Interpretation challenges and scenarios.
\r\n\t
",isbn:"978-1-83969-234-5",printIsbn:"978-1-83969-233-8",pdfIsbn:"978-1-83969-235-2",doi:null,price:0,priceEur:0,priceUsd:0,slug:null,numberOfPages:0,isOpenForSubmission:!1,hash:"a5f5277a1c0616ce6b35f4b44a4cac7a",bookSignature:"Dr. Basel I. Ismail",publishedDate:null,coverURL:"https://cdn.intechopen.com/books/images_new/10013.jpg",keywords:"Thermodynamics, Heat Transfer Analyses, Geothermal Power Generation, Economics, Geothermal Systems, Geothermal Heat Pump, Green Energy Buildings, Exploration Methods, Geologic Fundamentals, Geotechnical, Geothermal System Materials, Sustainability",numberOfDownloads:null,numberOfWosCitations:0,numberOfCrossrefCitations:null,numberOfDimensionsCitations:null,numberOfTotalCitations:null,isAvailableForWebshopOrdering:!0,dateEndFirstStepPublish:"October 29th 2020",dateEndSecondStepPublish:"November 26th 2020",dateEndThirdStepPublish:"January 25th 2021",dateEndFourthStepPublish:"April 15th 2021",dateEndFifthStepPublish:"June 14th 2021",remainingDaysToSecondStep:"3 months",secondStepPassed:!0,currentStepOfPublishingProcess:4,editedByType:null,kuFlag:!1,biosketch:"Leading research investigator in a collaborative project (2007-2010) with Goldcorp-Musselwhite Canada Ltd. and Engineering of Lakehead University, owner of a Ph.D. degree in Mechanical Engineering from McMaster University, Hamilton, Ontario, Canada and postdoctoral researcher (2004 to 2005) at McMaster University.",coeditorOneBiosketch:null,coeditorTwoBiosketch:null,coeditorThreeBiosketch:null,coeditorFourBiosketch:null,coeditorFiveBiosketch:null,editors:[{id:"62122",title:"Dr.",name:"Basel",middleName:"I.",surname:"Ismail",slug:"basel-ismail",fullName:"Basel Ismail",profilePictureURL:"https://mts.intechopen.com/storage/users/62122/images/system/62122.jpg",biography:"Dr. B. Ismail is currently an Associate Professor and Chairman of the Department of Mechanical Engineering, Lakehead University, Thunder Bay, Ontario, Canada. In 2004, Prof. Ismail earned his Ph.D. degree in Mechanical Engineering from McMaster University, Hamilton, Ontario, Canada. From 2004 to 2005, he worked as a Postdoctoral researcher at McMaster University. His specialty is in engineering heat transfer, engineering thermodynamics, and energy conversion and storage engineering. Dr. Ismail’s research activities are theoretical and applied in nature. Currently, his research areas of interest are focused on green engineering technologies related to alternative and renewable energy systems for power generation, heating and cooling. Dr. Ismail was the leading research investigator in a collaborative project (2007-2010) with Goldcorp-Musselwhite Canada Ltd. and Engineering of Lakehead University. This innovative project was state-of-the-art in geothermal heat pump technology applied in Northwestern Ontario, Canada. Dr. Ismail has published many technical reports and articles related to his research areas in reputable International Journals and Conferences. During his research activities, Dr. Ismail has supervised and trained many graduate students and senior undergraduate students in Mechanical Engineering with projects and theses related to innovative renewable and alternative energy engineering, and technologies.",institutionString:"Lakehead University",position:null,outsideEditionCount:0,totalCites:0,totalAuthoredChapters:"4",totalChapterViews:"0",totalEditedBooks:"3",institution:{name:"Lakehead University",institutionURL:null,country:{name:"Canada"}}}],coeditorOne:null,coeditorTwo:null,coeditorThree:null,coeditorFour:null,coeditorFive:null,topics:[{id:"11",title:"Engineering",slug:"engineering"}],chapters:null,productType:{id:"1",title:"Edited Volume",chapterContentType:"chapter",authoredCaption:"Edited by"},personalPublishingAssistant:{id:"184402",firstName:"Romina",lastName:"Rovan",middleName:null,title:"Ms.",imageUrl:"https://mts.intechopen.com/storage/users/184402/images/4747_n.jpg",email:"romina.r@intechopen.com",biography:"As an Author Service Manager my responsibilities include monitoring and facilitating all publishing activities for authors and editors. From chapter submission and review, to approval and revision, copyediting and design, until final publication, I work closely with authors and editors to ensure a simple and easy publishing process. I maintain constant and effective communication with authors, editors and reviewers, which allows for a level of personal support that enables contributors to fully commit and concentrate on the chapters they are writing, editing, or reviewing. I assist authors in the preparation of their full chapter submissions and track important deadlines and ensure they are met. I help to coordinate internal processes such as linguistic review, and monitor the technical aspects of the process. As an ASM I am also involved in the acquisition of editors. Whether that be identifying an exceptional author and proposing an editorship collaboration, or contacting researchers who would like the opportunity to work with IntechOpen, I establish and help manage author and editor acquisition and contact."}},relatedBooks:[{type:"book",id:"5084",title:"Advances in Geothermal Energy",subtitle:null,isOpenForSubmission:!1,hash:"d4647f1f9dae170acf327283d55abbf1",slug:"advances-in-geothermal-energy",bookSignature:"Basel I. Ismail",coverURL:"https://cdn.intechopen.com/books/images_new/5084.jpg",editedByType:"Edited by",editors:[{id:"62122",title:"Dr.",name:"Basel",surname:"Ismail",slug:"basel-ismail",fullName:"Basel Ismail"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"5602",title:"Renewable Hydropower Technologies",subtitle:null,isOpenForSubmission:!1,hash:"15ea891d96b6c9f2d3f28d5a21c09203",slug:"renewable-hydropower-technologies",bookSignature:"Basel I. Ismail",coverURL:"https://cdn.intechopen.com/books/images_new/5602.jpg",editedByType:"Edited by",editors:[{id:"62122",title:"Dr.",name:"Basel",surname:"Ismail",slug:"basel-ismail",fullName:"Basel Ismail"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"7504",title:"Renewable Geothermal Energy Explorations",subtitle:null,isOpenForSubmission:!1,hash:"d47d551b0fcf11a4328c8a38f2499844",slug:"renewable-geothermal-energy-explorations",bookSignature:"Basel I. Ismail",coverURL:"https://cdn.intechopen.com/books/images_new/7504.jpg",editedByType:"Edited by",editors:[{id:"62122",title:"Dr.",name:"Basel",surname:"Ismail",slug:"basel-ismail",fullName:"Basel Ismail"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"1591",title:"Infrared Spectroscopy",subtitle:"Materials Science, Engineering and Technology",isOpenForSubmission:!1,hash:"99b4b7b71a8caeb693ed762b40b017f4",slug:"infrared-spectroscopy-materials-science-engineering-and-technology",bookSignature:"Theophile Theophanides",coverURL:"https://cdn.intechopen.com/books/images_new/1591.jpg",editedByType:"Edited by",editors:[{id:"37194",title:"Dr.",name:"Theophanides",surname:"Theophile",slug:"theophanides-theophile",fullName:"Theophanides Theophile"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"3092",title:"Anopheles mosquitoes",subtitle:"New insights into malaria vectors",isOpenForSubmission:!1,hash:"c9e622485316d5e296288bf24d2b0d64",slug:"anopheles-mosquitoes-new-insights-into-malaria-vectors",bookSignature:"Sylvie Manguin",coverURL:"https://cdn.intechopen.com/books/images_new/3092.jpg",editedByType:"Edited by",editors:[{id:"50017",title:"Prof.",name:"Sylvie",surname:"Manguin",slug:"sylvie-manguin",fullName:"Sylvie Manguin"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"3161",title:"Frontiers in Guided Wave Optics and Optoelectronics",subtitle:null,isOpenForSubmission:!1,hash:"deb44e9c99f82bbce1083abea743146c",slug:"frontiers-in-guided-wave-optics-and-optoelectronics",bookSignature:"Bishnu Pal",coverURL:"https://cdn.intechopen.com/books/images_new/3161.jpg",editedByType:"Edited by",editors:[{id:"4782",title:"Prof.",name:"Bishnu",surname:"Pal",slug:"bishnu-pal",fullName:"Bishnu Pal"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"72",title:"Ionic Liquids",subtitle:"Theory, Properties, New Approaches",isOpenForSubmission:!1,hash:"d94ffa3cfa10505e3b1d676d46fcd3f5",slug:"ionic-liquids-theory-properties-new-approaches",bookSignature:"Alexander Kokorin",coverURL:"https://cdn.intechopen.com/books/images_new/72.jpg",editedByType:"Edited by",editors:[{id:"19816",title:"Prof.",name:"Alexander",surname:"Kokorin",slug:"alexander-kokorin",fullName:"Alexander Kokorin"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"1373",title:"Ionic Liquids",subtitle:"Applications and Perspectives",isOpenForSubmission:!1,hash:"5e9ae5ae9167cde4b344e499a792c41c",slug:"ionic-liquids-applications-and-perspectives",bookSignature:"Alexander Kokorin",coverURL:"https://cdn.intechopen.com/books/images_new/1373.jpg",editedByType:"Edited by",editors:[{id:"19816",title:"Prof.",name:"Alexander",surname:"Kokorin",slug:"alexander-kokorin",fullName:"Alexander Kokorin"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"57",title:"Physics and Applications of Graphene",subtitle:"Experiments",isOpenForSubmission:!1,hash:"0e6622a71cf4f02f45bfdd5691e1189a",slug:"physics-and-applications-of-graphene-experiments",bookSignature:"Sergey Mikhailov",coverURL:"https://cdn.intechopen.com/books/images_new/57.jpg",editedByType:"Edited by",editors:[{id:"16042",title:"Dr.",name:"Sergey",surname:"Mikhailov",slug:"sergey-mikhailov",fullName:"Sergey Mikhailov"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"371",title:"Abiotic Stress in Plants",subtitle:"Mechanisms and Adaptations",isOpenForSubmission:!1,hash:"588466f487e307619849d72389178a74",slug:"abiotic-stress-in-plants-mechanisms-and-adaptations",bookSignature:"Arun Shanker and B. Venkateswarlu",coverURL:"https://cdn.intechopen.com/books/images_new/371.jpg",editedByType:"Edited by",editors:[{id:"58592",title:"Dr.",name:"Arun",surname:"Shanker",slug:"arun-shanker",fullName:"Arun Shanker"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}}]},chapter:{item:{type:"chapter",id:"34878",title:"Low-Dose Imaging Techniques for Transmission Electron Microscopy",doi:"10.5772/36614",slug:"low-dose-imaging-techniques-for-transmission-electron-microscopy",body:null,keywords:null,chapterPDFUrl:"https://cdn.intechopen.com/pdfs/34878.pdf",chapterXML:null,downloadPdfUrl:"/chapter/pdf-download/34878",previewPdfUrl:"/chapter/pdf-preview/34878",totalDownloads:3636,totalViews:406,totalCrossrefCites:3,totalDimensionsCites:12,hasAltmetrics:0,dateSubmitted:"May 24th 2011",dateReviewed:"October 19th 2011",datePrePublished:null,datePublished:"April 4th 