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1. Introduction 

Modelling and simulation of spatial processes is increasingly used for a wide variety of 
applications including water resources protection and management, meteorological 
prevision and forest fire monitoring. As an example, an accurate spatial modelling of a 
hydrological system can assist hydrologists to answer questions such as: "where does 
ground water come from?", “how does it travel through a complex geological system?" and 
“how is water pollution behaviour in an aquifer?” It also allows users and decision-makers 
to better understand, analyze and predict the groundwater behaviour. 
In this chapter, we briefly present an overview of spatial modelling and simulating of a 
dynamic continuous process such as a fluid flow. Most of the research in this area is based 
on the numerical modelling and approximation of the dynamic behaviour of a fluid flow. 
Dynamic continuous process is typically described by a set of partial differential equations 
(PDE) and their numerical solution is carried out using a spatial tessellation that covers the 
domain of interest. An efficient solution of the PDE requires methods that are adaptive in 
both space and time. The existing numerical methods are applied in either a static manner 
from the Eulerian point of view, where the equations are solved using a fixed tessellation 
during a simulation process, or in a dynamic manner from the Lagrangian point of view, 
where the tessellation moves. Some methods are also based on the mixed Eulerian-
Lagrangian point of view. However, our literature review reveals that, unfortunately, these 
methods are unable to efficiently handle the spatial-dynamic behaviour of phenomenon. 
Therefore, in this chapter, we investigate spatial tessellation based on Voronoi diagram (VD) 
and its dual Delaunay tessellation (DT) which is good candidate to deal with dynamics 
behaviour of fluid flow. Voronoi diagram is a topological data structure that discretizes the 
dynamic phenomenon to a tessellation adaptive in space and time. 

 
2. Numerical modelling methods 

In computational fluid dynamics, there are two fundamental approaches to simulate fluid 
flow: Eulerian and Lagrangian flow formulations (Price, 2005). The former is based on a 
fixed tessellation while the latter uses a moving tessellation. Eulerian methods offer the 
advantage of a fixed tessellation that is easier to generate, and they can efficiently handle 
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dispersion dominated transport problems. Eulerian methods are therefore used for a 
majority of numerical modelling of fluids flow. However, in these methods, the time step 
size and the tessellation size have to be selected to ensure realistic solutions and avoid 
overshoot and undershoot of concentrations. However, since a uniformly fine tessellation is 
computationally costly, these methods are generally not well suited to handle of moving 
concentration fronts and advection-dominated and tracking problems.  
Lagrangian methods model the processes by tracking the changing location, shape and 
values of particles over space and provide an accurate and efficient solution to advection-
dominated problems with steep concentration gradients. For Lagrangian methods, the 
tessellation movement softens the solution behaviour in time, such that larger time steps can 
be taken compared to a fixed spatial tessellation (Whitehurst, 1995). However, the 
connectivity between tessellation elements remains unchanged during simulation, which 
may cause difficulties such as tessellation tangling and deformation that become especially 
acute in non-uniform media with multiple sources and complex boundary conditions 
(Neuman 1984)]. In addition, due to the relative nodal motion, the tessellation used for 
Lagrangian methods becomes distorted over time and complete re-tessellating is frequently 
required (Malcevic, 2002). 
Development of mixed Eulerian-Lagrangian methods has led to the class of arbitrary 
Lagrangian-Eulerian (ALE) codes (Whitehurst, 1995). These codes reduce tessellation 
distortion by continuous “remapping” or “reconnecting” of the mesh. Tessellation 
remapping can be regarded as an Eulerian process, because mass is transported across 
tessellation cell boundaries. The principle of continual remapping led to the Free- Lagrange 
method. The difference between the Free-Lagrange and the classical Lagrange methods is 
that the latter attempt to maintain the initial tessellation connectivity during simulation. The 
Free-Lagrange method allows updating the tessellation connectivity as part of the problem 
to be solved. Simulation of free-surface flow and variable-density flow and transport are 
two examples that are well-suited for dynamic modelling. For example, for a 
hydrogeological system, the free surface or water table is an imaginary surface below 
ground where the absolute groundwater pressure is atmospheric. The water table moves 
and dynamic modelling could be used to track its temporal and spatial evolution by using a 
moving tessellation that conforms to the motion of the free surface. One complexity of using 
a moving tessellation is to maintain the tessellation alignment with stratigraphic layers or 
with geological formations having different hydraulic properties. The tessellation alignment 
can be maintained by continuously updating physical parameters, such as hydraulic 
conductivity, porosity, storage coefficient, as the tessellation moves. 
Density-variable flow and transport is another application well-suited for a moving 
tessellation. A classical example is given by salt-rock formations, where groundwater may 
become very rich in salt. Zegeling et al. (1992) applied a moving tessellation to simulate 1D 
brine transport in porous media. They used a dynamic Lagrangian approach to track the 
sharp fresh-salt water interface and state that, when high concentrations prevail, fixed 
tessellation methods are inefficient. Moving tessellations have not been efficiently used in 
3D since three-dimensionality adds several complexities for simulations. To minimize the 
problems, the Lagrangian algorithm presented by Knupp (1996) only moves the upper part 
of the tessellation and movement is restricted to the vertical direction to avoid tessellation 
deformation.  
 

