed development environment and the
so-called open source project by using network computing technologies. Especially, such
Open Source Software (OSS) systems which serve as key components of critical
infrastructures in the society are still ever-expanding now (E-Soft Inc.).
Software reliability growth models (SRGM's) (Misra, 1983; Musa et al. 1987; Yamada &
Osaki, 1989; Yamada, 1991; Yamada 1994) have been applied to assess the reliability for
quality management and testing-progress control of software development. On the other
hand, the effective method of testing management for the new distributed development
paradigm as typified by the open source project has only a few presented (Kuk, 2006; Li et
al. 2004; MacCormack et al. 2006; Zhoum & Davis, 2005). In case of considering the effect of
the debugging process on an entire system in the development of a method of reliability
assessment for the OSS, it is necessary to grasp the deeply-intertwined factors, such as
programming paths, size of each component, skill of fault-reporters, and so on.
In this chapter, we discuss a useful reliability assessment method of an embedded OSS
developed under open source project. In order to consider the effect of each software
component on the reliability of an entire system under such open source project, we apply a
neural network (Karunanithi & Malaiya, 1996; Lippmann, 1987). Also, we propose a
software reliability growth model based on stochastic differential equations in order to
consider the active state of the open source project. Especially, we apply the intensity of
inherent software failures which means the software failure-occurrence rate or the fault
detection rate for the i -th component importance level to the interaction among
components by introducing an acceleration parameters. Also, we assume that the software
failure intensity depends on the time, and the software fault-reporting phenomena on the
bug tracking system keep an irregular state in terms of the number of detected faults.
Moreover, in order to consider the effect of each software component on the reliability of an
entire system under such open source software, we propose a method of reliability
assessment based on the Bayesian network (BN) for OSS. Furthermore, we analyze actual
software fault-detection count data to show numerical examples of software reliability
assessment considering the component importance levels for the open source project.

2. Reliability Assessment Method

2.1 Weight parameter for each component
In case of considering the effect of debugging process on an entire system on software
reliability assessment for open source development paradigm, it is necessary to grasp the
deeply-intertwined factors, such as programming paths, size of each component, skill of
fault-reporters, and so on.

In this chapter, we propose a method of reliability assessment based on the neural network
in terms of estimating the effect of each component on the entire system in a complicated
situation. Especially, we consider that our method based on neural network is useful to
assess the software reliability by using only data sets in bug tracking system on the website.
Also, we can apply the importance level of faults detected during the testing of each
component, the size of component, the skill of fault-reporters and so on, to the input data of
neural network.
We assume that ()JjIiwij ,,2,1;,,2,11  == are the connection weights from i -th unit on the

sensory layer to j -th unit on the association layer, and denote the
connection weights from j -th unit on the association layer to k -th unit on the response
layer. Moreover, ()Iixi ,,2,1 = represent the normalized input values of i -th unit on the
sensory layer, and ()Kkyk ,,2,1 = are the output values. We apply the normalized values of
fault level, operating system, fault repairer, fault reporter to the input values ()Iixi ,,2,1 = .
Then, the input-output rules of each unit on each layer are given by

h j = f wij
1 x i

i=1

I

∑








 , (1)

2

1
,

J

k jk j
j

y f w h
=

 
=  

 
∑ (2)

where a logistic activation function ()⋅f which is widely-known as a sigmoid function given
by the following equation:

f x()=
1

1+ e−θx , (3)

where θ is the gain of sigmoid function. We apply the multi-layered neural networks by
back-propagation in order to learn the interaction among software components (Karunanithi
& Malaiya, 1996; Lippmann, 1987). We define the error function by the following equation:

E =
1
2

yk − dk()2

k=1

K

∑ , (4)

where ()Kkd k ,,2,1 = are the target input values for the output values. We apply the
normalized values of the total number of detected faults for each component to the target
input values ()Kkd k ,,2,1 = for the output values, i.e., we consider the estimation and
prediction model so that the property of the interaction among software components
accumulates on the connection weights of neural networks.
By using the output values, , derived from above mentioned method, we
can obtain the total weight parameter kp which represents the level of importance for each
component by using the following equation:

www.intechopen.com

Mechatronic Systems, Simulation, Modelling and Control242

1

 (1, 2,...,).k
k K

k
k

yp k K
y

=

= =

∑

(5)

2.2 Reliability assessment for entire system
Let ()tS be the cumulative number of detected faults in the OSS system by operational time

()0≥tt . Suppose that ()tS takes on continuous real values. Since the latent faults in the OSS
system are detected and eliminated during the operational phase, ()tS gradually increases
as the operational procedures go on. Thus, under common assumptions for software
reliability growth modeling, we consider the following linear differential equation:

dS t()
dt

= λ t()S t(), (6)

where ()tλ is the intensity of inherent software failures at operational time t , and a non-
negative function. In most cases, the faults of OSS are not reported to the bug tracking
system at the same time as fault-detection but rather reported to the bug tracking system
with the time lag of fault-detection and reporting. As for the fault-reporting to the bug
tracking system, we consider that the software fault-reporting phenomena on the bug
tracking system keep an irregular state. Moreover, the addition and deletion of software
components is repeated under the development of OSS, i.e., we consider that the software
failure intensity depends on the time (Tamura & Yamada, 2007). Therefore, we suppose that

()tλ in Eq.(6) has the irregular fluctuation. That is, we extend Eq.(6) to the following
stochastic differential equation (Arnold, 1974):

dS t()
dt

= λ t()+ σγ t(){ }S t(), (7)

where σ is a positive constant representing a magnitude of the irregular fluctuation and

()tγ a standardized Gaussian white noise. We extend Eq.(7) to the following stochastic
differential equation of an Itô type:

dS t()= λ t()+
1
2

σ 2






S t()dt + σS t()dW t(), (8)

where ()tW is a one-dimensional Wiener process which is formally defined as an integration
of the white noise ()tγ with respect to time t . The Wiener process is a Gaussian process and
has the following properties:

