
Selection of our books indexed in the Book Citation Index 

in Web of Science™ Core Collection (BKCI)

Interested in publishing with us? 
Contact book.department@intechopen.com

Numbers displayed above are based on latest data collected. 

For more information visit www.intechopen.com

Open access books available

Countries delivered to Contributors from top 500 universities

International  authors and editors

Our authors are among the

most cited scientists

Downloads

We are IntechOpen,
the world’s leading publisher of

Open Access books
Built by scientists, for scientists

12.2%

186,000 200M

TOP 1%154

6,900



Intelligent Energy Management in Hybrid Electric Vehicles 147

Intelligent Energy Management in Hybrid Electric Vehicles

Hamid Khayyam, Abbas Kouzani, Saeid Nahavandi, Vincenzo Marano and Giorgio Rizzoni

X 
 

Intelligent Energy Management  
in Hybrid Electric Vehicles 

 
Hamid Khayyam1, Abbas Kouzani1, Saeid Nahavandi1,  

Vincenzo Marano2 and Giorgio Rizzoni2 
Deakin University Australia1 and The Ohio State University USA2 

 
1. Introduction 
 

Energy management in vehicles is an important issue because it can significantly influence the 
performances of the vehicles. Improving energy management in vehicles can deliver 
important benefits such as reducing fuel consumption, decreasing emission, lower running 
cost, reducing noise pollution, and improving driving performance and ease of use. According 
to Mainins (Manins, 2000), each year more then 50 million new cars are produced in the world. 
However, usually only 30% to 40% of the energy produced by the engine is used to drive a car. 
The large energy waste of around 60% is the result of having an engine powerful enough to 
cope with the maximum power demand despite the fact that such power is required for only a 
vary small percentage of vehicles’ operating time. In addition, vehicle emissions are a source of 
greenhouse gas pollution emitting 70% to 90% of urban air pollution (SOE, 2006). Fuel 
economy benchmarks and emission regulations have encouraged vehicle manufactures and 
researchers to investigate new technologies to enhance fuel economy and minimise emissions.  
The energy efficiency of vehicles can be improved by enhancing the efficiency of the vehicle. 
Implementing energy management strategies in classical vehicles does not fully deliver the 
expected benefits. Hybrid electric vehicles, on the other hand, offer a platform that can 
accommodate advanced energy management strategies giving rise to full realization of the 
stated benefits. Intelligent energy management methods can observe and learn driver 
behavior, environmental and vehicle conditions, and intelligently control the operation of 
the hybrid electric vehicle. 
A Hybrid Electric Vehicle (HEV) takes advantage of an Internal Combustion Engine (ICE) 
and an Electric Motor (EM) to deliver fuel consumption and exhaust emission reduction. An 
EM is powered by on-board battery packs to drive the vehicle. From the consumers overall 
perspective, the HEV is essentially the same as a Conventional Vehicle (CV). Moreover, 
HEVs are refuelled in the same way as a CV. A HEV has the advantage over a pure Electric 
Vehicle (EV) in both travelling range and convenience, as there is no need to recharge the 
battery through a power point for long hours. Importantly, a HEV has the potential to 
improve fuel economy by almost 50%, while also possessing all the advantages and 
flexibility of a CV (Ehsani et al,. 2005). Hence, HEVs solve the problems of EVs whilst 
minimising the shortcoming of CVs providing the benefits of both electric and conventional 
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vehicles. HEVs are categorised into three groups: Series (S-HEV), Parallel (P-HEV), and 
Series/Parallel (S/P-HEV) as shown in Fig. 1.     
In an S-HEV, there is no mechanical link between the ICE and drive train. This means that 
the ICE can run continuously in its preferred operating range, whereas the drivetrain is 
driven by an electric machine. For the electric power request, it relies on the battery plus the 
generator. The generator is driven by the ICE and maintains an appropriate energy level in 
the battery. A disadvantage of this configuration is that energy is first converted from 
mechanical power to electric power with the generator and then back to mechanical power 
by the electric machine, both introducing losses. 
The P-HEV establishes a parallel connection between the ICE and the electric machine that 
both are allowed to give force to the drive the vehicle. The power through the EM can be 
positive as well as negative. This allows the EM to operate in motor mode and generator 
mode. At a top-level view, the P-HEV configuration looks similar to a conventional vehicle, 
although the EM in a conventional vehicle operates only in generator mode. 
Finally, the last vehicle configuration is an S/P-HEV. It merges the topology of a series and a 
parallel HEV. S/P-HEVs have the highest complexity since power to the drivetrain can follow 
various trajectories. Recently plug-in hybrid electric vehicle (PHEV) has come to market. A 
PHEV is a hybrid electric vehicle that described above. The PHEV batteries can be recharged 
by plugging into an electric power source. A PHEV combines type of conventional hybrid 
electric vehicles and battery electric vehicles, possessing both an internal combustion engine 
and batteries for power. The desire strategy using PHEV can be employed as follows: in short 
distance travelling electric vehicle (EV) mode operation such as urban and for long distance 
travelling hybrid electric vehicle (HEV) mode operation such as highways. 
The most important challenge for the development of P-HEV is the synchronization of 
multiple energy sources and conversion of power flow control for both the mechanical and 
electrical paths in optimal fuel efficiency and battery areas.The difficulty in the development 
of hybrid electric vehicles is the coordination of multiple sources such as mechanical and 
electrical. The reason why a P-HEV is considered in this work is that it has fewer disadvantages 
and less complexity (Kessels.J, 2007) (Ehsani et al.,2005). 
 

  

 
Fig. 1. Three HEVs structures. 
 
Nevertheless, any vehicle needs to deal with uncertain factors such as environment 
conditions and also driver behaviour. HEVs are a highly complex systems comprising a 
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large number of mechanical, electronic, and electromechanical elements (Zhu et al.,2002). 
Hence a HEV can be considered as a Complex System (CS).   
A Complex System is a system that can be analyzed into many components having 
relatively many relations among them, so that the behaviour of each component depends on 
the behaviour of others (Simon. A.H,1973).  
In the real world, many problems and systems exist that are too complex or uncertain to be 
represented by complete and accurate mathematical models. However, such systems need 
to be designed, optimized, and controlled.  CSs can be handled by Intelligent Systems (ISs). 
ISs can learn from examples, are fault tolerant, are able to deal with non-linear problems, 
and once trained can perform prediction and generalization at high speed. Intelligence 
systems have been used in diverse applications in control, robotics, pattern recognition, 
forecasting, medicine, power systems, manufacturing, optimization, signal processing, and 
social/psychological sciences. They are useful in system modelling such as in implementing 
complex mappings and system identification. ISs comprise areas like expert systems, 
artificial neural networks, genetic algorithms, fuzzy logic and various hybrid systems, 
which combine two or more of these techniques. ISs play an important role in modelling 
and prediction of the performance and control of energy and renewable energy processes. 
According to literature, ISs have been applied to energy and renewable energy engineering.  
 
