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1. Introduction

Atomic clocks are instruments widely employed in many synchronization systems. When
such measurement instruments are inserted in complex systems as telecommunication net-
works, global satellite navigation systems, tests of fundamental physics of matter, an unex-
pected and anomalous behavior or a degradation of the performance of the clock may give
rise to an error condition in the global system (Galysh et al., 1996); (Vioarsson et al., 2000). In
some cases, as in the GPS system, the anomaly must be identified and a real-time alarm signal
must be transmitted to user. Aerospace systems and navigation support systems used in the
area of personal security, for both military and civil purposes, must satisfy strict requirements
of the parameters relative to the integrity, reliability, availability and accuracy of the signal.
The possible lacking of information concerning one of the above features, may imply a series
of inefficiencies and system bugs for end-users.
Monitoring stability of atomic clock frequency data is important for guaranteeing the correct
behavior of the electronic system where they are inserted. The principal application where
the frequency stability monitoring is a challenging problem is in GNSS systems (like GPS
or Galileo) where the overall system performance critically depends on performance of on–
board clocks. When the clock behaves bad, thus the anomaly has to be detected fast in order
to provide an adequate action for restoring the correct behavior of the clock. In the field of
navigation system “integrity”, most of the studies are related to satellite integrity (Bruce et
al., 2000) and not specifically to that of the embedded clock, while recently a study on GPS
clock integrity showed GPS clock strange behaviors (Weiss et al., 2006), asking for suitable
new statistical tools for its characterization.
The scientific and industrial community has done a lot of efforts for the theoretical characteri-
zation of the behavior of atomic clocks. The purpose is to improve the accuracy and reliability
of these instruments while reducing their size and cost. Since such objectives are often in
contradiction, the scientific and industrial research is investigating innovative techniques to
overcome the limits imposed by the technological development.
A common assumption when analyzing atomic clock data is that clock noise is stationary or
that at least increments in the frequency values are stationary and thus data are examined
by using stability analysis tools such as the Allan variance (IEEEstd, 1999); (D. W. Allan,
1987). The scientific literature has shown how this hypothesis cannot be always verified in
reality, in particular in the application context of the satellite navigation or in experiments of
fundamental physics of matter. If this hypothesis is not satisfied, the accuracy and reliability
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Fault Detection2

of the classical fault detection techniques, and therefore of the whole system where the devices
are inserted, are compromised (Vioarsson et al., 2000); (Bruce et al., 2000).
In this context, this book chapter collects and summarizes the last years proposals about the
use of Generalized Likelihood Ratio test (GLRT) as a fault detection technique, complemen-
tary to the classical ones, for revealing faults from frequency data (E. Nunzi et al., 2007); (E.
Nunzi et al., 2007); (E. Nunzi et al., 2008); (E. Nunzi & P. Carbone, 2008); (E. Nunzi & D.
D’Ippolito, 2009); (E. Nunzi et al., 2009).
In particular, the GLRT (S. M. Kay, 1998), following the Neyman-Pearson (NP) approach
is presented and its effectiveness is demonstrated when clock frequency data are subjected
to jumps in the mean and/or in the dynamic range. This method is largely employed for
revealing faults in industrial manufacturing processes or for supporting the decision making
problems in many different applications fields.
Although the large number of scientific publications allows a simple interpretation of the
GLRT outcome, the application of the GLRT to frequency data acquired from atomic clocks
still need to be properly customized and metrologically characterized.
It follows that reasons for proposing the GLRT as an alternative method for revealing faults
in atomic frequency can be summarized as it follows:

1. GLRT does not require the stationarity hypothesis on processed data;

2. GLRT gives a reliable outcomes also when the acquired data record is affected by miss-
ing data;

3. GLRT is easy to implement (since it based on the evaluation of the Maximum Likelihood
Estimates (MLEs) of the data model parameters) (S. M. Kay, 1996);

4. GLRT functionalities can be extended for revealing also, in the meantime or separately,
anomalous behavior other than mean and variance changes.

In order to give a comprehensive presentation of the problem and of the theory needed for
applying the GLRT technique to frequency signals acquired from an atomic clock, the next
section recalls the atomic clock frequency sample model adopted for the analysis of the fault
occurrence and suitable for the application of the fault detection theory as indicated in (S.
M. Kay, 1998). The evaluated GLRT detector is applied to both simulated and experimental
data subjected to anomalous behavior in order to validate the presented statistical models and
theory.

