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1. Introduction  
 

Over the past few years, a large number of pattern synthesis techniques of antenna arrays 
have been studied and developed. Such techniques may be classified into two categories: 
techniques that optimize the excitation (amplitude and phase) of each element in a uniform 
array (Van Veen & Buckley, 1988), and techniques that adjust the positions of the elements 
with uniform excitation, resulting in a non-uniform geometry (“Unz, 1960”, ”Harrington, 
1961”, ”Skolnik et al., 1964”, ”Haupt, 1994”). Despite of this classification, both categories 
are not exclusive; so, it is possible to develop techniques that optimize both the excitations 
and the positions of the elements (”Akdagli & Guney, 2003”, “Kurup et al., 2003”, “Kumar & 
Branner, 2005”). 
It has been also observed that many of these techniques make a beampattern synthesis only 
in the case of an array pointing to the broadside. Only a few techniques are designed taking 
into account other angles further than the broadside (“Bae et al., 2005”, “Bray et al., 2002”, 
“Feng & Chen, 2005”), which is the basis of beamforming. The reason is that, these 
techniques work on the assumption that the array is formed by omnidirectional sensors. In 
this case, working with the array pattern in the u domain (u=sen(θ)), a variation of the 
pointing angle only implies that a shift in the beampattern, without variation of the 
characteristics of neither the main lobe, nor the sidelobes (Mailloux, 2005). Thus, 
representing the pattern in the u-u0 domain (sen(θ) - sen(θ0), being θ0 the pointing angle), 
implies that a variation in the steering angle does not produce any effect on the array 
beampattern. 
The problem arises when the assumption that sensors forming the array are omnidirectional 
can not be used. There are different types of arrays that employ directive sensors, such as 
retro-directive (Feng & Chen, 2005), or acoustic arrays (Brandstein & Ward, 2001). In these 
cases, design methods of array pattern synthesis based on pointing only to the broadside, 
are not suitable techniques if these arrays are going to be used in beamforming systems 
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later, because there is no information about the behaviour of the array pointing to angles 
that are different of the broadside. 
The purpose of this paper is to study the influence of the sensor directivity into the array 
beampattern, in order to test if its effects on the array pattern must be taken into 
consideration in design methods of pattern array synthesis, and other array design methods. 
This chapter is organized so that the next section describes the studies accomplished for the 
analysis, as well as the results found. Finally, some interesting conclusions are shown in 
section 3. 

 
2. Analysis Results 
 

A linear array with 19 uniformly spaced sensors has been used in this study. The spacing 
between sensors can vary between λ/4 and λ. With these spacing we avoid the effects of 
mutual coupling (Agrawal & Lo, 1972). As this work is based on linear arrays, beampatterns 
are only represented in azimuth (θ). 
The range of variation of θ is [-90º, 90º] with one degree steps. The diagram is represented in 
the u domain, so the range of azimuth values really is [-1, 1]. 
This analysis has been carried out employing sensors with a cardioid directive response, 
which is the most frequently directive response for audio microphones, and working under 
the assumption that all sensors have the same directive response. This assumption can be 
done because there are not mutual coupling effects. The employed formula is: 

 
    cos1/1  CCD  

(1) 
 

In this study values of constant C, which has been named Directive Factor, have been varied 
from 0.25 (most sharp cardioid) to 1 (less sharp cardioid). 
A deep analysis of the invariance of ULA beampattern versus the steering angle has been 
made, using spacing value of λ/2 of and with a directive factor C with a 1.0 value, verifying 
that the hypothesis of invariance is not fulfilled with directive sensors. Beampattern for a 
maximum steering angle, θ0, of ±60º is evaluated. 
Figure 1 shows beampatterns for different positive steering angles θ0, where the x-axis, 
corresponds to variable u-u0, being u=sinθ and u0=sinθ0. When steering angle increases from 
broadside, the contribution of the directive sensors on the beampattern is stronger. This 
contribution does not affect on the same way to positive and negative u-u0 values. For 
positive u-u0 values, when the steering angle increases, sidelobes of the beampattern 
decrease, improving array performance. For u-u0 negative values, beampattern sidelobes 
increase, reducing array performance. 
Besides this behaviour difference between positive and negative |u-u0| values, another two 
effects of sensor directivity on array beampattern can be observed: 
(a) As the steering angle (θ0) moves away from the broadside, sensor directivity leads to a 
higher increase of sidelobe level. This effect can be observed in Figure 2, where the seventh 
sidelobe on the left of the mainbeam for several steering angles are shown. 
 

