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1. Introduction 
 

Many software systems have been produced under host-concentrated development 
environment. In such host-concentrated one, the progress of software development tools has 
caused several issues. For instance, one of them is that all of software development 
management has to be suspended when the host computer is down. Since the late 1980s, 
personal computers have been spread on our daily life instead of conventional mainframe 
machines, because the price and performance of personal computers have been extremely 
improved. Hence, computer systems which aid the software development have been also 
changing into UNIX workstations or personal computers to reduce the development cost. A 
Client/Server System (CSS) which is a new development method have come into existence 
as a result of the progress of networking technology by UNIX systems. Such CSS's have 
been used more and more in the period of network computing. The CSS's are horizontally 
distributed systems which consist of a server and client computers. The CSS's differ from 
conventional host/terminal computer systems from the point of view that the CSS's have 
the property that each computer on network can be a server or client as well. Thus, the CSS's 
have expanded with the technique of internet. At present, the software development 
environment has been changing into distributed one because of such progress of network 
computing technologies. For instance, basic CSS's which consists of 2-layers structure have 
been expanded to 

 

N -layers one, because such CSS's can be easily and rapidly introduced 
for the purpose of software development with low cost. The recent progress of network 
technologies in social systems is remarkable. As a result of the progress, software 
development environment has been changing into new development paradigm in such 
CSS's and distributed development by using network computing technologies (Takahashi, 
1998; Umar, 1993; Vaughn, 1994). 
The methodology of the object-oriented design and analysis is a feature of such distributed 
development environment and greatly successful in the field of programming-language, 
simulation, GUI (graphical user interface), and constructing on database in the software 
development. A general idea of object-oriented design and analysis is developed as a 
technique which can easily construct and maintain the complex systems. Therefore, the 
distributed development paradigm based on such an object-oriented methodology will 
rapidly grow in the future, because this technique is expected as a very effective approach to 
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improve software quality and productivity. Software composition by object-oriented 
technologies is expected as a very effective approach to improve software quality and 
productivity. Considering the software composition, it is expected that even the host-
concentrated development environment can yield the quality of software system to some 
extent regardless of the content of applications, because the software system is structured on 
a single hardware environment. On the other hand, it is known that software systems under 
distributed development environment are difficult to be developed, since the architecture of 
such systems can have different development styles. 
As mentioned above, software development environment has been changing into new 
development paradigms such as concurrent distributed development environment and the 
so-called open source project by using network computing technologies. Especially, such 
Open Source Software (OSS) systems which serve as key components of critical 
infrastructures in the society are still ever-expanding now (E-Soft Inc.). 
Software reliability growth models (SRGM's) (Misra, 1983; Musa et al. 1987; Yamada & 
Osaki, 1989; Yamada, 1991; Yamada 1994) have been applied to assess the reliability for 
quality management and testing-progress control of software development. On the other 
hand, the effective method of testing management for the new distributed development 
paradigm as typified by the open source project has only a few presented (Kuk, 2006; Li et 
al. 2004; MacCormack et al. 2006; Zhoum & Davis, 2005). In case of considering the effect of 
the debugging process on an entire system in the development of a method of reliability 
assessment for the OSS, it is necessary to grasp the deeply-intertwined factors, such as 
programming paths, size of each component, skill of fault-reporters, and so on. 
In this chapter, we discuss a useful reliability assessment method of an embedded OSS 
developed under open source project. In order to consider the effect of each software 
component on the reliability of an entire system under such open source project, we apply a 
neural network (Karunanithi & Malaiya, 1996; Lippmann, 1987). Also, we propose a 
software reliability growth model based on stochastic differential equations in  order to 
consider the active state of the open source project. Especially, we apply the intensity of 
inherent software failures which means the software failure-occurrence rate or the fault 
detection rate for the i -th component importance level to the interaction among 
components by introducing an acceleration parameters. Also, we assume that the software 
failure intensity depends on the time, and the software fault-reporting phenomena on the 
bug tracking system keep an irregular state in terms of the number of detected faults. 
Moreover, in order to consider the effect of each software component on the reliability of an 
entire system under such open source software, we propose a method of reliability 
assessment based on the Bayesian network (BN) for OSS. Furthermore, we analyze actual 
software fault-detection count data to show numerical examples of software reliability 
assessment considering the component importance levels for the open source project. 

 
2. Reliability Assessment Method 
 

2.1 Weight parameter for each component 
In case of considering the effect of debugging process on an entire system on software 
reliability assessment for open source development paradigm, it is necessary to grasp the 
deeply-intertwined factors, such as programming paths, size of each component, skill of 
fault-reporters, and so on.  

