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1. Introduction 
 

In many and very significant applications, for instance in mechanical, electrical and chemi-
cal engineering, in economy (the famous input-output Leondief model and its several im-
portant extensions, see Leontief (1986), Luenberger (1977), Campbell (1980) at al.), in actuar-
ial science, Pantelous et al. (2008), in ecology and growth population (the Leslie growth 
population model and backward population projections, see Leslie (1945)), the descriptor 
dynamic systems’ framework is required for the modelling procedure. 
Example 1.1 For instance, practically speaking, we can consider a simple circuit network, as 
shown in Figure 1, Dai (1989) p. 10, where the voltage source  sV t  is the control input. 

,  R L  and C  stand for the resistor, the inductor, and the capacity, respectively. Moreover, 
their voltages are denoted by  RV t ,  LV t  and  CV t , respectively. 

 
Fig. 1. A simple circuit network 
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Then, following Kirchoff’s laws, we have the following systems of circuit equations 

         L C R SV t V t V t V t      (1.1) 

    LV t L i t           (1.2) 

    RV t R i t           (1.3) 

     
1

CV t i d
C

.           (1.4) 

Moreover, if we assume that   
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as the state variable, we obtain  
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Then, the following dynamic system is derived 

       Fx t Gx t Bu t ,    (1.5a) 

where 

 
 
 
 
 
 

0 0 0
0 0 1 0
0 0 0 0
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L

F , 
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1
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Example 1.2 (Analog-computer simulation) (Grispos, 1991) 

     
     
  

     
Fx t Gx t Bu t

y t Cx t Du t
,     (1.5b) 

where det 0F  or det 0F . 

In figure 2, an analog-computer simulation of a relevant descriptor non-autonomous dy-
namic system is sketched, which is accelerated by the use of integrator (  ) . Moreover, in the 

above figure, an adder (  ) is included, where the output vector is equal to the sum of input 

 

vectors and the amplifier (or attenuator)  . This simulation of system (1.5b) is true if we 
assume that the vector  Fx t  does exist. 
 
 
 
 
 
 
 
 
 
 
Fig. 2. Analog-computer simulation 
 
As we can see, the systems (1.5a) and (1.5b) are linear descriptor differential systems. How-
ever, several of those electrical applications can be represented more effectively by combin-
ing linear and nonlinear parts of differential equations known, in the literature, as weakly 
nonlinear differential systems. 
Weakly nonlinear (or semi-linear) regular differential systems of type (1.6) are investigated 
in this book chapter, see also Kalogeropoulos et al. (2008 a,b), Karageorgos et al. (2009), i.e. 
 

         ,Fx t Gx t f t x t ,    (1.6) 

where , n nF G  are time-invariant matrices, with det 0F , and   ,f t x t  is a sufficiently 

differentiable n -vector function of  t ;  x t , for  0t  and  x . 
This mixture of linear and nonlinear parts is a very productive in many applications of en-
gineering including electrical circuits and networks; power system; aerospace engineering; 
nonlinear mechanical phenomena; cheap control, etc. Since 1970s, this kind of systems has 
attracted the attention of many researchers. However, more theoretical analysis of (1.6) is 
needed. This chapter is a step in that direction. 
In the classical literature of generalized linear regular differential systems, see Campbell 
(1980, 1983), Karcanias (1981), Kalogeropoulos (1985) et al., one of the important features is 
that not every initial condition  ox t  admits a functional solution.  
This chapter is organized as follows: Section 2 provides some preliminary concepts and 
definitions from Matrix Pencil theory. In Section 3, the solution of weakly nonlinear regular 
differential systems is derived. The solution is provided for (non-) consistent initial condi-
tions. The asymptotic stability is investigated for the solution of weakly nonlinear regular 
differential systems. Some important conditions are available in Section 4. Section 5 pro-
vides a standard linearization technique and the solution of the regular linearized system is 
provided. Finally, section 6 concludes the paper. Several extensions and interesting fields of 
research are also provided.   
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2. Mathematical Background – Elements of Matrix Pencil Theory 
 

This preliminary section introduces some basic concepts and definitions from Matrix Pencil 
theory those are used throughout the paper.  
Definition 2.1 Given , m nF G and an indeterminate s , the matrix pencil sF G  is called 
regular when m n  and   det 0sF G , where 0 is the zero polynomial. In any other case, 
the pencil will be called singular. 
In the case where sF G  is a regular pencil, the elementary divisors of the following type is 
obtained: 
 e.d. of the type s  are called zero finite elementary divisors (z.e.d.) 

 e.d. of the type  
p

js ,   0j  are called nonzero finite elementary divisors (nz. f.e.d.) 

 e.d. of the type ˆqs  are called infinite elementary divisors (i.e.d) 
Theorem 2.1 (Gantmacher, 1959) (complex Weierstrass canonical form)  
For a regular matrix pencil sF G , there exist non singular n n  matrices P  and Q  such 
that. 

 
   

 

,

,

p p q
w

q p q

I
PFQ F H


       (2.1) 

 
   

 

,

,

p p q
w

q p q

J
PGQ G I


        (2.2) 

Then, the complex Weierstrass canonical form w wsF Q  of the regular matrix pencil sF G , 
is given by  

     ,w w p p q qsF Q block diag sI J sH I , 

where the first normal Jordan type block p psI J  is uniquely defined by the set of f.e.d.  

    

  1
1 ,p ps s , 


 1

v
jj

p p  

of sF G  and has the form           
1 1 1 , ,p p p p p psI J block diag sI J sI J . 

And the q  blocks of the second uniquely defined block q qsH I  correspond to the i.e.d.  

    1ˆ ˆ, ,q qs s , 


 1 jj

q q  

of sF G  and has the form   
   

1 1
 , ,q q q q q qsH I block diag sH I sH I , 

where    
j j jp p j qI , J , H , are given by (2.3) on the field of  . 



