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1. Introduction 

Multi-legged robots display significant advantages with respect to wheeled ones for 
walking over rough terrain because they do not need continuous contact with the ground. In 
Multi-legged robots, hexapod robots, mechanical vehicles that walk on six legs, have 
attracted considerable attention in recent decades. There are several benefits for hexapods 
rover. 
(a) Hexapod robot is easy to maintain static stability on three or more legs, 
(b) It has a great deal of flexibility in how it can move. 
(c) Hexapod robot is the most efficient one for statically stable walking. Preumount et al. 

1991, observed that a larger number of legs more than six do not increase walking speed. 
(d) Hexapod robots show robustness in case of leg faults  
(e) Hexapods makes it possible for the robot to use one, two or three legs to work as hand 

and perform complex operations. 
The most studied problem for multi-legged robots concerns how to determine the best 
sequence for lifting off and placing the feet (gait/locomotion planning). From the stability 
point of view, robot locomotion can be classified into dynamic locomotion, such as running 
and hopping, and statically stable locomotion as walking. Statically stable locomotion has 
the constraint that the moving body is stable at all times. The vertical projection of the centre 
of gravity of the robot must be within the convex of the supporting polygon linked positions 
of all supporting feet. 
Statically stable gait is solely dependent on the design of bodies and legs. Hexapod gaits 
have been widely investigated as a function of shape and characteristics of the robot 
structure. In 1985, Kaneko et al. addressed the gait of a rectangular hexapod with decoupled 
freedoms where the propelling motion was generated by one degree of freedom (DOF). In 
1988, Lee et al. realized an omnidirectional walking control system for a rectangular 
hexapod robot with adaptive suspension. A circular gait was studied for a layered hexapod 
robot (called Ambler) at the Carnegie Mellon University [Bares et al., 1989; Krotkov & Bares, 
1991; Wettergreen, 1990] with rotating legs connected to the same vertical axis at six different 
heights. Hirose et al. in 1992 and 1998 and Gurocak in 1998 developed other two hexapods 
whose bodies were consisting of two different layers, each connected to three legs. The 
relative motion of the layers realized the omnidirectional robot gait in a simple way, but 
limiting the walking capability under leg faults. Two Lees in 2001 studied the gait of a 
special robot whose body was composed of three parts connected by revolute joints. Its 
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flexible gait allowed it to overcome complex terrains, but its configuration was quite 
complicate for control system design. R Hex, introduced by Uluc et al. in 2001, is another 
hexapod robot with half-circle legs with a simple alternate tripod gait. 
Most popular hexapods can be grouped into two categories, rectangular and hexagonal 
ones. Rectangular hexapods have a rectangular body with two groups of three legs 
distributed symmetrically on the two sides. Hexagonal hexapods have a round or hexagonal 
body with evenly distributed legs. 
The gait of rectangular six-legged robots has motivated a number of theoretical researches 
and experiments which nowadays reached to some extent a state of maturity. In 1998 Lee et 
al. showed for rectangular hexapods the longitudinal stability margin, which is defined as 
the shortest distance from the vertical projection of center of gravity to the boundaries of the 
support pattern in the horizontal plane, of straight-line motion and crab walking. Song 
&Choi in 1990 defined the duty factor β as the fraction of cycle time in which a leg is in the 
supporting phase and they proved that the wave gait is optimally stable among all periodic 
and regular gaits for rectangular hexapods when 3/4 ≤β≤1. Both the tripod gait and the 
problem of turning around a fixed point on an even terrain have been widely investigated 
and tested for a general rectangular hexapod with three DOF legs [Wang, 2005 and Su, 
2004]. The so called 4+2 quadruped gaits [Huang and Nonami, 2003] have been 
demonstrated being able to tolerate faults [Yang & Kim, 1999]. A series of fault-tolerant gaits 
for hexapods were analyzed by Yang et al. [Yang & Kim, 1998a, 1998b, 2000 and 2003]. Their 
aim was to maintain the stability in case a fault event prevented a leg from supporting the 
robot. In 1975, Kugushev and Jaroshevskij proposed a terrain adaptive free gait that was 
non-periodic. McGhee et al. in and other researchers [Porta & Celaya, 2004; Erden & 
Leblebicioglŭ] went on studying free gaits of rectangular hexapod robots. 
At the same time, the hexagonal hexapod robots were studied with inspiration from the 
insect family, demonstrate better performances for some aspects than rectangular robots. 
Kamikawa et al. in 2004 confirmed the ability to walk up and down a slope with the tripod 
gait by building a virtual smooth surface that approximates the exact ground. Yoneda et al. 
in 1997 enhanced the results of Song & Choi in 1990, developing a time-varying wave gait 
for hexagonal robots, in which velocity, duty factor and crab angle are changed according to 
terrain conditions. A. Preumon et al. in 1991 proved that hexagonal hexapods can easily 
steer in all directions and that they have longer stability margin, but he did not give a 
detailed theoretical analysis. Takahashi et al. in 2000 found that hexagonal robots rotate and 
move in all directions at the same time better than rectangular ones by comparing stability 
margin and stroke in wave gait, but no experimental results were presented. Chu and Pang 
in 2002 compared the fault tolerant gait and the 4+2 gait for two types of hexapods of the 
same size. They proved theoretically that hexagonal hexapod robots have superior stability 
margin, stride and turning ability compared to rectangular robots. 
It is also worth to mention here a work carried out by Gonzale de Santos et al. [Gonzale de 
Santos et al., 2007a and Gonzale de Santos et al., 2007b]. They optimized the structure of 
rectangular hexapods and found that extending the length of middle legs of rectangular 
robots helps in saving energy. This outcome can be seen as a transition from rectangular six-
legged robots to hexagonal ones. 
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2. Definitions 

