Summary of the major findings in this chapter.
\r\n\t
",isbn:"978-1-83969-648-0",printIsbn:"978-1-83969-647-3",pdfIsbn:"978-1-83969-649-7",doi:null,price:0,priceEur:0,priceUsd:0,slug:null,numberOfPages:0,isOpenForSubmission:!0,hash:"b05fa99bbd2c8e02d48dc740c0efbf9c",bookSignature:"Dr. Amjad Zaki Almusaed",publishedDate:null,coverURL:"https://cdn.intechopen.com/books/images_new/10986.jpg",keywords:"Environmental Housing, Ecological Housing, Climate Change and Housing, Low Energy Housing Design, Recycling Materials, Human Sheltering, Human Mobility, Accessibility and Housing Units, Economic Theory and Housing, Land Administration in Habitat Zone, Decentralization in Housing Area, Private Housing",numberOfDownloads:null,numberOfWosCitations:0,numberOfCrossrefCitations:null,numberOfDimensionsCitations:null,numberOfTotalCitations:null,isAvailableForWebshopOrdering:!0,dateEndFirstStepPublish:"March 5th 2021",dateEndSecondStepPublish:"April 2nd 2021",dateEndThirdStepPublish:"June 1st 2021",dateEndFourthStepPublish:"August 20th 2021",dateEndFifthStepPublish:"October 19th 2021",remainingDaysToSecondStep:"12 days",secondStepPassed:!0,currentStepOfPublishingProcess:3,editedByType:null,kuFlag:!1,biosketch:"Dr. Almusaed is focused on sustainability in architecture and urban planning and design. He has carried out a great deal of research and technical survey work as well as several studies in the aforementioned areas with over 170 published international academic works in different languages.",coeditorOneBiosketch:null,coeditorTwoBiosketch:null,coeditorThreeBiosketch:null,coeditorFourBiosketch:null,coeditorFiveBiosketch:null,editors:[{id:"110471",title:"Dr.",name:"Amjad",middleName:"Zaki",surname:"Almusaed",slug:"amjad-almusaed",fullName:"Amjad Almusaed",profilePictureURL:"https://mts.intechopen.com/storage/users/110471/images/system/110471.png",biography:"Amjad Almusaed was born in 1967. He holds a PhD degree in Architecture (Environmental Design) from Ion Mincu University, Bucharest, Romania. He completed postdoctoral research in 2004 on sustainable and bioclimatic houses, from the School of Architecture in Aarhus, Denmark. His research expertise is sustainability in architecture and urban planning and design. He has carried out a great deal of research and technical survey work, and has performed several studies in the above-mentioned areas. He has edited many international books and is an active member of many worldwide architectural associations. He has published more than 170 international academic works (papers, research, books, and book chapters) in different languages.",institutionString:"Jönköping University",position:null,outsideEditionCount:0,totalCites:0,totalAuthoredChapters:"8",totalChapterViews:"0",totalEditedBooks:"9",institution:{name:"Jönköping University",institutionURL:null,country:{name:"Sweden"}}}],coeditorOne:null,coeditorTwo:null,coeditorThree:null,coeditorFour:null,coeditorFive:null,topics:[{id:"11",title:"Engineering",slug:"engineering"}],chapters:null,productType:{id:"1",title:"Edited Volume",chapterContentType:"chapter",authoredCaption:"Edited by"},personalPublishingAssistant:{id:"259492",firstName:"Sara",lastName:"Gojević-Zrnić",middleName:null,title:"Mrs.",imageUrl:"https://mts.intechopen.com/storage/users/259492/images/7469_n.png",email:"sara.p@intechopen.com",biography:"As an Author Service Manager my responsibilities include monitoring and facilitating all publishing activities for authors and editors. From chapter submission and review, to approval and revision, copyediting and design, until final publication, I work closely with authors and editors to ensure a simple and easy publishing process. I maintain constant and effective communication with authors, editors and reviewers, which allows for a level of personal support that enables contributors to fully commit and concentrate on the chapters they are writing, editing, or reviewing. I assist authors in the preparation of their full chapter submissions and track important deadlines and ensure they are met. I help to coordinate internal processes such as linguistic review, and monitor the technical aspects of the process. As an ASM I am also involved in the acquisition of editors. Whether that be identifying an exceptional author and proposing an editorship collaboration, or contacting researchers who would like the opportunity to work with IntechOpen, I establish and help manage author and editor acquisition and contact."}},relatedBooks:[{type:"book",id:"5289",title:"Landscape Ecology",subtitle:"The Influences of Land Use and Anthropogenic Impacts of Landscape Creation",isOpenForSubmission:!1,hash:"354db0cb765007d8e48728a1356f2b75",slug:"landscape-ecology-the-influences-of-land-use-and-anthropogenic-impacts-of-landscape-creation",bookSignature:"Amjad Almusaed",coverURL:"https://cdn.intechopen.com/books/images_new/5289.jpg",editedByType:"Edited by",editors:[{id:"110471",title:"Dr.",name:"Amjad",surname:"Almusaed",slug:"amjad-almusaed",fullName:"Amjad Almusaed"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"5124",title:"Insulation Materials in Context of Sustainability",subtitle:null,isOpenForSubmission:!1,hash:"ca203e467e6f6fc2ece46fab2da10bbc",slug:"insulation-materials-in-context-of-sustainability",bookSignature:"Amjad Almusaed and Asaad Almssad",coverURL:"https://cdn.intechopen.com/books/images_new/5124.jpg",editedByType:"Edited by",editors:[{id:"110471",title:"Dr.",name:"Amjad",surname:"Almusaed",slug:"amjad-almusaed",fullName:"Amjad Almusaed"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"6066",title:"Landscape Architecture",subtitle:"The Sense of Places, Models and Applications",isOpenForSubmission:!1,hash:"fd4ff3f5b34fb2ee8089dc8da74a843a",slug:"landscape-architecture-the-sense-of-places-models-and-applications",bookSignature:"Amjad Almusaed",coverURL:"https://cdn.intechopen.com/books/images_new/6066.jpg",editedByType:"Edited by",editors:[{id:"110471",title:"Dr.",name:"Amjad",surname:"Almusaed",slug:"amjad-almusaed",fullName:"Amjad Almusaed"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"7205",title:"Housing",subtitle:null,isOpenForSubmission:!1,hash:"efb431be41bf8bf41facd7b4a183225e",slug:"housing",bookSignature:"Amjad Almusaed and Asaad Almssad",coverURL:"https://cdn.intechopen.com/books/images_new/7205.jpg",editedByType:"Edited by",editors:[{id:"110471",title:"Dr.",name:"Amjad",surname:"Almusaed",slug:"amjad-almusaed",fullName:"Amjad Almusaed"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"6378",title:"Sustainable Buildings",subtitle:"Interaction Between a Holistic Conceptual Act and Materials Properties",isOpenForSubmission:!1,hash:"1bc977aee58593c6aeecb1941cae1a0e",slug:"sustainable-buildings-interaction-between-a-holistic-conceptual-act-and-materials-properties",bookSignature:"Amjad Almusaed and Asaad Almssad",coverURL:"https://cdn.intechopen.com/books/images_new/6378.jpg",editedByType:"Edited by",editors:[{id:"110471",title:"Dr.",name:"Amjad",surname:"Almusaed",slug:"amjad-almusaed",fullName:"Amjad Almusaed"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"2005",title:"Effective Thermal Insulation",subtitle:"The Operative Factor of a Passive Building Model",isOpenForSubmission:!1,hash:"c7c6c5a9dfad00a32efaa72b9f163e71",slug:"effective-thermal-insulation-the-operative-factor-of-a-passive-building-model",bookSignature:"Amjad Almusaed",coverURL:"https://cdn.intechopen.com/books/images_new/2005.jpg",editedByType:"Edited by",editors:[{id:"110471",title:"Dr.",name:"Amjad",surname:"Almusaed",slug:"amjad-almusaed",fullName:"Amjad Almusaed"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"5889",title:"Grasses",subtitle:"Benefits, Diversities and Functional Roles",isOpenForSubmission:!1,hash:"605047fa783d21860951085f83b84f47",slug:"grasses-benefits-diversities-and-functional-roles",bookSignature:"Amjad Almusaed and Sammera Mohamed Salih Al-Samaraee",coverURL:"https://cdn.intechopen.com/books/images_new/5889.jpg",editedByType:"Edited by",editors:[{id:"110471",title:"Dr.",name:"Amjad",surname:"Almusaed",slug:"amjad-almusaed",fullName:"Amjad Almusaed"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"6882",title:"Sustainable Cities",subtitle:"Authenticity, Ambition and Dream",isOpenForSubmission:!1,hash:"ba808740ddb346ea58d759f6570c8c6d",slug:"sustainable-cities-authenticity-ambition-and-dream",bookSignature:"Amjad Almusaed and Asaad Almssad",coverURL:"https://cdn.intechopen.com/books/images_new/6882.jpg",editedByType:"Edited by",editors:[{id:"110471",title:"Dr.",name:"Amjad",surname:"Almusaed",slug:"amjad-almusaed",fullName:"Amjad Almusaed"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"7831",title:"Sustainability in Urban Planning and Design",subtitle:null,isOpenForSubmission:!1,hash:"c924420492c8c2c9751e178d025f4066",slug:"sustainability-in-urban-planning-and-design",bookSignature:"Amjad Almusaed, Asaad Almssad and Linh Truong - Hong",coverURL:"https://cdn.intechopen.com/books/images_new/7831.jpg",editedByType:"Edited by",editors:[{id:"110471",title:"Dr.",name:"Amjad",surname:"Almusaed",slug:"amjad-almusaed",fullName:"Amjad Almusaed"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"1591",title:"Infrared Spectroscopy",subtitle:"Materials Science, Engineering and Technology",isOpenForSubmission:!1,hash:"99b4b7b71a8caeb693ed762b40b017f4",slug:"infrared-spectroscopy-materials-science-engineering-and-technology",bookSignature:"Theophile Theophanides",coverURL:"https://cdn.intechopen.com/books/images_new/1591.jpg",editedByType:"Edited by",editors:[{id:"37194",title:"Dr.",name:"Theophanides",surname:"Theophile",slug:"theophanides-theophile",fullName:"Theophanides Theophile"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}}]},chapter:{item:{type:"chapter",id:"68087",title:"Quantitative Analysis of Activity Patterns in the Muscles of Mastication and Deglutition",doi:"10.5772/intechopen.88108",slug:"quantitative-analysis-of-activity-patterns-in-the-muscles-of-mastication-and-deglutition",body:'\nMore than two decades ago, a simple but fundamental research question about evaluation of EMG data arose. Shouldn’t two or more EMG bursts with similar amplitudes and duration of activity but visibly different activity patterns be expected to encode different functional meanings? At that time, however, such EMG bursts were generally regarded as the same from a quantitative aspect, namely, the activity patterns were ignored in the evaluation. I realized that the situation was mainly caused by the lack of a suitable and specific parameter for the evaluation, although some researchers used the term, activity patterns, differently or (maybe) inappropriately. This is the reason why I intended to newly develop a parameter for quantitative evaluation of activity patterns of EMGs, which is introduced in this chapter.
\nMastication is one of the movements essential for the survival of mammals, including humans, and the reciprocal activities of the jaw-closing and jaw-opening muscles are among the prominent features of the movement. The Mass, innervated by motoneurons of the trigeminal nerve and one of the major jaw-closing muscles, works to crush and grind the food ingested into the mouth during natural mastication. The digastric muscle is composed of the anterior and posterior bellies that are innervated by motoneurons of the trigeminal and facial nerves, respectively. This muscle is one of the SH muscles that are part of the major jaw-opening muscles. Amplitudes and active durations of the jaw-closing and jaw-opening muscles change moment by moment both reflexively and voluntarily in accordance with physical and chemical conditions of the chewing food (bolus) in the mouth [1]. Mastication is performed not only by the jaw but also by the tongue and its related muscles as well. Basically, the jaw-closing muscles are coordinated with the tongue retractors during natural chewing, whereas the jaw-opening muscles are coordinated with the tongue protractors [1]. These and other tongue muscles—all but the palatoglossus—are innervated by the XII motoneurons [2].
\nDeglutition followed by mastication is also one of the essential movements for survival. A previous study [3] revealed that healthy Japanese adults swallow, on average, 585 (range, 203 to 1008) times a day. Swallowing is a complicated and coordinated movement performed by approximately 22 muscles [4]. The SH muscles are innervated by three pairs of cranial nerves (V, VII, and XII) and are composed of eight muscles: digastric, geniohyoid, genioglossus, hyoglossus, mylohyoid, palatoglossus, styloglossus, and stylohyoid. Conventionally, the sequence of deglutition is classified as the oral, pharyngeal, and esophageal stages. The SH muscles are among the major components of the muscles especially related to the pharyngeal stage of deglutition. Pharyngeal swallowing is a highly automated or a kind of “stereotyped” movement [5]; therefore, once the movement begins, a series of muscle excitations should occur at a fixed order. However, swallowing is affected by subjective factors, such as age, and by objective factors, such as volume of foods [6].
\nThe sensory systems in the oropharyngeal and laryngeal regions provide critical cues for reflexive and voluntary regulations of masticatory and deglutition movements. These regions have four groups of sensory receptors: mechanoreceptors, thermal (temperature) receptors, chemical receptors, and nociceptors [5]. All except nociceptors are involved in the processes discussed in this chapter. Each of these three sensory receptors has different transduction mechanisms, but once they are excited by sensory stimuli, identical action potentials are conveyed from these sensory receptors to the central nervous system through four pairs of cranial nerves: trigeminal (V), facial (VII), glossopharyngeal (IX), and vagus (X) nerves [5]. The chorda tympani nerve is a sensory (taste) branch of the facial nerve, and the superior laryngeal nerve is a sensory branch of the vagus nerve. Many previous studies have documented that the chemoreceptors in the oropharyngeal and laryngeal regions and the neurons in the central nervous system driven by the chemoreceptors often respond not only to taste but also to mechanical or thermal stimuli or both (i.e., multiple sensitivity of receptors and neurons). For example, an electrophysiological study in rats showed that 62.3% of 169 taste neurons in the nucleus of the solitary tract (the primary taste nucleus), which connected with the neurons in the parabrachial nucleus (the secondary taste nucleus), were excited by mechanical or thermal stimuli (or both) as well as by chemical (taste) stimuli applied to the oral region [7]. This multiple sensitivity is characteristic of the chorda tympani [8], parabrachial nucleus [9], thalamic [10], and cortical neurons [11].
\nA chewing sequence is composed of a series of several bursts of masseteric activities, and each burst usually has a different amplitude and active duration. Figure 1 depicts sample data of masseteric activity, which were recorded during the chewing of a pineapple-flavored gummy candy (GC) by a healthy young adult. The raw masseteric EMG is elicited by contraction of the Mass, and the height of the integrated EMG reflects firing rates of the muscle. The raw masseteric EMG bursts appear periodically during the jaw-closing phase and are silent during the jaw-opening phase, although the active duration of masseteric activity does not always exactly match with the jaw-closing phase [1]. The firing rates of the masseteric EMG in Figure 1 gradually increased, reached a peak of approximately one every 0.3 s after the beginning of firing, and diminished rather rapidly; therefore, the individual raw masseteric EMG recordings looked like spindles. Moreover, the integrated masseteric EMG shows that the height of the peaks, as well as the length of active duration, differed among the three bursts: The peak height of the integrated EMG of the third burst is 33% larger than that of the first, whereas the active duration of the third burst was 42% shorter than the first.
\nSample data of raw and integrated Mass activity during chewing of a gummy candy. Three successive bursts in an electromyogram of the Mass, recorded during natural chewing of a pineapple-flavored gummy candy. Percentages in amplitudes and active durations of the second and third bursts are shown in reference to those of the first burst. Vertical dotted lines indicate the beginnings and ends of activity (bursts) of the electromyograms. Scales for the vertical axis are omitted for clarity. Raw Mass. EMG: raw masseteric electromyogram; Int. Mass. EMG: integrated masseteric electromyogram.
The term “pattern” is somewhat confusing because changes in amplitudes and active durations of muscle activity are often difficult to interpret. In the majority of previous studies, the term reflects a more comprehensive concept than in my study. For example, in a previous study [12], the authors recorded masseteric activity during the chewing of various foods. The behavior was classified into five subgroups with a cluster analysis technique, mainly by chewing time and muscle work rate. Masseteric EMGs of the same activity (analogous masseteric EMGs) with different amplitudes and active durations must have similar appearances or the same changes in percentages, but I believe that analogous bursts should be regarded as having the same pattern. In this [12] and other studies [13, 14, 15], the authors evaluated the patterns of masticatory muscle activity according to the amplitude and duration parameters or their derivatives for the individual sequences. In contrast to these previous studies, my colleagues and I used specific parameters, T50 and D50 values (described later), to evaluate individual chewing bursts in standardized amplitude and duration scales. It is necessary to standardize both the amplitude and active duration to avoid such confusion and to compare their pure activity patterns. According to our method, analogous EMG bursts are judged to have the same activity patterns even if there are large differences in amplitudes, active durations, and derivatives among the EMG bursts.
\n\nFigure 2 further clarifies the reason why a specific parameter is needed to analyze activity patterns. The masseteric EMG on the left side was recorded during chewing, and the EMG on the right side was digitally produced by reversing the time sequence of the EMG on the left side. Consequently, both heights and active durations of the EMGs should be completely identical because the original data were the same. However, this figure shows that the masseteric activity is weaker during the initial stage and stronger during the last stage on the left side than on the right side. In the other words, these EMGs show different activity patterns: The left one shows a firing pattern of increments, and the right one shows a firing pattern of decrements. According to the TP method (see “Development and verification of a TP method” section), these two firing patterns are quantified as clearly different values: For the incrementing firing pattern, the T50 value is 0.579, whereas for the decrementing pattern, the T50 value is 0.423. These results suggest that the strength of masseteric contraction depends on the stages (e.g., initial, middle, and last) of the chewing burst. Masseter contraction during natural chewing, not clenching, generates force to break down the food between the teeth. Therefore, chewing of different sample foods can alter firing sequences of the Mass. It is very difficult to appropriately interpret the sequences only by the changes in amplitudes and active durations of the Mass. This is why a specific parameter, TP value, is needed to evaluate muscle activity patterns; TP values can reveal differences in the activity patterns of individual bursts among various foods.
\nComparison of two EMGs with identical amplitude and active duration. The EMG on the left is the same as the second one in
The outlines of the standardization and calculation of TP values are as follows (Figure 3): (1) Individual active durations of muscle bursts of an EMG were set to 1.0 to standardize the durations; (2) the EMGs were cumulatively integrated from the beginning to the end of the duration; (3) the final value of the cumulative integration was set at 100%; (4) the 100% value was divided into 4, 5, or 10 equal sections (i.e., each section contained 25%, 20%, or 10% of the final value, respectively); (5) the standardized durations corresponding to individual 25%, 20%, or 10% activity sections were determined; and (6) the intervals for the individual sections were successively named in the TP format (from T25 to T100, from T20 to T100, or from T10 to T100, respectively). The use of any TP value basically depended on the precision of data analysis: A T10 series was more suitable for a more precise analysis of activity patterns than were the T20 and T25 series. According to this simple method, each TP value indicated a relative location of the EMG on a standardized time scale that was free of changes in amplitudes and active durations; for example, a T50 value indicated the standardized time for half of the final cumulative integrated EMG, and the T100 value was, by definition, always 1.0.