2012",dateFinished:null,readingETA:"0",abstract:null,reviewType:"peer-reviewed",bibtexUrl:"/chapter/bibtex/34878",risUrl:"/chapter/ris/34878",book:{slug:"the-transmission-electron-microscope"},signatures:"David B. Carlson and James E. Evans",authors:[{id:"109054",title:"Dr.",name:"James",middleName:null,surname:"Evans",fullName:"James Evans",slug:"james-evans",email:"JEEvans@ucdavis.edu",position:null,institution:{name:"University of California, Davis",institutionURL:null,country:{name:"United States of America"}}}],sections:null,chapterReferences:null,footnotes:null,contributors:null,corrections:null},book:{id:"1508",title:"The Transmission Electron Microscope",subtitle:null,fullTitle:"The Transmission Electron Microscope",slug:"the-transmission-electron-microscope",publishedDate:"April 4th 2012",bookSignature:"Khan Maaz",coverURL:"https://cdn.intechopen.com/books/images_new/1508.jpg",licenceType:"CC BY 3.0",editedByType:"Edited by",editors:[{id:"107765",title:"Dr.",name:"Maaz",middleName:null,surname:"Khan",slug:"maaz-khan",fullName:"Maaz Khan"}],productType:{id:"1",title:"Edited Volume",chapterContentType:"chapter",authoredCaption:"Edited by"},chapters:[{id:"34874",title:"Conventional Transmission Electron Microscope Observation of Electric and Magnetic Fields",slug:"conventional-transmission-electron-microscope-observation-of-electric-and-magnetic-fields",totalDownloads:3120,totalCrossrefCites:0,signatures:"Katsuhiro Sasaki, Hidekazu Murata, Kotaro Kuroda and Hiroyasu Saka",authors:[{id:"109832",title:"Dr.",name:"Katsuhiro",middleName:null,surname:"Sasaki",fullName:"Katsuhiro Sasaki",slug:"katsuhiro-sasaki"},{id:"135575",title:"Dr.",name:"Hidekazu",middleName:null,surname:"Murata",fullName:"Hidekazu Murata",slug:"hidekazu-murata"},{id:"135576",title:"Prof.",name:"Kotaro",middleName:null,surname:"Kuroda",fullName:"Kotaro Kuroda",slug:"kotaro-kuroda"},{id:"135577",title:"Prof.",name:"Hiroyasu",middleName:null,surname:"Saka",fullName:"Hiroyasu Saka",slug:"hiroyasu-saka"}]},{id:"34875",title:"Indexing of Electron Diffraction Patterns of Icosahedral and Decagonal Phases",slug:"indexing-of-electron-diffraction-patterns-of-icosahedral-and-decagonal-phases",totalDownloads:3453,totalCrossrefCites:0,signatures:"Rajiv Kumar Mandal",authors:[{id:"106764",title:"Prof.",name:"Rajiv Kumar",middleName:null,surname:"Mandal",fullName:"Rajiv Kumar Mandal",slug:"rajiv-kumar-mandal"}]},{id:"34876",title:"Orientation Microscopy in the Transmission Electron Microscope - Investigations of Small Orientations Changes by Means of Orientation Mapping in TEM",slug:"orientation-microscopy-in-transmission-electron-microscope-investigations-of-small-orientations-chan",totalDownloads:3443,totalCrossrefCites:0,signatures:"M. Bieda, K. Sztwiertnia, A. Korneva and J. Kawalko",authors:[{id:"95578",title:"Prof.",name:"Krzysztof",middleName:"Maciej",surname:"Sztwiertnia",fullName:"Krzysztof Sztwiertnia",slug:"krzysztof-sztwiertnia"},{id:"101744",title:"Dr.",name:"Magdalena",middleName:null,surname:"Bieda-Niemiec",fullName:"Magdalena Bieda-Niemiec",slug:"magdalena-bieda-niemiec"},{id:"108358",title:"Dr.",name:"Anna",middleName:null,surname:"Korneva",fullName:"Anna Korneva",slug:"anna-korneva"},{id:"139964",title:"M.Sc.",name:"Jakub",middleName:null,surname:"Kawałko",fullName:"Jakub Kawałko",slug:"jakub-kawalko"}]},{id:"34877",title:"Advanced Techniques in TEM Specimen Preparation",slug:"advanced-techniques-in-tem-specimen-preparation",totalDownloads:4307,totalCrossrefCites:1,signatures:"Jian Li",authors:[{id:"112508",title:"Dr.",name:"Jian",middleName:null,surname:"Li",fullName:"Jian Li",slug:"jian-li"}]},{id:"34878",title:"Low-Dose Imaging Techniques for Transmission Electron Microscopy",slug:"low-dose-imaging-techniques-for-transmission-electron-microscopy",totalDownloads:3636,totalCrossrefCites:3,signatures:"David B. Carlson and James E. Evans",authors:[{id:"109054",title:"Dr.",name:"James",middleName:null,surname:"Evans",fullName:"James Evans",slug:"james-evans"}]},{id:"34879",title:"Transmission Electron Microscopy to Study Gallium Nitride Transistors Grown on Sapphire and Silicon Substrates",slug:"transmission-electron-microscopy-to-study-gallium-nitride-transistors-grown-on-sapphire-and-silicon-",totalDownloads:4034,totalCrossrefCites:1,signatures:"S. Lawrence Selvaraj and Takashi Egawa",authors:[{id:"106230",title:"Dr.",name:"Lawrence",middleName:null,surname:"Selvaraj",fullName:"Lawrence Selvaraj",slug:"lawrence-selvaraj"},{id:"109104",title:"Prof.",name:"Takashi",middleName:null,surname:"Egawa",fullName:"Takashi Egawa",slug:"takashi-egawa"}]},{id:"34880",title:"Transmission Electron Microscopy for the Quantitative Analysis of Testis Ultra Structure",slug:"transmission-electron-microscopy-for-the-quantitative-analysis-of-testis-ultra-structure",totalDownloads:2810,totalCrossrefCites:4,signatures:"Saeed Shokri, Masoud Hemadi and Robert John Aitken",authors:[{id:"109599",title:"Dr.",name:"Saeed",middleName:null,surname:"Shokri",fullName:"Saeed Shokri",slug:"saeed-shokri"},{id:"137090",title:"Prof.",name:"Robert John",middleName:null,surname:"Aitken",fullName:"Robert John Aitken",slug:"robert-john-aitken"},{id:"138123",title:"Dr.",name:"Masoud",middleName:null,surname:"Hemadi",fullName:"Masoud Hemadi",slug:"masoud-hemadi"}]},{id:"34881",title:"Determination of Aspect-Ratio Distribution in Gold Nanowires Using Absorption Spectra and Transmission Electron Microscopy Techniques",slug:"determination-of-aspect-ratio-distribution-in-gold-nanowires-using-absorption-spectra-and-transmissi",totalDownloads:3635,totalCrossrefCites:1,signatures:"Hiroo Omi",authors:[{id:"113028",title:"Dr",name:"Hiroo",middleName:null,surname:"Omi",fullName:"Hiroo Omi",slug:"hiroo-omi"}]},{id:"34882",title:"The Cell Ultrastructure of Diatoms - Implications for Phylogeny?",slug:"the-cell-ultrastructure-of-diatoms-implications-for-phylogeny-",totalDownloads:4375,totalCrossrefCites:0,signatures:"Yekaterina D. Bedoshvili and Yelena V. Likhoshway",authors:[{id:"99350",title:"Dr.",name:"Yekaterina",middleName:null,surname:"Bedoshvili",fullName:"Yekaterina Bedoshvili",slug:"yekaterina-bedoshvili"},{id:"99358",title:"Dr.",name:"Yelena",middleName:null,surname:"Likhoshway",fullName:"Yelena Likhoshway",slug:"yelena-likhoshway"}]},{id:"34883",title:"Influence of Pulse-Impact on Microstructure of Welded Joints at Various Temperatures in Liquid-Phase-Pulse-Impact Diffusion Welding Particle Reinforcement Aluminum Matrix Composites",slug:"influence-of-pulse-impact-on-microstructure-of-welded-joints-at-various-temperatures-in-liquid-phase",totalDownloads:2118,totalCrossrefCites:0,signatures:"Kelvii Wei Guo",authors:[{id:"104737",title:"Prof.",name:"Wei (Kelvii)",middleName:null,surname:"Guo",fullName:"Wei (Kelvii) Guo",slug:"wei-(kelvii)-guo"}]},{id:"34884",title:"TEM Investigations of Wear Mechanisms of Single and Multilayer Coatings",slug:"tem-investigations-of-wear-mechanisms-of-single-and-multilayer-coatings",totalDownloads:1950,totalCrossrefCites:1,signatures:"Lukasz Major, Jurgen M. Lackner and Jerzy Morgiel",authors:[{id:"61319",title:"Dr.",name:"Juergen M.",middleName:null,surname:"Lackner",fullName:"Juergen M. Lackner",slug:"juergen-m.-lackner"},{id:"99492",title:"Dr.",name:"Lukasz",middleName:null,surname:"Major",fullName:"Lukasz Major",slug:"lukasz-major"},{id:"130138",title:"Prof.",name:"Jerzy",middleName:null,surname:"Morgiel",fullName:"Jerzy Morgiel",slug:"jerzy-morgiel"}]},{id:"34885",title:"Deposition and Characterization of Platinum and Palladium Nanoparticles on Highly Oriented Pyrolytic Graphite",slug:"deposition-and-characterization-of-platinum-and-palladium-nanoparticles-on-highly-oriented-pyrolytic",totalDownloads:2399,totalCrossrefCites:0,signatures:"Nora Elizondo, Donald H. Galvan, Lorena Alvarez-Contreras, Ran Tel-Vered, Arquímedes Cruz-Lopez, Ricardo Obregon, Sergio Belmares-Perales, Manuel Garcia-Mendez,\r\nOdilon Vazquez-Cuchillo and Antonio A. Zaldivar",authors:[{id:"72518",title:"Dr.",name:"Manuel",middleName:null,surname:"Garcia-Mendez",fullName:"Manuel Garcia-Mendez",slug:"manuel-garcia-mendez"},{id:"99818",title:"Prof.",name:"Nora",middleName:null,surname:"Elizondo-Villarreal",fullName:"Nora Elizondo-Villarreal",slug:"nora-elizondo-villarreal"},{id:"108058",title:"Dr.",name:"Ricardo",middleName:null,surname:"Obregon-Guerra",fullName:"Ricardo Obregon-Guerra",slug:"ricardo-obregon-guerra"},{id:"108059",title:"Dr.",name:"Sergio",middleName:null,surname:"Belmares-Perales",fullName:"Sergio Belmares-Perales",slug:"sergio-belmares-perales"},{id:"109435",title:"Dr.",name:"Arquimedes",middleName:null,surname:"Cruz-Lopez",fullName:"Arquimedes Cruz-Lopez",slug:"arquimedes-cruz-lopez"},{id:"109437",title:"Dr.",name:"Odilon",middleName:null,surname:"Vazquez-Cuchillo",fullName:"Odilon Vazquez-Cuchillo",slug:"odilon-vazquez-cuchillo"},{id:"109440",title:"Dr.",name:"Antonio A.",middleName:null,surname:"Zaldivar-Cadena",fullName:"Antonio A. Zaldivar-Cadena",slug:"antonio-a.-zaldivar-cadena"},{id:"109443",title:"Prof.",name:"Donald Homero",middleName:null,surname:"Galvan-Martinez",fullName:"Donald Homero Galvan-Martinez",slug:"donald-homero-galvan-martinez"},{id:"109447",title:"Dr.",name:"Lorena",middleName:null,surname:"Alvarez-Contreras",fullName:"Lorena Alvarez-Contreras",slug:"lorena-alvarez-contreras"},{id:"141548",title:"Dr.",name:"Ran",middleName:null,surname:"Tel-Vered",fullName:"Ran Tel-Vered",slug:"ran-tel-vered"}]},{id:"34886",title:"Ultrastructure and Cell Wall Thickness Modification and Its Detection After Chemical Treatments in Huanglongbing Infected Citrus Plants",slug:"ultrastructures-and-cell-wall-thickness-modification-after-chemical-treatments-in-huanglongbing-infe",totalDownloads:2367,totalCrossrefCites:0,signatures:"Hajivand Shokrollah,\r\nThohirah Lee Abdullah and Kamaruzaman Sijam",authors:[{id:"99851",title:"Dr.",name:"Shokrollah",middleName:null,surname:"Hajivand",fullName:"Shokrollah Hajivand",slug:"shokrollah-hajivand"}]},{id:"34887",title:"Ultrastructural Mechanisms of Aposporous Embryo Sac Initial Cell Appearance and Its Developmental Process in Gametophytic Apomicts of Guinea Grass (Panicum maximum)",slug:"ultrastructural-mechanism-of-aposporous-intial-cell-appearance-and-its-developmental-process-in-game",totalDownloads:1962,totalCrossrefCites:3,signatures:"Lanzhuang Chen and Liming Guan",authors:[{id:"102161",title:"Dr.",name:"Lanzhuang",middleName:null,surname:"Chen",fullName:"Lanzhuang Chen",slug:"lanzhuang-chen"},{id:"102182",title:"Dr.",name:"Liming",middleName:null,surname:"Guan",fullName:"Liming Guan",slug:"liming-guan"}]},{id:"34888",title:"Cathodoluminescence of Surface Plasmon Induced Light