ISs can be developed through modelling and simulation. The modelling and simulation 
approach has become an essential tool for mechanical engineers and automotive researches in 
improving efficiency and timing of vehicle design and development, resulting in the delivery of 
significant cost saving as well as environmental benefits. The modelling and simulation is 
generally defined as mathematical realisation and computerised analysis of abstract 
representation of systems. The modelling and simulation helps achieve insight into the 
functionality of the modelled systems, and investigate the systems' behaviours and 
performances. The modelling and simulation is used in a variety of practical contexts relating to 
the design, development, and use of conventional as well as advanced vehicles including: design 
and evaluation of vehicle performance, fuel consumption, emission, energy storage devices, 
internal combustion engine, hybrid engine, accessories, composite materials, determination of 
drag using wind tunnel, training drivers trough virtual vehicle, collecting and analysing sensory 
information, identifying critical test conditions, investigating crash factors, characterising road 
topology, testing and analysing energy management strategies, and so on.  
This work employs the modelling and simulation approach to develop an Intelligent Energy 
Management System (IEMS) for a P-HEV. 
 
The main objective is to optimize fuel consumption and reduce emissions. The work involves the 
analysis of the role of drivetrain, energy management control strategy and the associated impacts 
on the fuel consumption with combined wind/drag, slope, rolling, and accessories loads.  

 
2. Literature Review and Background 
 

This section provides a review of the main approaches used in modelling and control of 
energy management of HEVs. In a CV, energy can be dissipated in a number of ways 
including (Kessels.J, 2007): 

i. Brake utilisation: The brake is applied by the driver to decelerate the vehicle 
resulting in the loss of kinetic energy in the form of heat. 
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ii.  Engine start/stop: The engine often runs idle during the utilisation of vehicle     
resulting in an unnecessary consumption of fuel.  

iii.   Uneconomic engine operating condition: An engine often demonstrates non-    linear     
fuel consumption behaviour in certain operating conditions that causes an 
excessive use of fuel.   

iv.   Unscheduled load: Certain mechanical and electrical loads get activated outside the 
economic operating point of engine increasing the fuel consumption.   

 
P-HEVs provide a platform to reduce the wasted energy. The most important challenge for the 
development of P-HEV is the synchronization of multiple energy sources and conversion of 
power flow control for both the mechanical and electrical paths. Control in HEVs is recognized 
as two levels of actions: supervisory control and component control. In this study supervisory 
control is investigated as a suitable control strategy in energy management. 
The control strategy is an algorithm that is used for issuing a sequence of instructions from 
the vehicle central controller to operate the drivetrain of the vehicle.   The control strategy 
needs to monitor uncertain events. Moreover, in order to improve the system, the control 
strategy can provide optimized energy management. The control strategies in a P-HEV can 
be classified in two main groups as follows.  
 
2.1 Rule-Based Control 
The control rules techniques are based on mathematical, heuristics, and human expertise 
generally with an analytical knowledge of a predefined driving cycle.  Control rules can be 
categorized in three methods.   
 
A. Rule-Based   
 

This method is based on an examination of the power requirements, ICE efficiency, fuel or 
emission maps. Human knowledge is used to design rules to split the requested power between 
converters. The method can be categorized into three groups: on/off control (Ehsani et al.,2005), 
base line control (Zhu et al.,2002) (Sciarretta et al., 2004) (Linl et al.,2004) (Lyshevski,1999) 
(Barsali et al., 2004) (Khayyam et al., 2008), and discrete time events (Zhang & Chen, 2001) 
approaches. 
 
B. Fuzzy logic  
 

Fuzzy logic control has a nonlinear structure that can deal with the nonlinear structure of 
the power split problem. Fuzzy logic has a more robust structure and offers more design 
flexibility. The problem with fuzzy logic is the optimization and mathematical manipulation 
of defuzzification system. The defuzzification process consumes memory and time in 
controller. Some fuzzy logic controller have been developed for HEVs including (Baumann 
et al., 2000) (Farrokhi & Mohebbi, 2005) (Langari &won, 2005) (Mohebbi et al.,2005) ( Salman 
et al., 2000) (Schouten et al.,2002) (Hajimiri at al., 2008). 
 
C. Neuro-Fuzzy 
 

There are also combinations of fuzzy logic and artificial neural called neuro-fuzzy control 
(Mohebbi et al.,2005) and fuzzy discrete event control (Bathaee et al., 2005). 
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2.2 Optimal Control  
In optimal control the controller is optimized according to a cost function of the system. 
Therefore, optimal control strategies are almost perfect. However, the optimal controllers 
are sensitive to parameter changes and also to noise. To perform the optimization process, 
all the dynamic and static behaviours of the system components are taken into 
consideration. Calculations are usually simplified by introducing assumptions which means 
that the solution is optimum only under the assumptions. On the other hand, the discrete 
time events method is simple and more robust. System behaviours are divided into discrete 
events. Each event is connected to another by certain rules (Mohebbi & Farrokhi, 2007).  
If this optimal control is performed over a fixed driving cycle, a global optimum solution 
can be found. In fact, the optimal control system solution is noncasual in that it achieves the 
reduction of fuel consumption using information of future and past power demands. 
Obviously, this technique cannot be used directly for real-time energy management. 
Optimal control can be divided in two groups as follows.   
 
A. Global Optimization (off line) 
 
There are several reported solutions to achieve performance targets by optimization of a cost 
function representing efficiency over a drive cycle, yielding global optimal operating points. 
The global optimization techniques are not directly applicable for real-time problems, 
considering the fact that they are casual solutions. This is due to their computational 
complexity. Some of the global optimization methods are given below: 
 
A.1 Neural Networks 
 

Neural networks have the ability to be trained online or offline, but online training 
consumes memory in a controller. This trainability characteristic makes neural networks as 
a good candidate for adaptive energy management systems. As an example, the work 
presented in (Mohebbi &Farrokhi,2007) developed a neural network for optimal control. 
Prokhorov (Prokhorov D.V , 2008) used a neural network controller for improved fuel 
efficiency of the Toyota Prius hybrid electric vehicle. A new method to detect and mitigate a 
battery fault was also presented. The developed approach was based on recurrent networks 
and included the extended Kalman filter.    
 