Several definitions are necessary to be introduced before locomotion planning. 
 

1) Support/stance phase: a leg is said in its supporting/stance phase when it stands 
on the ground and its foot does not leave the ground. 

2) Transfer/swing phase: a leg is said in its transferring/swing phase when it does 
not stand on the ground but move in the air. 

3) Gait period/cycle time, T: a gait period/cycle time is a complete cycle of a leg 
including supporting phase and transferring phase. 

4) Duty factor β: the duty factor β is the time fraction of stance phase of a leg to the 
cycle time T. β= Tsi/Ti where Tsi denotes time of supporting phase of leg i; Ti denotes 
circle time of leg i. 

5) Stroke length: the distance that the body moves thought the support phase of a leg. 
6) Stride length: stride length is the distance the centre of gravity (COG) translates 

during one complete locomotion cycle. 
7) Pitch length: the distance between the centers of the strokes of the isoceles legs. 
8) Supporting polygon/pattern: the polygon the vertices of which are constructed on 

the horizontal plane by vertical projections of the foot-ground interaction points. 
9) Statically stability margin (SSM): stability margin was defined for a given support 

polygon as the smallest of the distances from the COG. projection to the edges of 
the support polygon. 

10) Longitudinal stability margin (LSM): the smallest of the distances from the COG. 
projection to the front and rear edges of the support polygon along the machine's 
longitudinal axis. 

11) Crab Longitudinal Stability Margin (CLSM): The smallest of the distances from the 
COG. projection to the front and rear edges of the support polygon along the 
machine's motion axis. 

12) Main walking direction stability margin (MDSM):the smallest of distance from 
projection of the C.G. to the front and rear edges of the support polygon along the 
main-walking direction 

13) Kinematics margin: kinematics margin is defined as the distance from the current 
foothold of leg i to the boundary of the reachable area of leg i, measured in the 
opposite direction of body motion. 

14) Periodic gait: a gait is periodic if similar states of the same leg during successive 
strokes occur at the same interval for all legs, that interval being the cycle time. 

15) Symmetric gait: a gait is symmetric if the motion of legs of any right-left pair is 
exactly half a cycle out of phase. 

16) Regular gait: A gait is said to be regular if all the legs have the same duty factor. 
17) Body height: body height is the distance of the body center of mass from the 

support surface along the body vertical axis. 
18) Protraction of leg: protraction is the forward movement of a leg relative to the body 

and ground. 
19) Retraction of leg: retraction is the backward movement of a leg relative to the body 

with no movement of the leg relative to the ground. 
20) Lateral offset: Lateral offset is the shortest distance between vertical projection of 

hip on the ground and the corresponding track. 
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21) Crab angle: it is defined as the angel from the longitudinal axis to the direction 
motion, which has the positive measure in the anti-clockwise direction. 

