PV module specifications on STC from Kyocera KC200GT PV module datasheet.
\r\n\t
",isbn:"978-1-83962-360-8",printIsbn:"978-1-83880-853-2",pdfIsbn:"978-1-83962-361-5",doi:null,price:0,priceEur:0,priceUsd:0,slug:null,numberOfPages:0,isOpenForSubmission:!1,hash:"793751ee53f02ca84c8fe298a66208c9",bookSignature:"Dr. Kazuyuki Matsumoto",publishedDate:null,coverURL:"https://cdn.intechopen.com/books/images_new/9885.jpg",keywords:"Affective Computing, Sentiment Analysis Systems, Information Processing, Information Extraction, Neural Computing, Deep Learning, Swarm Intelligence, Chatbot, Dialogue Breakdown, Nursing Information Systems, Nursing Management Systems, Clinical Pathways Systems",numberOfDownloads:49,numberOfWosCitations:0,numberOfCrossrefCitations:0,numberOfDimensionsCitations:0,numberOfTotalCitations:0,isAvailableForWebshopOrdering:!0,dateEndFirstStepPublish:"June 9th 2020",dateEndSecondStepPublish:"October 2nd 2020",dateEndThirdStepPublish:"December 1st 2020",dateEndFourthStepPublish:"February 19th 2021",dateEndFifthStepPublish:"April 20th 2021",remainingDaysToSecondStep:"4 months",secondStepPassed:!0,currentStepOfPublishingProcess:4,editedByType:null,kuFlag:!1,biosketch:"A member of the technical committee of the international conference of IEEE and other international societies with broad research experience in Sensibility Robotics.",coeditorOneBiosketch:null,coeditorTwoBiosketch:null,coeditorThreeBiosketch:null,coeditorFourBiosketch:null,coeditorFiveBiosketch:null,editors:[{id:"195756",title:"Dr.",name:"Kazuyuki",middleName:null,surname:"Matsumoto",slug:"kazuyuki-matsumoto",fullName:"Kazuyuki Matsumoto",profilePictureURL:"https://mts.intechopen.com/storage/users/195756/images/system/195756.png",biography:"Dr. Matsumoto received his Ph.D. degree in 2008 from the Faculty of Engineering, the University of Tokushima. He is currently an assistant professor at the University of Tokushima. His main research field is Sensibility Robotics. His research interests include affective computing, Emotion Recognition, and Natural Language Processing. He has published over 30 peer-reviewed articles as a leading author. He is a member of the technical committee of the international conference of IEEE and other societies. He is a member of Information Processing Society of Japan (IPSJ), The Institute of Electronics, Information and Communication Engineers (IEICE), The Japanese Society for Artificial Intelligence (JSAI), The Association for Natural Language Processing (ANLP), The Institute of Electrical Engineers of Japan (IEEJ) and Human Interface Society.",institutionString:"University of Tokushima",position:null,outsideEditionCount:0,totalCites:0,totalAuthoredChapters:"2",totalChapterViews:"0",totalEditedBooks:"0",institution:{name:"University of Tokushima",institutionURL:null,country:{name:"Japan"}}}],coeditorOne:null,coeditorTwo:null,coeditorThree:null,coeditorFour:null,coeditorFive:null,topics:[{id:"9",title:"Computer and Information Science",slug:"computer-and-information-science"}],chapters:[{id:"73157",title:"Humanistic Next-Generation Artificial Intelligence Capable of Association",slug:"humanistic-next-generation-artificial-intelligence-capable-of-association",totalDownloads:49,totalCrossrefCites:0,authors:[null]}],productType:{id:"1",title:"Edited Volume",chapterContentType:"chapter",authoredCaption:"Edited by"},personalPublishingAssistant:{id:"194667",firstName:"Marijana",lastName:"Francetic",middleName:null,title:"Ms.",imageUrl:"https://mts.intechopen.com/storage/users/194667/images/4752_n.jpg",email:"marijana@intechopen.com",biography:"As an Author Service Manager my responsibilities include monitoring and facilitating all publishing activities for authors and editors. From chapter submission and review, to approval and revision, copyediting and design, until final publication, I work closely with authors and editors to ensure a simple and easy publishing process. I maintain constant and effective communication with authors, editors and reviewers, which allows for a level of personal support that enables contributors to fully commit and concentrate on the chapters they are writing, editing, or reviewing. I assist authors in the preparation of their full chapter submissions and track important deadlines and ensure they are met. I help to coordinate internal processes such as linguistic review, and monitor the technical aspects of the process. As an ASM I am also involved in the acquisition of editors. Whether that be identifying an exceptional author and proposing an editorship collaboration, or contacting researchers who would like the opportunity to work with IntechOpen, I establish and help manage author and editor acquisition and contact."}},relatedBooks:[{type:"book",id:"1591",title:"Infrared Spectroscopy",subtitle:"Materials Science, Engineering and Technology",isOpenForSubmission:!1,hash:"99b4b7b71a8caeb693ed762b40b017f4",slug:"infrared-spectroscopy-materials-science-engineering-and-technology",bookSignature:"Theophile Theophanides",coverURL:"https://cdn.intechopen.com/books/images_new/1591.jpg",editedByType:"Edited by",editors:[{id:"37194",title:"Dr.",name:"Theophanides",surname:"Theophile",slug:"theophanides-theophile",fullName:"Theophanides Theophile"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"3092",title:"Anopheles mosquitoes",subtitle:"New insights into malaria vectors",isOpenForSubmission:!1,hash:"c9e622485316d5e296288bf24d2b0d64",slug:"anopheles-mosquitoes-new-insights-into-malaria-vectors",bookSignature:"Sylvie Manguin",coverURL:"https://cdn.intechopen.com/books/images_new/3092.jpg",editedByType:"Edited by",editors:[{id:"50017",title:"Prof.",name:"Sylvie",surname:"Manguin",slug:"sylvie-manguin",fullName:"Sylvie Manguin"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"3161",title:"Frontiers in Guided Wave Optics and Optoelectronics",subtitle:null,isOpenForSubmission:!1,hash:"deb44e9c99f82bbce1083abea743146c",slug:"frontiers-in-guided-wave-optics-and-optoelectronics",bookSignature:"Bishnu Pal",coverURL:"https://cdn.intechopen.com/books/images_new/3161.jpg",editedByType:"Edited by",editors:[{id:"4782",title:"Prof.",name:"Bishnu",surname:"Pal",slug:"bishnu-pal",fullName:"Bishnu Pal"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"72",title:"Ionic Liquids",subtitle:"Theory, Properties, New Approaches",isOpenForSubmission:!1,hash:"d94ffa3cfa10505e3b1d676d46fcd3f5",slug:"ionic-liquids-theory-properties-new-approaches",bookSignature:"Alexander Kokorin",coverURL:"https://cdn.intechopen.com/books/images_new/72.jpg",editedByType:"Edited by",editors:[{id:"19816",title:"Prof.",name:"Alexander",surname:"Kokorin",slug:"alexander-kokorin",fullName:"Alexander Kokorin"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"1373",title:"Ionic Liquids",subtitle:"Applications and Perspectives",isOpenForSubmission:!1,hash:"5e9ae5ae9167cde4b344e499a792c41c",slug:"ionic-liquids-applications-and-perspectives",bookSignature:"Alexander Kokorin",coverURL:"https://cdn.intechopen.com/books/images_new/1373.jpg",editedByType:"Edited by",editors:[{id:"19816",title:"Prof.",name:"Alexander",surname:"Kokorin",slug:"alexander-kokorin",fullName:"Alexander Kokorin"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"57",title:"Physics and Applications of Graphene",subtitle:"Experiments",isOpenForSubmission:!1,hash:"0e6622a71cf4f02f45bfdd5691e1189a",slug:"physics-and-applications-of-graphene-experiments",bookSignature:"Sergey Mikhailov",coverURL:"https://cdn.intechopen.com/books/images_new/57.jpg",editedByType:"Edited by",editors:[{id:"16042",title:"Dr.",name:"Sergey",surname:"Mikhailov",slug:"sergey-mikhailov",fullName:"Sergey Mikhailov"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"371",title:"Abiotic Stress in Plants",subtitle:"Mechanisms and Adaptations",isOpenForSubmission:!1,hash:"588466f487e307619849d72389178a74",slug:"abiotic-stress-in-plants-mechanisms-and-adaptations",bookSignature:"Arun Shanker and B. Venkateswarlu",coverURL:"https://cdn.intechopen.com/books/images_new/371.jpg",editedByType:"Edited by",editors:[{id:"58592",title:"Dr.",name:"Arun",surname:"Shanker",slug:"arun-shanker",fullName:"Arun Shanker"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"878",title:"Phytochemicals",subtitle:"A Global Perspective of Their Role in Nutrition and Health",isOpenForSubmission:!1,hash:"ec77671f63975ef2d16192897deb6835",slug:"phytochemicals-a-global-perspective-of-their-role-in-nutrition-and-health",bookSignature:"Venketeshwer Rao",coverURL:"https://cdn.intechopen.com/books/images_new/878.jpg",editedByType:"Edited by",editors:[{id:"82663",title:"Dr.",name:"Venketeshwer",surname:"Rao",slug:"venketeshwer-rao",fullName:"Venketeshwer Rao"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"4816",title:"Face Recognition",subtitle:null,isOpenForSubmission:!1,hash:"146063b5359146b7718ea86bad47c8eb",slug:"face_recognition",bookSignature:"Kresimir Delac and Mislav Grgic",coverURL:"https://cdn.intechopen.com/books/images_new/4816.jpg",editedByType:"Edited by",editors:[{id:"528",title:"Dr.",name:"Kresimir",surname:"Delac",slug:"kresimir-delac",fullName:"Kresimir Delac"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"3621",title:"Silver Nanoparticles",subtitle:null,isOpenForSubmission:!1,hash:null,slug:"silver-nanoparticles",bookSignature:"David Pozo Perez",coverURL:"https://cdn.intechopen.com/books/images_new/3621.jpg",editedByType:"Edited by",editors:[{id:"6667",title:"Dr.",name:"David",surname:"Pozo",slug:"david-pozo",fullName:"David Pozo"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}}]},chapter:{item:{type:"chapter",id:"37984",title:"An Optimized Maximum Power Point Tracking Method Based on PV Surface Temperature Measurement",doi:"10.5772/51167",slug:"an-optimized-maximum-power-point-tracking-method-based-on-pv-surface-temperature-measurement",body:'\n\t\tOn the last decades, distributed generation (DG) systems based on photovoltaic (PV) generation are slowly been introduced to the world energy matrix, in which some important aspects as political incentive, cost reduction, electricity rising demand, improvements on PV materials and increasing on power converters efficiency have contributed to the present scenario [1-3].
\n\t\t\tFrom the power processing point of view, high efficiency conversion, by itself, cannot ensure the optimized power flow, since the PV output voltage and current are strongly dependent on environmental conditions, i.e., solar radiation and temperature; however, on the literature, many works bring solutions to maximize the photovoltaic output power, employing specific circuits denominated by Maximum Power Point Trackers (MPPT) [4-8]. In most applications, the MPPT is a simple dc-dc converter interposed between the photovoltaic modules and the load, and its control is achieved through a tracking algorithm.
\n\t\t\tThe studies on the MPPT area are normally grouped in two categories: the first one relates to the dc-dc converter topology optimization, focusing on methods to determine a suitable dc-dc converter for operating as MPPT [9]; and the second one refers to the maximum power point tracking algorithm, responsible for properly controlling the dc-dc converter in order to establish the system operating point as close as possible to the Maximum Power Point (MPP). Therefore, an efficient MPPT system need to be composed by the integration of an adequate dc-dc converter (hardware) and proper tracking algorithm (software), resulting in some desired aspects:
\n\t\t\tFast tracking response (dynamic analysis);
Accuracy and no oscillation around the MPP (stead-state analysis);
Capacity to track the MPP for wide ranges of solar radiation and temperature;
Simplicity of implementation;
Low cost.
The most popular algorithms employed in PV tracking systems [10-18] - Constant Voltage, Perturb and Observe (P&O) and Incremental Conductance (IncCond) – are extensively explored by specialized literature, nevertheless, since fast tracking response and accuracy conflict one from other, the mentioned tracking methods cannot satisfy, simultaneously, both of them.\n\t\t\tIn place of the traditional and spread methods, some authors have proposed complex MPPT algorithms, based on fuzzy logic and neural network, in order to accomplish fast tracking response and accuracy in a single system. These proposals, nevertheless, present some disadvantageous: needed for high processing capacity, complexity, cost elevation and, in some cases, employment of extra sensors.
\n\t\t\tIn this chapter, PV maximum power point tracking systems are analyzed under two distinct points of view: firstly, the influence of the dc-dc converter on the tracking quality is accounted. In this study, the effect of solar radiation, temperature and load variations are considered, and the tracking performance of Buck, Boost, Buck-Boost, Cuk, SEPIC and Zeta converters are compared. Secondly, a new tracking algorithm, based on the PV surface temperature, is introduced. The advantages concerning the proposed method come from the simplicity, low cost, analogue or digital implementation, fast tracking response, accuracy and no oscillation around the MPP on steady state.
\n\t\t\tIn order to achieve the main chapter topics, a brief revision of PV generation is highlighted in next section.
\n\t\tPhotovoltaic modules output power depends on environmental conditions, such as solar radiation and temperature, resulting in a non-liner and time-variant power source. The employment of a PV generator only can be successfully attained if it is correctly characterized.
\n\t\t\tPhotovoltaic cells are the basic building blocks on construction of PV power systems. The amount of power delivered by a PV cell is, typically, restricted to few Watts, due to the surface area limitation. For raising the generated power, in order to reach hundreds of Watts, PV cells may be grouped in a PV module. Similarly, it is possible to connect a group of PV modules (series, parallel or both) in order to obtain a PV array, whose power range is established from kilo-Watts to mega-Watts [19]. The distinction among PV cell, module and array is illustrated at Figure 1.
\n\t\t\t\tPV array composed by an arrangement of PV modules and PV module composed by an arrangement of PV cells.
The Standard Test Conditions (STC) refers to the conditions under which PV modules are tested in laboratory. STC defines the values of irradiance, temperature and air mass index, in which the manufactures feature the PV devices, permitting to compare their performance and efficiency conversion.
\n\t\t\t\tThe Sun energy reaches to the Earth through electromagnetic waves, resulting in an irradiance (or solar radiation) of about 1366 W/m2 on its outer atmosphere. However, due to atmospheric effects – scattering, absorption and reflection -, the incoming irradiance is modified before reaching the Earth’s surface [20].
\n\t\t\t\t\tThe process of scattering occurs when small particles and gas molecules diffuse the radiation in random directions, while absorption is defined as a process in which the solar radiation is retained by atmosphere substances and converted into heat. In addition, part of the total solar radiation is redirected back to the space by reflection and part, termed by direct solar radiation, reaches the Earth\'s surface unmodified by any of the above atmospheric processes, as depicts Figure 2.
\n\t\t\t\t\tAtmosphere effects on incoming solar radiation.
Since the direct radiation on a clear day, at noon, is typically 1000 W/m2, this value is adopted as reference at STC.
\n\t\t\t\tSolar radiation path across the Earth’s atmosphere.
The Air Mass (AM) index quantify the solar radiation path (L) across the atmosphere, normalized by the shorter path (L\n\t\t\t\t\t\t0), measured from the zenith angle, as is depicted in Figure 3 and mathematically described by (1) [19]. The index AM0 is used to describe the radiation path out of the atmosphere, where the irradiance is constant and equal to 1366 W/m2.
\n\t\t\t\t\tOn industry, PV modules are standardized considering an air mass index of AM=1.5. This value comes from a angle of aproximatly 48°, proper representing the PV instalitions around the most populed centres across Europe, China, Japan and United States of America, located in mid-latitudes. This value is also adopted as reference at STC.
\n\t\t\t\tThe third parameter used to characterize a PV module is its surface temperature. The STC temperature value adopted for PV modules characterization is T=25 °C.
\n\t\t\t\tUnder the specified Standard Test Conditions, expressed by (2), PV modules are tested and featured by I-V (current versus voltage) and P-V (power versus voltage) curves, in which the effect of solar radiation and temperature on the PV generated power is evidenced.
\n\t\t\t\tAlthough both, solar radiation and temperature, are strongly coupled, solar radiation predominantly influences the PV module output current, while temperature mainly changes the PV module output voltage, as depicts the I-V curve presented at Figure 4, obtained from Kyocera KC200GT PV module datasheet.
\n\t\t\t\tOne of most important PV module operation point is obtained on the knee of the I-V curve. In this point, named by maximum power point (MPP), the product of the PV output voltage and current results at the maximum available power, for a given solar radiation and temperature. For emphasizing the maximum power point, an alternative P-V (power versus voltage) curve may be plotted, in accordance with Figure 5.
\n\t\t\t\t\n\t\t\t\tMathematical expressions for calculating the PV module output voltage V\n\t\t\t\t\t\n\t\t\t\t\t\tmpp\n\t\t\t\t\t and current I\n\t\t\t\t\t\n\t\t\t\t\t\tmpp\n\t\t\t\t\t on MPP are given by (3) and (4), whose product results on the PV output power P\n\t\t\t\t\t\n\t\t\t\t\t\tmpp\n\t\t\t\t\t, according to (5) [21], where:
\n\t\t\t\t\t\n\t\t\t\t\t\t
\n\t\t\t\t\t\n\t\t\t\t\t\t
\n\t\t\t\t\t\n\t\t\t\t\t\t
Note that (5) is useful once it allows estimating the amount of available PV power only from the environmental data (S, T). All other related parameters are commonly specified on PV module datasheet. For instance, considering the KC200GT PV module, the following datasheet specifications are found:
\n\t\t\t\tI-V curve from Kyocera KC200GT PV module: (a) under constant temperature and (b) under constant irradiance.