 

To solve the tessellation deformation problem and also to avoid the problems involving 
fixed time-step methods, we propose a new 3D Free-Lagrangian method based on dynamic 
3D Voronoi diagram. Voronoi diagram (VD) and its dual, Delaunay triangulation (DT), have 
been shown to provide an adequate discretization of the space for fluid flow simulation, 
ensuring that physically realistic results are obtained. The next section describes the Voronoi 
and Delaunay tessellation with a brief review of their definitions, structures and relevant 
spatial properties in the context of spatial modelling and simulation of continuous 
processes. 

 
3. Voronoi and Delaunay tessellation 

Fluid flow is continuous and it is practically impossible to measure it anywhere and 
anytime. Therefore, this continuous phenomenon must be represented using a set of 
observations in given locations and time which are usually a set of unconnected points. Each 
point is defined by its position in 2D or 3D space and its attribute at a given time. Voronoi 
tessellation for this finite set of points is a division of the simulation space based on nearest 
neighbor rule where every location in the space is assigned to the closet member in the point 
set. Formally, let S  be a set of points in the d-dimensional Euclidean space, the Voronoi 
tessellation of S associates to each point Sp a Voronoi cell (element) )(pV such that 
(Okabe et al. 2000, Edelsbrunner 2001): 

 SqqxpxRxpV d  ,)(                                        (1) 

where px   denotes the Euclidean distance between points x , p . Therefore, a Voronoi 

element is defined as the set of points dRx that are at least as close to p  as to any other 
point in S . Therefore, a Voronoi tessellation of S is the collection of all Voronoi elements 
(Okabe et al. 2000): 

 V(q) ..., V(p),v                                               (2) 
Voronoi tessellation v  covers the domain of interest due to the fact that each point 

dRx has at least one nearest point in S and it, thus, lies in at least one Voronoi cell. 
Fig. 1 shows an example of a Voronoi tessellation in 2D and 3D which is a polygonal 
subdivision of a space consisting of vertices, edges, polygonal faces and cells. 
 

       
                                     (a)                                                                               (b) 
Fig. 1. An example of a Voronoi tessellation a) in 2D, b) in 3D and its components 
 
A Delaunay tessellation )(SDT  is a collection of d-dimensional simplexes where a simplex is 
the convex hull of a set of (d + 1) points and no point in S  is inside the circum-ball of any 
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dispersion dominated transport problems. Eulerian methods are therefore used for a 
majority of numerical modelling of fluids flow. However, in these methods, the time step 
size and the tessellation size have to be selected to ensure realistic solutions and avoid 
overshoot and undershoot of concentrations. However, since a uniformly fine tessellation is 
computationally costly, these methods are generally not well suited to handle of moving 
concentration fronts and advection-dominated and tracking problems.  
Lagrangian methods model the processes by tracking the changing location, shape and 
values of particles over space and provide an accurate and efficient solution to advection-
dominated problems with steep concentration gradients. For Lagrangian methods, the 
tessellation movement softens the solution behaviour in time, such that larger time steps can 
be taken compared to a fixed spatial tessellation (Whitehurst, 1995). However, the 
connectivity between tessellation elements remains unchanged during simulation, which 
may cause difficulties such as tessellation tangling and deformation that become especially 
acute in non-uniform media with multiple sources and complex boundary conditions 
(Neuman 1984)]. In addition, due to the relative nodal motion, the tessellation used for 
Lagrangian methods becomes distorted over time and complete re-tessellating is frequently 
required (Malcevic, 2002). 
Development of mixed Eulerian-Lagrangian methods has led to the class of arbitrary 
Lagrangian-Eulerian (ALE) codes (Whitehurst, 1995). These codes reduce tessellation 
distortion by continuous “remapping” or “reconnecting” of the mesh. Tessellation 
remapping can be regarded as an Eulerian process, because mass is transported across 
tessellation cell boundaries. The principle of continual remapping led to the Free- Lagrange 
method. The difference between the Free-Lagrange and the classical Lagrange methods is 
that the latter attempt to maintain the initial tessellation connectivity during simulation. The 
Free-Lagrange method allows updating the tessellation connectivity as part of the problem 
to be solved. Simulation of free-surface flow and variable-density flow and transport are 
two examples that are well-suited for dynamic modelling. For example, for a 
hydrogeological system, the free surface or water table is an imaginary surface below 
ground where the absolute groundwater pressure is atmospheric. The water table moves 
and dynamic modelling could be used to track its temporal and spatial evolution by using a 
moving tessellation that conforms to the motion of the free surface. One complexity of using 
a moving tessellation is to maintain the tessellation alignment with stratigraphic layers or 
with geological formations having different hydraulic properties. The tessellation alignment 
can be maintained by continuously updating physical parameters, such as hydraulic 
conductivity, porosity, storage coefficient, as the tessellation moves. 
Density-variable flow and transport is another application well-suited for a moving 
tessellation. A classical example is given by salt-rock formations, where groundwater may 
become very rich in salt. Zegeling et al. (1992) applied a moving tessellation to simulate 1D 
brine transport in porous media. They used a dynamic Lagrangian approach to track the 
sharp fresh-salt water interface and state that, when high concentrations prevail, fixed 
tessellation methods are inefficient. Moving tessellations have not been efficiently used in 
3D since three-dimensionality adds several complexities for simulations. To minimize the 
problems, the Lagrangian algorithm presented by Knupp (1996) only moves the upper part 
of the tessellation and movement is restricted to the vertical direction to avoid tessellation 
deformation.  
 

