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1. Introduction

A home automation system basically consists of household appliances linked via a communi-
cation network allowing interactions for control purposes (Palensky & Posta, 1997). Thanks to
this network, a load management mechanism can be carried out: it is called distributed control
in (Wacks, 1993). Load management allows inhabitants to adjust power consumption accord-
ing to expected comfort, energy price variation and CO2 equivalent rejection. For instance,
during the consumption peak periods when power plants rejecting higher quantities of CO2

are used and when energy price is high, it could be possible to decide to delay some services,
to reduce some heater set points or to run requested services even so according to weather
forecasts and inhabitant requests. Load management is all the more interesting that local stor-
age and production means exist. Indeed, battery, photovoltaic panels or wind mills provide
additional flexibilities. Combining all these elements lead to systems with many degrees of
freedom that are very complex to manage by users.
The objective of this study is to setup a general mathematical formulation that makes it pos-
sible to design optimized building electric energy management systems able to determine the
best energy assignment plan, according to given criteria. A building energy management
system consists in two aspects: the load management and the local energy production man-
agement. (House & Smith, 1995) and (Zhou & Krarti, 2005) have proposed optimal control
strategies for HVAC (Home Ventilation and Air Conditioning) system taking into account the
natural thermal storage capacity of buildings that shift the HVAC consumption from peak-
period to off-peak period. Zhou & Krarti (2005) has shown that this control strategy can save
up to 10% of the electricity cost of a building. However, these approaches do not take into
account the energy resource constraints, which generally depend on the autonomy needs of
off-grid systems (Muselli et al., 2000) or on the total power production limits of the suppliers
in grid connected systems.
The household load management problem can be formulated as a assignment problem where
energy is considered as a resource shared by appliances, and tasks are energy consumptions
of appliances. Ha et al. (2006a) presents a three-layers household energy control system that
is both able to satisfy the maximum available electrical power constraint and to maximize
user satisfaction criteria. This approach carries out more reactivity to adapt consumption
to the energy provider requirements. Ha et al. (2006b) proposes a global solution for the
household load management problem. In order to adapt the consumption to the available
energy, the home automation system controls the appliances in housing by determining the
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starting time of services and also by computing the temperature set points of HVAC systems.
This problem has been formulated as a multi-objective constraint satisfaction problem and
has been solved by a dynamic Tabu Search. This approach can carry out the coordination of
appliance consumptions of HVAC system and of services in making it possible to set up a
compromise between the cost and the user comfort criteria.
With an energy production management production point of view, Henze & Dodier (2003)
has proposed an adaptive optimal control for an off-grid PV-hybrid system using a quadratic
cost function and a Q-learning approach. It is more efficient than conventional control but
it requires to be trained beforehand with actual data covering a long time period. Gener-
ally speaking, studies in literature focus only on one aspect of the home energy management
problem: the load management or the local energy production but not on the joined load and
production management problem.
This chapter formulates the global approach for the building energy management problem as
a scheduling problem that takes into account the load consumption and local energy produc-
tion points of view. The optimization problem of the building energy management is modeled
using both continuous and discrete variables: it is modeled as a mixed integer linear problem.

2. Problem description

In this chapter, energy is restricted to electricity consumption and production. Each service
is depicted by an amount of consumed/produced electrical power; it is supported by one or
several appliances.

2.1 The concept of service

Housing with appliances aims at providing comfort to inhabitants thanks to services which
can be decomposed into three kinds: the end-user services that produce directly comfort to
inhabitants, the intermediate services that manage energy storage and the support services
that produce electrical power to intermediate and end-user services. Support services deal
with electric power supplying thanks to conversion from a primary energy to electricity. Fuel
cells based generators, photovoltaic power suppliers, grid power suppliers such as EDF in France,
belong to this class. Intermediate services are generally achieved by electrochemical batteries.
Among the end-user services, well-known services such as clothe washing, water heating, specific
room heating, cooking in oven and lighting can be found.
A service with index i is denoted SRV(i). Appliances are just involved in services: they are
not central from an inhabitant point of view. Consequently, they are not explicitly modelled.

2.2 Caracterisation of services

Let us assume a given time range for anticipating the energy needs (typically 24 hours). A
service is qualified as permanent if its energetic consumption/production/storage covers the
whole time range of energy assignment plan, otherwise, the service is named temporary service.
The following table gives some examples of services according to this classification.

temporary services permanent services

support services photovoltaic panels power provider

intermediate services - storage

end-user services washing room heating

The services can also be classified according to the way their behavior can be modified.
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Whatever the service is, an end-user, an intermediate or a support service can be modifiable
or not. A service is qualified as modifiable by a home automation system if the home automation
system is capable to modify its behavior (the starting time for example).
There are different ways of modifying services. Sometimes, modifiable services can be con-
sidered as continuously modifiable such as the temperature set points in room heating services
or the shift of a washing. Some other services may be modified discretely such as the in-
terruption of a washing service. The different ways of modifying services can be combined:
for instance, a washing service can be considered both as interruptible and as continuously
shiftable. A service modeled as discretely modifiable contains discrete decision variables in
its model whereas a continuously modifiable service contains continuous decision variables.
Of course, a service may contain both discrete and continuous decision variables.
A service can also be characterized by the way it is known by a home automation system. The
consumed or produced power may be observable or not. Moreover, for end-user services, the
impact of a service on the inhabitant comfort may be known or not.
Obviously, a service can be taken into account by a home automation system if it is at least ob-
servable. Some services are indirectly observable. Indeed, all the not observable services can
be gathered into a virtual non modifiable service whose consumption/production is deduced
from a global power meter measurement and from the observable service consumptions and
productions. In addition, a service can be taken into account for long term schedulings if it is
predictable. In the same way as for observable services, all the unpredictable services can be
gathered into a global no-modifiable predictable service. A service can be managed by a home
automation system if it is observable and modifiable. Moreover, it can be long-term managed
if it is predictable and modifiable.
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Fig. 1. Structure of services in housing
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Fig. 2. Schema of the 3 layers control mechanism

2.3 Principle of control mechanism

An important issue in home automation problems is the uncertainties in the model data. For
instance, solar radiation, outdoor temperature or services requested by inhabitants may not
be predicted with accuracy. In order to solve this issue, a three-layer architecture is presented
in this chapter: a local layer, a reactive layer and an anticipative layer (see figure 2).
The anticipative layer is responsible for scheduling end-user, intermediate and support services
taking into account predicted events and costs in order to avoid as much as possible the use of
the reactive layer. The prediction procedure forecasts various informations about future user
requests but also about available power resources and costs. Therefore, it uses information
from predictable services and manage continuously modifiable and shiftable services. This
layer has slow dynamics and includes predictive models with learning mechanisms, includ-
ing models dealing with inhabitant behaviors. This layer also contains a predictive control
mechanism that schedules energy consumption and production of end-user services several
hours in advance. This layer computes plans according to available predictions. The sampling
period of the anticipative layer is denoted ∆. This layer relies on the most abstract models.
The reactive layer has been detailed in (Abras et al., 2006). Its objective is to manage adjust-
ments of energy assignment in order to follow up a plan computed by the upper anticipative
layer in spite of unpredicted events and perturbations. Therefore, this layer manages modi-
fiable services and uses information from observable services (comfort for end-user services
and power for others). This layer is responsible for decision-making in case of violation of
predefined constraints dealing with energy and inhabitant comfort expectations: it performs
arbitrations between services. The set-points determined by the plan computed by the upper
anticipative layer are dynamically adjusted in order to avoid user dissatisfaction. The con-
trol actions may be dichotomic in enabling/disabling services or more gradual in adjusting
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Fig. 3. Plans computed by the anticipative mechanism

set-points such as reducing temperature set point in room heating services or delaying a tem-
porary service. Actions of the reactive layer have to remain transparent for the plan computed
by the anticipative layer: it can be considered as a fast dynamic unbalancing system taking
into account actual housing state, including unpredicted disturbances, to satisfy energy, com-
fort and cost constraints. If the current state is too far from the computed plan, the anticipative
layer has to re-compute it.
The local layer is composed of devices together with their existing local control systems gen-
erally embedded into appliances by manufacturers. It is responsible for adjusting device con-
trols in order to reach given set points in spite of perturbations. This layer abstracts devices
and services for upper layers: fast dynamics are hidden by the controllers of this level. This
layer is considered as embedded into devices: it is not detailed into this chapter.
This chapter mainly deals with the scheduling mechanism of the anticipative layer, which
computes anticipative plans as shown in figure 3.