Emission",slug:"cathodoluminescence-of-surface-plasmon-induced-light-emission",totalDownloads:2088,totalCrossrefCites:2,signatures:"Naoki Yamamoto",authors:[{id:"125444",title:"Dr.",name:"Naoki",middleName:null,surname:"Yamamoto",fullName:"Naoki Yamamoto",slug:"naoki-yamamoto"}]},{id:"34889",title:"Ulinastatin and Septic Cardiac Dysfunction",slug:"ulinastatin-and-septic-cardiac-dysfunction",totalDownloads:2499,totalCrossrefCites:0,signatures:"Jian-Dong Lin and Ming-Rui Lin",authors:[{id:"102852",title:"Dr.",name:"Jiandong",middleName:null,surname:"Lin",fullName:"Jiandong Lin",slug:"jiandong-lin"},{id:"108246",title:"Mr.",name:"Mingrui",middleName:null,surname:"Lin",fullName:"Mingrui Lin",slug:"mingrui-lin"}]},{id:"34890",title:"Morphological Study of HDPE/Clay Hybrids Synthesized by an Alternative Compatibilization Path",slug:"morphological-study-of-hdpe-clay-hybrids-synthesized-by-an-alternative-compatibilization-path",totalDownloads:2273,totalCrossrefCites:0,signatures:"Fernanda Elena Monasterio",authors:[{id:"107914",title:"Dr.",name:"Fernanda",middleName:"Elena",surname:"Monasterio",fullName:"Fernanda Monasterio",slug:"fernanda-monasterio"}]},{id:"34891",title:"Ceramic-Metal Joining Using Active Filler Alloy-An In-Depth Electron Microscopic Study",slug:"ceramic-metal-joining-using-active-filler-alloy-an-in-depth-electron-microscopic-study",totalDownloads:5070,totalCrossrefCites:0,signatures:"Abhijit Kar and Ajoy Kumar Ray",authors:[{id:"111049",title:"Dr.",name:"Abhijit",middleName:null,surname:"Kar",fullName:"Abhijit Kar",slug:"abhijit-kar"},{id:"116525",title:"Dr.",name:"Ajoy Kumar",middleName:null,surname:"Ray",fullName:"Ajoy Kumar Ray",slug:"ajoy-kumar-ray"}]},{id:"34892",title:"Investigation on Structure and Behaviours of Proton Exchange Membrane Materials by TEM",slug:"investigation-on-structure-and-behaviors-of-proton-exchange-membrane-materials-by-tem",totalDownloads:2071,totalCrossrefCites:0,signatures:"Zhe Wang, Chengji Zhao, Hongzhe Ni, Mingyao Zhang and Huixuan Zhang",authors:[{id:"106250",title:"Prof.",name:"Zhe",middleName:null,surname:"Wang",fullName:"Zhe Wang",slug:"zhe-wang"},{id:"121073",title:"Dr.",name:"Chengji",middleName:null,surname:"Zhao",fullName:"Chengji Zhao",slug:"chengji-zhao"},{id:"121074",title:"Dr.",name:"Hongzhe",middleName:null,surname:"Ni",fullName:"Hongzhe Ni",slug:"hongzhe-ni"}]},{id:"34893",title:"In-Situ Mechanical Testing of Nano-Component in TEM",slug:"in-situ-mechanical-testing-of-nano-component-in-tem",totalDownloads:2747,totalCrossrefCites:0,signatures:"Takashi Sumigawa and Takayuki Kitamura",authors:[{id:"108983",title:"Dr.",name:"Takashi",middleName:null,surname:"Sumigawa",fullName:"Takashi Sumigawa",slug:"takashi-sumigawa"},{id:"111079",title:"Dr.",name:"Takayuki",middleName:null,surname:"Kitamura",fullName:"Takayuki Kitamura",slug:"takayuki-kitamura"}]}]},relatedBooks:[{type:"book",id:"4644",title:"The Transmission Electron Microscope",subtitle:"Theory and Applications",isOpenForSubmission:!1,hash:"6ef878a14961b97ec0bc5c1762a46aa0",slug:"the-transmission-electron-microscope-theory-and-applications",bookSignature:"Khan Maaz",coverURL:"https://cdn.intechopen.com/books/images_new/4644.jpg",editedByType:"Edited by",editors:[{id:"107765",title:"Dr.",name:"Maaz",surname:"Khan",slug:"maaz-khan",fullName:"Maaz Khan"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"},chapters:[{id:"48664",title:"Combined Transmission Electron Microscopy — In situ Measurements of Physical and Mechanical Properties of Nanometer-sized Single-phase Metallic structucre",slug:"combined-transmission-electron-microscopy-in-situ-measurements-of-physical-and-mechanical-properties",signatures:"Hideki Masuda",authors:[{id:"173931",title:"Dr.",name:"Hideki",middleName:null,surname:"Masuda",fullName:"Hideki Masuda",slug:"hideki-masuda"}]},{id:"48523",title:"In Situ Transmission Electron Microscopy for Electronics",slug:"in-situ-transmission-electron-microscopy-for-electronics",signatures:"Masashi Arita, Kouichi Hamada, Yasuo Takahashi, Kazuhisa Sueoka\nand Tamaki Shibayama",authors:[{id:"174249",title:"Prof.",name:"Masashi",middleName:null,surname:"Arita",fullName:"Masashi Arita",slug:"masashi-arita"},{id:"174440",title:"Dr.",name:"Kouichi",middleName:null,surname:"Hamada",fullName:"Kouichi Hamada",slug:"kouichi-hamada"},{id:"174441",title:"Prof.",name:"Yasuo",middleName:null,surname:"Takahashi",fullName:"Yasuo Takahashi",slug:"yasuo-takahashi"},{id:"175845",title:"Prof.",name:"Kazuhisa",middleName:null,surname:"Sueoka",fullName:"Kazuhisa Sueoka",slug:"kazuhisa-sueoka"},{id:"175846",title:"Prof.",name:"Tamaki",middleName:null,surname:"Shibayama",fullName:"Tamaki Shibayama",slug:"tamaki-shibayama"}]},{id:"48834",title:"In-situ TEM Study of Dislocation-Interface Interactions",slug:"in-situ-tem-study-of-dislocation-interface-interactions",signatures:"Nan Li and Jian Wang",authors:[{id:"102014",title:"Prof.",name:"Jian",middleName:null,surname:"Wang",fullName:"Jian Wang",slug:"jian-wang"},{id:"174496",title:"Dr.",name:"Nan",middleName:null,surname:"Li",fullName:"Nan Li",slug:"nan-li"}]},{id:"48512",title:"Shave-Off Profiling for TEM Specimens",slug:"shave-off-profiling-for-tem-specimens",signatures:"Masashi Nojima",authors:[{id:"99036",title:"Dr.",name:"Masashi",middleName:null,surname:"Nojima",fullName:"Masashi Nojima",slug:"masashi-nojima"}]},{id:"48617",title:"Advanced Electron Microscopy Techniques in Nanomaterials Characterization at NASA Glenn Research Center",slug:"advanced-electron-microscopy-techniques-in-nanomaterials-characterization-at-nasa-glenn-research-cen",signatures:"Francisco Solá",authors:[{id:"174424",title:"Dr.",name:"Francisco",middleName:null,surname:"Sola",fullName:"Francisco Sola",slug:"francisco-sola"}]},{id:"48864",title:"Transmission Electron Microscopy for the Characterization of Cellulose Nanocrystals",slug:"transmission-electron-microscopy-for-the-characterization-of-cellulose-nanocrystals",signatures:"Madhu Kaushik, Carole Fraschini, Grégory Chauve, Jean-Luc Putaux\nand Audrey Moores",authors:[{id:"174287",title:"Prof.",name:"Audrey",middleName:null,surname:"Moores",fullName:"Audrey Moores",slug:"audrey-moores"},{id:"174288",title:"MSc.",name:"Madhu",middleName:null,surname:"Kaushik",fullName:"Madhu Kaushik",slug:"madhu-kaushik"},{id:"174435",title:"Dr.",name:"Grégory",middleName:null,surname:"Chauve",fullName:"Grégory Chauve",slug:"gregory-chauve"},{id:"174436",title:"Dr.",name:"Carole",middleName:null,surname:"Fraschini",fullName:"Carole Fraschini",slug:"carole-fraschini"},{id:"174479",title:"Dr.",name:"Jean-Luc",middleName:null,surname:"Putaux",fullName:"Jean-Luc Putaux",slug:"jean-luc-putaux"}]},{id:"48445",title:"TEM Morphology of Carbon Nanotubes (CNTs) and its Effect on the Life of Micropunch",slug:"tem-morphology-of-carbon-nanotubes-cnts-and-its-effect-on-the-life-of-micropunch",signatures:"Kelvii Wei Guo and Hon-Yuen Tam",authors:[{id:"174473",title:"Dr.",name:"Kelvii Wei",middleName:null,surname:"Guo",fullName:"Kelvii Wei Guo",slug:"kelvii-wei-guo"}]},{id:"48841",title:"HRTEM Study on Resistive Switching ZrO2 Thin Films and Their Micro-Fabricated Thin Films",slug:"hrtem-study-on-resistive-switching-zro2-thin-films-and-their-micro-fabricated-thin-films",signatures:"Ying Li, Gaoyang Zhao, Zhibo Kou, Long Jin and Yajing Wang",authors:[{id:"106825",title:"Dr.",name:"Ying",middleName:null,surname:"Li",fullName:"Ying Li",slug:"ying-li"}]},{id:"48473",title:"Transmission Electron Microscopy of Biological Samples",slug:"transmission-electron-microscopy-of-biological-samples",signatures:"Łukasz Mielańczyk, Natalia Matysiak, Olesya Klymenko and\nRomuald Wojnicz",authors:[{id:"174365",title:"M.Sc.",name:"Łukasz",middleName:null,surname:"Mielańczyk",fullName:"Łukasz Mielańczyk",slug:"lukasz-mielanczyk"},{id:"175977",title:"Dr.",name:"Natalia",middleName:null,surname:"Matysiak",fullName:"Natalia Matysiak",slug:"natalia-matysiak"},{id:"175978",title:"Dr.",name:"Olesya",middleName:null,surname:"Klymenko",fullName:"Olesya Klymenko",slug:"olesya-klymenko"},{id:"175979",title:"Prof.",name:"Romuald",middleName:null,surname:"Wojnicz",fullName:"Romuald Wojnicz",slug:"romuald-wojnicz"}]},{id:"48871",title:"Observation of Viruses, Bacteria, and Fungi in Clinical Skin Samples under Transmission Electron Microscopy",slug:"observation-of-viruses-bacteria-and-fungi-in-clinical-skin-samples-under-transmission-electron-micro",signatures:"Yuping Ran, Wengying Hu, Kaiwen Zhuang, Mao Lu, Jinghong\nHuang, Fengni Xu, Xiaoxi Xu, Xia Hua, Jebina Lama, Xin Ran, Yalin\nDai and Song Lei",authors:[{id:"174134",title:"Dr.",name:"Yuping",middleName:null,surname:"Ran",fullName:"Yuping Ran",slug:"yuping-ran"}]},{id:"48569",title:"Transmission Electron Microscopy of Platelets FROM Apheresis and Buffy-Coat-Derived Platelet Concentrates",slug:"transmission-electron-microscopy-of-platelets-from-apheresis-and-buffy-coat-derived-platelet-concent",signatures:"Josef Neumüller, Adolf Ellinger and Thomas Wagner",authors:[{id:"173717",title:"Prof.",name:"Thomas",middleName:null,surname:"Wagner",fullName:"Thomas Wagner",slug:"thomas-wagner"},{id:"174304",title:"Prof.",name:"Josef",middleName:null,surname:"Neumüller",fullName:"Josef Neumüller",slug:"josef-neumuller"},{id:"174305",title:"Prof.",name:"Adolf",middleName:null,surname:"Ellinger",fullName:"Adolf Ellinger",slug:"adolf-ellinger"}]},{id:"48623",title:"Ultrastructure and Topochemistry of Plant Cell Wall by Transmission Electron Microscopy",slug:"ultrastructure-and-topochemistry-of-plant-cell-wall-by-transmission-electron-microscopy",signatures:"Xia Zhou, Dayong Ding, Jing Ma, Zhe Ji, Xun Zhang and Feng Xu",authors:[{id:"174103",title:"Prof.",name:"Feng",middleName:null,surname:"Xu",fullName:"Feng Xu",slug:"feng-xu"}]},{id:"48540",title:"Ultrastructural and Morphological Description of the Three Major Groups of Freshwater Zooplankton (Rotifera, Cladocera, and Copepoda) from the State of Aguascalientes, Mexico",slug:"ultrastructural-and-morphological-description-of-the-three-major-groups-of-freshwater-zooplankton-ro",signatures:"Marcelo Silva-Briano, Araceli Adabache-Ortiz, Gerardo Guerrero-\nJiménez, Roberto Rico-Martínez and Guadalupe Zavala-Padilla",authors:[{id:"174030",title:"Ph.D.",name:"Marcelo",middleName:null,surname:"Silva-Briano",fullName:"Marcelo Silva-Briano",slug:"marcelo-silva-briano"}]},{id:"48878",title:"Veterinary Diagnostic using Transmission Electron Microscopy",slug:"veterinary-diagnostic-using-transmission-electron-microscopy",signatures:"M.H.B. Catroxo and A.M.C.R.P.F. Martins",authors:[{id:"101340",title:"Dr.",name:"Marcia Helena Braga",middleName:null,surname:"Catroxo",fullName:"Marcia Helena Braga Catroxo",slug:"marcia-helena-braga-catroxo"}]}]}]},onlineFirst:{chapter:{type:"chapter",id:"68421",title:"Ethical Issues in the New Digital Era: The Case of Assisting Driving",doi:"10.5772/intechopen.88371",slug:"ethical-issues-in-the-new-digital-era-the-case-of-assisting-driving",body:'\nMobility is defined as “the ability to move oneself (either independently or using assistive device or transportation) within environments that expand from one’s home to the neighbourhood and regions beyond” [1]. The ability to move about the community is essential for carrying out the instrumental activities of daily living (i.e. basic life-maintenance activities) and ensuring social participation [1].