\nCalculation of TP values from raw and cumulative Mass. EMG. The raw masseteric EMGs are identical to those in
The TP method was applied to the data in Figure 1, and three TP (T20, T50, and T80) values were calculated for the data (Figure 3). In this example, a T50 value is used instead of T40 and T60 values just for the sake of convenience. If the Mass constantly fired during chewing through the active duration, then the three TP values should be 0.200 (for T20), 0.500 (for T50), and 0.800 (for T80) according to the definition of the TP method. In general, lower TP values indicated stronger firing than the constant firing, although larger TP values indicate weaker firing, as described later [16]. Accordingly, the calculated three T50 values (0.614, 0.618, and 0.591) in Figure 3 suggest that the activity pattern of the first burst is similar to that of the second one but not to that of the third one. However, some people may disagree with this suggestion of the T50 values. Contrary to the T50 values, the three T20 values calculated—0.436, 0.382, and 0.369—suggest that the activity pattern of the second burst is similar to that of the third one but not to that of the first one. Furthermore, the three T80 values calculated—0.827, 0.752, and 0.713—suggest that the activity patterns differ among the three bursts. Thus, sometimes at least three TP values (e.g., T20, T50, and T80) may be needed in order to understand activity patterns appropriately.
\nThe TP method was verified mathematically by a computer simulation, in which the inverse Gaussian distribution was used. In the computer simulation, three EMG models (
In this subsection, several application samples of the TP method and its derivatives are introduced. Table 1 summarizes the major findings that are presented.
\nTarget | \nParameter | \nFood factors | \nHuman factors | \n|||
---|---|---|---|---|---|---|
Taste (chemical stimuli) | \nTexture and shape (physical stimuli) | \nAging | \nBody position | \n|||
Five basic taste qualities | \nUmami | \n|||||
Suprahyoid (SH) activity pattern during swallowing | \nTP value | \nSourness and bitterness in sample foods affected (see 3.1.1) | \nHigher concentrations of umami substances weakly affected (see 3.1.2) | \nTextural properties of sample foods partly affected (see 3.2.2) | \n— | \nBody position did not affect but did affect tongue activity pattern (see 3.3) | \n
InP value | \n— | \nHigher concentrations of umami substances weakly affected (see 3.1.2) | \n— | \nAged group differed from young and middle-aged groups (see 3.2.1) | \n— | \n|
Masseteric (Mass) activity pattern during chewing | \nTP value | \nSweetness in sample foods affected (see 3.4) | \n— | \nAdvance of chewing sequences affected (see 3.5.1 and 3.5.2) | \n— | \n— | \n
Summary of the major findings in this chapter.
Numbers in parentheses indicate subsection numbers of ‘3. Application samples of the TP methods and its derivatives. InP values are calculated by subtracting the preceding TP-10 values (in 10 equally divided sections) from TP (see the text for details).
Ten healthy young volunteers (five males and five females) were recruited as participants for the experiment. Each participant was recorded a SH surface EMG during swallowing of sample foods. A starch-based thickening agent, Mousse-up (MU, Nisshin Science, Yokohama, Japan), developed especially for dysphagic patients, was used as a basic material for the sample food. In this study, MU was dissolved in distilled water with taste substances for the five basic qualities (sweet, salty, sour, bitter, and umami); the tasteless sample food was prepared by dissolving MU in distilled water only. The used five taste substances and their concentrations were as follows: 0.5 M of sucrose (SUC) for sweet tastes, 0.5 M of sodium chloride (NaCl) for salty tastes, 0.1 M of hydrochloric acid (HCl) for sour tastes, 0.0001 M of quinine hydrochloride (QHCl) for bitter tastes, and 0.02 M of monosodium glutamate (MSG) for umami tastes. Each participant was seated on a chair comfortably; approximately 8 g of one of the six sample foods (five with tastes and one without taste) at room temperature was placed randomly on the tongue (approximately 25°C), and participants were instructed to swallow the sample in one gulp. Each trial was followed by a rinse of the mouth with a sufficient amount of tap water. Occurrence of swallowing was monitored with a concomitant record of laryngeal movement. Two sessions were repeated for each participant, and the two sessions were separated by at least 1 week.
\nThe six averages of calculated T50 values ranged from 0.498 ± 0.047 (mean ± standard deviation; for a sour sample food) to 0.572 ± 0.070 (for a tasteless sample food) in the first session and from 0.540 ± 0.082 (for a bitter sample food) to 0.571 ± 0.073 (for a sweet sample food) in the second session. The average T50 value for the sour sample food was close to 0.500, which was expected for half of the final cumulatively integrated SH EMG on the standardized time scale. In contrast, the average T50 value in the tasteless sample food clearly exceeded 0.500. The average T50 values imply that the SH muscles produced a spindle-shaped (or symmetric) firing pattern with the sour food and an incrementing firing pattern to the tasteless one (see “Necessity of a new parameter for activity pattern” section, especially Figure 1, and see Figure 2 in [16]). In addition to the T50 values, the subjective difficulty during swallowing was examined with a psychometric method used in a previous study [17]. The examination revealed that the sour and bitter sample foods increased the subjective difficulty of swallowing. The SH activity patterns evoked by the sour and bitter samples are congruent with the previous finding of subjective difficulty associated with swallowing of those foods [17].
\nGustatory signals from foods were reported in humans and rats to provoke somatic responses in the trigeminal [18, 19, 20], facial [21], and hypoglossal nerves [22, 23, 24, 25]. Receptors of four pairs of gustatory nerves can be responsible for gustation in the oral cavity, pharynx, and possibly larynx: the chorda tympani, glossopharyngeal, superior laryngeal nerves (see “Neural basis of mastication and deglutition” section), and, on the soft palate, the superficial petrosal nerve. In this study, the ingested foods probably stimulated the mucosae of the areas innervated by these cranial nerves during swallowing; consequently, gustatory signals arising from all of these nerves were likely to be involved in the findings. Gustatory signals from the glossopharyngeal and superior laryngeal nerve affect swallowing, especially the threshold for elicitation of swallowing [26, 27, 28]. Although animal experiments have revealed peripheral and central sensory mechanisms of the glossopharyngeal and superior laryngeal nerves (e.g., [29, 30, 31, 32]), no studies have established whether gustatory signals from the two nerves contribute to sensory evaluation. In a previous study, the effect of taste and palatability of solutions in two (moderate and high) concentrations on peak lingual swallowing pressures was examined in 10 healthy adult participants [33]. Moderate SUC, high NaCl, and high citric acid levels elicited higher peak lingual swallowing pressures than did water, whereas palatability did not. The previous results and the findings of this study may extend the knowledge about the effects of taste on swallowing movement.
\nEight healthy young volunteers (three males and five females) were recruited as participants for this study. Sample foods consisted of MU dissolved in a mixture of MSG and IMP (disodium inosine-5′-monophosphate), in MSG alone, and in IMP alone. The procedures were identical to those in the first study (see “Five basic taste qualities” section for details). Analysis of TP values revealed no synergistic effects on SH EMG activity patterns during pharyngeal swallowing of umami foods. The SH activity patterns were consistent with those in the sensory evaluation of the subjective difficulty of swallowing, which was examined in the same participants. The consistency between SH EMG activity patterns and sensory evaluations of swallowing implies that both methods of data analyses did not discriminate between unitary umami foods (MU dissolved in MSG only or IMP only) and binary umami foods (MU dissolved in both MSG and IMP) or between non-umami foods (MU dissolved in SUC and in NaCl) and tasteless (MU dissolved in distilled water) foods. In view of the findings of a previous study [34], I can conclude that the TP method differentiates SH EMG activity patterns measured during pharyngeal swallowing of sour and bitter foods from those measured during swallowing of a tasteless food, although the method does not differentiate the activity patterns involved with sweet, salty, and umami foods (in both unitary and binary mixing solutions).
\nBoth TP and InP values were calculated to analyze activity patterns of the SH EMGs during pharyngeal swallowing of samples with MU dissolved in unitary (either MSG or IMP) and binary (both MSG and IMP) umami substances at low and high concentrations as well as sweet and salty sample foods. A newly developed parameter, the InP value, was calculated by subtracting the preceding TP-10 values (in 10 equally divided sections) from TP to improve precision in detecting differences. SH EMG activity patterns measured during pharyngeal swallowing differed between the low- and high-concentration umami samples, both unitary (IMP alone) and binary (both MSG and IMP) mixtures. According to the definition of the TP method, smaller TP values on a standardized time scale imply early cumulative SH activity corresponding to the percentile points. Six deciles of TP values for low-concentration umami sample foods (four TP values from T50 to T80 in IMP sample foods and T10 and T30 in binary umami sample foods) were significantly smaller than those for higher concentration foods, which suggests that increased solvent concentrations affected activity patterns of the SH EMG during pharyngeal swallowing of the sample foods. Analysis of TP and InP values showed that SH activity patterns differed slightly between low and higher concentrations of unitary and binary umami sample foods (see Figure 3 in [35]) but those SH activity patterns measured during swallowing of umami sample foods did not differ from those measured during swallowing of sweet, salty, or tasteless sample foods.
\nSynergism is an important concept that is widely recognized in the psychology and physiology of taste and one of the characteristic functional features of umami substances. In synergism, mixing two or more different tastes greatly enhances the umami taste. Such combinations include MSG, IMP, and disodium 5′-guanylate [36, 37]. Gustatory signals evoked by ingested umami substances can modify not only feeding behaviors [38, 39, 40] but also visceral functions [41, 42]. This study is probably the first report to document changes in muscle activity patterns elicited by increasing concentrations of umami substances in foods. Although researchers previously reported changes in activity patterns of masticatory muscles during chewing sequences [18, 43, 44], they examined conventional parameters, such as the number of chewing cycles, amplitudes, and durations of muscle activity to estimate activity patterns. Therefore, in these previous studies, activity patterns were evaluated indirectly by measurement of changes in conventional parameters; in contrast, my colleagues and I directly examined activity patterns of the SH during pharyngeal swallowing by using the TP method. In this study, I analyzed increments of TP values (i.e., InP values) first, and some significant differences were found in umami sample foods. Significant differences in both InP values and TP values were detected only between low-concentration and high-concentration umami foods. This result suggests differential influences of umami taste in foods on activity patterns of the SH muscles during pharyngeal swallowing.
\nA total of 15 participants of both sexes were included in three participant groups: young adult (20 to 30 years old), middle-aged (40 to 50 years old), and elderly (60 to 70 years old). In each participant in the three groups, SH surface EMGs were recorded during swallowing of ordinary agar (OA) and gelatin samples that had textural properties. Both TP and InP values were calculated from the SH EMGs during swallowing. Statistical examination showed no significant differences in the average TP values among the three groups. In contrast, InP values—derived from TP values—in the elderly group differed in part from those of the other two groups for gelatin. This result suggests that (1) the overall activity pattern of the SH muscles is basically preserved in elderly people, but slight, partial changes occur with age, and (2) the TP method (InP values) is useful in detecting the differences, although the differences with age were slight and partial. It is necessary to carefully analyze the characteristics of chewing and swallowing functions of elderly people to respond to the demand for production of special foods adjusted to the needs of some elderly persons in an aging society. In this study, SH activity patterns in three groups of differing ages were compared to evaluate whether aging affects activity patterns of muscles related to swallowing.
\nThe analysis of data with InP values demonstrated a difference in SH activity patterns among the three groups during pharyngeal swallowing of gelatin. Rank correlation analyses revealed that the sequence of average InP values in the elderly group differed from the sequences in the young adult and middle-aged groups for gelatin but not for OA. These results suggest that the difference in InP values among the three groups (see Figure 3 in [45]) is due to interactions between the properties of gelatin and the ages of participants. As an earlier report showed [46], textural properties of gelatin and OA clearly differ, and the properties of gelatin may cause the difference observed in InP values. Because TP and InP values are by nature not influenced by either amplitude or duration of EMG bursts [34, 35, 47], the differences in peak amplitude and active duration of the SH EMG had no bearing on the difference found in InP values. The freedom from the amplitude and active duration should be an advantage of the TP method, and it allows the comparison of activity patterns in EMGs recorded in different trials and participants.
\nFive healthy young volunteers (two males and three females) were recruited as participants for this study. Three sample foods with MU in low concentrations (3.0%; 3.0MU), medium concentrations (6.0%; 6.0MU), and high concentrations (9.0%; 9.0MU) at room temperature (approximately 25°C) were used. Before these food samples were given to participants, three textural properties (hardness, adhesiveness, and cohesiveness) were measured by a texturometer. One of the sample foods was selected randomly and delivered to each participant. EMG electrodes were attached to the participant for SH activity, and the participant was seated on a chair and instructed to accept the sample food. Three TP values (T20, T50, and T80) were calculated and analyzed in this study. The average T50 value for 6.0MU was significantly larger than that for 3.0MU but not that for 9.0MU, whereas there was no difference in average T20 and T80 values between the three sample foods. The averages of SH durations and cumulative SH activity and the ratios between these two parameters were measured as well. The average SH duration for 9.0MU was longer than that for 3.0MU, but there were no significant differences in the cumulative SH EMG activity or in the ratios of the used sample foods.
\nThe hardness, adhesiveness, and cohesiveness values of the used three MU sample foods on average increased as the concentration of MU increased (see Figure 2 in [48]). The hardness of 6.0MU and 9.0MU was much larger than that of 3.0MU (about 350% and 450%, respectively). Similar large differences between 3.0MU and the other two were shown in the adhesiveness and cohesiveness as well, and statistical examinations demonstrated significant differences in these three textural parameters among the three samples of MU. Previous studies documented that increasing the hardness, viscosity, and volume of sample foods prolongs the durations of oral and pharyngeal swallowing (e.g., [49, 50]). Similarly, a videofluoroscopic study also documented that swallowing high-density barium, in comparison with low-density barium, prolongs the oral and pharyngeal transit times in healthy participants [49]. Moreover, an electromyographic and manometric study demonstrated that the average duration of the SH activity during the swallowing of high-density agar fluid was longer than that of low-density agar [34, 35, 47]. Consequently, I can conclude that increasing the textural properties of the sample foods is responsible for prolonging the duration of pharyngeal swallowing.
\nNine healthy young volunteers (six males and three females) participated in this study, and surface EMGs were recorded from the anterior tongue and SH muscles of each participant. Three sample foods with different concentrations (2.0MU, 5.7MU, and 9.1MU) of MU at the room temperature (approximately 25°C) were used. Each participant was positioned randomly for swallowing at one of the four angles: horizontal supine (0 degrees), 30 degrees inclined, 60 degrees inclined, and upright (90 degrees). The food sample was selected randomly among from the foods with three MU concentrations. Analysis of T50 values showed that the average T50 value of the activity patterns in the anterior tongue in the horizontal supine position was significantly higher than that in the upright position, but there were no significant differences in anterior tongue T50 values between the foods with the three concentrations. In contrast, analysis of SH T50 values showed that the average T50 value for 9.1MU was significantly higher than that of 2.0MU, but there were no significant differences in SH T50 values between the four body positions. The results indicated that anterior tongue activity pattern was altered from a decrementing firing pattern to an incrementing pattern by the shift from the upright position to the horizontal supine position, whereas SH activity pattern was altered from a decrementing firing pattern to an incrementing pattern by the shift from the low-concentration food to a high-concentration one.
\nAccording to the findings in this study, activity patterns of the anterior tongue and SH muscles are affected by both body positions and food properties. Figure 4 demonstrates SH activities during swallowing of two concentrations, 2.0MU and 9.1MU, at four body positions, horizontal supine (0 degrees), 30 degrees inclined, 60 degrees inclined, and upright (90 degrees), in a healthy young male participant. Visual observation of this figure suggests that activity patterns seem similar among the four body positions but different between the two sample foods. Actually, four T50 values calculated for the 2.0MU are 0.414 (for 0 degrees), 0.450 (for 30 degrees), 0.522 (60 degrees), and 0.462 (90 degrees), whereas those for the 9.1MU are 0.625 (for 0 degrees), 0.509 (for 30 degrees), 0.622 (60 degrees), and 0.618 (90 degrees). The averaged T50 value for the 2.0MU (0.508) tended to be smaller than that for the 9.1MU (0.607). Because in general a smaller TP value means relatively shorter time for the half of the integrated EMG and corresponds to a more active burst, the SH muscles demonstrated more activity in the first half of swallowing of the 2.0MU than that of the 9.1MU. Thus the T50 values calculated indicate that the two concentrations of the sample food affect activity patterns of the SH muscles during swallowing, but body positions do not. Precise analysis of the effects of body positions and thickener’s concentrations is discussed later, but swallowing movement is not constant among body positions. Besides, activity patterns of the tongue were analyzed in the article described next because it is widely accepted that the tongue, as well as the SH muscles, plays an important role in swallowing (e.g., [5]).
\nComparison of SH EMG among four body positions and between two concentrations of sample foods. The SH EMG and integrated SH EMG were recorded during swallowing of two sample foods with low (2.0%) and high (9.1%) concentrations of a thickening agent in four body positions: horizontal supine, 30 degrees inclined, 60 degrees inclined, and upright. Scales for the horizontal and vertical axes are omitted for clarity. Raw SH EMG: raw suprahyoid electromyogram; Int. SH EMG: integrated suprahyoid electromyogram.
According to the nature of the TP values [16], the obtained results physiologically implied that the anterior tongue EMG during swallowing expressed a decrementing firing pattern in the upright position (with smaller T50 values) and an incrementing firing pattern in the horizontal supine position (with larger T50 values). Previous papers [51, 52, 53] documented that the four body positions affected neither durational nor amplitude parameters of the anterior tongue EMG during swallowing; the body positions modified only the activity patterns of the anterior tongue. The tongue contains skeletal muscles without attachment to the bone, intrinsic muscles (longitudinal, transverse, and vertical muscle groups), other muscles attached to at least one bone, and extrinsic muscles (genioglossus, hyoglossus, and styloglossus) [54]. The electrodes were attached to the surface of the anterior tongue in this study [55], and so the EMG recording might have originated from the intrinsic muscles of the tongue, but it is very difficult to determine the origin precisely by the use of surface electrodes.