In this chapter, we propose a method of reliability assessment based on the neural network 
in terms of estimating the effect of each component on the entire system in a complicated 
situation. Especially, we consider that our method based on neural network is useful to 
assess the software reliability by using only data sets in bug tracking system on the website. 
Also, we can apply the importance level of faults detected during the testing of each 
component, the size of component, the skill of fault-reporters and so on, to the input data of 
neural network.  
We assume that ( )JjIiwij ,,2,1;,,2,11  ==  are the connection weights from i -th unit on the 

sensory layer to j -th unit on the association layer, and  denote the 
connection weights from j -th unit on the association layer to k -th unit on the response 
layer. Moreover, ( )Iixi ,,2,1 =  represent the normalized input values of i -th unit on the 
sensory layer, and ( )Kkyk ,,2,1 =  are the output values. We apply the normalized values of 
fault level, operating system, fault repairer, fault reporter to the input values ( )Iixi ,,2,1 = . 
Then, the input-output rules of each unit on each layer are given by 
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where a logistic activation function ( )⋅f  which is widely-known as a sigmoid function given 
by the following equation:  
 

 

f x( )=
1

1+ e−θx , (3) 

 
where θ  is the gain of sigmoid function. We apply the multi-layered neural networks by 
back-propagation in order to learn the interaction among software components (Karunanithi 
& Malaiya, 1996; Lippmann, 1987). We define the error function by the following equation:  
 

 

E =
1
2

yk − dk( )2

k=1

K

∑ , (4) 

 
where ( )Kkd k ,,2,1 =  are the target input values for the output values. We apply the 
normalized values of the total number of detected faults for each component to the target 
input values ( )Kkd k ,,2,1 =  for the output values, i.e., we consider the estimation and 
prediction model so that the property of the interaction among software components 
accumulates on the connection weights of neural networks. 
By using the output values, , derived from above mentioned method, we 
can obtain the total weight parameter kp  which represents the level of importance for each 
component by using the following equation:  
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where a logistic activation function ( )⋅f  which is widely-known as a sigmoid function given 
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2.2 Reliability assessment for entire system 
Let ( )tS  be the cumulative number of detected faults in the OSS system by operational time 

( )0≥tt . Suppose that ( )tS  takes on continuous real values. Since the latent faults in the OSS 
system are detected and eliminated during the operational phase, ( )tS  gradually increases 
as the operational procedures go on. Thus, under common assumptions for software 
reliability growth modeling, we consider the following linear differential equation:  
 

 

dS t( )
dt

= λ t( )S t( ), (6) 

 
where ( )tλ  is the intensity of inherent software failures at operational time t , and a non-
negative function. In most cases, the faults of OSS are not reported to the bug tracking 
system at the same time as fault-detection but rather reported to the bug tracking system 
with the time lag of fault-detection and reporting. As for the fault-reporting to the bug 
tracking system, we consider that the software fault-reporting phenomena on the bug 
tracking system keep an irregular state. Moreover, the addition and deletion of software 
components is repeated under the development of OSS, i.e., we consider that the software 
failure intensity depends on the time (Tamura & Yamada, 2007). Therefore, we suppose that 

( )tλ  in Eq.(6) has the irregular fluctuation. That is, we extend Eq.(6) to the following 
stochastic differential equation (Arnold, 1974):  
 

 

dS t( )
dt

= λ t( )+ σγ t( ){ }S t( ), (7) 

 
where σ  is a positive constant representing a magnitude of the irregular fluctuation and 

( )tγ  a standardized Gaussian white noise. We extend Eq.(7) to the following stochastic 
differential equation of an Itô type:  
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where ( )tW  is a one-dimensional Wiener process which is formally defined as an integration 
of the white noise ( )tγ  with respect to time t . The Wiener process is a Gaussian process and 
has the following properties:  
 

( )[ ] 100Pr ==W , (9) 
 

( )[ ] 0=Ε tW , 
(10) 

 

Ε W t( )W t'( )[ ]= Min t,t '[ ], (11) 
 
where  means the probability of event A and 

 

E Β[ ] represents the expected value of B  
in the time interval ],0( t . 
By using Itô's formula (Arnold, 1974), we can obtain the solution of Eq.(7) under the initial 
condition ( ) vS =0  as follows (Yamada et al. 1994):  
 

 