PV specified parameter | \n\t\t\t\t\t\t\tValue | \n\t\t\t\t\t\t
\n\t\t\t\t\t\t\t\t | \n\t\t\t\t\t\t\t26.3 V | \n\t\t\t\t\t\t
\n\t\t\t\t\t\t\t\t | \n\t\t\t\t\t\t\t7.61 A | \n\t\t\t\t\t\t
\n\t\t\t\t\t\t\t\t | \n\t\t\t\t\t\t\t200 W | \n\t\t\t\t\t\t
\n\t\t\t\t\t\t\t\t | \n\t\t\t\t\t\t\t-0.14 V/◦C | \n\t\t\t\t\t\t
\n\t\t\t\t\t\t\t\t | \n\t\t\t\t\t\t\t0.00318 A/◦C | \n\t\t\t\t\t\t
PV module specifications on STC from Kyocera KC200GT PV module datasheet.
Furthermore, short circuit current (I\n\t\t\t\t\t\n\t\t\t\t\t\tsc\n\t\t\t\t\t) and open circuit voltage (V\n\t\t\t\t\t\n\t\t\t\t\t\toc\n\t\t\t\t\t) are also important for a complete PV module characterization. They remark the points where the PV generated power is null, but the output current or voltage reach the maximum value, respectively. Figure 6 highlights I\n\t\t\t\t\t\n\t\t\t\t\t\tsc\n\t\t\t\t\t\n\t\t\t\t\t, V\n\t\t\t\t\t\n\t\t\t\t\t\toc\n\t\t\t\t\t, I\n\t\t\t\t\t\n\t\t\t\t\t\tmpp\n\t\t\t\t\t, V\n\t\t\t\t\t\n\t\t\t\t\t\tmpp\n\t\t\t\t\t and P\n\t\t\t\t\t\n\t\t\t\t\t\tmpp\n\t\t\t\t\t on both, I-V and P-V curves.
\n\t\t\t\t\n\t\t\t\tP-V curve from Kyocera KC200GT PV module obtained by simulation: (a) under constant temperature and (b) under constant solar radiation.
Identification of Isc\n\t\t\t\t\t\t\t, Voc, Impp, Vmpp and Pmpp on the I-V and P-V curves.
For maximizing the PV conversion efficiency, the incoming sun energy must be converted to electricity with the highest efficiency, accomplished when the photovoltaic module operates on the maximum power point. Nevertheless, since this operating point is strongly affected by the solar radiation and temperature levels, it may randomly vary along the I-V plan, as illustrates Figure 7.
\n\t\t\tMPP across the I-V plan considering solar radiation and temperature changes.
Thus, in order to dynamically set the MPP as operation point for a wide range of solar radiation and temperature, specific circuits, known at the literature by Maximum Power Point Trackers (MPPT), are employed.
\n\t\t\tIn this chapter the studies concerning MPPT are grouped in two categories: the first is related to hardware, in which the influence of the dc-dc converter and load-type on the tracking quality is investigated, and the second refers to the software, where tracking accuracy and speed are targeted.
\n\t\t\tThe operating point of a photovoltaic system is defined by the I-V generation and load curves intersection. For understanding how it occurs, firstly considerer a PV module supplying a resistive load, as depicts Figure 8.
\n\t\t\t\tPV module supplying a resistive load.
The load curve is accomplished by the Ohm‘s Law, in accordance with (6), while the generation curve is related to the PV I-V curve. Both curves are represented at Figure 9.
\n\t\t\t\tDefinition of the system operating point by the I-V and load curves intersection.
Even when the load resistance is chosen for both curves intercept each other exactly on the MPP, it is impossible to ensure the maximum power transfer for long time intervals, once when solar radiation or temperature change, the MPP is relocated on the I-V plan.
\n\t\t\t\tFor solving this problem, in order to maintain the system always operating on the MPP, the load curve should be modified according to solar radiation or temperature changes. For example, from Figure 10, if the PV generation curve is I-V 1 and the load curve is Load 1, the system operating point is given by MPP 1. Now, considering a solar radiation and temperature change, the generation curve comes from I-V 1 to I-V 2. In this situation, keeping the same load curve (Load 1), the system operating point is established at X2, i.e., out of the MPP. However, if the load curve is modified from Load 1 to Load 2, the system backs to operate on the MPP, in this case, MPP 2.
\n\t\t\t\tI-V and load curves intersection for defining the PV system operating point.
Evidently, modifying the load curve in accordance with the solar radiation and temperature changes is not a suitable solution, since the load is defined by the user. Nevertheless, if a dc-dc converter is interposed between the PV module and the load, it is possible to control the converter duty cycle in order to emulate a variable load from the PV terminals point of view, even when a fixed load is employed. The arrangement presented at Figure 11, composed by a PV module, a dc-dc converter and a load, defines the hardware of a maximum power point tracking system.
\n\t\t\t\tMaximum point tracker system.
It is important to emphasize that the tracking system will present distinct behaviours depending on the dc-dc converter and load-type features. Here, buck, buck-boost, boost, Cuk, SEPIC and zeta converters will be analyzed in association with resistive or constant voltage loads-type.
\n\t\t\t\tWhen a resistive load is connected to the dc-dc converter, Figure 11 may be redrawn as per Figure 12 and equation (7) can be derived.
\n\t\t\t\t\tMPPT supplying a resistive load-type.
Taking into account a literal dc-dc converters static gain G, the input system variables (V\n\t\t\t\t\t\t\n\t\t\t\t\t\t\tPV\n\t\t\t\t\t\t and I\n\t\t\t\t\t\t\n\t\t\t\t\t\t\tPV\n\t\t\t\t\t\t) can strictly be associated to the output ones (V\n\t\t\t\t\t\t\n\t\t\t\t\t\t\tR\n\t\t\t\t\t\t and I\n\t\t\t\t\t\t\n\t\t\t\t\t\t\tR\n\t\t\t\t\t\t), through (8) and (9).
\n\t\t\t\t\tIsolating V\n\t\t\t\t\t\t\n\t\t\t\t\t\t\tR\n\t\t\t\t\t\t in (8) and I\n\t\t\t\t\t\t\n\t\t\t\t\t\t\tR\n\t\t\t\t\t\t in (9) and substituting the found results into (7), it is possible to obtain (10).
\n\t\t\t\t\tThe term V\n\t\t\t\t\t\t\n\t\t\t\t\t\t\tPV\n\t\t\t\t\t\t\n\t\t\t\t\t\t/I\n\t\t\t\t\t\t\n\t\t\t\t\t\t\tPV\n\t\t\t\t\t\t describes the effective resistance R\n\t\t\t\t\t\t\n\t\t\t\t\t\t\teff\n\t\t\t\t\t\t obtained from the PV module terminals. In other words, the dc-dc converter emulates a variable resistance, whose value can be modulated in function of the converter static gain G. This conclusion allows redesigning Figure 12 as Figure 13 and writes (11).
\n\t\t\t\t\tEffective resistance obtained from the PV module terminals.
When plotted on the I-V plan, equation (11) results in a straight line whose inclination angle θ, given by 12, is modified according to the converter static gain G.
\n\t\t\t\t\t\n\t\t\t\t\t\tTable 2 presents static gain, as a function of the duty cycle D, for the dc-dc converter cregarded in this chapter, for operation in continuous conduction mode (CCM).\n\t\t\t\t\tApplying the results from Table 2 in (12), it is possible to describe the effective inclination angle θ, for each converter, as a variable dependent on the duty cycle D, as consequence, Table 3 is obtained.
\n\t\t\t\t\tPower dc-dc converter | \n\t\t\t\t\t\t\t\tStatic Gain | \n\t\t\t\t\t\t\t
Buck | \n\t\t\t\t\t\t\t\t\n\t\t\t\t\t\t\t\t\t\n\t\t\t\t\t\t\t\t\t\t\n\t\t\t\t\t\t\t\t\t\t\t\n\t\t\t\t\t\t\t\t\t\t\t\tG\n\t\t\t\t\t\t\t\t\t\t\t\t=\n\t\t\t\t\t\t\t\t\t\t\t\tD\n\t\t\t\t\t\t\t\t\t\t\t\n\t\t\t\t\t\t\t\t\t\t\n\t\t\t\t\t\t\t\t\t\n\t\t\t\t\t\t\t\t | \n\t\t\t\t\t\t\t
Boost | \n\t\t\t\t\t\t\t\t\n\t\t\t\t\t\t\t\t\t | \n\t\t\t\t\t\t\t
Buck-boost, Cuk, SEPIC and zeta | \n\t\t\t\t\t\t\t\t\n\t\t\t\t\t\t\t\t\t | \n\t\t\t\t\t\t\t
Static gain for some dc-dc converters in CCM.
Power dc-dc converter | \n\t\t\t\t\t\t\t\tEffective load inclination angle θ | \n\t\t\t\t\t\t\t
Buck | \n\t\t\t\t\t\t\t\t\n\t\t\t\t\t\t\t\t\t\n\t\t\t\t\t\t\t\t\t\t\n\t\t\t\t\t\t\t\t\t\t\t\n\t\t\t\t\t\t\t\t\t\t\t\tθ=atan\n\t\t\t\t\t\t\t\t\t\t\t\t\n\t\t\t\t\t\t\t\t\t\t\t\t\t(\n\t\t\t\t\t\t\t\t\t\t\t\t\t\n\t\t\t\t\t\t\t\t\t\t\t\t\t\t\n\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\n\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\n\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\tD\n\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t2\n\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\n\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\n\t\t\t\t\t\t\t\t\t\t\t\t\t\t\tR\n\t\t\t\t\t\t\t\t\t\t\t\t\t\t\n\t\t\t\t\t\t\t\t\t\t\t\t\t\n\t\t\t\t\t\t\t\t\t\t\t\t\t)\n\t\t\t\t\t\t\t\t\t\t\t\t\n\t\t\t\t\t\t\t\t\t\t\t\n\t\t\t\t\t\t\t\t\t\t\n\t\t\t\t\t\t\t\t\t\n\t\t\t\t\t\t\t\t | \n\t\t\t\t\t\t\t
Boost | \n\t\t\t\t\t\t\t\t\n\t\t\t\t\t\t\t\t\t | \n\t\t\t\t\t\t\t
Buck-boost, Cuk, SEPIC and zeta | \n\t\t\t\t\t\t\t\t\n\t\t\t\t\t\t\t\t\t | \n\t\t\t\t\t\t\t
Load curve inclination angle as a function of the converter duty cycle D.
Theoretically, since the duty cycle is limited between 0 and 1, the effective inclination angle becomes restricted into a range whose extremes are dependent on the considered dc-dc converter. For instance, when buck converter is taken into account, for null duty cycle, D=0, (13) is found.
\n\t\t\t\t\tThereby, if the duty cycle is set on its high value, D=1, (14) may be written.
\n\t\t\t\t\tIn other to extend the presented analysis for further converters, a similar procedure may be applied, resulting at Table 4 and Figure 14.
\n\t\t\t\t\tFrom Table 4 it is noticed that effective load inclination angle defines an area on the I-V plan where the maximum power can be tracked. For a better understanding, Table 4 is graphically explained through Figure 14, from where two distinct regions are identified: tracking and non tracking regions.
\n\t\t\t\t\t\n\t\t\t\t\tThe tracking region refers to the area on the I-V plan in which the dc-dc converter is able to emulate a proper effective load curve in order to intercept the I-V curve exactly on the MPP, ensuring the maximum power transfer. Note, when solar radiation or temperature change, the maximum power point is relocated on the I-V plan, thus, the effective load inclination angle must also be modified in order to reestablish the maximum power transfer. However, this condition is only suitable if the MPP is located inside the tracking region, otherwise, the system operating point will be set out of the MPP.
\n\t\t\t\t\tPower dc-dc converter | \n\t\t\t\t\t\t\t\tMinimum effective load inclination angle | \n\t\t\t\t\t\t\t\tMaximum effective load inclination angle | \n\t\t\t\t\t\t\t
Buck | \n\t\t\t\t\t\t\t\t\n\t\t\t\t\t\t\t\t\t\n\t\t\t\t\t\t\t\t\t\t\n\t\t\t\t\t\t\t\t\t\t\t\n\t\t\t\t\t\t\t\t\t\t\t\tθ\n\t\t\t\t\t\t\t\t\t\t\t\t\n\t\t\t\t\t\t\t\t\t\t\t\t\t|\n\t\t\t\t\t\t\t\t\t\t\t\t\t\n\t\t\t\t\t\t\t\t\t\t\t\t\t\t\n\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\n\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\n\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\tD\n\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t=\n\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t0\n\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\n\t\t\t\t\t\t\t\t\t\t\t\t\t\t\n\t\t\t\t\t\t\t\t\t\t\t\t\t\n\t\t\t\t\t\t\t\t\t\t\t\t\n\t\t\t\t\t\t\t\t\t\t\t\t=\n\t\t\t\t\t\t\t\t\t\t\t\t0\n\t\t\t\t\t\t\t\t\t\t\t\n\t\t\t\t\t\t\t\t\t\t\n\t\t\t\t\t\t\t\t\t\n\t\t\t\t\t\t\t\t | \n\t\t\t\t\t\t\t\t\n\t\t\t\t\t\t\t\t\t\n\t\t\t\t\t\t\t\t\t\t\n\t\t\t\t\t\t\t\t\t\t\t\n\t\t\t\t\t\t\t\t\t\t\t\tθ\n\t\t\t\t\t\t\t\t\t\t\t\t\n\t\t\t\t\t\t\t\t\t\t\t\t\t|\n\t\t\t\t\t\t\t\t\t\t\t\t\t\n\t\t\t\t\t\t\t\t\t\t\t\t\t\t\n\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\n\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\n\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\tD\n\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t=\n\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t1\n\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\n\t\t\t\t\t\t\t\t\t\t\t\t\t\t\n\t\t\t\t\t\t\t\t\t\t\t\t\t\n\t\t\t\t\t\t\t\t\t\t\t\t\n\t\t\t\t\t\t\t\t\t\t\t\t=atan\n\t\t\t\t\t\t\t\t\t\t\t\t\n\t\t\t\t\t\t\t\t\t\t\t\t\t(\n\t\t\t\t\t\t\t\t\t\t\t\t\t\n\t\t\t\t\t\t\t\t\t\t\t\t\t\t\n\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t1\n\t\t\t\t\t\t\t\t\t\t\t\t\t\t\tR\n\t\t\t\t\t\t\t\t\t\t\t\t\t\t\n\t\t\t\t\t\t\t\t\t\t\t\t\t\n\t\t\t\t\t\t\t\t\t\t\t\t\t)\n\t\t\t\t\t\t\t\t\t\t\t\t\n\t\t\t\t\t\t\t\t\t\t\t\n\t\t\t\t\t\t\t\t\t\t\n\t\t\t\t\t\t\t\t\t\n\t\t\t\t\t\t\t\t | \n\t\t\t\t\t\t\t
Boost | \n\t\t\t\t\t\t\t\t\n\t\t\t\t\t\t\t\t\t | \n\t\t\t\t\t\t\t\t\n\t\t\t\t\t\t\t\t\t | \n\t\t\t\t\t\t\t
Buck-boost, Cuk, SEPIC and zeta | \n\t\t\t\t\t\t\t\t\n\t\t\t\t\t\t\t\t\t | \n\t\t\t\t\t\t\t\t\n\t\t\t\t\t\t\t\t\t | \n\t\t\t\t\t\t\t
Minimum and maximum effective load inclination for some dc-dc converters.
Tracking and non tracking regions for: (a) buck converter; (b) boost converter and (c) buck-boost, Cuk, SEPIC and zeta converters.
Comparing the graphical results, it is verified that buck-boost, Cuk, SEPIC and zeta are the most appropriated converters for maximum power point tracking applications, once they may track the MPP independently on its position on the I-V plan. On the other hand, buck and boost converters are not indicate for this proposal, since their tracking area is only a part of the whole I-V plan. In order to validate the proposed theory, buck, boost and buck-boost converters were designed and assembled in laboratory, according to Figure 15.
\n\t\t\t\t\ta) buck, (b) boost and (c) buck-boost power stage converters.
For achieving the experimental tests, the converters duty cycle was linearly varied from 0 to 1, while PV voltage and current were measured. By the use of a scope on XY mode, the I-V curve was traced, and the found results are shown at Figure 16.
\n\t\t\t\t\t\n\t\t\t\t\tNotice that I-V curve is partially plotted on the I-V plan when buck and boost converters are regarded, and on the whole I-V plan, when buck-boost converter is considered. Additionally, the area in which the I-V curves were traced is in accordance with the tracking region, theoretically defined for each converter, validating the analysis.
\n\t\t\t\t\tOn the next subsection, the resistive load will be replaced by a constant voltage load-type. This analysis is relevant and mandatory, since in many applications, PV systems are employed in battery charges, or even, delivering power to a regulated dc bus.
\n\t\t\t\t\n\t\t\t\tThe analysis concerning to dc-dc converters operating as MPPT when a constant voltage load-type is considered follows the same procedures presented for resistive loads. For beginning, consider the MPPT system shown in Figure 17, in which a dc voltage source is supplied by a PV module through a literal dc-dc converter.
\n\t\t\t\t\tExperimental results for (a) buck, (b) boost and (c) buck-boost converters.
MPPT supplying a constant voltage load-type.
In this case, the output converter voltage is imposed by the load, permitting to write (15) and to model both, dc-dc converter and voltage load, as a controlled voltage source, as is shown in Figure 18.