\nTen healthy young volunteers (seven males and three females) were recruited as participants in this study. A surface EMG was recorded from the SH of each participant, and three TP (T25, T50, and T75) values were calculated from the EMG data (200 TP values for each GC). Four fruit GCs (apple-, grape-, orange-, and pear-flavored) were used as sample foods. Four textural properties (hardness, adhesiveness, cohesiveness, and gumminess) and chemical components (sugars and organic acids) of the GCs were analyzed. The hierarchical cluster analysis was applied to the three TP values collected with each GC. The standardized Euclidean distance and the Ward linkage method were used for cluster amalgamation. Two predominant sugars, SUC and maltose, and four organic acids (citric, malic, phosphoric, and tartaric acids) were detected by the chemical analysis. In the cluster analysis, the T25 and T75 values were classified into four subclusters, and the T50 values were classified into three subclusters. In two T75 subclusters, the combined amounts of the two predominant sugars (SUC and maltose) differed significantly, but neither the four detected organic acids nor the textural properties differed. These findings indicate that SUC and maltose in GCs can affect masseteric activity patterns during chewing, particularly in the later stages, but their organic acids and textural properties do not have such an effect.
\nThe authors of this study used a hierarchical cluster analysis method, followed by an ANOVA, to evaluate the textural properties and chemical components of individual sample foods corresponding to the clustered data for the three TP values. The reason for the use of the analyses was that the same sample food item (1) could not be consumed by the participants, (2) could not be used for the textural measurements, and (3) could not be used for chemical analyses. Therefore, it was necessary to collect the textural properties and chemical components of each sample food separately, calculate their averages individually, and examine the correlations between TP values and these food properties. In the hierarchical cluster analysis with the standardized Euclidean distance and Ward linkage methods, TP values were fragmented according to their similarity and then grouped into three and four subclusters when the amalgamation level was established at 12% of the greatest distance in each dendrogram of T25, T50, and T75 values. ANOVA could be used to compare the subclusters in terms of their textural properties and chemical compositions because each TP value in the subclusters was associated with the specific textural properties and chemical compositions of each sample food.
\nIn previous physiological studies in humans [18, 19, 38, 56, 57] and rats [20], investigators analyzed masseteric activity during chewing of various foods, as well as ingestion of liquids, with different tastes and textures. Activity patterns were evaluated indirectly by visual observation or with the use of parameters such as the number of chews, chewing time, and mean voltage of the masseteric activity. In none of these studies did the investigators use specific parameters for the evaluations. The use of specific parameters, such as TP values, is essential for the precise evaluation of muscle activity patterns. In this study, the average T75 value measured during the chewing of the orange-flavored GC (0.725 ± 0.008) was lower than that measured during the chewing of the apple-flavored GC (0.767 ± 0.008). As mentioned in other application samples, these T75 values imply that chewing the orange-flavored GC evoked a decrementing firing pattern in the Mass, which is characterized by smaller TP values, and chewing the apple-flavored GC evoked an incrementing firing pattern, although the difference in the firing patterns is just “relative,” especially in such a small difference in TP values (0.725 versus 0.767).
\nEight healthy young volunteers (all males) were recruited as participants in this study. A surface EMG was recorded from the Mass of each participant, and nine TP values (from T10 to T90) were calculated from the EMG data. The two agars, OA and Ina-agar (IA), each at two concentrations, were used as sample foods: 0.5% OA (0.5OA), 1.5% OA (1.5OA), 2.5% IA (2.5IA), and 4.0% IA (4.0IA). The four sample foods differed partly in four textural properties: hardness, fracturability (defined as the force of the significant break in the curve on the first compression [bite]), adhesiveness, and cohesiveness. For example, the highest average hardness, 4.05 ± 0.08 (× 104 Pa), and the highest average adhesiveness, 65.3 ± 7.2 (J/m3), were observed in the 1.5OA, whereas the lowest average values, 0.94 ± 0.04 (× 104 Pa) and 2.9 ± 1.1 (J/m3), were observed in 2.5IA. One of the four sample foods, selected randomly, was delivered to each participant. In addition to the TP values, other four parameters (mastication time, number of chewing, cumulative masseteric activity, and amplitude rate) were analyzed. The average T50 values in the first cycles, for example, showed the lowest value for 2.5IA (0.515 ± 0.021) and highest value for 1.5OA (0.535 ± 0.025). Statistical analysis with Wilcoxon’s test revealed significant differences in TP values between the first and last cycles with 1.5OA (four of the nine TP deciles) and with 2.5IA (five). The average TP values of the first cycle tended to be larger, but not significantly so, than those of the last cycle (see Figure 3 in [47]).
\nOne of the major findings of this study was the significant differences in TP values detected between the first and last cycles. The finding suggests that sequential changes in masseteric activity patterns occur at the beginning and end of chewing. In previous studies, researchers reported changes in activity patterns of masticatory muscles during chewing sequences by measuring conventional parameters, such as the number of chewing cycles, and amplitude and duration of muscle activity (e.g., [18, 43, 44]). This study, in which the TP method was used, added new information about sequential changes in activity patterns of the Mass. The result indicates that the masseteric activity observed in chewing 2.5IA reached the half of the final cumulative masseteric activity slightly earlier than it did with the other three agars. However, the average TP values between the used four agars were not significantly different between the first chewing cycles or between last chewing cycles. The result suggests that hardness and other textural properties measured before chewing do not affect the masseteric activity patterns, at least in the first and last cycles of the chewing sequences.
\nTen healthy young volunteers (seven males and three females) were recruited as participants in this study. A surface EMG was recorded from the Mass of each participant, and three TP values (T25, T50, and T75) were calculated from the EMG data. Six foods (cheese, GC, marshmallow, prune, rice cracker, and sponge cake) were used as samples. These sample foods differed partly in three shape dimensions (length, width, and height) and in four textural properties (hardness, fracturability, adhesiveness, and cohesiveness). One of the six sample foods, selected randomly, was delivered to each participant. In addition to the three TP values, other three parameters (number of chewing, sequence length of chewing, and active duration of masseteric activity) were analyzed. The major results by linear model analysis in relation to textural properties of the sample foods showed that (1) the T25, T50, and T75 values were increased by 0.015, 0.020, and 0.021 points, respectively, by a 100-kPa increase in the hardness; (2) the T25 and T50 values were decreased by 0.061 and 0.070 points, respectively, by a 100-kPa increase in the fracturability; and (3) the number of chewing cycles was reduced by 8.8 cycles by a 100-kPa increase in the fracturability and 6.6 cycles by a 5.0-kJ/m3 increase in the adhesiveness. These findings suggest that the combination of several parameters can enhance discriminability between foods owing to differential sensitivity to food properties.
\nThe TP method was used to evaluate the masseteric activity patterns during the chewing of the six sample foods with different textural properties. Cheese differed from GC, marshmallow, rice cracker, and sponge cake in all three TP values (T25, T50, and T75; see Figure 4 in [58]). The differences between TP values raise a question: How can these results best be interpreted? One possible interpretation may be that there was relatively more activity during the early period of the masseteric EMG during the chewing of cheese than there was during the chewing of GC. The difference resulted in different cumulative masseteric EMG curves: The masseteric EMG curve for cheese exceeded the line that indicated theoretically tonic activity of the EMG throughout its active duration, whereas the masseteric EMG curve for GC fell below this line. The interpretation suggests that the masseteric EMG of cheese shows a decrementing firing pattern, which is characterized by smaller TP values, during the first chewing cycle in comparison with the masseteric EMGs of the GC, marshmallow, rice cracker, and sponge cake. However, it should be noted that there are no absolute criteria that allow an investigator to discriminate between incrementing and decrementing firing patterns of EMG activity. In other words, it is not possible to say that an EMG activity pattern is a decrementing one if the T25 value exceeds 0.300 points.
\nThe regression coefficients estimated in the linear model analysis for the three TP values were not particularly large with regard to the hardness of the sample food used. These regression coefficients were all statistically significant, but the result suggests that hardness only weakly contributes to the masseteric activity patterns evaluated by TP values. Ten deciles (e.g., T10 and T20 values) were used in previous studies [34, 35, 53, 59], and the use of 10 deciles may provide more information about EMG activity patterns than quartiles (T25, T50, T75 values). However, my colleagues and I found that it was often difficult to interpret the 10 decile results in this study. According to our experience of using both TP values in the previous and current studies, T50 values can be compared with each other. The T50 values differed slightly from those in the previous studies [34, 35, 53, 59], but statistical testing was not performed to determine the significance of these differences. It is difficult to know whether these differences reflect the difference in the muscles used (SH versus Mass) or the difference in functions examined (swallowing versus chewing). Suitability of using T50 values or other TP values may be dependent on the functions.
\nThe TP method can have at least three advantages. The first advantage is that the calculation from numerical data is simple and the digitization to numeral data from the original records is now common in most laboratories. The calculation itself is surely simple, but my colleagues and I needed to develop a special software for the calculation on a personal computer because of the huge amounts of data. Indeed, my colleagues and I had to handle 100,000 rows of a data sheet for numerical EMG data of only 10 s in the calculation of a TP value. The second advantage is the ease of comparison of EMG data with largely different amplitudes because of the nature of the TP method (see “Development and verification of a TP method” section): that is, the relative time corresponding to the final cumulated SH EMG is important, although the absolute amplitudes are not. The third advantage is the independence of analysis from active durations of the EMG in the TP method, as in the second advantage.
\nThe validity of the TP method was examined mathematically and theoretically by a computer simulation (see “Development and verification of a TP method” section) but was not experimentally. This is the first and major limitation of the TP method. It seems to be effective for the verification experimentally by kinesiological analysis of chewing and swallowing movements with concomitant recording of muscle activities. The analysis can provide useful information about functional meanings of differences in TP values among recorded EMG bursts. The second limitation is based on the nature of the TP method: TP values are calculated from a cumulative EMG, and so the calculated values are not independent in each burst. It is meaningless to compare two or more TP values (e.g., T20 and T40 values) of an EMG burst. However, the problem seems not to be serious, inasmuch as such a comparison rarely occurs and the same TP values (e.g., T50 and T´50) in different EMG bursts are usually compared for quantitative evaluation of two or more activity patterns of the EMG.
\nThe TP method is just a tool for analyzing muscle activity patterns and can provide quantitative information for the patterns but not any direct cues for the central nervous system mechanism responsible for the patterns. Thus it is necessary to conduct experiments in which data of both central and peripheral nervous system muscle activities are recorded. Concomitant analysis of these activities can be used to explore the central nervous mechanism, and the TP method should be useful for analysis of peripheral muscle activity. As shown previously (see “Application samples of the TP method”), the TP method is useful for evaluating activity patterns of EMGs quantitatively. The method is applicable to various EMG bursts with different amplitudes and active durations observed during mastication and deglutition. This chapter focused on these two functions only, but the TP method must be also applicable to muscle activities of other movements, such as respiration and locomotion, because these movements have neural mechanisms similar or common to those of mastication and deglutition (e.g., [60, 61, 62]).
\nAs summarized in Table 1, in this chapter I showed application samples that were related to chewing and swallowing functions in healthy participants. However, the TP method should be applicable to other cyclic functions, such as breathing, walking, and swimming. Besides, the TP method should also be applicable to wider research fields and clinical sites, especially as one of the diagnostic tools for patients with motor diseases. For example, disorders in the motor system may command abnormal signals to the target muscle(s), and activity patterns of the EMG may reflect the abnormal command signals.
\nActivity patterns of the Mass EMG during chewing and the SH EMG during swallowing were analyzed with a TP method. The TP method compared activity patterns of individual EMG bursts with different amplitudes and active durations on standardized time scales free from changes in the amplitudes and active durations. Five groups of application samples were introduced to compare the activity patterns of these EMGs during chewing and swallowing at different body positions of participants as well as by different tastes and textures of sample foods.
\nI deeply thank the following colleagues who kindly encourage me to continue the research: Drs. Ichiro Ashida, Hajime Iwamori, Takako Yamazaki, Naoko Ito, Shin-ya Kawakami (Department of Health and Nutrition, Niigata University of Health and Welfare), Satomi Miyaoka (Department of Mental Health Science, Graduate School of Rehabilitation, Niigata University of Rehabilitation), Yuko Tamaki (Department of Food Science, Otsuma Women’s University), and Daigo Inagaki (Inagaki Dental Clinic). The studies shown in this chapter were supported in part by Grants-in-Aid for Scientific Research from the Ministry of Education, Science and Culture of Japan (No. 19500667 and No. 22500740). I would like to thank Enago (www.enago.jp) for the English language review.
\nThe author reports no conflicts of interest. The author alone is responsible for the contents and writing of this book chapter.
The demand for electricity increases new ways of electrical generation are required that is both cleaner and safer. In Malaysia, research has shown that about 3.8% of the population reside below the poverty line. Most of these people are located in rural areas in Malaysia. The electricity coverage in Peninsular Malaysia is at 99.62%, while Sabah and Sarawak’s electrical coverage is around 79%. The challenge is to build a grid system through jungles and mountain. To add to that, building a grid system through these types of the area will also not be economic. A way to solve the problem would be through the implementation of Renewable Energy (RE) in these villages. The main source of Malaysia’s energy supplies is from Natural Gas, Hydro, Oil, RE and Coal. Among these five Energy Sources (ES), coal supplies the most energy in terms of electricity production at 26,177 GWh. The types of RE which were researched are Solar, Wind and Hydropower. Not all of these energies are widely used in Malaysia. Some Renewable Energy Sources (RES) are ideal because of the terrain or weather in Malaysia, while others are under the research phase to determine the possibility of implementation in Malaysia. Malaysia has been amply endowed RESs such as Solar and Biomass Energy. However, these ESs have been greatly underutilized. A comparison of each REs was done to understanding the applicability of each of these resources in the Malaysian context. Being able to implement these ESs especially in areas not connected to the national grid would be beneficial to Malaysia to improve the living quality of Malaysians in rural areas.
\nSun is the ultimate resource on earth as it is responsible for all the weather conditions and ESs on earth. Sun emits Solar Energy due to the nuclear fusion reactions in the sun’s core and subsequently produces a tremendous amount of energy. However, small portion of it is directed towards earth in the form of light and heat. Solar energy, which correlates to the sunlight’s photons has an abundant potential that can fill our global needs if it is harnessed in the right way.
\nGenerally, there are two main ways to harness Solar Energy, which is using either photovoltaics or solar thermal collectors. Photovoltaic (PV) or commonly known as solar cells, comes in various shapes and are made from electricity producing materials such monocrystalline silicon, polycrystalline silicon and thin film solar cells. When sunlight gets in contact with the solar cells’ semiconductor material, they get absorbed and consequently, generate electricity [1]. This conversion is mainly due to the photovoltaic effect. When this effect occurs, the photons from the sun’s radiation knocks electrons loose, causing them to flow and thus generate electricity. The initial generated current is the direct current (DC). In order for, this can be stored in the battery and used for DC appliances. To make it useable for regular households, it is first converted to alternating current (AC) using an inverter. If the system is connected to the grid, then additional electricity is fed to the main supply. The other way of tapping the sun’s energy is by capturing the heat produced by the solar radiation. This form of harnessing is usually done in a large scale in such a fashion that power stations are built. These power stations are called Concentrated Solar Power (CSP) plants. The term concentrated comes from a large number of mirrors in the plant which are used to focus the sun’s rays on tubes containing molten fluid that can store heat well. The molten fluid then is used to convert water into steam. Subsequently, the steam produced rotates a turbine and thus, generate electricity [2].
\nIn Malaysia, solar cells are commonly used to generate electricity. In 2018 alone, 467344.2 MWh of power was generated based on Malaysia’s Feed-in Tariff (FiT) system. Comparing this figure to the other RE, harnessing solar energy comes up on top. Although the nation is exposed to long hours of sunlight daily, the average maximum amount of energy produced per solar cell has an efficiency of 15–20 percent. This efficiency poses an issue whereby not many investors would invest in the technology. A way to overcome this situation in Malaysia is by constructing Large Scale Solar (LSS) power plants. This way, the amount of electricity generated can be maximized. The LSS power plants are not to be mistaken with CSP plants. The main difference between the two is that LSS captures light via solar cells and converting them into electricity whereas CSP captures heat which is transformed into mechanical energy that rotates a turbine and subsequently produces electricity. In Malaysia, CSPs are not developed yet. Having the minimal Direct Normal Irradiance (DNI) within the range of 1900 to 2000 kWh/m2/year, is the main requirement to start a CSP project. However, the DNI for Malaysia is below this threshold and it is due to the geographical position of the country which is not situated in high solar insolation zones [2].
\nOn 20th March 2012, an 8 MW large scale solar PV plant, developed by Cypark Resources Berhad, was officially launched and operational. Figure 1 shows the aerial view of the solar power plant. This project is the first-ever completed LSS above 1 MW and operational under the Sustainable Energy Development Authority’s (SEDA) Feed-In-Tariff Mechanism (FiT) in Malaysia. The LSS has received two accolades by the Malaysia Book of Records as it is recognized as one of the largest grids connected solar parks in the nation. The land coverage by the LSS is approximately 41.73 acres and it is equipped with 31, 824 solar panels [3]. Being the first of its kind in the country, the RM150 million project has the ability to power over 17,000 households annually. In 21 years from its initiation, it is expected to generate up to RM500 million worth of electricity. This is equivalent to the power generated by 9, 300 tons of coal each year. For the environment, it is capable of reducing 14, 335 tons of carbon emissions and 664 tons of methane gas annually [3, 4].
\nAerial view of three major Solar Energy Projects in Malaysia. (a) An aerial view of the 8 MW large scale solar photovoltaic plant [
As of November 2018, the nation’s largest LSS has started its operation. The project won in competitive bidding by Tenaga Nasional Berhard (TNB) and subsequently, the project started its development in July 2017. The 10 km of 132 kV power and fiber optic underground cables were connected to 230, 000 solar panels in this plant. This LSS is capable of producing 50 MW of electricity to the national grid. The total cost of this project is approximately RM339 million. The total land size used is up to 242.16 acres. Due to the success of TNB, this project serves as a booster and aspiration in further developing more RE projects in Malaysia. Consequently, by 2030, Energy, Science, Technology, Environment and Climate Change Ministry has set a goal to increase the country’s electricity usage powered by 20% based on Res [5] Also, TNB’s success in this project has led the company to secure RM144 million in developing a second large scale solar project for the country [5, 6] Figure 1 shows the aerial view of the LSS.
\nOn 27 November 2018, one of Malaysia’s advance solar PV power plant has started its operation. This project began on 16 March 2017 when Sinar Kamiri Sdn Bhd signed a power purchase agreement with Tenaga Nasional Berhad to develop and operate a 49 MW large scale solar photovoltaic power plant which cost around RM270 million [6]. This LSS is situated in Sungai Siput Perak over a land size of 150 acres and is equipped with 170, 961 panels. In this land, the complex mountain topography has posed many challenges for the developers as this would often cause shadows, string mismatches as well as high temperature and humidity. However, the land offers a long duration of sunshine and high solar irradiance throughout the year. To overcome this topographical situation, the developers have integrated Huawei Fusion Solar Smart PV Solution into the grid [7]. This includes the smart PV string inverter SUN2000-42KTL to troubleshoot the string mismatch issues faced in Sungai Siput as well as a PLC technology which helps to deliver a simpler system with safer and more reliable data transmission. As a consequence of using these PV systems, this LSS has obtained 2% higher energy yields and a 50% increase in efficiency compared to other LSS of the same scale. Figure 1 illustrates the aerial view of the LSS.
