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1. Introduction 

Electronic nose is the intelligent design to identify food flavors, cosmetics and different gas 
odors, depending on sensors. The continuous developing of these sensors permit advanced 
control of air quality, as well as, high sensitivity to chemical odors. Accordingly, a group of 
scientists have worked on developing the properties of sensors, while others have modified 
ways of manufacturing ultra low-cost design (Josphine & Subramanian , 2008); (Wilson et 
al., 2001).  
In the design of an electronic nose, sampling, filtering and sensors module, signal 
transducers, data preprocessing, feature extraction and feature classification are applied. 
(Getino et al., 1995) is used as an integrated sensor array for gas analysis in combustion 
atmosphere in the presence of humidity and variation in temperature from 150-350oC. The 
sensor array exposed to a gas mixture formed by N2, O2, CO2, H2S , HCL and water vapour 
with a constant flow rate of 500 ml/ min was studied. (Marco et al., 1998). The gas 
identification with tin oxide sensor array is investigated, in addition, the several undesirable 
characteristics such as slow response, non-linearties, long term drifts are studied. Correction 
of the sensor’s drift with adaptive self organizing maps permit success in gas classification 
problems.(Wilson et al., 2001) is introduced as a review of three commonly used gas sensors 
which are, solid state gas sensor, chemical sensors and optical sensors. Comparisons are 
deducted among them in terms of their ability to operate at low power, small size and 
relatively low cost with numerous interference and variable ambient conditions.(Dong Lee 
& Sik Lee, 2001) depended on solid state gas sensor, thus the pollutants of environment are 
controlled relative to the sensing mechanism, the sensing properties of solid – state gas 
sensors to environmental gases, such as No, Co and volatile organic compounds.(Guardado 
et al. , 2001) is used as a neural network efficiency for the detection of incipient fault in 
power transformers. The NN was trained according to five diagnosis criteria and then tested 
by using a new set of data.  
This study shows that NN rate of successful diagnosis is dependent on specific criterion 
under consideration with values in the range of 87-100 %.( Zylka & Mazurek, 2002) 
introduced a rapid analysis of gases by means of a portable analyzer fitted with 
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2. Experimental Setup 

The analysis and the characterization of gases are acquired by building a prototype of multi-
sensors monitoring system (electronic nose), which are TGS 822, TGS 3870, TGS 4160 and 
TGS 2600, from Figaro sensor industry, temperature sensor, humidity sensor and supply 
voltage equal to 5 V. However, current monitoring methods are costly and time intensive, 
likewise limitations and analytical techniques exist. Clearly, a need exists for accurate, 
inexpensive, long-term monitoring using sensors. TGS 822 is tin dioxide (Sno2) as 
semiconductor. The sensor’s conductivity increases, depending on the gas concentration. It 
has high sensitivity to the vapors of organic solvents, as well as, combustible gases. TGS 
2600 is comprised of metal oxide semiconductor layer formed on an alumina substrate of a 
sensing chip together with an integrated heater. TGS 3870 is a metal oxide semiconductor 
gas sensor, embedding a micro-bead gas sensing structure. TGS 4160 is a hybrid sensor unit 
composed of a carbon dioxide sensitive element and a thermistor. All presented sensors 
have features of long life, low cost, small size, simple electrical circuit, low power 
consumption and are available in commercial application. The experimental equipment 
consists basically of the gas bottle mass flow controllers, sensor chamber with volume 475 
cm3, supply voltage of 5 V and  a heating system (Morsi, 2007); (Morsi-a, 2008).Gases used in 
the experiment are carbon dioxide, hydrogen, methane, propane, butane and a mixture of 
propane and butane. All measurements are presented at 45% relative humidity. All sensors 
are connected as an array and covered by a chamber, which has “in” and “outlet” ports. The 
input is connected with the mass flow controllers to control the concentration of input gas 
after purging with humidified air. All sensors are subjected to variation in temperatures 
from ambient temperatures and up (Clifford et al., 2005); (Fleming, 2001). Four variable 
resistances are connected in series to the four sensors, placed out of chamber, then are 
followed by the microcontroller, to control and monitor the output of each sensor (Smulko, 
2006). The output of the microcontroller is monitored and recorded every 20 sec. Different 
gases concentrations are applied 100 ppm, 400 ppm, 700 ppm, 1000 ppm with different 
environmental temperatures between 20oC to 50oC with different variable resistances for 
each sensor RL = 1 k,  3 k, 5 k, and 7 k . Variable load resistance is used to control the 
conductivity and to increase the selectivity of each gas than other gases. Sensitivity is used 
to refer either to the lowest level of chemical concentration that can be detected or to the 
smallest increment of concentration that can be detected in the sensing environment. While 
selectivity refers to the ratio of the sensor’s ability to detect what is of interest over the 
sensor’s ability to detect what is not of interest as the interferents. Sensors for use in 
electronic nose need partial selectivity, mimicking the responses of the olfactory receptors in 
the biological nose (Belhovari et al., 2006). Figure (1) shows the electronic nose gas system. 
The hardware requirements for the system implementation include a microcontroller Pic 16 
F 877A with embedded (A/D) converter. It is chosen for the implementation of this task due 
to the on chip memory resources, as well as, its high speed. The output data is transferred to 
a PC via a serial port RS 232 with a Baud rate of 2400 from the microcontroller. The software 
is developed in C language and is complied, assembled, and downloaded to the system. The 
output volt of each sensor is collected, stored in memory and transferred to a 
microcontroller to be ready for the processing work and the temperature is also monitored 
via a temperature sensor and is recorded (Ishida et  al., 2005); (Weigong et al., 
2006);(Smulko,2006).