\n\t\t\t\t\tEquivalent MPPT system obtained from the PV module terminals.
Taking into account the static gain G presented at Table 2, it is possible to define the equivalent voltage source for each dc-dc converter as a function of the duty cycle D, resulting on Table 5.\n\t\t\t\t\tDue to the duty cycle range restriction, 0<D<1, the voltage imposed by the equivalent controlled voltage source across the PV module terminals is also limited. For example, when buck converter is regarded, equations (16) and (17) are obtained from the first line of Table 5, describing the system behavior for D=0 and D=1, respectively.
\n\t\t\t\t\tPower dc-dc converter | \n\t\t\t\t\t\t\t\tEquivalent voltage source value | \n\t\t\t\t\t\t\t
Buck | \n\t\t\t\t\t\t\t\t\n\t\t\t\t\t\t\t\t\t\n\t\t\t\t\t\t\t\t\t\t\n\t\t\t\t\t\t\t\t\t\t\t\n\t\t\t\t\t\t\t\t\t\t\t\t\n\t\t\t\t\t\t\t\t\t\t\t\t\tV\n\t\t\t\t\t\t\t\t\t\t\t\t\t\n\t\t\t\t\t\t\t\t\t\t\t\t\t\tP\n\t\t\t\t\t\t\t\t\t\t\t\t\t\tV\n\t\t\t\t\t\t\t\t\t\t\t\t\t\n\t\t\t\t\t\t\t\t\t\t\t\t\n\t\t\t\t\t\t\t\t\t\t\t\t=\n\t\t\t\t\t\t\t\t\t\t\t\t\n\t\t\t\t\t\t\t\t\t\t\t\t\t\n\t\t\t\t\t\t\t\t\t\t\t\t\t\t\n\t\t\t\t\t\t\t\t\t\t\t\t\t\t\tV\n\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\n\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\tb\n\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\tu\n\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\ts\n\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\n\t\t\t\t\t\t\t\t\t\t\t\t\t\t\n\t\t\t\t\t\t\t\t\t\t\t\t\t\n\t\t\t\t\t\t\t\t\t\t\t\t\tD\n\t\t\t\t\t\t\t\t\t\t\t\t\n\t\t\t\t\t\t\t\t\t\t\t\n\t\t\t\t\t\t\t\t\t\t\n\t\t\t\t\t\t\t\t\t\n\t\t\t\t\t\t\t\t | \n\t\t\t\t\t\t\t
Boost | \n\t\t\t\t\t\t\t\t\n\t\t\t\t\t\t\t\t\t | \n\t\t\t\t\t\t\t
Buck-boost, Cuk, SEPIC and Zeta | \n\t\t\t\t\t\t\t\t\n\t\t\t\t\t\t\t\t\t | \n\t\t\t\t\t\t\t
Minimum and maximum effective load inclination for some dc-dc converters.
It is important to emphasize that the maximum voltage across the PV module terminals is its open circuit voltage, thus, the minimum duty cycle value must be defined in order to satisfy this condition. From the exposed, (16) is replaced by (18).
\n\t\t\t\t\tExtending the analysis for further converters, Table 6 is obtained.
\n\t\t\t\t\t\n\t\t\t\t\tThe graphical representation allows understanding how the dc-dc converter feature impacts on the tracking quality when constant voltage loads are employed, as depicts Figure 19. When the maximum power point is located inside the tracking region, the dc-dc converter may apply on the PV output terminals a voltage value for ensuring its operation on the MPP. Otherwise, even when the better tracking algorithm is used, there is no possible to track it.
\n\t\t\t\t\tPower dc-dc converter | \n\t\t\t\t\t\t\t\tMinimum voltage across the PV module terminals | \n\t\t\t\t\t\t\t\tMaximum voltage across the PV module terminals | \n\t\t\t\t\t\t\t
Buck | \n\t\t\t\t\t\t\t\t\n\t\t\t\t\t\t\t\t\t\n\t\t\t\t\t\t\t\t\t\t\n\t\t\t\t\t\t\t\t\t\t\t\n\t\t\t\t\t\t\t\t\t\t\t\t\n\t\t\t\t\t\t\t\t\t\t\t\t\tV\n\t\t\t\t\t\t\t\t\t\t\t\t\t\n\t\t\t\t\t\t\t\t\t\t\t\t\t\tP\n\t\t\t\t\t\t\t\t\t\t\t\t\t\tV\n\t\t\t\t\t\t\t\t\t\t\t\t\t\n\t\t\t\t\t\t\t\t\t\t\t\t\n\t\t\t\t\t\t\t\t\t\t\t\t\n\t\t\t\t\t\t\t\t\t\t\t\t\t|\n\t\t\t\t\t\t\t\t\t\t\t\t\t\n\t\t\t\t\t\t\t\t\t\t\t\t\t\t\n\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\n\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\n\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\tD\n\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t=\n\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t1\n\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\n\t\t\t\t\t\t\t\t\t\t\t\t\t\t\n\t\t\t\t\t\t\t\t\t\t\t\t\t\n\t\t\t\t\t\t\t\t\t\t\t\t\n\t\t\t\t\t\t\t\t\t\t\t\t=\n\t\t\t\t\t\t\t\t\t\t\t\t\n\t\t\t\t\t\t\t\t\t\t\t\t\tV\n\t\t\t\t\t\t\t\t\t\t\t\t\t\n\t\t\t\t\t\t\t\t\t\t\t\t\t\tb\n\t\t\t\t\t\t\t\t\t\t\t\t\t\tu\n\t\t\t\t\t\t\t\t\t\t\t\t\t\ts\n\t\t\t\t\t\t\t\t\t\t\t\t\t\n\t\t\t\t\t\t\t\t\t\t\t\t\n\t\t\t\t\t\t\t\t\t\t\t\n\t\t\t\t\t\t\t\t\t\t\n\t\t\t\t\t\t\t\t\t\n\t\t\t\t\t\t\t\t | \n\t\t\t\t\t\t\t\t\n\t\t\t\t\t\t\t\t\t\n\t\t\t\t\t\t\t\t\t\t\n\t\t\t\t\t\t\t\t\t\t\t\n\t\t\t\t\t\t\t\t\t\t\t\t\n\t\t\t\t\t\t\t\t\t\t\t\t\tV\n\t\t\t\t\t\t\t\t\t\t\t\t\t\n\t\t\t\t\t\t\t\t\t\t\t\t\t\tP\n\t\t\t\t\t\t\t\t\t\t\t\t\t\tV\n\t\t\t\t\t\t\t\t\t\t\t\t\t\n\t\t\t\t\t\t\t\t\t\t\t\t\n\t\t\t\t\t\t\t\t\t\t\t\t\n\t\t\t\t\t\t\t\t\t\t\t\t\t|\n\t\t\t\t\t\t\t\t\t\t\t\t\t\n\t\t\t\t\t\t\t\t\t\t\t\t\t\t\n\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\n\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\n\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\tD\n\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t=\n\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\n\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\tD\n\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\n\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\tmin\n\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\n\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\n\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\n\t\t\t\t\t\t\t\t\t\t\t\t\t\t\n\t\t\t\t\t\t\t\t\t\t\t\t\t\n\t\t\t\t\t\t\t\t\t\t\t\t\n\t\t\t\t\t\t\t\t\t\t\t\t=\n\t\t\t\t\t\t\t\t\t\t\t\t\n\t\t\t\t\t\t\t\t\t\t\t\t\tV\n\t\t\t\t\t\t\t\t\t\t\t\t\t\n\t\t\t\t\t\t\t\t\t\t\t\t\t\to\n\t\t\t\t\t\t\t\t\t\t\t\t\t\tc\n\t\t\t\t\t\t\t\t\t\t\t\t\t\n\t\t\t\t\t\t\t\t\t\t\t\t\n\t\t\t\t\t\t\t\t\t\t\t\n\t\t\t\t\t\t\t\t\t\t\n\t\t\t\t\t\t\t\t\t\n\t\t\t\t\t\t\t\t | \n\t\t\t\t\t\t\t
Boost | \n\t\t\t\t\t\t\t\t\n\t\t\t\t\t\t\t\t\t | \n\t\t\t\t\t\t\t\t\n\t\t\t\t\t\t\t\t\t | \n\t\t\t\t\t\t\t
Buck-boost, Cuk, SEPIC and zeta | \n\t\t\t\t\t\t\t\t\n\t\t\t\t\t\t\t\t\t | \n\t\t\t\t\t\t\t\t\n\t\t\t\t\t\t\t\t\t | \n\t\t\t\t\t\t\t
Minimum and maximum voltage values across the PV module terminals.
Tracking and non tracking regions for: (a) buck converter; (b) boost converter and (c) buck-boost, Cuk, SEPIC and zeta converters.
In addition, notice that temperature changes may directly affect the tracking quality: commonly, PV systems are designed considering its operation on the SCT, i.e., \n\t\t\t\t\t\t\t
Although boost converter also presents a non tracking region, in this case it presents a proper tracking behavior, once temperature increasing replaces the MPP to left, toward to the tracking region, in according to Figure 19 (b).
\n\t\t\t\t\tFinally, buck-boost converter (and similars) can track the MPP independent on its position on the I-V pan, as is shown on Figure 19 (c). Furthemore, these converters are also indicated for tracking applications, when constant voltage loads are employed.
\n\t\t\t\tThe tracking algorithm performance is fundamental for an efficient tracking response. Usually, the algorithm receives the PV module voltage and current as input data and defines the dc-dc converter duty cycle that establishes the system operating point on the MPP, as depicts Figure 20.
\n\t\t\t\tTypical input and output data related to MPPT algorithms.
As the radiation and temperature are dynamic variables, and the MPP depends on both of them, the algorithm must practically work in real time, updating the duty cycle for a fast and accurate tracking.
\n\t\t\t\tOn the literature, there are several proposed algorithms for improving the tracking speed, accuracy or both, but the algorithm efficiency is directly associated to the complexity of implementation.
\n\t\t\t\tIn this section, based on the PV curves understanding, a new tracking method is developed, whose main characteristics are: simplicity, excellent tracking dynamic, accuracy, stability in steady-state (no oscillations), and low cost.
\n\t\t\t\tBefore presenting this proposal, a review of the most commonly employed MPPT algorithms is presented, where Constant Voltage, Perturb and Observe (P&O) and Incremental Conductance (IncCond are briefly discussed.
\n\t\t\t\tThis method is achieved in or to impose the voltage across the PV terminals clamped at a fixed value, normally specified to ensure the maximum power transfer on the STC [4]. Once a single voltage sensor is needed, it is featured by simplicy of implementation and low cost, but for any temperature change, the PV operating point is set out of the MPP.
\n\t\t\t\tPerturb and Observe (P&O) is one of the most diffused MPPT algorithms, whose tracking response is independent on the environmental conditions, however, its implementation requires a voltage and a current sensor, increasing the cost and complexity [11].
\n\t\t\t\t\tWhen in operation, the P&O algorithm calculates the PV output power and perturbs the converter duty cycle (increasing or decreasing it). After perturbation, the PV output power is recalculated and, if it was increased, the perturbation is repeated on the same direction, otherwise, it is inverted.
\n\t\t\t\t\tThe main drawbacks associated to this method are the oscillation in steady-state, due to the constant perturbations, the slow tracking dynamic and the inability to proper operate during fast changes of solar radiation.
\n\t\t\t\tThe Incremental Conductance (IncCond) method is featured for combining both, tracking speed and accuracy [13]. From the voltage \n\t\t\t\t\tVPV\n\t\t\t\t\t\tand current IPV\n\t\t\t\t\t\t measurements, the algorithm calculates the photovoltaic output power \n\t\t\t\t\t\tPPV and its derivative in function of the voltage \n\t\t\t\t\t\tdPPV/dVPV\n\t\t\t\t\t\t, using both results to define if the duty cycle must be increased or decreased, in order to impose the system operating point on the MPP. Usually the IncCond method is implemented digitally, and the derivative is calculated by the microcontroller according to (19).
\n\t\t\t\t\tFrom (19), the following decision logic is achieved:
\n\t\t\t\t\tif \n\t\t\t\t\t\t\t
if \n\t\t\t\t\t\t\t
if \n\t\t\t\t\t\t\t
This tecnique is characterized for presenting high tracking speed (variabe step) and accuracy (no oscillation), however, it is more complexy than P&O, once the derivative must be calculated in real time and also require a voltage and a current sensor.
\n\t\t\t\tThe MPPT algorithm based on temperature measurement, named by MPPT-temp [22], consists on the unification of simplicity related to Constant Voltage method with the velocity and accuracy tracking related to the Incremental Conductance technique.
\n\t\t\t\t\tThe development of this method comes from (3), rewritten in (20). Note that the voltage in which the maximum power is established depends exclusively on the PV surface temperature. Thereby, accomplishing the temperature measurement, the maximum power voltage V\n\t\t\t\t\t\t\n\t\t\t\t\t\t\tmpp\n\t\t\t\t\t\t may be determined and actively imposed across the PV terminals in real time. The configuration needed for implementation of this new method is depicted at Figure 21.
\n\t\t\t\t\tConfiguration of the new tracking method.
The following steps describe how the maximum power point is achieved by the proposed method:
\n\t\t\t\t\tThe PV module surface temperature T and the load volatge V\n\t\t\t\t\t\t\t\t\n\t\t\t\t\t\t\t\t\tLoad\n\t\t\t\t\t\t\t\t are measured by a temperature sensor and a volatge sensor, respectivelly;
Both sinals are applyed as input data for the tracking algorithm, whose output is the dc-dc converter static gain G\n\t\t\t\t\t\t\t\t\n\t\t\t\t\t\t\t\t\tmpp\n\t\t\t\t\t\t\t\t, in acordance with (21);
3.Defining the dc-dc converter, an expression for determine the duty cycle may be derived. For example, considering a buck converter, i.e. G=D, the maximum power point is acomplished when (21) is rewritten as (22).
\n\t\t\t\t\tFor extending the analisys, Table 7 present the equitions employed by the tracking algorithm to calculate the duty cycle that imposes the PV operating point on the MPP.
\n\t\t\t\t\tPower dc-dc converter | \n\t\t\t\t\t\t\t\tDuty cycle for operation on the MPP | \n\t\t\t\t\t\t\t
Buck | \n\t\t\t\t\t\t\t\t\n\t\t\t\t\t\t\t\t\t\n\t\t\t\t\t\t\t\t\t\t\n\t\t\t\t\t\t\t\t\t\t\t\n\t\t\t\t\t\t\t\t\t\t\t\t\n\t\t\t\t\t\t\t\t\t\t\t\t\tD\n\t\t\t\t\t\t\t\t\t\t\t\t\t\n\t\t\t\t\t\t\t\t\t\t\t\t\t\tm\n\t\t\t\t\t\t\t\t\t\t\t\t\t\tp\n\t\t\t\t\t\t\t\t\t\t\t\t\t\tp\n\t\t\t\t\t\t\t\t\t\t\t\t\t\n\t\t\t\t\t\t\t\t\t\t\t\t\n\t\t\t\t\t\t\t\t\t\t\t\t=\n\t\t\t\t\t\t\t\t\t\t\t\t\n\t\t\t\t\t\t\t\t\t\t\t\t\t\n\t\t\t\t\t\t\t\t\t\t\t\t\t\t\n\t\t\t\t\t\t\t\t\t\t\t\t\t\t\tV\n\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\n\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\tL\n\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\to\n\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\ta\n\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\td\n\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\n\t\t\t\t\t\t\t\t\t\t\t\t\t\t\n\t\t\t\t\t\t\t\t\t\t\t\t\t\n\t\t\t\t\t\t\t\t\t\t\t\t\t\n\t\t\t\t\t\t\t\t\t\t\t\t\t\t\n\t\t\t\t\t\t\t\t\t\t\t\t\t\t\tV\n\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\n\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\tm\n\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\tp\n\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\tp\n\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\n\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\n\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\tS\n\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\tT\n\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\tC\n\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\n\t\t\t\t\t\t\t\t\t\t\t\t\t\t\n\t\t\t\t\t\t\t\t\t\t\t\t\t\t+\n\t\t\t\t\t\t\t\t\t\t\t\t\t\t\n\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t(\n\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\n\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\tT\n\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t−\n\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\n\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\tT\n\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\n\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\tS\n\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\tT\n\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\tC\n\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\n\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\n\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\n\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t)\n\t\t\t\t\t\t\t\t\t\t\t\t\t\t\n\t\t\t\t\t\t\t\t\t\t\t\t\t\t\n\t\t\t\t\t\t\t\t\t\t\t\t\t\t\tμ\n\t\t\t\t\t\t\t\t\t\t\t\t\t\t\tV\n\t\t\t\t\t\t\t\t\t\t\t\t\t\t\n\t\t\t\t\t\t\t\t\t\t\t\t\t\n\t\t\t\t\t\t\t\t\t\t\t\t\n\t\t\t\t\t\t\t\t\t\t\t\n\t\t\t\t\t\t\t\t\t\t\n\t\t\t\t\t\t\t\t\t\n\t\t\t\t\t\t\t\t | \n\t\t\t\t\t\t\t
Boost | \n\t\t\t\t\t\t\t\t\n\t\t\t\t\t\t\t\t\t | \n\t\t\t\t\t\t\t
Buck-boost, Cuk, SEPIC and zeta | \n\t\t\t\t\t\t\t\t\n\t\t\t\t\t\t\t\t\t | \n\t\t\t\t\t\t\t
Duty cycle for maximum power point operation.