S t( )= v ⋅ exp λ s( )ds+ σW t( )
0

t∫( ), (12) 

 
where v  is the total number of faults detected for the previous software version. Using 
solution process ( )tS  in Eq.(12), we can derive several software reliability measures. 
Moreover, we define the intensity of inherent software failures, ( )tλ , as follows:  
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where  ( 1, 2,..., )i i Kα =  is an acceleration parameter of the intensity of inherent software 

failures for the i -th component importance level, 
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  the weight parameter for the 

i -th component importance level, and 

 

K  the number of the applied component. Similarly, 
we can apply the following S-shaped growth curve to Eq. (12) depending on the trend of 
fault importance level:  
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2.3 Reliability assessment measures 
 

2.3.1 Expected Number of Detected Faults and Their Variances 
We consider the mean number of faults detected up to operational time t . The density 
function of ( )tW  is given by 
 

 

f W t( )( )=
1
2πt

exp −
W t( )2

2t
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  
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  
, (15) 

 
Data collection on the current total number of detected faults is important to estimate the 
situation of the progress on the software operational procedures. Since it is a random 
variable in our model, its expected value and variance can be useful measures. We can 
calculate them from Eq. (12) as follows (Yamada et al. 1994): 
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where 

 

Var S t( )[ ] is the variance of the number of faults detected up to time t . 

 
2.3.2 Mean Time between Software Failures 
The instantaneous mean time between software failures (which is denoted by MTBFI) is 
useful to measure the property of the frequency of software failure-occurrence. 
First, the instantaneous MTBF is approximately given by 
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Therefore, we have the following instantaneous MTBF: 
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Also, the cumulative MTBF is approximately given by 
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Therefore, we have the following cumulative MTBF: 
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2.3.3 Mean Time between Software Failures 
Since a one-dimensional Wiener process is a Gaussian process, 

 

logS t( )  is a Gaussian 
process. We can derive its expected value and variance as follows: 
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Therefore, we have the following probability for the event 
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where  means the probability of event A and 

 

Φ ⋅( )  of the standard normal 
distribution function can defined as follows: 
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Therefore, the transitional probability of 

 

S t( ) is given by the following equation: 
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3. Software Reliability Assessment Procedures 
 

The procedures of reliability assessment in our method for OSS are shown as follows: 
1. We processes the data file in terms of the data in bug-tracking system of the specified 

OSS for reliability assessment. 
2. Using the fault-detection count data obtained from bug-tracking system, we process 

the input data for neural network. 

3. We estimate the weight parameters  for each component by using 
the neural network. 

4. Also, the unknown parameters σ  and  included in our model are 
estimated by using the least-square method of Marquardt-Levenberg. 

5. We show the expected total number of detected faults, the instantaneous fault-
detection rate, and the cumulative MTBF as software reliability assessment measures, 
and the predicted relative error. 
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 (17) 

 
where 

 

Var S t( )[ ] is the variance of the number of faults detected up to time t . 

 
2.3.2 Mean Time between Software Failures 
The instantaneous mean time between software failures (which is denoted by MTBFI) is 
useful to measure the property of the frequency of software failure-occurrence. 
First, the instantaneous MTBF is approximately given by 
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dt
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(18) 

 
Therefore, we have the following instantaneous MTBF: 
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Also, the cumulative MTBF is approximately given by 
 

 

MTBFC t( )=
t

Ε S t( )[ ]
. (20) 

 
Therefore, we have the following cumulative MTBF: 
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. 
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2.3.3 Mean Time between Software Failures 
Since a one-dimensional Wiener process is a Gaussian process, 

 

logS t( )  is a Gaussian 
process. We can derive its expected value and variance as follows: 
 

 

Ε logS t( )[ ]= logv + λ(s)
0

t∫ ds, (22) 

 

 

Var logS t( )[ ]= σ 2t. (23) 
 
Therefore, we have the following probability for the event 

 

logS t( )≥ x{ }: 
 

 

Pr logS t( )≤ x[ ]= Φ
x − logv − λ(s)

0

t∫ ds

σ t
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 

 
 

 

 

 
 
, (24) 

 
where  means the probability of event A and 

 

Φ ⋅( )  of the standard normal 
distribution function can defined as follows: 
 

 

Φ x( )=
1
2π

exp −
z2

2
 

 
 

 

 
 dz−∞

x∫ . (25) 

 
Therefore, the transitional probability of 

 

S t( ) is given by the following equation: 
 

 

Pr logS t( )≤ y S(0) = v[ ]= Φ
logv + log y + λ(s)

0

t∫ ds

σ t

 

 

 
 

 

 

 
 
. (26) 

 
3. Software Reliability Assessment Procedures 
 

The procedures of reliability assessment in our method for OSS are shown as follows: 
1. We processes the data file in terms of the data in bug-tracking system of the specified 

OSS for reliability assessment. 
2. Using the fault-detection count data obtained from bug-tracking system, we process 

the input data for neural network. 