3. Modeling services

Modeling services can be decomposed into two aspects: the modeling of the behaviors, which
depends on the types of involved models, and the modeling of the quality of the execution of
services, which depends on the types of service. Whatever the type of model it is, it has to be
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defined all over a time horizon K∆ for anticipative problem solving composed of K sampling
periods lasting ∆ each.

3.1 Modeling behavior of services

In order to model the behavior of the different kinds of services in housing, three different
types of models have been used: discrete events are modeled by finite state machines, con-
tinuous behaviors are modeled by differential equations and mixed discrete and continuous
evolutions are modeled by hybrid models that combine the two previous ones.

Using finite state machines (FSM)

A finite state machine dedicated to a service SRV is composed of a finite number of states
{Lm; m ∈ {1, ..., M}} and a set of transitions between those states {Tp,q ∈ {0, 1}; (p, q) ∈ S ⊂

{1, ..., M}2}. Each state Lm of a service SRV is linked to a phase characterized by a maximal
power production Pm > 0 or consumption Pm < 0.
A transition triggers a state change. It is described by a condition that has to be satisfied
to be enabled. The condition can be a change of a state variable measured by a sensor, a
decision of the antipative mechanism or an elapsed time for phase transition. If it exists a
transition between the state Lm and Lm′ then Tm,m′ = 1, otherwise Tm,m′ = 0. An action can
be associated to each state: it may be a modification of a set-point or an on/off switching. As
an example, let’s consider a washing service.
The service provided by a washing machine may be modeled by a FSM with 4 states: the
first state is the stand-by state L1 with a maximal power of P1 = −5W (it is negative because
it deals with consumed power). The transition towards the next state is triggered by the
anticipative mechanism. The second state is the water heating state L2 with P2 = −2400W.
The transition to the next state is triggered after τ2 time units. The next state corresponds to
the washing characterized by P3 = −500W. And finally, after a given duration τ3 depending
on the type of washing (i.e. the type of requested service), the spin-drying state is reached with
P3 = −1000W. After a given duration τ4, the stand-by state is finally recovered. Considering
that the initial state is L1, this behavior can be formalized by:



















(state = L1) ∧ (t = tstart) → state = L2

(state = L2) ∧ (t = tstart+τ2 ) → state = L3

(state = L3) ∧ (t = tstart+τ2+τ3 ) → state = L4

(state = L4) ∧ (t = tstart+τ2+τ3+τ4 ) → state = L1

(1)

Using differential equations

In buildings, thermal phenomena are continuous phenomena. In particular, the thermal be-
havior of a HVAC system can be modeled by state space models:

{

dxc(t)
dt = Acxc(t) + Bcuc(t) + Fc pc(t)

yc(t) = Cxc(t)
(2)

xc(t) contains state variables, usually temperature. uc(t) contains controlled input variables
such as energy flows. pc(t) contains known but uncontrolled input variables such as outside
temperature or solar radiance. A first order state space thermal model relevant for control
purpose has been proposed in Nathan (2001) but the second order model based on an electric
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analogy proposed in Madsen (1995) has been preferred for our control purpose because it
models the dynamic of indoor temperature. For a room heating service SRV(i), it yields:























d

dt

[

Tin(i, t)

Tenv(i, t)

]

= Ac

[

Tin(i, t)

Tenv(i, t)

]

+ Bc

[

P(i, t)
]

+ Fc

[

Tout(i, t)

φs(i, t)

]

Tin(i, t) = Cc

[

Tin(i, t)

Tenv(i, t)

] (3)

with Ac =

[

−1
rincenv

1
rincenv

1
rincin

− renv+rin

renvrincin

]

, Bc =

[

0
1

−cin

]

, Fc =

[

0 0
1

renvcin

w

cin

]

and Cc =
[

1 0
]

This model allows a rather precise description of the dynamic variations of indoor tempera-
ture with:

• Tin, Tout, Tenv the respective indoor, outdoor and housing envelope temperatures

• cin, cenv the thermal capacities of first indoor environment and second the envelope of
the housing

• rin, renv thermal resistances

• w the equivalent surface of the windows

• P the power consumed by the thermal generator, P ≤ 0. In this chapter, this flow is
assumed to correspond to an electric energy flow.

• φs the energy flow generated by the solar radiance

In order to solve the anticipative problem, continuous time models have to be discretized
according to the anticipation period ∆. Equation (2) modelling service SRV(i) becomes:

∀k ∈ {1, . . . , K},
[

Tin(i, k + 1)
Tenv(i, k + 1)

]

= Ai

[

Tin(i, k)
Tenv(i, k)

]

+ Bi

[

E(i, k)
]

+ Fi

[

Tout(i, k)
φs(i, k)

]

(4)

with Ai = eAc∆, Bi = (eAc∆ − In)A−1
c ∆−1Bc, Fi = (eAc∆ − In)A−1

c Fc, E(i, k) = P(i, k)∆ and
E(i, k) ≤ 0.

Using hybrid models

Some services cannot be modeled by a finite state machine nor by differential equations. Both
approaches have to be combined: the resulting model is then based on a finite state machine
where each state Lm actually becomes a set of states which evolution is depicted by a differ-
ential equation.
An electro-chemical storage service supported by a battery may be modeled by a hybrid
model (partially depicted in figure 4). x(t) stands for the quantity of energy inside the battery
and u(t) the controlled electrical power exchanged with the grid network.

Using static models

Power sources are usually modelled by static constraints. Local intermittent power resources,
such as photovoltaic power system or local electric windmill, and power suppliers are con-
sidered here. Using weather forecasts, it is possible to predict the power production w(i, k)
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during each sampling period [k∆, (k + 1)∆] of a support service SRV(i). The available energy
for each sampling period k is then given by:

E(i, k) = w(i, k)∆ ∀k ∈ {1, ..., K} (5)

with w(i, k) ≥ 0
According to the subscription between inhabitants and a power supplier, the maximum avail-
able power is given. It may depends on time. For a service of power supply SRV(i), it can be
modelled by the following constraint:

E(i, k) ≤ pmax(i, k)∆ ∀k ∈ {1, ..., K} (6)

where pmax(i, k) stands for the maximum available power.

3.2 Modeling quality of the execution of services

Depending on the type of service, the quality of the service achievement may be assessed
in different ways. End-user services provide comfort to inhabitants, intermediate services
provide autonomy and support services provide power that can be assessed by its cost and its
impact on the environment. In order to evaluate these qualities different types of criteria have
been introduced.