electrochemical gas sensor. The analyzer, which was built, is controlled by a microprocessor 
and the system incorporates only two gases which are Co and H2.  
The drawback is the lack of sensors selectivity which is disadvantageous in most 
applications.(Belhovari et al., 2004; Belhovari et al., 2005)  used sensors array with gas 
identification and Gaussian mixture models. Some problems are studied such as drift 
problem and slow response is introduced. Robust detection is applied through a drift 
counteraction approach which is based on extending the training data set using a simulated 
drift. (Belhovari et al., 2006) gas identification is introduced using sensors array, and 
different neural networks algorithms. Different classifiers are used MLP, RBF, KNN, GMM 
and PPCA are compared with each other using the same gas data set allowed performance 
up to 97%. Electronic gas sensors based on tin oxide films are used for the identification of 
gases, detection of toxic contaminants and separation of mixture of gases (Kolen, 1994); 
(Belhovari et al., 2005); (Marco et al., 1998); (Getino et al., 1995); (Becker et al., 2000); 
(Amigoni et al., 2006). 
The problem here is to identify or to discriminate different gases such as, methane, propane, 
butane, carbon dioxide and hydrogen. Using different concentrations. Taguchi gas sensors 
(TGS) are used, which is a metal oxide semiconductor sensor, based on tin oxide that has 
been commercially available from Figaro engineering company (Figaro sensor.com “on –
line”). In the design of electronic nose systems, power consumption directly related to 
temperature operation, selectivity, sensitivity, and stability typically has the most influence 
on the choice of metal oxide films for a particular application (Fleming, 2001); (Carullo, 
2006). For electronic nose applications (Morsi-b, 2008); (Luo et al, 2002); (Bourgeois et al., 
2003); (Carullo, 2006) metal oxide semiconductors are largely hampered by their power 
consumption demands. Thermal isolation and intermittent operation of the heaters reduce 
the power consumption of the sensors themselves to facilitate their use of importable 
applications. However, it also presents significant obstacles in terms of noise, drift, aging, 
and sensitivity to environmental parameters. The Feed Forward Back Propagation of Neural 
Network using the multilayer perceptron is used to separate between them. Fuzzy logic is 
used to discriminate different gases and to detect the concentration of each gas. Electronic 
nose design provides rapid responses, ease of operation and sufficient detection limits. Data 
quality objectives (DQOs) of gases must be considered as a part of technology development 
and a focus should be made on the most urgent problems.  
 
Organization of the chapter 

1. Introduction. 
2. Experimental setup. 
3. Results and analysis. 
4. Surface response modeling algorithms and analysis of variance (ANOVA). 
5. Separation of butane and propane as a gas mixture using an artificial intelligent 

technique of Neural Networks. 
6. On-line identification of gases using artificial intelligent techniques of Fuzzy Logic. 
7. Conclusion. 
8. Acknowledgement. 
9. References. 
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Fig. 5. Methane gas with TGS 4160 at RL 7 
k

Fig. 4. Methane gas with TGS 2600 at RL 7 
k 

Fig. 6.  Hydrogen gas with TGS 3870 at RL 7 
k 

Fig. 2. Methane gas with TGS 3870 at RL 
7 k 

Fig. 3. Methane gas with TGS 822 at RL 7 
k

Fig. 8.  Hydrogen gas with TGS 2600 at RL 7k Fig. 9. Hydrogen gas with TGS 4160 at RL 7 
k 

Fig. 7. Hydrogen gas with TGS 822 at RL 7 
k 

 

 

 

 

 

 

 

Fig. 1-a. Electronic nose of gas detection 
with chamber 

Fig. 1-b. Electronic nose of gas detection 
without chamber 

 
Measurements using the electronic nose gas system detector have been done according to 
three parts: measurement part, mathematical analysis part, and presentation part. The 
system is supported by a collection of methods to improve the uncertainty and reliability. 
Different processing techniques like self calibration, self validation and statistical analysis 
methods are included. Data averaging standard deviation calculation are used to test and 
evaluate the performance of the whole measuring system in order to minimize error (Morsi, 
2007); (Morsi – a, 2008).  

 
3. Results and Analysis: 

The design of electronic nose depends on physical connectivity of the sensors, relating to the 
data management, computing management and knowledge discovery management, which 
are associated with the sensors and the data they generate, and how they can be addressed 
within an open computing environment. Eventually, the issue relates to the integrated 
analysis of the sensor data depending on the variation of gases respectively. Moreover, there 
is a correlation and interaction of data.  
Hence, the use of standardized data access and integration techniques to asses and integrate 
such data is essential. Furthermore, if the analysis is to proceed over large data sets, it is 
essential to provide high performance computing resources to allow rapid computation to 
proceed. Measurements have been done using the described experimental setup. The gas is 
injected inside the chamber and the concentration in ppm is controlled through the mass 
flow controller. Extensive measurements are performed and data collected from gas sensor 
via microcontroller undergoes a processing stage. Due to variation in temperature from 
20oC to 50oC, the load resistance is adjusted to 1 k , 3 k, 5 k and 7 k, respectively and 
the gas concentrations are adjusted to 100 ppm, 400 ppm, 700 ppm and 1000 ppm 
respectively. There is an output voltage of each sensor relative to the variation of these 
parameters. The extensive numbers of measured values have been extracted at each 
resistance with different concentrations. The measurement values of different parameters 
with different gases at RL = 7 k are described by figs 2 till 13 as a specimen deducted from 
enormous measured data due to different variable resistances with different concentrations 
(Morsi –a , 2008) . 
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Fig. 16. Carbon dioxide gas at concentration 700 ppm 
 

The Electronic nose system used for gas detection depends on the resistance variation of the 
gas sensor, which given the possibility increases the selectivity and sensibility. The portable 
and cheap electronic nose is based on commercially available gas sensors. The stability of 
the sensors, as well as, their sensitivity depends on the ratio between the change in sensor 
resistance in the presence or absence of the gas, which was experimentally characterized. 
Moreover, the method can reduce the number of gas sensors to limit power consumption 
and maintenance costs. From figs 14 , 15 and 16 it can be noticed that, by increasing load 
resistance from 1 k to 7 k, the output volt of TGS 822, TGS 2600 is directly proportional 
(i.e. increase with load resistance), However, TGS 3870 is inversely proportional by 
increasing load resistance incase of hydrogen and carbon dioxide. TGS 4160 remains 
constant with average output volt in the range (0.2-0.4) V incase of hydrogen, but incase of 
carbon dioxide TGS 4160 gives variation in the output voltage from (0.4 - 1.8) V. This 
variation is inversely proportional to the load resistance variation, which concludes that this 
sensor is preferable to detect carbon dioxide than other gases.  
It can also illustrate the sensitivity of each sensor due to the resistance fluctuation. The 
output results include non-linear response, drift and slow response time. The main 
problem is the drift, which causes significant temporal variations of the sensor response 
when exposed to the same gas under identical conditions (Clifford et al., 2005); 
(Fleming, 2001). It is noticed that response times depend on many parameters, such as 
the material type, operating temperature, thickness of the semiconductor, variable 
resistance, humidity as well as gas concentration. The sensor array reacts slowly and 
takes an average of l0 min to reach the stationary state. This time is a combination of the 
time to fill the chamber and the sensor response time. To achieve robust and fast 
identification of combustion gases with an array of sensors, a recent study suggested 
three main methods for reducing response time: 

1. Increasing operating temperature. 
2. Reducing the film thickness. 
3. Using variable resistance to reduce the number of sensors and   the power 

consumption of the system. 