2. Mathematical model of frequency data

In this chapter, a single frequency sample, y[·], is modeled as a white Gaussian random vari-
able with unknown mean and standard deviation, indicated with µ0 and σ0, respectively.
When a N–length record of frequency data is collected, all samples are assumed to be in-
dependent and identically distributed (i.i.d.). Moreover, an anomalous behavior of the clock
is defined as a change in the frequency size and/or dynamic range. As a consequence, the
anomaly, when and if it occurs, can be modeled as a change in the mean and/or in the stan-
dard deviation of the statistical model (D. W. Allan, 1987); (E. Nunzi et al., 2007); (E. Nunzi
et al., 2007); (IEEEstd, 1999).
The simple model assumed for atomic clock frequency behavior, allows the description of
the parameters model change by means of two different statistical hypotheses indicated with
H0 and H1. H0 denotes the assumption that the clock behavior respects the given model;
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H1 represents the assumption that the mean and/or standard deviation have changed to µ1

and/or σ1. These hypotheses are formally described by the following equations:

H0 : y[n] ∼ N (µ0,σ0) , n = 0, ..., N − 1; (1)

H1 : y[n] ∼

{

N (µ0,σ0) , n = 0, ...,n0 − 1;
N (µ1,σ1) , n = n0, ..., N − 1,

(2)

where n0 is the unknown sample number at which the change happens when H1 is true, and
N is the number of analyzed data.
Let us indicate with Kµ and σ0 f the additive frequency jump and the standard deviation fac-
tor, respectively. When H1 is true, i.e. it is true that processed data include some (N − n0)
anomalous samples, thus the following identities are true:

µ1 = µ0 + Kµ (3)

σ1 = σ0 · σ0 f . (4)

It should be noticed that there are many unknown parameters: µ0 and σ0 (both under H0 and
H1), µ1, σ1 and n0 when (and if) a fault occurs. On the other hand, N is a parameter of the
data acquisition process.
In order to improve text readability, vectors of the unknown parameters when H0 and H1 are
true are introduced and they are, respectively, θθθH0=[µ0,σ0] and θθθH1=[µ0,σ0,µ1,σ1,n0].

3. Generalized likelihood ratio Test (GLRT): theory

When there are only two different models, the scope of the detection theory is the determi-
nation of the optimal criterion for identifying which of the models is the most likely to be
underlying the given experimental data and when, in case, the clock model parameters have
changed their values. The commonly employed decision–rule is based on the so called likeli-
hood ratio test (LRT), which maximizes the detection probability (PD) for a given false alarm
probability (PFA). It should be noticed that, in this context, PFA is the probability of deciding
for H1 when H0 is true, and PD is the probability of deciding for H1 when H1 is true.
The LRT technique is based on the evaluation of the likelihood ratio, i.e. the ratio between the
likelihood functions calculated when the hypothesis H1 is true and when the hypothesis H0

is true. On the basis of the Neyman-Pearson (NP) theorem, if this ratio is sufficiently large,
the hypothesis H0 is rejected.
From a practical point of view, the NP approach is applied to the set of available data
y = {y[0], ...,y[N − 1]} and it is based on the evaluation of the likelihood ratio of y,
LG(y; [θθθH0,θθθH1]), defined as the ratio between the likelihood function of y under H1,
p (y;θθθH1,H1), and the likelihood ratio of y under H0, p (y;θθθH0,H0). If LG(y; [θθθH0,θθθH1]) is
larger than a given value γ, i.e.:

LG (y; [θθθH0,θθθH1]) =
p (y;θθθH1,H1)

p (y;θθθH0,H0)
> γ, (5)

thus, the NP approach decides for H1, otherwise H0 is assumed to be true. The value of γ is
chosen on the basis of the target PFA value, α, that should be guaranteed a–priori and it can
be evaluated by solving the following equation:

PFA = Pr{LG (y; [θθθH0,θθθH1]) > γ;H0} < α. (6)
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It should be noticed that for evaluating the γ value that satisfies (6), the statistic of
LG (y; [θθθH0,θθθH1]) is needed.
LG (y; [θθθH0,θθθH1]) is calculated by following the statistical model introduced in section 2, i.e.
by considering that each measured value, y[n], is the realization of an independent Gaussian
random variable. It follows that the likelihood functions of the data vector y under H0 and H1

can be evaluated by multiplying the marginal likelihood function of each data sample, thus
obtaining:

p (y;θθθH0) =
1

(
2πσ2

0

)N/2
exp

(
−

1

2σ2
0

N−1

∑
n=0

(y[n]− µ0)
2

)
(7)

p (y;θθθH1) =
1

(
2πσ2

0

)n0/2 (
2πσ2

1

)(N−n0)/2

exp

(
−

1

2σ2
0

n0−1

∑
n=0

(y[n]− µ0)
2
−

1

2σ2
1

N−1

∑
n=n0

(y[n]− µ1)
2

) (8)