()[] 100Pr ==W , (9)

()[] 0=Ε tW ,
(10)

Ε W t()W t'()[]= Min t,t '[], (11)

where means the probability of event A and

E Β[] represents the expected value of B
in the time interval],0(t .
By using Itô's formula (Arnold, 1974), we can obtain the solution of Eq.(7) under the initial
condition () vS =0 as follows (Yamada et al. 1994):

S t()= v ⋅ exp λ s()ds+ σW t()
0

t∫(), (12)

where v is the total number of faults detected for the previous software version. Using
solution process ()tS in Eq.(12), we can derive several software reliability measures.
Moreover, we define the intensity of inherent software failures, ()tλ , as follows:

λ s()
0

t∫ ds = pi 1− exp −α it[]()
i=1

K

∑ pi =1
i=1

K

∑








 , (13)

where (1, 2,...,)i i Kα = is an acceleration parameter of the intensity of inherent software

failures for the i -th component importance level,

pi pi =1
i=1

K∑

 


 the weight parameter for the

i -th component importance level, and

K the number of the applied component. Similarly,
we can apply the following S-shaped growth curve to Eq. (12) depending on the trend of
fault importance level:

λ s()
0

t∫ ds = pi 1− 1+ α it()exp −α it[]{ }
i=1

K

∑ . (14)

2.3 Reliability assessment measures

2.3.1 Expected Number of Detected Faults and Their Variances
We consider the mean number of faults detected up to operational time t . The density
function of ()tW is given by

f W t()()=
1
2πt

exp −
W t()2

2t





 





 
, (15)

Data collection on the current total number of detected faults is important to estimate the
situation of the progress on the software operational procedures. Since it is a random
variable in our model, its expected value and variance can be useful measures. We can
calculate them from Eq. (12) as follows (Yamada et al. 1994):

www.intechopen.com

Reliability Analysis Methods for an Embedded Open Source Software 243

1

 (1, 2,...,).k
k K

k
k

yp k K
y

=

= =

∑

(5)

2.2 Reliability assessment for entire system
Let ()tS be the cumulative number of detected faults in the OSS system by operational time

()0≥tt . Suppose that ()tS takes on continuous real values. Since the latent faults in the OSS
system are detected and eliminated during the operational phase, ()tS gradually increases
as the operational procedures go on. Thus, under common assumptions for software
reliability growth modeling, we consider the following linear differential equation:

dS t()
dt

= λ t()S t(), (6)

where ()tλ is the intensity of inherent software failures at operational time t , and a non-
negative function. In most cases, the faults of OSS are not reported to the bug tracking
system at the same time as fault-detection but rather reported to the bug tracking system
with the time lag of fault-detection and reporting. As for the fault-reporting to the bug
tracking system, we consider that the software fault-reporting phenomena on the bug
tracking system keep an irregular state. Moreover, the addition and deletion of software
components is repeated under the development of OSS, i.e., we consider that the software
failure intensity depends on the time (Tamura & Yamada, 2007). Therefore, we suppose that

()tλ in Eq.(6) has the irregular fluctuation. That is, we extend Eq.(6) to the following
stochastic differential equation (Arnold, 1974):

dS t()
dt

= λ t()+ σγ t(){ }S t(), (7)

where σ is a positive constant representing a magnitude of the irregular fluctuation and

()tγ a standardized Gaussian white noise. We extend Eq.(7) to the following stochastic
differential equation of an Itô type:

dS t()= λ t()+
1
2

σ 2






S t()dt + σS t()dW t(), (8)

where ()tW is a one-dimensional Wiener process which is formally defined as an integration
of the white noise ()tγ with respect to time t . The Wiener process is a Gaussian process and
has the following properties:

()[] 100Pr ==W , (9)

()[] 0=Ε tW ,
(10)

Ε W t()W t'()[]= Min t,t '[], (11)

where means the probability of event A and

E Β[] represents the expected value of B
in the time interval],0(t .
By using Itô's formula (Arnold, 1974), we can obtain the solution of Eq.(7) under the initial
condition () vS =0 as follows (Yamada et al. 1994):

S t()= v ⋅ exp λ s()ds+ σW t()
0

t∫(), (12)

where v is the total number of faults detected for the previous software version. Using
solution process ()tS in Eq.(12), we can derive several software reliability measures.
Moreover, we define the intensity of inherent software failures, ()tλ , as follows:

λ s()
0

t∫ ds = pi 1− exp −α it[]()
i=1

K

∑ pi =1
i=1

K

∑








 , (13)

where (1, 2,...,)i i Kα = is an acceleration parameter of the intensity of inherent software

failures for the i -th component importance level,

pi pi =1
i=1

K∑

 


 the weight parameter for the

i -th component importance level, and

K the number of the applied component. Similarly,
we can apply the following S-shaped growth curve to Eq. (12) depending on the trend of
fault importance level:

λ s()
0

t∫ ds = pi 1− 1+ α it()exp −α it[]{ }
i=1

K

∑ . (14)

2.3 Reliability assessment measures

2.3.1 Expected Number of Detected Faults and Their Variances
We consider the mean number of faults detected up to operational time t . The density
function of ()tW is given by

f W t()()=
1
2πt

exp −
W t()2

2t





 





 
, (15)

Data collection on the current total number of detected faults is important to estimate the
situation of the progress on the software operational procedures. Since it is a random
variable in our model, its expected value and variance can be useful measures. We can
calculate them from Eq. (12) as follows (Yamada et al. 1994):

www.intechopen.com

Mechatronic Systems, Simulation, Modelling and Control244

Ε S t()[]= v ⋅ exp λ s()ds+
σ 2

20

t∫ t








 , (16)

Var S t()[]≡ Ε S t()− Ε S t()[]{ }
2

 

 

= v 2 ⋅ exp 2 λ s()ds+ σ 2t
0

t∫()⋅ exp σ 2t()−1{ },
 (17)

where

Var S t()[] is the variance of the number of faults detected up to time t .