 

Figures 14, 15 and 16 show resistances fluctuations with different sensors, different gases 
and constant concentration at 700 ppm (Morsi – a, 2008). 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 
 
 

Fig. 14. Methane gas at concentration 700 
ppm  

Fig. 15. Hydrogen gas at Concentration 700 ppm 

Fig. 10. Carbon dioxide gas with TGS 3870 
 at RL 7 k 

Fig. 12. Carbon dioxide gas with TGS 2600 
 at RL 7 k 

Fig. 13. Carbon dioxide gas with TGS 4160 at  
RL 7 k 

Fig. 11. Carbon dioxide gas with TGS 822 at RL 7 
k 
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 Sensor Type TGS 822 

Linear 21.322% 13.745% 20.048% 
Interactions 19.613% 0.2439% 21.175% 

Pure Quadratic 17.7612% 11.2664% 17.9546% 
Full Quadratic 14.2644% 0.096.029% 14.426% 

Sensor Type TGS 2600 

Linear 18% 9.2% 2.2% 

Interactions 11% 7.7% 5.5% 

Pure Quadratic 30.5% 12.95% 5.8% 

Full Quadratic 8% 5.5% 5.7% 

Sensor Type TGS 3870 

Linear 6.41% 1.66% 3.47% 

Interactions 3.03% 1.1% 0.98% 

Pure Quadratic 2.08% 2.3% 0.28% 

Full Quadratic 1.68% 0.641% 0.02% 

Sensor Type TGS 4160 

Linear 6.6534% 49.925% 51.572% 

Interactions 8.1904% 53.159% 51.253% 

Pure Quadratic 8.9625% 45.646% 44.386% 

Full Quadratic 7.0078% 40.353% 44.358% 

Table 1. Comparisons of different empirical modeling algorithms with  different sensors  
and different gases. 
 
It can be noticed that, for the three different gases, four different algorithms are used. Thus, 
full quadratic algorithms can predict the concentration of each gas with less error than other 
algorithms. From the percentage error, it is clear that in the case of TGS 822, TGS 2600 and 
TGS 3870 gas sensors provide the least error in the case of methane than hydrogen. It is 
preferred to use this sensor to detect hydrogen and methane. However, it is unpreferable in 
the case of carbon dioxide. It is also noticed that in TGS 4160 gas sensor is preferable to be 
carbon dioxide, where as the highest errors are recorded in the case of hydrogen and 
methane.  

4. Surface Response Modeling Algorithms and Analysis of Variance (ANOVA)  

In the system design, surface response models investigated are very useful in understanding 
the functional relationships between a set of independent factors.  
The relationship can be expressed as a mathematical equation which describes the response 
of the independent factors and a set of parameters. The surface response models depend on 
observing input and output values of the actual and predicted parameters, which is known 
by the system model identification (SMI). The resulting empirical models of SMI can be used 
to: (1) Predict the system behaviour over a specified designed space, (2) Illustrate the 
mathematical relationships and interactions between input and output of the system (3) 
Optimize the system performance (4) Select the appropriate factor values that satisfy system 
performance goals to investigate the performance prediction accuracy of different 
algorithms, thus the predicted results generated by each empirical model is compared with 
actual measured results to provide a comparison and identify the advantages of each 
algorithm.  
In the present work, different empirical models are used to detect the response of the surface 
of each gas. By entering the voltage of each sensor, load resistance and temperature as an 
input thus predicts the concentration as an output. The following are the used four 
empirical models: 
Linear 

Y = b0 + b1 x1 + b2 x2 + b3 x3. (1) 
Interaction 

Y= b0 + b1 x1+ b2 x2+ b3 x3+ b12 x1 x2+ b13 x1 x3+ b23 x2 x3. (2) 
Pure Quadratic 

Y= b0 + b1 x1 + b2 x 2 + b3 x3 + b11 x12 + b22 x22 + b33 x33. (3) 
Full Quadratic 

Y =  b0 + b1 x1 + b2 x2 + b3 x3 + b12 x1 x2 + b13 x1 x3 + b23 x2 x3 + b11 x12 + b22 x 22 + b33 x23. (4) 
 
Where 
Y is the predicting concentration of each gas. 
x1, x2, x3 are voltages of each sensor, load resistance, and  temperature, respectively. 
Bij is the effect of element i on element j or the effect of first input on the second input, i and j 
have values from 1 to 3. 
More than 300 readings for each input are used to detect the error. The concentrations of each 
gas are stored in matrices, which are related to the output voltage of each sensor through a 
regression coefficient matrix and the equations can be solved using surface response 
empirical models to predict the concentrations. Then, the percentage error can be calculated 
between actual concentration and predicted concentration to determine the best empirical 
modeling algorithm, which describes the surface response of each gas and has the least error. 
Table1 shows the percentage error for the different gases with different surface response 
empirical modeling algorithms (Morsi – a, 2008). 
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 Sensor Type TGS 822 

Linear 21.322% 13.745% 20.048% 
Interactions 19.613% 0.2439% 21.175% 

Pure Quadratic 17.7612% 11.2664% 17.9546% 
Full Quadratic 14.2644% 0.096.029% 14.426% 

Sensor Type TGS 2600 

Linear 18% 9.2% 2.2% 

Interactions 11% 7.7% 5.5% 

Pure Quadratic 30.5% 12.95% 5.8% 

Full Quadratic 8% 5.5% 5.7% 

Sensor Type TGS 3870 

Linear 6.41% 1.66% 3.47% 

Interactions 3.03% 1.1% 0.98% 

Pure Quadratic 2.08% 2.3% 0.28% 

Full Quadratic 1.68% 0.641% 0.02% 

Sensor Type TGS 4160 

Linear 6.6534% 49.925% 51.572% 

Interactions 8.1904% 53.159% 51.253% 

Pure Quadratic 8.9625% 45.646% 44.386% 

Full Quadratic 7.0078% 40.353% 44.358% 

Table 1. Comparisons of different empirical modeling algorithms with  different sensors  
and different gases. 
 