\nIn July 2017, RM250 million green socially responsible investment (SRI) sukuk has been issued to Tadau Energy Berhad to further develop the current state of RE usage in Malaysia. Also, this green SRI sukuk receives funds for the projects due to its international endorsement and potential tax benefits via deduction of issuing expenses against the taxable income of the issuer [8]. In other words, it helps companies to achieve their corporate social responsibilities. With this cash in hand, the company started to develop a 50 MW solar power plant in Kudat, Sabah which covers up to 189 acres. This LSS is equipped with 188, 512 solar panels. 2 MW out of 50 MW of the available power channels the local Kudat electricity grid while the remaining 48 MW is channeled into 132 kV transmission line which is distributed through Sabah [9].
\nBased on the information in Table 1, the selected 4 LSS projects can be arranged and compared between one another in terms of generation capacity, number of solar panels, generation capacity per solar panel, land area and project cost.
\nLocation | \nPajam, Negeri Sembilan | \nMukim Tanjung 12, Selangor | \nSungai Siput, Perak | \nKudat, Sabah | \n
---|---|---|---|---|
Generation Capacity (MW) | \n8 | \n50 | \n49 | \n50 | \n
Number of Solar Panels | \n31, 824 | \n230, 000 | \n170, 961 | \n188, 512 | \n
Yield per Solar Panel (W/panel) | \n251.38 | \n217.39 | \n286.61 | \n265.23 | \n
Land Area (acres) | \n41.73 | \n242.16 | \n150 | \n189 | \n
Project Cost (RM in millions) | \n150 | \n339 | \n270 | \n250 | \n
Summary of information of the four selected LSS.
First, among the projects, the LSS which has the highest generation capacities are Mukim Tanjung 12, Sungai Siput and Kudat. Each of these LSS has a generation capacity of around 50 MW. Subsequently, this is followed by Pajam at 8 MW. The difference in the capacities is based on the purpose of the project. For example, the reason why Kudat’s generation capacity is high is that the power generated is used to supply the local villages as the remaining is supplied to the power grid, which is then distributed throughout Sabah [9]. A smaller LSS may not have the same purpose and the demand for electricity in the area may not be as high as areas with more population or activities. Alongside this reasoning, it corresponds as well with the total number of panels. Although Mukim Tanjung 12, Sungai Siput and Kudat have similar generation capacity and project motives, the number of panels used at each plant is different. As seen in the table, Mukim Tanjung 12 uses 230, 000 panels, Sungai Siput uses 170, 961 panels and Kudat uses 188, 512 panels. Coinciding with this information, it can be inferred that the panels which are used in each power plant have different efficiencies. For instance, although Sungai Siput uses fewer solar panels compared to Mukim Tanjung 12 nad Kudat, it is still having a similar power output as the other two. This is because the panels which the LSS has, uses Huawei’s Fusion Solar Smart PV Solution panels. These panels have the potential to increase energy yields, maximize the return of investments (ROI) and helps customers optimize initial investments. Also, DC combiners are not needed in these plants [7, 8]. The reasoning in the paragraph is also backed up by the amount of each that each panel can generate. From the table based on the third row, the highest yielding panel to lowest is Sungai Siput at 286.61 W/panel, Kudat at 265.23 W/panel, Pajam at 251.31 W/panel then Mukim Tanjung 12 at 217.39 W/panel. From here, the quality of the panels used in both Sungai Siput and Kudat are of higher efficiency. Next, the amount of land size used from highest to lowest is in an order of Mukim Tanjung 12 at242.16 acres, Kudat at189 acres, Sungai Siput at 150 acres and lastly Pajam at 41.73 acres. The land coverage is closely dependent on the required generation capacity as well as the yield per panel. If the required generation capacity is low, the land size will not cover over a large area as seen in Pajam. Also, if the yield per panel is high, the land size needed is small. The last aspect that can be compared is the project cost. This correlates with the land size, efficiency of the panels and ease of installation. Generally, it would cost more for a land of a bigger size. This goes the same for a higher quality panel. In terms of ease of installation, it depends on the safety factors that are given to each component in the power plant based on the land’s topography and weather. Some areas could be flat land while some are covered by hills. In Mukim Tanjung 12, since its land size is large, it accounts for the high cost of the project. Subsequently, Sungai Siput’s project cost is relatively high as well and this is due to the hilly area which the LSS is built on as well as the quality of the solar panels.
\nIn Malaysia, the country’s first LSS was developed in 2012. However, it does a gradual impact on the awareness of people on using RESs. Ever since then, more and more LSS projects have been developed and the country has started to see this RE’s advantages. Consequently, in the current years, the country has new policies such as the Renewable Energy Transition Roadmap (RETR) 2035 which aims to further explore the possible strategies and action plans to reach the country’s renewable target of 20% in the national power mic by 2025. In Table 2, the new addition in the panels is around the same value for each year. This is due to the country’s reliance on coal and fuel which has also been one of the main sources of the country’s economy. As a result, transitioning to another form of ES requires confidence built up by the country. Nonetheless, this issue is slowly alleviated as the awareness of using more RESs has increased every year.
\n\n | 2015 | \n2016 | \n2017 | \n2018 | \n||||
---|---|---|---|---|---|---|---|---|
Country | \nTotal solar PV Addition (MW) | \nNet Solar PV Capacity (MW) | \nTotal solar PV Addition (MW) | \nNet Solar PV Capacity (MW) | \nTotal solar PV Addition (MW) | \nNet Solar PV Capacity (MW) | \nTotal solar PV Addition (MW) | \nNet Solar PV Capacity (MW) | \n
China | \n15,150 | \n43,530 | \n34,540 | \n78,070 | \n53,000 | \n131,000 | \n44,018 | \n175,018 | \n
US | \n7,300 | \n25,620 | \n14,730 | \n33,100 | \n8,173 | \n41,273 | \n8,419 | \n49,692 | \n
Japan | \n11,000 | \n34,410 | \n8,600 | \n42,750 | \n7,000 | \n49,000 | \n6,500 | \n55,500 | \n
Malaysia | \n63 | \n231 | \n54 | \n286 | \n50 | \n386 | \n52 | \n438 | \n
Among these four countries, in terms of annual production in 2018 (Figure 2), China has produced the most energy of a figure close to 80 GW. This is followed by Malaysia with an annual production of approximately 15 GW. Subsequently, Japan produced around 5 GW in that year and lastly, the USA has produced half of Japan’s [12].
\nGlobal PV cell production from 2015 to 2018 [
Based on the trends, the number of solar PV additions by each of the countries has plateaued in recent years due to hurdles faced within the country. Considering this, some other countries have been growing in this field including Malaysia. Ever since the first LSS was developed, the country has been developing more projects that is able to harness the sun’s energy. Due to the country’s accumulative efforts, Malaysia has the potential to become one of the leading countries in solar PV generation given that further research and development is given into this field.
\nHydropower is the conversion of Kinetic Energy (KE) of water into electricity and is considered a RES due to the water cycle being constantly renewed by the sun. According to an article on the US Geological Survey website, a hydropower dam works by having the water in the reservoir flow into a pathway called the penstock when the sluice gate is opened. This penstock is directly connected to the turbine, which is spun by the force of the water moving from a location of higher pressure to one of lower pressure. The water itself then flows out to a river below, whereas the turning of the turbine causes the conversion of KE from the water force into mechanical energy for use by the generator, which is connected to it by way of shafts or gears. This turning of the turbine also causes the rotor within the generator to turn and consequently causes the electromagnets on its edge to move past the stators placed in a static position outside the rotor, allowing for the conversion of the mechanical energy from the turbine into Electrical Energy (EE). The electricity produced from this conversion process is then carried out to other locations and facilities by way of power to transmission lines connected directly to the generator.
\nInternational Hydropower Association states that the installed hydropower capacity is 6094 MW in 2016, with hydropower generating roughly 11% of the country’s electricity and less than 20% of the technically feasible generation potential utilized to date in their article from May 2017 [14]. The following comparison has been done by choosing the most five powerful Hydropower plants in Malaysia.
\nThe Bakun Hydroelectric Plant is located on Batang Lui in the upper parts of the Rajang River, roughly 37 km upstream of the town of Belaga in Sarawak. The plant is powered by eight 300 MW turbines, allowing for an installed generation capacity of 2400 MW and has a power transmission system that directly connects to the existing power transmission network in Sarawak. The plant has been operational since 2011 and produces an average electricity generation of 1700 MW to 2110 MW depending on demands. The dam is considered to be the largest and tallest Concrete-Faced Rock-fill dam in South East Asia with a 205 m height and 750 m length, with the capability to contain 16.93 million m3 of water, allowing the reservoir a surface area of around 695km2 with a catchment area of 14750 km2 [13].
\nThe Murum Hydroelectric Plant was completed back in 2016 and is located on the Murum River in the upper region of the Rajang River Basin, roughly 200 km from Bintulu. The plant is powered by four 236 MW turbines, which totals to an installed generation capacity of 944 MW [13, 14], with its average production being around 635 MW and would be delivered through the state power grid. The dam is 141 m high and 473 m long, with a reservoir area of 270km2 and a catchment area of 2750km2. The cost of the project totaled about RM 4.8 billion [15]. Besides that, Murum also has the world’s tallest stepped chute spillway that helps to reduce KE by aerating the water overflow, which also helps to preserve the riverine ecosystem and the Batu Tungun rock formation, which is considered sacred to the local Penan community [14].
\nThe Pergau Hydroelectric Station is located on the Pergau Lake, around 100 km away from Kota Bharu, Kelantan. The plant is powered by four 150 MW turbines totaling 600 MW of installed generation capacity and was designed to operate at a daily load factor of 25%. The Kuala Yong dam, which the power station receives its water from, is 75 m high [15, 16], with a 54km2 upper catchment and lower plain area. Besides that, the station also has a \n
The Sultan Mahmud Power Station was completed in 1985 and located 55 km southwest of Kuala Terengganu on the Kenyir Lake. The plant is powered by four 100 MW turbines, totaling 400 MW of installed generation capacity, with continuous generation being 165 MW. The dam is 155 m high and 800 m long in crest, with a reservoir area of 369km2 and a catchment area of 1260km2. The water height is around 120 m at minimum capacity and can go up to 153 m when it’s at maximum, with a full supply level of 145 m [16, 17]. The lake itself can store 13.6 billion m2 of water, with its deepest point being 145 m. Besides that, it can also release any excess water flow in the reservoir directly downstream into the Terengganu River.
\nThe Ulu Jelai Hydroelectric Power Plant was completed in 2016 and is located in the Cameron Highlands, Pahang on the Bertam River. The plant is powered by two 186 MW turbines which are placed in an underground plant [18], totaling to 372 MW of installed generation capacity for electricity. The Susu Dam, which is the dam that forms the Susu Reservoir of this hydropower plant, was built using almost 750,000m2 of concrete through the Roller-Compacted Concrete (RCC) method, a very modern way to build such a dam. Said dam is measured to be 88 m high and 460 m long in the crest, with a 0.1km2 catchment area. The total cost of the project was RM 4.2 billion and is expected to reduce 250,000 tons of carbon dioxide equivalent per year by substituting coal or fossil fuel-based generator stations during peak hours, according to a United Nations report [17, 18].
\nBased on the information gathered here, the five selected hydropower projects can be arranged and compared between each other within the categories of installed generation capacity, dam size, catchment area, reservoir area, and project cost (Table 3) [15, 18].
\nHydropower Station | \nMax Power (MW) | \nTurbine Amount | \nDam Dimensions (h x l) | \nSurface Area (km2) | \nCatchment Area (km2) | \nProject Cost ($ Billion) | \n
---|---|---|---|---|---|---|
Bakun | \n2400 | \n8 x 300 | \n205 x 750 | \n695 | \n14750 | \n7.3 | \n
Murum | \n944 | \n4 x 236 | \n141 x 473 | \n270 | \n2750 | \n4.8 | \n
Pergau | \n600 | \n4 x 150 | \n75 x --- | \n54 | \n— | \n2.23 | \n
Sultan Mahmud | \n400 | \n4 x 100 | \n155 x 800 | \n369 | \n1260 | \n— | \n
Ulu Jelai | \n372 | \n2 x 186 | \n88 x 460 | \n— | \n0.1 | \n4.2 | \n
The data for each of the five selected hydroelectric power plants.
When it comes to total installed generation capacity, the Bakun has the highest of the five at 2400 MW, followed by Murum at 944 MW, Pergau/Sultan Ismail Petra at 600 MW, Sultan Mahmud at 400 MW and lastly Ulu Jelai at 372 MW. The reason behind the high output behind Bakun is not only it’s high number of turbines, but the capacity of 300 MW that each turbine is capable of, which in and off itself is close to rivaling the entire output of the Ulu Jelai station at 372 MW. This makes it the most powerful hydroelectric power plant in Malaysia and the largest power generation facility in Sarawak, as it also supports the Sarawak Corridor of Renewable Energy (SCORE) initiative required for the energy-intensive heavy industries such as the Samajaya Industry Park. In terms of the dam sizes, Bakun has the largest at 205 m high and 800 m long, followed by Sultan Mahmud at 155 m high and 800 m long, Murum at 141 m high and 473 m long, and lastly Ulu Jerai at 88 m high and 460 m long. The length of the Pergau/Sultan Ismail Petra was not given but can be assumed to be the smallest of the five as the height is only 75 m. As for catchment area, which is a land area where water can flow into the plant reservoir [15, 18], the largest is Bakun at 14750km2, followed by Murum at 2750km2, Sultan Mahmud at 1260km2, Pergau at 54km2 and lastly Ulu Jerai at 0.1km2. Ulu Jerai is the smallest of the bunch as it uses the Bertam River, whereas the rest have a larger area to work with as they are built on lakes and other large bodies of water. Out of the five stations, only Bakun, Murum and Sultan Mahmud have a listed reservoir size at 695km2, 270km2 and 369km2 respectively. Having a reservoir allows for the storage of water as conversion fuel for a later date [17], meaning that Bakun has the largest water reserve of them all and thus can use more water to generate more electricity in comparison. When it comes to cost, the most expensive project was Bakun at RM 7.3 billion, Murum at RM 4.8 billion, Ulu Jelai at RM 4.2 billion, and lastly Pergau at RM 2.23 billion, whereas the cost for production of the Sultan Mahmud plant was nowhere to be found but could be assumed to be between Pergau and Murum due to the size being between those two and that it was completed in 1985. The cost of Bakun being the highest is because it uses more turbines that are very powerful in order to produce more power than the rest of the ones on the list combined at peak usage, not to mention the size of the construction project itself.
\nTo wrap this part up, the Bakun Hydroelectric Plant is the best hydroelectric plant available in Malaysia due to the amount of installed generation capacity for electricity that it can provide due to the massive size of the project itself, but such power comes at a great price tag. In comparison, a project such as the Sultan Ismail Power Station or Pergau Hydroelectric Station would be a more feasible one to create in a higher quantity for a developing country such as this due to the lower costs and less space requirement, while still capable of pumping out a respectable amount of electricity for the towns, villages and cities found in this country.
\nMalaysia’s annual hydropower energy production is rated at 4.5 Mtoe/year (Megaton of energy per year) [16] with an installed hydropower capacity of 6094 MW and a hydropower usage percentage of 11%. The largest dam or hydropower facility in Malaysia is the Bakun Dam at 2400 MW of installed generating capacity.
\nCountry | \nAnnual Energy (Mtoe/year) | \nStrongest dam & output (MW) | \nInstalled hydropower capacity (MW) | \nUsage Percentage (%) | \n
---|---|---|---|---|
China | \n96.9 | \nThree Gorges’ Dam (22,500) | \n341,190 | \n20 | \n
Brazil | \n32.9 | \nItaipu Dam (14,000) | \n100,273 | \n64 | \n
Canada | \n32.3 | \nRobert-Bourassa Dam (5,616) | \n79,323 | \n62 | \n
Malaysia | \n4.5 | \nBakun Dam (2,400) | \n6,094 | \n11 | \n
Data for three of the world’s leading hydropower countries in comparison to Malaysia’s.
From the information gathered here, the leading hydropower nations were China, Brazil, and Canada, with 96.9 Mtoe/year, 32.9 Mtoe/year and 32.3 Mtoe/year (megaton of energy per year) respectively, whereas overall energy input from hydropower in Malaysia is totalled to be 4.5 Mtoe/year (kiloton of energy per year). In comparison to the 3 countries stated previously, Malaysia’s hydropower energy input is extremely tiny in comparison (Table 4). When it comes to the respective strongest dams in terms of output, China’s Three Gorges Dam is the highest at 22.5GW of installed generating capacity, followed by the joint Brazil/Paraguay Itaipu Dam at 14GW and lastly Canada’s Robert-Bourassa Dam at 5616 MW. Malaysia’s largest one, Bakun at 2400 MW, is respectable and considered the largest in South-East Asia [13, 17], but the output is nothing compared to these giants. It is generally more than enough for providing electricity to Sarawak itself and can support the local heavy industries found in the state. When it comes to percentages of hydropower usage for electricity in a country, Brazil has the largest at 64%, followed by Canada at 62%, China at 20%, and lastly Malaysia at 11%. Malaysia’s percentage of hydropower usage is lower compared to these other countries as Malaysia still relies heavily on coal for most of their power stations [15], which should be changed as soon as possible as it’s a non-RES and could dry up in the future. In terms of installed hydropower capacity, China is the largest at 341,190 MW, followed by Brazil at 100,273 MW, Canada at 79,323 MW and lastly Malaysia at 6094 MW. Considering how small Malaysia is compared to all the three countries above, it’s understandable that the installed hydropower capacity is far lower than them as Malaysia has much less space and water bodies to work with in comparison, while not to mention Malaysia’s economy not being as strong as them (Figure 3).
\nHydropower Major projects in Malaysia. (a) Bakun Hydropower, (b) Murum Hydropower, (c) Yong Hydropower and (d) Kenyir Hydropower.
Taking an example out of Canada or Brazil here would be a good idea as there are many rivers and water bodies that could be exploited for hydroelectricity generation, however building more mega-dams like Bakun could harm the rainforests and animal species that makeup country’s ecosystem, not to mention potentially displacing the natives and eating large sums of money that could be used for other equally beneficial projects. Therefore, a balanced method of implementing hydropower while maintaining the ecosystem should be explored, so that Malaysia could progress to the future with hydropower while still maintaining the well-being of Malaysia’s unique ecosystem.
\nBiomass is a type of fuel developed from organic materials. It is both sustainable and renewable in terms of generating EE. The organic materials are obtained from living and recently living things. These materials can include scraps of lumber, manure and forest debris. Biomass power is able to generate electricity which is carbon neutral through renewable organic waste [19]. This energy releases heat when burnt. These energies are utilized through burning them to produce steam to run turbines which in turn generates electricity.
\nMalaysia is a country filled with many conventional energy resources. These energy sources include oil and gas which are non-renewable and RESs like solar, hydro and biomass energy. For biomass, Malaysia has plenty of opportunities as far as exploiting biomass energy in Malaysia. Malaysia is filled with agricultural biomass and wood waste which can be exploited and used to replace non –RESs in use [19].
