LV to TDRSS range TLM link (based on NASA source).
\r\n\tWe dedicated a chapter to the principles of chest drainage which may be of cross-specialty interest from A&E to post-surgical procedures.
\r\n\r\n\tThe broad spectrum of the diseases of the pleura, which are to be considered heterogeneous by definition, may affect patients of different ages, require different treatment strategies, and have different outcomes (e.g. pneumothorax, mesothelioma).
\r\n\r\n\tIn this book, we will discuss most of the pleural diseases but we opted to analyze them from the surgical point of view because of the complexity of diagnosis, treatment, and care of such patients, which may be challenging but critically important.
",isbn:"978-1-83969-693-0",printIsbn:"978-1-83969-692-3",pdfIsbn:"978-1-83969-694-7",doi:null,price:0,priceEur:0,priceUsd:0,slug:null,numberOfPages:0,isOpenForSubmission:!0,hash:"679c752debe8c1edd8a489cc9731485e",bookSignature:"Dr. Alberto Sandri",publishedDate:null,coverURL:"https://cdn.intechopen.com/books/images_new/11045.jpg",keywords:"Pleural Ultrasonography, Pleural CT-scan, Chest Tubes, Small-bore Catheters, Pneumothorax, Air-leak, Empyema, Pleural Surgery, VATS, Pleurectomy, Bronchopleural Fistula, Pneumonectomy",numberOfDownloads:null,numberOfWosCitations:0,numberOfCrossrefCitations:null,numberOfDimensionsCitations:null,numberOfTotalCitations:null,isAvailableForWebshopOrdering:!0,dateEndFirstStepPublish:"March 12th 2021",dateEndSecondStepPublish:"April 9th 2021",dateEndThirdStepPublish:"June 8th 2021",dateEndFourthStepPublish:"August 27th 2021",dateEndFifthStepPublish:"October 26th 2021",remainingDaysToSecondStep:"8 days",secondStepPassed:!0,currentStepOfPublishingProcess:3,editedByType:null,kuFlag:!1,biosketch:"Dr. Alberto Sandri is qualified in Medicine from the University of Torino. During his fourth year of specialty, Dr. Sandri completed a fellowship in minimally invasive thoracic surgery at St. James's University Teaching Hospital in Leeds, the UK with a significant focus on minimally invasive thoracic surgery. In the years following his specialty, Dr. Sandri worked at the European Institute of Oncology (IEO) in Milan and at Oxford University Hospitals NHS Foundation Trust, Oxford, UK.",coeditorOneBiosketch:null,coeditorTwoBiosketch:null,coeditorThreeBiosketch:null,coeditorFourBiosketch:null,coeditorFiveBiosketch:null,editors:[{id:"50811",title:"Dr.",name:"Alberto",middleName:null,surname:"Sandri",slug:"alberto-sandri",fullName:"Alberto Sandri",profilePictureURL:"https://mts.intechopen.com/storage/users/50811/images/system/50811.jpg",biography:"Thoracic Surgery Unit, Department of Oncology, San Luigi Gonzaga Hospital, Torino, Italy\nDr. Alberto Sandri is a Thoracic Surgeon at San Luigi Gonzaga Hospital, Orbassano, Torino, Italy since 2018 where he is in charge of Minimally Invasive Thoracic Surgery (uVATS).\nHe qualified in Medicine from the University of Torino in 2010. He completed his speciality in thoracic surgery at the AUO Città della Scienza e della Salute in Torino in 2016 with first class honours. During his fourth year of speciality Dr. Sandri completed a fellowship in minimally invasive thoracic surgery at St. James's University Teaching Hospital in Leeds, UK with a significant focus in minimally invasive thoracic surgery. In the years following his speciality, Dr. Sandri worked at the European Instituite of Oncology (IEO) in Milan and at Oxford University Hospitals NHS Foundation Trust, Oxford, UK.\nSince September 2018 Dr. Sandri is a consultant thoracic surgeon at San Luigi Gonzaga Hospital in Orbassano Torino, His main fields of interests are Minimally Invasive Thoracic Surgery; Uniportal VATS Lobectomy and Segmentectomy; Thoracic Oncology; Mediastinal tumours and VATS thymectomy for Myasthenia Gravis.\nHe has published more than 50 scientific articles, is author and co-author in 10+ book chapters and made many national and international presentations.