\n\t\t\t\t\t\tTable 7 evidences the simplicity of the proposed method: from the temperature measurement it is possible directly set the duty cycle, ensuring the maximum power transfer from the PV module to the load. Additionally, there is no need computational requirements, recursive procedures and, due to the slow dynamic associated to the temperature changes, the tracking is smooth, stable and occurs in real time, for any combination of solar radiation and temperature.
\n\t\t\t\t\tIt is important to emphasize the restrictions associated to the dc-dc converter, as it was previously studied at last section, may imply in a poor tracking quality, even when the MPPT-temp method is employed. In order to finalize the chapter, the results obtained from an experimental prototype are presented.
\n\t\t\t\t\tThe prototype was implemented for processing the power generated by a KC200GT PV module, from Kyocera, whose electrical specifications are listed at Table 1. A dc-dc buck-boost converter was chosen for composing the hardware, because of its proper tracking behavior. Consequently, the equation to define the duty cycle is given by (23).
\n\t\t\t\t\tFor measuring the PV module surface temperature, a precision centigrade temperature sensor (LM35) was used. This device presents a linear gain of 10 mV/°C. Furthermore, in order to execute the tracking algorithm, a simple PIC 18F1320 microcontroller was employed.
\n\t\t\t\t\tThe tracking method validation was achieved plotting the PV operating point on the I-V plan during temperature and solar radiation changes, as is illustrated in Figure 22. For reaching this result a scope on XY mode, where X refers to the PV output voltage and Y refers to the PV output current, was employed.
\n\t\t\t\t\tExperimental PV operating point on I-V plan during temperature and solar radiation changes. Scope on XY mode (X-voltage, Y-current)
Theoretical MPP trajectory for solar radiation and temperature measured during experimental evaluation.
In order to prove that the obtained experimental trajectory coincides with the MPP, the values of solar radiation and temperature were also collected by a data logger and summarized by Table 8. The measurements were achieved on middle of April in the Florianopolis Island – south of Brazil – located at latitude 27o.
\n\t\t\t\t\t\n\t\t\t\t\tSolar radiation | \n\t\t\t\t\t\t\t\tTemperature | \n\t\t\t\t\t\t\t
900 | \n\t\t\t\t\t\t\t\t51 | \n\t\t\t\t\t\t\t
850 | \n\t\t\t\t\t\t\t\t50 | \n\t\t\t\t\t\t\t
830 | \n\t\t\t\t\t\t\t\t49 | \n\t\t\t\t\t\t\t
802 | \n\t\t\t\t\t\t\t\t41 | \n\t\t\t\t\t\t\t
787 | \n\t\t\t\t\t\t\t\t34 | \n\t\t\t\t\t\t\t
770 | \n\t\t\t\t\t\t\t\t26 | \n\t\t\t\t\t\t\t
700 | \n\t\t\t\t\t\t\t\t51 | \n\t\t\t\t\t\t\t
600 | \n\t\t\t\t\t\t\t\t51 | \n\t\t\t\t\t\t\t
500 | \n\t\t\t\t\t\t\t\t51 | \n\t\t\t\t\t\t\t
400 | \n\t\t\t\t\t\t\t\t51 | \n\t\t\t\t\t\t\t
300 | \n\t\t\t\t\t\t\t\t52 | \n\t\t\t\t\t\t\t
200 | \n\t\t\t\t\t\t\t\t52 | \n\t\t\t\t\t\t\t
100 | \n\t\t\t\t\t\t\t\t53 | \n\t\t\t\t\t\t\t
50 | \n\t\t\t\t\t\t\t\t53 | \n\t\t\t\t\t\t\t
Solar radiation and temperature values obtained from data logger during experimental tests.
From Table 8, and employing (3) and (4), the theoretical voltage and current values for the system operating on the MPP were determined and plotted on the I-V plan, resulting at Figure 23, from where it is possible to conclude that the trajectory obtained by experimentation is equivalent to the trajectory described by the maximum power point.
\n\t\t\t\t\t\n\t\t\t\t\t\n\t\t\t\tCurrently the most common employed PV tracking algorithm are Perturb and Observe and Incremental Conductance. Perturb and observe is simple, however it failures to track the MPP under abrupt changes on solar radiation and presents oscillations around the MPP on steady-state. Incremental conductance is accurate, however, it implementation is more complex. In these both algorithms, it is necessary to measure the PV output voltage and current.
\n\t\t\tThe proposed algorithm is simpler than perturb and observe and more accurate than the incremental conductance. Furthermore, the current sensor is substituted by a temperature sensor, implying in cost reduction. Eliminating the current sensor means avoid the output power high frequency variation associated to the PV current (directly proportional to solar radiation), thus, there is no oscillation around the MPP. Since the tracking is based on the temperature, its low dynamic ensures a soft tracking, but accurate and fast.
\n\t\t\tBased on the exposed, this tracking method employment allows a significant improvement on the PV operation. Note that in PV generation the power losses may be separated in two terms: the first one is associated to the power converters efficiency and the second to the tracking algorithm efficiency. Thus, if an optimized tracking algorithm is employed, the global efficiency is increased.
\n\t\t\tFrom the dc-dc analysis it was verified that buck and boost converters, even been largely applied for tracking applications, are not proper for this proposal, since they can track the MPP only in a part of the I-V plan. On the other hand, buck-boost converter (and Cuk, SEPIC or zeta) may track the MPP around the whole I-V plan, configuring the better option for tracking applications.
\n\t\t\tFinally, an optimized tracking system only is obtained if both, dc-dc converter and tracking algorithm properly operate. This condition is accomplished when a buck-boost converter is employed in combination with the MPP-temp tracking method.
\n\t\tThe authors would like to thank CNPq and FINEP for financial support, and Power Electronics Institute, for technical support. Additionally, the authors would like to thank the Eng. Walbermark M. dos Santos, for his several contributions.
\n\t\tIn Germany, approx. 6–7 billion EURO is invested every year in the renovation or new construction of buildings and plant technology in the municipal water and sanitation sector [1]. The German water and wastewater infrastructure has developed socially and spatially balanced in the past and has grown over many decades and guarantees today a comprehensive disposal with high drainage safety combined with an extremely long technical and economic service life. In opposite it results in a lack of operational flexibility for sewer network and sewage plant operators, e.g. in the event of extreme weather events as an effect of climate change, changed consumer behavior or the consequences of demographic change. Experts and decision-makers are therefore looking for ways to adapt the dimensioning and calculation of future investments more closely to real usage requirements and to dispense with previous inaccurate estimates. At the same time, the existing systems must be operated more flexibly and thus more efficiently, even under described changed conditions.
\nInnovative digital developments from industry like autonomous machine controls based on intelligent data acquisition, collection and evaluation, promises better adapting municipal infrastructure systems to changing conditions. When the technology initiative KOMMUNAL 4.0 was developed as an idea in 2015, digitalization was not a central topic in German water management. As Industry 4.0 was present everywhere at these time the idea of transferring suitable parts of the basic idea of Industry 4.0 to municipal water management was born. In particular, it was necessary to implement consistent IT and IoT communication at all levels of water management tasks (Figure 1). The aim was not only to create a uniform structure for networking a wide variety of applications, but also to round off KOMMUNAL 4.0’s complete range of services with IoT for existing and newly developed products and solutions. Regardless of whether it concerns measurement and data technology applications, smart machines, SCADA or asset management systems, all application solutions contain a standardized core that guarantees standard data communication and also complying with safety and cybersecurity requirements.
\nConsistent IT and IoT communication of digital products and systems [2] (translation: IT-Sicherheit, Asset Management und Digitalisierung, Betriebsführung, Recht = IT security, asset management and digitization, operations management, law; Fernwirkung, Fernüberwachung = remote control, remote view; Automatisierung, software = automation, software; mess-und Datentechnik = measurement and data technology).
Another important requirement was (and is) that all applications work as individual and independent solution. This enables the user to go down the path to digitization in individual steps, which are, however, coordinated with each other right from the start. The purchase of a complete system at the beginning of a digital process is not absolutely necessary. The user can start where there is currently the most urgent need at daily work without losing the network compatibility of individual elements that have to be adding later. One of the most important tasks in municipal water management, for example, is an effective and efficient management of the entire infrastructure. Data plays an increasingly important role at this topic. Only where data from different sources can be usefully related to each other real added value can be created. Various IT systems such as GIS, process control (SCADA) or asset and maintenance management systems are used for this purpose in water management. Systems are desirable which, like MS Office, function in both ways as individual solutions and offer high benefits by networking with each other. And just as every printer today communicates perfectly with MS Office smart products, measurement and data technology applications as well as Smart Machines should be integrated in a plug & play manner. Some of the products and solutions belonging to KOMMUNAL 4.0 already offer these requirements already today.
\nThe digitization offensive of the industry, known since 2013 in Germany as Industry 4.0 and initiated by the Federal Government, is intended to turn simple machines using the Internet into so-called Smart Machines. These are self-regulating production units (they are also called CPS = Cyber-Physical Systems) which leads to significant cost savings. For example, they are fed with orders directly from commercial databases, receive their technical instructions directly from CAD/EPLAN tools of development engineers, order necessary materials independently from suppliers, coordinate their interdependencies and report the completion of the manufactured products to logistics for dispatch. The entire industrial value chain is recorded in data form, analyzed and controlled or optimized by automatic processes. Can this approach be transferred to the level of water infrastructures as a model?
\nIn water management, the possible applications of intelligent and smart solutions are being intensively discussed and are already being used (see e.g. at [3, 4, 5, 6]). Modern automation technology for water management already has elements in its core that need not fear comparison with Industry 4.0 solutions. Real-time-based control or monitoring solutions are just as much in use as numerous intelligent sensor technologies. They form an important basic framework for future digital strategies. In order to obtain innovative and thus sustainable digitization solutions, such automation and IT systems must be extended by suitable analysis and evaluation tools (Big and Smart Data). Only this enables an intelligent networking of several objects with each other.
\nFor the municipal user, the question now arises with whom he can start digitization. There are many specialist providers for individual application solutions, but how will be done a well integration into a future platform solution? Whoever is faced with the procurement of new IT systems, e.g. in the GIS/PLS-SCADA/ERP/BFS areas, that is not an easy task to master. If there is a high degree of network compatibility due to a close technological relationship between the individual solutions (see example MS Office), this facilitates the start incl. a step-by-step development of a complete digitization.
\nIn the fields of municipal water management that are eligible for digitization, there are already a large number of established providers whose solutions in principle include these useful and expected functions. With regard to the basic functions, normal companies are moving forward in small steps. The differences in the functions can be recognized and evaluated more precisely after intensive use. If providers have several applications, there is concern on the user side not to obtain the supposedly best software for every task. If, however, a provider understands the current requirements of networking and has its own development of its product lines, this also has significant, clear advantages for the user compared to the sole availability of a special function. These range from interoperability up to the elimination of un-useful complex parameterizations. The importance of standardized user interfaces and dialogs, administration, data formats, menu navigation, etc., can be seen again when considering the development of the office world. For the KOMMUNAL 4.0 product lines, the overall system selection is based on the aspects of secure investment through technological sustainability as well as networking and usability. In this case, the technology is concerned with the methods, technologies and resources used in product development itself. They are essentially responsibilities for what is working today, in the future and what does not fit. At this point the user must inform himself accordingly early enough in order not to wait too long or also in vain for the necessary adaptations of his (special) provider in the future.
\nIn particular, the currently pending change through digitalization is a good way to orient himself comprehensively and to make new decisions if necessary. If the user succeeds in procuring systems from one platform and possibly from one provider, the networkability and operability of the overall solution will be simplified. The solution should also offer the possibility to integrate already existing software applications. The conversion and renewal of software and its entire technological basis also requires a lot of orientation, strength, competence and investment at the providers side. A changeover from classic client-server software to web systems, for example, also requires new thinking in development. As a result of the high challenges, only small steps or adaptations of the outer shell are often successful but no innovative progress or better results have to be achieved. Fitting usability and an intuitive using of a software can only be determined after several days of practical work. On the other hand users expect more today. They want deep horizontal and vertical networking of the systems, e.g. with asset/maintenance and SCADA systems. This has taken on a new and higher significance and it is the most discussed topic of interfaces or integration capability or networkability of the systems. Synchronization functions, uniform grammar, file formats, reliability and warranty are more and more in focus. Regarding these requirements the KOMMUNAL 4.0 world is already one step ahead and offers compatible web systems for GIS/PLS-SCADA/ERP/BFS tasks as well as integrated measurement and data technology applications and smart machines. The company HST (consortium leader of KOMMUNAL 4.0) for example has converted all its systems to platforms and web technology in recent years and comprehensively networked its systems. The widely used asset/maintenance management system KANiO and the process control system SCADA.web are today highly communicative networkable solutions with open standard interfaces as well as integration and synchronization functions also for third-party systems. Reliability and optimal operability have priority.
\nAn IT-supported ISMS (Information Security Management System) is already available (KANiO-ISMS) for secure compliance with the requirements of the IT German Security Act. It represents an important building block for the individual steps on the way to a legally compliant IT security structure and is available as a separate application and also as a component of the KANiO system. The use of the tool avoids uncoordinated individual measures that do not guarantee sufficiently secure IT operation. In addition, the tool ensures that the company’s own efforts to ensure secure IT operation can be proven to customers or legislators. Earlier measures can thus also be better aligned with the current security standard. In addition, almost all process engineering machines of HST are gradually being equipped with sensors and actuators (so-called IntelliSystems) so that SCADA and asset/maintenance management system can be directly networked and collaborated. This means that there are already solutions for integrated IT and IoT communication across all application levels, as shown in Figure 1.
\nClassical engineering-based research does not fully reflect the comprehensive developments of digitization. With digitization, something very big has happening with increasing speed. It has now also reached the water industry. An analysis of publications, studies and research carried out in the context of KOMMUNAL 4.0 in the field of industry 4.0 has shown that, in addition to technology patterns, other subject areas are important which will also have a serious impact on the water management. This applies, for example, to data sovereignty, data law and public procurement law.
\nThanks to the accompanying research of the federal technology program “Smart Service World”, in which the KOMMUNAL 4.0 project is embedded, and the associated networking with other Industry 4.0 research networks such as the federal technology program “Smart Data”, the project partners in KOMMUNAL 4.0 are able to access the current state of knowledge and expected developments not only at the field of IT security and legal issues. These coming topics, some of which have not even been discussed in the water industry until today, are already the subject of KOMMUNAL 4.0.
\nPrevious technology flows primarily arose from development ideas that were examined in individual objects or tasks. An example of this is the extended elimination of nitrogen in sewage treatment plants. When this aspect was investigated and applied broadly after being anchored in legislation, the effects were limited to the respective sewage treatment plant or the responsible organization. The other departments of a municipality, city or association were not affected. The same can be noticed for example for the so called fourth sewage treatment stage. From this point of view, research institutes and plant operators were able to investigate into such issues independently to get an isolated developed solution. Consequences of a lack of communication between research institutes were not significant due to low need of interdisciplinary interfaces. Although the existing scientific-technical exchange among experts is maintained and also inspires research initiatives, a mutual agreement on the research and development contents was not absolutely necessary for the previous form of technology development.
\nIn opposite to aforementioned situation the appearance of digitization must be judged differently. Since as a cross-sectional technology it has an almost unlimited influence on all technological and organizational environments. At the horizontal level individual objects such as rain basins, flood reservoirs, water treatment plants or sewage treatment plants have to be connected more and more with the entire infrastructure systems across city and municipal boundaries. At the organizational level (vertical level) different departments and organizations have to be linked to each other. In addition, regional and supra-regional administrative and authority units should also be integrated into these networking efforts.
\n“It also applies to water management that everything that can be digitized has to be digitized”. This comment made by Martin Weyand, BDEW Managing Director Water/Wastewater [7] confirms the cognitions of KOMMUNAL 4.0. Previous technological developments in water management have had only a limited impact on organizations and working methods, but in contrast to this, digitalization is expected to bring about massive changes in the everyday working lives of individuals as it unfolds its full potential. Already from individual elements as part of growing complex systems more far-reaching effects are to be expected. This leads to the conclusion that an examination of new digital solutions must be more comprehensive and must go beyond the previous horizon of knowledge and understanding. This is where the holistic approach of KOMMUNAL 4.0 comes in, in which all relevant individual modules and their interaction with each other were taken into account from the very beginning. This approach allows a better assessment of how to deal with digitization, even if it increases the amount of work at the beginning. As a result, it is easier to assess the major consequences of individual solutions and thus enables the foresighted engineering of networked systems. Based on this, current and future products and solutions will be manufactured.
\nThe cooperation project KOMMUNAL 4.0, which is funded by the German Federal Ministry of Economic Affairs and Energy, will devote itself in a special way to the challenges described above. Current and expected future developments in the field of Industry 4.0 were examined for applicability in municipal water management. KOMMUNAL 4.0 was selected as one of the 16 winners in a pure industrial competition from 130 applicants [8]. The intended developments for digitization lead to higher efficiency, safety and control in the operation of water management plants and systems and can serve as a model for other infrastructure sectors. The current low adaptability of municipal infrastructures to changing conditions such as heavy rainfall or demographic change can be significantly increased with the help of the IT and organizational solutions from KOMMUNAL 4.0.
\nThe project consortium (see
Standardization of data acquisition and transmission from heterogeneous CPS (cyberphysical systems).
Development of a web-based data platform for collection, structuring and conversion of different data/data formats.
Development of flexible platform architecture for optional use as intranet or internet application.
Development of application tools in the areas of design/engineering, benchmarking, object/network monitoring, data fusion, procurement, end-to-end process chain and operational optimization.
Development of required IT security concepts.
Development of digital business models such as machine sharing.
Analysis of legal aspects of cloud computing.
