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1. Introduction

Sensors are essential components of modern control systems. Any faults in sensors will affect
the overall performance of a system because their effects can easily propagate to manipulative
variables through feedback control loops and also disturb other process variables. The task for
sensor validation is to detect and isolate faulty sensors and estimate fault magnitudes after-
wards to provide fault-free values. Model-based methods constitute an important approach
to sensor fault detection and isolation (FDI).
A model-based approach consists in generating residuals as the difference between the mea-
surements and the estimates provided by the relationships existing between the various vari-
ables of the process. The analysis of these residuals may lead to detect and isolate the faulty
sensors. Almost all conventional model-based methods presume the knowledge of an accu-
rate model of the system, e.g. transfer function or system matrices in the state space repre-
sentation. Principal component Analysis (PCA) is a data-driven method which is particularly
well adapted to reveal linear relationships among the plant variables without formulating
them explicitly and has also been employed for system identification. PCA has some other
nice features. It can handle high dimensional and correlated process variables, provides a
natural solution to the errors-in-variables problem and includes disturbance decoupling (Li
& Qin, 2001). Moreover in the FDI field, Gertler & McAvoy (1997) have shown a close link
between PCA and parity space method. Principal component analysis (PCA) has then been
applied successfully in the monitoring of complex systems (Chiang & Colegrove, 2007; Harkat
et al., 2006; Kano & Nakagawa, 2008).
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PCA is used to model the normal process behavior from an empirical data set which is rep-
resentative of a normal process operation. In general, the majority of the training data set is
associated with such normal operating conditions. The remaining data (faulty data, data ob-
tained during shutdown or startup periods or data issued from different operating modes) are
referred to as outliers. Often, these outlying observations are not incorrect but they were made
under exceptional circumstances. Therefore, they may disturb the correlation structure of the
“normal data” and the result will be a model that does not accurately represent the process.
The fact that multiple outliers can contaminate the model derived from a classical PCA has
motivated the development of robust methods that are less affected by outliers. Large resid-
uals from that robust fit indicate the presence of outliers. Once a robust model is determined,
the next step deals with multiple fault detection and isolation. Indeed, outliers corresponding
to either multiple faulty sensors or a priori unknown operating conditions affect many process
variables.
This chapter is devoted to the problem of multiple fault detection and isolation. Section 2
presents the classical PCA principle and summarizes the benefits of different indices gener-
ally used for fault detection. Section 3, after a definition of outliers, introduces the main robust
methods generally used. Next, a new robust method called MMRPCA for MM-estimator Ro-
bust Principal Component Analysis is proposed. It extends to all kinds of outliers the robust
subspace estimator of Maronna (2005). Section 4 deals with multiple fault isolation. After a
brief state of the art on fault isolation, structured residuals are generated for multiple fault
isolation. These structured residuals are based on the reconstruction principle of process vari-
ables (Dunia et al., 1996; Wang et al., 2004a;b). However, instead of considering all the subsets
of faulty variables (one up to all sensors), we determine the isolable multiple fault by evalu-
ating the existence condition of these structured residuals. The proposed scheme avoids the
combinatorial explosion of faulty scenarios related to the multiple faults to consider. In the
last section 5 this method is applied on a simulated example in order to illustrate the different
steps of our method.

2. Background

PCA is a widely used method for dimensionality reduction. Indeed, PCA transforms the data
to a smaller set of variables (scores) which are the linear combinations of the original variables
while retaining as much information as possible. Data redundancy stems from linear relation
between process variables. The PCA model appears in the form of loadings, scores and vari-
ances. The eigenvectors (loadings) associated to the eigenvalues of the data covariance matrix
span the representation and residual subspaces. The representation subspace (respectively
residual subspace) associated to the first (respectively last) principal components (scores) de-
scribes significant variations of the process (respectively the noise in the data). Different statis-
tics are defined on these two subspaces in order to detect faults. Qin (2003) proposed a unified
representation of these fault detection indices.
For dynamic systems, since the current and past values of variables are related, Ku et al. (1995)
proposed to include time lagged variables into the data matrix and to perform PCA on this
augmented matrix in order to reveal dynamic linear relationships among the process vari-
ables. However, this straightforward application of PCA, called Dynamic PCA (DPCA), has
several limitations as a monitoring approach for dynamic systems. Firstly, Li & Qin (2001)
have shown that the DPCA method is consistent only if all variables have identical noise vari-
ance. Secondly, it is not clear how many time-lagged variables should be included into the
augmented data matrix. These dynamic modeling problems have been approached by Li &
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Qin (2001), Wang & Qin (2002), Qin & Wang (2006) in a instrumental variable framework.
Thirdly, Kruger et al. (2004) have shown that DPCA produces correlated scores which lead to
an undesired impact upon the fault detection ability in the representation subspace (produc-
tion of false alarms). Xie et al. (2006) have then proposed to filter the principal scores obtained
by DPCA by a Kalman innovation filter to remove the correlation between them. These points
being outside the scope of this chapter, for the sake of simplicity, in the following, only classic
PCA is considered in the following.

2.1 PCA modelling of systems

Let us consider x(k) = [x1(k) x2(k) . . . xm(k)]
T the vector formed with m observed plant

variables at time instant k. Define the data matrix X = [x(1) x(2) . . . x(N)]T ∈ ℜN×m with
N samples x(k)(k = 1, . . . , N) which is representative of a normal process operation. PCA
determines an optimal linear transformation of the data matrix X in terms of capturing the
variation in the data:

T = X P and X = T PT (1)

with T = [t1 t2 . . . tm] ∈ ℜN×m, where the vectors ti are called scores or principal compo-
nents and the matrix P = [p1 p2 . . . pm] ∈ ℜm×m, where the orthogonal vectors pi, called
loading or principal vectors, are the eigenvectors associated to the eigenvalues λi of the co-
variance matrix (or correlation matrix) Σ of X :

Σ = PΛPT with P PT = PTP = Im (2)

where Λ = diag(λ1 . . . λm) is a diagonal matrix with diagonal elements in decreasing magni-
tude order.
The relations (1) are useful when the dimension ℓ of the representation subspace is reduced
(ℓ << m). Once the component number ℓ to retain is determined, the data matrix X can be
approximated. For that, the different matrices are partitioned into the form:

P =
[

P̂ P̃
]

, P̂ ∈ ℜ
m×ℓ and P̃ ∈ ℜ

m×(m−ℓ) (3)

Λ =

[

Λ̂ 0
0 Λ̃

]

, Λ̂ ∈ ℜ
ℓ×ℓ and Λ̃ ∈ ℜ

(m−ℓ)×(m−ℓ) (4)

T =
[

T̂ T̃
]

, T̂ ∈ ℜ
N×ℓ and T̃ ∈ ℜ

N×(m−ℓ) (5)

Equation (1) can be rewritten as:

X = T̂P̂T + T̃P̃T = X̂ + E (6)

with
X̂ = X Ĉ and E = X

(

Im − Ĉ
)

(7)

where the matrix Ĉ = P̂ P̂T constitutes the PCA model.
The matrices X̂ and E represent, respectively, the modeled variations and non modeled vari-
ations of X based on ℓ components (ℓ < m). The first ℓ eigenvectors P̂ constitute the rep-
resentation subspace which describes the significant data variations whereas the last (m − ℓ)
eigenvectors P̃ constitute the residual subspace which describes the noises affecting the data.
The identification of the PCA model thus consists in estimating its parameters by an eigen-
value/eigenvector decomposition of the matrix Σ and determining the number of principal
components ℓ to retain.

www.intechopen.com



Fault Detection372

A key issue to develop a PCA model is to choose the adequate number of principal compo-
nents. Indeed, in most practical cases (noisy measurements), the small eigenvalues indicate
the existence of linear or quasilinear relations among the process variables. However, the dis-
tinction between significant or insignificant eigenvalues may not be obvious due to modelling
errors (disturbances and nonlinearities) and noise. Most methods to determine the number
of principal components are rather subjective in the general practice of PCA (Qin & Dunia,
2000). Other methods are based on criteria actually used in system identification (Aikaike
information criterion, minimum description length, . . . ) to determine the system order and
emphasize the approximation of the data matrix X (see Valle et al. (1999) for a survey of these
methods). However, the number of principal components has a significant impact on each
step of the sensor fault detection and isolation scheme. Tamura & Tsujita (2007) proposed to
choose ℓ which maximizes the sensitivity of fault detection indices to each sensor fault. This
method can lead to monitor in parallel until m PCA models with various numbers of principal
components. Qin & Dunia (2000) proposed to determine ℓ by minimization of the variance of
the reconstruction error in the residual subspace. This variable reconstruction consists in esti-
mating a variable from other plant variables using the PCA model, i.e. using the redundancy
relations between this variable and the others. The reconstruction accuracy is thus related to
the capacity of the PCA model to reveal the redundancy relations among the variables, i.e. to
the number of principal components. This method will be retained here to determine ℓ.

2.2 Residual properties

After the PCA model has been built, we now examine its use for sensor fault detection and
isolation. Let us consider now the fault propagation on the two signals obtained by the pro-
jection of the measurement vector x(k) onto the representation and the residual subspaces.
In the presence of f faulty variables whose indices belong to the subset F, the measurement
vector x(k) can be expressed as:

x(k) = x
o(k)+ ǫ(k) + ΞF f(k) (8)

where xo(k) is true value vector, ǫ(k) is the zero mean i.i.d. measurement noise vector, f(k)
is the fault magnitude vector (unknown) and ΞF is the matrix of the fault directions. This
orthonormal matrix with dimension (m × f) is built with 0 and 1, where 1 indicates the faulty
variables from the other variables (with 0). For example, for the subset of faulty variables
F = {2, 4} among 5 variables, matrix ΞF is formed as follows:

ΞF =

[

0 1 0 0 0
0 0 0 1 0

]T

Following decomposition (6), the measurement vector can also be represented as:

x(k) = x̂(k) + e(k) (9)

where x̂(k) = Ĉ x(k) is the estimation vector, e(k) =
(

Im − Ĉ
)

x(k) is the vector of estimation
errors or residual vector.
The principal component vector is given by:

t(k) = P
T

x(k) =
[

t̂(k) t̃(k)
]

(10)

where:

t̂(k) = P̂
T

x(k), (11)

t̃(k) = P̃
T

x(k) (12)
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2.2.1 In the residual subspace

There is an equivalence between the residual vector and the last principal component vector
t̃:

e(k) = P̃ t̃(k) ∈ ℜ
m×1 (13)

So, it becomes simpler to work with this new residual vector t̃ with dimension (m − ℓ). From
(8) and (12), the residual vector is given by:

t̃(k) = P̃T xo(k) + P̃T
ǫ(k) + P̃T

ΞF f(k) (14)

Since P̃T xo(k) = 0 then (14) becomes:

t̃(k) = P̃T
ǫ(k) + P̃T

ΞF f(k) (15)

In the fault-free case, the expectation of the residual vector is zero. In the presence of faults, the
expectation of the residual vector is no longer zero and the fault affects all the components of
the residual vector. However if a variable is not correlated with others, its projection onto the
residual subspace will be very small and then it will be very difficult to detect if this variable
is faulty in the residual subspace. To conclude with this residual, it is possible to detect a
fault (provided that residual is sufficiently sensitive to the fault) but it is difficult to isolate the
faulty sensors.
Typically two main fault detection indices are used to monitor these residuals. The SPE

(squared prediction error) is a statistic which measures the lack of fit of the PCA model to
the data. At time k, the detection index SPE is given by:

SPE(k) = t̃(k)T
t̃(k) (16)

This quantity suggests the existence of an abnormal situation in the data when:

SPE(k) > δ2
α (17)

where δ2
α is a control limit for SPE with a significance level α (Nomikos & MacGregor, 1995)

or estimated using the historical data.
The SPE is formed by summing the square of residuals obtained from PCA model. However,
modelling errors could be projected onto the residual subspace which results in residuals with
a higher variance than the others. Then the SPE will be heavily biased in favour of those
residuals with the largest residual variance whereas the residuals with the smallest residual
variances are most useful for sensor fault diagnosis because they are associated with linear
relationships. In this case using the indicator SWE (squared weighted error) can be more
judicious because it takes into account the variances of the residual (Westerhuis et al., 2000),
the problem inversion of near-zero singular eigenvalues seldom occuring in practice. At time
k, the detection index SWE is given by:

SWE(k) = t̃(k)T
Λ̃
−1

t̃(k) (18)

This quantity suggests the existence of an abnormal situation in the data when:

SWE(k) > χ2
m−ℓ,α (19)

where χ2
m−ℓ,α is a Chi-2 upper control limit with m − ℓ degrees of freedom for a significance

level α.
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2.2.2 In the representation subspace

From (8) and (12), the principal score vector is given by:

t̂(k) = P̂T xo(k) + P̂T
ǫ(k) + P̂T

ΞF f(k) (20)

The faults affect all the components of t̂(k). Moreover, the term P̂T xo(k) describing the signif-
icant variations of the data, can mask the fault influence on the principal score vector except if
the fault amplitude is high relative to this term which depends on the operating point xo(k).
The T2 statistic is the main fault detection index to monitor the principal scores. At time k, the
detection index T2 is given by:

T
2(k) = t̂(k)T

Λ̂
−1

t̂(k) (21)

This quantity suggests the existence of an abnormal situation in the data when:

T
2(k) > χ2

ℓ,α (22)

where χ2
ℓ,α is a Chi-2 upper control limit with ℓ degrees of freedom for a significance level α.

2.2.3 In the entire space

However, according to the magnitude and the kind of faults, faults can be only projected onto
the representation or the residual subspace and then affect only one of the previous indices.
Rather than monitoring different fault detection indices, combined indices are preferred. The
Mahalanobis distance can be used as a measure of variability in the entire space. At time k,
the Mahalanobis distance D2 is given by:

D
2(k) = x(k)T

Σ
−1

x(k) (23)

This quantity suggests the existence of an abnormal situation in the data when:

D
2(k) > χ2

m,α (24)

where χ2
m,α is a Chi-2 upper control limit with m degrees of freedom for a significance level α.

Previously we have seen that faults affect all the components of a residual or principal score
vector. Therefore it is rather difficult to isolate the faulty sensors by using these vectors. The
problem of isolation enhancement will be addressed in Section 4.

3. Robust PCA

In the classical approach, the first principal component corresponds to the direction in which
the projected observations have the largest variance. The second component is then orthogo-
nal to the first one and again maximizes the variance of the data points projected on it. Contin-
uing in this way produces all the principal components which correspond to the eigenvectors
of the empirical covariance matrix. From a regression point of view, PCA also constructs the
optimal orthogonal linear projections (in terms of mean squared error) from the eigenvectors
of the data covariance matrix. The performance of PCA model is then based on the accu-
rate estimation of the covariance matrix from the data which is very sensitive to abnormal
observations.
In practice one often tries to detect outliers by using diagnostic tools starting from a classical
fitting method. However, classical methods can be affected by outliers so strongly that the
resulting fitted model does not allow to detect the deviating observations. This is called the

www.intechopen.com



Sensor fault detection and isolation by robust principal component analysis 375

masking effect. Additionally, some good data points might even appear to be outliers, which
is known as swamping. To avoid these effects, the goal of robust PCA methods is to obtain
principal components that are not influenced much by outliers. Large residuals from that
robust fit indicate the presence of outliers.
After having described outliers using PCA in the following section, the robust PCA methods
are introduced.

3.1 Characteristics of outliers using PCA

The different types of outliers are classified according to their effects on the construction of
the PCA model. They are explained in figure 1 considering a system with 3 variables and
2 principal components. Thus, 4 types of Observations can be distinguished (Hubert et al.,
2005):

1

2

3

4

5

Fig. 1. Illustration of different types of outliers for an example with 3 variables and 2 principal
components

• Regular observations: observation which belong to a homogeneous group that is close to
the representation subspace.

• Good leverage points: Outliers close to the representation subspace (small projection onto
the residual subspace) but far from the regular observations such as the observations 1
and 4 of figure 1.

• Orthogonal outliers: Outliers whose orthogonal distance to representation subspace is
large (large projection onto the residual subspace) but not visible with its projection
onto the representation subspace, like the observation 5 of figure 1.

• Bad leverage points: Outliers that have a large orthogonal distance (large projection onto
the residual subspace) and whose projection onto the representation subspace is remote
from the typical projections, such as the observations 2 and 3 of figure 1.

To construct a robust model with respect to outliers, the influences of outliers in the construc-
tion of the PCA model have to be minimised.

3.2 Classical robust PCA methods

Several ways of robustifying principal components have been proposed (Daszykowski et al.,
2007; Filzmoser et al., 2008; Rousseeuw et al., 2006). To enable the comparison of different
robust methods, measures of performance are necessary. One such performance measure for
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robust methods is the breakdown point (Donoho & Huber, 1983) which can be defined as the
maximal fraction of outlying objects in the data that the estimator can handle in order to yield
acceptable estimates. For instance, the breakdown point of the mean estimator with 0% being
the smallest possible. For such breakdown point a single outlier can completely corrupt the
estimate. Conceptually, it is impossible to distinguish between the good and the bad parts
in the data if the fraction of outliers becomes larger than 50%. In the following, we focus on
robust methods with the highest breakdown point, i.e. close to 50%.
To robustify PCA with respect to outliers, M-estimators (Huber, 1964) can be used. These
estimators minimise a more general objective function than the classical criterion on Mean
Square Error. However, the breakdown point of M-estimators is limited by 1

m+1 , with m the
number of variables. Then this method is not very robust when considering large systems
(large m). The robust methods can be grouped as follows :

• A first group of robust PCA methods is obtained by replacing the classical covariance
matrix by a robust covariance estimator, such as the minimum covariance determinant
(MCD) estimator (Rousseeuw, 1987). The MCD looks for those h observations in the
data set whose classical covariance matrix has the lowest possible determinant. The
user-defined parameter h is the number of fault-free data among all the data and deter-
mines the robustness but also the efficiency of the resulting estimator. The computation
of the MCD estimator is non-trivial and naively requires an exhaustive investigation
of all h-subsets out of the N observations. This is no longer possible for large N or
in high dimension. Rousseeuw & Van Driessen (1999) constructed a much faster al-
gorithm called FAST-MCD which avoids such a complete enumeration. It is obtained
by combining a basic subsampling and iterative scheme with MCD estimator. Another
example is Caussinus et al. (2003) who define a “local” matrix of variance in the sense
that the suggested form tends to emphasize the contribution of close observations in
comparison with distant observations (outliers). As for the MCD method, this method
has a parameter setting β, which depends on the number of outliers a priori unknown.