 

To solve the tessellation deformation problem and also to avoid the problems involving 
fixed time-step methods, we propose a new 3D Free-Lagrangian method based on dynamic 
3D Voronoi diagram. Voronoi diagram (VD) and its dual, Delaunay triangulation (DT), have 
been shown to provide an adequate discretization of the space for fluid flow simulation, 
ensuring that physically realistic results are obtained. The next section describes the Voronoi 
and Delaunay tessellation with a brief review of their definitions, structures and relevant 
spatial properties in the context of spatial modelling and simulation of continuous 
processes. 

 
3. Voronoi and Delaunay tessellation 

Fluid flow is continuous and it is practically impossible to measure it anywhere and 
anytime. Therefore, this continuous phenomenon must be represented using a set of 
observations in given locations and time which are usually a set of unconnected points. Each 
point is defined by its position in 2D or 3D space and its attribute at a given time. Voronoi 
tessellation for this finite set of points is a division of the simulation space based on nearest 
neighbor rule where every location in the space is assigned to the closet member in the point 
set. Formally, let S  be a set of points in the d-dimensional Euclidean space, the Voronoi 
tessellation of S associates to each point Sp a Voronoi cell (element) )(pV such that 
(Okabe et al. 2000, Edelsbrunner 2001): 

 SqqxpxRxpV d  ,)(                                        (1) 

where px   denotes the Euclidean distance between points x , p . Therefore, a Voronoi 

element is defined as the set of points dRx that are at least as close to p  as to any other 
point in S . Therefore, a Voronoi tessellation of S is the collection of all Voronoi elements 
(Okabe et al. 2000): 

 V(q) ..., V(p),v                                               (2) 
Voronoi tessellation v  covers the domain of interest due to the fact that each point 

dRx has at least one nearest point in S and it, thus, lies in at least one Voronoi cell. 
Fig. 1 shows an example of a Voronoi tessellation in 2D and 3D which is a polygonal 
subdivision of a space consisting of vertices, edges, polygonal faces and cells. 
 

       
                                     (a)                                                                               (b) 
Fig. 1. An example of a Voronoi tessellation a) in 2D, b) in 3D and its components 
 
A Delaunay tessellation )(SDT  is a collection of d-dimensional simplexes where a simplex is 
the convex hull of a set of (d + 1) points and no point in S  is inside the circum-ball of any 
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other simplex in )(SDT (okabe et. al 2000, Edelsbrunner 2001). A simplex is the convex hull 
of a set of (d + 1) points. For example, a 0D simplex is a point, a 1D simplex is a line 
segment, a 2D simplex is a triangle, and a 3D simplex is a tetrahedron (fig. 2).  
 

 
                                     (a)             (b)                       (c)                           (d) 
Fig. 2. Simplex in a) 0D, b) 1D, c) 2D and d) 3D 
 

)(SDT is unique, if S  is a set of points in general position. This means no (d + 1) points are 
on the same hyperplane and no (d + 2) points are on the same ball. Therefore, a 2D 
Delaunay tessellation or Delaunay triangulation is a non-overlapping triangular subdivision 
of the space where each triangle has an empty circumcircle. The triangulation is unique, if 
no three (or more) points are collinear and no four (or more) points are on the same 
circumcircle. Similarity, a 3D Delaunay tessellation or Delaunay tetrahedralization is a non-
overlapping tetrahedral subdivision of the space where each tetrahedron has an empty 
circumsphere. The tetrahedralization is unique, if no four (or more) points are coplanar and 
no five (or more) points are on the same circumsphere. Fig. 3 illustrates a 2D Delaunay 
triangulation and its components such as vertices, edges, triangles (elements). 

 
                        (a)                                                                                              (b) 
Fig. 3. Delaunay tessellation a) in 2D and b) in 3D space and its components 

 
3.1 Properties of Voronoi and Delaunay tessellations 
Voronoi and Delaunay tessellations have several interesting properties that make them 
attractive for numerical simulation methods:  
 
Duality between DT and VD: There is a connection between the Delaunay and the Voronoi 
tessellations called duality. The duality means that VD and DT are closely related graphs. 
The duality between VD and DT is based on some specific correspondences between 
geometric elements of the two data structures. This allows extracting the Voronoi 
tessellation from the Delaunay tessellation and vice versa. For a set of S points in a d-
dimensional space, Delaunay tessellation can be obtained by joining all of pairs of points in 

 

S  whose Voronoi cells share a common (d-1) Voronoi facet. In addition, a k-dimensional 
face of d-dimensional Voronoi tessellation corresponds to a (d − k) dimensional face in the 
Delaunay tessellation.  
In 2D, each Delaunay triangle corresponds to a Voronoi vertex (fig. 4a), each Delaunay edge 
corresponds to a Voronoi edge (fig. 4b), and a Delaunay vertex corresponds to a Voronoi cell 
(fig. 4c) and vice versa. 
                 

 
          (a)                                (b)                                  (c) 

Fig. 4. Duality between VD and DT in 2D 
 
Similarity, in a 3D space, each Delaunay tetrahedron corresponds to a Voronoi vertex (fig. 
5a), each Delaunay triangular face becomes an edge (fig. 5b), a Delaunay edge corresponds 
to a Voronoi face (fig. 5c), and finally, each Delaunay vertex corresponds Voronoi 
polyhedron (fig. 5d) and vice versa. 
 