The developments focus on modular and step-oriented solutions. It starts with individual intelligent aggregates, so-called smart machines, and lead to the linking of several objects with each other up to a completely networked infrastructure system. Essential objects of the project are so-called pilot projects. Here, the developed application tools were installed at selected municipalities or operators in a real infrastructure environment incl. comprehensively testing.
\nIn order to maintain the previous ideas and the already established network of experts in the KOMMUNAL 4.0 funding project after the end of the project (31.12.2019), the Federal Association KOMMUNAL 4.0 (
A central importance for the water sector is the establishment of a KOMMUNAL 4.0 academy. So far, the sector is not be able to offer any application-related further training courses. The Federal Association KOMMUNAL 4.0 will offer a corresponding service which covers the topics IT security, IT systems, operational management, process control engineering as well as measurement and automation engineering. But there will also be application-related offerings, e.g. how digitization can look specifically in water supply or wastewater disposal or in special structures such as pumps, rainwater basins, sewage treatment plants, etc. In addition, there will be special seminars for mayors, heads of offices and planners so that these industry participants can set their very special requirements in relation to the challenges of digitization.
\nEmbedded systems have been around for a long time at the water management. The state of the art is that mechanical aggregates are connected to automation technology, which takes over monitoring, control and regulation functions based on various information (mostly from measurement sensors). Automation technology is also used for data acquisition and transmission to higher-level units such as SCADA systems. They form an important part of a complete networking solution (see Figure 1).
\nThe stored specifications of a smart machine follow clear assignments and rules, especially for control. Changes to the specifications are made by the operator via set points or directly at the PLC level by a programmer. Data is linked locally by cable. And how do smart machines emerge from this? Thanks to the availability of rapidly increasing web-based application options, the monitoring, control and regulation of actuators no longer needs to be carried out in isolation with locally recorded data and locally used automation technology. For example, additional information such as current precipitation data or status information from a piping system can be transferred from a central database to the local controller via a wireless Internet connection or data line. Based on corresponding algorithms, the controller permanently analyzes the functional environment (in real time) and independently adapts the control specifications (set points) to changing environmental conditions. This is illustrated by the example of a pumping station.
\nPumps are designed for an optimal but static operating point based at only one expected operating situation. However, fluctuating water volumes and losses due to unfavorable piping or other operating conditions cause pumps to run outside their selected characteristic curve. This is also due to the fact that, unaware of the actual delivery peaks, corresponding safety surcharges/reserves are provided while dimensioning the pumps. This results in higher energy consumption and less efficiency of the overall system and thus also reduces the service life of the units. Innovative pump controllers (software solutions such as so-called IntelliPump system) permanently evaluate the entire operating situation and, by using frequency control, enable operating sequences that permit several optimum operating points depending on the requirements. This permanently guarantees the intended pumping safety and thus reduces wear and energy consumption of the pump. Another advantage is the continuous monitoring of system operation. This enables faults to be detected more quickly and a better condition assessment of the machine, thus increasing overall operational safety. The formerly simple pump becomes a smart pump system.
\nIn the near future, smart machines will become standard equipment in water management, also as a result of the KOMMUNAL 4.0 project. The connection to web-based data portals, such as the precipitation portal NiRA.web, increases the adaptability and efficiency of individual machines and the system in complete. The virtual connection of the machines with the Internet allows access to all operating data from a central location. Selected operation-relevant data supports local machine control, link systems/objects with each other and ensure efficient operation throughout the entire infrastructure system. An example of this is a sewer network with various rainwater basins, pumping stations and a central connected sewage treatment plant.
\nThe interconnection of the objects, as shown in Figure 1, permits an optimal congestion, flushing and operating regime of the entire infrastructure network. A central data evaluation of all structures decides about the right time to empty storm water tank, e.g. to keep sufficient storage capacities free for a next heavy rainfall or flood event, or to make optimum use of capacities or to control the relief events from storm water tanks in the sense of optimum water protection. The more quantitative and qualitative data are available for each structure/object, the better and more efficiently each individual machine, each object and also the entire infrastructure system can be operated. Similar applications, e.g. the intelligent basin cleaning system IntelliGrid, the self-regulating occupancy control system IntelliScreen for increasing the material retention in horizontal bar screens or the EMA flow rate recording system at rainwater overflows, are increasingly being used in water management. In the course of the KOMMUNAL 4.0 project, the prerequisites are now being created for networking individual applications across buildings in order to create a genuine, smart infrastructure.
\nIf, for example, current new installations of technical equipment are due, this can be the ideal start of digitization on the basis of individual measures. At this stage, it should be examined whether it makes sense to design the new technical equipment as a so-called smart machine or as a smart system. If digitization is started with a smart local solution, it must be ensured that this solution is also future-compatible with larger networking solutions, such as the KOMMUNAL 4.0 platform. A municipality benefits from this kind of digitization very early, for example by installing a smart machine. This is a comparatively simple way of approaching the complexity of digitization.
\nSmart machines and solutions based on the Intelli principle work autonomously with the full advantages of digitization and can therefore be easily integrated into a higher-level networking system at a later point in time, even if an overall digital strategy for the municipality has not yet been defined. Figure 1 shows the systematics of networked products that are already prepared for a platform connection and cover almost the entire range of applications on a horizontal and vertical level. The same applies to upcoming new acquisitions of software solutions in the areas of asset/maintenance management systems and SCADA. The compatibility to the (smart) machine world has to be checked. The necessary knowledge can be acquired by the KOMMUNAL 4.0 experts.
\nThe example of the selection of a computer system on a relief threshold of a sewer system will illustrate how smart systems as described can be applied. Increasingly, screening systems are being used on discharge thresholds to reduce the amount of dirt discharged into water bodies during discharge events. Conventional systems automatically clean the screen bars at fixed intervals. The focus here is on ensuring the hydraulic capacity, regardless of whether the current operating condition requires this or not. Smart rakes equipped, for example, with the IntelliScreen system (see Smart Machines IoT level in Figure 1) use networked information from local machine, operating data, webcam data and precipitation data from data portals (see Measurement and Data Technology level in Figure 1) to achieve greater operational safety and water protection.
\nWhile overflow screens have been cleaned by continuous comb and/or clearing devices up to now, screens equipped with Intelli systems have the advantage of recognizing their current and prognostic screenings. In addition, speed-controlled drives enable variable combing and clearing speeds and extended power reserves. Networking and the inclusion of precipitation data enables an even more accurate prognosis of the operating process and the combing and clearing requirements. On the basis of this expanded and improved information situation, the filter effect of the screenings is now used more intensively and for longer in terms of water protection on the one hand. On the other hand, in the case of heavy rainfall and overflow requirements, the spatial performance and thus the relief safety is increased. The machine works locally by integrating digital precipitation data from a web portal. In further steps, the machines are connected to a process control system (see level Telecontrol or remote monitoring technology in Figure 1) or integrated into an asset/maintenance management system for the organization of the necessary maintenance and repair work, in which the documentation requirements of the IT Security Act are also fulfilled by using an ISMS system (see IT Security, Asset Management and Digitization, Operations Management, Law in Figure 1).
\nThe integration of the various system modules as shown in Figure 2 into a data and service platform (e.g. KOMMUNAL 4.0) optimize the technical side of digitization. All data streams flow together at this platform and can be processed for further analyses and purposes such as Big and Smart Data or for operational support with a user-specified dashboard (see Figure 3). The system in Figure 1 can also be used in the form of a process template to derive the necessary organizational measures from the technical elements.
\nIncrease pump efficiency with IntellPump software [4] (screenshot shows real pump characteristic curve and its adaptation by software to ideal curve).
Dashboard KOMMUNAL 4.0 [9] (screenshot shows example for a KOMMUNAL 4.0—cockpit = cockpit of a smart city. It shows different data monitoring systems of water facilities that includes energy consumptions, water level, traffic, dust, alarm events incl. local weather data).
Even it is often propagated that the development of a comprehensive digital strategy is needed to start digitization, it is often better to start digitalization at a concrete and manageable practical case. Also at the beginning of KOMMUNAL 4.0, the planned application ideas were very strongly described from the perspective of an abstract digitization vision. Addressed municipal users (rightly) hardly understood these ideas and could not transfer them to their own application needs. More and more the communication of the project goals and the first results were changed to take the needs of the municipalities in clear focus. With this strategy suitable digitalization ideas could be discussed and subsequently projected. The most important result to achieve an ideal start was using a current and manageable investment project as an introduction to digitalization [10]. For this purpose, the project partners carried out an analysis of a possible “Anyway” project (investment project, which has already been determined for implementation) and examined how a KOMMUNAL 4.0 solution would serve the respective project objective. In many cases, individual measures have to be filtered out from these “Anyway” projects, in which digitization could be tested to a manageable extent. If the use of the selected digitization measures were reached, the ideas were transferred to the further measures of the “Anyway” projects or would be taken into account in future projects. One example is the above-mentioned development of standardized switchgear for digitized physical precipitation recording. In this pilot project a KOMMUNAL 4.0 idea was tested at 10 physical precipitation measuring stations. If the test run would be successful, the digitization technology of KOMMUNAL 4.0 will also be used in more than 200 measuring stations. The feasibility of more than 40 application development was checked at the project KOMMUNAL 4.0. Also corresponding application concepts and business model possibilities were examined. 20 ideas could be developed up to implementation maturity, half of which were put into practice and tested. The other half of ideas will be implemented outside of the KOMMUNAL 4.0 project starting in 2020 with the exception of four cases. This corresponds to an implementation rate of 80%. This high rate was only possible because almost all pilot projects were based on “Anyway” projects of the communal partners. Three exemplary applications are presented below.
\nAn exemplary example of a KOMMUNAL 4.0 pilot project is the so called “sinkbox management”. It was developed and tested as one of the first ideas in close coordination with the municipal partner. All sinkbox data were already stored in the HST asset/maintenance system KANiO before the project starts. However, at the beginning it was not possible on the basis of the existing data to estimate which sink boxes were under the risk of flooding during a rainfall event, so an effective preventive maintenance with regard to future heavy rainfall event was not possible. This had to be changed by the joint project.
\nOn the basis of 10 assessment criteria developed in cooperation with the operating people (Figure 4), a hazard matrix was developed that could be individually created for each sink box. The matrix was integrated into the KANiO software by connecting KOMMUNAL 4.0 platform elements. By linking the KANiO software to KOMMUNAL 4.0 platform and precipitation portal NiRA.web, an automatic data comparison of precipitation forecasts for selected urban areas with the data of the hazard matrix is now carried out. If, for example, a defined rainfall event is forecast for the selected period (e.g. >15 l/mm2 in the next 24 hours), the data of the hazard matrix is compared with the precipitation forecast of NiRA.web and those sink boxes are identified which are most at risk. The system automatically generates a work order for the endangered sink boxes so that the affected sink boxes can be emptied and cleaned as a precaution.
\nInput screen sink box management (screenshot shows the input screen for one sink box with different influencing criteria like e.g. heavy rain, leaves, high hydraulic flow, street gradient, root ingrowth snow, flow from dirt roads, drainage capacity; also geodetic and type date).
The municipality of Diemelsee in the district of Waldeck-Frankenberg/Germany is currently constructing a new biological wastewater treatment plant by using the SBR process in the holiday resort of Heringhausen. With its 400 inhabitants, the town has an estimated 4000 overnight guests and 1000 day visitors in the summer months. The large number of guests leads to an extremely fluctuating amount of wastewater monthly and daily. With the help of KOMMUNAL 4.0, the idea was developed to equip the infrastructure with digital control technology to increase the flexibility and efficiency of the sewage treatment plant and the sewer network. The idea was modeled on the pilot project “Digital Sewage Plant Söllingen”, which has already been reported on in detail elsewhere [11]. The wastewater treatment plant and the associated sewer network will be equipped with KOMMUNAL 4.0 control technology elements and networked with precipitation forecasts and tourism data. An additional innovative data analysis for the optimal coupling of the wastewater treatment plant with pressure pipes, pump stations, rainwater retention basins (which are connected upstream of the wastewater treatment plant), for the absorption of hydraulic peak loads and inlet fluctuations into the new SBR plant to be built and the associated sewer network are part of the project. A core element of the project is the Case-Based Reasoning (CBR) approach, which is a kind of artificial intelligence that learns from experience from previous events and derives improvements from it.
\nTo ensure that even small measures from the “Anyway” projects are suitable as a start into digitization, a high level of learning and transmission success should be ensured. For this reason, KOMMUNAL 4.0 tested two further developments in practice in addition to the technical pilot projects. On the one hand it is about securing the knowledge of older employees and on the other hand it is about the question how planning, variant consideration, implementation and learning can be integrative and agilely interlinked in a common project execution. In view of the increase in municipal tasks and the simultaneous shortage of personnel and skilled workers, there is a lack of human resources to try out new developments as complementary projects. In the course of KOMMUNAL 4.0, the new methodology HELIP (Highly Efficient Learning in Projects/Processes) was developed in order to meet this challenge effectively. On the basis of current research results on learning and transfer research as well as from project management, measures such as the pilot projects presented are suitable for starting practical digitization at an early stage, even if many digitization topics still need to be learned [12]. The HELIP concept is based on a 360° reflection of the tasks and necessary learning content at the beginning of the planning phase. It assigns the necessary knowledge transfer of new contents to individual organizational contexts and the task of the respective municipality/department/division and integrates them into selected “Anything” projects. The appropriate practice-related task packages are also adapted to the further decisions and planning steps of the overall process. This ensures that the learning outcomes of smaller “Anyway” projects are optimally transferable to larger digitization projects. Learning takes place in everyday working life and is not separated from practice in remote seminars or training courses. The separation of planning/implementation and further training, which has been customary up to now, is thus abolished. In addition, HELIP supports the effective implementation of the Sustainable Development Goals No. 4, 6, 8, 11 and 13 of the United Nations and can be further developed as a basic principle for management and education in projects to achieve the goals No. 7, 9, 12, 14 and 15.
\nMany small and medium-sized communities are faced with the challenge of reliably planning for the future in terms of maintaining and expanding their infrastructure in view of the consequences of demographic change. It is not unusual for the largest infrastructure assets to be hidden underground. Up to 70% of this can be accounted for by the sewer system with its special structures and sewage treatment plants [13]. Sufficient and reliable data is required to achieve optimum investment planning. Decisions, based on inaccurate assumptions and estimates, must be reduced to a minimum in the future. A major role is playing a value-preserving operation of existing plants and objects, e.g. through efficient control solutions or cost-saving condition monitoring.
\nThe basis for intelligent data management and the control and operation management is meaningful data acquisition and evaluation. This requires modern IT structures that can be used both locally and as web-based solutions. KOMMUNAL 4.0 pursues this premise and takes care of a fully comprehensive data and IT structure. This starts locally at the machines (CPS), networks the objects with each other and aims at a networked analysis and management of entire infrastructures via the web-based data and service platform. This will create a basic structure that is not limited to applications in water management alone, but will also be suitable for use in other infrastructure sectors. The start into digitization can be made from an overall strategic perspective by setting up a central data and service platform, but also on the basis of software-related or machine-related individual solutions. It must be ensured that all required individual components (see Figure 1) can be networked and thus integrated into the intended overall system.
\nAuthors are listed below with their open access chapters linked via author name:
",metaTitle:"IntechOpen authors on the Global Highly Cited Researchers 2018 list",metaDescription:null,metaKeywords:null,canonicalURL:null,contentRaw:'[{"type":"htmlEditorComponent","content":"New for 2018 (alphabetically by surname).
\\n\\n\\n\\n\\n\\n\\n\\n\\n\\nJocelyn Chanussot (chapter to be published soon...)
\\n\\n\\n\\n\\n\\n\\n\\n\\n\\n\\n\\n\\n\\n\\n\\n\\n\\n\\n\\n\\n\\n\\n\\n\\n\\n\\n\\n\\n\\n\\n\\n\\n\\n\\n\\n\\n\\n\\n\\n\\n\\n\\n\\n\\n\\n\\n\\n\\n\\nYuekun Lai
\\n\\n\\n\\n\\n\\n\\n\\n\\n\\n\\n\\n\\n\\n\\n\\n\\n\\n\\n\\n\\n\\n\\n\\n\\n\\n\\n\\n\\n\\n\\n\\n\\n\\n\\n\\n\\n\\n\\n\\n\\n\\n\\n\\n\\n\\n\\n\\n\\n\\n\\n\\nPrevious years (alphabetically by surname)
\\n\\nAbdul Latif Ahmad 2016-18
\\n\\nKhalil Amine 2017, 2018
\\n\\nEwan Birney 2015-18
\\n\\nFrede Blaabjerg 2015-18
\\n\\nGang Chen 2016-18
\\n\\nJunhong Chen 2017, 2018
\\n\\nZhigang Chen 2016, 2018
\\n\\nMyung-Haing Cho 2016, 2018
\\n\\nMark Connors 2015-18
\\n\\nCyrus Cooper 2017, 2018
\\n\\nLiming Dai 2015-18
\\n\\nWeihua Deng 2017, 2018
\\n\\nVincenzo Fogliano 2017, 2018
\\n\\nRon de Graaf 2014-18
\\n\\nHarald Haas 2017, 2018
\\n\\nFrancisco Herrera 2017, 2018
\\n\\nJaakko Kangasjärvi 2015-18
\\n\\nHamid Reza Karimi 2016-18
\\n\\nJunji Kido 2014-18
\\n\\nJose Luiszamorano 2015-18
\\n\\nYiqi Luo 2016-18
\\n\\nJoachim Maier 2014-18
\\n\\nAndrea Natale 2017, 2018
\\n\\nAlberto Mantovani 2014-18
\\n\\nMarjan Mernik 2017, 2018
\\n\\nSandra Orchard 2014, 2016-18
\\n\\nMohamed Oukka 2016-18
\\n\\nBiswajeet Pradhan 2016-18
\\n\\nDirk Raes 2017, 2018
\\n\\nUlrike Ravens-Sieberer 2016-18
\\n\\nYexiang Tong 2017, 2018
\\n\\nJim Van Os 2015-18
\\n\\nLong Wang 2017, 2018
\\n\\nFei Wei 2016-18
\\n\\nIoannis Xenarios 2017, 2018
\\n\\nQi Xie 2016-18
\\n\\nXin-She Yang 2017, 2018
\\n\\nYulong Yin 2015, 2017, 2018
\\n"}]'},components:[{type:"htmlEditorComponent",content:'New for 2018 (alphabetically by surname).