Since all values of the parameters vectors θθθH0 and θθθH1 are unknown and supposed to be
deterministic, a GLRT technique, instead of a LRT, has been applied (S. M. Kay, 1998).
Thus, parameter values in (5) have been replaced by their maximum likelihood estimates
(MLEs), that will be indicated with a hat–sign on the symbol of the corresponding vari-

able name. By indicating with θ̂θθH0 = [µ̂0 H0, σ̂0 H0], the MLE of θθθH0 when H0 is true, with

θ̂θθH1 = [µ̂0 H1, σ̂0 H1, µ̂1 H1, σ̂1 H1, n̂0] the MLE of θθθH1 when H1 is true, it follows that the GLRT

test decides for H1 if LG

(
y; [θ̂θθH0, θ̂θθH1]

)
> γ, i.e.:

LG

(
y; [θ̂θθH0, θ̂θθH1]

)
=

p
(

y; θ̂θθH0,H1

)

p
(

y; θ̂θθH1,H0

) > γ (9)

where:

p
(

y; θ̂θθH0

)
=

1
(
2πσ̂2

0 H0

)N/2
exp

(
−

1

σ̂2
0 H0

N−1

∑
n=0

(y[n]− µ̂0 H0)
2

)
(10)

p
(

y; θ̂θθH1

)
=

1
(
2πσ̂2

0 H1

)n̂0/2 (
2πσ̂2

1 H1

)(N−n̂0)/2
· (11)

·exp

(
−

1

2σ̂2
0 H1

n̂0−1

∑
n=0

(y[n]− µ̂0 H1)
2
−

1

2σ̂2
1 H1

N−1

∑
n=n̂0

(y[n]− µ̂1 H1)
2

)
.

It can be shown that MLEs of the mean and of the standard deviation are, respectively, the
sample mean and the sample standard deviation and that the MLE of n0 is the sample number
that maximizes the NP detector over the whole available data record (S. M. Kay, 1996). Thus,
MLE estimates of the unknown parameters are:
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µ̂0 H0 =
1

N

N−1

∑
n=0

y[n] (12)

µ̂0 H1 =
1

n̂0

n̂0−1

∑
n=0

y[n] (13)

µ̂1 H1 =
1

N − n̂0

N−1

∑
n=n̂0

y[n] (14)

σ̂0 H0 =

√√√√ 1

N

N−1

∑
n=0

(y[n]− µ̂0 H0)
2 (15)

σ̂0 H1 =

√√√√ 1

n̂0

n̂0−1

∑
n=0

(y[n]− µ̂0 H1)
2 (16)

σ̂1 H1 =

√√√√ 1

N − n̂0

N−1

∑
n=n̂0

(y[n]− µ̂1 H1)
2 (17)

n̂0 = argmaxn0=0,...,N−1{LG

(
y; [θ̂θθH0, θ̂θθH1]

)
}. (18)

By analyzing and comparing firstly expressions (15) with (10), and thus equations (16)–(17)
with (11), it follows that arguments of the exponential terms in (10) and (11) are both equal to
(−N/2). It follows that the condition to be tested by the GLRT can be simplified as:

LG

(
y; [θ̂θθH0, θ̂θθH1]

)
=

p
(

y; θ̂θθH0,H1

)

p
(

y; θ̂θθH1,H0

)

=

(
σ̂2

0 H1

)n̂0/2 (
σ̂2

1 H1

)(N−n̂0)/2

(
σ̂2

0 H0

)N/2
> γ (19)

By taking into account that the logarithm is a monotonically increasing function, thus in-
equality (19) does not change if the logarithm is taken on both inequality sides. Thus the NP
approach can be further simplified by solving the following equivalent inequality:

T
(

y; [θ̂θθH0, θ̂θθH1]
)

= log
(

LG

(
y; [θ̂θθH0, θ̂θθH1]