3. We estimate the weight parameters  for each component by using 
the neural network. 

4. Also, the unknown parameters σ  and  included in our model are 
estimated by using the least-square method of Marquardt-Levenberg. 

5. We show the expected total number of detected faults, the instantaneous fault-
detection rate, and the cumulative MTBF as software reliability assessment measures, 
and the predicted relative error. 

 
 
 
 

www.intechopen.com



Mechatronic Systems, Simulation, Modelling and Control246

4. Portability Assessment 
 

4.1 Prior information for BN 
Applying SRGM's for prior information in case of using BN, we analyze software fault-
detection count data based on an NHPP model. Considering stochastic characteristics 
associated with the fault-detection procedures in the testing phase, we treat 

 

N(t), t ≥ 0{ } as 
a nonnegative counting process where a random variable 

 

N(t)  means the cumulative 
number of faults detected up to testing-time 

 

t . The fault-detection process 

 

N(t), t ≥ 0{ } are 
described as follows: 
 

[ ] { } [ ] ( )( )
Pr ( ) exp ( )    0,1, 2,...

!

nH t
N t n H t n

n
= = − =  (27) 

 
In Eq. (27),  means the probability of event A, and 

 

H(t)  is called a mean value function 
which represents the expected cumulative number of faults detected in the testing-time 
interval 

 

(0, t] , where 

 

h(t)  is called an intensity function which represents the fault-
detection rate per one fault. From Eq. (27), the fault-detection rate per one remaining fault, 
which characterizes the software reliability growth in the fault-detection phenomenon, is 
defined as 
 

 

d(t) ≡
h(t)

a −H(t)
,  (28) 

 
where 

 

a  is the expected number of the initial inherent faults. We can analyze software fault-
detection count data by using an SRGM based on the NHPP, because the NHPP models 
have been discussed in many literatures since they can be easily applied in the software 
reliability assessment. The SRGM based on an NHPP is based on the following assumptions 
:  

 A software fault-detection phenomenon can be described by an NHPP. 
 Software faults detected during the testing-phase are corrected certainly and 

completely, i.e., no new faults are introduced into the software system during 
the debugging. 

It is empirically known that the cumulative number of detected faults shows an exponential 
growth curve when a software system consisting of several software components are tested 
in the testing-phase. On the other hand, the cumulative number of faults describes an S-
shaped growth curve when a newly developed software system is tested. Thus, the former 
case is described by the exponential SRGM based on an NHPP, and the latter case is 
described by the delayed S-shaped SRGM which is also based on an NHPP. We describe the 
structure of the mean value function defined in the following, because an NHPP model is 
characterized by its mean value function. The mean value function of the exponential 
SRGM, 

 

He (t) , is characterized by the following function: 
 

 

He (t) = a 1− e−bt( ) a > 0, b > 0( ), (29) 

where 

 

He (t)  represents the expected cumulative number of faults detected up to the module 
testing time 

 

t t ≥ 0( ). In Eq. (29), 

 

a  is the expected number of initial inherent faults, and 

 

b 
the software failure rate per inherent fault. In addition, the intensity function of the 
exponential SRGM is given as follows: 
 

 

he (t) = abe−bt , (30) 
 
where 

 

he (t)  represents the instantaneous fault-detection rate at the module testing time 

 

t t ≥ 0( ).  
Similarly, the mean value function of the delayed S-shaped SRGM, 

 

Hs(t) , is represented as :  
 

 

Hs(t) = a 1− 1+ bt( )e−bt[ ] a > 0, b > 0( ), (31) 
 
where 

 

Hs(t)  represents the expected cumulative number of faults detected up to the module 
testing time 

 

t t ≥ 0( ). In Eq. (6), 

 

a  is the expected number of initial inherent faults, and 

 

b 
the software failure rate per inherent fault. In addition, the intensity function of the delayed 
S-shaped SRGM is given as follows :  
 

 

hs(t) = ab2te−bt
 (32) 

 
where 

 

hs(t)  represents the instantaneous fault-detection rate at the module testing time 

 

t t ≥ 0( ). 
In this chapter, we use Mean Squared Errors (MSE) discussed in 5.3 in order to select a 
better SRGM, Exponential SRGM or Delayed S-shaped SRGM for each software component. 