A.2 Classical Optimal Control 
 

(Delprat et al,. 2004) used  the optimal control theory based on Lewis and Syrmos (Lewis & 
Syrmos., 1995) work. This method is directly applied to find a global solution for the energy 
management problem in a parallel torque-addition arrangement. The analytical nature of 
this method makes it a good one. However, variation of drivetrain structure makes it 
difficult to find an analytical solution, compared with numerical and iterative-based 
methods. Some optimal control have been developed for HEVs including (Wei et al.,2007) 
(Pisu & Rizzoni,2007) (Musardo et al.,2007). 
 
A.3 Linear Programming 
 

This method can formulate the problem of optimizing the fuel efficiency as a nonlinear 
convex optimization problem that is approximated by a large linear program (Tate & 
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Boyd,1998). The approximations used for transformations and the fact that LP may not be 
applicable to a more sophisticated drivetrain degrade the proposed approach. 
 
A.4 Dynamic and Stochastic Programming  
 

Dynamic Programming (DP) method utilizes the minimizing cost function over a driving 
cycle. (Lin et al.,2003) demonstrated that the approach does not give a real-time solution by 
nature. A family of random driving cycles needs to be used to find an optimal solution.    
 
A.5 Genetic Algorithm 
 

The Genetic Algorithm (GA) has been used to solve a constrained nonlinear programming 
problem. (Piccolo et al.,2001) showed that  GA is very useful for complex nonlinear optimization 
problems. This is because GA leads to a more accurate exploration of the solution space than a 
conventional gradient-based procedure. But GA dose not give the necessary view to the designer 
of the powertrain , unlike an analytical approach. Montazeri et al. (Montazeri et al., 2006) 
described the application of genetic algorithm for optimization of control parameters in P-HEV.  
 
B. Real Time Optimization (on line) 
 

In order to develop a cost function for real-time optimization, the following methods can be used.  
 
B.1 Model Predictive Control  
 

(Salman et al., 2005) utilized a look-ahead window to find a real-time predictive optimal 
control law. This approach can be used for superior fuel economy by previewing the driving 
pattern and road information.  
 
B.2 Decoupling Control  
 

(Barbarisi et al.,2005) proposed a novel strategy to assure acceptable drivability of the 
vehicle that was based on the vehicle’s dynamic model. Based on the proposed decoupling 
methods, the controller’s output is composed of different components.  
 
B.3 Genetic-Fuzzy  
 

The genetic-fuzzy control strategy is a fuzzy logic controller that is tuned by a genetic 
algorithm. Poursamad et al. (Poursamad et al.,2008) and Montazeri et al. (Montazeri et al., 
2008) applied these control strategy model to minimize fuel consumption and emission.    

 
2.3 Discussions 
The presented work is focused on a control strategy to reduce fuel consumption though 
considering performance and driveability. Our optimal control strategy is found in two 
steps, first finding the control which results in the reduction of fuel consumption together 
and offering the best performance, and second taking vehicle driveability into consideration. 
Among the control strategies for the best fuel economy, dynamic programming is the only 
one that assures global optimality if the driving cycle is known in advance.  
However, it does not apply to real-time problems. On the other hand, fuzzy logic, rule-
based, and neuro-fuzzy controllers are not generally optimized, but applied to real-time 
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problems. If the future driving conditions of a few minutes ahead can be predicted then the 
optimal controller can help find a suboptimal solution.  

 
3. Factors Involved in Energy Management of Hybrid Electric Vehicles  
 

Bandivadekar and Heywood (Bandivadekar & Heywood, 2007) presented an analysis that 
shows the possibility of halving the fuel consumption of new vehicles by 2035. Enhancement in 
vehicle control and management strategies is considered to be an influential mean in reducing 
the fuel consumption of vehicles. Energy management approaches in vehicles can be realised 
through considering a number of factors including (Cacciabue et al., 2009): environmental 
conditions, driver behaviour, vehicle specifications, and intelligent transportation approach 
(EPA, 2004). In order to develop an energy management system, a number of models need to be 
implemented and used. These models are described in the following. 

 
3.1 Main factors involved in energy management system of HEVs  
A HEV can be considered as a complex system consisting of subsystems. In the 
development of energy management systems, model of the HEV subsystems are developed 
and used. Fig. 2 shows an overview of the energy management model for HEVs.     
 

 
Fig. 2. Overview of the energy management model for HEVs.  