2.3.2 Mean Time between Software Failures
The instantaneous mean time between software failures (which is denoted by MTBFI) is
useful to measure the property of the frequency of software failure-occurrence.
First, the instantaneous MTBF is approximately given by

MTBFI t()=
1

Ε
dS t()
dt











.
(18)

Therefore, we have the following instantaneous MTBF:

MTBFI t()=
1

v λ t()+
1
2

σ 2





 ⋅ exp λ s()ds+

σ 2

2
t

0

t∫










.
(19)

Also, the cumulative MTBF is approximately given by

MTBFC t()=
t

Ε S t()[]
. (20)

Therefore, we have the following cumulative MTBF:

MTBFC t()=
t

v ⋅ exp λ s()ds+
σ 2

2
t

0

t∫










.
(21)

2.3.3 Mean Time between Software Failures
Since a one-dimensional Wiener process is a Gaussian process,

logS t() is a Gaussian
process. We can derive its expected value and variance as follows:

Ε logS t()[]= logv + λ(s)
0

t∫ ds, (22)

Var logS t()[]= σ 2t. (23)

Therefore, we have the following probability for the event

logS t()≥ x{ }:

Pr logS t()≤ x[]= Φ
x − logv − λ(s)

0

t∫ ds

σ t














, (24)

where means the probability of event A and

Φ ⋅() of the standard normal
distribution function can defined as follows:

Φ x()=
1
2π

exp −
z2

2








 dz−∞

x∫ . (25)

Therefore, the transitional probability of

S t() is given by the following equation:

Pr logS t()≤ y S(0) = v[]= Φ
logv + log y + λ(s)

0

t∫ ds

σ t














. (26)

3. Software Reliability Assessment Procedures

The procedures of reliability assessment in our method for OSS are shown as follows:
1. We processes the data file in terms of the data in bug-tracking system of the specified

OSS for reliability assessment.
2. Using the fault-detection count data obtained from bug-tracking system, we process

the input data for neural network.

3. We estimate the weight parameters for each component by using
the neural network.

4. Also, the unknown parameters σ and included in our model are
estimated by using the least-square method of Marquardt-Levenberg.

5. We show the expected total number of detected faults, the instantaneous fault-
detection rate, and the cumulative MTBF as software reliability assessment measures,
and the predicted relative error.

www.intechopen.com

Reliability Analysis Methods for an Embedded Open Source Software 245

Ε S t()[]= v ⋅ exp λ s()ds+
σ 2

20

t∫ t








 , (16)

Var S t()[]≡ Ε S t()− Ε S t()[]{ }
2

 

 

= v 2 ⋅ exp 2 λ s()ds+ σ 2t
0

t∫()⋅ exp σ 2t()−1{ },
 (17)

where

Var S t()[] is the variance of the number of faults detected up to time t .

2.3.2 Mean Time between Software Failures
The instantaneous mean time between software failures (which is denoted by MTBFI) is
useful to measure the property of the frequency of software failure-occurrence.
First, the instantaneous MTBF is approximately given by

MTBFI t()=
1

Ε
dS t()
dt











.
(18)

Therefore, we have the following instantaneous MTBF:

MTBFI t()=
1

v λ t()+
1
2

σ 2





 ⋅ exp λ s()ds+

σ 2

2
t

0

t∫










.
(19)

Also, the cumulative MTBF is approximately given by

MTBFC t()=
t

Ε S t()[]
. (20)

Therefore, we have the following cumulative MTBF:

MTBFC t()=
t

v ⋅ exp λ s()ds+
σ 2

2
t

0

t∫










.
(21)

2.3.3 Mean Time between Software Failures
Since a one-dimensional Wiener process is a Gaussian process,

logS t() is a Gaussian
process. We can derive its expected value and variance as follows:

Ε logS t()[]= logv + λ(s)
0

t∫ ds, (22)

Var logS t()[]= σ 2t. (23)

Therefore, we have the following probability for the event

logS t()≥ x{ }:

Pr logS t()≤ x[]= Φ
x − logv − λ(s)

0

t∫ ds

σ t














, (24)

where means the probability of event A and

Φ ⋅() of the standard normal
distribution function can defined as follows:

Φ x()=
1
2π

exp −
z2

2








 dz−∞

x∫ . (25)

Therefore, the transitional probability of

S t() is given by the following equation:

Pr logS t()≤ y S(0) = v[]= Φ
logv + log y + λ(s)

0

t∫ ds

σ t














. (26)

3. Software Reliability Assessment Procedures

The procedures of reliability assessment in our method for OSS are shown as follows:
1. We processes the data file in terms of the data in bug-tracking system of the specified

OSS for reliability assessment.
2. Using the fault-detection count data obtained from bug-tracking system, we process

the input data for neural network.

3. We estimate the weight parameters for each component by using
the neural network.

4. Also, the unknown parameters σ and included in our model are
estimated by using the least-square method of Marquardt-Levenberg.

5. We show the expected total number of detected faults, the instantaneous fault-
detection rate, and the cumulative MTBF as software reliability assessment measures,
and the predicted relative error.

www.intechopen.com

Mechatronic Systems, Simulation, Modelling and Control246

4. Portability Assessment

4.1 Prior information for BN
Applying SRGM's for prior information in case of using BN, we analyze software fault-
detection count data based on an NHPP model. Considering stochastic characteristics
associated with the fault-detection procedures in the testing phase, we treat

N(t), t ≥ 0{ } as
a nonnegative counting process where a random variable

N(t) means the cumulative
number of faults detected up to testing-time

t . The fault-detection process

N(t), t ≥ 0{ } are
described as follows:

[] { } [] ()()
Pr () exp () 0,1, 2,...