))
=

=
N

2
log

(
σ̂2

0 H0

σ̂2
1 H1

)
−

n̂0

2
log

(
σ̂2

0 H1

σ̂2
1 H1

)
> γ

′
= logγ (20)

This expression shows that the detector is function of the three different MLE variance es-
timators. In order to characterize this NP detector, and to customize the parameters of the
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detection algorithm for revealing specifically faults of atomic clock frequency data, the statis-

tical characterization of T
(

y; [θ̂θθH0, θ̂θθH1]
)

is needed. However, the three variance estimators

are not mutually independent. In particular, σ̂2
0 H0 is a function of σ̂2

0 H1 and σ̂2
1 H1, both under

H0 and H1. In fact, by requiring the energy of the sequence {y[0],y[1], ...,y[N − 1]} to be equal
to the sum of the energies of the two complementary subsequences {y[0],y[1], ...,y[n̂0 − 1]}
and {y[n̂0],y[n̂0 + 1], ...,y[N − 1]}, the following relationship is always true:

σ̂2
0H0 =

n̂0

N
σ̂2

0H1 +
N − n̂0

N
σ̂2

1H1 +
n̂0

N

N − n̂0

N

(
µ̂0H1 − µ̂1H1

)2

, (21)

both under H0 and H1.
This mutual relationship between variance estimators under H0 and H1 makes difficult task
the evaluation of the probability density function (and thus of the likelihood function) of (20).
It follows that the evaluation of the γ threshold from (6) is a difficult task.
In order to derive a criterion for evaluating the γ value, a further theoretical analysis is per-
formed.
By substituting (21) in (20), the detector expression is formally obtained as function of MLE
estimators of parameters under H1:

T
(

y; [θ̂θθH0, θ̂θθH1]
)

=
N

2
log

(
n̂0

N

σ̂2
0H1

σ̂2
1H1

+
n̂0

N

N − n̂0

N

(
µ̂0H1 − µ̂1H1

)2

σ̂2
1H1

+
N − n̂0

N

)
−

−
n̂0

2
log

σ̂2
0H1

σ̂2
1H1

. (22)

Equation (22) shows that the GLRT detector T(y) depends only on the MLE estimates under

H1 by means of a function g(·), i.e. T(y) = g(θ̂H1). By recalling the invariance property
of the MLE (S. M. Kay, 1996), it follows that also T(y) is an MLE estimate of a theoretical
value, Tteor which can be evaluated by substituting the MLE estimates of parameters with the
corresponding theoretical values. Thus, in order to evaluate expression of Tteor, MLE estimates
in (22), σ̂2

0H1, σ̂2
1H1, µ̂0H1, µ̂1H1 and n̂0, have been replaced by the corresponding theoretical

value, i.e. by σ2
0 , σ2

1 , µ0, µ1 and n0, respectively. Moreover, by exploiting relationships (3)
and (4), it can be shown that the theoretical behavior of the GLRT detector is described by the
following equation:

Tteor =
N

2
log A +

(
N

2
−

n0

2

)
log

1

σ2
0 f

(23)

where

A =
K2

µ

σ2
0

(N − n0) (n0 − 1)

(N − 1)2
+

(
n0 − 1

N − 1
+

N − n0

N − 1
σ2

0 f

)
. (24)

This equation can be used in practical cases for evaluating a-priori the γ threshold in the
comparison process, from the knowledge of: the length N of the data sequence, the initial
standard deviation σ0 value, the frequency jump, Kµ, the frequency variance change factor,

σ2
0 f , and the number of anomalous samples, (N − n0), before the detection event.
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Fig. 1. Simplified block diagram of a GLRT scheme. yyy is the N–length available data sequence.
T(yyy) is the GLRT detector scalar output. γ is the threshold value used for assuming true H0

or H1.
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Fig. 2. Behavior of a normalized frequency data record, normally distributed, simulated by
considering the following parameters: record length M = 250, µ0 = 1, σ0 = 1, Kµ = 9 (thus
µ1 = 10), σ0 f = 1 (thus σ1 = σ0), n0 = 216.

All these parameters values affect the GLRT performance and influence, in particular, the
choice of the threshold value, γ, that is strictly dependent on the target PFA and that should
be defined a–priori before the application of the GLRT. From a practical point of view, the
use of the GRT is summarized in Fig.1: the available data sequence is processed by the GRT

detector (20) and the corresponding scalar output is compared to a give γ
′

value in order to
assume H0 or H1 true.