\nMalaysia’s exporting of 19.9 million tons of palm oil in 2017 makes this country a world leader as an exporter of palm oil. In 2011, the country was able to generate more than 80 million tons of oil palm biomass. 30% of the 379 palm oil mills here in Malaysia utilize palm oil mill effluent (POME) by turning it to biogas [19].
\nAnother important agricultural biomass is rice husk. This resource has a very good potential for biomass cogeneration. Biomass cogeneration refers to “generating together”, this is a process where heat and EE is obtained at the same time from fuel. This type of biomass is implemented in technologies such as steam turbines, gas turbines and reciprocating engines. Currently, Malaysia has constructed its first rice husk power plant in the state of Kedah in Padang [19, 20].
\nFor the generation of solid waste in Malaysia, the amount of mass-produced in a day range from 0.45–1.44 kg/day. This result is dependent on the economic status of the area within Malaysia. The organic waste in Malaysia contains a high amount of moisture with a bulk density of above 200 kg/m3. The bulk density is with respect to the population growth in Malaysia, the higher the number of populations in the area the larger the bulk density of the waste. These waste are generally disposed of as landfilling which makes them ideal for being used for biomass [20] (Figure 4).
\nElectricity generation by fuel and Power generation sources in Malaysia.
The plant has huge commercial potential from its biowaste in the palm oil industry. It does this through an integrated complex system in Kunak, Tawau situated in east Malaysia, Sabah. This plant has both biomass and biogas power plants as well as being equipped with a pulp and paper plant. The plant is considered friendly to the environment as it takes into consideration the protection and preservation of the environment. This plant is responsible for the generation of electricity through the disposal of waste from oil palms. This plant is under the ownership of the Kumpulan Sawit Kinabalu and has taken considerable precautions in order to create a sustainable wealth while ensuring the protection and preservation of the environment. The amount of energy production has dropped by nearly 85% since the opening of the power plant, and as a result, increasing the profit of the mills by RM1.14 million [21]. The power generation of the plant is 14 MW of completely RE from biomass cogeneration plant [21]. The plant is also the first biomass power plant connected to the main grid in Malaysia. The RE from the biomass power plant has formed an agreement with the Sabah Electricity Sdn Bhd to provide green electricity of up to 10 MW [20, 22]. TSH built up approximately 50,000 ha in a planted area across Sabah which are strategically located with associated companies. The company also has 65,000 ha worth of unplanted land bank for future development, this is to keep the company busy for many years to come. In addition to that, the company also has 3 mills in Sabah which has a 1.0 million tons of Fresh Fruit Bunches processing capacity per annum. The refining crude palm oil and kernel located at Kunak Jaya, Sabah has capacities of 2600 tons and 600 tons per day respectively [21, 22].
\nBoth these power plants are in Sandakan, Sabah. Seguntor Bioenergy and Kina Biopower Power Plant are owned by HRE Seguntor Bioenergy Sdn. Bhd and HRE Kina Biopower Sdn. Bhd respectively [23]. These two power plants are implemented with a similar design. The power plants have a fuel consumption of 23.123 kg/h and a boiler capacity of 56 tons per hour at 420 degrees Celsius. Adding to that, a mechanical draught cooling tower, counterflow, water flow of around 2491 t/h. The coldwater temperature is measured at 32 degree Celsius and 42 degree Celsius for the hot water temperature. The generators are enclosed and has an in –built water – air-cooled system. A synchronous generator is also used in the system. Each power plant can provide a total of 11.5 MW of green energy from biomass energy [23, 24]. These efforts are made to ensure the provision of a stable power supply to consumers in the East Coast of Malaysia. The power plants are located strategically about 20–90 km to 15 palms oi mills. Furthermore, the power plants are located 10 km radii of SESB’s substation making it ideal for grid interconnection [20, 23]. About 654,000 tonnes per year of biomass will be generated from the Nilai Tani Resources Sdn. Bhd., Monsok Palm Oil Mill Sdn. Bhd, Prolific Yield Sdn. Bhd. and Tanjung Panjang Sdn. Bhd palm oil mills. The power plants are expected to cost around RM120 million each.
\nThe Jana Landfill is owned by the Jana Landfill Sdn Bhd which runs a power plant and municipal storage waste sites. It is a subsidiary of TNB Energy Services. The power plant is located in Ayer Hitam Forest Reserve in Puchong, Selangor. The Jana Landfill obtains its fuel via the decomposition of natural municipal waste from the landfill site. The power plant generates a total of 2 MW of green energy using landfill gas as a fuel source [21, 24]. The power plant has two separate sections, Jana 1 and Jana 2. Each power plant can generate up to 1 MW of energy. To date with the arrival of Jana 3, the power plants is expected to generate a combined total of 6 MW which is beneficial to about 6000 homes in Malaysia.
\nThe Recycle Energy power plant is the first power in the whole of Southeast Asia to initiate Refuse Derived Fuel (RDF). RDF is the product of separating noncombustible and combustible portion from municipal solid waste. This method can help increase the recycling levels in Malaysia as well as decrease the overall waste. To add to this, this method does not require additional cost from processing, baling, wrapping and transportation logistics making it less expensive than that of the landfilling [25]. RDF can be used as a renewable fuel for any coal – fired power plant. Recycle Energy power plant is located at Kampung Pasir in Semenyih, Selangor. The plant is located about 13 miles from the main capital. This facility is able to process a total of 1100 tons of solid waste a day. These wastes are then converted into RDF which is in fluff form. The RDF in fluff form is used as biofuel to enable the production of 8 MW of electrical energy a day [24, 25]. This electricity is used to power up the RDF plant and any remaining electricity is sold for usage in the national power grid. The RDF power plant is 28 – acre wide and is handled by the Malaysian government (Figure 5).
\nMajor biomass projects in Malaysia.
When compared, the TSH Resources Berhad power plant located in Kunak, Tawau in Sabah has the highest power generation at 14 MW. The main reason for the success of the TSH Resources Berhad power plant is its immense area of coverage. Palm oil is able to be attained from the within the power plants location. Continues supplies of palm waste can be obtained and processed rapidly in the power plant. The Kumpulan Sawit Kinabalu also ensures the protection and preservation of the palm oil farms. The Seguntor and Kina power plants needs to transport its oil palm waste 20–90 km from the mills to the power plants thus having a lower efficiency rate compared to the TSH Resources power plant. Furthermore, the TSH Resources Berhad power plant uses a biomass cogeneration system enabling it to attain both electrical and heat energy from the biomass fuels (Table 5).
\nPower Plants | \nPower generation | \nType of Turbine | \nFuel | \nCost | \nArea coverage | \n
---|---|---|---|---|---|
TSH Resources Berhad | \n14 MW | \nSteam turbines | \nEmpty fruit bunch | \n\n | 5e+8 square meter (used land) and 6.5e+8 (unused land) | \n
Seguntor Bioenergy Power Plant | \n11.5 MW | \nSteam turbines | \nEmpty fruit bunch | \nRM120 million | \n400000 square meters | \n
Kina Biopower Power Plant | \n11.5 MW | \nSteam turbines | \nEmpty fruit bunch | \nRM120 million | \n400000 square meters | \n
Jana Landfill | \n2 MW (From Jana 1 & 2), 6 MW (with the future addition of Jana 3) | \nGas turbines | \nBiogas | \n\n | \n |
Recycle Energy power plant | \n8 MW | \nSteam turbines | \nRefuse-derived fuel | \n\n | 113312 square meters | \n
Comparison between the biomass energy of different power plants in Malaysia.
In terms of the turbines used, steam engine has a better power-to-weight ratio making them ideal for reciprocating engines. For a small size is able to generate a high amounts of power output and does not produce a lot of vibration compared to other reciprocating counterparts. The steam turbine has a higher operating efficiency and reliability compared to that of the gas turbines. Jana Landfill is the only power plant in Malaysia using gas turbines and from power generation it is the lowest compared to all the other power plants which are using steam turbines. A main issue is that, having variation in its fuel specs can lead to an enormous drop in the efficiency of the turbine. In addition to that, external power is required to ensure turbine can carry out a self-sustained operation [23, 26]. In terms of the most eco-friendly fuel source would be the source used by the Recycle Energy power plant. This power plant uses a refuse-derived fuel source making it ideal to not only for making biofuels to power up turbines inside the power plant, but also recycling resources which are not combustibles.
\nFrom the comparison table, it can be seen that in terms of practicality and usage in the whole Malaysia the TSH Resources Berhad power plant is the most ideal. It is able to generate the highest amounts of the greenest EE at 14 MW which is why it is connected to the main grid in East Malaysia.
\nUnlike the other countries, Malaysia is highly reliant on the usage of palm oil and coconut husk as biomass sources. Malaysia is still unable to completely utilize all resources which can lead to the production of biomass. If Malaysia can utilize converting municipal waste as a source for biomass, there is no reason to why Malaysia cannot increase their power generation from biomass. In addition to that, if Malaysia is able to produce more biomass power plants situated around palm oil fields like the TSH Resources Berhad power plant, the amount of power generated from biomass is bound to increase within the country (Table 6).
\nCountry | \nPower generation from biofuels (GWh) | \nSource of waste | \n||
---|---|---|---|---|
2014 | \n2015 | \n2016 | \n||
America | \n62357 | \n61640 | \n60493 | \nWood waste, agricultural crop, animal manure, plants and recycled waste | \n
China | \n44400 | \n52700 | \n64700 | \nAgricultural, forestry waste and domestic livestock (manure). | \n
India | \n293926 | \n24997 | \n41972 | \nAgricultural wastes. | \n
Malaysia | \n701 | \n751 | \n760 | \nPalm oil biomass, rice husk and municipal solid waste. | \n
Comparison between the amounts of electricity generation from biomass between countries.
Malaysia is still relatively new in terms of the power generation using biomass sources. From the year 2014–2016 there is a gradual increase in the power generation using biofuels in Malaysia. Thus. the potential is bright for the usage of biomass as a RESs in Malaysia.
\nTides are created from the gravitational pull from the Earth and the moon, creating coastal tidal waters at a different time at the day. This movement of water has an enormous amount of potential energy. This energy is predictable and renewable with low operating cost. Although tidal energy is recognized as one of the promising technologies, the technology currently doesn’t exist in Malaysia. There are three main types of tides phenomenon which are diurnal, semidiurnal and mixed tides [27]. Diurnal tides have one high tide every day. Semidiurnal tides have two high tides every day. Mixed tides are the combination of the characteristics of diurnal and semidiurnal tides. Tidal energy can be harnessed through different methods. A tidal barrage makes use of the tides. A barrage looks like a dam, but it’s lesser height and very much bigger [28]. The other method would be the tidal stream. It works just like wind turbines, but it’s placed underwater using the movement of water created by tides [27, 28]. A tidal lagoon is another method similar to the tidal barrage, but the dam is replaced by a 360-degree enclosure, creating a pool. Water will enter and exit the lagoon due to different water tides.
\nTo determine the feasibility of tidal energy in Malaysia, it is required to understand the available tides in Malaysia. In Malaysia, there is no diurnal tides. The North and West of Peninsula have majority of semidiurnal tides while the area of South and East have majority of mixed tides with dominant semidiurnal. The rest of the area of Malaysia has mixed tides with dominant diurnal (Figure 6).
\nTypes of tides available in Malaysia [
The tides differ at a different location and different times of the year. The height of water level between tides also influences the potential energy that could be harnessed. As shown in the below figure, the most potential location to harness tidal energy would be Selangor with height range between 0.4 meters to 5.3 meters when compared to other locations [28, 29].
\nThe tidal energy will always be influenced by the gravity of the moon and the sun. However, it has more advantages than wind and solar energy as it has a more predictable nature with high environmental benefits. Different locations in Malaysia have different tides and it must be considered before installing a tidal power plant. Based on the analysis being done, Selangor has the highest potential to harness tidal energy compared to other locations in Malaysia (Figure 7).
\nSemidiurnal and Dominant semidiurnal Tides.
Geothermal energy is created by the gravitational energy of the Earth and the unstable radioactive decay of atoms [29]. Geothermal energy is mainly used to generate electricity and to provide heating. Although geothermal energy technologies have been around for over 40 years, they are still undergoing research and development. This is due to the complexity and high investments before executing geothermal projects as it includes underground exploration and requires multidisciplinary expertise [30] (Figure 8).
\nHow geothermal energy works.
Malaysia does not have technology that harnesses geothermal energy. However, there are several potential locations in Malaysia.
\nAccording to a study by the Deputy Natural Resources and Environment of Malaysia back in 2010, Tawau has the potential to generate up to 67 MW of electricity per day, meeting the demands of Tawau [1, 31]. The water temperatures below the selected area are near to 235 degrees which is more than enough to heat and at the same time generate electricity. This geothermal project was initiated in Tawau, Sabah, Malaysia back in 2015. However, the project site has not shown any progress and had seemed to stop operations in the third quarter of 2016. Therefore, the project’s approval is being cancelled and is now currently abandoned [29, 31] (Figure 9).
\nTawau geothermal project being abandoned.
The feasibility of geothermal energy in Malaysia is inclusive of geothermal exploration and resource assessment, which requires a very high cost. The country’s first geothermal power plant project failed due to the lack of preparation and great deal of discipline in executing the project. Based on the history of geothermal development, the geothermal project can easily go wrong if not all aspects are addressed adequately.
\nMalaysia is a developing country and being able to harness RE would be a great attribute to improve the country. The existing RE in Malaysia includes Solar energy, Hydropower energy, and Biomass energy. Other potential REs in Malaysia could be harvested such as Tidal energy. Solar cells are commonly used to harness solar energy. The technology can be further investigated and improved to increase the efficiency of electricity generation. Hydropower in Malaysia is generating 11% of the country’s electricity as Malaysia has many rivers and water bodies that could be exploited. A balanced method of implementing hydropower can be done to always ensure the ecosystem of Malaysia is not disturbed. Malaysia is still relatively new in using Biomass energy. However, the gradual increase of power generation using biofuels has increased the potential of biomass energy in Malaysia as a renewable energy source. Tidal energy has the potential to be harnessed in Malaysia as there are locations such as Selangor and Johor having tides that could generate a decent amount of electricity. Geothermal energy also has the potential in Malaysia as there are multiple hot springs. Sabah has the potential to harness geothermal energy as it originates within young volcanic area. However, more research and investment would be needed to harness geothermal energy in Malaysia. It is quite convincing that Malaysia could harness more RE as the sustainability of energy consumption is crucial in this era.
\nIntechOpen is the first native scientific publisher of Open Access books, with more than 116,000 authors worldwide, ranging from globally-renowned Nobel Prize winners to up-and-coming researchers at the cutting edge of scientific discovery. Established in Europe with the new headquarters based in London, and with plans for international growth, IntechOpen is the leading publisher of Open Access scientific books. The values of our business are based on the same ones that any scientist applies to their research -- we have created a culture of respect, collegiality and collaboration within an atmosphere that’s relaxed, friendly and progressive.
",metaTitle:"Social Media Community Manager and Marketing Assistant",metaDescription:"We are looking to add further talent to our team in The Shard office in London with a full-time Marketing and Communications Specialist position. The candidate will bring with them a creative and enthusiastic mindset, high level problem-solving skills, the latest marketing and social media platforms skills and strong involvement in community-best practices to engage with researchers and scholars online. The ideal candidate will be a dynamic, forward thinking, approachable team player, able to communicate with all in the global, growing company, with an ability to understand and build a rapport within the research community.",metaKeywords:null,canonicalURL:null,contentRaw:'[{"type":"htmlEditorComponent","content":"We are looking to add further talent to our team in The Shard office in London with a full-time Social Media Community Manager and Marketing Assistant position. The candidate will bring with them a creative and enthusiastic mindset, high level problem-solving skills, the latest marketing and social media platforms skills and strong involvement in community-best practices to engage with researchers and scholars online. The ideal candidate wll be a dynamic, forward thinking, approachable team player, able to communicate with all in the global, growing company, with an ability to understand and build a rapport within the research community.
\\n\\nThe Social Media Community Manager and Marketing Assistant will report to the Senior Marketing Manager. They will work alongside the Marketing and Corporate Communications team, supporting the preparation of all marketing programs, assisting in the development of scientific marketing and communication deliverables, and creating content for social media outlets, as well as managing international social communities.
\\n\\nResponsibilities:
\\n\\nEssential Skills:
\\n\\nDesired Skills:
\\n\\nWhat makes IntechOpen a great place to work?
\\n\\nIntechOpen is a global, dynamic and fast-growing company offering excellent opportunities to develop. We are a young and vibrant company where great people do great work. We offer a creative, dedicated, committed, passionate, and above all, fun environment where you can work, travel, meet world-renowned researchers and grow your career and experience.
\\n\\nTo apply, please email a copy of your CV and covering letter to hogan@intechopen.com stating your salary expectations.
\\n\\nNote: This full-time position will have an immediate start. In your cover letter, please indicate when you might be available for a block of two hours. As part of the interview process, all candidates that make it to the second phase will participate in a writing exercise.
\\n\\n*IntechOpen is an Equal Opportunities Employer consistent with its obligations under the law and does not discriminate against any employee or applicant on the basis of disability, gender, age, colour, national origin, race, religion, sexual orientation, war veteran status, or any classification protected by state, or local law.
\\n"}]'},components:[{type:"htmlEditorComponent",content:'We are looking to add further talent to our team in The Shard office in London with a full-time Social Media Community Manager and Marketing Assistant position. The candidate will bring with them a creative and enthusiastic mindset, high level problem-solving skills, the latest marketing and social media platforms skills and strong involvement in community-best practices to engage with researchers and scholars online. The ideal candidate wll be a dynamic, forward thinking, approachable team player, able to communicate with all in the global, growing company, with an ability to understand and build a rapport within the research community.
\n\nThe Social Media Community Manager and Marketing Assistant will report to the Senior Marketing Manager. They will work alongside the Marketing and Corporate Communications team, supporting the preparation of all marketing programs, assisting in the development of scientific marketing and communication deliverables, and creating content for social media outlets, as well as managing international social communities.
\n\nResponsibilities:
\n\nEssential Skills:
\n\nDesired Skills:
\n\nWhat makes IntechOpen a great place to work?
\n\nIntechOpen is a global, dynamic and fast-growing company offering excellent opportunities to develop. We are a young and vibrant company where great people do great work. We offer a creative, dedicated, committed, passionate, and above all, fun environment where you can work, travel, meet world-renowned researchers and grow your career and experience.
\n\nTo apply, please email a copy of your CV and covering letter to hogan@intechopen.com stating your salary expectations.
\n\nNote: This full-time position will have an immediate start. In your cover letter, please indicate when you might be available for a block of two hours. As part of the interview process, all candidates that make it to the second phase will participate in a writing exercise.
\n\n*IntechOpen is an Equal Opportunities Employer consistent with its obligations under the law and does not discriminate against any employee or applicant on the basis of disability, gender, age, colour, national origin, race, religion, sexual orientation, war veteran status, or any classification protected by state, or local law.