 
3.2 Model of Environment   
Among the factors that are involved in HEV systems, the environment conditions such as road 
geometrical specifications and wind behaviour are often unknown and uncertain during 
drives. The information about the geometrical specification and wind behaviour of the road 
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ahead of the vehicle can be used by an intelligent system to reduce fuel consumption of the 
vehicles (Khayyam et al., 2008). However, this information is often unavailable to the 
intelligent system on-board of a vehicle in real-time. Thus, utilising on-line and off-line 
prediction and monitoring of the geometrical specifications and wind behaviour of the road 
ahead of vehicles can improve their performances. Environmental information can be 
categorized in two groups: current and look-ahead. The data include road geometry, road 
friction, wind drag, and ambient temperature. It has been demonstrated that lookahead 
environment information can be employed by the energy management system to achieve 
reduction of fuel consumption (Hellstrom et al.,2009). Khayyam et al. (Khayyam et al.,2008) 
presented a Slope Prediction Unit (SPU) to calculate the slope angle of the road within the 
distance of 50-300 meters away from the vehicle. This information reduced fuel consumption 
about 6.1% liter/100 km during simulation. Global Positioning Systems (GPS) and Geographic 
Information Systems (GIS) can provide static and dynamic road information. 
Current Environment Model (CEM) is an algorithm that creates data associated with 
environmental conditions and frictions. Look-ahead Environment model (LEM) is an 
algorithm that creates data associated with future environmental conditions and frictions 
encountered by the vehicle.  
In order to model environment, a number of methods can be used. Khayyam et al. 
(Khayyam et al.,2009a) proposed a method that can be used to produce authentic highway 
height data using a set of probability distributions. They considered a highway as a complex 
road which can have any kind of possible geometrical variations. The presented method 
models highway heights by Rayleigh probabilistic distribution function. In addition, 
highway geometric design laws were employed to modify the created highway data making 
it consistent with the real highway situation. The proposed model is then used to produce a 
3D realistic road. The method is called a Probabilistic Highway Modelling (PMH) technique.  
PMH is capable of creating artificial highway and wind data that possess statistical 
characteristics of real highway and wind situations. A highway is considered to contain a 
collection of road segments. The Poisson Probability Distribution Function (PDF) is used to 
produce a random number that determines the number of road segments. Segments can 
then have different lengths. For each segment, the exponential PDF produces a random 
number that represents the segment length. In addition, for each segment, two other 
random numbers are generated and used to form the geometry of the segment. The 
Rayleigh PDF is employed to produce a random number that represents the height change 
of the segment. Also, the Gaussian PDF is used to form a random number that gives the 
bend deflection change in the segment. The random numbers for height and bend could be 
small or large injecting varying degrees of heights and bends into different road segments. 
Also, highway geometric design laws are used to modify the created highway data to make 
it consistent with the real physical highway situation.  
A wind is constructed using a collection of regions of differing lengths. A wind creation 
algorithm is an iterative routine. The algorithm creates wind speed and direction values for 
each region. The exponential PDF produces a random number that represents the region 
length. The Weibull PDF is employed to produce a random number that represents the wind 
speed value in the region. Also, the uniform PDF is used to form a random number that 
gives the wind direction value in the region.  
The PHM can be employed in simulation of problems involving highway roads such as 
energy optimization of conventional and hybrid electric vehicles. Fig. 3 displays a flowchart 
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diagram description of the highway creation algorithm using the PHM. The result of the 
highway creation algorithm demonstrates in Fig. 4 that show a 3D representation of the 
constructed sample highway using the PHM. Fig. 5 displays a flowchart diagram 
description of the wind creation algorithm using the developed PHM concept.   
 

 

Fig. 3. Highway creation algorithm using the developed PHM. 
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Fig. 4. 3D representation of the constructed sample highway using PMH technique.  
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Fig. 5. Wind creation algorithm using the developed PHM. 

 
3.3 Model of Driver 
Driver behaviour has a strong influence on emissions and fuel consumption of the vehicle. 
Modelling driver behaviour can be done using different methods. As an example, the 
Driver-Vehicle-Environment (DVE) (Cacciabue, 2007) (Lin et al., 2005) method models 
human machine interaction and associated taxonomies for classifying human behaviour. De. 
Vlieger et al. (De. Vlieger et al.,2000) identified three types of driving behaviour as follows: 
 
      1- Calm driving that implies anticipating other road user's movement, traffic lights, 
           speed limits, and avoiding hard acceleration. 
      2- Normal driving that implies moderate acceleration and braking. 
      3-Aggressive driving that implies sudden acceleration and heavy braking.  
 
Moreover, they note that emissions obtained from aggressive driving in urban and rural 
traffic are much higher than those obtained from normal driving. A similar trend is 
observed in relation to fuel consumption. It is stated that the driving style affects the 
emission rate and the fuel consumption rate. 
Average acceleration and Standard Deviation (SD) of acceleration over a specific driving 
range are used to identify the driving style. Acceleration criteria for the classification of the 
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driver's style are based on the acceleration ranges proposed by De Vlieger et al. (De Vlieger 
et al. 2000). They defined the typical ranges of average accelerations as describe in table 1. 
 

Acceleration  Calm 
Driving 

Normal 
Driving 

Aggressive 
Driving 

City 
Journey(m/s2) 

4.85-6.9 6.98-8.6 9.15-11.8 

Highway 
Journey(m/s2) 

0.85 1.0 2.16 

Table 1. Overview of the tested acceleration (De Vlieger et al., 2000).   
 
Our objective is to use support dynamic real-time driver behaviour system in the energy 
management system. A driver first determines the drive strategy, selects the engine 
specifications, starts the vehicle motion, and controls the mass flow rate of fuel into ICE by 
changing the pedal, gear, brake, and clutch. Also, the driver sends this data as drive strategy 
to IEMS.  

 
3.4 Model of Vehicle (Quasi-Static)  
In a P-HEV, both the Internal Combustion Engine (ICE) and the Integrated 
Starter/Generator (ISG) can give tractive force to the wheels. Furthermore, the ISG will be 
used as a generator to supply the electric loads. A schematic drawing of the vehicle 
configuration is shown in Fig. 6. 
 

sE

 
Fig. 6. P-HEV topology (Kessels.J,2007). 
 
The power demand of the drivetrain Pd covers all the elements of the drivetrain, including 
the transmission and the clutch. The engine speed   and the drivetrain torque td are 
calculated back from the vehicle speed and denote the driver’s power demand: 
 

ddP      
 

The power split device is assumed to have no energy losses and establishes the following 
power balance: 

Pe = Pd + Phev  
 

Where : Phev is hybrid power and Pe is engine power. 

(1) 

(2) 
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3.4.1 Conventional Vehicle Specification   
A vehicle ICE can be treated as a controlled volume system whose energy balance is given 
as follows:    
 

heatlossoilwaterdrivingaccessoryslopedragfrictionroad

exhaustairfuelncombaustio

QQPPPPP

QQQQ



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

 /
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In order to include all losses, Equation (3) is reformed into the following equation where the 
effect of different losses is taken into account by corresponding efficiencies: 
 

drivingaccessoryslopedragfrictionroad

netlossheatmechanicalottocombustion

PPPPP

PQ
airfuel








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where:  
netP      = Power output of engine 

otto      =Otto cycle efficiency=
( 1 )
11

cr  
=0.529 (Pullkrabek,1997) 

fuel air



   = Real fuel air engine efficiency =0.75(Yaodong Wang,2007)  

mechanical  =Mechanical efficiency=0.9  (Plint ,1997)  

heat loss    = Heat loss efficiency=0.8  (Pullkrabek,1997)  

These efficiency are depend on some variable factors and situations.They can be measured 
by industrial vehicle companies. In the section 3.4.3  we will select specific efficiency in our 
model.To calculate 

ncombaustioQ  Equation (3) is used: 
 

combustionfuelcombustion qmQ    
 

where 
combustionq  is the combustion energy. In this model, the fuel is assumed to be 

nnHC 87.1
 in 

(Wang et al., 2007) . The complete combustion of 
96.148HC  with 1+k percent theoretical air is 

written as: 
 

2222

2296.148

76.374.11)1(74.1148.78
)76.3(74.11

NkOkOHCO
NOkHC


  

 

 If the heat transfer was accurately measured, the released energy would be 109100 
kg

kJ per 

8 mole of 2CO (Heywood .B.J, 1998).  The result of Equation (6) gives:
 
 

efeVCcombustion hhnWihhfniq ][][ ..    