 
3. Mechanism of Hexapods 

Typical hexapod robots can be classified into rectangular and hexagonal ones (Fig.1). 
Rectangular hexapods inspired from insects have six legs distributed symmetrically along 
two sides, each side having three legs. Hexagonal hexapods have six legs distributed 
axisymmetrically around the body (that can be hexagonal or circular). 

 

Fig. 1. Two types of hexapod robots 

 

Fig. 2. Beetle's Structure 
 
Typically, individual legs range from two to six degrees of freedom. Fichters [Fichter, E.F. & 
Fichter, B.L., 1988] have made a survey on insects’ legs (Fig.2 as an example). They found 
that a general insect leg has four main segments: coxa, femur, tibia and tarsus. Most of the 
length of an insect leg is contributed by 2 long and nearly equally segments. The hinge joint 
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between these segments allows one to fold back almost exactly along the other. Length of 
the tibia is highly correlated with that of the femur, the correlation coefficient ranges from 
0.97 to 0.78. The coxa has no obvious correlation with femur or tibia. Similarly, the thigh and 
calf of mammals (dog for example in Fig.3) and human are almost equal. We will mainly 
talk about the locomotion of hexapod robots with leg structure in Fig.4. Three parts are 
connected together by two parallel revolute joints with rotating axes parallel to the ground, 
coax and knee. When all joints are at zero position, the link calf is perpendicular to the 
ground and the link thigh and calf are parallel to the ground. The hip is connected to the 
body by the waist joint that rotates around a vertical axis. 

 

Fig. 3. Dog's Structure 

 
Fig. 4. General structure of a 3DOF (degrees of freedom) leg  

www.intechopen.com



Climbing and Walking Robots296

4. Normal statically stable gaits 

A hexapod has many types of statically stable gaits, such as regular gait, irregular gaits, 
periodic gaits and et al. 
As for the regular periodic gaits, its gaits can be classified, according to the number of 
supporting legs during support phase, as 3 + 3 tripod gait with 3 supporting legs, 4 + 2 
quadruped gait with four supporting legs and 5 +1 one by one gait with five supporting 
legs; according to the movement of legs, insect-wave gait which is the typical gait of 
rectangular six-legged robots, mammal-kick gait which is  typical gait of rectangular 
quadruped robots and mixed gait which is typical multi-directional gait for hexagonal 
hexapod robots; the combination can be tripod insect-wave gait and so on. The typical 
irregular gait is so called free gait. 

 
4.1 3+3 tripod gait 
The tripod continuous gaits are characterized by having three legs standing on the ground 
for supporting and pushing the body forward, and the other three legs lifting off and 
swinging forward. In each gait period, the body moves two steps. The quickest tripod gait is 
when the duty factor β equals 1/2. 
 

 

(a) Initial configuration (2D, insect)          (b) Legs’ movement sequence example   

Fig. 5. Insect-wave tripod gait 

 

(a) Initial configuration (2D, mixed)           (b) Legs’ movement sequence example 