 

-1 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8 1
-35

-30

-25

-20

-15

-10

-5

0

u-u0

dB

0=0º

0=15º

0=30º

0=60º

 
Fig. 1. ULA beampattern in u-u0 space with cardioid sensors 
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Fig. 2. Sensor directivity effect vs. Steering angle θ0 

 
(b) For a constant  θ0 value, as |u-u0| comes to 1, sensor directivity influence is higher, 
increasing the difference between the omnidirectional and the directive cases. This effect is 
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later, because there is no information about the behaviour of the array pointing to angles 
that are different of the broadside. 
The purpose of this paper is to study the influence of the sensor directivity into the array 
beampattern, in order to test if its effects on the array pattern must be taken into 
consideration in design methods of pattern array synthesis, and other array design methods. 
This chapter is organized so that the next section describes the studies accomplished for the 
analysis, as well as the results found. Finally, some interesting conclusions are shown in 
section 3. 

 
2. Analysis Results 
 

A linear array with 19 uniformly spaced sensors has been used in this study. The spacing 
between sensors can vary between λ/4 and λ. With these spacing we avoid the effects of 
mutual coupling (Agrawal & Lo, 1972). As this work is based on linear arrays, beampatterns 
are only represented in azimuth (θ). 
The range of variation of θ is [-90º, 90º] with one degree steps. The diagram is represented in 
the u domain, so the range of azimuth values really is [-1, 1]. 
This analysis has been carried out employing sensors with a cardioid directive response, 
which is the most frequently directive response for audio microphones, and working under 
the assumption that all sensors have the same directive response. This assumption can be 
done because there are not mutual coupling effects. The employed formula is: 
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In this study values of constant C, which has been named Directive Factor, have been varied 
from 0.25 (most sharp cardioid) to 1 (less sharp cardioid). 
A deep analysis of the invariance of ULA beampattern versus the steering angle has been 
made, using spacing value of λ/2 of and with a directive factor C with a 1.0 value, verifying 
that the hypothesis of invariance is not fulfilled with directive sensors. Beampattern for a 
maximum steering angle, θ0, of ±60º is evaluated. 
Figure 1 shows beampatterns for different positive steering angles θ0, where the x-axis, 
corresponds to variable u-u0, being u=sinθ and u0=sinθ0. When steering angle increases from 
broadside, the contribution of the directive sensors on the beampattern is stronger. This 
contribution does not affect on the same way to positive and negative u-u0 values. For 
positive u-u0 values, when the steering angle increases, sidelobes of the beampattern 
decrease, improving array performance. For u-u0 negative values, beampattern sidelobes 
increase, reducing array performance. 
Besides this behaviour difference between positive and negative |u-u0| values, another two 
effects of sensor directivity on array beampattern can be observed: 
(a) As the steering angle (θ0) moves away from the broadside, sensor directivity leads to a 
higher increase of sidelobe level. This effect can be observed in Figure 2, where the seventh 
sidelobe on the left of the mainbeam for several steering angles are shown. 
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(b) For a constant  θ0 value, as |u-u0| comes to 1, sensor directivity influence is higher, 
increasing the difference between the omnidirectional and the directive cases. This effect is 
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shown in Figure 3, where the beampatterns of the omnidirectional and the directive cases 
for  θ0=0 are shown as an example. 
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Fig. 3. Sensor directivity effect vs. |u-u0| 