 
 
 
 
 
 




   


1 0 0
0 1 0

0 0 1

j

j j

p

p p

I ,  










 
 
 
 
 
 
  




    

1 0 0
0 1 0

0 0 0 1
0 0 0 0

i

i i

i

i

p i

i

i p p

J and 



 
 
 
 
 
 
  




    

0 1 0 0
0 0 1 0

0 0 0 0 1
0 0 0 0 0

j

j j

q

q q

H  

(2.3) 
the 

jqH  is a nilpotent matrix of index    * max : 1,2, ,jq q j , 

 

where          
*

j

q
qH = .       (2.4) 

 
3. Solving weakly nonlinear regular differential systems 
 

In this section, we are interested in solving weakly nonlinear regular differential systems by 
using the matrix pencil approach. However, before we go further, the following definition is 
necessary to be stated.  
Definition 3.1 We shall call ox  a consistent initial condition for (1.6) at ot , if there is a differen-
tiable solution to (1.6) defined on some interval  ,o ot t ,   0  such that   o ox t x , see 
Campbell (1983). 
Consider, now, an electrical circuit which is in use at time  ot t . Moreover, at the exact time 

ot , the system has initial condition 

       


 

 

 
  lim lim

o
o ot t t t

x t x t x t x t , 

which is profoundly non-consistent with the (new) system. This result is due to the impulse 
behaviour of the system (1.6) at time ot , which is translated to an effort to change (almost) 
instantly, i.e. in zero time, the state of the system in a new initial condition. From mathe-
matical point of view, this approach can be modelled efficiently by using  -function of 
Dirac and its derivatives. In this chapter, both cases are considered and discussed. The fol-
lowing lemma divides our initial system (1.6) into two equivalent, lower order differential 
systems.            
Lemma 3.1 System (1.6) is divided into two subsystems  

   ,´ ( ) ( ) , ( )p p p p ny t J y t P f t Qy t            (3.1) 

with initial conditions  p oy t , and 

   ,´ ( ) ( ) , ( )q q q q nH y t y t P f t Qy t           (3.2) 

with initial conditions  q oy t . 

Proof. We make the transformation  
   x t Qy t .     (3.3) 

Then, the system (1.6) is transformed to  
  ´( ) ( ) , ( )FQy t GQy t f t Qy t . 

Multiplied by left by the nonsingular matrix P , we obtain  
        ´( ) ( ) , ( ) ´( ) ( ) , ( )w wPFQy t PGQy t Pf t Qy t F y t G y t Pf t Qy t  

 
        

          
           

, , ,

, , ,

´ ( ) ( )
, ( ) .

´ ( ) ( )
p pp p q p p q p n

q p q q p q q nq q

y t y tI J P
f t Qy tH I Py t y t

 
   

Then, eqs. (3.1) and (3.2) derive.  
Now, the initial conditions is obtained  

          1
o o o ox t Qy t y t Q x t . 
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The 
 

  
  

0

0
0

( )
( ) .

( )
p

q

y t
y t

y t
 Thus, the initial conditions for system (3.1) is given by  p oy t  and for 

system (3.2) is provided by  q oy t . 

Following the results of Lemma 3.1, the system (1.6) has been divided into two equivalent 
subsystems (3.1) and (3.2). Contrary to the matrix coefficients of the initial system (1.6), 
those systems have specified matrix coefficients, i.e. nilpotent, Jordan and identical matrices. 
This equivalence is very significant, since it provides the appropriate framework for a 
deeper system’s analysis. The following Remarks and Lemmas provide us with the solution 
of system (1.6) with consistent and non-consistent initial conditions.   
Remark 3.1 System (3.1) with initial conditions  p oy t  can be solved using some classical 

methods, and   

       0

0

( ) ( )
0 ,( ) , ( )p p

tJ t t J t s
p p p nt

y t e y t e P f s Qy s ds .                          (3.4) 

In this part of the sections, we will solve the subsystem (3.3). 
Lemma 3.2 Considering that 

  


 

 
*

0

1

0 ,
0

( ) , ( )
q j

j
q q q n j

j t t

dy t H P f t Qy t
dt

,                                  (3.5) 

the solution of subsystem (3.3) is given by 

  




 
* 1

,
0

( ) , ( )
q j

j
q q q n j

j

dy t H P f t Qy t
dt

.                                        (3.6) 

Proof. We start by observing that –as is well known– there exists a q  such that 
*q

qH  

 , i.e. the *q  is the annihilation index of qH . We obtain 

          , ,q q q q nH y t y t P f t Qy t               (3.7) 

whereby differentiating, and multiplying by qH , we get  

        2
, ,q q q q q q n

dH y t H y t H P f t Qy t
dt

                 (3.8) 

and substituting (3.7) into (3.8), we have  

            2
, ,, ,q q q q n q q n

dH y t y t P f t Qy t H P f t Qy t
dt

.                      (3.9) 

By differentiating and multiplying by qH  again expression (3.9), we obtain 

             
2

33 2
, , 2, ,q q q q q q n q q n

d dH y t H y t H P f t Qy t H P f t Qy t
dt dt

. 

Repeating this argument a sufficient number of times we end up with 
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**
1
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0
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q k

qq k
q q q q q n k

k

dH y t y t H P f t Qy t
dt

.                (3.10) 

Taking into consideration that 
*q

qH   and all the other similar relations up to and includ-
ing (3.10), we arrive at (3.6), where 

 

0
q qH I   and         

0

0 , ,d f t Qy t f t Qy t
dt

. 