!

nH t
N t n H t n

n
= = − = (27)

In Eq. (27), means the probability of event A, and

H(t) is called a mean value function
which represents the expected cumulative number of faults detected in the testing-time
interval

(0, t] , where

h(t) is called an intensity function which represents the fault-
detection rate per one fault. From Eq. (27), the fault-detection rate per one remaining fault,
which characterizes the software reliability growth in the fault-detection phenomenon, is
defined as

d(t) ≡
h(t)

a −H(t)
, (28)

where

a is the expected number of the initial inherent faults. We can analyze software fault-
detection count data by using an SRGM based on the NHPP, because the NHPP models
have been discussed in many literatures since they can be easily applied in the software
reliability assessment. The SRGM based on an NHPP is based on the following assumptions
:

 A software fault-detection phenomenon can be described by an NHPP.
 Software faults detected during the testing-phase are corrected certainly and

completely, i.e., no new faults are introduced into the software system during
the debugging.

It is empirically known that the cumulative number of detected faults shows an exponential
growth curve when a software system consisting of several software components are tested
in the testing-phase. On the other hand, the cumulative number of faults describes an S-
shaped growth curve when a newly developed software system is tested. Thus, the former
case is described by the exponential SRGM based on an NHPP, and the latter case is
described by the delayed S-shaped SRGM which is also based on an NHPP. We describe the
structure of the mean value function defined in the following, because an NHPP model is
characterized by its mean value function. The mean value function of the exponential
SRGM,

He (t) , is characterized by the following function:

He (t) = a 1− e−bt() a > 0, b > 0(), (29)

where

He (t) represents the expected cumulative number of faults detected up to the module
testing time

t t ≥ 0(). In Eq. (29),

a is the expected number of initial inherent faults, and

b
the software failure rate per inherent fault. In addition, the intensity function of the
exponential SRGM is given as follows:

he (t) = abe−bt , (30)

where

he (t) represents the instantaneous fault-detection rate at the module testing time

t t ≥ 0().
Similarly, the mean value function of the delayed S-shaped SRGM,

Hs(t) , is represented as :

Hs(t) = a 1− 1+ bt()e−bt[] a > 0, b > 0(), (31)

where

Hs(t) represents the expected cumulative number of faults detected up to the module
testing time

t t ≥ 0(). In Eq. (6),

a is the expected number of initial inherent faults, and

b
the software failure rate per inherent fault. In addition, the intensity function of the delayed
S-shaped SRGM is given as follows :

hs(t) = ab2te−bt
 (32)

where

hs(t) represents the instantaneous fault-detection rate at the module testing time

t t ≥ 0().
In this chapter, we use Mean Squared Errors (MSE) discussed in 5.3 in order to select a
better SRGM, Exponential SRGM or Delayed S-shaped SRGM for each software component.

4.2 Reliability assessment for OSS porting
We can estimate the probability of the phenomenon

Z based on the following phenomena

X and

Y :

X : The fault is detected at the component

X .

Y : The fault is detected at the component

Y .

Z : The fault is detected at the Kernel component.
BN for above mentioned phenomena is shown in Fig. 1.

Fig. 1. The failure-occurrence probability model based on BN.

www.intechopen.com

Reliability Analysis Methods for an Embedded Open Source Software 247

4. Portability Assessment

4.1 Prior information for BN
Applying SRGM's for prior information in case of using BN, we analyze software fault-
detection count data based on an NHPP model. Considering stochastic characteristics
associated with the fault-detection procedures in the testing phase, we treat

N(t), t ≥ 0{ } as
a nonnegative counting process where a random variable

N(t) means the cumulative
number of faults detected up to testing-time

t . The fault-detection process

N(t), t ≥ 0{ } are
described as follows:

[] { } [] ()()
Pr () exp () 0,1, 2,...

!

nH t
N t n H t n

n
= = − = (27)

In Eq. (27), means the probability of event A, and

H(t) is called a mean value function
which represents the expected cumulative number of faults detected in the testing-time
interval

(0, t] , where

h(t) is called an intensity function which represents the fault-
detection rate per one fault. From Eq. (27), the fault-detection rate per one remaining fault,
which characterizes the software reliability growth in the fault-detection phenomenon, is
defined as

d(t) ≡
h(t)

a −H(t)
, (28)

where

a is the expected number of the initial inherent faults. We can analyze software fault-
detection count data by using an SRGM based on the NHPP, because the NHPP models
have been discussed in many literatures since they can be easily applied in the software
reliability assessment. The SRGM based on an NHPP is based on the following assumptions
:

 A software fault-detection phenomenon can be described by an NHPP.
 Software faults detected during the testing-phase are corrected certainly and

completely, i.e., no new faults are introduced into the software system during
the debugging.

It is empirically known that the cumulative number of detected faults shows an exponential
growth curve when a software system consisting of several software components are tested
in the testing-phase. On the other hand, the cumulative number of faults describes an S-
shaped growth curve when a newly developed software system is tested. Thus, the former
case is described by the exponential SRGM based on an NHPP, and the latter case is
described by the delayed S-shaped SRGM which is also based on an NHPP. We describe the
structure of the mean value function defined in the following, because an NHPP model is
characterized by its mean value function. The mean value function of the exponential
SRGM,

He (t) , is characterized by the following function:

He (t) = a 1− e−bt() a > 0, b > 0(), (29)

where

He (t) represents the expected cumulative number of faults detected up to the module
testing time

t t ≥ 0(). In Eq. (29),

a is the expected number of initial inherent faults, and

b
the software failure rate per inherent fault. In addition, the intensity function of the
exponential SRGM is given as follows:

he (t) = abe−bt , (30)

where

he (t) represents the instantaneous fault-detection rate at the module testing time

t t ≥ 0().
Similarly, the mean value function of the delayed S-shaped SRGM,

Hs(t) , is represented as :

Hs(t) = a 1− 1+ bt()e−bt[] a > 0, b > 0(), (31)

where

Hs(t) represents the expected cumulative number of faults detected up to the module
testing time

t t ≥ 0(). In Eq. (6),

a is the expected number of initial inherent faults, and

b
the software failure rate per inherent fault. In addition, the intensity function of the delayed
S-shaped SRGM is given as follows :

hs(t) = ab2te−bt
 (32)

where

hs(t) represents the instantaneous fault-detection rate at the module testing time

t t ≥ 0().
In this chapter, we use Mean Squared Errors (MSE) discussed in 5.3 in order to select a
better SRGM, Exponential SRGM or Delayed S-shaped SRGM for each software component.