4. Simulation results

In this section simulation results are reported in order to validate theoretical results obtained
in sec. 3. At first, theoretical formula (23) will be validated by means of Monte Carlo simu-
lations and an application example is introduced in order to clarify its practical applicability.
Moreover, the statistical characterization of the GLRT is presented by analyzing the behavior
of PD versus PFA (i.e. the Receiver Operating Characteristics (ROCs)) . ROCs are evaluated
by means of Monte Carlo simulations since the theoretical behavior of the detector is a difficult
task, as already stated in sec.3.

4.1 Validation of (23)

In order to validate theoretical formula (23), Monte Carlo simulations on NREC=10000 records
of simulated data, each of length M=250, have been performed. Each data record has been
generated by considering a M–length sequence of Gaussian distributed data with initial mean
and standard deviation values equal to µ0 = 1 and σ0 = 1, respectively, and by setting a fre-
quency jump Kµ = 9 on n0 = 216. For clarification purposes, the behavior of one data record
versus the data sample index is shown in Fig.2.
For each data record, the GLRT detector (20) has been applied consecutively NREC times to
N=200 data samples by following a First In First Out (FIFO) data organization. The behavior
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sample number
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LR

T

Fig. 3. Behavior of the averaged GLRT detector (solid black line) versus the index of the last
acquired data sample, obtained by means of Monte–Carlo simulations. The average has been
evaluated on NREC = 10000 GLRTs, each obtained by processing a simulated frequency data
record with characterizing parameters equal to those of record shown in Fig.2 of data. The two
dashed black lines represent the averaged GLRT plus and minus the corresponding sample
standard deviation. Dashed gray line shows the behavior of Tteor given by (23) by using the
same set of parameters values.

of the detector output, averaged over the number of record NREC, versus the index of the last
acquired data sample, is shown in Fig.3 with a solid black line. Moreover, dashed black lines
represent the averaged GLRT plus and minus the corresponding standard deviation evaluated
on the same NREC data records. This figure shows that the GLRT detector is approximately
equal to 0 if data are not affected by anomalies, i.e. until the last processed data sample is
smaller than 216. When processed data include anomalous samples, thus the GLRT value
increases.
For comparison purposes, the theoretical behavior of the detector described by eq.(23) versus
the index of the last acquired data sample is also shown in Fig.3 with a dashed gray line for the
same set of parameters values, i.e. Kµ = 9, σ0 = 1, σ0 f = 1, n0 = 216. The theoretical behavior
is close to the averaged GLRT output.
In order to give a quantitative characterization of the theoretical behavior, the relative dis-
placement between the averaged GLRT evaluated by means of Monte Carlo simulations and
the theoretical detector (i.e. between the solid–black and the dashed–gray lines in Fig.3) is
shown in Fig.4(a) and the corresponding relative standard deviation is shown in Fig.4(b).
This figure shows that the error between the theoretical and simulated GLRT reduces as the
number of samples with anomaly, and processed by the detector, increases. In particular, if
(N − n0)> 2 (i.e. sample index > 218), thus the error is smaller than 2% with a corresponding

type A uncertainty, estimated by dividing the relative standard deviation by
√

NREC = 100,
smaller than 0.1% (GUM, 1997). This result validates the expression of Tteor.
It follows that the theoretical expression (23) can be used for designing an accurate test pro-
cedure for revealing faults in data affected by frequency jump and/or by standard deviation
variation. In particular, (23) gives the γ value to be used in the comparison process for a given
set of: N, target readiness expressed in terms of (N − n0), target Kµ and σ0 f .

4.2 An application example of (23)

In order to clarify how to use theoretical expression (23), let us consider an analysis problem
on the simulated data sequence shown in Fig.2. In this case, the GLRT outcome applied to
N = 200 data managed by using a FIFO strategy is shown in Fig.5. If the detector readiness
is considered, in order to reveal a fault by using no more than (N − n0) = 4 samples, by
substituting in (23) values N = 200, σ0 = 1, n0 = 196, σ0 f = 1, Kµ = 9, thus Tteor = 95.37. By
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Fig. 4. Relative deviation (a) between the averaged GLRT obtained by means of Monte–Carlo
simulations and Tteor shown in Fig.3 and corresponding relative sample standard deviation
(b).
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Fig. 5. Behavior of the GLRT detector applied to the data sequence shown in Fig.2 versus the
index of the last acquired data sample.