 
                                (a)                        (b)                        (c)                        (d) 
Fig. 5. Duality between VD and DT in 3D 
 
It is technically easier to tessellate a simulation domain using tetrahedra than arbitrary 
polyhedral (VD) where each tetrahedron has a constant number of vertices and adjacent 
elements (Icking et al. 2003). Therefore, using the duality between two data structures, the 
Voronoi tessellation can be easily obtained by connecting the circumsphere centers from the 
Delaunay tetrahedra. This property is very important in the simulation of fluid flow where 
the representation of the continuous phenomenon from the discrete samples (point objects) 
is required. Therefore, DT can adequately represent the discrete samples and their 
relationship while, VD can be used for representing the variation of the fluid properties 
across this data i.e. numerical integrating of PDEs.  
 
Maximum-Minimum angle: Another interesting property of Delaunay tessellation in 2D is 
that it maximizes the minimum angle among all triangulations of a given set of points 
(Lawson 1977). This property is important, because it implies that Delaunay triangulation 
tends to avoid skinny triangles. This is useful for many applications where triangles are 
used for the purposes of interpolation of flow values. However, this property is valid in 
only 2D space and it does not generalize to three dimensions where tetrahedra with four 
almost coplanar vertices can be found. These tetrahedra are usually referred to as slivers and 
have a very small volume (almost zero). 
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polyhedral (VD) where each tetrahedron has a constant number of vertices and adjacent 
elements (Icking et al. 2003). Therefore, using the duality between two data structures, the 
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the representation of the continuous phenomenon from the discrete samples (point objects) 
is required. Therefore, DT can adequately represent the discrete samples and their 
relationship while, VD can be used for representing the variation of the fluid properties 
across this data i.e. numerical integrating of PDEs.  
 
Maximum-Minimum angle: Another interesting property of Delaunay tessellation in 2D is 
that it maximizes the minimum angle among all triangulations of a given set of points 
(Lawson 1977). This property is important, because it implies that Delaunay triangulation 
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almost coplanar vertices can be found. These tetrahedra are usually referred to as slivers and 
have a very small volume (almost zero). 

www.intechopen.com



Modeling, Simulation and Optimization – Tolerance and Optimal Control46

 

Empty sphere: A sphere circumscribing any simplex in the Delaunay tessellation does not 
contain any other points in S  in its interior. For example, for 3D simplex pqrs in fig. 3b, there 
is an empty circumsphere passing through three points p, q,r and s. The center of this sphere 
is a vertex of the Voronoi tessellation between these points, because this vertex is equidistant 
from each of these sites and there is no other closer point. This property offers a more 
adequate discretization among all arbitrary triangular tessellation of the space. In addition, 
it is frequently used to choose the best place to insert new points within the poor quality 
elements in refinement methods (please see Shewchuk, 1997). 
 
Nearest-neighbor property: If point q is the nearest-neighbor of point p in S, their associated 
Voronoi cells are adjacent cells in the tessellation and share a face (Boissonnat and Yvinec 
1998). Since, according to the empty sphere criterion, the circle having these two points as its 
diameter cannot contain any other points. This property satisfies an important requirement 
in numerical simulation of a fluid flow: the connectivity between the tessellation elements 
(topology). Because, in the numerical modeling methods, motion equations (PDEs) are 
solved using a given tessellation elements and their neighbors. Therefore, the relationship 
between the elements of the tessellation (topological information) must be defined. Based on 
the nearest-neighbor property the adjacency relationship between tessellation elements 
(topological relations) is readily defined among the Voronoi cells.  
 
Local optimality: As mentioned previously, a Delaunay tessellation means a collection of d-
dimensional simplexes which subdivide the convex hull of S in such a way that the union of 
all the simplexes covers the convex hull and every (d-1)-facet of the simplexes is locally 
Delaunay. For example in 2D, a triangulation is Delaunay if and only if its edges are locally 
Delaunay i.e. there is an empty circle passing through the endpoints of each edge (empty 
circle property). Therefore, local editing of all of non-Delaunay (d-1)-facet (edges in 2D and 
faces in 3D) in a tessellation (local optimality) results in a Delaunay tessellation (global 
optimality) (Devillers 2002). Based on this interesting property, some local topological 
operations, bistellar flips, were developed (Joe 1991, Shewchuk 2005). These operations 
modify the configuration of adjacent elements to satisfy the Delaunay criterion (i.e. empty 
circumcircle test in 2D or circumsphere test in 3D). For example, in 2D, a flip22 convert two 
neighboring triangles pqr and rtp to two triangles pqt and qrt by changing the diagonal of 
quadrilateral formed by four points p , q , r , t  (fig. 6). 
 

 
Fig. 6. A flip22 converts two neighboring triangles to other two neighboring triangles 
 
Flip14, flip41, flip32, flip23 are examples of local topological operations in 3D (Shewchuk 
1997). As fig. 7a illustrates, a flip14 replaces tetrahedron pqrt with four tetrahedra pqst, qrst, 
srpt, pqrs by connecting the point s to the vertices of the tetrahedron (p,q,r,t) and a flip 41 

 

converts inverse problem. The flip41 and flip14 have the effect of inserting or deleting a new 
point (s) in a tetrahedron, respectively (Shewchuk 1997). A flip23 or face-to-edge flip 
operator converts two neighboring tetrahedra (tetrahedra pqrs, qprt in fig. 7b) to three 
tetrahedra (tetrahedra pqts, ptrs, rqts) and a flip32 or edge-to-face flip operator converts three 
neighboring tetrahedra to two with respect to the Delaunay criterion. 
 