• A second approach to robust PCA uses Projection Pursuit (PP) techniques. These meth-
ods maximize a robust measure of data spread to obtain consecutive directions on
which the data points are projected (Croux et al., 2007; Croux & Ruiz-Gazen, 2005; Hu-
ber, 1964; Li & Chen, 1985). The main step of these algorithms is then to search for the
direction in which the projected observations have the largest robust spread to obtain
the first component. The second component is then orthogonal to the first and has the
largest robust spread of the data points projected on it. Continuing in this way pro-
duces all the robust principal components. To make these algorithms computationally
feasible, the collection of directions to be investigated are restricted to all directions that
pass through the robust center of the data and a data point or through two data points.
However the robust directions obtained are approximations of the true ones. To im-
prove the speed of algorithms, a PCA compression to the rank of the data is performed
as a first step. According to the authors, these algorithms can deal with both low and
high dimensional data.

• Another robust PCA method is to combine the two previous robust approaches like the
method proposed in Hubert et al. (2005) and called ROBPCA. This method combined
ideas of both projection pursuit and robust covariance estimation based on FAST-MCD
algorithm. It first applied projection pursuit techniques in the original data space. These
results are then used to project the observations onto a subspace of small to moderate
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dimension. Within this subspace robust covariance estimation is applied. According
to the authors, this algorithm is a powerful tool for high dimensional data when the
number of variables is greater than the number of observations. The authors also used
a diagnostic plot to visualize and classify the outliers. It plots the squared Mahalanobis
distance versus the orthogonal distance of each observation to the representation sub-
space.

• The last proposals for robust PCA include the robust LTS-subspace estimator and its
generalizations (Maronna et al., 2006). The idea behind these approaches consists in
minimizing a robust scale of the orthogonal distances of each observation to the rep-
resentation subspace, similar to the LTS estimator, S-estimators and many others in re-
gression. These methods are based on iterative procedures for which there remains the
problem of starting values. For example, for the LTS-subspace estimator, the classical
PCA is performed on the h observations with the smallest orthogonal distance to the
PCA subspace. Its drawbacks are the same as the MCD-estimator: a high computa-
tional cost, the choice of the user-defined parameter h and the starting values. Like
MCD-estimator, a FAST-LTS algorithm has been proposed.

All these methods have a tuning parameter which changes with the fraction of outliers in
the data. However, this information is unknown. To fill this gap, we propose a new robust
method called MMRPCA for MM-estimator Robust Principal Component Analysis. Thus, a
MM-estimator is used to determine a robust model. This estimator is a combination of two
M-estimators: a M-estimator to estimate the model and a second M-estimator to estimate the
robust scale of the residual. This estimator, calculated with an iterative algorithm is initialized
with a robust estimator of the covariance matrix (Caussinus et al., 2003). Then fault detection
tools are used, from the robust model for finding outliers in the data. The influences of outliers
can then be eliminated and the resulting PCA model becomes unbiased. Moreover, a robust
procedure is proposed to determine the number of principal components.

3.3 MMRPCA Method (MM-estimator Robust Principal Component Analysis)

Our approach consists in carrying out PCA directly on the data possibly contaminated by
outliers. For that, a simple robust estimator, called MM-estimator, is used. However, this esti-
mator is computed by an iterative procedure. Thus a good initialization parameter procedure
is needed to avoid local minima. To initialize this MM-estimator a robust covariance matrix is
first calculated.

3.3.1 Robust covariance matrix

Caussinus et al. (2003) define a “local” matrix of covariance in the sense that the suggested
form tends to emphasize the contribution of close observations in comparison with distant
observations (outliers). The matrix is defined in the following way:

Q =

N−1

∑
i=1

N

∑
j=i+1

Ω(i, j)(x(i)− x(j))(x(i)− x(j))T

N−1

∑
i=1

N

∑
j=i+1

w(i, j)

(25)
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where the weights Ω(i, j) themselves are defined by:

Ω(i, j) = exp

(

−
β

2
(x(i)− x(j))T

Σ
−1(x(i)− x(j))

)

(26)

β being a tuning parameter to reduce the influence of the observations faraway, as recom-
mended by the authors, β value is equal to 2. For β = 0, the robust covariance matrix Q is
equal to 2 Σ. And for a high value of β, only the closest observations are taken into account in
the robust covariance matrix Q.

3.3.2 MM-estimator

Two M-estimators are used, one to estimate the minimum of the objective function and an-
other one for the estimation of the robust residual scale. The general MM-estimator minimizes
the following objective function with the constraint P̃ TP̃ = Im−ℓ (Maronna, 2005):

1

N

N

∑
k=1

ρ

(

r(k)

σ̂

)

(27)

with r(k) = ||P̃ x(k)− P̃ µ||2 is the residual, µ = 1
N ∑

N
k=1 x(k) is the mean, σ̂ is the robust

scale of the residual r(k) and the function ρ:ℜ+ → [0, 1] is nondecreasing, with ρ(0) = 0,
ρ(∞) = 1, and differentiable. P̃ is the eigenvector matrix of the robust covariance matrix
S (29) corresponding to its m − ℓ smallest eigenvalues. Then the weighted mean µ and the
covariance S are defined as follows:

µ =
∑

N
k=1 w(k)x(k)

∑
N
k=1 w(k)

with w(k) = ρ̇

(

r(k)

σ̂

)

(28)

S =
N

∑
k=1

w(k)(x(k)−µ)(x(k)−µ)T (29)

where ρ̇(x) =
∂ρ(x)

∂x .
Then the scale factor σ̂ is defined as the solution to:

1

N

N

∑
k=1

ρ

(

r(k)

σ̂

)

= δ (30)

with δ ∈ [0, 1]. This parameter δ is directly related to the fraction of outliers in the data i.e. the
breakdown point. To maximize the breakdown point, Maronna et al. (2006) define δ as follows:

δ =
N − m + ℓ− 1

2N
if N >> m then δ ≈ 0.5 (31)

Usually, when the number of observations (N) is larger than the number of variables (m) then
parameter δ is chosen equal to 0.5. By defining a weight function wσ in the following way:

wσ (r) =

{

ρ (r)
/

r if r �= 0
ρ̈ (0) if r = 0

(32)
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where ρ̈(x) =
∂2ρ(x)

∂x2 .
The solution of equation (30) is expressed by the following equation:

σ̂ =
1

Nδ

N

∑
k=1

wσ

(

r(k)

σ̂

)

r(k) (33)

One notices that an iterative resolution of equation (33) is needed to determine the scale factor
σ̂.
We chose the function ρ (27) as the Bisquare function (r represents the square of residuals)
because it allows the cancellation of the influence of outliers.