End-user services

Generally speaking, modifiable permanent services use to control a physical variable: the user
satisfaction depends on the difference between an expected value and an actual one. Let’s
consider for example the HVAC controlling a temperature. A flat can usually be split into
several HVAC services related to rooms (or thermal zones) assumed to be independent.
According to the comfort standard 7730 (AFNOR, 2006), three qualitative categories of ther-
mal comfort can be distinguished: A, B and C. In each category, (AFNOR, 2006) proposes
typical value ranges for temperature, air speed and humidity of a thermal zone that depends
on the type of environment: office, room,. . . These categories are based on an aggregated cri-
terion named Predictive Mean Vote (PMV) modelling the deviation from a neutral ambience.
The absolute value of this PMV is an interesting index to evaluate the quality of a HVAC
service. In order to simplify the evaluation of the PMV, typical values for humidity and air
speed are used. Therefore, only the ambient temperature corresponding to the neutral value
of PMV (PMV=0) is dynamically concerned. Under this assumption, an ideal temperature Topt

is obtained. Depending on the environment, an acceptable temperature range coming from

discharging stand-by charging

u(t) > 0u(t) = 0

u(t) < 0 u(t) = 0

u(t) > 0

u(t) < 0

dx(t)

dt
= ρu(t)

u(t) < 0

dx(t)

dt
= ρu(t)

u(t) > 0u(t) = 0

Fig. 4. Hybrid model of a battery
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discharging stand-by charging

the standard leads to an interval [Tmin, Tmax]. For instance, in an individual office in category
A, with typical air speed and humidity conditions, the neutral temperature is Topt = 22◦C and
the acceptable range is [21◦C, 23◦C].
Therefore, considering the HVAC service SRV(i), the discomfort criterion D(i, k), which is
more usable than comfort criterion here, is modelled by the following formula where assump-
tions are depicted by two parameters a1 and a2:

D(i, k) = |PMV(Tin(i, k))| =



















a1 ×
(Topt − Tin(i, k))

Topt − TMin
if Tin(i, k) ≤ Topt

a2 ×
(Tin(i, k)− Topt)

TMax − Topt
if Tin(i, k) > Topt

(7)

The global comfort criterion is defined as following:

D(i) =
K

∑
k=1

D(i, k) (8)

Generally speaking, modifiable temporary end-user services do not aim at controlling a phys-
ical variable. Temporary services such as washing are expected by inhabitants to finished at
a given time. Therefore, the quality of achievement of a temporary service depends on the
amount of time it is shifted. Therefore, in the same way as for permanent services, a user
dissatisfaction criterion for a service SRV(i) is defined by:

D(i) =



















f (i)− fopt(i)

fmax(i)− fopt(i)
if f (i) > fopt(i)

fopt(i)− f (i)

fopt(i)− fmin(i)
if f (i) ≤ fopt(i)

(9)

where fopt stands for the requested end time and fmin and fmax stand respectively for the
minimum and maximum acceptable end time.

Intermediate services

Intermediate services are composed of two kinds of services: the power storage services, which
store energy to be able to face difficult situations such as off-grid periods, and then lead to the
availability of the stored power supplier services (see figure 1). A power storage service SRV(i)
and a stored power service SRV(j); j �= i are associated to each storage system.
The quality of a power storage service has to be evaluated: it is related to the amount of stored
energy. This quality is called autonomy.
Let us consider a electric storage system modelled by a power storage service SRV(i) and by
a stored power supplier service SRV(j). The stock Estock(k) of the storage system is modelled
by:

Estock(k) = Estock
initial −

k

∑
ζ=1

(E(i, ζ) + E(j, ζ)) (10)

with E(i, ζ) ≤ 0 and E(j, ζ) ≥ 0.
Let Pre f be the reference power taken into account for the computation of the autonomy dura-
tion τautonomy. The autonomy objective A(k) can be defined by:

A(k) = ∑
k∈{1,...,K}

Estock(k) (11)
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Depending on the inhabitant expectations, autonomy can also be formulated by constraints to
be satisfied at any sample time: Pre f τautonomy − Estock(k) = 0, ∀k ∈ {1, . . . , K}.
Let’s now focus on stored power supplier service. What is the quality for this service i.e. the
service that provides stored energy to the housing. It is not a matter of economy nor of ecology
because costs is already taken into account when power production services provide power
to the storage system. It is not also a matter of stored energy: there is no quality of service
defined for stored power supplier service.

Support services

Support services dealing with power resources do not interact directly with inhabitants. How-
ever, inhabitants do care about their cost and their environmental impact. These two aspects
have to be assessed.
In most cases, the economical criterion corresponds to the cost of the provided, stored or sold
energy. This cost may contain depreciation of the device used to produce power.
Let SRV(0) be a photovoltaic support service and SRV(1) be a power supplier service. Let’s
examine the case of power provider such as EDF in France. Energy is sold at a given price
C(1, k) to the customer for each consumed kWh at time k. In order to promote photovoltaic
production, power coming from photovoltaic plants is bought by the supplier at higher price
C(0, k) > C(1, k).
Different power metering principles can be subscribed with a French power supplier. Only
the most widespread principle is addressed. The energy cost is thus given by the following
equation:

C(k) = C(1, k)E(1, k)− C(0, k)E(0, k), ∀k ∈ {1, . . . , K} (12)

The equivalent mass of carbon dioxide rejected in the atmosphere has been used as ecological
criterion for a support service. This criterion is easy to establish for most power devices:
photovoltaic cells, generator and even for energy coming from power suppliers. Powernext
energy exchange institution publishes the equivalent mass of carbon dioxide rejected in the
atmosphere per power unit in function of time (see http://www.powernext.fr). For instance,
in France, electricity coming from the grid network produces 66g/kWh of CO2 during off-peak
periods and 383g/kWh during peak period (Angioletti & Despretz, 2003). Energy coming
from photovoltaic panels is considered as free of CO2 rejection (grey energy is not taken into
account). For each support service SRV(i), a CO2 rejection rate τCO2(i, k) can be defined as the
equivalent volume of CO2 rejected per kWh. Therefore, the total rejection for a support service
SRV(i) during the sampling period k is given by τCO2(i, k)E(i, k) where E(i, k) corresponds to
the energy provided by the support service SRV(i) during the sampling period k.

4. Formulation of the anticipative problem as a linear problem

The formulation of the energy management problem contains both behavioral models with
discrete and continuous variables, differential equation and finite state models, and quality
models with nonlinearities such as in the PMV model. In order to get mixed linear problems
which can be solved by well known efficient algorithms, transformations have to be done. The
ones that have been used are summarized in the next section.

4.1 Transformation tools

Basically, a proposition denoted X is either true or false. It can result from the combination of
propositions thanks to connecting operators such as "∧"(and), "∨"(or), "⊕" (exclusive or), "�"

www.intechopen.com



Home energy management problem: towards an optimal and robust solution 87

(not), "→" (implies), "↔" (if and only if),... Whatever the proposition X is, it can be associated
to a binary variable δ ∈ {0, 1} such as: X = (δ = 1).
Therefore, (Williams, 1993) has shown that, in integer programming, connecting operators
may be modelled by:

�X ↔ δ = 0
X1 ∧ X2 ↔ δ1 + δ2 = 2
X1 ∨ X2 ↔ δ1 + δ2 ≥ 1
X1 ⊕X2 ↔ δ1 + δ2 = 1
X1 → X2 ↔ δ1 − δ2 ≤ 0
X1 ↔ X2 ↔ δ1 − δ2 = 0

(13)

According to (Bemporad & Morari, 1998), the transformation into a standard linear problem
can be achieved using lower and upper bounds of dom( f (x); x ∈ dom(x)) = dom(ax − b; x ∈
dom(x)) ⊂ [m, M]. Then, Binary variables can be connected to linear conditions as follows:

δ = (ax − b ≤ 0) ↔

{

ax − b ≤ M(1 − δ)
ax − b > mδ

(14)

Consider for instance the statement a1x ≤ b1 ↔ a2x′ ≤ b2. Using the previous transformation,
it can be formulated as:















a1x − b1 ≤ M(1 − δ)
a1x − b1 ≤ mδ

a2x′ − b2 ≤ M(1 − δ)
a2x′ − b2 ≤ mδ

with dom(a1x − b1; x ∈ dom(x)) ∪ dom(a2x′ − b2; x′ ∈ dom(x′)) ⊂ [m, M].
In many cases, such as in presence of absolute values like in PMV evaluation, products of
discrete and continuous variables appear. They have to be reformulated in order to get mixed
linear problems. Auxiliary variables may be used for this purpose. First consider the product
of 2 binary variables δ1 and δ2: δ3 = δ1 × δ2. It can be transformed into a discrete linear
problem:

δ3 = δ1 × δ2 ↔















−δ1 + δ3 ≤ 0
−δ2 + δ3 ≤ 0
δ1 + δ2 − δ3 ≤ 1
δ1, δ2, δ3 ∈ {0, 1}

(15)

Consider now the product of a binary variable with a continuous variable: z = δ × x where
δ ∈ {0, 1} and x ∈ [m, M]. It means that δ = 0 → z = 0 and δ = 1 → z = x. Therefore, the
semi-continuous variable z can be transformed into a mixed linear problem:

z = δ × x ↔















z ≤ M × δ

z ≥ mδ

z ≤ x − m(1 − δ)
z ≥ x − M(1 − δ)

(16)

These transformations can now be used to remove nonlinearities from the PMV computations,
time shifting of services and power storage.

www.intechopen.com



Energy Management88

4.2 Linearization of PMV

Generally speaking, behavioral models of HVAC systems is given by Eq. (2) and an example is
given by (3). Model (4) is already linear but nonlinearities come up with the absolute value of
the PMV evaluation. Let’s introduce a binary variable δa(k) satisfying δa(k) = 1 ↔ Tin(k) ≤
Topt ∀k. Then, the PMV function (7) can be reformulated into a mixed linear form for every
service SRV(i):

|PMV(Ti,a(k))| = δa(k)× a1 ×
(Ta(i,k)−Topt)

Topt−TMin
+ (1 − δa(k))× a2 ×

(Topt−Ta(k))
TMax−Topt

= F1δa(k) + F2Ta(k) + F3za(k) + F4

(17)

Using eq. (14) to transform the absolute value, the equivalent form of the condition that con-
tains Ta(k) ≤ Topt is given by:

{

Ta(k)− Topt ≤ (Tmax − Topt)(1 − δa(k))
Ta(k)− Topt ≥ ǫ + (Tmin − Topt − ǫ)δa(k)

(18)

A semi-continuous variable za(k) is added to take place of the product δa(k) × Tin(k) in eq.

(17). According to eq. (16), the transformation of za(k) � δa(k)× Tin(k) leads to:















za(k) ≤ (Tmax − Topt)δa(k)
za(k) ≥ (Tmin − Topt)δa(k)
za(k) ≤ Tin(k)− (Tmin − Topt)(1 − δa(k))
za(k) ≥ Tin(k)− (Tmax − Topt)(1 − δa(k))

(19)

After the linearization of PMV, let’s now consider the linearization of the time shifting of
services.

4.3 Formalizing time shifting

state 1 of SRV(i)

time

∆
duration

1 2 3 4 5 6 7 8

E(i, 1, 2) E(i, 1, 3) E(i, 1, 4) E(i, 1, 5)

fmin(i, 1) fmax(i, 1)

f(i, 1)

consumed

energy

DUR(i, j)

Fig. 5. Shift of temporary services

Temporary services are modelled by finite state machines. The consumption of a state can be
shifted such as task in scheduling problems. The starting and ending times of services can be
synchronized to an anticipative period such as in (Duy Ha, 2007). It leads to a discrete-time
formulation of the problem. However, this approach is both a restriction of the solution space
and an approximation because the length of a time service has to be a multiple of ∆. The
general case has been considered here.
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state 1 of SRV(i)

time

duration

1 2 3 4 5 6 7 8
consumed

energy

In the scientific literature, continuous time formulations of scheduling problems exist (Cas-
tro & Grossmann, 2006; Pinto & Grossmann, 1995; 1998). However, these results concerns
scheduling problems with disjunctive resource constraints. Instead of computing the starting
time of tasks, the aim is to determine the execution sequence of tasks on shared resources.
In energy management problems, the matter is not restricted to determine such sequence be-
cause several services can be achieved at the same time.
An alternative formulation based on transformations (14) and (16), suitable for the energy
management in housings, is introduced.
Temporary services can be continuously shifted. Let DUR(i, j), f (i, j) and p(i, j) be respec-
tively the duration of the state j of service SRV(i), the ending time and the power related to
the service SRV(i) during the state j. f (i, j) is defined according to inhabitant comfort models:
they correspond to extrema in the comfort models presented in section 3.2.
According to (Esquirol & Lopez, 1999), the potential consumption/production duration (ef-
fective duration if positive) d(i, j, k) of a service SRV(i) in state j during a sampling period
[k∆, (k + 1)∆] is given by (see figure 5):

d(i, j, k) = min( f (i, j), (k + 1)∆)− max( f (i, j)− DUR(i, j), k∆) (20)

Therefore, the consumption/production energy E(i, j, k) of the service SRV(i) in state j during
a sampling period [k∆, (k + 1)∆] is given by:

E(i, j, k) =

{

d(i, j, k)p(i, j) if d(i, j, k) > 0

0 otherwise
(21)

E(i, j, k) can be modelled using a binary variable: δt0(i, j, k) = (d(i, j, k) ≥ 0) and a semi-
continuous variable zt0 (i, j, k) = δt0(i, j, k)d(i, j, k) such as in (14) and in (16). It leads to the
following inequalities:

d(i, j, k) ≤ δt0(i, j, k)K∆ (22)

d(i, j, k) > (δt0(i, j, k)− 1)K∆ (23)

E(i, j, k) = zt0 (i, j, k)p(i, j) (24)

zt0 (i, j, k) ≤ δt0(i, j, k)K∆ (25)

zt0 (i, j, k) ≥ −δt0(i, j, k)K∆ (26)

zt0 (i, j, k) ≤ d(i, j, k) + (1 − δt0(i, j, k))K∆ (27)

zt0 (i, j, k) ≥ d(i, j, k)− (1 − δt0(i, j, k))K∆ (28)

But the model still contains nonlinear functions min and max in the expression of d(i, j, k).
Therefore, equation (20) has to be transformed into a mixed-linear form. Let’s introduce 2
binary variables δt1(i, j, k) and δt2(i, j, k) defined by:

δt1(i, j, k) = ( f (i, j)− k∆ ≥ 0)

δt2(i, j, k) = ( f (i, j)− DUR(i, j)− k∆ ≥ 0)

Using (14), it yields:

f (i, j)− k∆ ≤ δt1(i, j, k)K∆ (29)

f (i, j)− k∆ ≥ (δt1(i, j, k)− 1)K∆ (30)

f (i, j)− DUR(i, j)− k∆ ≤ δt2(i, j, k)K∆ (31)

f (i, j)− DUR(i, j)− k∆ ≤ (δt2(i, j, k)− 1)K∆ (32)
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Therefore, min and max of equation (20) become:

fmin(i, j, k) = δt1(i, j, k + 1)(k + 1)∆ + (1 − δt1(i, j, k + 1)) f (i, j) (33)

smax(i, j, k) = δt2(i, j, k)( f (i, j)− DUR(i, j)) + (1 − δt2(i, j, k)) k∆ (34)

with min( f (i, j), (k + 1)∆) = fmin(i, j, k) and max( f (i, j)− DUR(i, j), k∆) = smax(i, j, k).
The duration d(i, j, k) can then be evaluated:

d(i, j, k) = fmin(i, j, k)− smax(i, j, k) (35)

Equations (22) to (35) model the time shifting of a temporary service.
Let’s now consider nonlinearities inherent to power storage services modelled by hybrid mod-
els.