4.2 Reliability assessment for OSS porting
We can estimate the probability of the phenomenon

Z based on the following phenomena

X and

Y :

X : The fault is detected at the component

X .

Y : The fault is detected at the component

Y .

Z : The fault is detected at the Kernel component.
BN for above mentioned phenomena is shown in Fig. 1.

Fig. 1. The failure-occurrence probability model based on BN.

www.intechopen.com

Mechatronic Systems, Simulation, Modelling and Control248

Fig. 1 means that the fault is detected at the component

X or component

Y as a result of
the occurrence of phenomenon

Z . Therefore, the failure probability of Kernel component is
given by the following equation based on the Bayesian theory:

pZ =
xy ′ pZbxby

xy ′ pZ + ′ x ′ y ′ pZ
+

xy ′ pZbxby
xy ′ pZ + ′ x ′ y ′ pZ

+
xy ′ pZbxby

xy ′ pZ + ′ x ′ y ′ pZ
+

xy ′ pZbxby
xy ′ pZ + ′ x ′ y ′ pZ

,

 (33)

where

x is the probability of

X under the occurrence of phenomenon

Z . Similarly,

y is
the probability of

Y under the occurrence of phenomenon

Z . The probability of

X and

Y
are given by the

bx and

by previously. Also,

p means the

1− p.

′ pZ is the prior probability
of

Z ,

′ pZ is updated by using

′ pZ = pZ . The prior information

bx and

by are given by the
intensity function of NHPP model and SDE model applied for each component of OSS. We
can estimate the portability of embedded software based on OSS by using Eq. (33).

5. Numerical Examples

5.1 Embedded OSS
We focus on the BusyBox (Erik Andersen) which is one of the embedded open source
software developed under an open source project. The BusyBox combines tiny versions of
many common UNIX utilities into a single small executable. It provides replacements for
most of the utilities you usually find in GNU fileutils, shellutils, etc.
The fault-detection count data used in this chapter are collected in the bug tracking system
on the website of BUSYBOX in August 2008.

5.2 Reliability assessment considering component level
Estimating the weight parameters based on the number of source lines of code for each
component, we analyze the actual data for the case of

v =14, p1 = 0.28252, p2 = 0.07213, α̂ 3 = 0.64531.
In case of the exponential intensity function of inherent software failures in Eq. (30), the
following model parameters have been estimated:

α̂ 1 = 0.324667, α̂ 2 = 0.116271, α̂ 3 = 0.121832, σ̂ = 0.153831.

In case of the S-shaped intensity function of inherent software failures in Eq. (32), the
following model parameters have been estimated:

α̂ 1 = 0.141554, α̂ 2 = 0.168274, α̂ 3 = 0.567777, σ̂ = 0.153845.
The estimated expected number of detected faults,

Ê[S(t)] , in case of the exponential
intensity function of inherent software failures, is shown in Fig. 2. Also, Fig. 3 shows the

estimated variance of the number of faults. From Fig. 3, we find that the variance of the
number of detected faults grows as the time elapses after the release.

Fig. 2. The estimated expected cumulative number of detected faults.

Fig. 3. The estimated variance of the number of detected faults.

Fig. 4. The estimated MTBFC.

www.intechopen.com

Reliability Analysis Methods for an Embedded Open Source Software 249

Fig. 1 means that the fault is detected at the component

X or component

Y as a result of
the occurrence of phenomenon

Z . Therefore, the failure probability of Kernel component is
given by the following equation based on the Bayesian theory:

pZ =
xy ′ pZbxby

xy ′ pZ + ′ x ′ y ′ pZ
+

xy ′ pZbxby
xy ′ pZ + ′ x ′ y ′ pZ

+
xy ′ pZbxby

xy ′ pZ + ′ x ′ y ′ pZ
+

xy ′ pZbxby
xy ′ pZ + ′ x ′ y ′ pZ

,

 (33)

where

x is the probability of

X under the occurrence of phenomenon

Z . Similarly,

y is
the probability of

Y under the occurrence of phenomenon

Z . The probability of

X and

Y
are given by the

bx and

by previously. Also,

p means the

1− p.

′ pZ is the prior probability
of

Z ,

′ pZ is updated by using

′ pZ = pZ . The prior information

bx and

by are given by the
intensity function of NHPP model and SDE model applied for each component of OSS. We
can estimate the portability of embedded software based on OSS by using Eq. (33).

5. Numerical Examples

5.1 Embedded OSS
We focus on the BusyBox (Erik Andersen) which is one of the embedded open source
software developed under an open source project. The BusyBox combines tiny versions of
many common UNIX utilities into a single small executable. It provides replacements for
most of the utilities you usually find in GNU fileutils, shellutils, etc.
The fault-detection count data used in this chapter are collected in the bug tracking system
on the website of BUSYBOX in August 2008.

5.2 Reliability assessment considering component level
Estimating the weight parameters based on the number of source lines of code for each
component, we analyze the actual data for the case of

v =14, p1 = 0.28252, p2 = 0.07213, α̂ 3 = 0.64531.
In case of the exponential intensity function of inherent software failures in Eq. (30), the
following model parameters have been estimated:

α̂ 1 = 0.324667, α̂ 2 = 0.116271, α̂ 3 = 0.121832, σ̂ = 0.153831.