\nGrowth in ageing populations is a global trend. A recent United Nations report states that the number of persons aged 60 (or older) is expected to grow from 962 million in 2017, to 2.1 billion in 2050, and 3.1 billion in [2]. According to the Global Status Report on Road Safety published by The World Health Organization (WHO), approximately 1.35 million people around the world die each year in traffic accidents [3]. The NHTSA estimates that 94% of serious crashes are due to human error or poor choices—including distracted driving and drunk driving [4].
\nThe driving task necessitates interacting with the vehicle and the environment at the same time. Many body systems need to be functional to ensure the safe and timely execution of the skills required for driving [5]. Specific factors that contribute to maintaining a licence include vision, physical health and cognitive health [5]. Research indicates that cognitive abilities are important enabling factors for safe driving [6]. Research also indicates that adaptive strategies are essential to maintaining the normal parameters of driving safety in the face of illness and disability [7].
\nAge-related declines in the abilities of older adults provide certain obstacles to safe driving. A 2001 survey by the OECD found that 15% of those 65 or older had stopped driving, while an overwhelming number of those who continued to drive were very selective about when they did so [8]. In general, driving cessation has been linked to increasing age, socioeconomic factors, and declining function and health [9]. Negative effects of driving cessation on older adults’ physical, mental, cognitive, and social functioning have been extensively studied [10, 11, 12].
\nMany automotive companies are developing and/or testing driverless cars. Largely, the proposed solutions follow established automation models such as the six levels of automation as defined by NHTSA [13]. Driver assistance technology presents a potential solution to problems pertaining to driver persistence and the management of fitness to drive issues in older adults. As this technology is not fully implemented and in use by the public, it is very difficult to both predict and assess its potential ethical implications and impact. Should the purpose of these systems go beyond safety? Is full automation an appropriate solution to effectively managing the apparent conflict between two goals—(1) promoting driver persistence and (2) ensuring road safety? That is, is it appropriate to enable an older driver to continue driving, even if there is a risk of a serious accident given their medical background? With crashes also comes the question of liability. Currently, lawmakers are considering who is liable when an autonomous car is involved in an accident. Such discussions raise many complex legal and ethical questions. Largely, the literature around ethics and driverless cars appears to focus on issues pertaining to (1) addressing conflict dilemmas on the road (machine ethics), (2) privacy and (3) minimising technology misuse/cybersecurity risks. These are indeed important ethical issues. However, the literature and public debate tends to avoid other serious ethical issues—specifically, issues concerning (1) the intended use and purpose of this technology, (5) the role of the person/driver (including older adult drivers) and (6) issues pertaining to the potential negative consequences of this technology.
\nIn relation to (6), this concerns the social consequences of this technology and the potential impact on older adult identity and well-being. The future is indeed unknown. The advancement of new driving solutions raises overarching questions in relation to the values of society and how we design technology to: (a) promote positive values around ageing and enhancing ageing experience, (b) protect human rights, (c) ensure human benefit and (d) prioritise well-being. Specifically, it raises fundamental questions in relation to the value we place on promoting autonomy and social participation for older adults and optimising quality of life/well-being.
\nThe public opinion on self-driving cars (including solutions for older adults) will determine the extent to which people will purchase and accept such systems [14]. We should not proceed with this technology just because it is available. Critically, designers must carefully consider the human dimensions of this technology and its social implications. To this end, this chapter reviews the relevant ethical considerations in relation to assisted driving solutions. Further, it presents a new ethically aligned system concept for driver assistance. In so doing, it addresses the philosophical principles that underlie the proposed driving system concept, and specifically, the role of the person.
\nEthics concerns the moral principles that govern a person’s behaviour or how an activity is conducted [15]. A key distinction in ethics is the distinction between that which is unethical and that which is undesirable.
\nPrimarily, moral principles apply to a person. However, moral code can also be ascribed to the behaviour of automated or intelligent systems (A/IS). Accordingly, driverless cars are termed ‘artificial moral agents’.
\nThe Universal Declaration of human rights (1948) enshrines all persons with human rights [16]. This includes rights pertaining to dignity (Article 1), autonomy (Article 3), privacy (Article 12), and safety (Article 29) [16]. Some would argue that rights also apply to technology and artificial agents. These are referred to as ‘transhuman rights’ [17, 18]. To this end, the field of roboethics has emerged. Specifically, roboethics is concerned with the moral behaviour of humans as they design, construct, use and treat artificially intelligent beings.
\nMore broadly, ‘digital ethics’ or ‘information ethics’ deals with the impact of digital Information and Communication Technologies (ICT) on our societies and the environment at large [19]. As defined by Capurro [19], it addresses the ethical implications of things which may not yet exist, or things which may have impacts we cannot predict.
\nProgress is typically defined in relation to concepts of advancement and improvement. As stated by the Organization for Economic Co-Operation and Development’s (OECD) ‘Being able to measure people’s quality of life is fundamental when assessing the progress of societies’ [20]. Future technology is shaping (and will shape) our political, social and moral existence. The application of ethics to questions concerning technology development is not new. In his seminal work ‘The Question Concerning Technology’, the philosopher Heidegger suggests that in asking what technology is, we ask questions about who we are [21]. In so doing, we examine the nature of existence and human autonomy [21]. Such ideas have led to the concept of ‘ontological design’ which focuses on the ‘the relation between human beings and lifeworlds’ [22]. As argued by Winograd and Flores, new technology does not simply change the task, it changes what it means to be human [22]. Put simply, we are designed by our designing and by that which we have designed [23].
\nThe Information Technology (IT) sector is taking some leaps in relation to addressing these questions. Currently, there is a large focus on issues pertaining to well-being, data privacy and cybersecurity. In 2016, Amazon, Google, Facebook, IBM, and Microsoft have established a non-profit partnership (i.e. the Partnership on Artificial Intelligence to Benefit People and Society) to formulate best practices on artificial intelligence technologies [24]. Further, the IEEE Standards Association has recently articulated a desire to create technology that improves the human condition and prioritises well-being. Specifically, the ‘IEEE Global Initiative on Ethics of Autonomous and Intelligent Systems’ have defined a set of core ethical principles for autonomous and intelligent systems (A/IS). As stated in ‘Ethically Aligned Design (EAD1e), A Vision for Prioritizing Human Well-being with Autonomous and Intelligent Systems’ [25] ‘for extended intelligence and automation to provably advance a specific benefit for humanity, there needs to be clear indicators of that benefit’. Further, the IEEE Global Initiative argue that ‘the world’s top metric of value (Gross Domestic Product) must move beyond GDP, to holistically measure how intelligent and autonomous systems can hinder or improve human well-being’ [25].
\nThe concept of identity has three pillars: the person, the role and the group [26]. Personal identity refers to the concept of the self which develops over time and the life-span. This includes the aggregate of characteristics by which a person is recognised by himself/herself and others, what matters to the person and their values [27]. Crucially, autonomy is central to personal identity [27].
\nAccording to the ‘Six-factor Model of Psychological Well-being’, six factors contribute to an individual’s psychological well-being, contentment, and happiness [28]. This includes positive relationships with others, personal mastery, autonomy, a feeling of purpose and meaning in life, and personal growth and development [28].
\nQuality of life is inextricably connected to well-being. As defined by the OECD, well-being can be defined/measured in relation to (1) quality of life (i.e. health status, personal security, social connection and participation/activity, work/life balance, subjective well-being, environmental quality, etc.), and (2) material conditions (i.e. income and wealth, job and earnings and housing) [29].
\nSelf-efficacy is defined as a person’s belief in his or her own ability to accomplishing a task or succeeding in specific situations. One’s sense of self-efficacy can play a major role in how one approaches goals, tasks, and challenges. The promotion of self-efficacy is a key element for success in interventions designed to reduce depressive symptoms in late life [30].