It can be noticed that, for the three different gases, four different algorithms are used. Thus, 
full quadratic algorithms can predict the concentration of each gas with less error than other 
algorithms. From the percentage error, it is clear that in the case of TGS 822, TGS 2600 and 
TGS 3870 gas sensors provide the least error in the case of methane than hydrogen. It is 
preferred to use this sensor to detect hydrogen and methane. However, it is unpreferable in 
the case of carbon dioxide. It is also noticed that in TGS 4160 gas sensor is preferable to be 
carbon dioxide, where as the highest errors are recorded in the case of hydrogen and 
methane.  

4. Surface Response Modeling Algorithms and Analysis of Variance (ANOVA)  

In the system design, surface response models investigated are very useful in understanding 
the functional relationships between a set of independent factors.  
The relationship can be expressed as a mathematical equation which describes the response 
of the independent factors and a set of parameters. The surface response models depend on 
observing input and output values of the actual and predicted parameters, which is known 
by the system model identification (SMI). The resulting empirical models of SMI can be used 
to: (1) Predict the system behaviour over a specified designed space, (2) Illustrate the 
mathematical relationships and interactions between input and output of the system (3) 
Optimize the system performance (4) Select the appropriate factor values that satisfy system 
performance goals to investigate the performance prediction accuracy of different 
algorithms, thus the predicted results generated by each empirical model is compared with 
actual measured results to provide a comparison and identify the advantages of each 
algorithm.  
In the present work, different empirical models are used to detect the response of the surface 
of each gas. By entering the voltage of each sensor, load resistance and temperature as an 
input thus predicts the concentration as an output. The following are the used four 
empirical models: 
Linear 

Y = b0 + b1 x1 + b2 x2 + b3 x3. (1) 
Interaction 

Y= b0 + b1 x1+ b2 x2+ b3 x3+ b12 x1 x2+ b13 x1 x3+ b23 x2 x3. (2) 
Pure Quadratic 

Y= b0 + b1 x1 + b2 x 2 + b3 x3 + b11 x12 + b22 x22 + b33 x33. (3) 
Full Quadratic 

Y =  b0 + b1 x1 + b2 x2 + b3 x3 + b12 x1 x2 + b13 x1 x3 + b23 x2 x3 + b11 x12 + b22 x 22 + b33 x23. (4) 
 
Where 
Y is the predicting concentration of each gas. 
x1, x2, x3 are voltages of each sensor, load resistance, and  temperature, respectively. 
Bij is the effect of element i on element j or the effect of first input on the second input, i and j 
have values from 1 to 3. 
More than 300 readings for each input are used to detect the error. The concentrations of each 
gas are stored in matrices, which are related to the output voltage of each sensor through a 
regression coefficient matrix and the equations can be solved using surface response 
empirical models to predict the concentrations. Then, the percentage error can be calculated 
between actual concentration and predicted concentration to determine the best empirical 
modeling algorithm, which describes the surface response of each gas and has the least error. 
Table1 shows the percentage error for the different gases with different surface response 
empirical modeling algorithms (Morsi – a, 2008). 
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Table 3-b.   Anova of hydrogen gas with TGS 
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Table 3-c. Anova of hydrogen gas with TGS 
2600 gas sensor 

Table 4-c.   Anova of carbon dioxide gas with 
TGS 2600 gas sensor 

 
 

Table .3-d.   Anova of hydrogen gas with TGS 
4160 gas sensor 

Table 4-d.   Anova of carbon dioxide gas with TGS 
4160 gas sensor 

From the above results, it can be concluded that the surface response modeling algorithms 
provide accurate detection for different concentrations of gases depending on solving 
regression matrices using different equations while detecting the percentage error between 
the actual and the predicted measurements. The key challenges for building regression 
algorithms determine the significant factors that are included in the final mathematical 
equation and quantify the effects of those factors. Tables 2, 3 and 4 show the ANOVA results 
for each sensor with different gases. The second column is the degree of freedom (DF). The 
mean square (MS) is the variance of the data for each factor interaction. The sum of squares 
(SS) is computed as MS x DF. F-statistic is defined as the ratio of MS to Error. P-value is the 
smallest probability of rejecting the null hypothesis. Using the analysis of variance 
(ANOVA), it is possible to identify those effects that are statistically significant. It can be 
noticed that, the variance is not constant and if the output voltage has a high value, the 
variance also has a high value for different gases. The resulting algorithm includes only 
those independent factors that are statistically significant (P-value < 0.05). Quantifying the 
main and two-way interaction effects of the independent factors are equivalent to using the 
well- known method of least squares fitting method in order to compute the regression 
coefficients (Morsi-a, 2008) .  
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(ANOVA), it is possible to identify those effects that are statistically significant. It can be 
noticed that, the variance is not constant and if the output voltage has a high value, the 
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those independent factors that are statistically significant (P-value < 0.05). Quantifying the 
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By increasing load resistance, the sensitivity and conductivity will decrease. The difference 
between the relationship of sensitivity, conductivity and load resistance between both 
sensors, allows the discrimination between propane and butane depending on the variation 
of the resistance. For the TGS 2600 gas sensor, figs 25 till 28, the voltage increases with the 
increase of concentrations, temperature and load resistance for both gases. 
With TGS 4160 gas sensor, figs 29-32, for both butane and propane, there is no change in the 
output volt in load resistance, therefore, we can not depend on this sensor discrimination. 
The calibration of pure gases among their semiconductor sensor, predicts the correct sensor 
that should be used in classification. Figures 33 and 34 depict the mixture of both propane 
and butane injected inside the chamber. Propane has a concentration of 600 ppm while 
butane has a concentration of 400 ppm. It can be noticed that the output of both gases is 
unstable, which leads to difficulties in discrimination. Neural Networks (NN) have been 
used extensively in applications where pattern recognition is needed. They are adaptive, 
capable of handling highly non-linear relationships and generalizing solutions for a new set 
of data. In fact, NN do not need a predefined correspondence function, which means that 
there is no need for a physical model. A neuron model is the most basic information 
processing unit in a neural network. Depending on the problem complexity, they are 
organized in three or more layers: the input layer, the output layer and one or several 
hidden layers. Each neuron model receives input signals, which are multiplied by synaptic 
weights. An activation function transforms these signals into an output signal to the next 
neuron model. The Back Propagation learning algorithm is used due to its ability of pattern 
recognition. A sigmoid activation function was also used because of two reasons: it is highly 
non-linear and has been reported to have a good performance when working with the back 
propagation learning algorithms [45][46] . In order to avoid slow training, it is decided to 
use only three layers. During the training process, a vector from a training set (xi) 
representing a gas pattern is presented to the net. The winning neuron (the closet to the 
pattern with an Euclidean), and its neighbours, the neighborhood area, change their 
position, becoming closer to the input pattern according to the following learning rule: 