            
                                   (a)                                                                        (b)                         
Fig. 7. a) Flip14 and flip41, b) flip 23 and flip 32  
 
The duality between VD and DT, clear definition of spatial relations between tessellation 
elements, the adaptability of these geometrical data structures for the representation of 
complex phenomena, and finally their dynamic and interactive properties make them very 
interesting for the simulaion and representation of fluid flow. Voronoi diagram (VD) and 
Delaunay tessellation thorough theses useful properties provide an adequate discretization 
of the space for both Eulerian and Lagrangian fluid flow simulation approaches, ensuring 
that physically realistic results are obtained from the numerical integration of the PDE. 

 
4. Eulerian methods and Voronoi tessellation 

A tessellationbased on a dynamic Voronoi diagram is an interesting alternative for Eulerian 
methods. Voronoi cells can be defined by points with an arbitrary distribution, creating 
tessellationelements of different sizes and shapes which can adapt to complex geometries. 
For instant, for regions with either high rates of flow or discontinuities, the Voronoi diagram 
can provide a fine resolution mesh. Each cell can have an arbitrary number of neighbors 
which their connectivity with the given cell is clearly defined and can be explicitly retrieved 
if needed. In addition, dynamic Voronoi diagram offers the local editing and manipulating 
possibility of the tessellationwhich is usually necessary for the refining of the 
tessellationwithout having to rebuild the whole mesh. Regarding these properties, several 
research works used VD and DT as underlying tessellationin fluid flow simulation. Hale 
(2002) applied DT and VD to reservoir simulations using 3D seismic images and 
demonstrated the potential of both DT and VD for flow simulation during all steps of 
seismic interpretation, fault framework building, and reservoir modeling. Lardin (1999) and 
Blessent et al. (2008) applied this data structure to groundwater simulation in 3D space and 
showed that VDs are well-adapted to the Control Volume Finite Element (CVFE) method. 
The CVFE methods are based on the principle of mass conservation. Thus, a volume of 
influence is assigned to each point or element and equations are defined to describe the 
interaction of the element with its neighbors. This interaction is expressed by mass balance, 
which states that the difference between inflow and outflow in each element must be equal 
to the variation in fluid stored in the same volume (Therrien et al. 2006). Fig.8 shows the 
examples of Voronoi elements in 2D and 3D.  
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Empty sphere: A sphere circumscribing any simplex in the Delaunay tessellation does not 
contain any other points in S  in its interior. For example, for 3D simplex pqrs in fig. 3b, there 
is an empty circumsphere passing through three points p, q,r and s. The center of this sphere 
is a vertex of the Voronoi tessellation between these points, because this vertex is equidistant 
from each of these sites and there is no other closer point. This property offers a more 
adequate discretization among all arbitrary triangular tessellation of the space. In addition, 
it is frequently used to choose the best place to insert new points within the poor quality 
elements in refinement methods (please see Shewchuk, 1997). 
 
Nearest-neighbor property: If point q is the nearest-neighbor of point p in S, their associated 
Voronoi cells are adjacent cells in the tessellation and share a face (Boissonnat and Yvinec 
1998). Since, according to the empty sphere criterion, the circle having these two points as its 
diameter cannot contain any other points. This property satisfies an important requirement 
in numerical simulation of a fluid flow: the connectivity between the tessellation elements 
(topology). Because, in the numerical modeling methods, motion equations (PDEs) are 
solved using a given tessellation elements and their neighbors. Therefore, the relationship 
between the elements of the tessellation (topological information) must be defined. Based on 
the nearest-neighbor property the adjacency relationship between tessellation elements 
(topological relations) is readily defined among the Voronoi cells.  
 
Local optimality: As mentioned previously, a Delaunay tessellation means a collection of d-
dimensional simplexes which subdivide the convex hull of S in such a way that the union of 
all the simplexes covers the convex hull and every (d-1)-facet of the simplexes is locally 
Delaunay. For example in 2D, a triangulation is Delaunay if and only if its edges are locally 
Delaunay i.e. there is an empty circle passing through the endpoints of each edge (empty 
circle property). Therefore, local editing of all of non-Delaunay (d-1)-facet (edges in 2D and 
faces in 3D) in a tessellation (local optimality) results in a Delaunay tessellation (global 
optimality) (Devillers 2002). Based on this interesting property, some local topological 
operations, bistellar flips, were developed (Joe 1991, Shewchuk 2005). These operations 
modify the configuration of adjacent elements to satisfy the Delaunay criterion (i.e. empty 
circumcircle test in 2D or circumsphere test in 3D). For example, in 2D, a flip22 convert two 
neighboring triangles pqr and rtp to two triangles pqt and qrt by changing the diagonal of 
quadrilateral formed by four points p , q , r , t  (fig. 6). 
 