ρ(r) = min{1, 1 − (1 − r)3} (34)

and
wσ(r) = min{3 − 3r+ r2, 1/r} (35)

However, this method is only robust to fault with a projection onto the residual subspace.
Then to be robust to all kinds of faults, a similar approach in the representation subspace
is used. In that case the MM-estimator maximizes the following objective function with the
constraint P̂ TP̂ = Iℓ :

1

N

N

∑
k=1

ρ

(

||P̂ Tx(k)− P̂ Tµ||2

σ̂

)

(36)

To ensure the elimination of any fault disturbing the residual subspace when the MM-
estimator in the representation subspace is used, the minimum between the weight
determined with the first MM-estimator (robust to fault with a projection onto the residual
subspace) and the weight obtained with the second MM-estimator (robust to fault with a
projection onto the representation subspace) is used (line 26 of table 1). The algorithm of the
MMRPCA method is described in table 1.

Finally, to improve the estimation of the covariance matrix, and thus the PCA model, a last
weighting step is implemented by using the Mahalanobis distance to eliminate outliers.

{

w(k) = 1 if D2(k) ≤ χ2
m,α

w(k) = 0 else
(37)

where D2(k) is the Mahalanobis distance
The robust mean µ and the variance matrix S are then defined as follows:

µ =
∑

N

k=1 w(k)x(k)

∑
N

k=1 w(k)
(38)

S =

(

N

∑
k=1

w(k)(x(k)−µ)(x(k)−µ)T

)/(

N

∑
k=1

w(k)− 1

)

(39)

However, this algorithm requires the number of principal components to be known. Hence, a
robust method to find the number of principal components is introduced.
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1. it = 1 and σ0 = ∞;
2. Compute P̃ the eigenvector matrix of the robust covariance matrix Q corresponding to

its m − ℓ smallest eigenvalues;
3. Compute a = median(X P̃ );
4. Do until convergence of ∆;
5. Compute r(k) = ||P̃ x(k)− a||2 for k = 1...N;
6. Compute σ̂ from (33);
7. If it > 1, set ∆ = 1 − σ̂/σ0;
8. Set σ0 = σ̂;
9. Compute w(k) = ρ̇ (r(k)/σ̂) for k = 1...N;
10. Compute µ from (28);
11. Compute S from (29);
12. Compute P̃ the eigenvector matrix of the covariance matrix S;
13. corresponding to its m − ℓ smallest eigenvalues;

14. Compute a = P̃ Tµ;
15. Set it = it + 1;
16. End do;
17. Set wres = w, it = 1 and σ0 = ∞;

18. Compute P̂ the eigenvector matrix of the robust covariance matrix S corresponding to
its ℓ largest eigenvalues;

19. Compute a = median(X P̂ );
20. Do until convergence of ∆;

21. Compute r(k) = ||P̂ x(k)− a||2 for k = 1...N;
22. Compute σ̂ from (33);
23. If it > 1, set ∆ = 1 − σ̂/σ0;
24. Set σ0 = σ̂;
25. Compute the w(k) = ρ̇ (r(k)/σ̂) for k = 1...N;
26. Set w = min(w,wres) ;
27. Compute µ from (28);
28. Compute S from (29);

29. Compute P̂ the eigenvector matrix of the covariance matrix S;
30. corresponding to its ℓ largest eigenvalues;

31. Compute a = P̂ Tµ;
32. Set it = it + 1;
33. End do.

Table 1. Algortithm of the MMRPCA method

3.4 Robust determination of the principal component number

The number ℓ of principal components to choose is obtained by minimizing the normalized
VRE (variance of reconstruction error) with respect to the number ℓ (Qin & Dunia, 2000), the
criterion is then :

J(ℓ) =
m

∑
j=1

ξT
j (Im − Ĉ)S (Im − Ĉ) ξj

(

ξT
j (Im − Ĉ)ξj

)2
(40)

with ℓ = 1, . . . , m − 1, Ĉ the robust PCA model, S the robust covariance matrix and ξj the

reconstruction direction (ξj = [0 ... 1 ... 0]T where value 1 is at the jth position). Qin & Dunia
(2000) show that this criterion may present a minimum in the interval [1, m]. The algorithm to
determine both the number of principal components ℓ and the robust model is summarized
in table 2.
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1. Compute the robust covariance matrix Q (25);
2. Set ℓini = 1, ℓini is the number of principal component used to construct the robust

model with the MMRPCA method;
3. Do until ℓini < m;
4. Compute the robust covariance with the MM-estimator S (39);
5. Find the minimum of the normalized VRE (ℓ varying from 1 to

m − ℓ);
6. Set ℓini=ℓini+1;
7. End do;
8. The smallest value obtain by minimizing the normalized VRE is associated with the

number of principal component to use.