 
4.2 Reliability assessment for OSS porting 
We can estimate the probability of the phenomenon 

 

Z  based on the following phenomena 

 

X  and 

 

Y : 

 

X : The fault is detected at the component 

 

X . 

 

Y : The fault is detected at the component 

 

Y . 

 

Z : The fault is detected at the Kernel component. 
BN for above mentioned phenomena is shown in Fig. 1. 
 

 
Fig. 1. The failure-occurrence probability model based on BN. 
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Fig. 1 means that the fault is detected at the component 

 

X  or component 

 

Y  as a result of 
the occurrence of phenomenon 

 

Z . Therefore, the failure probability of Kernel component is 
given by the following equation based on the Bayesian theory: 
 

 

pZ =
xy ′ pZbxby

xy ′ pZ + ′ x ′ y ′ pZ
+

xy ′ pZbxby
xy ′ pZ + ′ x ′ y ′ pZ

+
xy ′ pZbxby

xy ′ pZ + ′ x ′ y ′ pZ
+

xy ′ pZbxby
xy ′ pZ + ′ x ′ y ′ pZ

,

 (33) 

 
where 

 

x  is the probability of 

 

X  under the occurrence of phenomenon 

 

Z . Similarly, 

 

y  is 
the probability of 

 

Y  under the occurrence of phenomenon 

 

Z . The probability of 

 

X  and 

 

Y  
are given by the 

 

bx  and 

 

by  previously. Also, 

 

p  means the 

 

1− p. 

 

′ pZ  is the prior probability 
of 

 

Z , 

 

′ pZ  is updated by using 

 

′ pZ = pZ . The prior information 

 

bx  and 

 

by  are given by the 
intensity function of NHPP model and SDE model applied for each component of OSS. We 
can estimate the portability of embedded software based on OSS by using Eq. (33). 

 
5. Numerical Examples 
 

5.1 Embedded OSS 
We focus on the BusyBox (Erik Andersen) which is one of the embedded open source 
software developed under an open source project. The BusyBox combines tiny versions of 
many common UNIX utilities into a single small executable. It provides replacements for 
most of the utilities you usually find in GNU fileutils, shellutils, etc. 
The fault-detection count data used in this chapter are collected in the bug tracking system 
on the website of BUSYBOX in August 2008. 

 
5.2 Reliability assessment considering component level 
Estimating the weight parameters based on the number of source lines of code for each 
component, we analyze the actual data for the case of 

 

v =14, p1 = 0.28252, p2 = 0.07213, α̂ 3 = 0.64531. 
In case of the exponential intensity function of inherent software failures in Eq. (30), the 
following model parameters have been estimated: 
 

 

α̂ 1 = 0.324667, α̂ 2 = 0.116271, α̂ 3 = 0.121832, σ̂ = 0.153831.
 

In case of the S-shaped intensity function of inherent software failures in Eq. (32), the 
following model parameters have been estimated: 
 

 

α̂ 1 = 0.141554, α̂ 2 = 0.168274, α̂ 3 = 0.567777, σ̂ = 0.153845.
The estimated expected number of detected faults, 

 

Ê[S(t)] , in case of the exponential 
intensity function of inherent software failures, is shown in Fig. 2. Also, Fig. 3 shows the 

estimated variance of the number of faults. From Fig. 3, we find that the variance of the 
number of detected faults grows as the time elapses after the release. 
 

 
 

Fig. 2. The estimated expected cumulative number of detected faults. 
 

 
 

Fig. 3. The estimated variance of the number of detected faults. 
 

 
 

Fig. 4. The estimated MTBFC. 
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Fig. 2. The estimated expected cumulative number of detected faults. 
 

 
 

Fig. 3. The estimated variance of the number of detected faults. 
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Moreover, the estimated MTBFC is also plotted in Fig. 4. Fig. 4 shows that the MTBF increase 
as the operational procedures go on. 
Furthermore, Fig. 5 shows the estimated transitional probability of Eq. (26) in case of the 
exponential intensity function of inherent software failures. 
 

 
 

Fig. 5. The estimated transitional probability of 

 

S(t) . 