\n\nhttps://orcid.org/0000-0001-6421-2270",institutionString:"Ospedale San Luigi Gonzaga",position:null,outsideEditionCount:0,totalCites:0,totalAuthoredChapters:"2",totalChapterViews:"0",totalEditedBooks:"0",institution:{name:"Ospedale San Luigi Gonzaga",institutionURL:null,country:{name:"Italy"}}}],coeditorOne:null,coeditorTwo:null,coeditorThree:null,coeditorFour:null,coeditorFive:null,topics:[{id:"16",title:"Medicine",slug:"medicine"}],chapters:null,productType:{id:"1",title:"Edited Volume",chapterContentType:"chapter",authoredCaption:"Edited by"},personalPublishingAssistant:{id:"280415",firstName:"Josip",lastName:"Knapic",middleName:null,title:"Mr.",imageUrl:"https://mts.intechopen.com/storage/users/280415/images/8050_n.jpg",email:"josip@intechopen.com",biography:"As an Author Service Manager my responsibilities include monitoring and facilitating all publishing activities for authors and editors. From chapter submission and review, to approval and revision, copy-editing and design, until final publication, I work closely with authors and editors to ensure a simple and easy publishing process. I maintain constant and effective communication with authors, editors and reviewers, which allows for a level of personal support that enables contributors to fully commit and concentrate on the chapters they are writing, editing, or reviewing. I assist authors in the preparation of their full chapter submissions and track important deadlines and ensure they are met. I help to coordinate internal processes such as linguistic review, and monitor the technical aspects of the process. As an ASM I am also involved in the acquisition of editors. Whether that be identifying an exceptional author and proposing an editorship collaboration, or contacting researchers who would like the opportunity to work with IntechOpen, I establish and help manage author and editor acquisition and contact."}},relatedBooks:[{type:"book",id:"6550",title:"Cohort Studies in Health Sciences",subtitle:null,isOpenForSubmission:!1,hash:"01df5aba4fff1a84b37a2fdafa809660",slug:"cohort-studies-in-health-sciences",bookSignature:"R. Mauricio Barría",coverURL:"https://cdn.intechopen.com/books/images_new/6550.jpg",editedByType:"Edited by",editors:[{id:"88861",title:"Dr.",name:"R. Mauricio",surname:"Barría",slug:"r.-mauricio-barria",fullName:"R. Mauricio Barría"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"1591",title:"Infrared Spectroscopy",subtitle:"Materials Science, Engineering and Technology",isOpenForSubmission:!1,hash:"99b4b7b71a8caeb693ed762b40b017f4",slug:"infrared-spectroscopy-materials-science-engineering-and-technology",bookSignature:"Theophile Theophanides",coverURL:"https://cdn.intechopen.com/books/images_new/1591.jpg",editedByType:"Edited by",editors:[{id:"37194",title:"Dr.",name:"Theophanides",surname:"Theophile",slug:"theophanides-theophile",fullName:"Theophanides Theophile"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"3161",title:"Frontiers in Guided Wave Optics and Optoelectronics",subtitle:null,isOpenForSubmission:!1,hash:"deb44e9c99f82bbce1083abea743146c",slug:"frontiers-in-guided-wave-optics-and-optoelectronics",bookSignature:"Bishnu Pal",coverURL:"https://cdn.intechopen.com/books/images_new/3161.jpg",editedByType:"Edited by",editors:[{id:"4782",title:"Prof.",name:"Bishnu",surname:"Pal",slug:"bishnu-pal",fullName:"Bishnu Pal"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"3092",title:"Anopheles mosquitoes",subtitle:"New insights into malaria vectors",isOpenForSubmission:!1,hash:"c9e622485316d5e296288bf24d2b0d64",slug:"anopheles-mosquitoes-new-insights-into-malaria-vectors",bookSignature:"Sylvie Manguin",coverURL:"https://cdn.intechopen.com/books/images_new/3092.jpg",editedByType:"Edited by",editors:[{id:"50017",title:"Prof.",name:"Sylvie",surname:"Manguin",slug:"sylvie-manguin",fullName:"Sylvie Manguin"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"371",title:"Abiotic Stress in Plants",subtitle:"Mechanisms and Adaptations",isOpenForSubmission:!1,hash:"588466f487e307619849d72389178a74",slug:"abiotic-stress-in-plants-mechanisms-and-adaptations",bookSignature:"Arun Shanker and B. Venkateswarlu",coverURL:"https://cdn.intechopen.com/books/images_new/371.jpg",editedByType:"Edited by",editors:[{id:"58592",title:"Dr.",name:"Arun",surname:"Shanker",slug:"arun-shanker",fullName:"Arun Shanker"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"72",title:"Ionic Liquids",subtitle:"Theory, Properties, New