 
In order to characterize absolute variation of sidelobe levels, ΔSLLi has been defined: 

 
)º0()º60( 00   iii SLLSLLSLL  

(2) 

 
Table 1 shows the absolute variation of the 8 first sidelobes located on the left of the 
mainlobe. It can be observed that moving away from the mainlobe (increasing index i), the 
variation of the sidelobe level increases. For the fifth sidelobe, ΔSLL is greater than 3dB. 

 
i 1 2 3 4 5 6 7 8 
ΔSLLi 1.51 1.67 2.16 2.63 3.11 3.65 4.25 5.16 

 
Table 1. ΔSLLi (dB) for the 8 sidelobes on the left of the mainlobe 

 
This section continues with detailed studies for several sidelobe levels, where dependences 
on the steering angle, sensor spacing and directive factor C are analyzed. 

 
2.1 First Sidelobe Level (SLL1) 
SLL1 Sensitivity vs. steering angle 
Figure 4 shows that increasing steering angles produce higher first sidelobe levels, at the left 
of the mainlobe. For small steering angles, the first sidelobe level is below the 
omnidirectional case, but with greater angles the sidelobe level exceeds the omnidirectional 
one.  The reason of this behaviour is that pointing the beam more and more to the right, i.e. 

 

increasing the steering angle, makes beampattern values on the left of the mainbeam be 
affected by lower and lower sensor directivity values, as it is showed in Figure 5. 
The effect of sensor directivity over the first sidelobe can vary its level in 1.52dB. 
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Fig. 4. Left SLL1 vs. Steering angle 
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Fig. 5. Sensor directivity effect on first sidelobe level. Spacing=λ/2. a) θ0=0º, b) θ0=20º 
 
SLL1 Sensitivity vs. sensor spacing: 
This first sidelobe level analysis is extended with a study of sensor directivity influence on 
array beampattern with regard to sensor spacing. This spacing is varied between 0.25λ and 
1λ. Directive factor (C) is fixed to 1. Figure 6 shows this influence with regard to sensor 
spacing. It can be observed that an increase on sensor spacing deals to a SLL1 decrease. 
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shown in Figure 3, where the beampatterns of the omnidirectional and the directive cases 
for  θ0=0 are shown as an example. 

 

-1 -0.9 -0.8 -0.7 -0.6 -0.5 -0.4 -0.3 -0.2 -0.1 0
-35

-30

-25

-20

-15

-10

-5

0

u-u0

dB

Omnidirectional sensor array
Directive sensor array
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In order to characterize absolute variation of sidelobe levels, ΔSLLi has been defined: 
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Table 1 shows the absolute variation of the 8 first sidelobes located on the left of the 
mainlobe. It can be observed that moving away from the mainlobe (increasing index i), the 
variation of the sidelobe level increases. For the fifth sidelobe, ΔSLL is greater than 3dB. 
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This section continues with detailed studies for several sidelobe levels, where dependences 
on the steering angle, sensor spacing and directive factor C are analyzed. 
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increasing the steering angle, makes beampattern values on the left of the mainbeam be 
affected by lower and lower sensor directivity values, as it is showed in Figure 5. 
The effect of sensor directivity over the first sidelobe can vary its level in 1.52dB. 
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Fig. 5. Sensor directivity effect on first sidelobe level. Spacing=λ/2. a) θ0=0º, b) θ0=20º 
 
SLL1 Sensitivity vs. sensor spacing: 
This first sidelobe level analysis is extended with a study of sensor directivity influence on 
array beampattern with regard to sensor spacing. This spacing is varied between 0.25λ and 
1λ. Directive factor (C) is fixed to 1. Figure 6 shows this influence with regard to sensor 
spacing. It can be observed that an increase on sensor spacing deals to a SLL1 decrease. 
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Fig. 6. SLL1 vs. Steering angle (θ0) for several sensor spacing. C=1. 
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Fig. 7. Sensor directivity effect on first sidelobe level. C=1. a) Spacing=λ/2 and θ0=0º;                    
b) Spacing=λ/2 and θ0=20º; c) Spacing=0.25λ and θ0=0º; d) Spacing=0.25λ and θ0=20º 