4.4 Linearization of power storage

A storage service SRV(i) with a maximum capacity of Emax
stock can be modelled at time k by:

Estock(i, k) = max(min(Emax
stock, Estock(i, k − 1) + E(i, k − 1)), 0)

Let’s define the following binary variables: δ1(i, k) = (Estock(i, k) ≤ Emax
stock) and δ2(i, k) =

(Estock(i, k) ≥ 0). Using (14), it yields:

Estock(i, k)− Emax
stock ≤ (1 − δ1(i, k)) Emax

stock (36)

Estock(i, k)− Emax
stock > −δ1(i, k)Emax

stock (37)

Estock(i, k) ≤ δ2(i, k)Emax
stock (38)

Estock(i, k) > (δ2(i, k)− 1) Emax
stock (39)

The stored energy can then be written:

Estock(i, k) = δ1(i, k − 1)δ2(i, k − 1) (Estock(i, k − 1) + E(i, k − 1)) . . .

· · ·+ (1 − δ1(i, k))Emax
stock

With variables δ3(i, k) = δ1(i, k)δ2(i, k), z1(i, k) = δ3(i, k)Estock(i, k) and z2(i, k) = δ3(i, k)E(i, k)
and using transformations (15) and (16), the energy Estock(i, k) can be rewritten into a linear
form:

Estock(i, k) = z1(i, k − 1) + z2(i, k − 1) + (1 − δ1(i, k))Emax
stock (40)

The following constraints must be satisfied:

− δ1(i, k) + δ3(i, k) ≤ 0 (41)

−δ2(i, k) + δ3(i, k) ≤ 0 (42)

δ1(i, k) + δ2(i, k)− δ3(i, k) ≤ 1 (43)

z1(i, k) ≤ δ3(i, k)Emax
stock (44)

z1(i, k) ≥ −δ3(i, k)Emax
stock (45)

z1(i, k) ≤ Estock(i, k) + (1 − δ3(i, k))Emax
stock (46)

z1(i, k) ≥ Estock(i, k)− (1 − δ3(i, k))Emax
stock (47)

z2(i, k) ≤ δ3(i, k)Emax
stock (48)

z2(i, k) ≥ −δ3(i, k)Emax
stock (49)

z2(i, k) ≤ E(i, k) + (1 − δ3(i, k))Emax
stock (50)

z2(i, k) ≥ E(i, k)− (1 − δ3(i, k))Emax
stock (51)
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Equations (40) to (51) are a linear model of a power storage service.
Main services have been modelled by mixed integer linear form. Other services can be mod-
elled in the same way. Let’s now focus on how to solve the resulting mixed integer linear
problem.

5. Solving approach

Anticipative control in home energy management can be formulated as an multicriteria
mixed-linear programming problem represented by a set of constraints and optimization cri-
teria.

5.1 Problem summary

In a actual problem, the number of constraints is so large they cannot be detailed in this chap-
ter. Nevertheless, the fundamental modelling and transformation principles have been pre-
sented in sections 3 and 4.
HVAC services are representative examples of permanent services. They have been modelled
by equations like (4) and (19). The decision variables are heating powers Φs(i, k).
Temporary services, such as clothe washing, are modelled by equations like (22) to (35). The
decision variables are the ending times: f (i, j).
Storage services are modelled by equations like (40) to (51). The decision variables are energy
exchange with the storage systems: E(i, j).
Power supplier services are modelled by equations like (5). There is no decision variable for
these services.
These results can be adapted to fit most situations. If necessary, more details about modelling
can be found in (Duy Ha, 2007). As a summary, the following constraints may be encountered:

• linearized behavioral models of services

• linearized comfort models related to end-user services

In addition, a constraint modelling the production/consumption balance has to be added.
Generally speaking, this constraint can be written:

∀k ∈ {1, . . . , K}, ∑
i∈I

E(i, k) = 0 (52)

where I contains the indexes of available predictable services.
If there is a grid power supplier modelled by a support service SRV(0), the imported en-
ergy can be adjusted to effective needs (it is also true for fuel cells based support services).
Therefore, E(0, k) has to be set to the maximum available energy for a sampling period:
E(0, k) = Pmax(0, k)∆ where Pmax(0, k) stands for the maximum available power during sam-
pling period k. Consequently, (52) becomes:

∀k ∈ {1, . . . , K}, ∑
i∈I

E(i, k) ≥ 0 (53)

All the predictable but not modifiable services provide data to the optimization problem.
Their indexes are contained in Imodi f iable ⊂ I . Decision variables are all related to predictable
and modifiable services: they may be binary or continuous decision variables. The problem to
be solved is thus a mixed-linear programming problem. Moreover, the optimization problem
is a multi-criteria problem using the following criteria: economy, dissatisfaction, CO2eq and
autonomy criteria.
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Economy criterion is given by (12) when there is only a grid power supplier and a photo-
voltaic power supplier. Depending of the predictable support services I support∗ excluding
photovoltaic power supplier and on the existence of photovoltaic power supplier SRV(0),

Jautonomy =
K

∑
k=1

(

∑
i∈I support∗

C(i, k)E(i, k)− C(0, k)E(0, k)

)

(54)

where C(i, k) stands for the kWh cost of the support service i.
Dissatisfaction criterion comes from expressions like (7) and (9). Let I end−user ⊂ I be the
indexes of predictable end-user services. The comfort criteria may be given by:

Jdiscom f ort = ∑
i∈I end−user

sumk∈{1,...,K}D(i, k) (55)

The autonomy criterion comes from (11). It is given by:

Jautonomy = sumk∈{1,...,K}A(k) (56)

If there are several storage systems, the respective A(k) have to be summed up in the criterion
Jautonomy.
Finally, the CO2 equivalent rejection can be computed like the autonomy criteria:

JCO2eq =
K

∑
k=1

∑
i∈I support

τCO2(i, k)E(i, k) (57)

where τCO2(i, k) stands for the CO2 equivalent volume rejection for 1 kWh consummed by the
support service i and I support gathers the indexes of predictable support services.
All these criteria can be aggregated into a global criterion. α-criterion approaches can also be
used.

5.2 Decomposition into subproblems

In section 2.2, services have been split into permanent and temporary services. Let I temporary

be the indexes of modifiable and predictable temporary services. It is quite usual in hous-
ing that some modifiable and predictable temporary services cannot occur at the same time,
whatever the solution is. Using this property, the search space can be reduced.
Let’s defined the horizon of a service.

Definition 1. The horizon of a service SRV(i), denoted H(SRV(i)), is a time interval in which
SRV(i) may consume or produce energy.

The horizon of a service SRV(i) is denoted: [H(SRV(i)), H(SRV(i))] ⊆ [0, K∆]. A permanent
service has an horizon equal to [0, K∆]. A temporary service SRV(i) has an horizon given by
H(SRV(i)) = smin(i) (the earliest starting of the service) and H(SRV(i)) = fmax(i) (the latest
ending of the service).
Only predictable and modifiable services are considered in the following because they contain
decision variables. Two predictable and modifiable services may interact if and only if there
is a non empty intersection between their horizons.

Definition 2. Two predictable and modifiable services SRV(i) and SRV(j) are in direct temporal
relation if H(SRV(i))

⋂
H(SRV(j)) �= ∅. The direct temporal relation between SRV(i) and SRV(j)

is denoted
︷ ︸︸ ︷

SRV(i), SRV(j) = 1 if it exists, and
︷ ︸︸ ︷

SRV(i), SRV(j) = 0 otherwise.
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If H(SRV(i))
⋂

H(SRV(j)) = ∅, SRV(i) and SRV(j) are said temporally independent. Even
if two services SRV(i) and SRV(j) are not in direct temporal relation, it may exists an indirect
relation that can be found by transitivity. For instance, consider an additional service SRV(l).