\n\n\n\n\n\n\n\n\n\nJocelyn Chanussot (chapter to be published soon...)
\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\nYuekun Lai
\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\nPrevious years (alphabetically by surname)
\n\nAbdul Latif Ahmad 2016-18
\n\nKhalil Amine 2017, 2018
\n\nEwan Birney 2015-18
\n\nFrede Blaabjerg 2015-18
\n\nGang Chen 2016-18
\n\nJunhong Chen 2017, 2018
\n\nZhigang Chen 2016, 2018
\n\nMyung-Haing Cho 2016, 2018
\n\nMark Connors 2015-18
\n\nCyrus Cooper 2017, 2018
\n\nLiming Dai 2015-18
\n\nWeihua Deng 2017, 2018
\n\nVincenzo Fogliano 2017, 2018
\n\nRon de Graaf 2014-18
\n\nHarald Haas 2017, 2018
\n\nFrancisco Herrera 2017, 2018
\n\nJaakko Kangasjärvi 2015-18
\n\nHamid Reza Karimi 2016-18
\n\nJunji Kido 2014-18
\n\nJose Luiszamorano 2015-18
\n\nYiqi Luo 2016-18
\n\nJoachim Maier 2014-18
\n\nAndrea Natale 2017, 2018
\n\nAlberto Mantovani 2014-18
\n\nMarjan Mernik 2017, 2018
\n\nSandra Orchard 2014, 2016-18
\n\nMohamed Oukka 2016-18
\n\nBiswajeet Pradhan 2016-18
\n\nDirk Raes 2017, 2018
\n\nUlrike Ravens-Sieberer 2016-18
\n\nYexiang Tong 2017, 2018
\n\nJim Van Os 2015-18
\n\nLong Wang 2017, 2018
\n\nFei Wei 2016-18
\n\nIoannis Xenarios 2017, 2018
\n\nQi Xie 2016-18
\n\nXin-She Yang 2017, 2018
\n\nYulong Yin 2015, 2017, 2018
\n'}]},successStories:{items:[]},authorsAndEditors:{filterParams:{sort:"featured,name"},profiles:[{id:"58592",title:"Dr.",name:"Arun",middleName:null,surname:"Shanker",slug:"arun-shanker",fullName:"Arun Shanker",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/58592/images/1664_n.jpg",biography:"Arun K. Shanker is serving as a Principal Scientist (Plant Physiology) with the Indian Council of Agricultural Research (ICAR) at the Central Research Institute for Dryland Agriculture in Hyderabad, India. He is working with the ICAR as a full time researcher since 1993 and has since earned his Advanced degree in Crop Physiology while in service. He has been awarded the prestigious Member of the Royal Society of Chemistry (MRSC), by the Royal Society of Chemistry, London in 2015. Presently he is working on systems biology approach to study the mechanism of abiotic stress tolerance in crops. His main focus now is to unravel the mechanism of drought and heat stress response in plants to tackle climate change related threats in agriculture.",institutionString:null,institution:{name:"Indian Council of Agricultural Research",country:{name:"India"}}},{id:"4782",title:"Prof.",name:"Bishnu",middleName:"P",surname:"Pal",slug:"bishnu-pal",fullName:"Bishnu Pal",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/4782/images/system/4782.jpg",biography:"Bishnu P. Pal is Professor of Physics at Mahindra École\nCentrale Hyderabad India since July 1st 2014 after retirement\nas Professor of Physics from IIT Delhi; Ph.D.’1975 from IIT\nDelhi; Fellow of OSA and SPIE; Senior Member IEEE;\nHonorary Foreign Member Royal Norwegian Society for\nScience and Arts; Member OSA Board of Directors (2009-\n11); Distinguished Lecturer IEEE Photonics Society (2005-\n07).",institutionString:null,institution:{name:"Indian Institute of Technology Delhi",country:{name:"India"}}},{id:"69653",title:"Dr.",name:"Chusak",middleName:null,surname:"Limsakul",slug:"chusak-limsakul",fullName:"Chusak Limsakul",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"Prince of Songkla University",country:{name:"Thailand"}}},{id:"75563",title:"Dr.",name:"Farzana Khan",middleName:null,surname:"Perveen",slug:"farzana-khan-perveen",fullName:"Farzana Khan Perveen",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/75563/images/system/75563.png",biography:"Dr Farzana Khan Perveen (FLS; Gold-Medallist) obtained her BSc (Hons) and MSc (Zoology: Entomology) from the University of Karachi, MAS (Monbush-Scholar; Agriculture: Agronomy) and from the Nagoya University, Japan, and PhD (Research and Course-works from the Nagoya University; Toxicology) degree from the University of Karachi. She is Founder/Chairperson of the Department of Zoology (DOZ) and Ex-Controller of Examinations at Shaheed Benazir Bhutto University (SBBU) and Ex-Founder/ Ex-Chairperson of DOZ, Hazara University and Kohat University of Science & Technology. \nShe is the author of 150 high impact research papers, 135 abstracts, 4 authored books and 8 chapters. She is the editor of 5 books and she supervised BS(4), MSc(50), MPhil(40), and Ph.D. (1) students. She has organized and participated in numerous international and national conferences and received multiple awards and fellowships. She is a member of research societies, editorial boards of Journals, and World-Commission on Protected Areas, International Union for Conservation of Nature. Her fields of interest are Entomology, Toxicology, Forensic Entomology, and Zoology.",institutionString:"Shaheed Benazir Bhutto University",institution:{name:"Shaheed Benazir Bhutto University",country:{name:"Pakistan"}}},{id:"23804",title:"Dr.",name:"Hamzah",middleName:null,surname:"Arof",slug:"hamzah-arof",fullName:"Hamzah Arof",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/23804/images/5492_n.jpg",biography:"Hamzah Arof received his BSc from Michigan State University, and PhD from the University of Wales. Both degrees were in electrical engineering. His current research interests include signal processing and photonics. Currently he is affiliated with the Department of Electrical Engineering, University of Malaya, Malaysia.",institutionString:null,institution:{name:"University of Malaya",country:{name:"Malaysia"}}},{id:"41989",title:"Prof.",name:"He",middleName:null,surname:"Tian",slug:"he-tian",fullName:"He Tian",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"East China University of Science and Technology",country:{name:"China"}}},{id:"33351",title:null,name:"Hendra",middleName:null,surname:"Hermawan",slug:"hendra-hermawan",fullName:"Hendra Hermawan",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/33351/images/168_n.jpg",biography:null,institutionString:null,institution:{name:"Institut Teknologi Bandung",country:{name:"Indonesia"}}},{id:"11981",title:"Prof.",name:"Hiroshi",middleName:null,surname:"Ishiguro",slug:"hiroshi-ishiguro",fullName:"Hiroshi Ishiguro",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"Osaka University",country:{name:"Japan"}}},{id:"45747",title:"Dr.",name:"Hsin-I",middleName:null,surname:"Chang",slug:"hsin-i-chang",fullName:"Hsin-I Chang",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/no_image.jpg",biography:null,institutionString:null,institution:{name:"National Chiayi University",country:{name:"Taiwan"}}},{id:"61581",title:"Dr.",name:"Joy Rizki Pangestu",middleName:null,surname:"Djuansjah",slug:"joy-rizki-pangestu-djuansjah",fullName:"Joy Rizki Pangestu Djuansjah",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/61581/images/237_n.jpg",biography:null,institutionString:null,institution:{name:"University of Technology Malaysia",country:{name:"Malaysia"}}},{id:"94249",title:"Prof.",name:"Junji",middleName:null,surname:"Kido",slug:"junji-kido",fullName:"Junji Kido",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"Yamagata University",country:{name:"Japan"}}},{id:"12009",title:"Dr.",name:"Ki Young",middleName:null,surname:"Kim",slug:"ki-young-kim",fullName:"Ki Young Kim",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/12009/images/system/12009.jpg",biography:"Http://m80.knu.ac.kr/~doors",institutionString:null,institution:{name:"National Cheng Kung University",country:{name:"Taiwan"}}}],filtersByRegion:[{group:"region",caption:"North America",value:1,count:5699},{group:"region",caption:"Middle and South America",value:2,count:5172},{group:"region",caption:"Africa",value:3,count:1689},{group:"region",caption:"Asia",value:4,count:10244},{group:"region",caption:"Australia and Oceania",value:5,count:888},{group:"region",caption:"Europe",value:6,count:15650}],offset:12,limit:12,total:10244},chapterEmbeded:{data:{}},editorApplication:{success:null,errors:{}},ofsBooks:{filterParams:{sort:"dateEndThirdStepPublish"},books:[{type:"book",id:"10231",title:"Proton Therapy",subtitle:null,isOpenForSubmission:!0,hash:"f4a9009287953c8d1d89f0fa9b7597b0",slug:null,bookSignature:"",coverURL:"https://cdn.intechopen.com/books/images_new/10231.jpg",editedByType:null,editors:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10645",title:"TEST Luka EV",subtitle:null,isOpenForSubmission:!0,hash:"34c7613d332b05758ea87b460199db54",slug:null,bookSignature:"",coverURL:"//cdnintech.com/web/frontend/www/assets/cover.jpg",editedByType:null,editors:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10646",title:"Rozmari - Test Book - Luka 13102020",subtitle:null,isOpenForSubmission:!0,hash:"b96ff714b24bc695b8dceba914430b85",slug:null,bookSignature:"",coverURL:"//cdnintech.com/web/frontend/www/assets/cover.jpg",editedByType:null,editors:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10651",title:"Machine Learning",subtitle:null,isOpenForSubmission:!0,hash:"5806b4efae3bd91c3f56e64e0442df35",slug:null,bookSignature:"",coverURL:"https://cdn.intechopen.com/books/images_new/10651.jpg",editedByType:null,editors:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10652",title:"Visual Object Tracking",subtitle:null,isOpenForSubmission:!0,hash:"96f3ee634a7ba49fa195e50475412af4",slug:null,bookSignature:"",coverURL:"https://cdn.intechopen.com/books/images_new/10652.jpg",editedByType:null,editors:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10653",title:"Optimization Algorithms",subtitle:null,isOpenForSubmission:!0,hash:"753812dbb9a6f6b57645431063114f6c",slug:null,bookSignature:"",coverURL:"https://cdn.intechopen.com/books/images_new/10653.jpg",editedByType:null,editors:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10655",title:"Motion Planning",subtitle:null,isOpenForSubmission:!0,hash:"809b5e290cf2dade9e7e0a5ae0ef3df0",slug:null,bookSignature:"",coverURL:"https://cdn.intechopen.com/books/images_new/10655.jpg",editedByType:null,editors:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10657",title:"Service Robots",subtitle:null,isOpenForSubmission:!0,hash:"5f81b9eea6eb3f9af984031b7af35588",slug:null,bookSignature:"",coverURL:"https://cdn.intechopen.com/books/images_new/10657.jpg",editedByType:null,editors:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10660",title:"Heritage",subtitle:null,isOpenForSubmission:!0,hash:"14096773aa1e3635ec6ceec6dd5b47a4",slug:null,bookSignature:"",coverURL:"https://cdn.intechopen.com/books/images_new/10660.jpg",editedByType:null,editors:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10662",title:"Pedagogy",subtitle:null,isOpenForSubmission:!0,hash:"c858e1c6fb878d3b895acbacec624576",slug:null,bookSignature:"",coverURL:"https://cdn.intechopen.com/books/images_new/10662.jpg",editedByType:null,editors:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10673",title:"The Psychology of Trust",subtitle:null,isOpenForSubmission:!0,hash:"1f6cac41fd145f718ac0866264499cc8",slug:null,bookSignature:"",coverURL:"https://cdn.intechopen.com/books/images_new/10673.jpg",editedByType:null,editors:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10675",title:"Hydrostatics",subtitle:null,isOpenForSubmission:!0,hash:"c86c2fa9f835d4ad5e7efd8b01921866",slug:null,bookSignature:"",coverURL:"https://cdn.intechopen.com/books/images_new/10675.jpg",editedByType:null,editors:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}}],filtersByTopic:[{group:"topic",caption:"Agricultural and Biological Sciences",value:5,count:9},{group:"topic",caption:"Biochemistry, Genetics and Molecular Biology",value:6,count:16},{group:"topic",caption:"Business, Management and Economics",value:7,count:2},{group:"topic",caption:"Chemistry",value:8,count:6},{group:"topic",caption:"Computer and Information Science",value:9,count:10},{group:"topic",caption:"Earth and Planetary Sciences",value:10,count:4},{group:"topic",caption:"Engineering",value:11,count:15},{group:"topic",caption:"Environmental Sciences",value:12,count:2},{group:"topic",caption:"Immunology and Microbiology",value:13,count:4},{group:"topic",caption:"Materials Science",value:14,count:4},{group:"topic",caption:"Mathematics",value:15,count:1},{group:"topic",caption:"Medicine",value:16,count:56},{group:"topic",caption:"Neuroscience",value:18,count:1},{group:"topic",caption:"Pharmacology, Toxicology and Pharmaceutical Science",value:19,count:6},{group:"topic",caption:"Physics",value:20,count:2},{group:"topic",caption:"Psychology",value:21,count:3},{group:"topic",caption:"Robotics",value:22,count:1},{group:"topic",caption:"Social Sciences",value:23,count:3},{group:"topic",caption:"Technology",value:24,count:1},{group:"topic",caption:"Veterinary Medicine and Science",value:25,count:2}],offset:12,limit:12,total:291},popularBooks:{featuredBooks:[{type:"book",id:"7802",title:"Modern Slavery and Human Trafficking",subtitle:null,isOpenForSubmission:!1,hash:"587a0b7fb765f31cc98de33c6c07c2e0",slug:"modern-slavery-and-human-trafficking",bookSignature:"Jane Reeves",coverURL:"https://cdn.intechopen.com/books/images_new/7802.jpg",editors:[{id:"211328",title:"Prof.",name:"Jane",middleName:null,surname:"Reeves",slug:"jane-reeves",fullName:"Jane Reeves"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"8545",title:"Animal Reproduction in Veterinary Medicine",subtitle:null,isOpenForSubmission:!1,hash:"13aaddf5fdbbc78387e77a7da2388bf6",slug:"animal-reproduction-in-veterinary-medicine",bookSignature:"Faruk Aral, Rita Payan-Carreira and Miguel Quaresma",coverURL:"https://cdn.intechopen.com/books/images_new/8545.jpg",editors:[{id:"25600",title:"Prof.",name:"Faruk",middleName:null,surname:"Aral",slug:"faruk-aral",fullName:"Faruk Aral"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9961",title:"Data Mining",subtitle:"Methods, Applications and Systems",isOpenForSubmission:!1,hash:"ed79fb6364f2caf464079f94a0387146",slug:"data-mining-methods-applications-and-systems",bookSignature:"Derya Birant",coverURL:"https://cdn.intechopen.com/books/images_new/9961.jpg",editors:[{id:"15609",title:"Dr.",name:"Derya",middleName:null,surname:"Birant",slug:"derya-birant",fullName:"Derya Birant"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9157",title:"Neurodegenerative Diseases",subtitle:"Molecular Mechanisms and Current Therapeutic Approaches",isOpenForSubmission:!1,hash:"bc8be577966ef88735677d7e1e92ed28",slug:"neurodegenerative-diseases-molecular-mechanisms-and-current-therapeutic-approaches",bookSignature:"Nagehan Ersoy Tunalı",coverURL:"https://cdn.intechopen.com/books/images_new/9157.jpg",editors:[{id:"82778",title:"Ph.D.",name:"Nagehan",middleName:null,surname:"Ersoy Tunalı",slug:"nagehan-ersoy-tunali",fullName:"Nagehan Ersoy Tunalı"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"8686",title:"Direct Torque Control Strategies of Electrical Machines",subtitle:null,isOpenForSubmission:!1,hash:"b6ad22b14db2b8450228545d3d4f6b1a",slug:"direct-torque-control-strategies-of-electrical-machines",bookSignature:"Fatma Ben Salem",coverURL:"https://cdn.intechopen.com/books/images_new/8686.jpg",editors:[{id:"295623",title:"Associate Prof.",name:"Fatma",middleName:null,surname:"Ben Salem",slug:"fatma-ben-salem",fullName:"Fatma Ben Salem"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"7434",title:"Molecular Biotechnology",subtitle:null,isOpenForSubmission:!1,hash:"eceede809920e1ec7ecadd4691ede2ec",slug:"molecular-biotechnology",bookSignature:"Sergey Sedykh",coverURL:"https://cdn.intechopen.com/books/images_new/7434.jpg",editors:[{id:"178316",title:"Ph.D.",name:"Sergey",middleName:null,surname:"Sedykh",slug:"sergey-sedykh",fullName:"Sergey Sedykh"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9839",title:"Outdoor Recreation",subtitle:"Physiological and Psychological Effects on Health",isOpenForSubmission:!1,hash:"5f5a0d64267e32567daffa5b0c6a6972",slug:"outdoor-recreation-physiological-and-psychological-effects-on-health",bookSignature:"Hilde G. Nielsen",coverURL:"https://cdn.intechopen.com/books/images_new/9839.jpg",editors:[{id:"158692",title:"Ph.D.",name:"Hilde G.",middleName:null,surname:"Nielsen",slug:"hilde-g.