Where:  
kgkJNOHChhhn fifi /23.793)76.3(74.112.1][ 2296.148   

 
 

(5) 

(6) 

(7) 

(3) 

(4) 
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Description 

Type Symbol Value 

Combustion    
Enthalpy of formation E-F 

fh


 Thermodynamic tables   

Sensible formation E-F h  Thermodynamic tables  

Combustion energy  E-F 
combustionq

 

38017 
kg

kJ  

Mass flow rate of fuel 
combustion 

V-O 
fuelm

.
 s

kg  

Temperature of fuel   V-S 
fuelT  27 °C 

Temperature of air  V-S a irT  27 °C 

Temperature of exhaust   V-S 
exhaustT  450 °C 

Engine compression ratio E-F cr  8.6 
Air compression  ratio E-F   1.35 
Ratio of nitrogen per oxygen  E-F 

2/2 ONr  3.76 

Excess air  V-O excessairE  20% 
Road    
Road friction  E-F frictionF  cosmgC rolling

 

Road friction coefficient E-F rollingC  0. 01 

Gravity acceleration E-F g  9.8 m/s2 
Vehicle velocity V-O 1V  16.6 m/s 
Vehicle angle  V-O 1  0° 
Drag    
Drag friction  E-F 

dragF  )(
2
1)( 2  AVC drag 

 

Wind angle of attack E-F 2  Random direction (0-360o)  
Wind velocity E-F 2V  0-6 m/s 
Result wind and vehicle angle V-O   Calculate in simulation  IEMS 

Result of wind and vehicle speed  V-O 
tV  Calculate in simulation  IEMS  

Result of wind and vehicle speed  V-O 
1tV  Calculate in simulation  IEMS 

Drag coefficient (By simulation ) V-S  ( )dragC       31.00097.0)00005.0(    

Front surface area  V-S ( )A    cos18.1   
Vehicle + passenger mass V-O m  1280 kg 
Air density E-F   1.225 kg/m3 
Slope    
Slope friction  R-O  Fslope

 
sinmg  

Road slope angle R-O   – 1% ≤  atan(Ø) ≤ +0.6% 
Radius of Comfort requirement R-O R  100 m  
Accessory    
Accessory  V-O Paccessory 0-4250 watt 

        V-S vehicle specification; V-O vehicle operation; E-F environment factors; 
        R-O road condition. 

Table 2. Parameters involved in energy balance equation 
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and       

kgkJNN

OOOHhOHCOhCOehhn

h

hhfhffe

/70.37219][2.176.374.11

][)2.0(74.11][48.7][8][

22

222222




 

and   VCW . =0       

kgkJq combustion /93.38017|23.79370.37219|   
 

 Substituting the terms stated in Table 2, the mass flow rate fuel consumption of the vehicle 
can be calculated as follows : 

lossheatmechanicalottocombustion

drivingaccessoryslopedragfrictionroad
fuel

airfuel
q

PPPPP
m

 








)(
  

 

The total fuel consumption in this process is: 
 

0

T

fu e l fu e lm m d t 
 

 

)](2/1[1][ 22
1 tttaccessoryslopedragfrictionnet VVm

t
VFFFFP 


 

 

 

where t is the total numbers of steps involved in the simulation.   
 

The symbols given in these equations are described in Table 2. The acceleration of the 
vehicle in t  time can be calculated as: 
 

dt
dV

t
VVa tt

t 



 1  

 
Also, the distance traversed by vehicle in t is:  
 

tVtaX ttt  1
2

2
1                                                

 
3.4.2 Parallel Hybrid Electric Vehicle Specification 
The ISG is mounted on the crankshaft of the ICE and therefore, it is also coupled to the drive 
train of the vehicle. Since the ISG model uses power based signals, it is not possible to 
observe speed-dependent characteristics. The ISG operates similar to the electric machine. It 
can operate in two modes: generator mode (Phev>=0 ) and motor mode ( Phev<0). 
The electric power net connects the ISG with the electric loads and the battery. No losses are 
assumed in the electrical wires, leaving the following description: 
 

bemc PPP                            
 

Where: Pem is electric machine power, Pb battery power, and Pc electric loads. 
 

The battery model consists of two subsystems: a static efficiency block and a dynamic 
energy storage block, see Fig. 7. The battery model is used where the losses grow 
proportionally with the power during charging (Pb > 0) and discharging (Pb < 0).  

(11) 

(12) 

(13) 

(9) 

(10) 

(8) 
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The efficiency block incorporates the energy losses during charging and discharging, 
whereas the energy storage block keeps track of the actual energy level Es in the battery. At 
this point an integrator is used: 
 


t

sses dttPEtE
0

)()0()( ,  )1,max( ssb PPP 



  

 

bat
sE

 
Fig. 7. Battery Model 
 
To indicate the actual charging level of the battery, the State of Charge (SOC) is often used. 
However, the physical background of SOC has a strong relation with battery models based 
on current and voltage. Because the proposed battery model is power based, the State of 
Energy (SOE) is more appropriate. The SOE expresses the relative energy status as follows: 
 

%100
cap

s

E
ESOE  

 
Depending on the control strategy from the EM system, three different representations of 
the internal battery losses are taken into account, which approximate the relation between 
the power Pb at the battery terminals and the net internal power Ps.  Table 3 provides the 
specifications of the battery and EM. The battery efficiency is considered as: 
 

%882881008
2547600 Batt  

 
Feature Symbo

l 
Type 

Battery (NHW11)   
Cells per module  6 

Total Volts Vmax 273.6 
Capacity     (Amp hours)  6.5 
Capacity     (Watt hours)  1778.4 

Electric Motor   
Operating Voltage (V) Vmin 273 

Power                 (W)  33000-44000 
Table 3. Parameters involved in energy balance equation 

 
3.4.3 Control strategy and optimal torque 
The control strategy involves calculation of the torque produced by ICE based on various 
parameters such as road load and battery SOC. This includes the calculation of an optimal 
torque based on contending ICE parameters, and deciding the actual torque output by later 
modifying the optimal torque based on road load and battery SOC. The optimal torque map 
is shown in Fig. 8. 
 