The solution of system (3.2) has consistent initial conditions, since at  ot t , we obtain (3.5). 
The expression (3.5) is very crucial, since the consistency of the initial conditions is finally 
satisfied. Thus, a very smooth functional solution is provided.   
Remark 3.2 Stepping on the previous results and considering eq. (3.3), the solution of sys-
tem (1.6) with consistent initial conditions is given by  
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.                       (3.11) 

Denote that the matrix     , , ;  n p n qQ Q Q p q n , then 
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p
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 (3.12) 

with initial conditions at time  ot t  

      
 






 
     

  

*

0

1

, , ,0 0
0

, |
q j
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n p p o n q q q n j t t

j q o

y tdx Q y t Q H P f t Qy t x Q
y tdt

. 

Now, we assume that vector function   ,f t x t  is  
* 1[0, )qC , where *q  is the nilpotent 

matrix of qH , see section 2, with the restricted condition that  

  


, 0
o

k

k
t t

d f t x t
dt

, and     0ox t  

for all  *0,1,..., 1k q . The function   ,f t x t  can be a polynomial of type 

         


 
2

,
n k

k o
k

f t x t a t x t x t , where  * 1n q   

and  ka t ,  *2,..., 1k q , are sufficiently differentiable functions of t . Denote also that 

                   1 1

Tk k k
o o n n ox t x t x t x t x t x t . 

Example 3.1 (Kalogeropoulos et al. 2008a) Consider the dynamic differential system, 
2

2 3 5 6 1 2 3 4 6 7 1
2 2

1 2 3 5 6 1 2 3 4 5 6 7 2 4
2

1 2 3 4 6 7 1 2 4 5 6 7 4
2

2 3 5 6 1 2 3 4 6 7 6
2

3 5 6 5

0
2 3 4 3 2 4 5 0

2 2 0
2 0

x x x x x x x x x x x
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x x x x x x x x x x x x x
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q q q n j

j

dy t H P f t Qy t
dt
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Proof. We start by observing that –as is well known– there exists a q  such that 
*q

qH  

 , i.e. the *q  is the annihilation index of qH . We obtain 

          , ,q q q q nH y t y t P f t Qy t               (3.7) 
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, ,q q q q q q n
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dt
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By differentiating and multiplying by qH  again expression (3.9), we obtain 
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. 
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q q q q q n k
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Taking into consideration that 
*q

qH   and all the other similar relations up to and includ-
ing (3.10), we arrive at (3.6), where 

 

0
q qH I   and         

0

0 , ,d f t Qy t f t Qy t
dt

. 

The solution of system (3.2) has consistent initial conditions, since at  ot t , we obtain (3.5). 
The expression (3.5) is very crucial, since the consistency of the initial conditions is finally 
satisfied. Thus, a very smooth functional solution is provided.   
Remark 3.2 Stepping on the previous results and considering eq. (3.3), the solution of sys-
tem (1.6) with consistent initial conditions is given by  
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with initial conditions at time  ot t  
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. 

Now, we assume that vector function   ,f t x t  is  
* 1[0, )qC , where *q  is the nilpotent 

matrix of qH , see section 2, with the restricted condition that  

  


, 0
o

k

k
t t

d f t x t
dt

, and     0ox t  

for all  *0,1,..., 1k q . The function   ,f t x t  can be a polynomial of type 

         


 
2

,
n k

k o
k

f t x t a t x t x t , where  * 1n q   

and  ka t ,  *2,..., 1k q , are sufficiently differentiable functions of t . Denote also that 

                   1 1

Tk k k
o o n n ox t x t x t x t x t x t . 

Example 3.1 (Kalogeropoulos et al. 2008a) Consider the dynamic differential system, 
2

2 3 5 6 1 2 3 4 6 7 1
2 2

1 2 3 5 6 1 2 3 4 5 6 7 2 4
2

1 2 3 4 6 7 1 2 4 5 6 7 4
2

2 3 5 6 1 2 3 4 6 7 6
2

3 5 6 5

0
2 3 4 3 2 4 5 0

2 2 0
2 0

x x x x x x x x x x x
x x x x x x x x x x x x x x

x x x x x x x x x x x x x
x x x x x x x x x x x

x x x x
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x x x x x x x x x x
x x x x x x x x x x x

         

           

  
  

 

or in a matrix form, where      2,f t x t Ex t , and 

(S)         2Fx t Gx t Ex t . 

Note that                  2 2 2 2 2 2 2 2
1 2 3 4 5 6 7

T
x t x t x t x t x t x t x t x t , 

with initial condition     0 0 0 0 0 0 0 0 T
ox x , 

where 
 

     
    
 

    
 
 

  
   

0 1 1 0 1 1 0
1 2 1 0 1 1 0

1 1 1 1 0 1 1
0 1 1 0 1 1 0
0 0 0 0 0 0 0
0 0 1 0 1 1 0
1 1 0 0 0 0 1

F  , 

    
    
   
 
    
  
 
 
    

1 1 1 1 0 1 1
3 4 3 1 2 4 5
1 2 0 1 2 1 1
1 1 1 1 0 1 2

0 0 1 0 1 1 0
1 1 1 1 0 1 1
3 2 3 1 2 3 4

G  

 and 
 
 
 
 
 

  
 
 
 
 
 

1 0 0 0 0 0 0
0 1 0 1 0 0 0
0 0 0 1 0 0 0
0 0 0 0 0 1 0
0 0 0 0 1 0 0
0 0 0 0 0 1 0
0 0 0 0 0 0 1

E . 