\nThe beginning of old age is between the age of 60 or 65 [31]. Definitions of old age are multi-dimensional and include a combination of chronological, functional and social definitions [31]. Older adults are a highly heterogeneous group. Often, older adults are segmented based on factors such as ageing phases, levels of fitness, severity of physical limitations, mobility patterns and social activities. According to Rowe and Kahn, successful ageing is multidimensional, encompassing the avoidance of disease and disability, the maintenance of high physical and cognitive function, and sustained engagement in social and productive activities [32].
\nThe prevalence of mental health issues is high in older adults as compared with the general population [30]. Older adults are at risk for developing anxiety and depression, given increased frailty, medical illnesses and medication and the potential for loss, reduced social connection and trauma (arising from injuries/accidents such as falls). On the other hand, younger older people are generally happier with a strong happiness increase around the age of 60 followed by a major decline after 75 [33].
\nGrowth in ageing populations is a global trend. In Japan, Taiwan and Singapore, governments are defining smart ageing strategies to ensure that the growing ageing population ages well. This includes the promotion of multi-generational living, awareness of Dementia and other age-related health conditions and smart devices to monitor vital signs [34].
\nThe driving is not a task isolated from everyday life. It occurs for a purpose (to get to somewhere, to see the scenery, etc.) and is often undertaken in parallel with other activities (for example, talking, listening to the radio, singing, planning-ahead and eating).
\nThe driving task involves a complex and rapidly repeating cycle that requires a level of skill and the ability to interact with both the vehicle and the external environment at the same time [5]. Information about the road environment is obtained via the visual and auditory senses. The information is operated on by many cognitive and behavioural processes including short and long-term memory and judgement, which leads to decisions being made about driving [5]. Decisions are put into effect via the musculoskeletal system, which acts on the steering, gears and brakes to alter the vehicle in relation to the road [5]. As reported by Fuller, the overall process is coordinated via a complex process involving behaviour, strategic and tactical abilities and personality [35]. As stated in Fuller’s task capability model (2005), loss of control arises when the demand of the driving task exceeds the driver’s capability [35].
\nIt is estimated that by 2030, a quarter of all drivers will be older than 65 [36]. Further, by 2030, more than 90% of men over 70 will be driving [37]. Research indicates a general increase in both car access and licensing rates in the older population [38]. This increase is mainly attributable to significant increases in the number of older female drivers [38].
\nA number of studies have sought to categorise older adults in terms of their physical abilities [39] their economic, geographic/spatial and activity patterns [40], use of cars as a transportation mode [41], and lifestyles and associated requirements in relation to transport services [42]. The most nuanced categorisation is that of the GOAL project which proposes five distinctive profiles or segments of older people [43]. The segments take demographics, physical and mental health characteristics, social life, living environment, mobility-related aspects and transition points into account. The five profiles differ significantly according to age and level of activity/mobility and health [43]. They include.
A younger and more active profile (“Fit as a Fiddle”)
A young, fit and active elderly (“Happily Connected”)
A young, severely impaired and immobile elderly (“Hole in the Heart”).
A very old, highly impaired and immobile segment (“Care-Full”)
A quite mobile and still independent senior despite his/her old age (“Oldie but a Goldie”)
As we age, we face decisions as to whether we should (1) continue, (2) limit, or (3) stop driving. Age related declines in the abilities of older adults can be treated as obstacles/barriers to safe driving performance. These age-related changes yield specific challenges for older adults. As reported by Langford and Koppel [44], this includes:
Psychomotor functions: joint flexibility, muscle strength, manual dexterity and coordination.
Sensory abilities: visual acuity, contrast sensitivity, sensitivity to light, dark adaptation, visual field, space perception, motion perception, hearing.
Cognitive abilities: fluid intelligence, speed of processing, working memory, problem solving, spatial cognition and executive functions like inhibition, flexibility and selective and divided attention.
A recent study has identified the prevalent driving errors of older adults [45]. Following a systematic review of the literature, the authors categorised the prevalent driving errors into eight categories: (1) decision-making, (2) direction and lane control, (3) lack of regulation compliance and awareness, (4) speed performance, (5) visual checking and physical control, (6) recognising and responding to signs, (7) recognising and responding to traffic lights and (8) skills involved in turning and parking. It was found that (2) direction and lane control, (1) decision-making, (7) recognising and responding to signs, and (5) visual checking and physical control were most frequent as prevalent issues for older drivers [45].
\nCertain unsafe driving behaviours increased in frequency as age, with drivers of 40 years or over—older people more likely to engage in driving behaviours such as (1) little or no sign of attempts to avoid dangerous driving situations, (2) lack of attention to other people and cars, (3) improper manoeuvring around curves and (4) improper or no turn signals [46].
\nSelf-regulation and/or compensatory behaviour of older adults is defined in relation to the tendency of older adults to minimise driving under conditions that are threatening and/or cause discomfort and conversely, to restrict their driving to conditions perceived as safe and/or comfortable [44].
\nCompensatory behaviour of older adults includes avoiding driving in the following situations/conditions:
In the dark
In bad weather
In heavy traffic
In new areas
On motorways and complex road layouts
Avoid long journeys (fatigue/tiredness)
As stated in the Eldersafe Report (2016), older road users need to be aware, acknowledge and have insight into their functional impairments in order to self-regulate [47].
\nHealth deterioration is the primary trigger/key determinant for driving cessation among older adults [48]. Medical conditions either (1) impact the fitness to drive of older drivers and/or (2) an older person’s perceived fitness to drive (i.e. attitude, confidence levels, etc.). Several medical conditions and associated impairments are more prevalent in the older adult population and are, therefore, associated with ageing. These medical conditions can potentially impact the crash risk of older road users [49]. Specifically, a systematic review of the literature by Marshall identified specific conditions including: alcohol abuse and dependence, cardiovascular disease, cerebrovascular disease/TBI, depression, dementia, diabetes mellitus, epilepsy, use of certain medications, musculoskeletal disorders, schizophrenia, obstructive sleep apnoea, and vision disorders [50].
\nThe path to automated/driverless cars began before 2000 with the introduction of cruise control and antilock brakes. Since 2000, new safety features such as electronic stability control, blind spot detection and collision and lane shift warnings have become available in vehicles. Further, since 2016, automation has moved towards partial autonomy, with features that enable drivers to stay in lane, along with adaptive cruise control technology, and the ability to self-park.
\nAutomated driving systems are defined as systems that control longitudinal and lateral motions of the vehicle at the same time [51]. Self-driving cars use a combination of sensors, cameras, radar and artificial intelligence (AI) to travel between destinations without a human operator. The Society of Automotive Engineers (SAE) has defined six levels of driving assistance technology (level 0–5) [52].
No automation
Driver assistance
Partial automation
Conditional automation
High automation
Full automation
In addition, BASt [53] and the National Highway Traffic Safety Administration (NHTSA) [13] have defined equivalent standards.
\nMany automotive companies are developing and/or testing driverless cars. This includes Audi, BMW, Ford, General Motors, Tesla, Volkswagen and Volvo. Solutions are also being advanced by Google and Uber. As of 2019, a number of car manufacturers have reached Level 3 [54]. This level involves an automated driving system (ADS) which can perform all driving tasks under certain circumstances, such as parking the car. In these circumstances, the human driver must be ready to re-take control and is still required to be the main driver of the vehicle [54]. According to the Vienna Convention on Road Traffic (2017), as of 2017, automated driving technologies will be explicitly allowed in traffic, provided that these technologies are in conformity with the United Nations vehicle regulations or can be overridden or switched off by the driver [55].
\nAs noted earlier, technology innovation influences societal values and raises ethical questions. As posed by BMVI, how much dependence on technologically complex systems will the public accept to achieve, in return for increased safety, mobility and convenience [56]? In relation to the advancement of assisted driving solutions, Gasser distinguishes four clusters of issues, (1) legal issues, (2) functional safety issues, (3) societal issues (including issues of user acceptability) and (4) human machine interaction (HMI) issues [53]. A recent literature review on the ethical, legal and social implications of the development, implementation, and maturation of connected and autonomous vehicles (CATV) in the United States groups the issues into the following themes: privacy, security, licensing, insurance and liability, infrastructure and mixed automation environment, economic impact, workforce disruption, system failure/takeover, safety algorithm and programming ethics, and environmental impact [57].
\nLargely, the literature around ethics and driverless cars appears to focus on a subset of important ethical issues. This includes issues pertaining to (1) addressing conflict dilemmas on the road, (2) privacy and protecting personal sphere, (3) minimising technology misuse and (4) the digital self and transhuman rights. In relation to (1) operational decisions have moral consequences. The issue of managing conflict dilemmas on the road poses significant challenges for autonomous vehicles. As outlined in the literature, operational decision making raises many serious questions in terms of how human life is valued. Equally, such solutions raise significant ethical questions in terms of data privacy and the sharing of sensitive/private information about a person’s health condition and potential driving risk. The possibility of technology hacking is also a potential threat to the implementation of this technology. Further, issues around defining rights in the context of the augmented self (i.e. the mix of human rights and rights as apply to our digital self which is enabled/transformed by the reach of artificial technology) are real. As argued by some, we may have to devise a set of ethics that applies to the whole continuum of our digital self and identity. Potentially, the specification of a Universal Declaration of Transhuman Rights should underpin the development of these technologies. Data gathered in a recent cross-national acceptability surveys concerning driverless vehicles indicates that the above issues are also a significant public concern [58, 59].
\nThese are of course important both ethical and societal issues. However, the literature and public debate tends to avoid other significant issues. This includes issues pertaining to (4) the purpose and intended use of this technology, (5) issues around the role of the person/driver (including older adult drivers) and (6) the potential negative consequences of this technology, including the social consequences of this technology and its impact on well-being.
\nThe high-level objective of this research was to specify the requirements for a new driving assistance system which prolongs safe driving for older adults with different ability levels, and in so doing, helps maintain cognitive and physical abilities. Importantly, the proposed system must carefully reconcile the potential conflict between (1) ensuring road safety and (2) promoting driver persistence (i.e. enabling an older driver to continue driving, even if there is a risk of a serious accident given the Drivers’ medical background). From a design perspective, the challenge was to high-tech solution for users who are often averse to technology.
\nOverall, this research has involved the application of human factors methodologies to the analysis and specification of a proposed driving assistance system. Several phases of research have been undertaken. These are detailed in Appendix A. To date, this research has mostly been theoretical. Overall, the proposed driving system concept follows a multidisciplinary analysis of relevant literature pertaining to
Older adults and positive ageing
Segmentation of older adult drivers
Driving task and theories of driver cessation and explanations of self-regulation
Automated driving solutions and ethical issues
The detection/interpretation of driver states (i.e. physical, cognitive and emotional states) using a combination of sensor-based technology and machine learning techniques
Innovative human machine interaction (HMI) communication methods
Further, it follows the application of Human Machine Interaction (HMI) design methods including personae-based design [60] scenario-based design [61] and participatory co-design [62], to the modelling of a proposed solution. Currently, a new assisted driving solution has been defined. A preliminary workflow and multimodal communications concept has been specified in relation to several demonstration scenarios. The proposed multimodal solution will be further validated using a combination of co-design techniques and simulator evaluation.
\nIn line with a human factors approach, the proposed concept was modelled using both personae based and scenario-based design methods. Driver profiles were segmented from the perspective of driver persistence, driver health situation and ability. Overall nine driver profiles were identified. This includes:
Older adults in optimal health and driving as normal
Older adults who regulate their driving in relation to managing specific driving challenges and/or stressful (difficult) driving situations
Older adults who are currently driving but have a medical condition that impacts on their ability to drive
Continuing drivers—older adults who have continued to drive with a progressing condition—but have concerns in relation to medical fitness to drive and are at risk of giving up
Older adults who are currently driving and at risk of sudden disabling/medical event
Older adults who have stopped driving on a temporary basis
Older adults who have stopped driving (ex-drivers) before it is necessary
Older adults who have stopped when it is necessary
Older adults who have never driven a car (never drivers)
These nine profiles reflect ‘ideal categories’ based on the explicit project goals (safety, driver persistence, driver experience/enjoyment and health several monitoring).