-nielsen",fullName:"Hilde G. Nielsen"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9208",title:"Welding",subtitle:"Modern Topics",isOpenForSubmission:!1,hash:"7d6be076ccf3a3f8bd2ca52d86d4506b",slug:"welding-modern-topics",bookSignature:"Sadek Crisóstomo Absi Alfaro, Wojciech Borek and Błażej Tomiczek",coverURL:"https://cdn.intechopen.com/books/images_new/9208.jpg",editors:[{id:"65292",title:"Prof.",name:"Sadek Crisostomo Absi",middleName:"C. Absi",surname:"Alfaro",slug:"sadek-crisostomo-absi-alfaro",fullName:"Sadek Crisostomo Absi Alfaro"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9139",title:"Topics in Primary Care Medicine",subtitle:null,isOpenForSubmission:!1,hash:"ea774a4d4c1179da92a782e0ae9cde92",slug:"topics-in-primary-care-medicine",bookSignature:"Thomas F. Heston",coverURL:"https://cdn.intechopen.com/books/images_new/9139.jpg",editors:[{id:"217926",title:"Dr.",name:"Thomas F.",middleName:null,surname:"Heston",slug:"thomas-f.-heston",fullName:"Thomas F. Heston"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9343",title:"Trace Metals in the Environment",subtitle:"New Approaches and Recent Advances",isOpenForSubmission:!1,hash:"ae07e345bc2ce1ebbda9f70c5cd12141",slug:"trace-metals-in-the-environment-new-approaches-and-recent-advances",bookSignature:"Mario Alfonso Murillo-Tovar, Hugo Saldarriaga-Noreña and Agnieszka Saeid",coverURL:"https://cdn.intechopen.com/books/images_new/9343.jpg",editors:[{id:"255959",title:"Dr.",name:"Mario Alfonso",middleName:null,surname:"Murillo-Tovar",slug:"mario-alfonso-murillo-tovar",fullName:"Mario Alfonso Murillo-Tovar"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"8697",title:"Virtual Reality and Its Application in Education",subtitle:null,isOpenForSubmission:!1,hash:"ee01b5e387ba0062c6b0d1e9227bda05",slug:"virtual-reality-and-its-application-in-education",bookSignature:"Dragan Cvetković",coverURL:"https://cdn.intechopen.com/books/images_new/8697.jpg",editors:[{id:"101330",title:"Dr.",name:"Dragan",middleName:"Mladen",surname:"Cvetković",slug:"dragan-cvetkovic",fullName:"Dragan Cvetković"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"7831",title:"Sustainability in Urban Planning and Design",subtitle:null,isOpenForSubmission:!1,hash:"c924420492c8c2c9751e178d025f4066",slug:"sustainability-in-urban-planning-and-design",bookSignature:"Amjad Almusaed, Asaad Almssad and Linh Truong - Hong",coverURL:"https://cdn.intechopen.com/books/images_new/7831.jpg",editors:[{id:"110471",title:"Dr.",name:"Amjad",middleName:"Zaki",surname:"Almusaed",slug:"amjad-almusaed",fullName:"Amjad Almusaed"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}}],offset:12,limit:12,total:5143},hotBookTopics:{hotBooks:[],offset:0,limit:12,total:null},publish:{},publishingProposal:{success:null,errors:{}},books:{featuredBooks:[{type:"book",id:"9208",title:"Welding",subtitle:"Modern Topics",isOpenForSubmission:!1,hash:"7d6be076ccf3a3f8bd2ca52d86d4506b",slug:"welding-modern-topics",bookSignature:"Sadek Crisóstomo Absi Alfaro, Wojciech Borek and Błażej Tomiczek",coverURL:"https://cdn.intechopen.com/books/images_new/9208.jpg",editors:[{id:"65292",title:"Prof.",name:"Sadek Crisostomo Absi",middleName:"C. Absi",surname:"Alfaro",slug:"sadek-crisostomo-absi-alfaro",fullName:"Sadek Crisostomo Absi Alfaro"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9139",title:"Topics in Primary Care Medicine",subtitle:null,isOpenForSubmission:!1,hash:"ea774a4d4c1179da92a782e0ae9cde92",slug:"topics-in-primary-care-medicine",bookSignature:"Thomas F. Heston",coverURL:"https://cdn.intechopen.com/books/images_new/9139.jpg",editors:[{id:"217926",title:"Dr.",name:"Thomas F.",middleName:null,surname:"Heston",slug:"thomas-f.-heston",fullName:"Thomas F. Heston"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"8697",title:"Virtual Reality and Its Application in Education",subtitle:null,isOpenForSubmission:!1,hash:"ee01b5e387ba0062c6b0d1e9227bda05",slug:"virtual-reality-and-its-application-in-education",bookSignature:"Dragan Cvetković",coverURL:"https://cdn.intechopen.com/books/images_new/8697.jpg",editors:[{id:"101330",title:"Dr.",name:"Dragan",middleName:"Mladen",surname:"Cvetković",slug:"dragan-cvetkovic",fullName:"Dragan Cvetković"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9343",title:"Trace Metals in the Environment",subtitle:"New Approaches and Recent Advances",isOpenForSubmission:!1,hash:"ae07e345bc2ce1ebbda9f70c5cd12141",slug:"trace-metals-in-the-environment-new-approaches-and-recent-advances",bookSignature:"Mario Alfonso Murillo-Tovar, Hugo Saldarriaga-Noreña and Agnieszka Saeid",coverURL:"https://cdn.intechopen.com/books/images_new/9343.jpg",editors:[{id:"255959",title:"Dr.",name:"Mario Alfonso",middleName:null,surname:"Murillo-Tovar",slug:"mario-alfonso-murillo-tovar",fullName:"Mario Alfonso Murillo-Tovar"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9785",title:"Endometriosis",subtitle:null,isOpenForSubmission:!1,hash:"f457ca61f29cf7e8bc191732c50bb0ce",slug:"endometriosis",bookSignature:"Courtney Marsh",coverURL:"https://cdn.intechopen.com/books/images_new/9785.jpg",editors:[{id:"255491",title:"Dr.",name:"Courtney",middleName:null,surname:"Marsh",slug:"courtney-marsh",fullName:"Courtney Marsh"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"7831",title:"Sustainability in Urban Planning and Design",subtitle:null,isOpenForSubmission:!1,hash:"c924420492c8c2c9751e178d025f4066",slug:"sustainability-in-urban-planning-and-design",bookSignature:"Amjad Almusaed, Asaad Almssad and Linh Truong - Hong",coverURL:"https://cdn.intechopen.com/books/images_new/7831.jpg",editors:[{id:"110471",title:"Dr.",name:"Amjad",middleName:"Zaki",surname:"Almusaed",slug:"amjad-almusaed",fullName:"Amjad Almusaed"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9376",title:"Contemporary Developments and Perspectives in International Health Security",subtitle:"Volume 1",isOpenForSubmission:!1,hash:"b9a00b84cd04aae458fb1d6c65795601",slug:"contemporary-developments-and-perspectives-in-international-health-security-volume-1",bookSignature:"Stanislaw P. Stawicki, Michael S. Firstenberg, Sagar C. Galwankar, Ricardo Izurieta and Thomas Papadimos",coverURL:"https://cdn.intechopen.com/books/images_new/9376.jpg",editors:[{id:"181694",title:"Dr.",name:"Stanislaw P.",middleName:null,surname:"Stawicki",slug:"stanislaw-p.-stawicki",fullName:"Stanislaw P. Stawicki"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"7769",title:"Medical Isotopes",subtitle:null,isOpenForSubmission:!1,hash:"f8d3c5a6c9a42398e56b4e82264753f7",slug:"medical-isotopes",bookSignature:"Syed Ali Raza Naqvi and Muhammad Babar Imrani",coverURL:"https://cdn.intechopen.com/books/images_new/7769.jpg",editors:[{id:"259190",title:"Dr.",name:"Syed Ali Raza",middleName:null,surname:"Naqvi",slug:"syed-ali-raza-naqvi",fullName:"Syed Ali Raza Naqvi"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9279",title:"Concepts, Applications and Emerging Opportunities in Industrial Engineering",subtitle:null,isOpenForSubmission:!1,hash:"9bfa87f9b627a5468b7c1e30b0eea07a",slug:"concepts-applications-and-emerging-opportunities-in-industrial-engineering",bookSignature:"Gary Moynihan",coverURL:"https://cdn.intechopen.com/books/images_new/9279.jpg",editors:[{id:"16974",title:"Dr.",name:"Gary",middleName:null,surname:"Moynihan",slug:"gary-moynihan",fullName:"Gary Moynihan"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"7807",title:"A Closer Look at Organizational Culture in Action",subtitle:null,isOpenForSubmission:!1,hash:"05c608b9271cc2bc711f4b28748b247b",slug:"a-closer-look-at-organizational-culture-in-action",bookSignature:"Süleyman Davut Göker",coverURL:"https://cdn.intechopen.com/books/images_new/7807.jpg",editors:[{id:"190035",title:"Associate Prof.",name:"Süleyman Davut",middleName:null,surname:"Göker",slug:"suleyman-davut-goker",fullName:"Süleyman Davut Göker"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}}],latestBooks:[{type:"book",id:"7434",title:"Molecular Biotechnology",subtitle:null,isOpenForSubmission:!1,hash:"eceede809920e1ec7ecadd4691ede2ec",slug:"molecular-biotechnology",bookSignature:"Sergey Sedykh",coverURL:"https://cdn.intechopen.com/books/images_new/7434.jpg",editedByType:"Edited by",editors:[{id:"178316",title:"Ph.D.",name:"Sergey",middleName:null,surname:"Sedykh",slug:"sergey-sedykh",fullName:"Sergey Sedykh"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"8545",title:"Animal Reproduction in Veterinary Medicine",subtitle:null,isOpenForSubmission:!1,hash:"13aaddf5fdbbc78387e77a7da2388bf6",slug:"animal-reproduction-in-veterinary-medicine",bookSignature:"Faruk Aral, Rita Payan-Carreira and Miguel Quaresma",coverURL:"https://cdn.intechopen.com/books/images_new/8545.jpg",editedByType:"Edited by",editors:[{id:"25600",title:"Prof.",name:"Faruk",middleName:null,surname:"Aral",slug:"faruk-aral",fullName:"Faruk Aral"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"9569",title:"Methods in Molecular Medicine",subtitle:null,isOpenForSubmission:!1,hash:"691d3f3c4ac25a8093414e9b270d2843",slug:"methods-in-molecular-medicine",bookSignature:"Yusuf Tutar",coverURL:"https://cdn.intechopen.com/books/images_new/9569.jpg",editedByType:"Edited by",editors:[{id:"158492",title:"Prof.",name:"Yusuf",middleName:null,surname:"Tutar",slug:"yusuf-tutar",fullName:"Yusuf Tutar"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"9839",title:"Outdoor Recreation",subtitle:"Physiological and Psychological Effects on Health",isOpenForSubmission:!1,hash:"5f5a0d64267e32567daffa5b0c6a6972",slug:"outdoor-recreation-physiological-and-psychological-effects-on-health",bookSignature:"Hilde G. Nielsen",coverURL:"https://cdn.intechopen.com/books/images_new/9839.jpg",editedByType:"Edited by",editors:[{id:"158692",title:"Ph.D.",name:"Hilde G.",middleName:null,surname:"Nielsen",slug:"hilde-g.-nielsen",fullName:"Hilde G. Nielsen"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"7802",title:"Modern Slavery and Human Trafficking",subtitle:null,isOpenForSubmission:!1,hash:"587a0b7fb765f31cc98de33c6c07c2e0",slug:"modern-slavery-and-human-trafficking",bookSignature:"Jane Reeves",coverURL:"https://cdn.intechopen.com/books/images_new/7802.jpg",editedByType:"Edited by",editors:[{id:"211328",title:"Prof.",name:"Jane",middleName:null,surname:"Reeves",slug:"jane-reeves",fullName:"Jane Reeves"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"8063",title:"Food Security in Africa",subtitle:null,isOpenForSubmission:!1,hash:"8cbf3d662b104d19db2efc9d59249efc",slug:"food-security-in-africa",bookSignature:"Barakat Mahmoud",coverURL:"https://cdn.intechopen.com/books/images_new/8063.jpg",editedByType:"Edited by",editors:[{id:"92016",title:"Dr.",name:"Barakat",middleName:null,surname:"Mahmoud",slug:"barakat-mahmoud",fullName:"Barakat Mahmoud"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10118",title:"Plant Stress Physiology",subtitle:null,isOpenForSubmission:!1,hash:"c68b09d2d2634fc719ae3b9a64a27839",slug:"plant-stress-physiology",bookSignature:"Akbar Hossain",coverURL:"https://cdn.intechopen.com/books/images_new/10118.jpg",editedByType:"Edited by",editors:[{id:"280755",title:"Dr.",name:"Akbar",middleName:null,surname:"Hossain",slug:"akbar-hossain",fullName:"Akbar Hossain"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"9157",title:"Neurodegenerative Diseases",subtitle:"Molecular Mechanisms and Current Therapeutic Approaches",isOpenForSubmission:!1,hash:"bc8be577966ef88735677d7e1e92ed28",slug:"neurodegenerative-diseases-molecular-mechanisms-and-current-therapeutic-approaches",bookSignature:"Nagehan Ersoy Tunalı",coverURL:"https://cdn.intechopen.com/books/images_new/9157.jpg",editedByType:"Edited by",editors:[{id:"82778",title:"Ph.D.",name:"Nagehan",middleName:null,surname:"Ersoy Tunalı",slug:"nagehan-ersoy-tunali",fullName:"Nagehan Ersoy Tunalı"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"9961",title:"Data Mining",subtitle:"Methods, Applications and Systems",isOpenForSubmission:!1,hash:"ed79fb6364f2caf464079f94a0387146",slug:"data-mining-methods-applications-and-systems",bookSignature:"Derya Birant",coverURL:"https://cdn.intechopen.com/books/images_new/9961.jpg",editedByType:"Edited by",editors:[{id:"15609",title:"Dr.",name:"Derya",middleName:null,surname:"Birant",slug:"derya-birant",fullName:"Derya Birant"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"8686",title:"Direct Torque Control Strategies of Electrical Machines",subtitle:null,isOpenForSubmission:!1,hash:"b6ad22b14db2b8450228545d3d4f6b1a",slug:"direct-torque-control-strategies-of-electrical-machines",bookSignature:"Fatma Ben Salem",coverURL:"https://cdn.intechopen.com/books/images_new/8686.jpg",editedByType:"Edited by",editors:[{id:"295623",title:"Associate Prof.",name:"Fatma",middleName:null,surname:"Ben Salem",slug:"fatma-ben-salem",fullName:"Fatma Ben Salem"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}}]},subject:{topic:{id:"173",title:"Critical Care Medicine",slug:"critical-care-medicine",parent:{title:"Medicine",slug:"medicine"},numberOfBooks:11,numberOfAuthorsAndEditors:268,numberOfWosCitations:29,numberOfCrossrefCitations:53,numberOfDimensionsCitations:112,videoUrl:null,fallbackUrl:null,description:null},booksByTopicFilter:{topicSlug:"critical-care-medicine",sort:"-publishedDate",limit:12,offset:0},booksByTopicCollection:[{type:"book",id:"7043",title:"Clinical Management of Shock",subtitle:"The Science and Art of Physiological Restoration",isOpenForSubmission:!1,hash:"0f79000187ae93618e2213631e00047c",slug:"clinical-management-of-shock-the-science-and-art-of-physiological-restoration",bookSignature:"Stanislaw P. Stawicki and Mamta Swaroop",coverURL:"https://cdn.intechopen.com/books/images_new/7043.jpg",editedByType:"Edited by",editors:[{id:"181694",title:"Dr.",name:"Stanislaw P.",middleName:null,surname:"Stawicki",slug:"stanislaw-p.-stawicki",fullName:"Stanislaw P. Stawicki"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"9066",title:"Wound Healing",subtitle:null,isOpenForSubmission:!1,hash:"a293ecd8c2655a402321dc30e0ffbf9a",slug:"wound-healing",bookSignature:"Muhammad Ahmad",coverURL:"https://cdn.intechopen.com/books/images_new/9066.jpg",editedByType:"Edited by",editors:[{id:"204257",title:"Dr.",name:"Muhammad",middleName:null,surname:"Ahmad",slug:"muhammad-ahmad",fullName:"Muhammad Ahmad"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"7878",title:"Advances in Extracorporeal Membrane Oxygenation",subtitle:"Volume 3",isOpenForSubmission:!1,hash:"f95bf990273d08098a00f9a1c2403cbe",slug:"advances-in-extracorporeal-membrane-oxygenation-volume-3",bookSignature:"Michael S. Firstenberg",coverURL:"https://cdn.intechopen.com/books/images_new/7878.jpg",editedByType:"Edited by",editors:[{id:"64343",title:null,name:"Michael S.",middleName:"S",surname:"Firstenberg",slug:"michael-s.