Wjinew = Wjiold +   (t). nb (t,d). (xi – xjiold)                        (5) 
where Wji are the weights of the neurons inside, the neighborhood area, j is the index of the 
neuron, i is the index of pattern , t is the time step,  (t) is the learning rate, nb (t,d) is the 
neighborhood function, and d is the distance between the neuron and the winner measured 
over the net. The learning rate and the neighborhood are monotonically decreasing 
functions along the training (Eberhart et al. 1996); (Wesley, 1997). Both patterns constitute an 
NN training set. In case NN training is slow or shows little convergence, then both patterns 
are either poorly correlated or incorrect. This study is performed on pure butane and 
propane gases, and a mixture of them.  The data set is divided in two parts. The first is used 
to train the net, while the second is used to test it. Training patterns are chosen from 
different concentrations, different times and different temperatures. A large number of 
patterns have been selected from the extremes of the concentrated range and from initial 
parts of the dynamic response to give a larger weight to more early difficult cases. The 
Neural Network is constructed as a feed forwarded back propagation network that is 
composed of three layers: input, hidden and output layers. The input layer has three 
neurons corresponding to the output voltages of each sensor (x1), temperature (x2) and 
variable resistance (x3).  

5. Separation of Butane and Propane as a Gas Mixture Using an Artificial 
Intelligent Neural Network 

The use of natural gas has been increasingly adapted as butane and propane exist in both 
industry and as a fuel in domestic applications. One of the most important problems in the 
gas detection field is that there is a strong demand to detect butane and propane as pure 
gases which are used as fuel; however, both are extracted from the natural gas mixed with 
each other. The calibration of both gases in the pure case and also as a mixture at different 
temperatures using electronic nose system is studied.  Also, a study  is done for the 
efficiency of feed forward back propagation neural network for the detection of gases using 
the multilayer pereception (MLP) methods to differentiate  between them depending on the 
data driven from the electronic nose gas system (Morsi – a, 2008). 
Butane (C4H10): a normally gaseous straight-chain or branch-chain hydrocarbon is derived 
from natural gas or from refinery gas streams. It includes isobutane and normal butane and 
is used for cooking, heating, as a household fuel, propellant or refrigerant, where, it is 
commonly used in UK. It is slightly toxic by inhalation, as it causes central nervous system 
depression at high concentrations,  and   is  used   in  the  manufacture  of  rubber  and  fuels 
 (Morsi –a, 2008). 
Propane (C3H8):  a normally gaseous straight- chain hydrocarbon is a colorless paraffinic gas 
that boils at a temperature of – 42 oC. It is extracted from natural gas or refinery gas streams. 
Under normal atmospheric pressure and temperature, it exists in a gaseous state. However, 
propane is usually liquified through pressurization for transportation and storage. It is 
primarily used for heating or cooking, as a fuel gas in areas not serviced by natural gas, and 
as a petrochemical fuel stock. Propane is used in forklifts because it offers the best 
performance in power, speed and saves money on fuel costs. It is also used in agriculture as 
an     alternative     to    conventional   pesticides    and   herbicides   and    in   outdoor   grills 
 (Morsi –a, 2008).  
Neural Networks with feed forward back propagation training algorithm is used to detect 
each gas with different sensors. It is combined with gas sensors to address these issues. 
After a processing stage, the resulting feature vector is used to solve separation problem in 
case of a mixture, by identifying an unknown sample as one from a set of previously known 
gases. Multi Layer Perceptron MLP improves linear discrimination techniques in case of a 
mixture, depending on the data driven from each sensor (Morsi –a, 2008); (Guardado et al., 
2001). 
Gases used are butane and propane and their mixtures. They are injected into a gas 
chamber. The sensor detects sequentially the variation in the propane and butane gas 
concentration and its resistance is modified accordingly. Figures 17 till 32 depict the output 
voltage of sensors TGS 822, TGS 3870, TGS 2600 and TGS 4160 as functions of temperature, 
with load resistances RL = 1 k and RL = 7 k. The relations are given for butane and 
propane at concentrations of 100 ppm, 400 ppm, 700 ppm and 1000 ppm respectively. It can 
be noticed that the detection of both gases can be carried out by TGS 822, TGS 3870, TGS 
2600, but not by TGS 4160.  It is clear noticed from figs 17-20, that for the TGS 822 gas sensor, 
the conductivity and sensitivity increase for both butane and propane by increasing 
concentration and load resistance. The sensitivity is directly proportional to the load 
resistance. For TGS 3870 gas sensor, Figs 21-24, it can be noticed that the sensitivity and 
conductivity are inversely proportional with load resistance.  
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By increasing load resistance, the sensitivity and conductivity will decrease. The difference 
between the relationship of sensitivity, conductivity and load resistance between both 
sensors, allows the discrimination between propane and butane depending on the variation 
of the resistance. For the TGS 2600 gas sensor, figs 25 till 28, the voltage increases with the 
increase of concentrations, temperature and load resistance for both gases. 
With TGS 4160 gas sensor, figs 29-32, for both butane and propane, there is no change in the 
output volt in load resistance, therefore, we can not depend on this sensor discrimination. 
The calibration of pure gases among their semiconductor sensor, predicts the correct sensor 
that should be used in classification. Figures 33 and 34 depict the mixture of both propane 
and butane injected inside the chamber. Propane has a concentration of 600 ppm while 
butane has a concentration of 400 ppm. It can be noticed that the output of both gases is 
unstable, which leads to difficulties in discrimination. Neural Networks (NN) have been 
used extensively in applications where pattern recognition is needed. They are adaptive, 
capable of handling highly non-linear relationships and generalizing solutions for a new set 
of data. In fact, NN do not need a predefined correspondence function, which means that 
there is no need for a physical model. A neuron model is the most basic information 
processing unit in a neural network. Depending on the problem complexity, they are 
organized in three or more layers: the input layer, the output layer and one or several 
hidden layers. Each neuron model receives input signals, which are multiplied by synaptic 
weights. An activation function transforms these signals into an output signal to the next 
neuron model. The Back Propagation learning algorithm is used due to its ability of pattern 
recognition. A sigmoid activation function was also used because of two reasons: it is highly 
non-linear and has been reported to have a good performance when working with the back 
propagation learning algorithms [45][46] . In order to avoid slow training, it is decided to 
use only three layers. During the training process, a vector from a training set (xi) 
representing a gas pattern is presented to the net. The winning neuron (the closet to the 
pattern with an Euclidean), and its neighbours, the neighborhood area, change their 
position, becoming closer to the input pattern according to the following learning rule: 