 From the regularity of sF G , there exist non singular n n matrices  
 

 
 
 
 

  
 
 
 
 
 

0 0 0 1 0 0 1
1 0 0 0 0 1 0
0 1 0 1 0 0 1
1 0 0 1 0 0 0
0 0 1 0 1 0 0
0 0 0 0 0 1 0
0 0 0 0 1 0 0

P  and 

 
 
 
 
 

  
 
 

 
 
 

1 0 0 1 0 0 1
0 1 0 0 0 0 0
0 1 0 0 1 1 1
1 0 1 0 1 1 0
0 1 1 0 1 0 0
0 0 1 0 0 1 0
0 0 0 1 0 0 0

Q , 

such that 
 

   
 

2 5,2

5,2 5
w

I
PFG F

H


 , and 
  

   
 

2 5,2

5,2 5

2
w

J
PGQ G

I


 , 

where  2 2 5,  2 ,  I J H  are given by (2.3). 
Moreover, taking into consideration the transformation (3.3) for  
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2
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2
2 5 6 7

2 22
1 3 5 6

2
2 3 5

2
3 6

2
4

,

y t y t y t
y t

y t y t y t y t

f t x t Ex t E Qy t y t y t y t y t

y t y t y t

y t y t
y t

  
 
 
 

   
       
 

  
   
  

 

and multiplying by P , then 

 
 
 

      
           

                 
           

               
    

      

   
 
     
 
 
 
          

           
        
   
   



2 2
3 6 4

2 2
1 4 7 3 6

2 22 2
2 1 3 5 6 3 6 42

2 2
5 1 4 7 3 6

2 2
1 3 5 6 2 3 5

2
3 6

2
2 3 5

.

y t y t y t

y t y t y t y t y t

y t y t y t y t y t y t y t y tB t
B t

B t y t y t y t y t y t

y t y t y t y t y t y t y t

y t y t

y t y t y t

 

The above system can be divided into the following two subsystems 

(S1)                  
 

2 2 2

2 1
0 2

y t y t B t  and (S2)         

 
 
 
    
 
 
  

5 5 5

0 1 0
0 0 1
0 0 0 .

0 1
0 0

y t y t B t  

Now, we consider the initial conditions  

 
 
   

 
   

  

21

5

0
0 0 0 0 0 0 0 0

0
T

o

y
y Q x

y
. 

Note also that  
 

 
 
 
 

     
 
 

 
 
 

 7 ,2 7 ,5

1 0 0 1 0 0 1
0 1 0 0 0 0 0
0 1 0 0 1 1 1
1 0 1 0 1 1 0
0 1 1 0 1 0 0
0 0 1 0 0 1 0
0 0 0 1 0 0 0

Q Q Q . 

Finally, it is not difficult to verify that 3
5 5H  , i.e. * 3q .  

According to Remark 3.2, and the relevant expressions, the solution of the system (S) is 
given by  
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Finally, it is not difficult to verify that 3
5 5H  , i.e. * 3q .  

According to Remark 3.2, and the relevant expressions, the solution of the system (S) is 
given by  
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2 2

2
2 2 2

7 ,2 2 2 7 ,5 5 5 5 5 52
0

0o

t
J t t J t s d dx t Q e y e B s ds Q B t H B t H B t

dt dt
 

or equivalently, if we consider the initial condition then 

              
    

 
 2

2
2 2

7 ,2 2 7 ,5 5 5 5 5 52 .
o

t
J t s

t

d dx t Q e B s ds Q B t H B t H B t
dt dt

 

Up to now, we have considered that system (1.6) has consistent initial conditions. If this 
assumption eliminated then subsystem (3.2) had non-consistent initial conditions, i.e.    

 





 
*

0

1

0 ,
0

( ) ( , ( ))|
q j

i
q q n t tjq

j

dy t H P f t Qy t
dt

,                                   (3.13) 

then the solution of (3.2) can be found as follows. 
Lemma 3.3 (Kalogeropoulos et al., 2008a) Assume that the condition (3.13) is true. The solu-
tion of the system (3.2) is given by  

           
 



 

   
* *1 1

1 ( )
0 ,

1 0
( * )

q q
j j j j

q q q q q n
j j

y t t H y t H P f t ,                      (3.14) 

where  * jf  is the convolution between two functionals  

  

 
 

 








 
 
 

  
 
 
 



( )
1

( )
2( )

( )

( * )
( * )

( * )

( * )

j

j
j

j
n

f t
f t

f t

f t

                                                  (3.15) 

and         
           0( * ) , ( )

tj j
i if t f s Qy s t s ds ,                           (3.16) 

where   t  is the Dirac function for every   *1,2, , 1j q . 
Proof. Let us start by observing that the *q  is the annihilation index of qH . Whereby taking 
the Laplace transformation of (3.2), the following expression derives 

             , ,q q q q nH y t y t P f t Qy t  

and by defining      q qy t X s ,        { ´ }q q oq
y t sX s y t ,  

we obtain   

             , ,q q q o q q nH sX s y t X s P f t Qy t  

or equivalently       

            . ,q q q q q o q nsH I X s H y t P f t Qy t .      (3.17) 

Since *q  is the annihilation index of qH , it is known that   
1

q qsH I  





* 1

0

q j

q
j

sH , where  

0
q qH I , see for instance Kalogeropoulos (1985) and Meyer (2001). Thus, substituting the  

above expression into the (3.17), the following equation is taken  

 

           
 

 

     
* *1 1

,
0 0

,
q qj j

q q q q o q q n
j j

X s sH H y t sH P f t Qy t  

     
 



 

     
* *1 1

1
,

0 0
,

q q
j j j j

q o q q nq
j j

s H y t s H P f t Qy t  

         






       
*

* * *
1

12
,

0
,

q
q q j j q

q q q o q q n qq
j

H sH s H y t s H P f t Qy t note H   

 

       


 



      
*

* *
1

2 12
,

0
,

q
q q j j

q q q q o q q n
j

H sH s H y t s H P f t Qy t   

                   
 



 

    
* *1 1

1
,

1 0
,

q q jj j
q q q o q q n

j j
X s s H y t sH P f t Qy t .     (3.18) 

Since      j jt s , the expression (3.18) is transformed into (3.19) 

                  
 



 

      
* *1 1

1
,

1 0
,

q q
j jj j

q q q o q q n
j j

X s t H y t H P t f t Qy t             (3.19) 

Now, by applying the inverse Laplace transformation into (3.19), we obtain 

        

   
   

   

  

    
  

  
        
  
  
  

    



1

2
( ) ( )1 1

,

,
( ) , ( )

,

j j

n

f t Qy t

f t Qy t
t f t Qy t t

f t Qy t

      
      

      

 










     
  
   

    
  
  
  
     



( )
1

( )
2

( )1

( )

,

,
( * )

,

j

j

j

j
n

t f t Qy t

t f t Qy t
f t

t f t Qy t

. 