\n'}]},successStories:{items:[]},authorsAndEditors:{filterParams:{sort:"featured,name"},profiles:[{id:"6700",title:"Dr.",name:"Abbass A.",middleName:null,surname:"Hashim",slug:"abbass-a.-hashim",fullName:"Abbass A. Hashim",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/6700/images/1864_n.jpg",biography:"Currently I am carrying out research in several areas of interest, mainly covering work on chemical and bio-sensors, semiconductor thin film device fabrication and characterisation.\nAt the moment I have very strong interest in radiation environmental pollution and bacteriology treatment. The teams of researchers are working very hard to bring novel results in this field. I am also a member of the team in charge for the supervision of Ph.D. students in the fields of development of silicon based planar waveguide sensor devices, study of inelastic electron tunnelling in planar tunnelling nanostructures for sensing applications and development of organotellurium(IV) compounds for semiconductor applications. I am a specialist in data analysis techniques and nanosurface structure. I have served as the editor for many books, been a member of the editorial board in science journals, have published many papers and hold many patents.",institutionString:null,institution:{name:"Sheffield Hallam University",country:{name:"United Kingdom"}}},{id:"54525",title:"Prof.",name:"Abdul Latif",middleName:null,surname:"Ahmad",slug:"abdul-latif-ahmad",fullName:"Abdul Latif Ahmad",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:null},{id:"20567",title:"Prof.",name:"Ado",middleName:null,surname:"Jorio",slug:"ado-jorio",fullName:"Ado Jorio",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"Universidade Federal de Minas Gerais",country:{name:"Brazil"}}},{id:"47940",title:"Dr.",name:"Alberto",middleName:null,surname:"Mantovani",slug:"alberto-mantovani",fullName:"Alberto Mantovani",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:null},{id:"12392",title:"Mr.",name:"Alex",middleName:null,surname:"Lazinica",slug:"alex-lazinica",fullName:"Alex Lazinica",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/12392/images/7282_n.png",biography:"Alex Lazinica is the founder and CEO of IntechOpen. After obtaining a Master's degree in Mechanical Engineering, he continued his PhD studies in Robotics at the Vienna University of Technology. Here he worked as a robotic researcher with the university's Intelligent Manufacturing Systems Group as well as a guest researcher at various European universities, including the Swiss Federal Institute of Technology Lausanne (EPFL). During this time he published more than 20 scientific papers, gave presentations, served as a reviewer for major robotic journals and conferences and most importantly he co-founded and built the International Journal of Advanced Robotic Systems- world's first Open Access journal in the field of robotics. Starting this journal was a pivotal point in his career, since it was a pathway to founding IntechOpen - Open Access publisher focused on addressing academic researchers needs. Alex is a personification of IntechOpen key values being trusted, open and entrepreneurial. Today his focus is on defining the growth and development strategy for the company.",institutionString:null,institution:{name:"TU Wien",country:{name:"Austria"}}},{id:"19816",title:"Prof.",name:"Alexander",middleName:null,surname:"Kokorin",slug:"alexander-kokorin",fullName:"Alexander Kokorin",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/19816/images/1607_n.jpg",biography:"Alexander I. Kokorin: born: 1947, Moscow; DSc., PhD; Principal Research Fellow (Research Professor) of Department of Kinetics and Catalysis, N. Semenov Institute of Chemical Physics, Russian Academy of Sciences, Moscow.\r\nArea of research interests: physical chemistry of complex-organized molecular and nanosized systems, including polymer-metal complexes; the surface of doped oxide semiconductors. He is an expert in structural, absorptive, catalytic and photocatalytic properties, in structural organization and dynamic features of ionic liquids, in magnetic interactions between paramagnetic centers. The author or co-author of 3 books, over 200 articles and reviews in scientific journals and books. He is an actual member of the International EPR/ESR Society, European Society on Quantum Solar Energy Conversion, Moscow House of Scientists, of the Board of Moscow Physical Society.",institutionString:null,institution:{name:"Semenov Institute of Chemical Physics",country:{name:"Russia"}}},{id:"62389",title:"PhD.",name:"Ali Demir",middleName:null,surname:"Sezer",slug:"ali-demir-sezer",fullName:"Ali Demir Sezer",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/62389/images/3413_n.jpg",biography:"Dr. Ali Demir Sezer has a Ph.D. from Pharmaceutical Biotechnology at the Faculty of Pharmacy, University of Marmara (Turkey). He is the member of many Pharmaceutical Associations and acts as a reviewer of scientific journals and European projects under different research areas such as: drug delivery systems, nanotechnology and pharmaceutical biotechnology. Dr. Sezer is the author of many scientific publications in peer-reviewed journals and poster communications. Focus of his research activity is drug delivery, physico-chemical characterization and biological evaluation of biopolymers micro and nanoparticles as modified drug delivery system, and colloidal drug carriers (liposomes, nanoparticles etc.).",institutionString:null,institution:{name:"Marmara University",country:{name:"Turkey"}}},{id:"61051",title:"Prof.",name:"Andrea",middleName:null,surname:"Natale",slug:"andrea-natale",fullName:"Andrea Natale",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:null},{id:"100762",title:"Prof.",name:"Andrea",middleName:null,surname:"Natale",slug:"andrea-natale",fullName:"Andrea Natale",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"St David's Medical Center",country:{name:"United States of America"}}},{id:"107416",title:"Dr.",name:"Andrea",middleName:null,surname:"Natale",slug:"andrea-natale",fullName:"Andrea Natale",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"Texas Cardiac Arrhythmia",country:{name:"United States of America"}}},{id:"64434",title:"Dr.",name:"Angkoon",middleName:null,surname:"Phinyomark",slug:"angkoon-phinyomark",fullName:"Angkoon Phinyomark",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/64434/images/2619_n.jpg",biography:"My name is Angkoon Phinyomark. I received a B.Eng. degree in Computer Engineering with First Class Honors in 2008 from Prince of Songkla University, Songkhla, Thailand, where I received a Ph.D. degree in Electrical Engineering. My research interests are primarily in the area of biomedical signal processing and classification notably EMG (electromyography signal), EOG (electrooculography signal), and EEG (electroencephalography signal), image analysis notably breast cancer analysis and optical coherence tomography, and rehabilitation engineering. I became a student member of IEEE in 2008. During October 2011-March 2012, I had worked at School of Computer Science and Electronic Engineering, University of Essex, Colchester, Essex, United Kingdom. In addition, during a B.Eng. I had been a visiting research student at Faculty of Computer Science, University of Murcia, Murcia, Spain for three months.\n\nI have published over 40 papers during 5 years in refereed journals, books, and conference proceedings in the areas of electro-physiological signals processing and classification, notably EMG and EOG signals, fractal analysis, wavelet analysis, texture analysis, feature extraction and machine learning algorithms, and assistive and rehabilitative devices. I have several computer programming language certificates, i.e. Sun Certified Programmer for the Java 2 Platform 1.4 (SCJP), Microsoft Certified Professional Developer, Web Developer (MCPD), Microsoft Certified Technology Specialist, .NET Framework 2.0 Web (MCTS). I am a Reviewer for several refereed journals and international conferences, such as IEEE Transactions on Biomedical Engineering, IEEE Transactions on Industrial Electronics, Optic Letters, Measurement Science Review, and also a member of the International Advisory Committee for 2012 IEEE Business Engineering and Industrial Applications and 2012 IEEE Symposium on Business, Engineering and Industrial Applications.",institutionString:null,institution:{name:"Joseph Fourier University",country:{name:"France"}}},{id:"55578",title:"Dr.",name:"Antonio",middleName:null,surname:"Jurado-Navas",slug:"antonio-jurado-navas",fullName:"Antonio Jurado-Navas",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/55578/images/4574_n.png",biography:"Antonio Jurado-Navas received the M.S. degree (2002) and the Ph.D. degree (2009) in Telecommunication Engineering, both from the University of Málaga (Spain). He first worked as a consultant at Vodafone-Spain. From 2004 to 2011, he was a Research Assistant with the Communications Engineering Department at the University of Málaga. In 2011, he became an Assistant Professor in the same department. From 2012 to 2015, he was with Ericsson Spain, where he was working on geo-location\ntools for third generation mobile networks. Since 2015, he is a Marie-Curie fellow at the Denmark Technical University. His current research interests include the areas of mobile communication systems and channel modeling in addition to atmospheric optical communications, adaptive optics and statistics",institutionString:null,institution:{name:"University of Malaga",country:{name:"Spain"}}}],filtersByRegion:[{group:"region",caption:"North America",value:1,count:5817},{group:"region",caption:"Middle and South America",value:2,count:5282},{group:"region",caption:"Africa",value:3,count:1755},{group:"region",caption:"Asia",value:4,count:10511},{group:"region",caption:"Australia and Oceania",value:5,count:906},{group:"region",caption:"Europe",value:6,count:15915}],offset:12,limit:12,total:119317},chapterEmbeded:{data:{}},editorApplication:{success:null,errors:{}},ofsBooks:{filterParams:{topicId:"10"},books:[{type:"book",id:"8969",title:"Deserts and Desertification",subtitle:null,isOpenForSubmission:!0,hash:"4df95c7f295de7f6003e635d9a309fe9",slug:null,bookSignature:"Dr. Yajuan Zhu, Dr. Qinghong Luo and Dr. Yuguo Liu",coverURL:"https://cdn.intechopen.com/books/images_new/8969.jpg",editedByType:null,editors:[{id:"180427",title:"Dr.",name:"Yajuan",surname:"Zhu",slug:"yajuan-zhu",fullName:"Yajuan Zhu"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10754",title:"Global Warming and Climate Change",subtitle:null,isOpenForSubmission:!0,hash:"8994a915a306910a01cbe2027aa2139b",slug:null,bookSignature:"Dr. Stuart Arthur Harris",coverURL:"https://cdn.intechopen.com/books/images_new/10754.jpg",editedByType:null,editors:[{id:"12539",title:"Dr.",name:"Stuart",surname:"Harris",slug:"stuart-harris",fullName:"Stuart Harris"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10756",title:"Urban Agglomeration",subtitle:null,isOpenForSubmission:!0,hash:"65f2a1fef9c804c29b18ef3ac4a35066",slug:null,bookSignature:"Dr. Luis Loures",coverURL:"https://cdn.intechopen.com/books/images_new/10756.jpg",editedByType:null,editors:[{id:"108118",title:"Dr.",name:"Luis",surname:"Loures",slug:"luis-loures",fullName:"Luis Loures"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10759",title:"Gravitational Field",subtitle:null,isOpenForSubmission:!0,hash:"9c388947e68d72d8b23d5c7018112852",slug:null,bookSignature:"Prof. Khalid S. Essa",coverURL:"https://cdn.intechopen.com/books/images_new/10759.jpg",editedByType:null,editors:[{id:"102766",title:"Prof.",name:"Khalid S.",surname:"Essa",slug:"khalid-s.-essa",fullName:"Khalid S. Essa"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10761",title:"Glaciology",subtitle:null,isOpenForSubmission:!0,hash:"bd112c839a9b8037f1302ca6c0d55a2a",slug:null,bookSignature:"",coverURL:"https://cdn.intechopen.com/books/images_new/10761.jpg",editedByType:null,editors:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10762",title:"Cosmology",subtitle:null,isOpenForSubmission:!0,hash:"3a41decca20fde69134f56fe21753e64",slug:null,bookSignature:"Dr. Constantinos Pallis",coverURL:"https://cdn.intechopen.com/books/images_new/10762.jpg",editedByType:null,editors:[{id:"154011",title:"Dr.",name:"Constantinos",surname:"Pallis",slug:"constantinos-pallis",fullName:"Constantinos Pallis"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10851",title:"Volcanology",subtitle:null,isOpenForSubmission:!0,hash:"6cfc09f959efecf9ba95654b1bb4b987",slug:null,bookSignature:"Prof. Angelo Paone and Prof. Sung-Hyo Yun",coverURL:"https://cdn.intechopen.com/books/images_new/10851.jpg",editedByType:null,editors:[{id:"182871",title:"Prof.",name:"Angelo",surname:"Paone",slug:"angelo-paone",fullName:"Angelo Paone"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10949",title:"Clay and Clay Minerals",subtitle:null,isOpenForSubmission:!0,hash:"44d08b9e490617fcbf7786c381c85fbc",slug:null,bookSignature:"Prof. Gustavo Morari Do Nascimento",coverURL:"https://cdn.intechopen.com/books/images_new/10949.jpg",editedByType:null,editors:[{id:"7153",title:"Prof.",name:"Gustavo",surname:"Morari Do Nascimento",slug:"gustavo-morari-do-nascimento",fullName:"Gustavo Morari Do Nascimento"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10951",title:"Mining Technology",subtitle:null,isOpenForSubmission:!0,hash:"04396c3eac82ed4aca81cf73bd404138",slug:null,bookSignature:"Dr. Andrew Hammond, Dr. Brendan Donnelly and Dr. Nanjappa Ashwath",coverURL:"https://cdn.intechopen.com/books/images_new/10951.jpg",editedByType:null,editors:[{id:"259487",title:"Dr.",name:"Andrew",surname:"Hammond",slug:"andrew-hammond",fullName:"Andrew Hammond"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10952",title:"Soil Science - Emerging Technologies, Global Perspectives and Applications",subtitle:null,isOpenForSubmission:!0,hash:"3dbedd2099c57a24eaab114be4ba2b48",slug:null,bookSignature:"Dr. Michael Thomas Aide and Dr. Indi Braden",coverURL:"https://cdn.intechopen.com/books/images_new/10952.jpg",editedByType:null,editors:[{id:"185895",title:"Dr.",name:"Michael",surname:"Aide",slug:"michael-aide",fullName:"Michael Aide"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10954",title:"Dark Matter - Recent Observations and Theoretical Advances",subtitle:null,isOpenForSubmission:!0,hash:"b0fbd6ee0096e4c16e9513bf01273ab3",slug:null,bookSignature:"Dr. Michael L. Smith",coverURL:"https://cdn.intechopen.com/books/images_new/10954.jpg",editedByType:null,editors:[{id:"59479",title:"Dr.",name:"Michael L.",surname:"Smith",slug:"michael-l.-smith",fullName:"Michael L. Smith"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}}],filtersByTopic:[{group:"topic",caption:"Agricultural and Biological Sciences",value:5,count:27},{group:"topic",caption:"Biochemistry, Genetics and Molecular Biology",value:6,count:8},{group:"topic",caption:"Business, Management and Economics",value:7,count:3},{group:"topic",caption:"Chemistry",value:8,count:11},{group:"topic",caption:"Computer and Information Science",value:9,count:9},{group:"topic",caption:"Earth and Planetary Sciences",value:10,count:10},{group:"topic",caption:"Engineering",value:11,count:24},{group:"topic",caption:"Environmental Sciences",value:12,count:2},{group:"topic",caption:"Immunology and Microbiology",value:13,count:4},{group:"topic",caption:"Materials Science",value:14,count:7},{group:"topic",caption:"Mathematics",value:15,count:3},{group:"topic",caption:"Medicine",value:16,count:47},{group:"topic",caption:"Neuroscience",value:18,count:3},{group:"topic",caption:"Pharmacology, Toxicology and Pharmaceutical Science",value:19,count:3},{group:"topic",caption:"Physics",value:20,count:4},{group:"topic",caption:"Psychology",value:21,count:4},{group:"topic",caption:"Robotics",value:22,count:2},{group:"topic",caption:"Social Sciences",value:23,count:3},{group:"topic",caption:"Technology",value:24,count:1},{group:"topic",caption:"Veterinary Medicine and Science",value:25,count:2}],offset:12,limit:12,total:11},popularBooks:{featuredBooks:[{type:"book",id:"8472",title:"Bioactive Compounds in Nutraceutical and Functional Food for Good Human Health",subtitle:null,isOpenForSubmission:!1,hash:"8855452919b8495810ef8e88641feb20",slug:"bioactive-compounds-in-nutraceutical-and-functional-food-for-good-human-health",bookSignature:"Kavita Sharma, Kanchan Mishra, Kula Kamal Senapati and Corina Danciu",coverURL:"https://cdn.intechopen.com/books/images_new/8472.jpg",editors:[{id:"197731",title:"Dr.",name:"Kavita",middleName:null,surname:"Sharma",slug:"kavita-sharma",fullName:"Kavita Sharma"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9685",title:"Agroecosystems",subtitle:"Very Complex Environmental Systems",isOpenForSubmission:!1,hash:"c44f7b43a9f9610c243dc32300d37df6",slug:"agroecosystems-very-complex-environmental-systems",bookSignature:"Marcelo L. Larramendy and Sonia Soloneski",coverURL:"https://cdn.intechopen.com/books/images_new/9685.jpg",editors:[{id:"14764",title:"Dr.",name:"Marcelo L.",middleName:null,surname:"Larramendy",slug:"marcelo-l.