Table 2. Algorithm to determine the number of principal components

4. Fault isolation

After the presence of faults has been detected, it is important to identify these faults and to
apply the necessary corrective actions to eliminate the abnormal data. In the PCA framework,
the well known isolation approaches are residual enhancement, contribution plot and variable
reconstruction methods.
In structured design, each residual responds to a specific subset of faults, and thus a specific
subset of the residuals responds to each fault, resulting in a unique fault code. Structured
residuals may be obtained from a full PC model by algebraic transformation. But they can
also be generated by first specifying residual structures and then obtaining subsystem models
(partial PCA models), each corresponding to a residual (Huang & Gertler, 1999; Qin & Weihua,
1999). However, for a high dimensionality process, it is not always possible to find the residual
structuration that enables to obtain the desired isolation properties because these properties
are only defined according to the occurrence of the faults in the residuals without taking into
account the sensitivities of the residuals to the faults.
Contribution plots are well known diagnostic tools for fault isolation. The most common in-
dices used for fault diagnosis with contribution plots are SPE and T2. Contribution plots
on SPE indicate the significance of the effect of each variable on this index at different sam-
pling times. If a sample vector x has an abnormal SPE, the components of this vector that
appear to have a significant contribution are investigated. A contribution plot on principal
scores indicates the significance of the effect of each variable on the T2 index. The variables
with the largest contribution are considered as major contributors to the fault. The contribu-
tion plots are very easy to calculate, with no prior knowledge required to generate the plots.
Prior knowledge, however, is often used and required to interpret the plots. As explained
by MacGregor & Kourti (1995), the contribution plots may not explicitly identify the cause of
an abnormal condition. The reason is that when there is no fault, the contributions are un-
even across variables. Therefore, a fault in a normally small contribution variable may not
have the largest contribution unless the fault magnitude is very large. This can be a source of
misdiagnosis.
An alternative approach for fault isolation is the variable reconstruction method proposed by
Dunia et al. (1996). The reconstruction based approach eliminates the fault when the actual
fault direction is used for reconstruction. In the case of arbitrary process fault directions the
reconstruction-based approach brings a fault indicator within the normal control limit (com-
pletely removes the effect of the fault when the faulty variables are reconstructed).
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4.1 Reconstruction approach

In this section the variable reconstruction approach is presented. The reconstruction xR(k) of
an observation x(k) is defined as follows:

xR(k) = x(k)− ΞRfR (41)

with fR the fault magnitude (unknown) and the matrix ΞR indicating the reconstruction di-
rections. This matrix is orthonormal with dimension (m × r), with r the number of component
to reconstruct, and is built with 0 and 1, where 1 indicates the reconstructed variables from
the other variables (with 0). For example, to reconstruct the set of variables R = {2, 4} among
5 variables, matrix ΞR is formed as follows:

ΞR =

[

0 1 0 0 0
0 0 0 1 0

]T

The reconstruction can be formulated by an optimization problem of the detection indicator
with respect to fault fR according to the direction ΞR. So, according to the indicator used for
detection SPE, SWE, T2 or D2, several types of reconstruction can take place.

The estimation of the fault magnitude fR is obtained by solving the following optimization
problem, according to the detection indicator:

f̂R = arg min
fR

{

x
T
R(k)ΦxR(k)

}

(42)

where

• In reconstruction according to SPE indicator, we have: Φ = P̃P̃T ,

• In reconstruction according to SWE indicator, we have: Φ = P̃Λ̃
−1

P̃T ,

• In reconstruction according to T2 indicator, we have: Φ = P̂Λ̂
−1

P̂T

• In reconstruction according to D2 indicator, we have: Φ = PΛ
−1

PT

Given a subset R, the expression for the reconstruction xR(k) of the vector x(k) is then ex-
pressed by:

xR(k) = GR x(k) (43)

with GR =
(

I − ΞR(Ξ
T
R

ΦΞR)
−1

Ξ
T
R

Φ

)

Faults can only be projected onto the representation or the residual subspace. To isolate all
kinds of faults, reconstruction according to D2 (Mahalanobis distance) indicator is considered
( Φ = PΛ

−1
PT). We define D2

R
(k) as the Mahalanobis distance, calculated after the recon-

struction of the subset R of variables which is given by:

D
2
R(k) = x

T
R(k)PΛ

−1
P

T
xR(k) (44)

The system is considered normal if:

D
2
R(k) ≤ χ2

m−r,α (45)
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where D2
R
(k) is the fault detection indicator (Mahalanobis distance), calculated after the

reconstruction of a subset R of variables, and χ2
m−r,α is a chi-2 control limit with m − r degrees

of freedom for a significance level α.

If we write xR (43) in the case where the matrix of the reconstruction directions is reorganized
as follows (using column permutations):

ΞR =

[

I1
(r×r)

0
((m−r)×r)

]T

∈ ℜm×r (46)

with I1 ∈ ℜr×r an identity matrix. Then P and Λ are split in four parts:

P
T =









PT
11

(r×r)

PT
12

(r×(m−r))

PT
21

((m−r)×r)

PT
22

((m−r)×(m−r))









∈ ℜm×m (47)

Λ =







Λ1
(r×r)

0
(r×(m−r))

0
((m−r)×r)

Λ2
((m−r)×(m−r))






∈ ℜm×m (48)

Using definition (43), the reconstruction xR of the vector x is written as follows:

xR =

[

0

(

Ξ
T
R

ΞR

)−1 (

P11Λ
−1
1 PT

12 + P21Λ
−1
2 PT

22

)

0 I2

]

x (49)

with I2 ∈ ℜm−r×m−r an identity matrix.

This form highlights two characteristics. First, the reconstructed vector xR is constituted by
the r reconstructed variables and a copy of the m − r remaining variables. Secondly, the re-
constructed variables are estimated without using their own measurement.

4.1.1 Reconstruction condition

To reconstruct a fault, it must be at least projected into the representation subspace (r ≤ ℓ)
or onto the residual subspace (r ≤ m − ℓ). This implies that the number of reconstructed
variables r must respect the following inequality:

r ≤ max(m − ℓ, ℓ) (50)

4.1.2 Structured residual generation

In a diagnosis objective, residuals are generated for fault detection and isolation. Considering
equations (8) and (43), then xR can be expressed as:

xR(k) =
(

I − ΞR(Ξ
T
RΦΞR)

−1
Ξ

T
RΦ

)

(xo(k) + ǫ(k) + ΞFf) (51)

As the fault influence is generally unknown, we have to consider all possible reconstruction
directions ΞR
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• If the reconstruction directions ΞR (8) are the same as the fault directions, i.e. if R = F,
then D2

R(k) is under the detection threshold (D2
R < χ2

m−r,α), indeed, the fault influence
is removed:

(

I − ΞR(Ξ
T
RΦΞR)

−1
Ξ

T
RΦ

)

ΞR = 0 (52)

and the reconstruction is expressed as:

xR(k) =
(

I − ΞR(Ξ
T
RΦΞR)

−1
Ξ

T
RΦ

)

(xo(k) + ǫ(k)) (53)

• If the reconstruction directions ΞR are different from the fault directions, then D2
R(k) is

higher than the detection threshold χ2
m−r,α if the projection of the reconstruction direc-

tions are not collinear to the fault projection onto the residual subspace and onto the
representation subspace.