If
︷ ︸︸ ︷

SRV(i), SRV(l) = 1,
︷ ︸︸ ︷

SRV(i), SRV(l) = 1 and
︷ ︸︸ ︷

SRV(i), SRV(j) = 0, SRV(i) and SRV(j) are
said to be indirect temporal relation.
Direct temporal relations can be represented by a graph where nodes stands for predictable
and modifiable services and edges for direct temporal relations. If the direct temporal relation
graph of modifiable and predictable services is not connected, the optimization problem can
be split into independent sub-problems. The global solution corresponds to the union of sub-
problem solutions (Diestel, 2005). This property is interesting because it may lead to important
reduction of the problem complexity.

6. Application example of the mixed-linear programming

After the decomposition into independent sub-problems, each sub-problem related to a spe-
cific time horizon can be solved using Mixed-Linear programming. The open source solver
GLKP (Makhorin, 2006) has been used to solve the problem but commercial solver such as
CPLEX (ILOG, 2006) can also be used. Mixed-Linear programming solvers combined a branch
and bound (Lawler & Wood, 1966) algorithm for binary variables with linear programming
for continuous variables.
Let’s consider a simple example of allocation plan computation for a housing for the next 24h
with an anticipative period ∆ =1h. The plan starts at 0am. Energy coming from a grid power
supplier has to be shared between 3 different end-user services:

• SRV(1) is a room HVAC service whose model is given by (3). According to the in-
habitant programming, the room is occupied from 6pm to 6am. Out of the occupation
periods, the inhabitant dissatisfaction D(1, k) is not taken into account. Room HVAC
service is thus considered here as a permanence service. The thermal behavior is given
by:





Tin(1, k + 1)

Tenv(1, k + 1)



 =





0.299 0.686

0.203 0.794









Tin(1, k)

Tenv(1, k)



+

[
1.264
0.336

]

E(1, k)+

[
0.015 0.44
0.004 0.116

] [
Text(k)
φs(1, k)

]

(58)
The comfort model of service SRV(1) in period k is

D(1, k) =







22 − Tin(i, k)

5
if Tin(i, k) ≤ 22

Tin(i, k)− 22

5
if Tin(i, k) > 22

(59)

The global comfort of service SRV(1) is the sum of comfort model of the whole period:

D(1) =
K

∑
k=1

D(1, k) (60)

• Service SRV(2) corresponds to an electric water heater. It is considered as a temporary
preemptive service. Its horizon is given by H(SRV(2)) = [3, 22]. The maximal power
consumption is 2kW and 3.5kWh can be stored within the heater.
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• SRV(3) corresponds to a cooking in an oven that lasts 1h. It is considered as a temporary
and modifiable but not preemptive service. It just can be shifted providing that the
following comfort constraints are satisfied: fmin(3) = 9 : 30am, fmax(3) = 5pm, fopt =
2pm where fmin, fmax and fopt stand respectively for the earliest acceptable ending time,
the latest acceptable ending time and the preferred ending time. The cooking requires
2kW. The global comfort of service SRV(2) is:

D(3) =











f (3)− 14

3
if f (3) > 14

2(14 − f (3))

9
if f (3) ≤ 14

(61)

• SRV(4) is a grid power supplier. There is 2 prices for the kWh depending on the time of
day. The cost is defined by a function C(4, k). The energy used is modelled by E(4, k).
The maximum subscribed power is Emax(4) = 4kW.

The consumption/production balance leads to:

3

∑
i=1

E(i, k) ≤ Emax(4) (62)

The objective here is to minimize the economy criterion while keeping a good level of comfort
for end-user services. The decision variables correspond to:

• the power consumed by SRV(1) that correspond to a room temperature

• the interruption SRV(2)

• the shifting of service SRV(3)

The chosen global criterion to be minimized is:

J =
K

∑
k=1

(E(4, k)C(4, k)) + D(1) + D(3) (63)

The analysis of temporal relations points out a strongly connected direct temporal relation
graph: the problem cannot be decomposed. The problem covering 24h yields a mixed-linear
program with 470 constraints with 40 binary variables and 450 continuous variables. The
solving with GLPK led to the result drawn in figure 6 after 1.2s of computation with a 3.2Ghz
Pentium IV computer. Figure 6 points out that the power consumption is higher when energy
is cheaper and that the temperature in the room is increased before the period where energy
is costly in order to avoid excessive inhabitant dissatisfaction where the room is occupied.
In this case of study, a basic energy management is also simulated. In assuming that: the
service SVR(1) is managed by the user; the heater is turned on when the room is occupied
and turned off in otherwise. The set point temperature is set to 22řC. The the water heating
service SVR(2) is turned on by the signal of off-peak period (when energy is cheaper). The
cooking service SVR(3) is programmed by user and the ending of service is 2pm. The result
of this simulation is presented in figure 8.
The advanced management reaches the objective of reducing the total cost of power consump-
tion (-22%). The dissatisfactions of the services SVR(1) and SVR(3) reach a good level in com-
parison with the basic management strategy. Indeed, a 1řC shift from the desired temperature
during one period leads to a dissatisfaction of 0.2 and a dissatisfaction of 0.22 corresponds to
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Fig. 6. Considered weather and energy cost forecasts
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Fig. 7. Results of the advanced energy management strategy computed by GLPK
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Fig. 8. Results of the basic energy management strategy

a 1 hour delay for the cooking service. The basic management lead to an important dissatis-
faction regarding the service SVR(1), the heater is turned on only when the room is occupied.
It lead to a dissatisfaction in period [6pm, 7pm]. The cooking service SVR(3) is shifted one
hour sooner by the advanced management strategy for getting the off-peak tariff. The total
energy consumption of advanced management is slightly higher than the one of basic man-
agement strategy(+3%) but in terms of carbon dioxid emission, an important reduction (-65%)
is observed. Thanks to an intelligent energy management strategy, economical cost and envi-
ronmental impact of the power consumption have been reduced.
In addition, different random situations have been generated to get a better idea of the per-
formance (see table 1). The computation time highly increases with the number of binary
variables. Examples 3 and 4 show that the computation time does not only depend on the

Strategy of Total Energy CO2 D(1) D(3)
energy management cost consumption emission

Basic management 1.22euros 13.51kWh 3452.2g 0.16 0.00

Advanced management 0.95euros 13.92kWh 1216.2g 0.20 0.22

Table 1. Comparison between the two strategies of energy management
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number of constraints and of variables. Example 5 fails after one full computation day with
an out of memory message (there are 12 services in this example).
Mixed-linear programming manages small size problems but is not very efficient otherwise.
The hybrid meta-heuristic has to be preferred in such situations.

Example Number of Number of Computation
number variables constraints time

1 201 continuous, 12 binary 204 1.2s
2 316 continuous, 20 binary 318 22s
3 474 continuous, 24 binary 479 144s
4 474 continuous, 24 binary 479 32m
5 1792 continuous, 91 binary 1711 >24h

Table 2. Results of random problems computed using GLPK

7. Taking into account uncertainties

Many model parameters used for prediction, such as predicting the weather information, are
uncertain. The uncertainties are also present in the optimization criterion. For example, the
criterion corresponding to thermal sensation depends on air speed, the metabolism of the
human body that are not known precisely.