(14) 

(15) 

(16) 
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Fig. 8. Optimal torque map 
 
At the same current speed, if the required torque is above the optimal torque (Area 1), the 
ICE torque should be decreased bringing it near the optimal torque point. It means that EM 
should be run as a motor to make up for the remaining torque, provided there is enough 
battery charge.  
At the same current speed, if the required torque is below the optimal torque (Area 2), the ICE 
torque should be increased bringing it near to the optimal torque point. This is possible only if 
SOC is not high. We can run the EM as a generator, while running the ICE at its optimum.  
In order to modeling, the following specification of engine and Motor/Inverter will be 
considered. Figs 9 and 10 show that the fuel converter efficiency operation and as well 
Motor/Inverter Efficiency.  
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Fig. 9. Fuel Converter Operation Honda Insight 1.01 VTEC-E SI from ANL Test Data . 
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Fig. 10. Motor/Inverter Efficiency and Condition Torque Capability (Preliminary Model of 
Honda 10kw).  
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3.4.4 On-line adaptive strategy   
The general control strategy for a parallel HEV can be summarized as follows (Shi et al,.2006):  

i. When the speed of the vehicle is small, ICE stops and electric motor gives the 
driving power required which avoids higher fuel consumption and reduce 
emission (It is assumed that SOC is sufficient).  

ii. When the speed of the vehicle is high enough, electric motor stops, ICE starts and 
gives the driving power required. Currently, ICE works along optimum curve 
depending on the cost function.  

iii. If the power required is larger than what ICE can give, ICE and electric motor work 
together and electric motor takes additional required power from the battery (It is 
assumed that SOC is sufficient).  

iv. If SOC of the battery drops under the safe level, ICE supplies both the energy 
required for travelling and extra power to charge the battery through electric motor 
(electric motor is at generator mode).  

v. In brake state, energy floats from vehicle body to drivetrain. Electric motor works 
as a generator and transforms braking energy to electricity to charge the battery. 

 
4. Intelligent System Methods in Energy Management 
 

Intelligent energy management methods can observe and learn driver behavior, 
environmental and vehicle conditions, and intelligently control the operation of the hybrid 
vehicle. This section describes intelligent system approaches with applications to design 
optimization, modeling, and control of complex systems and processes. 
 
4.1 Introduction of Complex and Uncertain System 
A Complex System is (Simon. H,1973) “A system that can be analyzed into many 
components having relatively many relations among them, so that the behaviour of each 
component depends on the behaviour of others”.  
In the real world, we can find many problems and systems that are too complex or uncertain 
to be represented in complete and accurate mathematical models. And yet, we still have the 
need to design, optimize, or control the behaviour of such systems. Complex system can be 
solved by artificial intelligent systems. 
Advances in intelligent systems have brought new opportunities and challenges for 
researchers to deal with complex and uncertain problems and systems, which could not be 
solved by traditional methods. Methods developed for mathematically well-defined 
problems with precise models may lack in autonomy and thus cannot give adequate 
solutions under uncertain environments (Shin &Xu, 2009). Intelligent systems are defined 
with high degree of autonomy, reasoning with uncertainty, higher performance, high level 
of abstraction, data fusion, learning and adaptation (Shoureshi & Wormley,1990).  
 
4.2 Soft Computing Techniques 
Various soft computing based techniques have emerged as useful tools for solving 
engineering problems that were not possible or convenient to handle by traditional 
methods. The soft computing techniques give computationally efficient modelling, analysis, 
and decision making. The techniques that belong to the soft computing include artificial 
neural networks (ANNs), Fuzzy sets and systems, and evolutionary computation.     
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4.2.1 Artificial neural networks (ANNs) 
ANNs are collections of small individually interconnected processing units. Information is 
passed between these units along interconnections. An incoming connection has two values 
associated with it, an input value and a weight. The output of the unit is a function of the 
summed value. ANNs while implemented on computers are not programmed to perform 
specific tasks. Instead, they are trained with respect to data sets until they learn patterns 
used as inputs. Once they are trained, new patterns may be presented to them for prediction 
or classification. ANNs can automatically learn to recognize patterns in data from real 
systems or from physical models, computer programs, or other sources. They can handle 
many inputs and produce answers that are in a form suitable for designers. 

 
4.2.2 Genetic Algorithms (GA) 
GA  is based on the way living organisms adapt to life by evolution and inheritance. GA 
imitates the process of evolution of population by selecting fit individuals for reproduction. 
Thus, GA is an optimum search technique based on the concepts of natural selection and 
survival of the fittest. It works with a fixed-size population of possible solutions of a 
problem, called individuals, which are evolving in time. A genetic algorithm utilizes three 
principal genetic operators: selection, crossover, and mutation.  

 
4.2.3 Fuzzy Logic (FL) 
FL is used in control engineering. It is based on reasoning which employs linguistic rules in 
the form of IF-THEN statements. FL provides a simplification of a control methodology 
description. This allows the human language to be used to describe the problem and its 
solutions. In many control applications, the model of the system is unknown or the input 
parameters are variable and unstable. In such cases, fuzzy controllers can be applied. These 
are more robust and cheaper than conventional PID controllers. It is also easier to 
understand and modify fuzzy controller rules, which not only use human operator’s 
strategy but, are expressed in natural linguistic terms. 

 
4.2.4 Hybrid system (HS) 
 

  TTeecchhnniiqquueess     AAddvvaannttaaggee   LLiimmiittaattiioonn   
EExxppeerrtt  SSyysstteemmss    aallssoo  ccaalllleedd   
KKnnoowwlleeddggee--BBaasseedd  SSyysstteemmss  ((KKBBSS)) 

--CCoosstt  rreedduuccttiioonn  iinn  aacchhiieevviinngg  aa  
ccoommpplleexx  ttaasskk   

--TThhee  llaacckk  ooff  eexxppeerrttiissee   

AArrttiiffiicciiaall  NNeeuurraall  NNeettwwoorrkkss  
((AANNNNss)) 

--MMoosstt  ooff  tthhee  pprroobblleemmss  aarree  nnooww  
aabbllee  ttoo  bbee  ssoollvveedd    
--RReepprreesseennttiinngg  II//OO  rreellaattiioonnsshhiippss  
ffoorr  nnoonnlliinneeaarr  ssyysstteemmss..   