For the faulty observation k, the faulty variables subset R̂ is determined as follows:

R̂ = arg
R∈ℑ

DR(k) < χ2
m−r,α (54)

with ℑ the set of possible reconstruction directions.

4.2 Fault isolation

The proposed fault isolation procedure consists in two steps: offline and online steps. The
offline step consists of a priori analysis of all reconstruction directions which allows to deter-
mine the isolable faults (useful reconstructions). The second online step consists in using the
useful reconstruction directions (corresponding to isolable faults) for multiple fault isolation.

4.2.1 Offline step

All the directions of reconstruction ΞR have to be explored for fault isolation. The maximum
reconstruction number can be calculated as follows:

max(m−ℓ,ℓ)−1

∑
r=1

C
r
m (55)

where Cr
m denotes the combination of r from m.

This number takes only into account the number of reconstructions in the different subspaces.
However, collinear projections have the same fault signature. Then we will analyze the angles
between the different projections of reconstruction directions. The largest primary angle θ

between two subspaces of the same size is linked to the concept of distance between these
two subspaces (Golub & Van Loan, 1996).
This distance is defined in the representation subspace d(Ri, Rj) and in the residual subspace

d̃(Ri, Rj) as follows:

d(Ri, Rj) = ||Ξ̂Ri
(Ξ̂

T
Ri

Ξ̂Ri
)−1

Ξ̂
T
Ri
− Ξ̂Rj

(Ξ̂
T
Rj

Ξ̂Rj
)−1

Ξ̂
T
Rj
||2 (56)

d̃(Ri, Rj) = ||Ξ̃Ri
(Ξ̃

T
Ri

Ξ̃Ri
)−1

Ξ̃
T
Ri
− Ξ̃Rj

(Ξ̃
T
Rj

Ξ̃Rj
)−1

Ξ̃
T
Rj
||2 (57)

with Ξ̂Ri
= Λ̂

−1/2
P̂

T
ΞRi

, Ξ̃Ri
= Λ̃

−1/2
P̃

T
ΞRi

and Ri and Rj correspond to two sets of variable
reconstructions.
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Analyzing these distances, then the isolable fault can be determined a priori. Hence, a global
indicator K is built.

K(Ri, Rj) = max{(d(Ri, Rj), d̃(Ri, Rj)} (58)

Thus, if K(Ri, Rj) is close to zero, it means that the projections of the set of reconstructed
variables Ri and Rj are collinear in the residual subspace and in the representation subspace.
It means that a fault for the sets of reconstructed variables Ri or Rj are not isolable. The
process to detect useful directions of reconstruction can be summarized as follows:

1. r = 1

2. Calculate for all available directions (Ri ∈ ℑ and Rj ∈ ℑ) the indicator K(Ri, Rj) (58).
The smaller the value of this indicator, the higher the magnitude of the fault has to be to
ensure fault isolation. And if this indicator is equal to zero, then only a set of potentially
faulty variables may be determined, i.e. the faulty variables are associated to the indices
Ri or Rj or Ri and Rj. Thus, it is only required to study one single subset of directions,
for example Ri.

3. r = r + 1

4. While r ≤ max(ℓ, m − ℓ)− 1 do to the step 2

This analysis of the structure of the model allows to determine a priori the isolable faults. The
number of useful reconstructions can then be greatly reduced.

4.2.2 Online step

If a fault is detected on the D2(k) indicator:

1. For r = 1, (number of reconstructed variables)

2. Compute D2
R(k), where R ∈ ℑ is a subset (of r variables) of useful reconstruction se-

lected in the offline step:

• if for a particular reconstruction direction ΞR, D2
R(k) ≤ χ2

m−r,α, variables in this
subset R are the faulty variables. Isolation procedure is stopped.

• Otherwise, if there are more than the r faulty variables, go to step 3

3. r=r+1

4. While r ≤ max(m − ℓ, ℓ)− 1, go to step 2

5. The fault is not isolable (more than r = max(m − ℓ, ℓ)− 1 variables can be faulty)

5. Numerical example

5.1 Data generation

We consider here the situation in which several faults affect different variables at the same
time. The matrix X includes N = 450 observations of a vector x with m = 9 components
generated in the following way:

xi,1 = 1 + v2
i + sin(i/3), xi,2 = 2 sin(i/6) cos(i/4) exp(−i/N), vi ∼ N (0, 1)

xi,3 = log(x2
i,2), xi,4 = xi,1 + xi,2, xi,5 = xi,1 − xi,2 (59)

xi,6 = 2xi,1 + xi,2, xi,7 = xi,1 + xi,3, xi,8 ∼ N (0, 1), xi,9 ∼ N (0, 1)
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On the data thus generated were added realizations of random variables with centred normal
distribution and standard deviations equal to 0.02 as well as faults δx1 represented by a bias
of amplitude equal to 20% of the amplitude of the variable, δx2, δx3 represented by a bias
of amplitude equal to 10% of the amplitudes of the variables, δx8 represented by a bias of
amplitude equal to 150% of the amplitude of the variable. Faults are defined on specific time
intervals: observations from 50 to 100 (interval I1) for the variable x1, observations from 150
to 200 (interval I2) for the variables x2 and x3, observations from 250 to 300 (interval I3) for
the variables x8.