These profiles were then decomposed into a series of personae. Each persona included information about the older adult’s goals, their ability and health, medications, typical driving routines, typical driving behaviours and driver pain-points. For more information, please see Appendix B.
\nIn parallel, several scenarios were defined. These scenarios followed from (1) the project goals (i.e. top down approach) and, (2) specific driving challenges and older adult driver behaviours, as identified in the literature review (i.e. bottom up approach). These include:
Driver is enjoying drive—everything going well
Driver is distracted by their mobile phone ringing
Driver feels stressed given traffic delays
Driver has taken pain medications and is drowsy
Driver is fatigued after long day minding grandchildren
Driver is having difficulty parking (visual judgement)
Sudden advent of acute medical event
Driver is having difficulty remembering the correct route
Driver has taken alcohol and is over the legal limit
As indicated in Table 1, the different scenarios were classified in terms of interpretation challenges.
\nInterpretation challenge | \nExplanation of the interpretation challenge | \nScenario examples | \n|
---|---|---|---|
1 | \nTask support/feedback | \nAddresses driving challenges and typical supports required | \nParking support Navigational assistance Assistance changing lanes | \n
2 | \nActivation/“flow” | \nIncorporates multiple psychological states: stress/anger/excitement/workload/engagement including driver difficulties and driver behaviour | \nFlow/enjoying drive Stress given traffic delays Intelligent driving | \n
3 | \nDistraction and concurrent task management | \nAddresses age-related cognitive and perceptual challenges including driver difficulties and driver behaviour | \nDistraction from mobile phone ringing Talking with passenger/checking GPS directions and driving | \n
4 | \nFatigue and drowsiness | \nMany medical conditions and drugs also manifest this way | \nFatigue | \n
5 | \nIntoxication—alcohol/drugs/related medical conditions | \nOther drugs and some medical conditions manifest similarly | \nAlcohol Prescription drugs | \n
6 | \nHeart attack/stroke | \nAddresses fear factor—which may discourage older drivers from driving | \nHeart attack Stroke | \n
Interpretation challenges and scenarios.
Following this, the scenarios were associated with specific user profiles and personae (see Table 2).
\nInterpretation challenge | \nScenario | \nProfile | \nPersonae | \n|
---|---|---|---|---|
1 | \nTask support/feedback | \nDriver needs assistance with parking | \n2. Older adults who regulate their driving in relation to managing specific driving challenges and/or stressful (difficult) driving situations (perceived safety risk or complexity) | \nMary | \n
2 | \nActivation/flow | \nFlow | \n4. Continuing drivers: older adults who have continued to drive with a progressing condition, but have concerns in relation to medical fitness to drive and are at risk of giving up | \nSarah/James | \n
Stress | \n5. Older adults who are currently driving and at risk of sudden disabling/medical event | \nLouise | \n||
Intelligent driving | \n2. Older adults who regulate their driving in relation to managing specific driving challenges and/or stressful (difficult) driving situations (perceived safety risk or complexity). | \nMary | \n||
3 | \nFatigue and drowsiness | \nFatigue | \n1. Older adults in optimal health and driving as normal | \nElizabeth/Sam | \n
4 | \nDistraction and concurrent task management | \nDistraction | \n2. Older adults who regulate their driving in relation to managing specific driving challenges and/or stressful (difficult) driving situations (perceived safety risk or complexity) | \nTom | \n
Concurrent Task Management | \n3. Older adults who are currently driving but have a medical condition that impacts on their ability to drive | \nRichard | \n||
5 | \nIntoxication | \nAlcohol | \n1. Older adults in optimal health and driving as normal | \nJames | \n
Prescription drugs | \n5. Older adults who are currently driving and at risk of sudden disabling/medical event | \nRory | \n||
6 | \nHeart attack/stroke | \nHeart attack | \n5. Older adults who are currently driving and at risk of sudden disabling/medical event | \nBrian | \n
Stroke | \n5. Older adults who are currently driving and at risk of sudden disabling/medical event | \nLouise | \n
Interpretation challenges, scenarios, user profiles and personae.
Lastly, the specific scenarios were further decomposed in relation to (1) a time sequence/text narrative, (2) the sensing framework and behaviour of sensor technology and machine learning, and (3) multi-modal communications.
\nNine end user profiles have been identified—see Table 3. Specific system goals/requirements are associated with different profiles. It is suggested that the proposed solution might target profiles 1–7, and potentially profile 9.
\n# | \nUser profile | \nGoals/role of new technology | \n
---|---|---|
1 | \nOlder adults in optimal health and driving as normal. | \nDriving enabling life-long mobility Monitor driver’s task and driver’s capability Monitor driver states that impact on driver capability and provide task assistance to ensure safety Promote confidence for older driver Promote comfortable, enjoyable and safe driver experience | \n
2 | \nOlder adults who regulate their driving in relation to addressing specific driving challenges | \nAs (1) and… Technology directly addresses causes of self-regulation | \n
3 | \nOlder adults who are currently driving but have a medical condition that impacts on their ability to drive | \nAs (1) and… New car directly addresses challenges associated with condition Monitor driver state in relation to specific medical condition, and provide task assistance to ensure safety | \n
4 | \nContinuing drivers—older adults who have continued to drive with a progressing condition—but have concerns in relation to medical fitness to drive and are at risk of giving up | \nAs (1) and… New tech might monitor conditions and provide feedback—continue with licence/evidence, keep safe | \n
5 | \nOlder adults who are currently driving and at risk of sudden disabling/medical event | \nAs (1) and… New tech might monitor conditions and provide feedback New tech might take relevant action based on detection of onset of medical event | \n
6 | \nOlder adults who have stopped driving on a temporary basis | \nAs (1) and… Monitor driver state and health condition and provide task assistance to optimise safety | \n
7 | \nOlder adults who have stopped driving (ex-drivers) before it is necessary | \nAs (1), (2), (3), (4) and (5) | \n
8 | \nOlder adults who have stopped when it is necessary | \nN/A | \n
9 | \nOlder adults who have never driven a car (never drivers) | \nAs (1) and… Motivate to buy car/learn to drive, given protections provided by new car and associated driver experience | \n
User profiles and goals.
The different driver scenarios as defined in Table 1 raise a myriad of ethical questions—in addition to legal issues and issues pertaining to societal/user acceptability. For example,
How is the human role and well-being being considered in relation to the development of these systems?
What is the role of older adult and what level of choice do they have in relation to mode of operation?
What level of impairment is acceptable for an older driver to keep driving?
Should the system determine the level of automation/assistance, or the older adult?
Should the driver be able to take control of the car at any point?
How is information about the health status of the driver, their driving challenges, driving routines and any driving events being stored?
Who has access to driver profiles, health information and incident information?
For a full list of issues, please see Appendix C.
\nOverall, there is much overlap between ethical issues and legal issues. There is also much commonality between ethical issues and user acceptability/societal issues. Further, many of the ethical and societal/user acceptability issues are also HMI/human factors issues (for example, handover of control and role of the older adult in the system, etc.).
\nIn principle, ethical issues and issues concerning societal/user acceptability pertain to all profiles as defined previously. Critically, these ethical issues have meaning in the context of different degrees of automation. Some issues pertain to the specific level of driving automation (i.e. manual, partially automated/function specific, highly automated, fully automated), while others present to all.
\nThe design problem is framed in relation to advancing systems that can detect the health and psychological/emotional condition of the driver, so that the vehicle responds as appropriate, while also ensuring a positive/enjoyable driving experience and promoting driver self-efficacy.
\nTo this end, three high level goals for the system have been defined. These are:
\n1.Safe driving for older adults
\n2.Driver persistence
\n3.Positive driver experience
\nAccordingly, the requirement is to advance a system which can detect the health and psychological/emotional condition of the driver so that the vehicle responds as appropriate (i.e. promoting engagement/alertness, providing task supports, taking over the driving task if the driver is impaired and/or calling an ambulance).
\nIt is very difficult to both predict and assess the potential ethical implications and impact of this technology. However, we can document key performance indicators (KPIs) relevant to the potential success of this technology once it is introduced and used by the public.
\nAs stated previously, we have defined three high level goals for the system. These goals have been reformulated in terms of objectives concerning human benefit and well-being and associated measures/KPI’s. These are described in Table 4. As indicated in Table 4, there is a relationship across goals (1), (2) and (3), and the associated objectives and metrics.
\n# | \nSystem goal | \nHuman benefit and well-being objectives/targets (design outcomes) | \nMetric (outcome indicators) | \n
---|---|---|---|
1 | \nSafe driving for older adults | \nDriver feels safe Driver feels in control The car is in a safe state | \nSubjective perception of safety/security Objective measure of car safety (position on road/lane, speed) | \n
2 | \nDriver persistence | \nCar as an enabler of active ageing/positive ageing—and allied health benefits Car contributing to eudaemonia (living well) Car contributing to a sense of having a purpose Car as an enabler of mobility Supporting social connection and participation Supporting citizenship, etc. | \nHealth status Mobility status Positive human functioning and flourishing Social capitol Personal growth | \n
3 | \nDriver experience | \nDriver feeling happy/enjoying driving activity Emotional state/psychological well-being (avoidance of stress) Driver in control Focus on ability (available capacity) Promote adaptation and bricolage | \nSubjective enjoyment of driving Subjective feeling of human agency/independence Subjective well-being | \n
System goals, well-being objectives and well-being metrics.
The third phase of research involved the specification of the high-level system logic and associated principles associated with this concept. The high-level principles associated with the system logic are grouped into six themes as follows:
Philosophy of the system
Technology and the conceptualization of the driver
Technology and the conceptualization of the driver task and driving experience
Driver health conditions and emotional/psychological State
Detecting symptoms with sensors
Using multi-modal technology to promote safe driving and a positive driving experience
As indicated in Figure 1, the principles associated with (1) are derived from related principles relating to (2), (3), (4), (5) and (6). In addition, the principles related to (5) follow from an understanding of (4) and feed into (2) and (3) and so forth. Subsequent sections focus on principles related to (1) and (2).
\nHigh level principles.
The proposed co-pilot system carefully reconciles the potential conflict between two goals—(1) ensuring road safety and (2) promoting driver persistence (i.e. enabling an older driver to continue driving, even if there is a risk of a serious accident given the drivers’ medical background). Overall, the technology is designed to provide different levels of assistance/automation to drivers so that accidents are avoided (i.e. safety). Three levels of assistance are proposed.
No response—all seems to be in order, the driver is alert and attentive, driving well; there is no basis for an intervention
Driving assistance—one or more driver factors have been identified; they are not an immediate threat, but the driver could do with some assistance to drive safely and/or manage their own emotions. Driving assistance could take a range of forms:
An alert to the driver
Adjusting car settings
Auto-braking/speed reduction
Temporary co-pilot in charge
Task assistance
Task information
Safety critical intervention—the driver’s health and/or safety are at immediate risk; the co-pilot needs to make a strong intervention. This could include:
Auto-park and engine stop
External warnings to other road users
Alerts to emergency services
To this end, we are proposing assistance (i.e. adaptive automation) and not full automation. Normally, the older adult driver chooses the level of task assistance required. However, the system also recommends different levels of assistance based on the driver’s profile (level of ability), and real time context (i.e. driver state and driver behaviour). In particular circumstance, if the system detects that (1) the driver is in a seriously impaired state (i.e. alcohol or medications), (2) there is a potential for a safety critical event, or (3) the driver is incapacitated, then authority moves to ‘automation’. Accordingly, the proposed co-pilot system is both reactive and predictive.