7.1 Sources of uncertainties in the home energy management problem

There are two main kinds of uncertainties. The first one comes from the outside like the
one related to weather prediction or to the availability of energy resources. The second one
corresponds to the uncertainty which come from inside the building. Reactive layer of the
control mechanism manages uncertainties but some of them can be taken into account during
the computation of robust anticipative plans.
The weather prediction naturally contains uncertainties. It is difficult to predict precisely the
weather but the outside temperature or the level of sunshine can be predicted with confident
intervals. The weather prediction has a significant impact on the local production of energy
in buildings. In literature, effective methods to predict solar radiation during the day are
proposed. Nevertheless, the resulting predictions may be very different from the measured
values. It is indeed difficult to predict in advance the cloud in the sky. Uncertainties about the
prediction of solar radiation have a direct influence on the consumption of services such as
heating or air conditioning systems. Moreover, it can also influence the total available energy
resource if the building is equipped with photovoltaic panels.
The disturbances exist not only outside the building but also in the building itself. A home
energy management system requires sensors to get information on the status of the system.
But some variables must be estimated without sensor: for example metabolism of the body of
the inhabitants or the air speed in a thermal zone. More radically, there are energy activities
that occur without being planned and change the structure of the problem. In the building,
the user is free to act without necessarily preventing the energy management system. The
consumption of certain services such as cooking, lighting, specifying the duration and date of
execution remain difficult to predict. The occupation period of the building, which a strong
energy impact, also varies a lot.
Through a brief analysis, sources of uncertainties are numerous, but the integration of all
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sources of uncertainties in the resolution may lead to very complex problem. All the uncer-
tainties cannot be taken into account at the same time in the anticipative mechanism: it is
better to deal firstly with disturbances that has a strong energy impact. The sources of uncer-
tainty have been classified according to two types of disturbances:

• The first type of uncertainty corresponds to those who change the information on the
variables of the problem of energy allocation. The consequence of such disturbances is
generally a deterioration of the actual result compared to the computed optimal solu-
tion.

• The second type corresponds to the uncertainties that cause the most important dis-
turbances. They change the structure of the problem by adding and removing strong
constraints. The consequence in the worst case is that the current solution is no longer
relevant.

In both cases, the reactive mechanism will manage the situations in decreasing user satisfac-
tion. If the anticipative plan is robust, it will be easier for the reactive mechanism to keep user
satisfaction high.

7.2 Modelling uncertainty

A trail of research for the management of uncertainties is stochastic optimization, which
amounts to represent the uncertainties by random variables. These studies are summarized in
Greenberg & Woodruf (1998). Billaut et al. (2005b) showed three weak points of these stochas-
tic methods in the general case:

• The adequate knowledge of most problems is not sufficient to infer the law of probabil-
ity, especially during initialization.

• The source of disturbances generally leads to uncertainty on several types of data at
once. The assumption that the disturbances are independent of each other is difficult to
satisfy.

• Even if you come to deduce a stochastic model, it is often too complex to be used or
integrated in a optimization process.

An alternative approach to modelling uncertainty is the method of intervals for continuous
variables: it is possible to determine an interval pillar of their real value. You can find this
approach to the problem of scheduling presented in Dubois et al. (2003; 2001). Aubry et al.
(2006); Rossi (2003) have used the all scenarios-method to model uncertainty in a problem of
load-balancing of parallel machines. The combination of three types of models (stochastic
model, scenario model, interval model) is also possible according to Billaut et al. (2005b).
In the context of the home energy management problem, stochastic methods have not been
used because ensuring an average performance of the solution is not the target. For example,
an average performance of user’s comfort can lead to a solution which is very unpleasant
at a time and very comfortable at another time. The methods based on intervals appear to
be an appropriate method to this problem because it is a min-max approach. For example,
uncertainty about weather prediction as the outside temperature Text can be modelled by
an interval Text ∈

[

Text, Text
]

. The modelling of an unpredictable cooking whose duration
is p ∈ [0.5h, 3h] and the execution date is in the interval s (i) ∈ [18h, 22h]. Similarly, the
uncertainty of the period of occupation of the building or other types of disturbances can be
modelled.
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7.3 Introduction to multi-parametric programming

The approach taking into account uncertainties is to adopt a three-step procedure like schedul-
ing problems presented in Billaut et al. (2005a):

• Step 0: Solving the problem in which the parameters are set to predict their most likely
value.

• Step 1: Solving the problem, where uncertainties are modelled by intervals, to get a
family of solutions.

• Step 2: Choosing a robust solution from among those which have been computed at
step 1.

The main objective is to seek a solving method for step 1. A parametric approach may be
chosen for calculating a family of solutions that will be used by step 2.
The parametric programming is a method for solving optimization problem that character-
izes the solution according to a parameter. In this case, the problem depends on a vector of
parameters and is referred to as a Multi-Parametric programming (MP). The first method
for solving parametric programming was proposed in Gass & Saaty (1955), then a method
for solving muti-parametric has been presented in Gal & J.Nedoma (1972). Borrelli (2002);
Borrelli et al. (2000) have introduced an extension of the multi-parametric programming for
the multi-parametric mixed-integer programming: a geometric method programming. The
multi-parametric programming is used to define the variables to be optimized according to
uncertainty variables.
Formally, a MP-MILP is defined as follows: let xc be the set of continuous variables, and xd be
the set of discrete variables to be optimized. The criterion to be minimized can be written as:

J(xc, xd) = Axc + Bxd

subject to

[

F G H
]





xc

θ
xd



 ≤ W

(64)

where θ is a vector of uncertain parameters.
Definition 1 A polytope is defined by the intersection of a finite number of bounded

half-spaces. An admissible region P is a polytope of

[

xc

θ

]

on which each point can generate

an admissible solution to the problem 64.

[

xc

θ

]

belongs to a family of polytopes defined by

the values of xd ∈ dom(xd):

P(xd) =







(xc, θ)|
[

F G H
]





xc

θ
xd



 ≤ W







(65)

In this family of polytopes, the optimal regions are defined as follows:

Definition 2 The optimal region P∗(xd) ⊆ P is the subset of P(xd), in which the problem 64
admits at least one optimal solution. P∗(xd) is necessarily a polytope because:

• a polytope is bounded by hyperplans which can lead to edges that are polytopes

• a polytope is a convex hypervolume
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The family of the optimal region P∗(xd):

P∗ (xd) =



















(xc, θ)|



















[

F G H
]





xc

θ
xd



 ≤ W

J(x∗c = min
xc

(Axc + Bxd)



















(66)

This family of spaces P∗(xd) with xd ∈ dom(xd) can be described by an optimal function
Z(xc, xd).
To determine this function Z, different spaces are defined, some of which correspond to the
space of definition of this function Z.
Definition 3 The family of the admissible regions for θ is defined by:

Θa(xd) =







θ|∃xc sbj. to
[

F G H
]





xc

θ
xd



 ≤ W







(67)

Definition 4 The family of the optimal regions for θ is a subset of the family Θa(xd):

Θ
∗
a (xd) =



















θ|∃x∗c sbj. to



















[

F G H
]





xc

θ
xd



 ≤ W

J(x∗c ) = min
xc

(Axc + Bxd)



















(68)

Definition 5 The family of the admissible regions for xc is defined by:

Xa(xd) =







xc|∃θ sbj. to
[

F G H
]





xc

θ
xd



 ≤ W







(69)

Definition 6 The family of the optimal regions for xc is a subset of the family Xa(xd):

X∗
a (xd) =



















x∗c |∃θ sbj. to



















[

F G H
]





xc

θ
xd



 ≤ W

J(x∗c = min
xc

(Axc + Bxd)



















(70)

Definition 7 The objective function represents the family of optimal regions P∗(xd) which was
defined in 65. It is defined by X∗

a (xd) to Θ∗
a (xd), which were defined in 70 and 68 respectively:

Z(xc, xd) : X∗
a (xd) �→ Θ

∗
a (xd) (71)

Definition 8 The critical region RCm(xd) is a subset of the space P∗(xd) where the local con-
ditions of optimality for the optimization criterion remain immutable, i.e, that the function
optimizer Zm(xc, xd) : X∗

a (xd) �→ Θ∗
a (xd) is unique. RCm(xd) is determined by doing the

union of different optimal regions P∗(xd) which has the same optimizer function.
The purpose of the linear multi-paramatric mixed-integer programming is to characterize the
variables to optimize xc, xd and the objective function according to θ. The principle for solving
the MP-MILP is summarized by two next steps:
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• First step: search in the region of parameters θ the smallest sub-space of P which con-
tains the optimal region P∗(xd). Then, determine the system of linear inequalities ac-
cording to θ which defines P.