5.2 Robust PCA

To determine the number of principal components, the robust approach using the VRE, pro-
posed in the section 3.4, is used. Five principal components are selected (ℓ = 5). The robust
model is then built. Figure 2 shows the measure of the first variable x1 with its estimation
obtained with the classic PCA model and the robust PCA model and the associated residual
(measure - estimate).
This figure shows that in the fault-free case (for example interval from 300 to 450) the robust
residuals are centred on zero while, with the classical PCA, the residuals are not centred on
zero. It means that a smaller fault magnitude can be detected much better using the robust
method than using the classical method. This shows the advantage of using a robust approach.
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Classic estimation of x1
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Robust estimation of x1

Robust residual
Classic residual

Fig. 2. Measure and estimation of x1

5.3 Fault detection and isolation

5.3.1 Offline step

The Mahalanobis distance is used to detect and to isolate the faults. Considering the dimen-
sion of the residual subspace and of the representation subspace, we cannot reconstruct simul-
taneously more than five variables (max(m − ℓ, ℓ)). The maximum number of reconstructions
is then equal to 255 (55). Table 3 shows the values of the global indicator K (58) with r = 1,
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i.e. only one variable is reconstructed. The two sets R1 and R2 contain the indices of the re-
constructed variables. The smaller the value of this indicator K, the higher the magnitude of
the fault has to be to ensure fault isolation. All the values of K are not null, so all the faults on
one variable are isolable.
For all the directions of reconstruction (r = 2, 3, 4) this indicator is calculated. A case where
K is close to zero is detected between D

2
1,3 and D

2
1,7. Then the fault signatures of these two

directions are identical (D2
1,3 = D

2
1,7). Therefore, only one indicator is useful to detect this fault,

for example D
2
1,3. Moreover, we concluded that the signatures of reconstruction directions

taking into account these sets are identical (D2
1,3,4 = D

2
1,4,7, D

2
1,3,6 = D

2
1,6,7, ...). The number of

useful reconstructions can be reduced to 168.

K R1

1 2 3 4 5 6 7 8 9
1 0 1.00 0.99 0.99 0.89 0.94 0.99 1.00 1.00
2 0 1.00 0.95 0.72 0.97 1.00 1.00 0.98
3 0 1.00 0.98 0.95 0.23 1.00 1.00

R2 4 0 0.98 0.75 1.00 1.00 0.99
5 0 0.99 0.99 1.00 0.99
6 0 0.96 1.00 1.00
7 0 1.00 1.00
8 0 1.00

Table 3. Indicator K for r = 1

5.3.2 Online step

Figure 3 shows the Mahalanobis distance divided by its detection threshold obtained for a
significance level of α = 99%, i.e. a fault is detected if the normalised Mahalanobis distance
is greater than one. Then, the faults on intervals I1, I2 and I3 are detected only by using
the robust Mahalanobis distance (constructed with the robust model). Let us remark that the
classical Mahalanobis distance is not able to detect the faults.
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Time

Robust Mahalanobis distance
Classical Mahalanobis distance

Fig. 3. Fault detection with Mahalanobis distance

Once the faults are detected, we will try to isolate them. First, all useful reconstruction direc-
tions for the reconstruction of one variable (r=1) are calculated. The first graph of the figure 4
shows the global indicator D

2
1 (44). For the observations of the interval I1 this distance is close

to the value 0 and thus shows the absence of outliers in the variables used for the reconstruc-
tion, i.e. all the variables except x1. Let us note that the two other groups of observations (I2,
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Fig. 4. Fault isolation with Mahalanobis distance

I3) are affected by faults, but we don’t know exactly which components of the measurement
vector are faulty. Finally, by taking into account the fault presence in the three intervals, the
examination of the first graph of the figure 4 helps us to conclude that:

• in each interval I2, I3 other variables than x1 are faulty.

Other reconstructions are built and are interpreted in a similar way. Figure 4 shows all values
of the indicator D

2
R

for useful reconstruction directions always in the case r = 1. From the
reconstruction of one variable, the diagnosis is as follows:

• in the interval I1, x1 is faulty,

• in the interval I2, more than one variable is faulty,

• in the interval I3, x8 is faulty.

Since the fault on interval I2 is not isolate, then the useful reconstructions with two variables
are performed. Figure 5 shows some values of the indicator D

2
R

for useful reconstruction
directions with r = 2. From the reconstruction of two variables, the diagnosis is the following:

• in the interval I2, x2 and x3 are faulty,
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Fig. 5. Fault isolation with Mahalanobis distance

• in the intervals I1 and I3 the previous conclusions are confirmed.

If all the faults are isolated, then it is not useful to reconstruct more variables. Table 4 summa-
rizes the conclusions resulting from the D

2
R

analysis (figures 4 and 5). Symbol 0 denotes the
fault absence and symbol × denotes the fault presence in the considered interval.

I1 I2 I3

D
2
1 0 × ×

D
2
2,3 × 0 ×

D
2
8 × × 0

Table 4. Fault signatures

6. Conclusion

Principal components analysis reduces the data representation subspace and enables the de-
termination of the redundancy relationships (linear relations among the variables). The re-

www.intechopen.com



Fault Detection390

dundancy relations are then used to detect and isolate the faulty data. PCA is constructed
with fault-free data from a decomposition in eigenvalues and eigenvectors of a covariance
matrix.
However, real data sets are usually not fault-free then the covariance matrix is disturbed by
outliers. In order to reduce the sensitivity of the model to all kinds of outliers (with a projec-
tion onto the representation or the residual subspace), a fast two-step algorithm is proposed.
First, a MM-estimator is used to determine a robust model. This estimator is computed by
using an iterative re-weighted least squares (IRWLS) procedure. This algorithm is initialized
from a very simple estimate derived from a one-step weighted covariance estimate. There-
fore, a model robust with respect to outliers is constructed. Secondly, structured residuals are
generated for multiple fault detection and isolation. These structured residuals are based on
the reconstruction-projection principle. For fault isolation, the proposed scheme avoids the
combinatorial explosion of faulty scenarios related to multiple faults. Indeed, instead of con-
sidering all combinations of one up to all sensors, we limit the maximum number of faulty
scenarios to consider by evaluating the existence condition of structured residuals. There-
fore, the detectable faults and the isolable faults are determined as well as the different faulty
scenarios for which it is not possible to distinguish the faulty variables. This procedure has
been applied on one example, with single and multiple faults. The presence of approximately
30 percent of outliers authorizes a correct estimation of the principal components, then the
estimation is not very sensitive to outliers. The method is efficient for fault detection and
isolation.
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