Wjinew = Wjiold +   (t). nb (t,d). (xi – xjiold)                        (5) 
where Wji are the weights of the neurons inside, the neighborhood area, j is the index of the 
neuron, i is the index of pattern , t is the time step,  (t) is the learning rate, nb (t,d) is the 
neighborhood function, and d is the distance between the neuron and the winner measured 
over the net. The learning rate and the neighborhood are monotonically decreasing 
functions along the training (Eberhart et al. 1996); (Wesley, 1997). Both patterns constitute an 
NN training set. In case NN training is slow or shows little convergence, then both patterns 
are either poorly correlated or incorrect. This study is performed on pure butane and 
propane gases, and a mixture of them.  The data set is divided in two parts. The first is used 
to train the net, while the second is used to test it. Training patterns are chosen from 
different concentrations, different times and different temperatures. A large number of 
patterns have been selected from the extremes of the concentrated range and from initial 
parts of the dynamic response to give a larger weight to more early difficult cases. The 
Neural Network is constructed as a feed forwarded back propagation network that is 
composed of three layers: input, hidden and output layers. The input layer has three 
neurons corresponding to the output voltages of each sensor (x1), temperature (x2) and 
variable resistance (x3).  

5. Separation of Butane and Propane as a Gas Mixture Using an Artificial 
Intelligent Neural Network 

The use of natural gas has been increasingly adapted as butane and propane exist in both 
industry and as a fuel in domestic applications. One of the most important problems in the 
gas detection field is that there is a strong demand to detect butane and propane as pure 
gases which are used as fuel; however, both are extracted from the natural gas mixed with 
each other. The calibration of both gases in the pure case and also as a mixture at different 
temperatures using electronic nose system is studied.  Also, a study  is done for the 
efficiency of feed forward back propagation neural network for the detection of gases using 
the multilayer pereception (MLP) methods to differentiate  between them depending on the 
data driven from the electronic nose gas system (Morsi – a, 2008). 
Butane (C4H10): a normally gaseous straight-chain or branch-chain hydrocarbon is derived 
from natural gas or from refinery gas streams. It includes isobutane and normal butane and 
is used for cooking, heating, as a household fuel, propellant or refrigerant, where, it is 
commonly used in UK. It is slightly toxic by inhalation, as it causes central nervous system 
depression at high concentrations,  and   is  used   in  the  manufacture  of  rubber  and  fuels 
 (Morsi –a, 2008). 
Propane (C3H8):  a normally gaseous straight- chain hydrocarbon is a colorless paraffinic gas 
that boils at a temperature of – 42 oC. It is extracted from natural gas or refinery gas streams. 
Under normal atmospheric pressure and temperature, it exists in a gaseous state. However, 
propane is usually liquified through pressurization for transportation and storage. It is 
primarily used for heating or cooking, as a fuel gas in areas not serviced by natural gas, and 
as a petrochemical fuel stock. Propane is used in forklifts because it offers the best 
performance in power, speed and saves money on fuel costs. It is also used in agriculture as 
an     alternative     to    conventional   pesticides    and   herbicides   and    in   outdoor   grills 
 (Morsi –a, 2008).  
Neural Networks with feed forward back propagation training algorithm is used to detect 
each gas with different sensors. It is combined with gas sensors to address these issues. 
After a processing stage, the resulting feature vector is used to solve separation problem in 
case of a mixture, by identifying an unknown sample as one from a set of previously known 
gases. Multi Layer Perceptron MLP improves linear discrimination techniques in case of a 
mixture, depending on the data driven from each sensor (Morsi –a, 2008); (Guardado et al., 
2001). 
Gases used are butane and propane and their mixtures. They are injected into a gas 
chamber. The sensor detects sequentially the variation in the propane and butane gas 
concentration and its resistance is modified accordingly. Figures 17 till 32 depict the output 
voltage of sensors TGS 822, TGS 3870, TGS 2600 and TGS 4160 as functions of temperature, 
with load resistances RL = 1 k and RL = 7 k. The relations are given for butane and 
propane at concentrations of 100 ppm, 400 ppm, 700 ppm and 1000 ppm respectively. It can 
be noticed that the detection of both gases can be carried out by TGS 822, TGS 3870, TGS 
2600, but not by TGS 4160.  It is clear noticed from figs 17-20, that for the TGS 822 gas sensor, 
the conductivity and sensitivity increase for both butane and propane by increasing 
concentration and load resistance. The sensitivity is directly proportional to the load 
resistance. For TGS 3870 gas sensor, Figs 21-24, it can be noticed that the sensitivity and 
conductivity are inversely proportional with load resistance.  
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Neural Network with MLP method is very robust against sensor nonlinearities, time effects, 
and error rate depending on the selection of data, which is acquired by different 
semiconductor gas sensors (Morsi –a, 2008) . 