--IIss  oonnllyy  aa  ssppeecciiaall  mmaatthheemmaattiiccaall  
tteecchhnniiqquuee   

FFuuzzzzyy  llooggiicc  ((FFLL)) --AApppplliieedd    ssuucccceessssffuullllyy  iinn  llaarrggee  
nnuummbbeerr  ooff  uunncceerrttaaiinn  aapppplliiccaattiioonnss   

--IInnppuutt//oouuttppuutt  ccoonnttrroollss  ooff  
pprroocceessss  aarree  ccoommpplliiccaatteedd   

GGeenneettiicc  AAllggoorriitthhmmss  ((GGAAss))   --OOppttiimmiissaattiioonn   --SSuucccceessssffuull  ffoorr  ssoommee  
aapppplliiccaattiioonnss   

HHyybbrriidd  SSyysstteemm     
((AANNNNss  &&  FFLLSS)),,  ((FFLLSS  &&  AANNNNss)),, 
((GGAAss  &&  FFLLSS))  aanndd  ((GGAAss  &&  AANNNNss))   

--CCoommbbiinnaattiioonn  tteecchhnniiqquuee  iiss  
ccaappaabbllee  ttoo  ssoollvvee  aallll  pprroobblleemmss   
ooff  eennggiinneeeerriinngg  ddiisscciipplliinnee   

--NNoo   

Table 4. Intelligent system methods. 
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HS combines multiple soft computing methods. For example, neuro-fuzzy controllers use neural 
networks and fuzzy logic, whereas in a different hybrid system a neural network may be used to 
derive some parameters and a genetic algorithm may be used subsequently to find an optimum 
solution to a problem. Table 4 presents a comparison of features of soft computing methods. 

 
5. Proposed Intelligent Energy Management System 
 

This work employs the analysis and simulation approach to develop an Intelligent Energy 
Management System (IEMS) for a HEV. The overview of IEMS is shown in Fig12.  IEMS 
calculates the energy distribution and power flows in the powertrain of the vehicle and 
related losses. It indicates the ways to minimises the vehicles’ fuel consumption under 
various driving conditions. IEMS learns when it is run, and makes proper adjustments to the 
way it operates to ensure that fuel consumption optimisation is achieved.  
The developed model includes the following components: 

 
5.1 Look-Ahead Environment Model Unit (LEM): 
This unit employs an imaging sensor and a vision algorithm to calculate the slope angle of 
the road ahead within the distance of 300 meters away from the vehicle, and forward this 
information to IEMS. 

 
5.2 Current Environment Model Unit (CEM): 
This unit employs the following data from environment situation.   

i. Current Road Slope Module (CRSM): This module specifies the actual slope angle of 
the road at the current location of the vehicle.  

ii. Road Friction Module (RFM): This module gives road friction coefficient, gravity 
acceleration, and motion angle.  

iii. Wind Drag Module (WDM): This module provides the following wind parameters: 
wind speed, wind direction, and drag coefficient. 

 
5.3 Friction Management Unit (FMU): 
This module obtains CEM data and also the following data to calculate and send them to IEMS.    

i. Combustion Module (CM): This module employs the combustion process from the 
vehicle as described in Equation (6-8), and calculates and returns the amount of 
combustion energy needed.  

ii. Accessory Module (AM): This module represents the accessories embedded within 
the vehicle such as electrical devices and air conditioning. 

iii. Vehicle Efficiencies Module (VEM): This module defines the values of the otto cycle, 
real fuel air engine, mechanical and heat loss efficiencies. 

 
5.4 Battery State of Charge (SOC): 
This module provides the amount of current, temperature and voltage of the battery 
continuously. Figure 11 displays only that the useable area of charge on the hybrid battery, 
displayed "empty" is about 40% and displayed "full" is about 85%.  
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Fig. 11. The useable area of charge and discharge on the hybrid battery. 

 
5.5 Control Strategy 
In this work, the on-line adaptive strategy which was discussed in section 3.4.4, has been 
considered. 

 
5.6 IEMS Algorithm 
The overview of the simulation algorithm for IEMS is displayed in Fig. 13. The simulation 
starts with initialising several variables including normal power and primal kinetic energy 
for a moving vehicle. The data includes arrays of 7200 elements (steps). One iteration occurs 
in each step representing the time interval of 0.05 sec. Then the slope prediction data is 
retrieved from LEM. If the predicted slope angle is different from the current slope angle, 
STI block increases or decreases the power. Next, the vehicle/environment/friction data is 
retrieved from FMU. If the current total friction energy is different from the energy 
associated with the slope prediction, FTI block is triggered calculating the amount of power 
for all frictions. Otherwise, fuzzy logic controller (FLC) block is entered. FLC controls and 
optimises the fuel consumption with respect to the vehicle/efficiencies, speed, acceleration, 
and gear data. Also the FLC intelligently consider with drive strategy (see section 5.7) and 
control strategy. If the comparison is satisfied then these data will be forwarded to the next 
block where they overwrite the results of the previous iteration. Otherwise, the power of 
engine and inverter operation is corrected by decreasing or increasing. Once either of speed 
or acceleration is found to be greater than the desired limit, and then FLC will control the 
engine power and inverter operation by its algorithm. When either of speed or acceleration 
becomes smaller than the desired control strategy limit, the engine power is increased with 
regard to control strategy. In the assignment block, the old data is overwritten with the new 
data. The Inverter algorithm, shown in Fig. 14, synchronises the battery with EM, Gen. With 
regard to the battery SOC and IEMS Interpreter Load (IIL), inverter starts charging or 
discharging the battery in each time. It then informs the IEMS about its result via SOC. If 
SOC is high, and at times of high load, the generator can be switched off and EM can 
provide mechanical power via the battery by the inverter’s instruction. The parameters of 
the FLC controller are optimized by genetic algorithm optimizer (GAO). 
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Fig. 12. Overview of the IEMS model. 
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Fig. 13. Overview of the IEMS algorithm. 
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Fig. 14. Overview of the inverter algorithm. 