-firstenberg",fullName:"Michael S. Firstenberg"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"7046",title:"Wound Healing",subtitle:"Current Perspectives",isOpenForSubmission:!1,hash:"fa7b870ad29ce1dfcf6faeafdc060309",slug:"wound-healing-current-perspectives",bookSignature:"Kamil Hakan Dogan",coverURL:"https://cdn.intechopen.com/books/images_new/7046.jpg",editedByType:"Edited by",editors:[{id:"30612",title:"Prof.",name:"Kamil Hakan",middleName:null,surname:"Dogan",slug:"kamil-hakan-dogan",fullName:"Kamil Hakan Dogan"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"6662",title:"Trauma Surgery",subtitle:null,isOpenForSubmission:!1,hash:"9721b9ac98bf237058cafd0a0303bdbc",slug:"trauma-surgery",bookSignature:"Ozgur Karcioglu and Hakan Topacoglu",coverURL:"https://cdn.intechopen.com/books/images_new/6662.jpg",editedByType:"Edited by",editors:[{id:"221195",title:"Dr.",name:"Ozgur",middleName:null,surname:"Karcioglu",slug:"ozgur-karcioglu",fullName:"Ozgur Karcioglu"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"6814",title:"Current Topics in Intensive Care Medicine",subtitle:null,isOpenForSubmission:!1,hash:"5bbe8e72807443305f7cae60bfe79b9e",slug:"current-topics-in-intensive-care-medicine",bookSignature:"R?za Hakan Erbay",coverURL:"https://cdn.intechopen.com/books/images_new/6814.jpg",editedByType:"Edited by",editors:[{id:"169248",title:"Dr.",name:"Rıza Hakan",middleName:null,surname:"Erbay",slug:"riza-hakan-erbay",fullName:"Rıza Hakan Erbay"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"6069",title:"Essentials of Spinal Cord Injury Medicine",subtitle:null,isOpenForSubmission:!1,hash:"f0a49e24ebfbb9ed7d02f7daab9b30f6",slug:"essentials-of-spinal-cord-injury-medicine",bookSignature:"Yannis Dionyssiotis",coverURL:"https://cdn.intechopen.com/books/images_new/6069.jpg",editedByType:"Edited by",editors:[{id:"76883",title:"PhD.",name:"Yannis",middleName:null,surname:"Dionyssiotis",slug:"yannis-dionyssiotis",fullName:"Yannis Dionyssiotis"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"5970",title:"Bedside Procedures",subtitle:null,isOpenForSubmission:!1,hash:"ba56d3036ac823a7155f40e4a02c030d",slug:"bedside-procedures",bookSignature:"Gabriel Cismaru",coverURL:"https://cdn.intechopen.com/books/images_new/5970.jpg",editedByType:"Edited by",editors:[{id:"191888",title:"Dr.",name:"Gabriel",middleName:null,surname:"Cismaru",slug:"gabriel-cismaru",fullName:"Gabriel Cismaru"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"5756",title:"Intensive Care",subtitle:null,isOpenForSubmission:!1,hash:"c15f872f6c0158a19bf64f081fe1e854",slug:"intensive-care",bookSignature:"Nissar Shaikh",coverURL:"https://cdn.intechopen.com/books/images_new/5756.jpg",editedByType:"Edited by",editors:[{id:"107703",title:"Dr.",name:"Nissar",middleName:null,surname:"Shaikh",slug:"nissar-shaikh",fullName:"Nissar Shaikh"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"5220",title:"Oncology Critical Care",subtitle:null,isOpenForSubmission:!1,hash:"6ca48669ac7afaf59398a958335eff65",slug:"oncology-critical-care",bookSignature:"Jeffrey B. Hoag",coverURL:"https://cdn.intechopen.com/books/images_new/5220.jpg",editedByType:"Edited by",editors:[{id:"91738",title:"Dr.",name:"Jeffrey",middleName:null,surname:"Hoag",slug:"jeffrey-hoag",fullName:"Jeffrey Hoag"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"5290",title:"Wound Healing",subtitle:"New insights into Ancient Challenges",isOpenForSubmission:!1,hash:"a6c479ab3fea0a9b7051d2a8478c91c3",slug:"wound-healing-new-insights-into-ancient-challenges",bookSignature:"Vlad Adrian Alexandrescu",coverURL:"https://cdn.intechopen.com/books/images_new/5290.jpg",editedByType:"Edited by",editors:[{id:"66358",title:"Ph.D.",name:"Vlad",middleName:"Adrian",surname:"Alexandrescu",slug:"vlad-alexandrescu",fullName:"Vlad Alexandrescu"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}}],booksByTopicTotal:11,mostCitedChapters:[{id:"50983",doi:"10.5772/63961",title:"Antimicrobial Dressings for Improving Wound Healing",slug:"antimicrobial-dressings-for-improving-wound-healing",totalDownloads:3653,totalCrossrefCites:5,totalDimensionsCites:19,book:{slug:"wound-healing-new-insights-into-ancient-challenges",title:"Wound Healing",fullTitle:"Wound Healing - New insights into Ancient Challenges"},signatures:"Omar Sarheed, Asif Ahmed, Douha Shouqair and Joshua Boateng",authors:[{id:"183108",title:"Dr.",name:"Joshua",middleName:null,surname:"Boateng",slug:"joshua-boateng",fullName:"Joshua Boateng"},{id:"183399",title:"Dr.",name:"Omar",middleName:null,surname:"Sarheed",slug:"omar-sarheed",fullName:"Omar Sarheed"},{id:"188082",title:"Mr.",name:"Asif",middleName:null,surname:"Ahmed",slug:"asif-ahmed",fullName:"Asif Ahmed"},{id:"188083",title:"Ms.",name:"Douha",middleName:null,surname:"Shouqair",slug:"douha-shouqair",fullName:"Douha Shouqair"}]},{id:"51825",doi:"10.5772/64611",title:"Roles of Matrix Metalloproteinases in Cutaneous Wound Healing",slug:"roles-of-matrix-metalloproteinases-in-cutaneous-wound-healing",totalDownloads:2653,totalCrossrefCites:7,totalDimensionsCites:14,book:{slug:"wound-healing-new-insights-into-ancient-challenges",title:"Wound Healing",fullTitle:"Wound Healing - New insights into Ancient Challenges"},signatures:"Trung T. Nguyen, Shahriar Mobashery and Mayland Chang",authors:[{id:"183405",title:"Prof.",name:"Mayland",middleName:null,surname:"Chang",slug:"mayland-chang",fullName:"Mayland Chang"},{id:"191152",title:"Mr.",name:"Trung",middleName:null,surname:"Nguyen",slug:"trung-nguyen",fullName:"Trung Nguyen"},{id:"191153",title:"Prof.",name:"Shahriar",middleName:null,surname:"Mobashery",slug:"shahriar-mobashery",fullName:"Shahriar Mobashery"}]},{id:"63675",doi:"10.5772/intechopen.81208",title:"Wound Healing: Contributions from Plant Secondary Metabolite Antioxidants",slug:"wound-healing-contributions-from-plant-secondary-metabolite-antioxidants",totalDownloads:643,totalCrossrefCites:1,totalDimensionsCites:6,book:{slug:"wound-healing-current-perspectives",title:"Wound Healing",fullTitle:"Wound Healing - Current Perspectives"},signatures:"Victor Y.A. Barku",authors:[{id:"261027",title:"Prof.",name:"Victor Y. A.",middleName:null,surname:"Barku",slug:"victor-y.-a.-barku",fullName:"Victor Y. A. Barku"}]}],mostDownloadedChaptersLast30Days:[{id:"51825",title:"Roles of Matrix Metalloproteinases in Cutaneous Wound Healing",slug:"roles-of-matrix-metalloproteinases-in-cutaneous-wound-healing",totalDownloads:2654,totalCrossrefCites:7,totalDimensionsCites:14,book:{slug:"wound-healing-new-insights-into-ancient-challenges",title:"Wound Healing",fullTitle:"Wound Healing - New insights into Ancient Challenges"},signatures:"Trung T. Nguyen, Shahriar Mobashery and Mayland Chang",authors:[{id:"183405",title:"Prof.",name:"Mayland",middleName:null,surname:"Chang",slug:"mayland-chang",fullName:"Mayland Chang"},{id:"191152",title:"Mr.",name:"Trung",middleName:null,surname:"Nguyen",slug:"trung-nguyen",fullName:"Trung Nguyen"},{id:"191153",title:"Prof.",name:"Shahriar",middleName:null,surname:"Mobashery",slug:"shahriar-mobashery",fullName:"Shahriar Mobashery"}]},{id:"63086",title:"Medicinal Plants in Wound Healing",slug:"medicinal-plants-in-wound-healing",totalDownloads:1584,totalCrossrefCites:0,totalDimensionsCites:2,book:{slug:"wound-healing-current-perspectives",title:"Wound Healing",fullTitle:"Wound Healing - Current Perspectives"},signatures:"Mohammad Reza Farahpour",authors:[{id:"253340",title:"Prof.",name:"Mohammadreza",middleName:null,surname:"Farahpour",slug:"mohammadreza-farahpour",fullName:"Mohammadreza Farahpour"}]},{id:"60520",title:"Maxillofacial Fractures: From Diagnosis to Treatment",slug:"maxillofacial-fractures-from-diagnosis-to-treatment",totalDownloads:1682,totalCrossrefCites:0,totalDimensionsCites:0,book:{slug:"trauma-surgery",title:"Trauma Surgery",fullTitle:"Trauma Surgery"},signatures:"Mohammad Esmaeelinejad",authors:[{id:"172188",title:"Dr.",name:"Mohammad",middleName:null,surname:"Esmaeelinejad",slug:"mohammad-esmaeelinejad",fullName:"Mohammad Esmaeelinejad"}]},{id:"52258",title:"The Need for Increased Attention to Low‐Level Laser Therapy as Treatment for Wounds and Ulcers",slug:"the-need-for-increased-attention-to-low-level-laser-therapy-as-treatment-for-wounds-and-ulcers",totalDownloads:1689,totalCrossrefCites:0,totalDimensionsCites:0,book:{slug:"wound-healing-new-insights-into-ancient-challenges",title:"Wound Healing",fullTitle:"Wound Healing - New insights into Ancient Challenges"},signatures:"Mohammad Bayat",authors:[{id:"184084",title:"Prof.",name:"Mohammad",middleName:null,surname:"Bayat",slug:"mohammad-bayat",fullName:"Mohammad Bayat"}]},{id:"68767",title:"Introductory Chapter: Shock is a Physiological State of War",slug:"introductory-chapter-shock-is-a-physiological-state-of-war",totalDownloads:299,totalCrossrefCites:0,totalDimensionsCites:0,book:{slug:"clinical-management-of-shock-the-science-and-art-of-physiological-restoration",title:"Clinical Management of Shock",fullTitle:"Clinical Management of Shock - The Science and Art of Physiological Restoration"},signatures:"Stanislaw P. Stawicki, Thomas J. Papadimos and Mamta Swaroop",authors:[{id:"181694",title:"Dr.",name:"Stanislaw P.",middleName:null,surname:"Stawicki",slug:"stanislaw-p.-stawicki",fullName:"Stanislaw P. Stawicki"}]},{id:"55848",title:"Airway Management in ICU Settings",slug:"airway-management-in-icu-settings",totalDownloads:1878,totalCrossrefCites:1,totalDimensionsCites:1,book:{slug:"intensive-care",title:"Intensive Care",fullTitle:"Intensive Care"},signatures:"Nabil Abdelhamid Shallik, Mamdouh Almustafa, Ahmed Zaghw\nand Abbas Moustafa",authors:[{id:"202782",title:"Dr.",name:"Nabil A.",middleName:null,surname:"Shallik",slug:"nabil-a.-shallik",fullName:"Nabil A. Shallik"},{id:"206965",title:"Dr.",name:"Mamdouh",middleName:null,surname:"Almustafa",slug:"mamdouh-almustafa",fullName:"Mamdouh Almustafa"},{id:"206966",title:"Dr.",name:"Ahmed",middleName:null,surname:"Zaghw",slug:"ahmed-zaghw",fullName:"Ahmed Zaghw"},{id:"206967",title:"Dr.",name:"Abbas",middleName:null,surname:"Moustafa",slug:"abbas-moustafa",fullName:"Abbas Moustafa"}]},{id:"51868",title:"The Use of Amniotic Membrane in the Management of Complex Chronic Wounds",slug:"the-use-of-amniotic-membrane-in-the-management-of-complex-chronic-wounds",totalDownloads:1068,totalCrossrefCites:1,totalDimensionsCites:2,book:{slug:"wound-healing-new-insights-into-ancient-challenges",title:"Wound Healing",fullTitle:"Wound Healing - New insights into Ancient Challenges"},signatures:"Gregorio Castellanos, Ángel Bernabé‐García, Carmen García\nInsausti, Antonio Piñero, José M. Moraleda and Francisco J. Nicolás",authors:[{id:"162166",title:"Dr.",name:"Antonio",middleName:null,surname:"Piñero",slug:"antonio-pinero",fullName:"Antonio Piñero"},{id:"182947",title:"Dr.",name:"Francisco Jose",middleName:null,surname:"Nicolas",slug:"francisco-jose-nicolas",fullName:"Francisco Jose Nicolas"},{id:"183544",title:"Dr.",name:"Carmen",middleName:null,surname:"Insausti",slug:"carmen-insausti",fullName:"Carmen Insausti"},{id:"183545",title:"MSc.",name:"Ángel",middleName:null,surname:"Bernabé-García",slug:"angel-bernabe-garcia",fullName:"Ángel Bernabé-García"},{id:"183546",title:"Prof.",name:"José María",middleName:null,surname:"Moraleda",slug:"jose-maria-moraleda",fullName:"José María Moraleda"},{id:"183547",title:"Prof.",name:"Gregorio",middleName:null,surname:"Castellanos",slug:"gregorio-castellanos",fullName:"Gregorio Castellanos"}]},{id:"62873",title:"Current Neonatal Applications of Point-of-Care Ultrasound",slug:"current-neonatal-applications-of-point-of-care-ultrasound",totalDownloads:1066,totalCrossrefCites:0,totalDimensionsCites:0,book:{slug:"current-topics-in-intensive-care-medicine",title:"Current Topics in Intensive Care Medicine",fullTitle:"Current Topics in Intensive Care Medicine"},signatures:"Jae H. Kim, Nikolai Shalygin and Azif Safarulla",authors:[{id:"67662",title:"Dr.",name:"Jae",middleName:null,surname:"Kim",slug:"jae-kim",fullName:"Jae Kim"},{id:"244745",title:"Dr.",name:"Nikolai",middleName:null,surname:"Shalygin",slug:"nikolai-shalygin",fullName:"Nikolai Shalygin"},{id:"260858",title:"Dr.",name:"Azif",middleName:null,surname:"Safarulla",slug:"azif-safarulla",fullName:"Azif Safarulla"}]},{id:"63308",title:"Autologous Platelet-Rich Plasma and Mesenchymal Stem Cells for the Treatment of Chronic Wounds",slug:"autologous-platelet-rich-plasma-and-mesenchymal-stem-cells-for-the-treatment-of-chronic-wounds",totalDownloads:1073,totalCrossrefCites:1,totalDimensionsCites:3,book:{slug:"wound-healing-current-perspectives",title:"Wound Healing",fullTitle:"Wound Healing - Current Perspectives"},signatures:"Peter A. Everts",authors:[{id:"256306",title:"Ph.D.",name:"Peter A.",middleName:null,surname:"Everts",slug:"peter-a.-everts",fullName:"Peter A. Everts"}]},{id:"67910",title:"New Biomarkers of Sepsis with Clinical Relevance",slug:"new-biomarkers-of-sepsis-with-clinical-relevance",totalDownloads:633,totalCrossrefCites:1,totalDimensionsCites:1,book:{slug:"clinical-management-of-shock-the-science-and-art-of-physiological-restoration",title:"Clinical Management of Shock",fullTitle:"Clinical Management of Shock - The Science and Art of Physiological Restoration"},signatures:"Débora Maria da Gomes Cunha, Guilherme Galdino da Silva and Mike Yoshio Hamasaki",authors:[{id:"270399",title:"Dr.",name:"Mike",middleName:null,surname:"Hamasaki",slug:"mike-hamasaki",fullName:"Mike Hamasaki"}]}],onlineFirstChaptersFilter:{topicSlug:"critical-care-medicine",limit:3,offset:0},onlineFirstChaptersCollection:[],onlineFirstChaptersTotal:0},preDownload:{success:null,errors:{}},aboutIntechopen:{},privacyPolicy:{},peerReviewing:{},howOpenAccessPublishingWithIntechopenWorks:{},sponsorshipBooks:{sponsorshipBooks:[{type:"book",id:"10176",title:"Microgrids and Local Energy Systems",subtitle:null,isOpenForSubmission:!0,hash:"c32b4a5351a88f263074b0d0ca813a9c",slug:null,bookSignature:"Prof. Nick Jenkins",coverURL:"https://cdn.intechopen.com/books/images_new/10176.jpg",editedByType:null,editors:[{id:"55219",title:"Prof.",name:"Nick",middleName:null,surname:"Jenkins",slug:"nick-jenkins",fullName:"Nick Jenkins"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}}],offset:8,limit:8,total:1},route:{name:"chapter.detail",path:"/books/sustainable-energy-recent-studies/an-optimized-maximum-power-point-tracking-method-based-on-pv-surface-temperature-measurement",hash:"",query:{},params:{book:"sustainable-energy-recent-studies",chapter:"an-optimized-maximum-power-point-tracking-method-based-on-pv-surface-temperature-measurement"},fullPath:"/books/sustainable-energy-recent-studies/an-optimized-maximum-power-point-tracking-method-based-on-pv-surface-temperature-measurement",meta:{},from:{name:null,path:"/",hash:"",query:{},params:{},fullPath:"/",meta:{}}}},function(){var t;(t=document.currentScript||document.scripts[document.scripts.length-1]).parentNode.removeChild(t)}()