Fig. 6. Mammal-kick tripod gait 
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In the initial configurations of insect-wave gait (see Fig.5) and mammal gait (see Fig.6), six 
legs of the robot are grouped into two and distributed along two sides as that of rectangular 
hexapod robots. Each group has three legs parallel. In Fig.5 (a) and Fig.6 (a). The positions of 
all waist joints are 0, -30, 30, 0, -30 and 30 degrees from leg 1 to leg 6, other joints angles are 
zeros. 
The insect wave gait is characterized by a forward wave of stepping actions on each side of the 
body with a half-cycle phase shift between the two members of any right or left pair [63]. A 
scheme of the robot is sketched in Fig.5 (a), where the main direction of the movement, defined 
as main walking direction, is downwards, with legs swinging forward. Fig.4 (b) shows an 
example of legs sequence. In Fig.5 (b), the thick dashed or solid lines denote supporting legs. 
In the first step, leg 1, leg 3 and leg 5 are in stance phase and push the body forward; while leg 
2, leg 4 and leg 6 swing ahead. In the second step, leg 2, leg 4 and leg 6 are in support phase 
and are responsible for pushing the body forward; leg 1, leg 3 and leg 5 then change to swing 
phase. After this, the procedure repeats again from the first step to the second step. The whole 
cycle includes two steps and the body is moved twice. In every step, the support polygon is an 
isosceles triangle ΔABC. The stroke length of supporting legs must make sure the gravity 
center of robot stays in side the support polygon, that means not surpass the stability margin. 
In the mammal-kick gait legs generally move in a vertical plane like human's kicking out 
and trajectories of feet are along legs (Fig.6 (b)). The scheme of mammal-kick gait is depicted 
in Fig.6, and it walks mainly from left to right. The waist-joints do not work during mammal 
straight forward walking, but for turning. The support polygon is similar as with insect-
wave gait and is an isosceles triangle ΔABC. During walking the front supporting legs 
retract and the rare supporting legs protrude so that the body is moving forward; on the 
contrary, the front swing legs are protrude and the rare swing legs retract. The legs' moving 
sequence is the same at that in insect-wave gait. The difference is just the configurations.  

 

(a) Initial configuration (2D)                                  (b) leg sequence 

Fig. 7. Insect-mammal mixed tripod gait 
 
In addition to the periodic tripod gaits mentioned above, we introduce here new type of 
mixed gait. In the initial configuration (see Fig.7) of insect-mammal mixed gait, all joint-
angles are zeros. During walking, the mixed gait has a supporting area defined as a convex 
polygon connected all supporting legs, in the form of an equilateral triangle ΔABC or ΔDEF 
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in Fig.7 (a)). The dark point in Fig.7 (b) is the gravity centre of the body. In every half period, 
one leg kicks off and two legs wave as insect-wave gait. Fig.7 (b) describes the walking 
sequence and 2D configuration of legs of the mixed gait. The legs' movement sequences are 
same as in other two gaits. The main walking direction is along the longitudinal axis of hip 
of leading leg, as shown in Fig.7. 
From Fig.5 to Fig.7, it is can be seen that, for a given robot, the insect wave gait has the same 
size of supporting area ΔABC as the mammal gait; on the other hand, the mixed gait has the 
largest supporting area. In order to make a detail analysis, Song, Waldron and Choi in [Song 
and Choi, 1990] and [Song and Waldron, 1989] proved that wave gait has the optimum 
stability among all hexapod periodic and regular gaits in the range of 1/2≤β<1. While this is 
true for rectangular hexapod robots, it does not hold for hexagonal ones. The statically 
stability margin (SSM) and main-direction stability margin (MDSM) of three statically stable 
and continuous tripod gaits are compared based on one hexagonal hexapod robot whose 
parameters are listed in table 1. The stability results are reported in table 2 and table 3 
respectively. In table 2 and table 3, the body heights, the distance from the bottom of the 
bodies to the ground, keep constant as length of calf (l3); each link is assumed as a line and 
each joint is assumed as a point. 

 
Table 1. Main physical parameters of hexapod robot example 

 
Table 2. MDSM of different tripod gaits (β = 1/2) 

 
Table 3. SSM of different tripod gaits (β = 1/2) 
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As shown in table 2, the mammal-kick gait has the biggest MDSM but it loses this advantage 
because of kinematics limitation; the insect-wave gait has the smallest possible stride 
(14.71cm for the example) along main walking direction whereas the other two gaits have 
the same and much bigger possible stride. Synthetically, the insect-mammal mixed gait is 
optimally stable for hexagonal hexapod robots when β=1/2 and has stability advantage over 
the other two gaits while turning because of the biggest SSM. 
 