Because 

               ( ) ( )1 , ( * ) 1, 2, ,j j
i it f t Qy t f t for every i n . 

Moreover,  

            
 



 

    
* *1 1

1
,

1 0

q q
j jj j

q q q o q q n
j j

y t t H y t H P f t , 

where the convolution of the two time function is  
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1

2

j

j
j

j
n

f t

f t
f t

f t

, 

and                   
0

,
t

j j
i if t f Qy t d , for  1,2, ,i n .   

Remark 3.3 The solution of system (1.6) is given by (3.21) when the assumption (3.13) is 
considered.  

   
          

, , , 0

( )
( ) ( ) ( ) ( )

( )
p o

p J t t
n p n q n p p

q

y t
x t Qy t Q Q x t Q e y t

y t
 

          
 

 

 

  
* *

0

1 1
1 ( )

, , , , ,
1 0

, ( ) ( * )( )p
q qt J t s j j j j

n p p n n q q o n q q q nqt
j j

Q e P f s Qy s ds Q t H y t Q H P f t (3.21) 

In the next section, the asymptotic stability of systems (1.6) with consistent initial condition 
is considered.  

 
4. The asymptotic stability of weakly nonlinear regular differential systems 
 

In the beginning of this section, some fundamental elements of asymptotic stability are in-
troduced and discussed. 
Definition 4.1 Considering a system of ordinary differential equations, then the solution 
 x t  is asymptotically stable (see figure 3) if for every other solution  x t , the following 

condition is satisfied 


 lim ( ) ( ) 0

t
x t x t . 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig. 3. The asymptotic stability of two-dimension vector  x t  

 0x  

 0x

 x t

 x t

t  

 1x t

 2x t  

 

Consequently, some elements of norms for rectangular matrices are needed. 
Definition 4.2 Consider the function   ν: m n  which is called norm in the space m n or 
matrix norm, if the following conditions are satisfied simultaneously.  
1.     0A v A  
2.    ( ) ( )A A  
3.        v A B v A v B  
Definition 4.3 The matrix  .m nA  Denote the Frobenius norm of matrix Α,  

 
 

  2 1/2

1 1
α ( )

m n
H

F ij
i j

A trace A A                                         (4.1) 

where  
tHA A  (the conjugate transpose of matrix Α). 

Remark 4.1 The Frobenius norm has a significant property, which does not appear in other 
norms for rectangular matrices. Analytically, consider the matrices m pA  and p nB  
then 

   F F FA B A B                                                        (4.2) 
In the next lines of this chapter, we are using the Frobenius norm. If contrary, it will be men-
tioned. First, we consider the asymptotic stability of system (1.6) with consistent initial con-
ditions. Thus, we assume that  x t  is a different solution of system (1.6) with the initial 
conditions    o ox t x , and 
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Continuing the section, some significant Lemmas are proven. These results are consequence 
of important properties of norm.  
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Lemma 4.1 The following inequality holds 
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(The inequality is due to the expression   x y x y ) 
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Remark 4.2 Considering the results of Lemma 4.1, we obtain 
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with t0  s  t. 
Remark 4.3 Assuming, now, that t  t0  and  s[t0 , t], then the (4.4) and (4.5) are transposed to 
the following expressions, respectively 
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Furthermore, using the above two expressions, the eq. (4.3) is benefited as following  
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Remark 4.3 Looking beyond the lines, the eq. (4.8) says clearly that if  , ( )f t x t  is an arbi-

trary vector function then the asymptotic stability is not obtained. Thus, our main target is to 
determine the necessary conditions such as the asymptotic stability derives for system (1.6). 
Consequently, the following properties are taken. Note that these properties are quite gen-
eral.  

(i)   0i  for every  i  1, 2, …, ν.                                           (4.9) 

(ii)      1 2, ( ) , ( ) ( )f t x t f t x t t ,                                        (4.10) 
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finite for every   1x t ,  2x t n  (or n ) and every t  t0 . 

(iii)     
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for every  1x t ,  2x t n  (or n ). 
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Using the results of Lemma 4.2, the eqs (4.9) and (4.10), the condition (4.8) is transformed to 
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Lemma 4.3 Consider that λ < 0 and 










1

( ) ct d t with cκ  (finite real powers) for every κ 

 1,…, μ  and  dκ , with finite μ, then  


lim( ( )) 0t

t
e t . 

Proof. Calculating the 


lim( )t c

t
e t  with  λ < 0, and c finite, then using c-times De L’ Hospital 

law, we take 



lim( ) 0t c

t
e t . 

A straightforward generalization of the above result is given below 
  


lim ( ) 0.t

t
e t  

Remark 4.4 The factor, which is included in eq. (4.13), 




             
  

0

1/21 2
0

0 0 ,2
0

( )( ) ( ) ( ) ( ) ( )
( !)

ip j t

i p p q n t
j

t tp j y t y t P s ds t
j

 

where Δ(t) is constructed equivalently to Π(t), has a greatest power index  
pi  1  γκ  1  pi  γκ.  