 

The reason of this behaviour is that increasing sensor spacing makes a compression of the 
beampattern. Figure 7 shows how the first sidelobe is closer and closer to the mainbeam, 
reducing the difference between the directivity values that affects each of these lobes (first 
sidelobe and mainlobe). 
The variation of SLL1 (ΔSLL1) is inversely proportional to sensor spacing, as it can be 
observed in Figure 8. The sensitivity of ΔSLL1 versus sensor spacing is lower than the one on 
steering angle. This effect must be taken into account, since it can increase sidelobe level 
between 0.68dB and 1.81dB, i.e. a 1.13dB variation. 
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Fig. 8. ΔSLL1 vs. Sensor spacing 
 
SLL1 Sensitivity vs. Directive factor C 
SLL1 analysis is finished off with a study of sensor directivity influence on the array 
beampattern with regard to sensor directive factor (C). This directivity factor is varied 
between 1 and 0.25. Sensor spacing is fixed to 0.5λ. Figure 9 shows this influence. It can be 
observed that decreasing directive factor, i.e. using more directive sensors, increases SLL1. 
The reason of this behaviour is that sharper sensor directivity deals to a larger difference 
between the directivity values that affect first sidelobe and mainlobe, as Figure 10 shows. 
The variation of SLL1 (ΔSLL1), is inversely proportional to the directive factor, as it can be 
observed in Figure 11. The sensitivity of SLL1 versus directive factor is lower than the 
sensitivity versus sensor spacing. In this case, the effect can be increased from 1.11dB to 
2.03dB, i.e. a 0.92dB variation. 
These SLL1 analyses show that SLL1 is less sensitive to directive factor variations than to 
spacing and steering angle ones. The highest sensitivity is shown for the steering angle. 
All these analyses have been done for positive steering angles. In the case of negative 
steering angles values, the behaviour would be the symmetric one. 
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Fig. 6. SLL1 vs. Steering angle (θ0) for several sensor spacing. C=1. 

 

0 0.2 0.4 0.6 0.8 1
-20

-18

-16

-14

-12

-10

-8

-6

-4

-2

0

0 0.2 0.4 0.6 0.8 1
-20

-18

-16

-14

-12

-10

-8

-6

-4

-2

0

0 0.2 0.4 0.6 0.8 1
-20

-18

-16

-14

-12

-10

-8

-6

-4

-2

0

0 0.2 0.4 0.6 0.8 1
-20

-18

-16

-14

-12

-10

-8

-6

-4

-2

0

a) b)

d)c)

0 0.2 0.4 0.6 0.8 1
-20

-18

-16

-14

-12

-10

-8

-6

-4

-2

0

0 0.2 0.4 0.6 0.8 1
-20

-18

-16

-14

-12

-10

-8

-6

-4

-2

0

0 0.2 0.4 0.6 0.8 1
-20

-18

-16

-14

-12

-10

-8

-6

-4

-2

0

0 0.2 0.4 0.6 0.8 1
-20

-18

-16

-14

-12

-10

-8

-6

-4

-2

0

0 0.2 0.4 0.6 0.8 1
-20

-18

-16

-14

-12

-10

-8

-6

-4

-2

0

0 0.2 0.4 0.6 0.8 1
-20

-18

-16

-14

-12

-10

-8

-6

-4

-2

0

0 0.2 0.4 0.6 0.8 1
-20

-18

-16

-14

-12

-10

-8

-6

-4

-2

0

0 0.2 0.4 0.6 0.8 1
-20

-18

-16

-14

-12

-10

-8

-6

-4

-2

0

0 0.2 0.4 0.6 0.8 1
-20

-18

-16

-14

-12

-10

-8

-6

-4

-2

0

0 0.2 0.4 0.6 0.8 1
-20

-18

-16

-14

-12

-10

-8

-6

-4

-2

0

a) b)

d)c)  
Fig. 7. Sensor directivity effect on first sidelobe level. C=1. a) Spacing=λ/2 and θ0=0º;                    
b) Spacing=λ/2 and θ0=20º; c) Spacing=0.25λ and θ0=0º; d) Spacing=0.25λ and θ0=20º 