 
Fig. 8. 60 degree turning with inset-wave gait  
 
Small angle turnings are easy for all three gaits. However, insect-wave gait needs special 
gaits to realize big-angle turning as stated in [Chu & Pang, 2002], [Wang, 2005] and [Zhang 
& Song, 1991], the same for mammal gait [Wang et al., 2007]. They have to stop and adjust 
legs at first for some big-angle turnings. Fig.8 shows examples of turning 60 degrees with 
insect or mammal gait. From the initial configuration in Fig.8 (a), the robot spends three 
steps to realize 60o turning. Quadrangles are supporting polygons. On the other hand, 
insect-mammal mixed gait can have big advantage on big-angle turning, especially at ±60 o, 
±120 o and 180 o. With insect-mammal mixed gait, the robot just needs to reselect the leading 
leg for turning at ±60 o, ±120 o and 180 o, plus adjustment of crab angle it can realize any 
angle turning without stopping. 
In the following Fig.9, Fig.10 and Fig.11, R and S denote revolute and spherical joint 
respectively; f, k, c and w denote foot, knee, coxa and waist, respectively. For instance, Rc 
specifies that the coxa is a revolute joint; Sf tells that between foot and ground, a virtual 
spherical joint is assumed. 

www.intechopen.com



Climbing and Walking Robots300

 

Fig. 9. Simplified structure with insect-wave gait  
 

 

Fig. 10. Simplified structure with mammal-kick tripod gait  
 

 

Fig. 11. Simplified structure with insect-mammal mixed tripod gait  
 
In the insect wave gait, the waist joints are the most active joints during walking, and each 
foot needs three DOFs. The connection between each foot and the ground can be considered 
as a spherical joint (Sf in Fig.9.). The similar as insect wave gait, in mixed gait. The 
connection between each foot and the ground can be considered as a spherical joint (Sf in 
Fig.11). From the simplified structure, the mammal gait is easy to control. However, all legs 
with insect-wave gait have the same trajectories. It is therefore easiest to control. Just in 
insect-mammal gait, legs have different trajectory, but symmetric legs still have same 
trajectories. 
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3.2 4+2 quadruped gait 
The rectangular hexapod robot has another type of gait, the "4+2" gait [Chu & Pang, 2002]. 
For this gait the legs are grouped into three groups. Every time there are four legs (two 
groups) standing on the ground to support the body, two other legs rise and walk ahead. In 
one gait period, there are three steps and the body moves only one step. The duty factor is 
2/3. The hexagonal six-legged robot also has this gait with same leg sequences as that of a 
rectangular hexapod. One example can be:  

1) Lifts leg 1 and leg 4, other legs support and push the body; 
2) Leg 2 and leg 5 swing forward, all others support and push the body; 
3) Leg 3 and leg 6 swing forward, the body is moved by others another step. 
4) repeat procedure from 1) to 3). 

This gait shows fault tolerant ability under certain conditions [Yang & Kim, 1998; Yang & 
Kim, 1999; Huang & Nonami, 2003; Chu & Pang, 2002], because three legs can support the 
body even if one supporting leg broken during walking. Chu and Pang had proved that the 
hexagonal robot by this gait has advantages compared with rectangular ones in stability, 
stride and turning ability, if the turning angle is within [-30 30] degrees. 

 
3.3 5 + 1 one by one gait 
The rectangular hexapod robot has another type of gait, the "4+2" gait [Chu & Pang, 2002]. 
For this gait the legs are grouped into three groups. Every time there are four legs (two 
groups) standing on the ground to support the body, two other legs rise and walk ahead. In 
one gait period, there are three steps and the body moves only one step. The duty factor is 
2/3. The hexagonal six-legged robot also has three types’ gaits with same leg sequences as 
that of a rectangular hexapod. 
The leg-sequence of one by one gait can by any order, but generally legs move one after 
another following a clockwise or anti-clockwise order. 

 
3.4 Free gait 
Free gait proposed by Kugushev and Jaroshevskij in 1975 is characterized as non-periodic, 
non-regular, non-symetric and terrain adaptive. In a free gait, the leg sequence (i.e., the 
order in which leg transferences are executed), footholds, and body motions are planned in 
a nonfixed, but flexible way as a function of the trajectory, the ground features, and the 
machine's state. It is more flexible and adaptive than periodic and regular gaits on 
complicated terrain. A large number of free gaits for quadruped and hexapod robots have 
been developed to date. For more information, we can refer to [Pal & Jayaraian, 1990; Porta 
& Celaya, 2004; Estremera & Gonzalez de Santos, 2003 and 2005]. 