 
Fig. 6. A flip22 converts two neighboring triangles to other two neighboring triangles 
 
Flip14, flip41, flip32, flip23 are examples of local topological operations in 3D (Shewchuk 
1997). As fig. 7a illustrates, a flip14 replaces tetrahedron pqrt with four tetrahedra pqst, qrst, 
srpt, pqrs by connecting the point s to the vertices of the tetrahedron (p,q,r,t) and a flip 41 

 

converts inverse problem. The flip41 and flip14 have the effect of inserting or deleting a new 
point (s) in a tetrahedron, respectively (Shewchuk 1997). A flip23 or face-to-edge flip 
operator converts two neighboring tetrahedra (tetrahedra pqrs, qprt in fig. 7b) to three 
tetrahedra (tetrahedra pqts, ptrs, rqts) and a flip32 or edge-to-face flip operator converts three 
neighboring tetrahedra to two with respect to the Delaunay criterion. 
 

            
                                   (a)                                                                        (b)                         
Fig. 7. a) Flip14 and flip41, b) flip 23 and flip 32  
 
The duality between VD and DT, clear definition of spatial relations between tessellation 
elements, the adaptability of these geometrical data structures for the representation of 
complex phenomena, and finally their dynamic and interactive properties make them very 
interesting for the simulaion and representation of fluid flow. Voronoi diagram (VD) and 
Delaunay tessellation thorough theses useful properties provide an adequate discretization 
of the space for both Eulerian and Lagrangian fluid flow simulation approaches, ensuring 
that physically realistic results are obtained from the numerical integration of the PDE. 

 
4. Eulerian methods and Voronoi tessellation 

A tessellationbased on a dynamic Voronoi diagram is an interesting alternative for Eulerian 
methods. Voronoi cells can be defined by points with an arbitrary distribution, creating 
tessellationelements of different sizes and shapes which can adapt to complex geometries. 
For instant, for regions with either high rates of flow or discontinuities, the Voronoi diagram 
can provide a fine resolution mesh. Each cell can have an arbitrary number of neighbors 
which their connectivity with the given cell is clearly defined and can be explicitly retrieved 
if needed. In addition, dynamic Voronoi diagram offers the local editing and manipulating 
possibility of the tessellationwhich is usually necessary for the refining of the 
tessellationwithout having to rebuild the whole mesh. Regarding these properties, several 
research works used VD and DT as underlying tessellationin fluid flow simulation. Hale 
(2002) applied DT and VD to reservoir simulations using 3D seismic images and 
demonstrated the potential of both DT and VD for flow simulation during all steps of 
seismic interpretation, fault framework building, and reservoir modeling. Lardin (1999) and 
Blessent et al. (2008) applied this data structure to groundwater simulation in 3D space and 
showed that VDs are well-adapted to the Control Volume Finite Element (CVFE) method. 
The CVFE methods are based on the principle of mass conservation. Thus, a volume of 
influence is assigned to each point or element and equations are defined to describe the 
interaction of the element with its neighbors. This interaction is expressed by mass balance, 
which states that the difference between inflow and outflow in each element must be equal 
to the variation in fluid stored in the same volume (Therrien et al. 2006). Fig.8 shows the 
examples of Voronoi elements in 2D and 3D.  
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                               (a)                                   (b)                                      (c)         
Fig. 8. Examples of Voronoi elements in 2D (a) and 3D (b),(c). 

 
5. Free-Lagrangian methods and Voronoi tessellation 

A Lagrangian method are often the most efficient way to simulate a fluid flow, as the 
tessellationmoves and conforms to the complexity of geometries (Price, 2005). However, a 
main problem of these methods is related to determining the optimal time interval. For 
example, a large time-step causes problems such as overshoots and undetected collisions 
and, as a result, we may observe some abnormal behavior in the simulation results. For a 
small time-step, an extensive computation effort will be required to check for changes at 
time when none occurred. Another problem with Free-Lagrangian methods lies on 
maintaining and processing of the connectivity relations between tessellationelements at 
each time. To solve these problems, a kinetic data structure can be helpful which is based on 
the fact that “variation in space with time may be modeled not by snap-shots of the whole 
map at regular time intervals, but by local updates of spatial model at the time when they 
happen (event)” (Gold 1993). In a fluid flow simulation, these events can be the changes 
either on the field value or on the spatial relationship of the points which refer to as 
trajectory event and topological event respectively (Roos, 1997; Gavrilova and Rokne, 2003). 
Trajectory events are related to the physical problem description and defined by the 
governing equations (PDEs), while topological events can properly be detected and updated 
by a kinetic Voronoi and Delaunay data structures as explained in follows.  
Point movement may change the adjacency relationships of the point and its neighbors. 
Then, this displacement changes the configuration of the triangle/tetrahedra having the 
moving point as one of their vertexes. In a DT, a topological event occurs when a point (p) 
moves in or out of the circle/sphere of a triangle/tetrahedron. Therefore, to find the 
topological event of a moving point, only the spatial information of the triangles/tetrahedra 
having the moving point as one of their vertexes and their neighbors are used and the 
remaining triangles/tetrahedra in the tessellation do not need to be tested. This can be 
computed using well-known predicted test (Guibas and Stolfi, 1985) to preserve the 
Delaunay empty circumcircle/circumsphere criterion. Since in a kinetic data structure, the 
position of points are time dependent, then, the value of the determinant will be time 
dependent as well. However, the cost of generating, computing and updating the predicate 
function is very expensive, especially when dealing with simultaneous moving of the points 
on complex trajectories as seen in a physical system. For example, a quadratic trajectory of a 
point in a 3D space results in a degree eight predicate function. As described in Guibas and 
Russel (2004), the computational cost can be reduced by minimizing the degree of the 
predicate function. To minimize the degree of the function, we assume that only one point is 
allowed to move at a time on a linear trajectory. Therefore, one row of the predicate 