Fig. 23.  Propane with TGS 3870 at RL 1k Fig. 24.  Propane with TGS 3870 at RL 7 k 

Fig. 18. Butane with TGS 822 at RL 7  k Fig. 17. Butane with TGS 822 at RL 1 k 

Fig. 22. Butane with TGS 3870 at RL 7 k Fig. 21. Butane with TGS 3870 at RL 1 

Fig. 20. Propane with TGS 822 at RL 7  k Fig. 19.  Propane with TGS 822 at RL 1 k 

The hidden layer has five neurons. The hidden layer neurons use a transfer function of 
tansig which is a hyperbolic tangent sigmoid function used to calculate the layer’s output 
from its net input. One hidden layer with 5 neurons is used which gives the least mean 
square error (MSE) between the actual and the predicted data. The output layer has one 
neuron corresponding to the concentration of gas. The predicted performance metric, y, 
given by the neural network model is as follows. 
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Where: xj is the input of node j in the input layer.  
W1ji is the weight between node j in the input layer to node i in the hidden layer. θ1i is the 
bias of node i in the hidden layer. W2i1 is the weight between node i in the hidden layer to 
the node in the output layer. θ21 is the bias of the node in the output layer. The numbers 5 
and 4 are the numbers of nodes in the hidden layer and in the input layer, respectively, 
using a simple linear transformation. All performance data are scaled to provide values 
between –1 and 1. Scaling is performed for two reasons: to provide commensurate data 
ranges, so that the regressions are not dominated by any variable that happened to be 
expressed in large number, and to avoid the asymptotes of the sigmoid function. During the 
training, the weights of the neural network are iteratively adjusted to minimize the network 
performance function MSE. The validation set is used to stop training early if the network 
performance on the validation set fails to improve. Test set is used to provide an 
independent assessment of the model predictive ability. The percentage error is important; 
100% error means a zero prediction accuracy and error close to 0% means an increasing 
prediction accuracy. For the proposed Neural Network model, the percentage error is found 
to be 0.662%, 0.031%, 0.162%, 1.5% for sensors TGS 822, TGS 3870, TGS 2600 and TGS 4160, 
respectively. MLP provides an optimized structure which provides linear discrimination 
between both gases. Figs 35, 36, 37, and 38 depict the MLP results in separating butane and 
propane gas by using TGS 822, TGS 3870 , TGS 2600 and TGS 4160 sensors respectively. The 
sign circle indicates butane gas where as the sign plus indicates propane gas. Table 5 depicts 
the results of classification for different gases among the different semiconductor sensors. 
From the presented results, TGS 3870, TGS 2600 and TGS 822 gas sensor can discriminate 
both gases rather than TGS 4160 which does not give different response with different 
conditions. This conclusion is obtained from the multiplayer perception of Neural Network. 
The Neural Network model does not yield a mathematical equation that can be 
manipulated. However, its strength lies in its ability to accurately predict system 
performance over the entire design space and its ability to compensate for the inherent 
information inadequacy by requiring large and well spread training sets. Neural Network 
with feed forward back propagation is used to detect the concentration of each gas. MLP is 
able to separate between the mixtures with linear discrimination. TGS 3870 gives the 
optimum classification with a percentage error of 0.031%, then, TGS 2600 gas sensor can be 
classified between them with a percentage error 0.162%, then, TGS 822 gas sensor gives 
percentage error of classification 0.662%. However, TGS 4160 gas sensor failed to 
discriminate both gases and gives a percentage error of 40%.  
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The Neural Network model does not yield a mathematical equation that can be 
manipulated. However, its strength lies in its ability to accurately predict system 
performance over the entire design space and its ability to compensate for the inherent 
information inadequacy by requiring large and well spread training sets. Neural Network 
with feed forward back propagation is used to detect the concentration of each gas. MLP is 
able to separate between the mixtures with linear discrimination. TGS 3870 gives the 
optimum classification with a percentage error of 0.031%, then, TGS 2600 gas sensor can be 
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Fig. 33. Mixture of propane and butane at RL 1 
k 

Fig. 34. Mixture of propane and butane at RL 7 
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Fig. 35. Separation between propane and butane using NN(MLP) with TGS 822 
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Fig. 36. Separation between propane and butane using NN (MLP) with TGS 3870 
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Fig. 29. Butane with TGS 4160 at RL Fig. 30. Butane with TGS 4160 at RL 
k

Fig. 31.  Propane with TGS 4160 at RL 1 
k 

Fig. 32.  Propane with TGS 4160 at RL 7 
k 

Fig. 27.  Propane with TGS 2600 at RL Fig. 28.  Propane with TGS 2600 at RL 

Fig .26. Butane with TGS 2600 at RL 7  
k 

Fig. 25. Butane with TGS 2600 at RL 
k

Fig. 24.  Propane with TGS 3870 at RL Fig. 23.  Propane with TGS 3870 at RL 
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6. On- Line Identification of Gases Using Artificial Intelligent Technique of 
Fuzzy Logic: 

Fuzzy set theory and fuzzy logic theory are the preferred choices for the models. Fuzzy sets 
introduced were particularly designed to mathematically represent fuzziness and 
vagueness, and to provide the fundamental concept for handling the imprecision intrinsic to 
the problems of subjective evaluation and measurement. Fuzzy set is based on possibility 
instead of probability where as fuzzy logic is based on fuzzy set. Fuzzy logic is unlike 
classical logical systems in that it aims to modeling the imprecise modes of reasoning that 
plays an essential role in the remarkable human ability to make rational decisions in gases of 
uncertainty and imprecision. This ability depends, in turn, on the ability to infer an 
approximate answer to a question based on a store of knowledge that is inexact, incomplete, 
or not totally reliable. The whole approach is based on measurements taken from an 
experimental set up with certain typical commercial sensors. The outputs of sensors are 
monitored by a microcontroller, and then a proper intelligent processing. Fuzzy logic has 
been chosen because it gives better results and enhances discrimination techniques among 
sensed gases. Fuzzy logic systems encode human reasoning to make decisions and control 
dynamical systems. Fuzzy logic comprises fuzzy sets which are methods of representing 
nonstatistical uncertainty and approximate reasoning, including the operations used to 
make inferences. It is a tool for mapping the input features to the output, based on data in 
the form of “IF – Then” rules. An implementation of a fuzzy expert system depends on 
Mamdani type fuzzy controller as shown in fig. 39 (Tanaka, 1996); (Timothy, 1995); (Wesley, 
1997). The objective of the controller is to discriminate different gases and to detect the 
concentration of each gas according to the input variables as shown in fig. 40.  There are five 
steps to construct a Mamdani type fuzzy controller:  