 
5.7 Engine and EM/Gen Specification and Drive Strategy 
In this work, we have considered a vehicle with the engine  and specification as given in Table 5. 
 

Parameters Min Max Average 
Engine size (litre) ---- 1.1 --------- 

Engine RMP (Rev/min) 3000 4000 3500 
Engine power (kW) 9.8 10.5 10 

Engine Torque (N/m) 25 29 27 
EM/Gen RPM 

(Rev/min) 
3000 4000 3500 

EM/Gen Torque(N/m) 8 12 10 
Table 5. Engine and EM/Gen specification. 
 
We have also formulated a set of parameters called “Drive Strategy” as shown in Table 6. 
 

Parameters Min Max Average 
Engine size (litre) ---- 1.2 --------- 

Speed  (m/s) 16.38 16.94 16.66 
Acceleration (m/s2) -0.98 0.98 0.5 

Travel Time   ------ 7200 0.05(s) 
Travel Distance (m)  6000  

Table 6. Drive strategy parameters. 
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6. Simulation and optimization of hybrid vehicle    
 

6.1 Simulation 
 

6.1.1 Simulation 1 
Khayyam et al (Khayyam et al, 2009b) demonstrated a Air Condition system simulation that, 
the vehicle was tested under sunny condition first for 1200 step for the vehicle speed around 
20 m/s. Next, the fan and the air conditioning are turned on. The parameters given in Tables 
7-9 were employed to achieve the comfort temperature in the cabin room for 6000 step. The 
air condition energy consumption shown in Fig 15(d). 
 

Parameters  Min Max Normal 
C.O.P 1.45 1.71 1.38 
CAP (KW) 3.8 8.15 7.9 
RMP ( min/rev ) 3000 4000 3500 
Evaporator (KW)  5.51 13.93 10.90 
Temperature (C) 
Gas R-134   

0  
Sub Cool 

10  
superheat 

 

Pressure  (kPa) 
Gas R-134   

310  
Charge 

2415 
Discharge 

 

Table 7. Compressor specifications. 
 

Parameters  Min Max Average 

Volts  12.5 12.6 12.5 
Amp   20 25 24 
RMP ( min/rev ) 1000 1800 1200 

Engine power (W) 250 315 300 

Table 8. Blower specifications. 
 

Parameters  Min Max Average 

Temperature (C) 20 25.6 21.5 
Humidity (%) 40 60 50 
Air speed (m/s) 1  5 2.5 

Table 9. Comfort cabin room specifications. 
 
As discussed in section 3.2, some data has been created by PMH technique. The data created 
is associated with a slopped-windy-sunny condition. HEV was tested on this data, where 
the hybrid electric components were included. The road was set to be slopped with various 
slope angles within the range – 1% ≤  atan(Ø) ≤ +0.6%. Moreover, the environmental wind 
was assumed to be non-zero. The wind angle of attack, θ2, was varied within the range 0 to 
360°. Considering the wind velocity, however, different conditions were implemented: V2=0 
to 6. The Current Environment Model (CEM) component monitored the current slope. The 
following parameters were also considered: road-friction, combustion, and air conditioning 
accessory (Table1). Fig. 15 illustrates the slope angle, wind-speed, wind direction  as well as 
A/C energy consumption data used in the simulation. 
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Fig. 15. (a) Slope (Road) angle data,  (b) wind-speed data ,(c) wind-direction and (d) A/C 
energy consumption. 

 
6.1.2 Simulation 2  
IEMS-HEV was tested on a set of data associated with a slopped prediction (look-ahead 
within a 300 meter distance)-windy-warmed employing the hybrid electric components. The 
management of the battery, EM, and Gen is conducted by the inverter algorithm. This 
enables ICE and EM to output power simultaneously when the load is greater than 10 kW or 
a slope of greater than 0.1% is climbed by the vehicle. The following parameters were also 
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considered: road-friction, combustion, and air conditioning accessory. The predicted slope 
angle data is similar to the actual slope angle data. 

 
6.2 Discussions  
 

6.2.1 Simulation 1 Results 
The power and fuel consumption results for the first simulation are shown in Fig. 16. 
Initially. 7800 W of energy is given to the vehicle so that the initial speed of 16.6 m/s is 
achieved. The energy consumption remained constant at 7800 W where the condition was 
flat-windless (e.g. steps 0-600). Depending on the condition of the road slope angle, the 
wind speed, angle of attack, and accessory energy consumption, the power consumption 
varied as shown in Fig. 16. The HEV was informed about the current slope by CEM. 
Fig. 16 shows that the air conditioning system and slope friction have a significant impact on 
the fuel consumption. The reason is that it requires more fuel in a transit time. HEV  can 
measure  how much energy is needed in each step, and works out a desired fuel rate for the 
engine so that the power brake would not be needed. Using Equation (10), the average fuel 
consumption for Simulation 1 was found to be around 6.65 liter/100 km. 
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Fig. 16. Power and fuel consumption results for Simulation 1. 

 
6.2.2 Simulation 2 Results  
The power and fuel consumption results for the second simulation are shown in Fig. 17. 
Similarly, 7800 W of energy is initially given to the vehicle so that the initial speed of 16.6 
m/s is achieved. Also, the Look-Ahead informed IEMS about any slope ahead. IEMS 
calculates and FLC investigates, and if the load is found to be greater than 10 kW or the 
slope greater than 0.1%, the propulsion balance requests ILL to switch on EM through 
inverter. The outcome of this simulation shows that the vehicle speed and acceleration are 
smoother than those of Simulation 1. Using Equation (10), the average fuel consumption for 
Simulation 2 was found to be around 6.11 liter/100 km. Fig. 18 shows the SOC of battery 
during the travel. It goes up to 85% and then comes down to the same level when used. 
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Fig. 17. Power consumption results for Simulation 2. 
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Fig. 18. SOC of battery. 

 
7. Conclusions 
 

This chapter presented a description of intelligent energy management systems for hybrid 
electric vehicles. In addition, an intelligent energy management model for a parallel hybrid 
electric vehicle was described. The model takes into account the role of combined 
wind/drag, slope, rolling, and accessories loads to minimize the fuel consumption under 
various driving conditions. Two simulation studies were conducted. They show that the 
vehicle speed and acceleration were smoother when the hybrid section was included. The 
average fuel consumption for Simulation 1 and 2 were found to be around 6.65 and 6.11 
liter/100 km, respectively. 
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