 

The reason of this behaviour is that increasing sensor spacing makes a compression of the 
beampattern. Figure 7 shows how the first sidelobe is closer and closer to the mainbeam, 
reducing the difference between the directivity values that affects each of these lobes (first 
sidelobe and mainlobe). 
The variation of SLL1 (ΔSLL1) is inversely proportional to sensor spacing, as it can be 
observed in Figure 8. The sensitivity of ΔSLL1 versus sensor spacing is lower than the one on 
steering angle. This effect must be taken into account, since it can increase sidelobe level 
between 0.68dB and 1.81dB, i.e. a 1.13dB variation. 
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Fig. 8. ΔSLL1 vs. Sensor spacing 
 
SLL1 Sensitivity vs. Directive factor C 
SLL1 analysis is finished off with a study of sensor directivity influence on the array 
beampattern with regard to sensor directive factor (C). This directivity factor is varied 
between 1 and 0.25. Sensor spacing is fixed to 0.5λ. Figure 9 shows this influence. It can be 
observed that decreasing directive factor, i.e. using more directive sensors, increases SLL1. 
The reason of this behaviour is that sharper sensor directivity deals to a larger difference 
between the directivity values that affect first sidelobe and mainlobe, as Figure 10 shows. 
The variation of SLL1 (ΔSLL1), is inversely proportional to the directive factor, as it can be 
observed in Figure 11. The sensitivity of SLL1 versus directive factor is lower than the 
sensitivity versus sensor spacing. In this case, the effect can be increased from 1.11dB to 
2.03dB, i.e. a 0.92dB variation. 
These SLL1 analyses show that SLL1 is less sensitive to directive factor variations than to 
spacing and steering angle ones. The highest sensitivity is shown for the steering angle. 
All these analyses have been done for positive steering angles. In the case of negative 
steering angles values, the behaviour would be the symmetric one. 
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Fig. 9. SLL1 vs. Steering angle (θ0) for several directive factors (C). Spacing=λ/2. 
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Fig. 10. Sensor directivity effect on first sidelobe level. Spacing=λ/2. C=1 ( __ ), C=0.25 ( - - ) 
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Fig. 11. ΔSLL1 vs. Directive factor C 
 
2.2 Sidelobe Average Level ( SLL ) 
The analysis of the average sidelobe level (SLL ) is similar to the analysis of the first sidelobe 
level. A sidelobe average level that calculates the average of the first 8 sidelobes on the left 
of the mainlobe has been taken in consideration. This average level of an array formed by 
omnidirectional sensors is constant. 
Figure 12 shows that, an increase in steering angle causes an increase in SLL . Firstly, the 
average level values for the directional case are below the values of the omnidirectional 
case, but with an increasing steering angle, average level values of the directional case are 
over the omnidirectional ones. This average level has a variation ( SLL ) of 3.75dB.  
The analyses of the SLL  sensibility versus sensor spacing and directive factor (C), have been 
made in the same way than the ones shown for SLL1. In this case, an increase on the spacing 
and/or on the directive factor, also means a decrease of SLL , as it can be observed in 
Figures 13 and 14. 
For this sidelobe level, the sensitivity of SLL  versus sensor spacing is also lower than the 
one versus steering angle. Despite this sensitivity is lower, it must be taken into 
consideration, since it can increase average sidelobe level between 4.48dB and 6.51dB, i.e. a 
2.17dB variation. 
The sensitivity of SLL  versus directive factor is also lower than the sensitivity versus 
steering angle. In this case, the effect can be increased from 5.52dB to 7.60dB, i.e. a 2.08dB 
variation. 
These analyses show that SLL  is more sensitive to directive factor variations than to spacing 
and steering angle ones. The highest sensitivity, as in the SLL1 analysis, is shown for the 
steering angle. 
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Fig. 9. SLL1 vs. Steering angle (θ0) for several directive factors (C). Spacing=λ/2. 
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For this sidelobe level, the sensitivity of SLL  versus sensor spacing is also lower than the 
one versus steering angle. Despite this sensitivity is lower, it must be taken into 
consideration, since it can increase average sidelobe level between 4.48dB and 6.51dB, i.e. a 
2.17dB variation. 
The sensitivity of SLL  versus directive factor is also lower than the sensitivity versus 
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Fig. 12.  SLL  vs. Steering angle 
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Fig. 13. SLL  vs. Sensor spacing 