-larramendy",fullName:"Marcelo L. Larramendy"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"8564",title:"Cell Interaction",subtitle:"Molecular and Immunological Basis for Disease Management",isOpenForSubmission:!1,hash:"98d7f080d80524285f091e72a8e92a6d",slug:"cell-interaction-molecular-and-immunological-basis-for-disease-management",bookSignature:"Bhawana Singh",coverURL:"https://cdn.intechopen.com/books/images_new/8564.jpg",editors:[{id:"315192",title:"Dr.",name:"Bhawana",middleName:null,surname:"Singh",slug:"bhawana-singh",fullName:"Bhawana Singh"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9629",title:"Electroencephalography",subtitle:"From Basic Research to Clinical Applications",isOpenForSubmission:!1,hash:"8147834b6c6deeeec40f407c71ad60b4",slug:"electroencephalography-from-basic-research-to-clinical-applications",bookSignature:"Hideki Nakano",coverURL:"https://cdn.intechopen.com/books/images_new/9629.jpg",editors:[{id:"196461",title:"Prof.",name:"Hideki",middleName:null,surname:"Nakano",slug:"hideki-nakano",fullName:"Hideki Nakano"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9161",title:"Frailty in the Elderly",subtitle:"Understanding and Managing Complexity",isOpenForSubmission:!1,hash:"a4f0f2fade8fb8ba35c405f5ad31a823",slug:"frailty-in-the-elderly-understanding-and-managing-complexity",bookSignature:"Sara Palermo",coverURL:"https://cdn.intechopen.com/books/images_new/9161.jpg",editors:[{id:"233998",title:"Ph.D.",name:"Sara",middleName:null,surname:"Palermo",slug:"sara-palermo",fullName:"Sara Palermo"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"8760",title:"Structure Topology and Symplectic Geometry",subtitle:null,isOpenForSubmission:!1,hash:"8974840985ec3652492c83e20233bf02",slug:"structure-topology-and-symplectic-geometry",bookSignature:"Kamal Shah and Min Lei",coverURL:"https://cdn.intechopen.com/books/images_new/8760.jpg",editors:[{id:"231748",title:"Dr.",name:"Kamal",middleName:null,surname:"Shah",slug:"kamal-shah",fullName:"Kamal Shah"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9385",title:"Renewable Energy",subtitle:"Technologies and Applications",isOpenForSubmission:!1,hash:"a6b446d19166f17f313008e6c056f3d8",slug:"renewable-energy-technologies-and-applications",bookSignature:"Tolga Taner, Archana Tiwari and Taha Selim Ustun",coverURL:"https://cdn.intechopen.com/books/images_new/9385.jpg",editors:[{id:"197240",title:"Associate Prof.",name:"Tolga",middleName:null,surname:"Taner",slug:"tolga-taner",fullName:"Tolga Taner"}],equalEditorOne:{id:"186791",title:"Dr.",name:"Archana",middleName:null,surname:"Tiwari",slug:"archana-tiwari",fullName:"Archana Tiwari",profilePictureURL:"https://mts.intechopen.com/storage/users/186791/images/system/186791.jpg",biography:"Dr. Archana Tiwari is Associate Professor at Amity University, India. Her research interests include renewable sources of energy from microalgae and further utilizing the residual biomass for the generation of value-added products, bioremediation through microalgae and microbial consortium, antioxidative enzymes and stress, and nutraceuticals from microalgae. She has been working on algal biotechnology for the last two decades. She has published her research in many international journals and has authored many books and chapters with renowned publishing houses. She has also delivered talks as an invited speaker at many national and international conferences. Dr. Tiwari is the recipient of several awards including Researcher of the Year and Distinguished Scientist.",institutionString:"Amity University",position:null,outsideEditionCount:0,totalCites:0,totalAuthoredChapters:"3",totalChapterViews:"0",totalEditedBooks:"1",institution:{name:"Amity University",institutionURL:null,country:{name:"India"}}},equalEditorTwo:{id:"197609",title:"Prof.",name:"Taha Selim",middleName:null,surname:"Ustun",slug:"taha-selim-ustun",fullName:"Taha Selim Ustun",profilePictureURL:"https://mts.intechopen.com/storage/users/197609/images/system/197609.jpeg",biography:"Dr. Taha Selim Ustun received a Ph.D. in Electrical Engineering from Victoria University, Melbourne, Australia. He is a researcher with the Fukushima Renewable Energy Institute, AIST (FREA), where he leads the Smart Grid Cybersecurity Laboratory. Prior to that, he was a faculty member with the School of Electrical and Computer Engineering, Carnegie Mellon University, Pittsburgh, PA, USA. His current research interests include power systems protection, communication in power networks, distributed generation, microgrids, electric vehicle integration, and cybersecurity in smart grids. He serves on the editorial boards of IEEE Access, IEEE Transactions on Industrial Informatics, Energies, Electronics, Electricity, World Electric Vehicle and Information journals. Dr. Ustun is a member of the IEEE 2004 and 2800, IEC Renewable Energy Management WG 8, and IEC TC 57 WG17. He has been invited to run specialist courses in Africa, India, and China. He has delivered talks for the Qatar Foundation, the World Energy Council, the Waterloo Global Science Initiative, and the European Union Energy Initiative (EUEI). His research has attracted funding from prestigious programs in Japan, Australia, the European Union, and North America.",institutionString:"Fukushima Renewable Energy Institute, AIST (FREA)",position:null,outsideEditionCount:0,totalCites:0,totalAuthoredChapters:"1",totalChapterViews:"0",totalEditedBooks:"0",institution:{name:"National Institute of Advanced Industrial Science and Technology",institutionURL:null,country:{name:"Japan"}}},equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"2160",title:"MATLAB",subtitle:"A Fundamental Tool for Scientific Computing and Engineering Applications - Volume 1",isOpenForSubmission:!1,hash:"dd9c658341fbd264ed4f8d9e6aa8ca29",slug:"matlab-a-fundamental-tool-for-scientific-computing-and-engineering-applications-volume-1",bookSignature:"Vasilios N. Katsikis",coverURL:"https://cdn.intechopen.com/books/images_new/2160.jpg",editors:[{id:"12289",title:"Prof.",name:"Vasilios",middleName:"N.",surname:"Katsikis",slug:"vasilios-katsikis",fullName:"Vasilios Katsikis"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"3568",title:"Recent Advances in Plant in vitro Culture",subtitle:null,isOpenForSubmission:!1,hash:"830bbb601742c85a3fb0eeafe1454c43",slug:"recent-advances-in-plant-in-vitro-culture",bookSignature:"Annarita Leva and Laura M. R. Rinaldi",coverURL:"https://cdn.intechopen.com/books/images_new/3568.jpg",editors:[{id:"142145",title:"Dr.",name:"Annarita",middleName:null,surname:"Leva",slug:"annarita-leva",fullName:"Annarita Leva"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"7031",title:"Liver Pathology",subtitle:null,isOpenForSubmission:!1,hash:"631321b0565459ed0175917f1c8c727f",slug:"liver-pathology",bookSignature:"Vijay Gayam and Omer Engin",coverURL:"https://cdn.intechopen.com/books/images_new/7031.jpg",editors:[{id:"273100",title:"Dr.",name:"Vijay",middleName:null,surname:"Gayam",slug:"vijay-gayam",fullName:"Vijay Gayam"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"3560",title:"Advances in Landscape Architecture",subtitle:null,isOpenForSubmission:!1,hash:"a20614517ec5f7e91188fe8e42832138",slug:"advances-in-landscape-architecture",bookSignature:"Murat Özyavuz",coverURL:"https://cdn.intechopen.com/books/images_new/3560.jpg",editors:[{id:"93073",title:"Dr.",name:"Murat",middleName:null,surname:"Ozyavuz",slug:"murat-ozyavuz",fullName:"Murat Ozyavuz"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"8511",title:"Cyberspace",subtitle:null,isOpenForSubmission:!1,hash:"8c1cdeb133dbe6cc1151367061c1bba6",slug:"cyberspace",bookSignature:"Evon Abu-Taieh, Abdelkrim El Mouatasim and Issam H. Al Hadid",coverURL:"https://cdn.intechopen.com/books/images_new/8511.jpg",editors:[{id:"223522",title:"Dr.",name:"Evon",middleName:"M.O.",surname:"Abu-Taieh",slug:"evon-abu-taieh",fullName:"Evon Abu-Taieh"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}}],offset:12,limit:12,total:5319},hotBookTopics:{hotBooks:[],offset:0,limit:12,total:null},publish:{},publishingProposal:{success:null,errors:{}},books:{featuredBooks:[{type:"book",id:"8472",title:"Bioactive Compounds in Nutraceutical and Functional Food for Good Human Health",subtitle:null,isOpenForSubmission:!1,hash:"8855452919b8495810ef8e88641feb20",slug:"bioactive-compounds-in-nutraceutical-and-functional-food-for-good-human-health",bookSignature:"Kavita Sharma, Kanchan Mishra, Kula Kamal Senapati and Corina Danciu",coverURL:"https://cdn.intechopen.com/books/images_new/8472.jpg",editors:[{id:"197731",title:"Dr.",name:"Kavita",middleName:null,surname:"Sharma",slug:"kavita-sharma",fullName:"Kavita Sharma"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9685",title:"Agroecosystems",subtitle:"Very Complex Environmental Systems",isOpenForSubmission:!1,hash:"c44f7b43a9f9610c243dc32300d37df6",slug:"agroecosystems-very-complex-environmental-systems",bookSignature:"Marcelo L. Larramendy and Sonia Soloneski",coverURL:"https://cdn.intechopen.com/books/images_new/9685.jpg",editors:[{id:"14764",title:"Dr.",name:"Marcelo L.",middleName:null,surname:"Larramendy",slug:"marcelo-l.-larramendy",fullName:"Marcelo L. Larramendy"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"8564",title:"Cell Interaction",subtitle:"Molecular and Immunological Basis for Disease Management",isOpenForSubmission:!1,hash:"98d7f080d80524285f091e72a8e92a6d",slug:"cell-interaction-molecular-and-immunological-basis-for-disease-management",bookSignature:"Bhawana Singh",coverURL:"https://cdn.intechopen.com/books/images_new/8564.jpg",editors:[{id:"315192",title:"Dr.",name:"Bhawana",middleName:null,surname:"Singh",slug:"bhawana-singh",fullName:"Bhawana Singh"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9629",title:"Electroencephalography",subtitle:"From Basic Research to Clinical Applications",isOpenForSubmission:!1,hash:"8147834b6c6deeeec40f407c71ad60b4",slug:"electroencephalography-from-basic-research-to-clinical-applications",bookSignature:"Hideki Nakano",coverURL:"https://cdn.intechopen.com/books/images_new/9629.jpg",editors:[{id:"196461",title:"Prof.",name:"Hideki",middleName:null,surname:"Nakano",slug:"hideki-nakano",fullName:"Hideki Nakano"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"8760",title:"Structure Topology and Symplectic Geometry",subtitle:null,isOpenForSubmission:!1,hash:"8974840985ec3652492c83e20233bf02",slug:"structure-topology-and-symplectic-geometry",bookSignature:"Kamal Shah and Min Lei",coverURL:"https://cdn.intechopen.com/books/images_new/8760.jpg",editors:[{id:"231748",title:"Dr.",name:"Kamal",middleName:null,surname:"Shah",slug:"kamal-shah",fullName:"Kamal Shah"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9161",title:"Frailty in the Elderly",subtitle:"Understanding and Managing Complexity",isOpenForSubmission:!1,hash:"a4f0f2fade8fb8ba35c405f5ad31a823",slug:"frailty-in-the-elderly-understanding-and-managing-complexity",bookSignature:"Sara Palermo",coverURL:"https://cdn.intechopen.com/books/images_new/9161.jpg",editors:[{id:"233998",title:"Ph.D.",name:"Sara",middleName:null,surname:"Palermo",slug:"sara-palermo",fullName:"Sara Palermo"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9385",title:"Renewable Energy",subtitle:"Technologies and Applications",isOpenForSubmission:!1,hash:"a6b446d19166f17f313008e6c056f3d8",slug:"renewable-energy-technologies-and-applications",bookSignature:"Tolga Taner, Archana Tiwari and Taha Selim Ustun",coverURL:"https://cdn.intechopen.com/books/images_new/9385.jpg",editors:[{id:"197240",title:"Associate Prof.",name:"Tolga",middleName:null,surname:"Taner",slug:"tolga-taner",fullName:"Tolga Taner"}],equalEditorOne:{id:"186791",title:"Dr.",name:"Archana",middleName:null,surname:"Tiwari",slug:"archana-tiwari",fullName:"Archana Tiwari",profilePictureURL:"https://mts.intechopen.com/storage/users/186791/images/system/186791.jpg",biography:"Dr. Archana Tiwari is Associate Professor at Amity University, India. Her research interests include renewable sources of energy from microalgae and further utilizing the residual biomass for the generation of value-added products, bioremediation through microalgae and microbial consortium, antioxidative enzymes and stress, and nutraceuticals from microalgae. She has been working on algal biotechnology for the last two decades. She has published her research in many international journals and has authored many books and chapters with renowned publishing houses. She has also delivered talks as an invited speaker at many national and international conferences. Dr. Tiwari is the recipient of several awards including Researcher of the Year and Distinguished Scientist.",institutionString:"Amity University",position:null,outsideEditionCount:0,totalCites:0,totalAuthoredChapters:"3",totalChapterViews:"0",totalEditedBooks:"1",institution:{name:"Amity University",institutionURL:null,country:{name:"India"}}},equalEditorTwo:{id:"197609",title:"Prof.",name:"Taha Selim",middleName:null,surname:"Ustun",slug:"taha-selim-ustun",fullName:"Taha Selim Ustun",profilePictureURL:"https://mts.intechopen.com/storage/users/197609/images/system/197609.jpeg",biography:"Dr. Taha Selim Ustun received a Ph.D. in Electrical Engineering from Victoria University, Melbourne, Australia. He is a researcher with the Fukushima Renewable Energy Institute, AIST (FREA), where he leads the Smart Grid Cybersecurity Laboratory. Prior to that, he was a faculty member with the School of Electrical and Computer Engineering, Carnegie Mellon University, Pittsburgh, PA, USA. His current research interests include power systems protection, communication in power networks, distributed generation, microgrids, electric vehicle integration, and cybersecurity in smart grids. He serves on the editorial boards of IEEE Access, IEEE Transactions on Industrial Informatics, Energies, Electronics, Electricity, World Electric Vehicle and Information journals. Dr. Ustun is a member of the IEEE 2004 and 2800, IEC Renewable Energy Management WG 8, and IEC TC 57 WG17. He has been invited to run specialist courses in Africa, India, and China. He has delivered talks for the Qatar Foundation, the World Energy Council, the Waterloo Global Science Initiative, and the European Union Energy Initiative (EUEI). His research has attracted funding from prestigious programs in Japan, Australia, the European Union, and North America.",institutionString:"Fukushima Renewable Energy Institute, AIST (FREA)",position:null,outsideEditionCount:0,totalCites:0,totalAuthoredChapters:"1",totalChapterViews:"0",totalEditedBooks:"0",institution:{name:"National Institute of Advanced Industrial Science and Technology",institutionURL:null,country:{name:"Japan"}}},equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"2160",title:"MATLAB",subtitle:"A Fundamental Tool for Scientific Computing and Engineering Applications - Volume 1",isOpenForSubmission:!1,hash:"dd9c658341fbd264ed4f8d9e6aa8ca29",slug:"matlab-a-fundamental-tool-for-scientific-computing-and-engineering-applications-volume-1",bookSignature:"Vasilios N. Katsikis",coverURL:"https://cdn.intechopen.com/books/images_new/2160.jpg",editors:[{id:"12289",title:"Prof.",name:"Vasilios",middleName:"N.",surname:"Katsikis",slug:"vasilios-katsikis",fullName:"Vasilios Katsikis"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"7031",title:"Liver Pathology",subtitle:null,isOpenForSubmission:!1,hash:"631321b0565459ed0175917f1c8c727f",slug:"liver-pathology",bookSignature:"Vijay Gayam and Omer Engin",coverURL:"https://cdn.intechopen.com/books/images_new/7031.jpg",editors:[{id:"273100",title:"Dr.",name:"Vijay",middleName:null,surname:"Gayam",slug:"vijay-gayam",fullName:"Vijay Gayam"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"3568",title:"Recent Advances in Plant in vitro Culture",subtitle:null,isOpenForSubmission:!1,hash:"830bbb601742c85a3fb0eeafe1454c43",slug:"recent-advances-in-plant-in-vitro-culture",bookSignature:"Annarita Leva and Laura M. R. Rinaldi",coverURL:"https://cdn.intechopen.com/books/images_new/3568.jpg",editors:[{id:"142145",title:"Dr.",name:"Annarita",middleName:null,surname:"Leva",slug:"annarita-leva",fullName:"Annarita Leva"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}}],latestBooks:[{type:"book",id:"9515",title:"Update in Geriatrics",subtitle:null,isOpenForSubmission:!1,hash:"913e16c0ae977474b283bbd4269564c8",slug:"update-in-geriatrics",bookSignature:"Somchai Amornyotin",coverURL:"https://cdn.intechopen.com/books/images_new/9515.jpg",editedByType:"Edited by",editors:[{id:"185484",title:"Prof.",name:"Somchai",middleName:null,surname:"Amornyotin",slug:"somchai-amornyotin",fullName:"Somchai Amornyotin"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"9021",title:"Novel Perspectives of Stem Cell Manufacturing and Therapies",subtitle:null,isOpenForSubmission:!1,hash:"522c6db871783d2a11c17b83f1fd4e18",slug:"novel-perspectives-of-stem-cell-manufacturing-and-therapies",bookSignature:"Diana Kitala and Ana Colette Maurício",coverURL:"https://cdn.intechopen.com/books/images_new/9021.jpg",editedByType:"Edited by",editors:[{id:"203598",title:"Ph.D.",name:"Diana",middleName:null,surname:"Kitala",slug:"diana-kitala",fullName:"Diana Kitala"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"7030",title:"Satellite Systems",subtitle:"Design, Modeling, Simulation and Analysis",isOpenForSubmission:!1,hash:"b9db6d2645ef248ceb1b33ea75f38e88",slug:"satellite-systems-design-modeling-simulation-and-analysis",bookSignature:"Tien Nguyen",coverURL:"https://cdn.intechopen.com/books/images_new/7030.jpg",editedByType:"Edited by",editors:[{id:"210657",title:"Dr.",name:"Tien M.",middleName:"Manh",surname:"Nguyen",slug:"tien-m.