Following the results of Lemma 4.3 
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Proposition 4.1 The solution of system (1.6) with consistent initial conditions is asymptoti-
cally stable when expressions (4.9), (4.10) and (4.11) exist simultaneously.  
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Proof. This result is a straightforward application of the definition of Dirac  -function, i.e. 
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t
t


  for every m  0, 1, 2,…. 

We conclude the section by considering the following Proposition.  
Proposition 4.2 The solution of the system (1.6) with non-consistent initial conditions is as-
ymptotically stable when the results (1) (or (4.9)) and (2) of Remark 4.6 hold.  
Proof. Considering the Remark 4.6 and Lemmas 4.6 and 4.7, the asymptotic stability of the 
solution of the system (1.6) with non-consistent initial conditions is derived.  
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We conclude the section by considering the following Proposition.  
Proposition 4.2 The solution of the system (1.6) with non-consistent initial conditions is as-
ymptotically stable when the results (1) (or (4.9)) and (2) of Remark 4.6 hold.  
Proof. Considering the Remark 4.6 and Lemmas 4.6 and 4.7, the asymptotic stability of the 
solution of the system (1.6) with non-consistent initial conditions is derived.  

 
5. Studying the linearized solution of weakly nonlinear regular differential 
systems 
 

In order to solve nonlinear systems, it is very common to apply a linearization technique. In 
this section, a standard approach for the study of nonlinear dynamical systems based on 
classical linearization’s technique (Taylor expansion for time t ) is provided, see Kalogero-
poulos et al. (2008b). Analytically  

 , ( ) (ω )( )f t x t x t  ,                         (5.1) 

where : n n   , such as 
2

1
TT T n

n        and : n
i    for 1,2, ,i n  .  

The linearized approach of  , ( )f t x t  is given by the Taylor expansion method using the 

following expression  
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Thus, we obtain  
   0 0 0 0 0, ( ) , ( ) ( ) ´( )( )f t x t f t x t J t x t t t   .                                (5.3) 

Consequently, taking into account (5.3) the system (1.6) is transformed to a linear as follows  
  0 0 0 0 0´( ) ( ) ( ) ´( )( ) , ( )Fx t Gx t J t x t t t f t x t                                 (5.4) 

with initial conditions   o ox t x . 
As we have already discussed in section 2, there exist non-singular matrices P, Q, such as 

, ,

, ,

p p q p p q
w w

q p q q p q

I J
PFQ F and PGQ GH I

   
      

   

 
  . 

Then, equivalently as in section 3, the following lemmas derive.  
Lemma 5.1 The system (5.4) is divided into two subsystems as follows  

  , 0 0 0 0 0´ ( ) ( ) ( ) ´( )( ) , ( )p p p p ny t J y t P J t Qy t t t f t Qy t                        (5.5) 

with initial conditions  p oy t , 

  , 0 0 0 0 0´ ( ) ( ) ( ) ´( )( ) , ( )q q q q nH y t y t P J t Qy t t t f t Qy t                          (5.6) 

with initial conditions  q oy t . 

Proof. We apply the same transformation (3.3) in (5.4)  
   x t Qy t . 

Then, the system (5.4) is transposed to  
 0 0 0 0 0´( ) ( ) ( ) ´( )( ) , ( )FQy t GQy t J t Qy t t t f t Qy t    . 

Multiplied by left by the non-singular matrix P , we obtain  

 0 0 0 0 0´( ) ( ) ( ) ´( )( ) , ( )PFQy t PGQy t P J t Qy t t t f t Qy t        

 0 0 0 0 0´( ) ( ) ( ) ´( )( ) , ( )w wF y t G y t P J t Qy t t t f t Qy t         

  , , ,
0 0 0 0 0

, , ,

´ ( ) ( )
( ) ´( )( ) , ( )

´ ( ) ( )
p pp p q p p q p n

q p q q p q q nq q

y t y tI J P
J t Q y t t t f t Qy tH I Py t y t

        
             
           

 
  . 

Then, eqs. (5.5) and (5.6) derive. Now, the initial conditions is obtained  
       1

o o o ox t Qy t y t Q x t   . 

The 
0

0
0

( )
( ) .

( )
p

q

y t
y t

y t
 

  
  

 Thus, the initial conditions for system (5.5) is given by  p oy t  and for 
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system (5.6) is provided by  q oy t . 

Remark 5.1 System (5.5) with initial conditions  p oy t  can be solved using the classical 

methods, and   

  0

0

( ) ( )
0 , 0 0 0 0 0( ) ( ) ( ) ´( )( ) , ( )p p

tJ t t J t s
p p p nt

y t e y t e P J t Qy t s t f t Qy t ds        .      (5.7) 

In this part of the sections, we will solve the subsystem (5.6). 
Lemma 5.2 The solution of subsystem (5.6) is given by  

    0 , 0 0 , 0 0( ) ( ) ( ) ´( ) , ( )q q q q n q ny t t t I H P J t Qy t P f t Qy t     ,               (5.8) 

when the following condition is satisfied  
  0 , 0 0 , 0 0( ) ( ) ´( ) , ( )q q n q nq

y t H P J t Qy t P f t Qy t       (5.9) 

i.e. we have consistent initial conditions.  
Proof. Equivalently as in section 3, we differentiate the expression (5.6)  

, 0 0´´ ( ) ´ ( ) ( ) ´( )q q q q nH y t y t P J t Qy t  . 