 

determinant must be allowed to vary linearly. Equation 1 shows the predicted function for a 
moving point in 3D Delaunay triangulation. According to this equation, a topological event 
for point p occurs when p moves in or moves out of the circumsphere of the tetrahedron, i.e. 
the value of the predicate function is 0. 
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Mostafavi and Gold (2003) have implemented a similar algorithm on the plan that 
minimizes the number of triangles which must be tested to detect the closest topological 
event of a moving point using a simple geometrical test. To do so, the algorithm computes 
the intersection between the trajectory of moving point p (a line segment) and some of the 
neighboring circumcircles cut the trajectory between the origin and the destination of the 
moving point. In fact, the triangles that the orthogonal projection of their circumcenter on 
the trajectory of p are behind the point p , with respect to the moving direction, are not 
considered. Then, every topological event which is the distance required for the moving 
point to cut the first circle on its trajectory is computed. Ledoux (2006) extended this 
algorithm to 3D for managing one moving point in 3D tessellation. However, there is a large 
number of moving points and topological events in a deforming kinetic spatial tessellation 
which must be managed in order to preserve the validity of the 3D tessellation. The 
sequence of the management of these events has an important impact on the simulation 
results.  
The topological events of all the moving points in the tessellation can be managed 
simultaneously using a priority queue data structure, where the moving points are 
organized with respect to their priority. This priority is defined based on the value of the 
simulation time (tsimulation) for each moving point. The simulation time is the total time that 
takes for each point to reach from its origin to its new location on the trajectory. Therefore, 
first, all the topological events of the moving points are computed. Next, the time taken for 
each point to reach its closest topological event eventt  is obtained. This time depends on the 
velocity ( v ) of the moving point and the distance ( d ) between its current position and the 
location of its next closest topological event on its trajectory. We define the local time ( localt  
) as the time that it takes for each point to move from its origin to its current position. The 
relation between these times is:  

 eventlocalsimulation ttt                                                            (5) 

To facilitate the management of the topological events, we used a priority queues data 
structure by organizing the moving points based on the increasing value of simulationt . 
Therefore, the first member of the queue which has the smallest simulation time is processed 
first i.e. the moving point is moved to its new location and a local update is carried out for in 
the tessellation for the moving point and its neighbors.  
Following the topological changes in the tessellation, we need to update the physical 
parameters of the affected points. In a fluid flow simulation, the governing equation that 
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                               (a)                                   (b)                                      (c)         
Fig. 8. Examples of Voronoi elements in 2D (a) and 3D (b),(c). 

 
5. Free-Lagrangian methods and Voronoi tessellation 

A Lagrangian method are often the most efficient way to simulate a fluid flow, as the 
tessellationmoves and conforms to the complexity of geometries (Price, 2005). However, a 
main problem of these methods is related to determining the optimal time interval. For 
example, a large time-step causes problems such as overshoots and undetected collisions 
and, as a result, we may observe some abnormal behavior in the simulation results. For a 
small time-step, an extensive computation effort will be required to check for changes at 
time when none occurred. Another problem with Free-Lagrangian methods lies on 
maintaining and processing of the connectivity relations between tessellationelements at 
each time. To solve these problems, a kinetic data structure can be helpful which is based on 
the fact that “variation in space with time may be modeled not by snap-shots of the whole 
map at regular time intervals, but by local updates of spatial model at the time when they 
happen (event)” (Gold 1993). In a fluid flow simulation, these events can be the changes 
either on the field value or on the spatial relationship of the points which refer to as 
trajectory event and topological event respectively (Roos, 1997; Gavrilova and Rokne, 2003). 
Trajectory events are related to the physical problem description and defined by the 
governing equations (PDEs), while topological events can properly be detected and updated 
by a kinetic Voronoi and Delaunay data structures as explained in follows.  
Point movement may change the adjacency relationships of the point and its neighbors. 
Then, this displacement changes the configuration of the triangle/tetrahedra having the 
moving point as one of their vertexes. In a DT, a topological event occurs when a point (p) 
moves in or out of the circle/sphere of a triangle/tetrahedron. Therefore, to find the 
topological event of a moving point, only the spatial information of the triangles/tetrahedra 
having the moving point as one of their vertexes and their neighbors are used and the 
remaining triangles/tetrahedra in the tessellation do not need to be tested. This can be 
computed using well-known predicted test (Guibas and Stolfi, 1985) to preserve the 
Delaunay empty circumcircle/circumsphere criterion. Since in a kinetic data structure, the 
position of points are time dependent, then, the value of the determinant will be time 
dependent as well. However, the cost of generating, computing and updating the predicate 
function is very expensive, especially when dealing with simultaneous moving of the points 
on complex trajectories as seen in a physical system. For example, a quadratic trajectory of a 
point in a 3D space results in a degree eight predicate function. As described in Guibas and 
Russel (2004), the computational cost can be reduced by minimizing the degree of the 
predicate function. To minimize the degree of the function, we assume that only one point is 
allowed to move at a time on a linear trajectory. Therefore, one row of the predicate 

 

determinant must be allowed to vary linearly. Equation 1 shows the predicted function for a 
moving point in 3D Delaunay triangulation. According to this equation, a topological event 
for point p occurs when p moves in or moves out of the circumsphere of the tetrahedron, i.e. 
the value of the predicate function is 0. 