In case of the S-shaped intensity function of inherent software failures in Eq. (32), the
following model parameters have been estimated:

α̂ 1 = 0.141554, α̂ 2 = 0.168274, α̂ 3 = 0.567777, σ̂ = 0.153845.
The estimated expected number of detected faults,

Ê[S(t)] , in case of the exponential
intensity function of inherent software failures, is shown in Fig. 2. Also, Fig. 3 shows the

estimated variance of the number of faults. From Fig. 3, we find that the variance of the
number of detected faults grows as the time elapses after the release.

Fig. 2. The estimated expected cumulative number of detected faults.

Fig. 3. The estimated variance of the number of detected faults.

Fig. 4. The estimated MTBFC.

www.intechopen.com

Mechatronic Systems, Simulation, Modelling and Control250

Moreover, the estimated MTBFC is also plotted in Fig. 4. Fig. 4 shows that the MTBF increase
as the operational procedures go on.
Furthermore, Fig. 5 shows the estimated transitional probability of Eq. (26) in case of the
exponential intensity function of inherent software failures.

Fig. 5. The estimated transitional probability of

S(t) .

5.3 Assessment Measures for OSS porting
We show numerical example in terms of OSS porting by using the fault-detection count data
registered in the bug tracking system in actual open source project. In this chapter, we apply
the fault data of BusyBox that is developed and used as Embedded OSS.
We focus on the buildroot and the uClibc which is one of the components in the Busybox.
We apply the mean value functions of exponential SRGM and delayed S-shaped SRGM for
each components. We show the result of parameter estimation and Mean Square Error
(MSE) in Tables 1-3. Moreover, we show the estimation of expected values of the cumulative
number of detected faults in Figs. 6-8. We define the error function in Eq. (34) by the
following equation :

(34)

where

yk are the actual measurement values, and

ŷk are the predictive values. The MSE
indicates that the selected model fits better to the observed data as MSE becomes small.

Table 1. The results of estimated unknown parameter and value of MSE for each SRGM in
BusyBox.

Table 2. The results of estimated unknown parameter and value of MSE for each SRGM in
buildroot.

Table 3. The results of estimated unknown parameter and value of MSE for each SRGM in
uClibc.

Fig. 6. The estimated expected cumulative number of detected faults for buildroot.

Fig. 7. The estimated expected cumulative number of detected faults for uClibc.

www.intechopen.com

Reliability Analysis Methods for an Embedded Open Source Software 251

Moreover, the estimated MTBFC is also plotted in Fig. 4. Fig. 4 shows that the MTBF increase
as the operational procedures go on.
Furthermore, Fig. 5 shows the estimated transitional probability of Eq. (26) in case of the
exponential intensity function of inherent software failures.

Fig. 5. The estimated transitional probability of

S(t) .

5.3 Assessment Measures for OSS porting
We show numerical example in terms of OSS porting by using the fault-detection count data
registered in the bug tracking system in actual open source project. In this chapter, we apply
the fault data of BusyBox that is developed and used as Embedded OSS.
We focus on the buildroot and the uClibc which is one of the components in the Busybox.
We apply the mean value functions of exponential SRGM and delayed S-shaped SRGM for
each components. We show the result of parameter estimation and Mean Square Error
(MSE) in Tables 1-3. Moreover, we show the estimation of expected values of the cumulative
number of detected faults in Figs. 6-8. We define the error function in Eq. (34) by the
following equation :

(34)

where

yk are the actual measurement values, and

ŷk are the predictive values. The MSE
indicates that the selected model fits better to the observed data as MSE becomes small.

Table 1. The results of estimated unknown parameter and value of MSE for each SRGM in
BusyBox.

Table 2. The results of estimated unknown parameter and value of MSE for each SRGM in
buildroot.

Table 3. The results of estimated unknown parameter and value of MSE for each SRGM in
uClibc.

Fig. 6. The estimated expected cumulative number of detected faults for buildroot.

Fig. 7. The estimated expected cumulative number of detected faults for uClibc.

www.intechopen.com

Mechatronic Systems, Simulation, Modelling and Control252

Fig. 8. The instantaneous fault-detection rate by using BN.

We can apply the exponential SRGM for buildroot from Fig. 6 and Table 2. On the other
hand, we can apply the delayed S-shaped SRGM for uClibc from Fig. 7 and Table 3. Fig. 8 is
shown the instantaneous fault-detection rate by using BN. From Fig. 8, we find that the
fault-detection rate can be used as the portability assessment measure for the embedded
OSS by using BN.

6. Conclusion

In this chapter, we have discussed the methods of reliability analysis for an embedded OSS
developed under on an open source project. Especially, we have proposed a stochastic
differential equation model in order to consider the active state of the open source project,
where we have assumed that the software failure intensity depends on the time, and the
software fault-reporting phenomena on the bug tracking system keep an irregular state.
Moreover, we have derived several assessment measures in terms of imperfect debugging of
an entire system under such open source development paradigm. Especially, we have
applied the exponential and S-shaped intensity functions of inherent software failures for
the

i -th component importance level to the interaction among components by using an
acceleration parameters. Furthermore, we have shown the transitional probability of

S(t) in
Eq. (26).
In case of considering the effect of debugging process on an entire system on software
reliability assessment for open source projects, it is necessary to grasp the deeply-
intertwined factors. In this chapter, we have shown that our method can describe such
deeply-intertwined factors. Especially, we have applied BN technique in order to consider
the effect of each software component on the reliability of an entire system under such open
source development paradigm. By using the BN, we have proposed the method of reliability
assessment incorporating the interaction among software components. Moreover, we have
proposed the fault-detection rate based on BN used as the portability assessment measure
for the embedded OSS.
Finally, we have focused on an embedded OSS developed under open source projects. New
distributed development paradigm typified by such open source project will evolve at a

rapid pace in the future. Our method is useful as the method of reliability assessment
incorporating the importance of each component for an entire system.