\nThe system is designed to be usable, accessible, and understood by people of all ages with different abilities and health conditions. To this end, the system/co-pilot system provides three levels of assistance, taking into account the diverse driving situations and needs of different drivers (including older adult drivers).
\nThe proposed co-pilot system is premised on concepts of successful/positive ageing and self-efficacy. Although certain conditions occur in old age (and impact on the driving task), old age itself is not a disease. Ageing (and the associated changes in functional, sensory and cognitive function) is a normal part of life. To this end, the system seeks to normalise ageing, and not treat ageing as a ‘problem’ or ‘disease’. The driving solution (i.e. car, sensor system, co-pilot and HMI) is designed to optimise the abilities and participation of older adults. That is, it addresses what older adults can do as opposed to focusing on declining capacities.
\nThe co-pilot is conceptualised as a means/intervention to ensure that older adults drive safely and for longer. Critically, the technology supports continued and safe driving for all adults, including those adults at risk of limiting their driving and/or giving up. Accordingly, concepts of ability, adaption and assistance (as opposed to vehicle automation) underpin the system logic. To achieve this, the proposed technology provides different levels of assistance, tailored to the older adults (1) ability, (2) health and (3) the real-time physical and psychological/emotional health. In general, this will deliver benefits for the wider population and not just older adults.
\nThe ability of the driver to perform the driving task depends on the driver’s ability (i.e. functional, sensory and cognitive), his or her driving experience and the ‘real time’ state of the driver (i.e. health, level of fatigue, emotional state, etc.) and the operational context (i.e. cabin context, road context, weather and traffic). Thus, to provide targeted task support to the driver, the system combines (1) an understanding of the driver’s profile (i.e. ability and driving experience) and (2) an interpretation of the real time context (i.e. the state of the driver and the operational context).
\nThe critical objective for the system is not to precisely diagnose the drivers’ condition/state but to interpret the implications for the driving task and the driver. According, the driving assistance system logic addresses ‘interpretation challenges’ rather than the driver condition or state. This is achieved in relation to six high-level interpretation challenges. These include.
Task support/feedback
Activation/flow
Distraction and concurrent task management
Fatigue and drowsiness
Intoxication
Heart attack/stroke
Underpinning the system logic, is a vision of the co-pilot as a learning system. Arguably, a human-centric design philosophy necessitates continuous learning on the behalf of the co-pilot (i.e. including AI/machine learning). If the co-pilot can learn about those situations and tasks that prove challenging and/or stressful for the older adult driver (i.e. driving in traffic, poor visibility, changing lanes, parking and so forth, etc.), then it can truly tailor the task support that it provides to the driver. This tailored task support is predictive/intelligent, ensuring that the driver persists in challenging driving situations, while also enjoying their drive.
\nThe proposed system maintains the autonomy of the individual. In principle, the driver is able to choose (and/or switch off) task support and advanced levels of automation, if they so choose. Overall, we are starting from the point of the engaged driver, who has capacity and ability. In this way, the system supports a vision of the older adult driver as ‘in control’. The role of the driver is to work in partnership with the ‘co-pilot’, to achieve a safe and enjoyable drive. Critically, the system treats the driver as ‘capable’ and ‘in charge’ unless it detects that the driver is incapacitated and/or there is a potential for a safety critical event (i.e. level 3 assistance/safety critical intervention). If the system detects that the driver is in a seriously impaired state and/or incapacitated, or that a safety critical event is imminent, then the principle of ‘driver autonomy’ is outweighed by that of safety. In such cases, authority moves to ‘automation’.
\nThe proposed driving assistance system is premised on a conceptualisation of the driver/older adult as a person and not a set of symptoms/conditions (i.e. holistic approach). Specifically, biopsychosocial concepts of health and wellness inform the logic of the proposed driving assistance system. The system is concerned with all aspects of the driver’s wellness, including the driver’s physical, social, cognitive and emotional health.
\nCritically, the driving assistance system logic is premised on the idea that all older adult drivers are not the same. Older adult drivers vary in many ways including body size and shape, strength, mobility, sensory acuity, cognition, emotions, driving experience, driving ability (and challenges) and confidence. In relation to driving situation and ability, we have segmented older adults into the following high-profiles or clusters—as indicated previously. These profiles have been further specified in relation to a series of personae. Critically, the system logic directly addresses the needs and requirements of these specific personae.
\nThe acceptability of the proposed system largely depends upon how it treats certain issues pertaining to driver rights. Overall this technology is designed to uphold an older adult’s rights. This is specifically salient in relation to preserving driver autonomy, monitoring the driver state and recording driver health information. As outlined earlier, the technology maintains the autonomy of older adults (i.e. the starting point is the engaged driver). Further, we are proposing that information captured about the person’s current health and wellness and driving challenges/events is NOT shared with other parties. In all cases, the driver is in charge of their own data and decisions about how it is stored and shared with others.
\nAs highlighted by Fry, the introduction of new technology has the potential to transform what it means to be human [23]. In this way, the introduction of new assisted driving solutions presents a challenge to our being. Design decisions are normative—they reflect societal values concerning human agency and human identity/avoiding ageism. In particular, they provide an opportunity to foster quality of life for older adults as they age, and to promote positive ageing. Design/technology teams thus exercise choice in relation to what is valued and advancing technology that improves the human condition (and not worsens it).
\nThe discovery and utilisation of fire by early humans was of course transformative and positive [63]. It shaped how we eat, kept warm and how we protected ourselves. However, less examined are the negative by-products that came with fire, and the ways in which humans may or may not have adapted to them [63]. In the same way, it is important that designers consider issues pertaining to potential technology impact in terms of the three strands of health and wellness (i.e. biological, psychological and social health). In particular, designers should consider protections concerning the ‘unknown’ future implications of this technology (including the potential negative social consequences).
\nIn relation to the introduction of other consumer and information technologies (for example, mobile phones and social media), many important questions were posed ‘post hoc’. As stated by Heraclitus, ‘One cannot step twice in the same river’ [64]. These technologies have resulted in many changes to previously established social norms. Arguably, social norms in relation to identity and privacy and associated information sharing, have appeared to change—and without serious questioning of the implications of this. Further, in its early stage, designers need not properly consider the potential social consequences of this technology (for example, social isolation and depression).
\nNonetheless, just because the horse has bolted (i.e. the automotive industry is currently advancing and testing driverless cars), does not mean there is nothing to be achieved and/or that we are powerless. As mentioned previously, the availability of this technology does not mean that we have no choice. Critically, we need to challenge existing design assumptions from the perspective of human benefit, well-being and rights. In this regard, the IEEE Global Initiative represents a positive step in this direction.
\nSalganik proposes a hope-based and principle-based approach to machine ethics [65]. This is contrasted with a ‘fear-based and rule-based’ approach in Social Science, and a more ‘ad hoc ethics culture’ as emerging in data and computer science [65]. Hope is not enough! As evidenced in this research, principles need to be both articulated and then embedded in design concepts. Importantly, human factors methods are useful here—in relation to considering different stakeholders and adjudicating between conflicting goals/principles.
\nIn line with what is argued by the IEEE, A/IS technologies can be narrowly conceived from an ethical standpoint. Such technologies might be designed to be legal, profitable and safe in their usage. However, they may not positively contribute to human well-being [25]. Critically, new driving solutions should not have ‘negative consequences on people’s mental health, emotions, sense of themselves, their autonomy, their ability to achieve their goals, and other dimensions of well-being’ [25].
\nArguably, as demonstrated in this research, we can define an ethically aligned design in relation to several key concepts. This includes (1) human role, (2) human benefit, (3) rights, (4) progress and (5) well-being. These concepts provide structuring principles to guide the design of new driving assistance systems.
\nA key theme of this research has been about defining the purpose and role of new driving assistance technologies. As designers we decide what ethical guidelines AI in autonomous vehicles will follow. The analysis of relevant health literature and TILDA data has identified specific conditions that impact on older adult driving ability [66]. As such, it has provided an empirical basis for addressing ethical dilemmas around whether full automation is an appropriate solution to effectively managing the conflict between two goals—namely, (1) promoting driver persistence and (2) ensuring road safety. It is argued that the three levels of driver assistance represent an ethically aligned solution to enabling older drivers to continue driving, even if there is a risk of a serious accident given their medical background. Evidently, some medical conditions do not negatively impact on safe driving. However, there are other conditions that pose challenges to safe driving, and others still that make it unsafe to drive. The proposed solution is designed to directly address this fact—to promote driver persistence and enablement in these different circumstances, albeit while simultaneously maintaining safety.
\nHuman benefit is an important goal of A/IS, as is respect for human rights. In terms of rights, this includes the rights of (1) older adult drivers and (2) other road users and pedestrians who may be negatively affected by older adult driving challenges and specifically, health events such as strokes and heart attacks. The specification of benefits is not straightforward. People benefit differently. Also, benefits are not always equal for all people, as driving system that benefits older adults must also benefit other road users and pedestrians. In this way, the proposed system must be verifiably safe and secure. We must ensure the safety of all drivers and pedestrians. Benefits in relation to older adult mobility must not outweigh safety concerns (i.e. we cannot address benefit from a narrow perspective/prioritise one stakeholder).
\nThe design problem—prolonging safe driving for older adults is framed in relation to a philosophy of ‘enablement’ and positive models of ageing. Crucially, the proposed vision of ‘technology progress’ in closely intertwined with concepts of progress from a societal values perspective. The proposed co-pilot system is premised on concepts of successful/positive ageing and self-efficacy. The system seeks to normalise ageing, and not treat ageing as a ‘problem’ or ‘disease’. The driving solution (i.e. car, sensor system, co-pilot and human machine interface) is designed to optimise the abilities and participation of older adults. That is, it recognises what older adults can do as opposed to focusing on declining capacities. Further, the co-pilot is conceptualised as a means/intervention to ensure that older adults drive safely and for longer. The proposed technology supports continued and safe driving for all adults, including those adults at risk of limiting their driving and/or giving up when there is no medical/physical reason for doing so.
\nArguably, existing high automation approaches do not support positive ageing. Crucially, ‘technology progress’ in closely intertwined with concepts of progress from a societal values perspective. New assisted driving solutions provide an opportunity to change/improve the lived experience of older adults, particularly in relation to autonomy and social participation. Enabling driver persistence is an issue for all of society, not just older adults.
\nMany negative driving experiences are linked to frustrations with the vehicle not being configured for the driver. Drivers are highly diverse in terms of size, strength, angle of vision and experience of different vehicles. Older drivers present even greater diversity when limitations of movement, hearing, eyesight, memory emerge. It is argued that personalisation is central to fostering a positive driver experience. For example, vehicle sensors can be used to detect which driver is driving and to adjust the vehicle parameters accordingly (i.e. angle of mirrors, steering wheel, seat, etc.). Moreover, personalisation offers an enormous opportunity to ensure that task support and multimodal feedback is configured according to knowledge of the particular driver’s ability (including sensory ability), driving routines and routes and typical challenges/errors.
\nA human-centric and ethically aligned design philosophy necessitates continuous learning on the behalf of the assistance system (i.e. including AI/machine learning). If the assistance system can learn about those situations and tasks that prove challenging and/or stressful for the older adult driver (i.e. driving in traffic, poor visibility, changing lanes, parking and so forth, etc.), then it can tailor the task support that it provides to the driver. This tailored task support is predictive/intelligent, ensuring that the driver persists in challenging driving situations, while also enjoying their drive.