Multiply by left with the nilpotent matrix Hq, we obtain  
2

, 0 0´´ ( ) ´ ( ) ( ) ´( )q q q q q q nH y t H y t H P J t Qy t    

 2
, 0 0 , 0 0 0 , 0 0´´ ( ) ( ) , ( ) ( ) ´( )( ) ( ) ´( ).q q q n q n q q nq

H y t y t P f t Qy t P J t Qy t t t H P J t Qy t       

Continuing the above procedure we obtain the following recursive expression,  

 
** ( )

, 0 0 , 0 0 0 , 0 0( ) ( ) , ( ) ( ) ´( )( ) ( ) ´( ).qq
q q n q n q q nq q

H y t y t P f t Qy t P J t Qy t t t H P J t Qy t      

However, since q* is the annihilation index of matrix Hq , i.e. 
*

.q
qH   Then 

 , 0 0 0 , 0 0 , 0 0( ) ( ) ´( )( ) ( ) ´( ) , ( )q n q q n q nq
y t P J t Qy t t t H P J t Qy t P f t Qy t     , 

for t  t0, we obtain  

 0 , 0 0 , 0 0( ) ( ) ´( ) , ( )q q n q nq
y t H P J t Qy t P f t Qy t    

and finally expression (5.8) is derived. 
Lemma 5.3 The solution of subsystem (5.7) for non-consistent initial conditions, i.e.  

 0 , 0 0 , 0 0( ) ( ) ´( ) , ( )q q n q nq
y t H P J t Qy t P f t Qy t    

is given by   
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  .                         (5.10) 

Proof. First, we apply in eq. (5.7) the Laplace transformation. Thus, we obtain  

 , 0 0 0 , 0 0{ ´ ( )} { ( )} ( ) ´( ) { } , ( ) {1}q q q q n q nH y t y t P J t Qy t t t P f t Qy t        . 

 

Since 

{ ( )} ( )qq
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0 2

1{ } t st t
s


   , 0
1{ ´ ( )} ( ) ( ) {1}q q q

y t sX s y t and
s

     . 

we obtain  
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t sH sX s y t X s P J t Qy t P f t Qy t
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 0
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Moreover, we have *q
qH   and  
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Thus, we obtain  
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   .                      (5.11) 

Now, we are working with the following sum  
* *

* *
1 3

2 11 1
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( ) ( ) ( )

q q
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q q qq q q
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      . 

Thus, considering the above results the eq. (5.11) is given by  
*
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system (5.6) is provided by  q oy t . 

Remark 5.1 System (5.5) with initial conditions  p oy t  can be solved using the classical 

methods, and   

  0

0

( ) ( )
0 , 0 0 0 0 0( ) ( ) ( ) ´( )( ) , ( )p p

tJ t t J t s
p p p nt

y t e y t e P J t Qy t s t f t Qy t ds        .      (5.7) 

In this part of the sections, we will solve the subsystem (5.6). 
Lemma 5.2 The solution of subsystem (5.6) is given by  

    0 , 0 0 , 0 0( ) ( ) ( ) ´( ) , ( )q q q q n q ny t t t I H P J t Qy t P f t Qy t     ,               (5.8) 

when the following condition is satisfied  
  0 , 0 0 , 0 0( ) ( ) ´( ) , ( )q q n q nq

y t H P J t Qy t P f t Qy t       (5.9) 

i.e. we have consistent initial conditions.  
Proof. Equivalently as in section 3, we differentiate the expression (5.6)  

, 0 0´´ ( ) ´ ( ) ( ) ´( )q q q q nH y t y t P J t Qy t  . 

Multiply by left with the nilpotent matrix Hq, we obtain  
2

, 0 0´´ ( ) ´ ( ) ( ) ´( )q q q q q q nH y t H y t H P J t Qy t    

 2
, 0 0 , 0 0 0 , 0 0´´ ( ) ( ) , ( ) ( ) ´( )( ) ( ) ´( ).q q q n q n q q nq

H y t y t P f t Qy t P J t Qy t t t H P J t Qy t       

Continuing the above procedure we obtain the following recursive expression,  

 
** ( )

, 0 0 , 0 0 0 , 0 0( ) ( ) , ( ) ( ) ´( )( ) ( ) ´( ).qq
q q n q n q q nq q

H y t y t P f t Qy t P J t Qy t t t H P J t Qy t      

However, since q* is the annihilation index of matrix Hq , i.e. 
*

.q
qH   Then 

 , 0 0 0 , 0 0 , 0 0( ) ( ) ´( )( ) ( ) ´( ) , ( )q n q q n q nq
y t P J t Qy t t t H P J t Qy t P f t Qy t     , 

for t  t0, we obtain  

 0 , 0 0 , 0 0( ) ( ) ´( ) , ( )q q n q nq
y t H P J t Qy t P f t Qy t    

and finally expression (5.8) is derived. 
Lemma 5.3 The solution of subsystem (5.7) for non-consistent initial conditions, i.e.  

 0 , 0 0 , 0 0( ) ( ) ´( ) , ( )q q n q nq
y t H P J t Qy t P f t Qy t    

is given by   
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  .                         (5.10) 

Proof. First, we apply in eq. (5.7) the Laplace transformation. Thus, we obtain  

 , 0 0 0 , 0 0{ ´ ( )} { ( )} ( ) ´( ) { } , ( ) {1}q q q q n q nH y t y t P J t Qy t t t P f t Qy t        . 
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we obtain  
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Now, we are working with the following sum  
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Then 
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Thus, considering the above results the eq. (5.11) is given by  
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    . 

Applying the inverse Laplace transformation, eq. (5.10) derives.  
Remark 5.2 The solution of the linearized system (5.4) with consistent initial conditions is 
given by  

                  0

0

( ) ( )
, 0 , 0 0 0 0 0( ) ( ) ( ) ´( )( ) , ( )p p

tJ t t J t s
n p p np t

x t Q e y t e P J t Qy t s t f t Qy t ds            

  , 0 , 0 0 , , 0 0( ) ( ) ´( ) , ( )n q q q q n n q q nQ t t I H P J t Qy t Q P f t Qy t        .             (5.12) 

Proof. It is true that 

, , , ,
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( ) ( ) ( ) ( ) ( ) ( )
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n p n q n p n qp q
q

y t
Q Qx t Qy t x t x t Q y t Q y t

y t

 
          
 

. 