0

1

1

1

1

1)()()()()()(

222

222

222

222

222













zyxzyx

zyxzyx

zyxzyx

zyxzyx

zyxzyx

dddddd

cccccc

bbbbbb

aaaaaa

tptptptptptp

                                            (4) 

 
Mostafavi and Gold (2003) have implemented a similar algorithm on the plan that 
minimizes the number of triangles which must be tested to detect the closest topological 
event of a moving point using a simple geometrical test. To do so, the algorithm computes 
the intersection between the trajectory of moving point p (a line segment) and some of the 
neighboring circumcircles cut the trajectory between the origin and the destination of the 
moving point. In fact, the triangles that the orthogonal projection of their circumcenter on 
the trajectory of p are behind the point p , with respect to the moving direction, are not 
considered. Then, every topological event which is the distance required for the moving 
point to cut the first circle on its trajectory is computed. Ledoux (2006) extended this 
algorithm to 3D for managing one moving point in 3D tessellation. However, there is a large 
number of moving points and topological events in a deforming kinetic spatial tessellation 
which must be managed in order to preserve the validity of the 3D tessellation. The 
sequence of the management of these events has an important impact on the simulation 
results.  
The topological events of all the moving points in the tessellation can be managed 
simultaneously using a priority queue data structure, where the moving points are 
organized with respect to their priority. This priority is defined based on the value of the 
simulation time (tsimulation) for each moving point. The simulation time is the total time that 
takes for each point to reach from its origin to its new location on the trajectory. Therefore, 
first, all the topological events of the moving points are computed. Next, the time taken for 
each point to reach its closest topological event eventt  is obtained. This time depends on the 
velocity ( v ) of the moving point and the distance ( d ) between its current position and the 
location of its next closest topological event on its trajectory. We define the local time ( localt  
) as the time that it takes for each point to move from its origin to its current position. The 
relation between these times is:  

 eventlocalsimulation ttt                                                            (5) 

To facilitate the management of the topological events, we used a priority queues data 
structure by organizing the moving points based on the increasing value of simulationt . 
Therefore, the first member of the queue which has the smallest simulation time is processed 
first i.e. the moving point is moved to its new location and a local update is carried out for in 
the tessellation for the moving point and its neighbors.  
Following the topological changes in the tessellation, we need to update the physical 
parameters of the affected points. In a fluid flow simulation, the governing equation that 
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defines the nature of the dynamic fluid, allows to compute the new physical parameters, 
such as the velocity, for each moving point and its neighbors. This means that is updated 
after each topological event for the points involved in this operation. As a result, the 
priorities of some of the moving points may change. This occurs because, when a point 
moves, the related circumcircle/circumspheres and event times of the neighboring points 
change. The above process is reiterated until the end of the simulation process. 

 
6. Conclusions 

In this chapter we discussed simulation of a dynamic process , a fluid flow in particular, that 
is a difficult task for the exsisting data structures which are 2D and static. A  Voronoi data 
structure, as an alternative, can generate a tessellationthat accurately represents the 
geometrical, topological information of a fluid flow as well as its dynamic behavior in both 
static and dynamic manner. In the static or Eulerian methods, the structure assigns a volume 
of influence to each point and flow is assumed to be a transfer of fluid between these 
elements. Therefore, the change of fluid flow for each element is difference between inflow 
and outflow in it at a series of snapshots. In the dynamic or Lagrangian methods, data 
structure assigns a fixed mass of the fluid to each point. Therefore, tessellationmoves as 
fluid flow progress. The kinetic Voronoi diagram is also very well-adapted to free-
Lagrangian tessellationas it can properly update the topology, connectivity, and physical 
parameters of the tessellationelements when they change. 
This chapter is a part of an ongoing research work that proposes a kinetic data structure for 
the simulation of 3D dynamic contionus process in spatial context. In the research work, 
different issues regarding the development, implementation and application of such a data 
structure for the 3D simulation of fluid flow in hydrodynamics using Voronoi diagram have 
been studied.  
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after each topological event for the points involved in this operation. As a result, the 
priorities of some of the moving points may change. This occurs because, when a point 
moves, the related circumcircle/circumspheres and event times of the neighboring points 
change. The above process is reiterated until the end of the simulation process. 
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geometrical, topological information of a fluid flow as well as its dynamic behavior in both 
static and dynamic manner. In the static or Eulerian methods, the structure assigns a volume 
of influence to each point and flow is assumed to be a transfer of fluid between these 
elements. Therefore, the change of fluid flow for each element is difference between inflow 
and outflow in it at a series of snapshots. In the dynamic or Lagrangian methods, data 
structure assigns a fixed mass of the fluid to each point. Therefore, tessellationmoves as 
fluid flow progress. The kinetic Voronoi diagram is also very well-adapted to free-
Lagrangian tessellationas it can properly update the topology, connectivity, and physical 
parameters of the tessellationelements when they change. 
This chapter is a part of an ongoing research work that proposes a kinetic data structure for 
the simulation of 3D dynamic contionus process in spatial context. In the research work, 
different issues regarding the development, implementation and application of such a data 
structure for the 3D simulation of fluid flow in hydrodynamics using Voronoi diagram have 
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