 
 
 
 

 

0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

5.6

5.8

6

6.2

6.4

6.6

6.8

7

7.2

7.4

7.6

Directive factor C


S

LL
av

er
ag

e (d
B

)

 
Fig. 14. SLL  vs. Directive Factor C 

 
2.3 Maximum Sidelobe Level (SLLmax) 
Lastly, maximum sidelobe level (SLLmax), which is related with grating lobes, is analysed. 
Due to the appearance of grating lobes depends on sensor spacing, the influence of this 
spacing on the variation of SLLmax and steering angle is studied. Figure 15 shows that an 
increase of steering angle means an increase of SLLmax for all spacing. 
For spacing greater than λ/2, there are two different behaviours: 
(a) A first one, with SLLmax around -13dB that grows up slowly with increasing steering 
angle. 
(b) A second one, where SLLmax suffers a quite abrupt increase. This increase indicates the 
existence of grating lobes. 
For λ spacing, the behaviour is again unique, because there are grating lobes for all the 
steering angles. 
Comparing Figures 15 and 16, where SLLmax performance for an omnidirectional sensor 
array is shown, it can be observed that the sensor directive response makes grating lobes 
appearance more gradual and less abrupt than in the omnidirectional case. This is an 
improvement in array performance, but it is also a problem because it can be even greater 
than the mainlobe. 
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Fig. 14. SLL  vs. Directive Factor C 
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Fig. 15.  SLLmax vs. Steering angle for several sensor spacing. C=1. Directive sensor array 
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Fig. 16  SLLmax vs. Steering angle for several sensor spacing. Omnidirectional sensor array 

 
3. Conclusions 
 

This paper shows that using arrays with directive sensors makes the invariance hypothesis 
no longer valid. Sidelobe level increments around 5dB can be observed if directive sensors 

 

are used. This effect can be increased depending on the sensor spacing and the directive 
factor. 
In Table 2, 

1SLL  and SLL  versus steering angle, spacing and directive factor relations are 
shown. Sidelobes are more sensitive to steering angle variation than to spacing and directive 
factor variation. SLL  is more sensitive to parameter variation than SLL1, because SLL  
includes effects on several sidelobes, and these effects are larger in sidelobes which are more 
distant from the main lobe. SLL  is also more sensitive because it includes grating lobes 
effect. This effect is also included in maximum sidelobe level. Sensor directivity produces a 
more gradual appearance of greater grating lobes. 

 
 

1SLL  [dB] SLL  [dB] 
Steering angle 1.51 3.22 
Sensor spacing 1.13 2.17 
Directive factor (C) 0.92 2.08 

Table 2. 
1SLL  and SLL  vs. steering angle, spacing and directive factor (C) 

 
The research has been realized for sensors whose directive response is a cardioids function, 
but it can be extended as a future work to any other type of directive response. It can be also 
extended to random arrays, because they are influenced by the sensor directive response. 
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