Using the eqs. (5.7) and (5.8), we obtain (5.12). 
Remark 5.3 The solution of the linearized system (5.4) with non-consistent initial conditions 
is given by 

                0

0
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 .                 (5.13) 

 

Proof. It is known that 

, , , ,

( )
( ) ( )   ( ) ( )

( )
p

n p n q n p n qp q
q

y t
x t Qy t Q Q Q y t Q y t

y t

 
        
 

 

Using the eqs. (5.7) and (5.10), we obtain (5.13). 
 
6. Conclusion 
 

In this chapter, the class of weakly nonlinear (regular) differential systems is investigated. 
This kind of systems has a great importance in the modelling procedure of several applica-
tions in many scientific fields (engineering, population growth models, finance, actuarial 
science models etc). Thus, the analytic solution is provided, considering consistency and 
non-consistency in the initial conditions. Moreover, the asymptotic stability is discussed. 
Some necessary conditions are derived in order to obtain the asymptotic stabilization. In 
both cases, Propositions summarize the necessary conditions, which have not only to do 
with the real part of the eigenvalues, as it happens in non-descriptor systems. 
Furthermore, using a classical linearization technique (Taylor expansion) and the complex 
Weierstrass canonical form, the linearized system is decomposed into two subsystems, 
whose solutions are also obtained.  
Finally, the forms of solutions for the (non-) consistent initial conditions are provided. Prac-
tically speaking, the results of this chapter can be constructed and simulated. Although, 
there is in abstract mathematical format, the comparison of the solutions provides a first 
step for extending further our knowledge. Some numerical examples are also appeared. 
Moreover, the simulation of the linearized solution can be constructed using Matlab m-files 
(see for instance, Matlab DAE suite, Shampine et al. 1999).  
Finally, it should be stressed some possible directions for further research. Firstly, we can 
transposed the system (1.6) into a control problem by introducing an input vector  u t . So, 

        ,Fx t Gx t Bu t f t x t     

Thus, the controllability, the observability, the pole assignment, the elimination of impulse 
behaviour, and so on, can be examined. Moreover, since the system above can include a 
fixed, finite input  u t  (that is a step), then any resulting oscillations in the output will de-
cay, and the output will tend asymptotically to a new final, steady-state value. If in the sys-
tem, a Dirac delta impulse is given as an input, then the induced oscillations will die away 
and the system will return to its previous value. If the oscillations do not die away, or the 
system does not return to its original output when an impulse is applied, then does the 
system be marginally stable? Those questions are practically very important and very few 
things are really known.  
Furthermore, a better approximation (instead of the Taylor expansion) of the nonlinear 
parameter can be considered. Under this approximation, a new linear system derives. Many 
questions about this approach can also be stated.     
The last direction considers the introduction of a stochastic point of view for the system (1.6) 
by   

          ,Fx t Gx t Bu t f t x t B t      
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Applying the inverse Laplace transformation, eq. (5.10) derives.  
Remark 5.2 The solution of the linearized system (5.4) with consistent initial conditions is 
given by  
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Proof. It is true that 
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Using the eqs. (5.7) and (5.8), we obtain (5.12). 
Remark 5.3 The solution of the linearized system (5.4) with non-consistent initial conditions 
is given by 
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Proof. It is known that 
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Using the eqs. (5.7) and (5.10), we obtain (5.13). 
 
6. Conclusion 
 

In this chapter, the class of weakly nonlinear (regular) differential systems is investigated. 
This kind of systems has a great importance in the modelling procedure of several applica-
tions in many scientific fields (engineering, population growth models, finance, actuarial 
science models etc). Thus, the analytic solution is provided, considering consistency and 
non-consistency in the initial conditions. Moreover, the asymptotic stability is discussed. 
Some necessary conditions are derived in order to obtain the asymptotic stabilization. In 
both cases, Propositions summarize the necessary conditions, which have not only to do 
with the real part of the eigenvalues, as it happens in non-descriptor systems. 
Furthermore, using a classical linearization technique (Taylor expansion) and the complex 
Weierstrass canonical form, the linearized system is decomposed into two subsystems, 
whose solutions are also obtained.  
Finally, the forms of solutions for the (non-) consistent initial conditions are provided. Prac-
tically speaking, the results of this chapter can be constructed and simulated. Although, 
there is in abstract mathematical format, the comparison of the solutions provides a first 
step for extending further our knowledge. Some numerical examples are also appeared. 
Moreover, the simulation of the linearized solution can be constructed using Matlab m-files 
(see for instance, Matlab DAE suite, Shampine et al. 1999).  
Finally, it should be stressed some possible directions for further research. Firstly, we can 
transposed the system (1.6) into a control problem by introducing an input vector  u t . So, 

        ,Fx t Gx t Bu t f t x t     

Thus, the controllability, the observability, the pole assignment, the elimination of impulse 
behaviour, and so on, can be examined. Moreover, since the system above can include a 
fixed, finite input  u t  (that is a step), then any resulting oscillations in the output will de-
cay, and the output will tend asymptotically to a new final, steady-state value. If in the sys-
tem, a Dirac delta impulse is given as an input, then the induced oscillations will die away 
and the system will return to its previous value. If the oscillations do not die away, or the 
system does not return to its original output when an impulse is applied, then does the 
system be marginally stable? Those questions are practically very important and very few 
things are really known.  
Furthermore, a better approximation (instead of the Taylor expansion) of the nonlinear 
parameter can be considered. Under this approximation, a new linear system derives. Many 
questions about this approach can also be stated.     
The last direction considers the introduction of a stochastic point of view for the system (1.6) 
by   

          ,Fx t Gx t Bu t f t x t B t      
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where the input   is a (fractional) white noise. This approach transforms the deterministic 
dynamic system into a stochastic one.  
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