setting γ = Tteor = 95.37, we can see in Fig.5 that the GLRT value is greater than γ for n = 220
and a warning signal should be emitted. This means that an additive frequency jump at least
equal to 9 has occurred no more than 4 samples before the alarm signal emitted on the sample
number 220.
Theoretical expression Tteor can be used also for analyzing the detector accuracy versus the
number of employed anomalous samples N − n0. In particular, Fig.6 shows the theoretical
behavior of the GLRT with the N − n0 when a data sequence of length N = 200 affected by a
frequency jump equal to Km = 9 is analyzed. This behavior clearly shows that the frequency
jump is detectable also by using just one anomalous sample. The large value of the GLRT
detector (Tteor = 34) when N − n0 = 1 is mainly due to the large jump size considered in this
application example and to the large N = 200 employed. It should be noticed that a large
N value is due to the hypothesis that initially the clock is working properly and that a fault
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occurs after that the monitoring process starts. A large N value increases the accuracy of the
MLE estimates of µ0 and σ0 since they are asymptotic Gaussian with N (S. M. Kay, 1996).

0 1 2 3 4 5 6 7 8 9 10
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T 
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Fig. 6. Behavior of Tteor versus N − n0 given by (23) obtained by setting characterizing param-
eters equal to those of record shown in Fig.2 of data.

4.3 Statistical characterization of the NP detector

In order to illustrate the properties of the NP detector when it is applied to data with parame-
ters values typically employed in frequency standards and, in particular, to relate reasonable
values for the threshold parameter γ to the corresponding PFA value, the test has been char-
acterized by calculating the receiver operating characteristic (ROC), i.e. the behavior of PD
versus PFA, for many γ and n0 values, by means of Monte Carlo simulations (S. M. Kay,
1996); (S. M. Kay, 1998).
In particular, two sets of ROCs are presented here: the first one for analyzing the GLRT
sensitivity (i.e.the detection capability by using no more than a given number of faulty
samples), the other one for evaluating the GLRT readiness (i.e. the number of employed
faulty samples for a given fault).

GLRT SENSITIVITY ANALYSIS
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Fig. 7. ROCs obtained by considering 100 data samples and by setting (N − n0) = 15. (a)
µ1 = µ0 and µ1 = {1.5σ0,2σ0,2.5σ0,3σ0}. (b) µ1 = {1.2µ0,1.4µ0x,1.6µ0,1.8µ0} and σ1 = σ0.

Fig. 7(a) and (b) shows the ROCs when µ1 = µ0 and σ1 = {1.5σ0,2σ0,2.5σ0,3σ0},
and µ1 = {1.2µ0,1.4µ0,1.6µ0,1.8µ0} and σ1 = σ0, respectively, with µ0 = 2.36 · 10−11,
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Fig. 8. Each line represents a ROC corresponding to a particular value of n0 obtained by
using a Monte Carlo approach based on 5000 pairs of data record each of length N=100 when:
σ1/σ0=3, γ varies from 0 to 10. (a): n0 ranges from 13 to 20. (b): n0 ranges from 20 to 30.

σ0 = 1.046 · 10−11, N = 100, and by setting (N − n0) = 15. Circles indicate the γ value used
for evaluating the corresponding PFA and PD. Fig. 7 can be employed to design a detection
test that can track changes in the mean and in the standard deviation. As an example, one can
see that a PD = 93% is obtained when the change in the mean is at least equal to a factor 1.8,

and that the condition T

(
y; [θ̂θθH0, θ̂θθH1]

)
> γ = 10 guarantees a PFA < 8%. The same threshold

value γ = 10 can be employed to detect a change in the standard deviation by a factor at least
equal to 3.0, with PD > 97% and PFA < 8%.

GLRT READINESS ANALYSIS

To this purpose, for each value of n0 varying from 13 to 20, 5000 pairs of N–length data records,
normally distributed, have been synthesized. For each record pair, the first sequence has been
created by employing mean and standard deviation values respectively equal to µ0 = 2.3650 ·

10−11 and σ0 = 1.0462 · 10−11, that is by assuming H0 true. The second data set presents the
first n0 samples equal to those of the first record, while the last N − n0 samples have been
generated as normally distributed with mean µ0 and σ1 = 3σ0. Thus, the second data record
meets with H1. Both data records have been employed for calculating the corresponding

value of T

(
y; [θ̂θθH0, θ̂θθH1]