 
4. Fault tolerant gait 

In arduous operating environments, robots may confront accidents and damage their legs; 
their legs may be dual-used as arms for some tasks, or some joints may suffer loss of control 
etc. In such cases, biped or quadruped robots would become statically unstable. However 
hexapods may still walk with static stable because their six legs provide redundancy. In this 
subsection we discuss these fault tolerant gaits. 
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4.1 Joint-lock  
In this case, Yang [Yang, 2003] has already proposed a discontinuous tripod gait for 
rectangular hexapod robots.  
However, with joint-lock a hexagonal hexapod may still maintain a continuous gait. The 
three possibilities for a single locked joint on one leg are discussed in the following.  

1) Waist-joint-lock. In this case, the faulty leg cannot move in a horizontal plane, but it 
can swing in a vertical plane. The insect wave gait is difficult for this situation; 
whereas the mammal gait is still available by adjusting the other legs in parallel with 
the faulty leg. Also the mixed gait is possible if we chose the broken leg as the leading 
leg or the leg opposite as healing leg.  

2) Knee or coax-joint-lock. For these two cases, the mammal gait and mixed gait are 
impossible to realize, but the insect gait is feasible, although not as efficient as before 
injury. If one whole leg is locked, the discontinuous tripod gait can be employed.  

 
4.2 Loss of one leg   
In the case of loss of one leg is due to fault or use for other tasks; two possibilities were 
considered in [Yang & Kim, 1998]. However, for symmetric hexagonal robot, there is only 
one case because the structure of every leg is the same and distributed evenly around the 
body. The 2+1+2 gait has same sequence as [Yang & Kim, 1998]. The difference is in the 
positions the leg. The legs of the gaits in [Yang & Kim, 1998] are overlapping. The 
symmetrical hexapod robot needs three steps to achieve this walk. During this procedure, 
the robot’s body moves two steps.  
 
4.3 Loss of two legs  
There are three cases where two legs are either faulty or being used for other tasks. The 
positions of these two unavailable legs may be opposite, adjacent or separated-by-one (two 
damaged separated by one normal leg). Some studies [Takahashi et al., 2000] have been 
done in the first case, but there is a lack of study on the other two cases. 

1) The opposite-legs case. Losing two opposite legs, for example, leg i and leg j the 
hexapod robot becomes a quadruped robot. It can walk with one of quadruped gaits, 
which have been widely studied. For example, the craw gait (Chen et al. 2006), the 
diagonal gait (Hirose & Matins, 1989), mammal-type “3+1”gait (Tsujita et al. 2001), 
“3+1”craw gait (Chen et al., 2006) which maintains static stability at each step, and 
the omni-directional updated quadruped free gait in [Estremara & Gonzalez de 
Santos, 2002; Estremara & Gonzalez de Santos, 2005]. 

2) The two-separated-by-one case and adjacent case. For these two cases the two 
unavailable legs are on the same side therefore it is almost impossible for a general 
rectangular hexapod robot to have statically stable locomotion. For a hexagonal robot 
the insect wave periodic gait is still available. The other four legs can be adjusted to 
suitable initial positions, as shown in Fig.12 for example. Fig.12 (a) is the case of 
losing leg 1 and leg 3. Fig.12 (b) shows the case where leg 1 and leg 2 are unavailable. 
Following the four-leg periodic gait sequence, robots can realize statically stable 
walking. The crab angle will be different. For example, if leg 1 and leg 2 or leg 1 and 
leg 3 are unusable, the crab angle will be -π/6. Fig. 13 lists the leg sequences for a 
separated-by-one fault tolerant gait. At each instant, there are three or four legs 
supporting the body. The mass centre is inside the supporting area. 
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For the adjacent case, the leg sequence is similar to the separated-by-one case after adjusting 
to suitable initial positions.  
 

 
(a) Separated-by-one case (leg 1 and leg 3 are lost)  (b) Adjacent case (leg 1 and leg 2 are 
lost)  

Fig. 12 Initial state of four legs 
 
To realize statically stable walking, there are several requirements in Fig.13: 

     1) ; 
     2) L≥Rcos(π/3); 

     3) , the body stride;  

     4)       ; 

     5)   
 
The rules for the quadruped insect wave gait are:  

1) Rear legs (leg 4 and leg 5 in Fig.13) must not cross the central line (the point-dashed 
line in Fig.6-16) while moving ahead, so that the mass centre will also be in the 
subsequent supporting area.  