 
5.3 Assessment Measures for OSS porting 
We show numerical example in terms of OSS porting by using the fault-detection count data 
registered in the bug tracking system in actual open source project. In this chapter, we apply 
the fault data of BusyBox that is developed and used as Embedded OSS. 
We focus on the buildroot and the uClibc which is one of the components in the Busybox. 
We apply the mean value functions of exponential SRGM and delayed S-shaped SRGM for 
each components. We show the result of parameter estimation and Mean Square Error 
(MSE) in Tables 1-3. Moreover, we show the estimation of expected values of the cumulative 
number of detected faults in Figs. 6-8. We define the error function in Eq. (34) by the 
following equation :  

 

(34) 

 
where 

 

yk  are the actual measurement values, and 

 

ŷk  are the predictive values. The MSE 
indicates that the selected model fits better to the observed data as MSE becomes small.  
 

 
Table 1. The results of estimated unknown parameter and value of MSE for each SRGM in 
BusyBox. 
 

 
Table 2. The results of estimated unknown parameter and value of MSE for each SRGM in 
buildroot. 
 

 
Table 3. The results of estimated unknown parameter and value of MSE for each SRGM in 
uClibc. 

 
Fig. 6. The estimated expected cumulative number of detected faults for buildroot. 
 

 
Fig. 7. The estimated expected cumulative number of detected faults for uClibc. 
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Fig. 7. The estimated expected cumulative number of detected faults for uClibc. 
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Fig. 8. The instantaneous fault-detection rate by using BN. 
 
We can apply the exponential SRGM for buildroot from Fig. 6 and Table 2. On the other 
hand, we can apply the delayed S-shaped SRGM for uClibc from Fig. 7 and Table 3. Fig. 8 is 
shown the instantaneous fault-detection rate by using BN. From Fig. 8, we find that the 
fault-detection rate can be used as the portability assessment measure for the embedded 
OSS by using BN. 

 
6. Conclusion 
 

In this chapter, we have discussed the methods of reliability analysis for an embedded OSS 
developed under on an open source project. Especially, we have proposed a stochastic 
differential equation model in order to consider the active state of the open source project, 
where we have assumed that the software failure intensity depends on the time, and the 
software fault-reporting phenomena on the bug tracking system keep an irregular state. 
Moreover, we have derived several assessment measures in terms of imperfect debugging of 
an entire system under such open source development paradigm. Especially, we have 
applied the exponential and S-shaped intensity functions of inherent software failures for 
the 

 

i -th component importance level to the interaction among components by using an 
acceleration parameters. Furthermore, we have shown the transitional probability of 

 

S(t)  in 
Eq. (26). 
In case of considering the effect of debugging process on an entire system on software 
reliability assessment for open source projects, it is necessary to grasp the deeply-
intertwined factors. In this chapter, we have shown that our method can describe such 
deeply-intertwined factors. Especially, we have applied BN technique in order to consider 
the effect of each software component on the reliability of an entire system under such open 
source development paradigm. By using the BN, we have proposed the method of reliability 
assessment incorporating the interaction among software components. Moreover, we have 
proposed the fault-detection rate based on BN used as the portability assessment measure 
for the embedded OSS. 
Finally, we have focused on an embedded OSS developed under open source projects. New 
distributed development paradigm typified by such open source project will evolve at a 

rapid pace in the future. Our method is useful as the method of reliability assessment  
incorporating the importance of each component for an entire system. 
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software fault-reporting phenomena on the bug tracking system keep an irregular state. 
Moreover, we have derived several assessment measures in terms of imperfect debugging of 
an entire system under such open source development paradigm. Especially, we have 
applied the exponential and S-shaped intensity functions of inherent software failures for 
the 

 

i -th component importance level to the interaction among components by using an 
acceleration parameters. Furthermore, we have shown the transitional probability of 

 

S(t)  in 
Eq. (26). 
In case of considering the effect of debugging process on an entire system on software 
reliability assessment for open source projects, it is necessary to grasp the deeply-
intertwined factors. In this chapter, we have shown that our method can describe such 
deeply-intertwined factors. Especially, we have applied BN technique in order to consider 
the effect of each software component on the reliability of an entire system under such open 
source development paradigm. By using the BN, we have proposed the method of reliability 
assessment incorporating the interaction among software components. Moreover, we have 
proposed the fault-detection rate based on BN used as the portability assessment measure 
for the embedded OSS. 
Finally, we have focused on an embedded OSS developed under open source projects. New 
distributed development paradigm typified by such open source project will evolve at a 

rapid pace in the future. Our method is useful as the method of reliability assessment  
incorporating the importance of each component for an entire system. 
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