\nNew technology raises complex ethical questions. Assessing the ethical implications of things which may not yet exist, or things which may have impacts we cannot predict, is very difficult. However, this should not be barrier to posing important questions and ensuring that these questions are addressed as part of the design process. Typically, the human factors discipline is concerned with issues around intended use, user interface design and technology acceptability. As demonstrated in this research, human factors research should extend its remit to include examination of ethical issues pertaining to new technology, and specifically, how well-being, rights and human value/benefit should be considered in terms of design solutions. In this way, HF methods can be used to provide some protections to ensure that ethical issues are considered. As demonstrated in this research, the application of a personae/scenario-based design approach allows us to consider the ethical dimension of these technologies. Further, the translation of system objectives in relation to well-being and human benefit objectives and associated metrics—ensures that well-being and human benefit is both a reference point and a design outcome. We may not have certainty as regards potential future technology impact, but at least we are asking important questions so as to pave the way for an ethically aligned technology of which well-being and human value is a cornerstone. The design and implementation of ethically aligned technology takes leadership and education. It also requires adopting a multi-disciplinary perspective and ensuring diverse disciplines are involved in solution design (including persons trained in ethics and moral reasoning). Further, a crucial element of the design process to ensure an ethical product is rigorous experimentation in a simulator using a co-design approach.
\nThe initial concept requires further elaboration and specification. In line with a human factors approach, a series of co-design and evaluation sessions will be undertaken with end users. In addition, the proposed solution will be evaluated in using a driving simulator. A health event cannot be induced as part of a driving simulation exercise. However, we can evaluate the overall concept, driver responses and the usability of specific driver input/output communication mechanisms.
\nThe proposed design/automation approach reflects an ethically aligned and principled approach to a multi-dimensional design problem. Human benefit, well-being and respect for human rights and identity are important goals for new assisted driving technologies. Such systems must also be verifiably safe and secure. In this way, the solution needs to carefully balance goals around safety and human benefit. As indicated in this research, well-being and human benefit goals and associated KPI are defined to ensure that these concepts are properly considered in the design process, and to ensure that well-being and human benefit is a tangible outcome of new assisted driving solutions.
\nArguably, existing high automation approaches do not support positive ageing. Crucially, ‘technology progress’ in closely intertwined with concepts of progress from a societal values perspective. New assisted driving solutions provide an opportunity to change/improve the lived experience of older adults, particularly in relation to autonomy and social participation. Enabling driver persistence is an issue for all of society and not just older adults.
\nThe application of new car-based sensors underpinned by machine learning techniques, and innovative multimodal HMI communication methods can support driver persistence, driver enablement and successful ageing. The proposed adaptive automation/co-pilot concept is predicated on an analysis of the literature and relevant ageing data (i.e. TILDA data). The co-pilot concept and associated innovative multimodal HMI will be further elaborated using human factors/stakeholder evaluation methods (for example, participatory co-design and evaluation in a test simulator).
\nIt is anticipated that this new car-based technology will deliver (1) safe driving (2) driving persistence and (3) an enhanced driver experience. (4) Health monitoring is built into (1), (2) and (3). In this way, health monitoring is not a goal of new driving assistance systems. Rather, it is an enabler of driver assistance systems and promotes safe driving, driving persistence and an enhanced driver experience.
\nThe authors would like to thank the Science Foundation Ireland (SFI) who co-sponsored this research.
\nThe authors declare no conflict of interest.
See Table 5.
\nPhase | \nDescription | \nDetails | \nStatus | \n
---|---|---|---|
1 | \nLiterature review | \nDriver task, older adult driver segmentation, older driver challenges, self-regulation of driving, driver cessation | \nComplete | \n
Successful ageing | \n|||
Health conditions that impact on older adult driving | \n|||
Assisted driving concepts and issues pertaining to ethics and user acceptability | \n|||
The detection/interpretation of driver states (i.e. physical, cognitive and emotional states) using a combination of sensor-based technology and machine learning techniques | \n|||
Innovative multimodal communication approaches and driving solutions | \n|||
2 | \nAdvancement of profiles, personae and scenarios | \nSegmentation of driver profiles in relation to driver persistence and ability | \nComplete | \n
Advancement of personae and scenarios | \n|||
3 | \nSpecification of theoretical principles underpinning advancement of new driving concept | \nAdvancement of technology role, purpose and approach (adaptive automation) | \nComplete | \n
4 | \nSpecification of high-level multimodal HMI approach | \nSpecification of scenarios Iterative refinement of scenarios and multimodal concept Iterative integration of scenarios with sensor and machine learning research | \nComplete | \n
5 | \nCo-design of evaluation of HMI concept | \nSpecification of preliminary UI concept Preliminary co-design/evaluation with stakeholder panel (desktop simulation of high-level concept | \nOngoing | \n
6 | \nSimulator evaluation | \nDetailed evaluation in simulator | \nTo do | \n
Research phases and status.
Personae (James).
Personae (Sam).
See Table 6.
\n# | \nQuestion/issue | \nKeywords | \n
---|---|---|
1 | \nHow much dependence on technologically complex systems (potentially based on artificial intelligence with machine learning capabilities) will the public accept to achieve, in return, more safety, mobility and convenience? | \nEthics, user, societal acceptability | \n
2 | \nAgreeing/defining the purpose and role of these systems? Should the purpose go beyond safety? | \nEthics, user, societal acceptability, safety | \n
3 | \nAgreeing/defining the role of the individual in the system | \nEthics, user, societal acceptability, legal | \n
4 | \nDealing with conflict between two goals—promoting driver persistence and ensuring road safety (enabling an older driver to continue driving, even if there is a risk of a serious accident given medical background) | \nEthics, user, societal acceptability, legal, safety, driver persistence | \n
5 | \nShould the system determine the level of automation/assistance, or the older adult? Is this something that the older adult chooses (and can modify in real-time), or is it prescribed given profile information? | \nEthics, user, societal acceptability, legal, safety, driver persistence | \n
6 | \nWhat is the intended use? Are these reactive and/or predictive systems? | \nEthics, user, societal acceptability, legal, HF | \n
7 | \nBalancing expected benefits versus risk (system failure, hacking, etc.) | \nEthics, user, societal acceptability, legal, HF | \n
8 | \nWhat are the legal obligations of the driver, if the driver is taken out of the loop (i.e. full automation)? | \nEthics, legal, societal/user acceptability | \n
9 | \nWho is to blame if there in accident—the driver or the co-pilot? | \nEthics, legal, societal/user acceptability | \n
10 | \nIf the driver is in an impaired state (i.e. Alcohol, drug use, medications) should they be allowed driver only if automation take control? What level of impairment is acceptable? | \nEthics, legal, societal/user acceptability | \n
11 | \nAddressing conflict dilemmas on the road? How should the car act (what aught the automated car do/decision logic), in cases where a choice must be made between one of two evils (decision between one human life and another)? | \nEthics, legal, societal/user acceptability, safety | \n
12 | \nIn what circumstances, can automation take control over the car (over-ride the decisions of the driver)? | \nSafety, human factors, legal, ethics, user/societal acceptability | \n
13 | \nShould the driver be able to take control of the car at any point? Should the driver always be in control? What tasks are suitable to delegate to automation? | \nSafety, human factors, legal, ethics, user/societal acceptability | \n
14 | \nProtection of the personal sphere? User control over own information? Information span personal profile, health profile, location tracking, destination tracking, safety behaviour, etc. | \nLegal, ethics, user/societal acceptability | \n
15 | \nHandover issues/transition of control (human to technology handover and tech to human, etc.) | \nSafety, human factors, ethics, user/societal acceptability | \n
16 | \nSoftware hack and misuse Cybersecurity threats and vulnerabilities—both in relation to personal information and car security | \nSafety, human factors, ethics, user/societal acceptability | \n
17 | \nSafety issues related to equipment or system failure. System/equipment failure and vehicle performance in unexpected situations | \nSafety, human factors, ethics, user/societal acceptability | \n
18 | \nAcceptable levels of workload—monitoring automation status. | \nSafety, human factors, user acceptability | \n
19 | \nPersonality traits and assisted driving | \nSafety, societal acceptability, ethics | \n
20 | \nDealing with emotions and providing feedback to the driver | \nHealth monitoring, safety, user/societal acceptability, ethics, legal | \n
21 | \nDoes the system provide the driver with feedback about their health? | \nHealth monitoring, safety, user/societal acceptability, ethics, legal | \n
22 | \nSystem and consideration of information available to potential passengers? | \nSafety, driver experience, ethics, legal, user/societal acceptability | \n
23 | \nEnvironmental implications | \nLegal, user/societal acceptability | \n
24 | \nTraining required—changes to existing driver training? | \nSafety, legal | \n
25 | \nRecording of information for crash analysis purposes? Similar to cockpit voice recorder and flight data recorder? | \nSafety, ethics, legal, user/societal acceptability | \n
26 | \nShould self-vehicles be able to operate in normal traffic or in separate lanes? | \nDriver experience, ethics, legal, user/societal acceptability | \n
27 | \nData transmission? Sharing of information with other parties? | \nEthics, legal, user/societal acceptability | \n
28 | \nWhether drivers expect to find it enjoyable or not? Should it be enjoyable? | \nDriver experience | \n
29 | \nShould self-driving vehicles be able to move while unoccupied? | \nEthics, safety, driver experience | \n
30 | \nHow should self-driving vehicles interact with other non-self-driving vehicles? | \nEthics, safety, driver experience | \n
Ethical, legal and societal/user acceptability issues.
If your research is financed through any of the below-mentioned funders, please consult their Open Access policies or grant ‘terms and conditions’ to explore ways to cover your publication costs (also accessible by clicking on the link in their title).
\n\nIMPORTANT: You must be a member or grantee of the listed funders in order to apply for their Open Access publication funds. Do not attempt to contact the funders if this is not the case.
",metaTitle:"List of Funders by Country",metaDescription:"If your research is financed through any of the below-mentioned funders, please consult their Open Access policies or grant ‘terms and conditions’ to explore ways to cover your publication costs (also accessible by clicking on the link in their title).",metaKeywords:null,canonicalURL:"/page/open-access-funding-funders-list",contentRaw:'[{"type":"htmlEditorComponent","content":"Book Chapters and Monographs
\\n\\nMonographs Only
\\n\\nBook Chapters and Monographs
\\n\\n\\n\\nBook Chapters and Monographs
\\n\\nBook Chapters and Monographs
\\n\\nBook Chapters and Monographs
\\n\\nBook Chapters and Monographs
\\n\\nBook Chapters and Monographs
\\n\\nBook Chapters and Monographs
\\n\\nBook Chapters and Monographs
\\n\\nMonographs Only
\\n\\nLITHUANIA
\\n\\nBook Chapters and Monographs
\\n\\n\\n\\nBook Chapters and Monographs
\\n\\n\\n\\nBook Chapters and Monographs
\\n\\n\\n\\nSWITZERLAND
\\n\\nBook Chapters and Monographs
\\n\\nBook Chapters and Monographs
\\n\\n\\n\\nBook Chapters and Monographs
\\n\\nBook Chapters and Monographs
\n\nMonographs Only
\n\nBook Chapters and Monographs
\n\n\n\nBook Chapters and Monographs
\n\n\n\nBook Chapters and Monographs
\n\nBook Chapters and Monographs
\n\nBook Chapters and Monographs
\n\nBook Chapters and Monographs
\n\n\n\nBook Chapters and Monographs
\n\nBook Chapters and Monographs
\n\n\n\nMonographs Only
\n\n\n\nLITHUANIA
\n\nBook Chapters and Monographs
\n\n\n\nBook Chapters and Monographs
\n\n\n\nBook Chapters and Monographs
\n\n\n\nSWITZERLAND
\n\nBook Chapters and Monographs
\n\n\n\nBook Chapters and Monographs
\n\n\n\nBook Chapters and Monographs
\n\n