-nguyen",fullName:"Tien M. Nguyen"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10413",title:"A Collection of Papers on Chaos Theory and Its Applications",subtitle:null,isOpenForSubmission:!1,hash:"900b71b164948830fec3d6254b7881f7",slug:"a-collection-of-papers-on-chaos-theory-and-its-applications",bookSignature:"Paul Bracken and Dimo I. Uzunov",coverURL:"https://cdn.intechopen.com/books/images_new/10413.jpg",editedByType:"Edited by",editors:[{id:"92883",title:"Prof.",name:"Paul",middleName:null,surname:"Bracken",slug:"paul-bracken",fullName:"Paul Bracken"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"9154",title:"Spinal Deformities in Adolescents, Adults and Older Adults",subtitle:null,isOpenForSubmission:!1,hash:"313f1dffa803b60a14ff1e6966e93d91",slug:"spinal-deformities-in-adolescents-adults-and-older-adults",bookSignature:"Josette Bettany-Saltikov and Gokulakannan Kandasamy",coverURL:"https://cdn.intechopen.com/books/images_new/9154.jpg",editedByType:"Edited by",editors:[{id:"94802",title:"Dr.",name:"Josette",middleName:null,surname:"Bettany-Saltikov",slug:"josette-bettany-saltikov",fullName:"Josette Bettany-Saltikov"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"8148",title:"Investment Strategies in Emerging New Trends in Finance",subtitle:null,isOpenForSubmission:!1,hash:"3b714d96a68d2acdfbd7b50aba6504ca",slug:"investment-strategies-in-emerging-new-trends-in-finance",bookSignature:"Reza Gharoie Ahangar and Asma Salman",coverURL:"https://cdn.intechopen.com/books/images_new/8148.jpg",editedByType:"Edited by",editors:[{id:"91081",title:"Dr.",name:"Reza",middleName:null,surname:"Gharoie Ahangar",slug:"reza-gharoie-ahangar",fullName:"Reza Gharoie Ahangar"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10201",title:"Post-Transition Metals",subtitle:null,isOpenForSubmission:!1,hash:"cc7f53ff5269916e3ce29f65a51a87ae",slug:"post-transition-metals",bookSignature:"Mohammed Muzibur Rahman, Abdullah Mohammed Asiri, Anish Khan, Inamuddin and Thamer Tabbakh",coverURL:"https://cdn.intechopen.com/books/images_new/10201.jpg",editedByType:"Edited by",editors:[{id:"24438",title:"Prof.",name:"Mohammed Muzibur",middleName:null,surname:"Rahman",slug:"mohammed-muzibur-rahman",fullName:"Mohammed Muzibur Rahman"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"9959",title:"Biomedical Signal and Image Processing",subtitle:null,isOpenForSubmission:!1,hash:"22b87a09bd6df065d78c175235d367c8",slug:"biomedical-signal-and-image-processing",bookSignature:"Yongxia Zhou",coverURL:"https://cdn.intechopen.com/books/images_new/9959.jpg",editedByType:"Edited by",editors:[{id:"259308",title:"Dr.",name:"Yongxia",middleName:null,surname:"Zhou",slug:"yongxia-zhou",fullName:"Yongxia Zhou"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"8472",title:"Bioactive Compounds in Nutraceutical and Functional Food for Good Human Health",subtitle:null,isOpenForSubmission:!1,hash:"8855452919b8495810ef8e88641feb20",slug:"bioactive-compounds-in-nutraceutical-and-functional-food-for-good-human-health",bookSignature:"Kavita Sharma, Kanchan Mishra, Kula Kamal Senapati and Corina Danciu",coverURL:"https://cdn.intechopen.com/books/images_new/8472.jpg",editedByType:"Edited by",editors:[{id:"197731",title:"Dr.",name:"Kavita",middleName:null,surname:"Sharma",slug:"kavita-sharma",fullName:"Kavita Sharma"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"8760",title:"Structure Topology and Symplectic Geometry",subtitle:null,isOpenForSubmission:!1,hash:"8974840985ec3652492c83e20233bf02",slug:"structure-topology-and-symplectic-geometry",bookSignature:"Kamal Shah and Min Lei",coverURL:"https://cdn.intechopen.com/books/images_new/8760.jpg",editedByType:"Edited by",editors:[{id:"231748",title:"Dr.",name:"Kamal",middleName:null,surname:"Shah",slug:"kamal-shah",fullName:"Kamal Shah"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}}]},subject:{topic:{id:"310",title:"Pestology",slug:"agronomy-pestology",parent:{title:"Agronomy",slug:"agronomy"},numberOfBooks:2,numberOfAuthorsAndEditors:65,numberOfWosCitations:63,numberOfCrossrefCitations:46,numberOfDimensionsCitations:91,videoUrl:null,fallbackUrl:null,description:null},booksByTopicFilter:{topicSlug:"agronomy-pestology",sort:"-publishedDate",limit:12,offset:0},booksByTopicCollection:[{type:"book",id:"6095",title:"Insecticides",subtitle:"Agriculture and Toxicology",isOpenForSubmission:!1,hash:"4e249884334e8155c1e57e34b7d8c9d2",slug:"insecticides-agriculture-and-toxicology",bookSignature:"Ghousia Begum",coverURL:"https://cdn.intechopen.com/books/images_new/6095.jpg",editedByType:"Edited by",editors:[{id:"83759",title:"Dr.",name:"Ghousia",middleName:null,surname:"Begum",slug:"ghousia-begum",fullName:"Ghousia Begum"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"5526",title:"Biological Control of Pest and Vector Insects",subtitle:null,isOpenForSubmission:!1,hash:"2e787450cc7eded94883ef67852a07b4",slug:"biological-control-of-pest-and-vector-insects",bookSignature:"Vonnie D.C. Shields",coverURL:"https://cdn.intechopen.com/books/images_new/5526.jpg",editedByType:"Edited by",editors:[{id:"82613",title:"Dr.",name:"Vonnie D.C.",middleName:null,surname:"Shields",slug:"vonnie-d.c.-shields",fullName:"Vonnie D.C. Shields"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}}],booksByTopicTotal:2,mostCitedChapters:[{id:"53392",doi:"10.5772/66461",title:"The Sublethal Effects of Insecticides in Insects",slug:"the-sublethal-effects-of-insecticides-in-insects",totalDownloads:3209,totalCrossrefCites:13,totalDimensionsCites:24,book:{slug:"biological-control-of-pest-and-vector-insects",title:"Biological Control of Pest and Vector Insects",fullTitle:"Biological Control of Pest and Vector Insects"},signatures:"Solange M. de França, Mariana O. Breda, Douglas R. S. Barbosa,\nAlice M. N. Araujo and Carolina A. Guedes",authors:[{id:"72398",title:"MSc",name:"Solange",middleName:"Maria",surname:"De França",slug:"solange-de-franca",fullName:"Solange De França"},{id:"161232",title:"MSc.",name:"Mariana",middleName:null,surname:"Breda",slug:"mariana-breda",fullName:"Mariana Breda"},{id:"193241",title:"Dr.",name:"Douglas Rafael",middleName:null,surname:"Silva Barbosa",slug:"douglas-rafael-silva-barbosa",fullName:"Douglas Rafael Silva Barbosa"},{id:"193242",title:"Dr.",name:"Alice Maria",middleName:null,surname:"Nascimento Araújo",slug:"alice-maria-nascimento-araujo",fullName:"Alice Maria Nascimento Araújo"},{id:"193243",title:"MSc.",name:"Carolina",middleName:null,surname:"Arruda Guedes",slug:"carolina-arruda-guedes",fullName:"Carolina Arruda Guedes"}]},{id:"53055",doi:"10.5772/66463",title:"Semiochemicals and Their Potential Use in Pest Management",slug:"semiochemicals-and-their-potential-use-in-pest-management",totalDownloads:4162,totalCrossrefCites:8,totalDimensionsCites:12,book:{slug:"biological-control-of-pest-and-vector-insects",title:"Biological Control of Pest and Vector Insects",fullTitle:"Biological Control of Pest and Vector Insects"},signatures:"Hamadttu Abdel Farag El-Shafie and Jose Romeno Faleiro",authors:[{id:"192142",title:"Dr.",name:"Hamadttu",middleName:null,surname:"El-Shafie",slug:"hamadttu-el-shafie",fullName:"Hamadttu El-Shafie"}]},{id:"58221",doi:"10.5772/intechopen.72448",title:"Particulate Nanoinsecticides: A New Concept in Insect Pest Management",slug:"particulate-nanoinsecticides-a-new-concept-in-insect-pest-management",totalDownloads:1081,totalCrossrefCites:2,totalDimensionsCites:8,book:{slug:"insecticides-agriculture-and-toxicology",title:"Insecticides",fullTitle:"Insecticides - Agriculture and Toxicology"},signatures:"Teodoro Stadler, Micaela Buteler, Susana R. Valdez and Javier G.\nGitto",authors:[{id:"207985",title:"Ph.D.",name:"Teodoro",middleName:null,surname:"Stadler",slug:"teodoro-stadler",fullName:"Teodoro Stadler"},{id:"208044",title:"Dr.",name:"Micaela",middleName:null,surname:"Buteler",slug:"micaela-buteler",fullName:"Micaela Buteler"},{id:"208045",title:"Ph.D. Student",name:"Javier",middleName:"Gustavo",surname:"Gitto",slug:"javier-gitto",fullName:"Javier Gitto"},{id:"210819",title:"Dr.",name:"Susana Ruth",middleName:null,surname:"Valdez",slug:"susana-ruth-valdez",fullName:"Susana Ruth Valdez"}]}],mostDownloadedChaptersLast30Days:[{id:"53055",title:"Semiochemicals and Their Potential Use in Pest Management",slug:"semiochemicals-and-their-potential-use-in-pest-management",totalDownloads:4162,totalCrossrefCites:8,totalDimensionsCites:12,book:{slug:"biological-control-of-pest-and-vector-insects",title:"Biological Control of Pest and Vector Insects",fullTitle:"Biological Control of Pest and Vector Insects"},signatures:"Hamadttu Abdel Farag El-Shafie and Jose Romeno Faleiro",authors:[{id:"192142",title:"Dr.",name:"Hamadttu",middleName:null,surname:"El-Shafie",slug:"hamadttu-el-shafie",fullName:"Hamadttu El-Shafie"}]},{id:"58195",title:"Role of the Formulation in the Efficacy and Dissipation of Agricultural Insecticides",slug:"role-of-the-formulation-in-the-efficacy-and-dissipation-of-agricultural-insecticides",totalDownloads:1301,totalCrossrefCites:1,totalDimensionsCites:1,book:{slug:"insecticides-agriculture-and-toxicology",title:"Insecticides",fullTitle:"Insecticides - Agriculture and Toxicology"},signatures:"Karina Buzzetti",authors:[{id:"214596",title:"Dr.",name:"Karina",middleName:null,surname:"Buzzetti",slug:"karina-buzzetti",fullName:"Karina Buzzetti"}]},{id:"53635",title:"Developing the Arsenal Against Pest and Vector Dipterans: Inputs of Transgenic and Paratransgenic Biotechnologies",slug:"developing-the-arsenal-against-pest-and-vector-dipterans-inputs-of-transgenic-and-paratransgenic-bio",totalDownloads:1595,totalCrossrefCites:2,totalDimensionsCites:4,book:{slug:"biological-control-of-pest-and-vector-insects",title:"Biological Control of Pest and Vector Insects",fullTitle:"Biological Control of Pest and Vector Insects"},signatures:"Christian E. Ogaugwu and Ravi V. Durvasula",authors:[{id:"192665",title:"Dr.",name:"Christian",middleName:null,surname:"Ogaugwu",slug:"christian-ogaugwu",fullName:"Christian Ogaugwu"},{id:"193249",title:"Dr.",name:"Ravi",middleName:null,surname:"Durvasula",slug:"ravi-durvasula",fullName:"Ravi Durvasula"}]},{id:"53043",title:"Conservation Biological Control Practices",slug:"conservation-biological-control-practices",totalDownloads:2198,totalCrossrefCites:2,totalDimensionsCites:3,book:{slug:"biological-control-of-pest-and-vector-insects",title:"Biological Control of Pest and Vector Insects",fullTitle:"Biological Control of Pest and Vector Insects"},signatures:"Nabil El-Wakeil, Mahmoud Saleh, Nawal Gaafar and Huda Elbehery",authors:[{id:"82718",title:"Dr.",name:"Nabil",middleName:null,surname:"El-Wakeil",slug:"nabil-el-wakeil",fullName:"Nabil El-Wakeil"},{id:"191853",title:"Dr.",name:"Nawal",middleName:null,surname:"Gaafar",slug:"nawal-gaafar",fullName:"Nawal Gaafar"},{id:"191854",title:"Prof.",name:"Mahmoud",middleName:null,surname:"Saleh",slug:"mahmoud-saleh",fullName:"Mahmoud Saleh"},{id:"197643",title:"Dr.",name:"Huda",middleName:null,surname:"Elbehery",slug:"huda-elbehery",fullName:"Huda Elbehery"}]},{id:"53392",title:"The Sublethal Effects of Insecticides in Insects",slug:"the-sublethal-effects-of-insecticides-in-insects",totalDownloads:3209,totalCrossrefCites:13,totalDimensionsCites:24,book:{slug:"biological-control-of-pest-and-vector-insects",title:"Biological Control of Pest and Vector Insects",fullTitle:"Biological Control of Pest and Vector Insects"},signatures:"Solange M. de França, Mariana O. Breda, Douglas R. S. Barbosa,\nAlice M. N. Araujo and Carolina A. Guedes",authors:[{id:"72398",title:"MSc",name:"Solange",middleName:"Maria",surname:"De França",slug:"solange-de-franca",fullName:"Solange De França"},{id:"161232",title:"MSc.",name:"Mariana",middleName:null,surname:"Breda",slug:"mariana-breda",fullName:"Mariana Breda"},{id:"193241",title:"Dr.",name:"Douglas Rafael",middleName:null,surname:"Silva Barbosa",slug:"douglas-rafael-silva-barbosa",fullName:"Douglas Rafael Silva Barbosa"},{id:"193242",title:"Dr.",name:"Alice Maria",middleName:null,surname:"Nascimento Araújo",slug:"alice-maria-nascimento-araujo",fullName:"Alice Maria Nascimento Araújo"},{id:"193243",title:"MSc.",name:"Carolina",middleName:null,surname:"Arruda Guedes",slug:"carolina-arruda-guedes",fullName:"Carolina Arruda Guedes"}]},{id:"58221",title:"Particulate Nanoinsecticides: A New Concept in Insect Pest Management",slug:"particulate-nanoinsecticides-a-new-concept-in-insect-pest-management",totalDownloads:1081,totalCrossrefCites:2,totalDimensionsCites:8,book:{slug:"insecticides-agriculture-and-toxicology",title:"Insecticides",fullTitle:"Insecticides - Agriculture and Toxicology"},signatures:"Teodoro Stadler, Micaela Buteler, Susana R. Valdez and Javier G.\nGitto",authors:[{id:"207985",title:"Ph.D.",name:"Teodoro",middleName:null,surname:"Stadler",slug:"teodoro-stadler",fullName:"Teodoro Stadler"},{id:"208044",title:"Dr.",name:"Micaela",middleName:null,surname:"Buteler",slug:"micaela-buteler",fullName:"Micaela Buteler"},{id:"208045",title:"Ph.D. Student",name:"Javier",middleName:"Gustavo",surname:"Gitto",slug:"javier-gitto",fullName:"Javier Gitto"},{id:"210819",title:"Dr.",name:"Susana Ruth",middleName:null,surname:"Valdez",slug:"susana-ruth-valdez",fullName:"Susana Ruth Valdez"}]},{id:"53702",title:"Transmission of Major Arboviruses in Brazil: The Role of Aedes aegypti and Aedes albopictus Vectors",slug:"transmission-of-major-arboviruses-in-brazil-the-role-of-aedes-aegypti-and-aedes-albopictus-vectors",totalDownloads:1627,totalCrossrefCites:5,totalDimensionsCites:7,book:{slug:"biological-control-of-pest-and-vector-insects",title:"Biological Control of Pest and Vector Insects",fullTitle:"Biological Control of Pest and Vector Insects"},signatures:"Thaís Chouin-Carneiro and Flavia Barreto dos Santos",authors:[{id:"192462",title:"Ph.D.",name:"Flavia",middleName:null,surname:"Dos Santos",slug:"flavia-dos-santos",fullName:"Flavia Dos Santos"},{id:"196670",title:"MSc.",name:"Thais",middleName:null,surname:"Chouin-Carneiro",slug:"thais-chouin-carneiro",fullName:"Thais Chouin-Carneiro"}]},{id:"58099",title:"Toxic Effects of the Organophosphorus Insecticide Fenthion on Growth and Chlorophyll Production Activity of Unicellular Marine Microalgae Tetraselmis suecica: Comparison between Observed and Predicted Endpoint Toxicity Data",slug:"toxic-effects-of-the-organophosphorus-insecticide-fenthion-on-growth-and-chlorophyll-production-acti",totalDownloads:650,totalCrossrefCites:2,totalDimensionsCites:3,book:{slug:"insecticides-agriculture-and-toxicology",title:"Insecticides",fullTitle:"Insecticides - Agriculture and Toxicology"},signatures:"Maria C. Vagi, Andreas S. Petsas, Maria D. Pavlaki, Niki M.\nSmaragdaki and Maria N. Kostopoulou",authors:[{id:"200196",title:"Dr.",name:"Andreas",middleName:null,surname:"Petsas",slug:"andreas-petsas",fullName:"Andreas Petsas"},{id:"200198",title:"Dr.",name:"Maria",middleName:null,surname:"Vagi",slug:"maria-vagi",fullName:"Maria Vagi"},{id:"217857",title:"Dr.",name:"Maria",middleName:"Dimitriou",surname:"Pavlaki",slug:"maria-pavlaki",fullName:"Maria Pavlaki"},{id:"217858",title:"Prof.",name:"Maria",middleName:null,surname:"Kostopoulou",slug:"maria-kostopoulou",fullName:"Maria Kostopoulou"},{id:"229000",title:"Ms.",name:"Niki",middleName:null,surname:"Smaragdaki",slug:"niki-smaragdaki",fullName:"Niki Smaragdaki"}]},{id:"53249",title:"Functional Anatomy of the External and Internal Reproductive Structures in Insect Vectors of Chagas Disease with Particular Reference to Rhodnius prolixus",slug:"functional-anatomy-of-the-external-and-internal-reproductive-structures-in-insect-vectors-of-chagas-",totalDownloads:1074,totalCrossrefCites:0,totalDimensionsCites:2,book:{slug:"biological-control-of-pest-and-vector-insects",title:"Biological Control of Pest and Vector Insects",fullTitle:"Biological Control of Pest and Vector Insects"},signatures:"Ralem Gary Chiang and Jennifer Ann Chiang",authors:[{id:"192613",title:"Dr.",name:"Gary",middleName:null,surname:"Chiang",slug:"gary-chiang",fullName:"Gary Chiang"},{id:"195907",title:"Prof.",name:"Jennifer",middleName:null,surname:"Chiang",slug:"jennifer-chiang",fullName:"Jennifer Chiang"}]},{id:"53553",title:"Reinvestigation of Cactoblastis cactorum (Lepidoptera: Pyralidae) Sex Pheromone for Improved Attractiveness and Greater Specificity",slug:"reinvestigation-of-cactoblastis-cactorum-lepidoptera-pyralidae-sex-pheromone-for-improved-attractive",totalDownloads:922,totalCrossrefCites:1,totalDimensionsCites:1,book:{slug:"biological-control-of-pest-and-vector-insects",title:"Biological Control of Pest and Vector Insects",fullTitle:"Biological Control of Pest and Vector Insects"},signatures:"Juan Cibrián‐Tovar, Jim Carpenter, Stephen Hight, Thom Potter,\nGuillermo Logarzo and Julio César Velázquez‐González",authors:[{id:"192719",title:"Dr.",name:"Juan",middleName:null,surname:"Cibrian",slug:"juan-cibrian",fullName:"Juan Cibrian"}]}],onlineFirstChaptersFilter:{topicSlug:"agronomy-pestology",limit:3,offset:0},onlineFirstChaptersCollection:[],onlineFirstChaptersTotal:0},preDownload:{success:null,errors:{}},aboutIntechopen:{},privacyPolicy:{},peerReviewing:{},howOpenAccessPublishingWithIntechopenWorks:{},sponsorshipBooks:{sponsorshipBooks:[{type:"book",id:"10176",title:"Microgrids and Local Energy Systems",subtitle:null,isOpenForSubmission:!0,hash:"c32b4a5351a88f263074b0d0ca813a9c",slug:null,bookSignature:"Prof. Nick Jenkins",coverURL:"https://cdn.intechopen.com/books/images_new/10176.jpg",editedByType:null,editors:[{id:"55219",title:"Prof.",name:"Nick",middleName:null,surname:"Jenkins",slug:"nick-jenkins",fullName:"Nick Jenkins"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}}],offset:8,limit:8,total:1},route:{name:"chapter.detail",path:"/books/voice-and-swallowing-disorders/quantitative-analysis-of-activity-patterns-in-the-muscles-of-mastication-and-deglutition",hash:"",query:{},params:{book:"voice-and-swallowing-disorders",chapter:"quantitative-analysis-of-activity-patterns-in-the-muscles-of-mastication-and-deglutition"},fullPath:"/books/voice-and-swallowing-disorders/quantitative-analysis-of-activity-patterns-in-the-muscles-of-mastication-and-deglutition",meta:{},from:{name:null,path:"/",hash:"",query:{},params:{},fullPath:"/",meta:{}}}},function(){var e;(e=document.currentScript||document.scripts[document.scripts.length-1]).parentNode.removeChild(e)}()