• Second step: determine the set of all critical regions: the region P is divided into
sub-spaces RCm(xd) ∈ P∗(xd). In the critical region RCm(xd), the objective function
Z∗

m(xc, xd) remains a unique function. After determining the family of critical regions
RCm(xd), the piecewise affine functions of Z∗

m(xc, xd) that characterize xc, xd according
to θ is found. After refining the critical regions by grouping sub-spaces RCm, we can get
minimal facades which characterize the critical region.

7.4 Application to the home energy management problem

After having introduced multi-parametric programming, the purpose of this section is to
adapt this method to the problem of energy management. As shown before, the problem
of energy management in the building can be written as:

J = (A1.z + B1.δ + D1)
A2.z + B2.δ + C2.x ≤ C

(72)

where z ∈ Z is the set of continuous variables and δ ∈ ∆ is the set of binary variables resulting
from the logic transformation see section 4. Uncertainties can be modelled by intervals θ ∈ Θ.
Assuming that the uncertainties are bounded, so

θ ≤ θ ≤ θ (73)

The family of solutions of the problem taking into account the uncertainties is generated by
parametric programming. To illustrate this method, two examples are proposed.
Example 1. Consider a thermal service supported by an electric heater with a maximum
power of 1.5 kW. Ta is the indoor temperature and Tm is the temperature of the building
envelope with an initial temperatures Ta(0) =22řC and Tm(0) = 22řC. A simplified thermal
model of a room equipped with a window and a heater has been introduced in Eq. (3).
The initial temperatures are set to Ta(0) = 21◦C, Tm(0) = 22◦C. The thermal model of the
room after discretion with a sampling time equal to 1 hour is:

[

Ta(k + 1)
Tm(k + 1)

]

=

[

0.364 0.6055
0.359 0.625

] [

Ta(k)
Tm(k)

]

+

[

0.0275 1.1966 0.4193
0.016 0.7 0.2434

]





Text

φr

φs





(74)

Supposing that the function of thermal satisfaction is written in the form:

U(k) = δa(k).a1.
Topt − Ta(k)

Topt − Tmin
+ (1 − δa(k)).a2.

Topt − Ta(k)

Topt − TMax
(75)

where:

• δa(k): binary variable verifying [δa(k) = 1] ⇔
[

Ta(k) ≤ Topt
]

, ∀k

• Topt: ’ideal’ room’s temperature for the user.

• [Tmin, TMax]: the area of the value of room’s temperature.
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• a1, a2: are two constant that reflect the different between the sensations of cold or hot.

with Topt = 22◦C, Tmin = 20◦C, TMax = 24◦C and a1 = a2 = 1.

It is assumed that there was not a precise estimate of the outdoor temperature T but it is
possible to set that the outdoor temperature varies within a range: [−5◦C,+5◦C]. The average
energy assigned to the heater over a period of 4 hours to minimize the objective function is:

J =

(
4

∑
k=1

U(k)

)

(76)

The parametric programming takes into account uncertainties on the outdoor temperature.
An implementation of multi-parametric solving may be done using a toolbox called Multi
Parametric Toolbox MPT with the programming interface named YALMIP solver developed
by Lofberg (2004). The resolution of the example 1 takes 3.31 seconds on using a computer
Pentium IV 3.4 GHz. The average energy assigned to the heater according to the temperature
outside is:

φr(i) =

{

1.5 if − 5 ≤ Text ≤ −0.875
−0.097 × Text + 1.415 if − 0.875 < Text ≤ 5

(77)

The parametric programming divided the uncertain region into two critical regions. The first
region corresponds to the zone: −5 ≤ Text ≤ −0.875. The optimal solution is to put the heater
to the maximum level in order to approach the desired temperature. In the second critical
region, −0.875 ≤ Text ≤ 5, the energy assigned to the heater is proportional to the outdoor
temperature. The higher the outside temperature is, the less energy is assigned to the radiator.
In fact, Text = −0.875 is the point of the system where the maximum power generated by the
radiator can compensate the thermal flow lost through the building envelope.
Example 2. This example is based on example 1 but with additional uncertainties on sources.
In this example, the disturbance caused by the user have been simulated. It is assumed that in
the 3rd and 4th periods of the resource assignment plan, it is likely that a consumption may
occur. Accordingly, the available energy during the periods 3 and 4 is between 0 and 2kWh.
A parametric variable Emax ∈ [0, 2] and a constraint are added as follows:

φr(3)+ φr(4) ≤ Emax (78)

The optimal solution of the problem must be computed based on two variables [Text, Emax].
This example has still been solved using the MPT tool. This time, the solver takes 5.2 seconds.
The average energy assigned for the period 1, φr(1), is independent of the variable Emax. It
means that whatever happens on the energy available during periods 3 and 4, the decision to
the period 1 can not improve the situation:

φr(1) =















1.5 if

[

−5 ≤ Text ≤ −0.875
0 ≤ Emax ≤ 2

]

−0.097 × Text + 1, 415 if

[

−0.875 < Text ≤ 5
0 ≤ Emax ≤ 2

] (79)

The energy assigned to the heater in the second period φr(2) is a piecewise function which
consists of five different critical areas. Among these five regions (fig.9), we see that the opti-
mal solution assigns the maximum energy to the heater in three regions. By anticipating the
availability of resources in periods 3 and 4, the comfort is improved in the heating zone. This
result corresponds to the conclusion found in Ha et al. (2006a). During periods 3 and 4, the
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Fig. 9. Piecewise function of φr(k) following [Text, Emax]

consumption of radiator is less important than for the periods 1 and 2. A robust solution is
obtained despite the disturbance of the resource and the outside temperature. However, in
the critical region 5 (Fig.9), there is an extreme case in which it is very cold outside and there
is simultaneously a large disturbance on the availability of the resource. The only solution is
to put φr(k) to the maximum value although there is a deterioration in the comfort of user.
After generating the family of solutions at step 1, an effective solution must be chosen dur-
ing step 2. Knowing that the optimal solutions of step 1 are piecewise functions limited by
critical regions, therefore the procedure of selecting a solution now is to select a piecewise
function. The area of research is therefore reduced and the algorithm of step 2 requires few
computations. A min-max approach is used to find a robust solution among the family of so-
lutions. A polynomial algorithm that comes in the different critical regions to find a solution
that optimizes the criterion is used:

J∗ = (Max(J(θ))|θ ∈ P∗) (80)

8. Conclusion

This chapter presents a formulation of the global home electricity management problem,
which consists in adjusting the electric energy consumption/production for habitations. A
service oriented point of view has been justified: housing can be seen as a set of services. A
3-layer control mechanism has been presented. The chapter focuses on the anticipative layer,
which computes optimal plannings to control appliances according to inhabitant request and
weather forecasts. These plannings are computed using service models that include behav-
ioral, comfort and cost models.
The computation of the optimal plannings has been formulated as a mixed integer linear pro-
gramming problem thanks to a linearization of nonlinear models. A method to decompose
the whole problem into sub-problems has been presented. Then, an illustrative application
example has been presented. Computation times are acceptable for small problems but it in-
creases up to more than 24h for an example with 91 binary variables and 1792 continuous
ones. Heuristics has to be developed to reduce the computation time required to get a good
solution.
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Even if uncertainties can be managed by the reactive layer, an approach that takes into account
uncertainties model by intervals from the anticipative step has been presented. It is an adap-
tation of the multi-parametric programming. It leads to robust anticipative plans. But this
approach is useful of biggest uncertainties because it is difficult to apprehend a large number
of uncertainties because of the induced complexities.
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