7. Acknowledgments

This work was supported in part by the Grant-in-Aid for Young Scientists (B), Grant No.
21700044 from the Ministry of Education, Culture, Sports, Science, and Technology of Japan.

8. References

Arnold, L. (1974) Stochastic Differential Equations-Theory and Applications, John Wiley & Sons,
New York

Erik Andersen, BUSYBOX. [Online]. Available: http://www.busybox.net/E-Soft Inc.,
Internet Research Reports. [Online].
Available: http://www.securityspace.com/s_survey/data/

Kuk, G. (2006) Strategic interaction and knowledge sharing in the KDE developer mailing
list, Informs J. Management Science, Vol. 52, No. 7, pp. 1031-1042

Karunanithi, N. & Malaiya, Y. K. (1996) Neural networks for software reliability
engineering, Handbook of Software Reliability Engineering M. R. Lyu (ed.), pp. 699-728,
McGraw-Hill, New York

Li, P.; Shaw, M.; Herbsleb, J.; Ray, B. & Santhanam, P. (2004). Empirical evaluation of defect
projection models for widely-deployed production software systems, Proceedings of
the 12th International Symposium on the Foundations of Software Engineering (FSE-12),
pp. 263-272

Lippmann, R. P. (1987) An introduction to computing with neural networks, IEEE Trans.
ASSP, Vol. 4, No. 2, pp. 4-22

MacCormack, A.; Rusnak, J. & Baldwin, C.Y. (2006) Exploring the structure of complex
software designs: an empirical study of open source and proprietary code, Informs
J. Management Science, Vol. 52, No. 7, pp. 1015-1030

Misra, P. N. (1983) Software reliability analysis, IBM Systems J., Vol. 22, No. 3, pp. 262-270
Musa, J. D.; Iannino, A. & Okumoto, K. (1987) Software Reliability: Measurement, Prediction,

Application, McGraw-Hill, New York
Takahashi, M. (1998) The Method of Effort Estimation under Client/Server System Development:

Models and Applications (in Japanese), Soft Research Center, Tokyo
Tamura, Y. & Yamada, S. (2007) Software reliability assessment and optimal version-

upgrade problem for open source software, Proceedings of the 2007 IEEE International
Conference on Systems, Man, and Cybernetics, pp. 1333-1338 Montreal, Canada

Tamura, Y. & Yamada, S. (2008) A method of reliability assessment based on deterministic
chaos theory for an open source software, Proceedings of the Second IEEE
International Conference on Secure System Integration and Reliability Improvement, pp.
60-66, Yokohama, Japan

Tamura, Y. & Yamada, S. (2008) Comparison of software reliability assessment methods
based on deterministic chaos theory for an open source software, Proceedings of the
2008 IEEE International Conference on Systems, Man, and Cybernetics, pp. 3606-3611,
Suntec, Singapore

www.intechopen.com

Reliability Analysis Methods for an Embedded Open Source Software 253

Fig. 8. The instantaneous fault-detection rate by using BN.

We can apply the exponential SRGM for buildroot from Fig. 6 and Table 2. On the other
hand, we can apply the delayed S-shaped SRGM for uClibc from Fig. 7 and Table 3. Fig. 8 is
shown the instantaneous fault-detection rate by using BN. From Fig. 8, we find that the
fault-detection rate can be used as the portability assessment measure for the embedded
OSS by using BN.

6. Conclusion

In this chapter, we have discussed the methods of reliability analysis for an embedded OSS
developed under on an open source project. Especially, we have proposed a stochastic
differential equation model in order to consider the active state of the open source project,
where we have assumed that the software failure intensity depends on the time, and the
software fault-reporting phenomena on the bug tracking system keep an irregular state.
Moreover, we have derived several assessment measures in terms of imperfect debugging of
an entire system under such open source development paradigm. Especially, we have
applied the exponential and S-shaped intensity functions of inherent software failures for
the

i -th component importance level to the interaction among components by using an
acceleration parameters. Furthermore, we have shown the transitional probability of

S(t) in
Eq. (26).
In case of considering the effect of debugging process on an entire system on software
reliability assessment for open source projects, it is necessary to grasp the deeply-
intertwined factors. In this chapter, we have shown that our method can describe such
deeply-intertwined factors. Especially, we have applied BN technique in order to consider
the effect of each software component on the reliability of an entire system under such open
source development paradigm. By using the BN, we have proposed the method of reliability
assessment incorporating the interaction among software components. Moreover, we have
proposed the fault-detection rate based on BN used as the portability assessment measure
for the embedded OSS.
Finally, we have focused on an embedded OSS developed under open source projects. New
distributed development paradigm typified by such open source project will evolve at a

rapid pace in the future. Our method is useful as the method of reliability assessment
incorporating the importance of each component for an entire system.

7. Acknowledgments

This work was supported in part by the Grant-in-Aid for Young Scientists (B), Grant No.
21700044 from the Ministry of Education, Culture, Sports, Science, and Technology of Japan.

8. References

Arnold, L. (1974) Stochastic Differential Equations-Theory and Applications, John Wiley & Sons,
New York

Erik Andersen, BUSYBOX. [Online]. Available: http://www.busybox.net/E-Soft Inc.,
Internet Research Reports. [Online].
Available: http://www.securityspace.com/s_survey/data/

Kuk, G. (2006) Strategic interaction and knowledge sharing in the KDE developer mailing
list, Informs J. Management Science, Vol. 52, No. 7, pp. 1031-1042

Karunanithi, N. & Malaiya, Y. K. (1996) Neural networks for software reliability
engineering, Handbook of Software Reliability Engineering M. R. Lyu (ed.), pp. 699-728,
McGraw-Hill, New York

Li, P.; Shaw, M.; Herbsleb, J.; Ray, B. & Santhanam, P. (2004). Empirical evaluation of defect
projection models for widely-deployed production software systems, Proceedings of
the 12th International Symposium on the Foundations of Software Engineering (FSE-12),
pp. 263-272