)
when H0 is true, i.e. by applying (20) to the first record, and when

H1 is true, i.e. by applying (20) to the second record.
Simulation results obtained by assuming N=100 are shown in Figs.8(a) and (b). In particular,
each line in Fig.8(a) is the ROC corresponding to a particular n0 value, ranging from 13 to 20,
with γ varying from 0 to 15, as indicated by the figure label, when µ0 = µ1 = µ0 and σ0/σ1 = 3
with σ0 = σ0. Fig.8(b) shows the same ROC reported in Fig.8(a) but detailed for PFA<10%,
PD>90% and n0 ranging from 20 to 30. This figure shows that by processing a set of data of
length N = 100, the fault detection occurs with PFA<5% and PD>95% only for n0 larger than
25. Equivalently, under the same assumptions, it is possible to detect a fault within 25 samples
from its occurrence. Moreover, for each n0 value, this figure gives information on the range of
the threshold values γ which can be used for revealing a fault.
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Fig. 9. (a): Behavior of normalized frequency data of atomic clock on satellite GPS 22 (down-
loaded by IGS). (b) Zoom of figure (a) on the first 400 experimental data samples.
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Fig. 10. Behavior of the GLRT detector applied to data shown in Fig. 9 (a) with N = 200.

5. Experimental results

Figure 9(a) shows the behavior of experimental normalized frequency data of GPS satellite
number 22. Data have been obtained by the International GNSS Service (IGS) – Formerly the
International GPS Service (J.M. Dow et al., 2005). The GLRT has been applied to these data
by setting a processing window length N = 200. Thus, data samples have been processed by
following a FIFO strategy and the processing result is shown in Fig.10. In particular, each time
a new data sample is processed, the detector outcome is updated. The GLRT has a a spike on
sample numbered as 236 while presents an increasing behavior after sample index 260. By
requiring a small threshold value, i.e. γ = 10, warning signals are emitted on sample indexes
237 and 266. The first one is probably a false alarm, while the second is a true false alarm. If
the γ value is increased (i.e. γ = 18), thus the false alarm probability is obviously reduced but
the detection process requires a larger number of faulty samples in order to detect the fault
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occurrence (Fig.10 shows that at least 22 faulty samples are needed since γ = 18 implies a fault
detection on sample index 282).
A-posteriori analysis of data parameters confirm the validity of the GLRT technique. In fact,
by zooming the behavior of the experimental frequency data on the first 400 samples (see
Fig.9(b)) it is clear (and confirmed) that the first warning is a false alarm, while the second
warning signal a fault detection signal and that the fault has occurred on sample numbered
as 260 (as argued by a visual inspection of the GLRT behavior). In particular, the fault can be
classified as a mean change. In fact, the arithmetic mean on the first 260 sample is equal to µ0 =
−2.21 · 10−13 and on samples from 261 to 461 is equal to µ0 = 1.96 · 10−13. The corresponding
standard deviation values are almost the same and equal to σ0 = σ1 = 6 · 10−13. Thus, we can
asume Kµ = 4 · 10−13 and σ0 f = 1.
By substituting these parameters values in the theoretical detector (23) and by requiring the
fault detection within no more than 6 faulty samples, i.e. by using N − n0 = 6, thus (23) gives
Tteor = 9.14, which is a threshold value congruent with the analysis of the GLRT outcome
shown in Fig.10.

6. Conclusion and future works

The GLRT detection algorithm for revealing faults from atomic clock frequency data has been
analyzed. It has been shown that the GLRT algorithm efficiently detects anomalies when ap-
plied to atomic clock frequency data (E. Nunzi & P. Carbone, 2008)– (E. Nunzi et al., 2009).
However, the mathematical expression of the detector depends on many parameters char-
acterizing acquired data and previously analysis of the parameters dependencies have been
based on ROCs evaluated by means of Monte–Carlo simulations. It follows that a proper
customization of the GLRT technique to the analysis of data coming from atomic clocks is
necessary and useful for designing the test procedure.
The information given by the GLRT method can be employed to detect the non stationary
change in the clock behavior.
Future works are focused on the theoretical statistical characterization of the GLRT detector
and on the designing of the test procedure for effectively reveals anomaly in real–time (i.e.
while the data acquisition process is going on). Moreover, the MLE estimates used for evalu-
ating the GLRT outcome could be employed for deriving information also on the identification
of the occurred anomaly, although it is known MLE estimators are not optimal when a small
number of faulty samples are employed (as required for this specific application).
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