                     

 
 
 
Step 1: Identify and name the input linguistic variables, the output linguistic variables and 
their numerical ranges. There are three input variables which are temperature, output 
voltage of the microcontroller, and the variable resistance related to each sensor. The output 
variable is the concentration of each gas. There are five identified ranges for each variable 
(Morsi , 2007)  
 
 
 

 

Fig. 39. Mamdani type fuzzy controller 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Sensors No. of inputs No. of output Test Epoch % Error Classificatio
n 

% 
Unflassificatio

n 

TGS 822 3 (100 sample) 1 (100 sample) 30 sample 1000 0.662% 60% 40% 

TGS 3870 3 (100 sample) 1 (100 sample) 30 sample 1000 0.031% 97% 3% 

TGS 2600 3 (100 sample) 1 (100 sample) 30 sample 1000 0.162% 96% 14% 

TGS 4160 3 (100 sample) 1 (100 sample) 30 sample 1000 1.5% 40% 60% 

Table. 5. The results of classification by using Neural Networks (MLP) for four different 
sensors . 

Fig. 37. Separation between propane and butane using NN (MLP) with TGS 2600 
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Fig. 38. Separation between propane and butane using NN (MLP) With TGS 4160 
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Fig. 40. Fuzzy membership functions with three input variables (Temperature, variable 
resistance, voltage of each sensor) and output variable (concentration). 

Temperature (oC)  
Linguistic Range 
Low           20 < T < 30 
Moderate   25< T < 35 
Medium     30 < T < 40 
High          35 < T < 45 
V. High      40 < T < 50 

Output volt of microcontroller (V)  
Linguistic Range 
V. Low     0.5 < V < 1.5 
Low    1 < V < 2 
Medium    1. 5 < V < 2.5 
High    2 < V < 3 
V. High     2.5 < V < 3.5 

Variable Resistance (K)  
Linguistic Range 
V. Low      1 < RL < 3 
Low    2 < RL < 4 
Medium    3 < RL < 5 
High    4 < RL < 6 
V. High     5 < RL < 7 

The concentration of each gas in (ppm) 
Linguistic Range 
V. Low  100 <concentration < 400 
Low  250 <concentration < 550 
Medium  400 <concentration < 700 
High  550 <concentration < 850 
V. High  700 <concentration < 
1000 

 
Step 2: Define a set of fuzzy membership functions for each of the input and the output, 
variables. The low and high values are used to define a triangular membership function. The 
height of each function is one and the function bounds do not exceed the high and low 
ranges listed above for each range. The membership functions must cover the dynamic 
ranges related to the minimum and maximum values of inputs and outputs that represent 
the universe of discourse.  
 
Step 3: Construct the rule base that will govern the controller’s operation. The rule base is 
represented as a matrix of input and output variables. At each matrix row different input 
variable ranges with one of the output variable range. All rules are activated and fired in 
parallel whether they are relevant or not and the duplicate ones are removed to conserve 
computing time. Each rule base is defined by ANDing together with the inputs to produce 
each individual output response. For example, If temperature is low AND, if voltage is low 
AND if, RL is low THEN concentration is low. 
 
Step 4: The control actions will be combined to form the excited interface. The most common 
rules combination method is the centroid defuzzification to get the crisp output value. This 
step is a repeated process, after all adjustments are made, which allows the fuzzy expert 
system to be able to discriminate and classify the data set patterns of the different gases.  
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7. Conclusion 

The large scale of data is able to provide high-level information to make decisions about 
each gas achieved by using efficient and affordable sensor systems that show autonomous 
and intelligent capabilities. Measurements have been done using an electronic nose design, 
depending on commercially available gas sensors. An enormous data collected allows 
analyzing and characterizing of different gases. Several tests have been carried out by 
eliminating from the complete time series, a subset of data in a random way to evaluate the 
reliability of the developed model. The data set is characterized by several problems which 
can generate errors during processing and prediction phases inducing: 

 Missing data, caused by the periodic setting or the stop function of 
        instruments. 
 Incorrect recording data occurred by errors in transmission, recording and 
        non-setting of equipment. 
 

Mamdani type fuzzy controller is used to construct the rules, which are extracted from the 
data driven from the microcontroller. It can be used to discriminate and classify the data set 
patterns for different gases according to the variation in different parameters, such as gas 
concentrations, variation in sensor’s resistance and output voltage of microcontroller at 
different temperatures and to improve the sensor’s selectivity for gas identification.  
Due to the abundant number of membership function figures, the results are limited to 
representing the fuzzy logic output surface for each sensor. Fuzzy logic gives on line 
prediction of the concentration depending on the behavior of each gas with different sensors 
which are extracted from the experiments. The feature of each gas is detected, based on the 
fuzzy system. The input and output surface of the fuzzy inference system is illustrated in 
figs 41-60 (Morsi, 2007). 
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Some interpolation and validation techniques to address and solve the above problems 
depend on building a mathematical model based on a suitable regression analysis and 
interpolation, which is able to describe the behaviour of daily average concentration. The 
aim of modeling for gases studies is to describe the peculiar characteristics of gases as alarm 
situations or risk events. Electronic nose provides, low cost, low maintenance small size, and 
in some cases low power consumption. The system can handle problems such as sensor 
drift, noise and non-linearity. It is used as a simple alarm level based on index data. This 
could be used as a stepping stone for the development of more complex systems, which are 
needed for more demanding applications.  
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