Lippmann, R. P. (1987) An introduction to computing with neural networks, IEEE Trans.
ASSP, Vol. 4, No. 2, pp. 4-22

MacCormack, A.; Rusnak, J. & Baldwin, C.Y. (2006) Exploring the structure of complex
software designs: an empirical study of open source and proprietary code, Informs
J. Management Science, Vol. 52, No. 7, pp. 1015-1030

Misra, P. N. (1983) Software reliability analysis, IBM Systems J., Vol. 22, No. 3, pp. 262-270
Musa, J. D.; Iannino, A. & Okumoto, K. (1987) Software Reliability: Measurement, Prediction,

Application, McGraw-Hill, New York
Takahashi, M. (1998) The Method of Effort Estimation under Client/Server System Development:

Models and Applications (in Japanese), Soft Research Center, Tokyo
Tamura, Y. & Yamada, S. (2007) Software reliability assessment and optimal version-

upgrade problem for open source software, Proceedings of the 2007 IEEE International
Conference on Systems, Man, and Cybernetics, pp. 1333-1338 Montreal, Canada

Tamura, Y. & Yamada, S. (2008) A method of reliability assessment based on deterministic
chaos theory for an open source software, Proceedings of the Second IEEE
International Conference on Secure System Integration and Reliability Improvement, pp.
60-66, Yokohama, Japan

Tamura, Y. & Yamada, S. (2008) Comparison of software reliability assessment methods
based on deterministic chaos theory for an open source software, Proceedings of the
2008 IEEE International Conference on Systems, Man, and Cybernetics, pp. 3606-3611,
Suntec, Singapore

www.intechopen.com

Mechatronic Systems, Simulation, Modelling and Control254

Umar, A. (1993) Distributed Computing and Client-Server Systems, Prentice Hall, Englewood
Cliffs, New Jersey

Vaughn, L. T. (1994) Client/Server System Design and Implementation, McGraw-Hill, New York
Yamada, S. & Osaki, S. (1985) Software reliability growth modeling: Models and

applications, IEEE Trans. Software Engineering, Vol. SE-11, No. 12, pp. 1431-1437
Yamada, S. (1991) Software quality/reliability measurement and assessment: Software

reliability growth models and data analysis, J. information Processing, Vol. 14, No. 3,
pp. 254-266

Yamada, S. (1994). Software Reliability Models: Fundamentals and Applications (in Japanese),
JUSE Press, Tokyo

Yamada, S.; Kimura, M.; Tanaka, H. & Osaki, S. (1994) Software reliability measurement and
assessment with stochastic differential equations, IEICE Trans. Fundamentals, Vol.
E77-A, No. 1, pp. 109-116

Zhoum, Y. & Davis, J. (2005) Open source software reliability model: an empirical approach,
Proceedings of the Workshop on Open Source Software Engineering (WOSSE), pp.67-72,
Vol. 30, No. 4

www.intechopen.com

Mechatronic Systems Simulation Modeling and Control

Edited by Annalisa Milella Donato Di Paola and Grazia Cicirelli

ISBN 978-953-307-041-4

Hard cover, 298 pages

Publisher InTech

Published online 01, March, 2010

Published in print edition March, 2010

InTech Europe

University Campus STeP Ri

InTech China

Unit 405, Office Block, Hotel Equatorial Shanghai

This book collects fifteen relevant papers in the field of mechatronic systems. Mechatronics, the synergistic

blend of mechanics, electronics, and computer science, integrates the best design practices with the most

advanced technologies to realize high-quality products, guaranteeing at the same time a substantial reduction

in development time and cost. Topics covered in this book include simulation, modelling and control of

electromechanical machines, machine components, and mechatronic vehicles. New software tools, integrated

development environments, and systematic design methods are also introduced. The editors are extremely

grateful to all the authors for their valuable contributions. The book begins with eight chapters related to

modelling and control of electromechanical machines and machine components. Chapter 9 presents a

nonlinear model for the control of a three-DOF helicopter. A helicopter model and a control method of the

model are also presented and validated experimentally in Chapter 10. Chapter 11 introduces a planar

laboratory testbed for the simulation of autonomous proximity manoeuvres of a uniquely control actuator

configured spacecraft. Integrated methods of simulation and Real-Time control aiming at improving the

efficiency of an iterative design process of control systems are presented in Chapter 12. Reliability analysis

methods for an embedded Open Source Software (OSS) are discussed in Chapter 13. A new specification

technique for the conceptual design of self-optimizing mechatronic systems is presented in Chapter 14.

Chapter 15 provides a general overview of design specificities including mechanical and control considerations

for micro-mechatronic structures. It also presents an example of a new optimal synthesis method to design

topology and associated robust control methodologies for monolithic compliant microstructures.

How to reference

In order to correctly reference this scholarly work, feel free to copy and paste the following:

Yoshinobu Tamura and Shigeru Yamada (2010). Reliability Analysis Methods for an Embedded Open Source

Software, Mechatronic Systems Simulation Modeling and Control, Annalisa Milella Donato Di Paola and Grazia

Cicirelli (Ed.), ISBN: 978-953-307-041-4, InTech, Available from:

http://www.intechopen.com/books/mechatronic-systems-simulation-modeling-and-control/reliability-analysis-

methods-for-an-embedded-open-source-software

www.intechopen.com

Slavka Krautzeka 83/A

51000 Rijeka, Croatia

Phone: +385 (51) 770 447

Fax: +385 (51) 686 166

www.intechopen.com

No.65, Yan An Road (West), Shanghai, 200040, China

Phone: +86-21-62489820

Fax: +86-21-62489821

© 2010 The Author(s). Licensee IntechOpen. This chapter is distributed

under the terms of the Creative Commons Attribution-NonCommercial-

ShareAlike-3.0 License, which permits use, distribution and reproduction for

non-commercial purposes, provided the original is properly cited and

derivative works building on this content are distributed under the same

license.