2) Front legs (leg 1 and leg 2 in Fig.13) should not go back to the central line while the 
body (centre of mass) is moving ahead. 

3) The stride of the swing legs is twice that of the body. 
 

P4 

P3 θ3 

A 

B 

C 

D 

E 

F 

G 

H 

O

O
G

H

L4 

L5 

L6 

L3 

θ4 

P6 

θ6 

P5 
θ5 

L4 

L5 
L6 

L2 

A 

B 

C 

D 

E 

F 

G 

H 

O

O
G

H

P6 

θ6 

P5 
θ5 

θ4 

θ2 

P2 

www.intechopen.com



Climbing and Walking Robots304

 
(a) Swing rear right leg, leg 5        (b) Swing front right leg, leg6 

    Supporting area is △EFH         Supporting area is △EFG’’ 

 
(c) Move body                             (d) Swing rear left leg, leg4 

        Supporting area is □EFG’’H’’        Supporting area is △FG’’H’’ 

 
(e) Swing front left leg, leg2        (f) Move body again 

  Supporting area is △E’’ G’’H’’       Supporting area is □E’’ F’’G’’H’’ 

Fig. 13. Leg sequences of separated-by-one case fault tolerant gait while two legs are broken 
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From the initial configuration of mixed gait to the fault tolerant initial state (Fig.12), we can 
adjust the legs according to following procedures (Equation 1 to Equation 8). 
If two faults occur on two legs that separated by one, for example leg 1 and leg 3, the 
following procedure can be used to move the other legs from the original initial-positions to 
the fault tolerant initial-positions: 

Leg 2 moves from P2 to F with stride   (Equation (1)) and rotates by angle θ2 (Equation 

(2)) ; Leg 4 moves from P4 to E with stride   (Equation (3)) and rotates by angle θ4 

(Equation (4)) ; Leg 5 moves from P5 to G with stride   (Equation (5)) and rotates by 

angle θ5 (Equation (6)); Leg 6 moves from P6 to F with stride   (Equation (7)) and rotates 
by angle θ6 (Equation (8)). 
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For the adjacent-legs case, the only difference is for the leg between the two faulty legs, leg 3 
for example. The foot tip of leg 3 will move from P3 to F with the following stride and 
rotation angle, 
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D. Loss of more than two legs 
If more than two legs are lost, the robot is unable to maintain static stability while walking. 
Dynamic gaits may still be possible, such as the three-leg dynamics gait of Lee and Hirose, 
2000. These will not be discussed further here. 

 
5. Conclusion 

In this chapter, the locomotion of symmetric hexapods has been studied in detail. We have 
presented a comprehensive study of hexagonal hexapod gaits including normal and fault 
tolerant ones. Gaits of rectangular and hexagonal six-legged robots have been compared 
from several aspects: stability, fault tolerance, terrain adaptability and walking ability. To 
facilitate simulations and experiments we have provided integrated kinematics of swinging 
and supporting legs for continuous gaits.  
Hexagonal hexapod robots have been shown to be more flexible than rectangular ones. 
Moreover, hexagonal hexapods have many feasible gaits. In addition to the well-know 
insect gait and mammal gait, a new mixed gait for hexagonal six-legged robots has been 
proposed in this chapter which entails some features of both insect and mammal gaits. 
Except classified by legs movement as mentioned above, hexapod robots gaits are 
categorized according to the number of supporting legs during walking, as 3+3 tripod, 4+2 
fault tolerant quadruped, and 5+1 one by one gaits. On account to the introduction of mixed 
gait, each numbered gait has one more form. Among three tripod-gait forms, the most stable 
is the mixed one. The mammal gait can reach the longest stride; whereas the continuous 
insect gait has the shortest maximum stride and poorest stability.  
Thanks to their six legs, hexapod robots have redundancy and fault tolerance. Gaits where 
one leg is lost or two opposite legs are lost have been discussed in recent times. In this 
chapter we have tackled also the cases in which two adjacent legs or two separated by a 
normal leg are damaged. Algorithms for realizing these two fault-tolerant gaits have been 
detailed and validated with simulations. 
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