Approaches",isOpenForSubmission:!1,hash:"d94ffa3cfa10505e3b1d676d46fcd3f5",slug:"ionic-liquids-theory-properties-new-approaches",bookSignature:"Alexander Kokorin",coverURL:"https://cdn.intechopen.com/books/images_new/72.jpg",editedByType:"Edited by",editors:[{id:"19816",title:"Prof.",name:"Alexander",surname:"Kokorin",slug:"alexander-kokorin",fullName:"Alexander Kokorin"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"314",title:"Regenerative Medicine and Tissue Engineering",subtitle:"Cells and Biomaterials",isOpenForSubmission:!1,hash:"bb67e80e480c86bb8315458012d65686",slug:"regenerative-medicine-and-tissue-engineering-cells-and-biomaterials",bookSignature:"Daniel Eberli",coverURL:"https://cdn.intechopen.com/books/images_new/314.jpg",editedByType:"Edited by",editors:[{id:"6495",title:"Dr.",name:"Daniel",surname:"Eberli",slug:"daniel-eberli",fullName:"Daniel Eberli"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"57",title:"Physics and Applications of Graphene",subtitle:"Experiments",isOpenForSubmission:!1,hash:"0e6622a71cf4f02f45bfdd5691e1189a",slug:"physics-and-applications-of-graphene-experiments",bookSignature:"Sergey Mikhailov",coverURL:"https://cdn.intechopen.com/books/images_new/57.jpg",editedByType:"Edited by",editors:[{id:"16042",title:"Dr.",name:"Sergey",surname:"Mikhailov",slug:"sergey-mikhailov",fullName:"Sergey Mikhailov"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"1373",title:"Ionic Liquids",subtitle:"Applications and Perspectives",isOpenForSubmission:!1,hash:"5e9ae5ae9167cde4b344e499a792c41c",slug:"ionic-liquids-applications-and-perspectives",bookSignature:"Alexander Kokorin",coverURL:"https://cdn.intechopen.com/books/images_new/1373.jpg",editedByType:"Edited by",editors:[{id:"19816",title:"Prof.",name:"Alexander",surname:"Kokorin",slug:"alexander-kokorin",fullName:"Alexander Kokorin"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"2270",title:"Fourier Transform",subtitle:"Materials Analysis",isOpenForSubmission:!1,hash:"5e094b066da527193e878e160b4772af",slug:"fourier-transform-materials-analysis",bookSignature:"Salih Mohammed Salih",coverURL:"https://cdn.intechopen.com/books/images_new/2270.jpg",editedByType:"Edited by",editors:[{id:"111691",title:"Dr.Ing.",name:"Salih",surname:"Salih",slug:"salih-salih",fullName:"Salih Salih"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}}]},chapter:{item:{type:"chapter",id:"45652",title:"Bioremediation of Radiotoxic Elements under Natural Environmental Conditions",doi:"10.5772/56909",slug:"bioremediation-of-radiotoxic-elements-under-natural-environmental-conditions",body:'The energy sector around the world is severely affected by the combined impact of population growth, industrialisation and the general movement of people into cities (urbanisation). Controlling carbon emissions from the energy sector lies at the centre of the strategy to curb the problem of global warming and its effects on changing weather patterns – which poses a threat to ecosystems and biodiversity. Several alternatives are under consideration worldwide to reverse the current trend of global warming; almost all strategies are concern in finding cleaner primary energy sources with low or no carbon emissions. The alternative energy sources include hydropower, wind power, nuclear power, solar energy, biomass energy, and geothermal energy. Among the proposed cleaner energy sources, nuclear energy has been demonstrated to be the most stable and concentrated enough to replace fossil fuels such as coal and natural gas on most national grids.
However, in spite of holding the promise of cleaner production in terms of carbon emissions, nuclear technology produces a waste which is highly radioactive and in most instances difficult to treat. The waste compounds originating from nuclear power generation include uranium and its fission products, and transuranic elements. These metallic elements account for over 95% of the total radioactivity of radioactive waste [1].
The lightweight fission products emanating from nuclear fuel processing plants and underground nuclear waste repositories contain high levels of mobile species such as caesium (Cs-137), strontium (Sr-90), and cobalt (Co-60). These elements are characterised by very high radiological decay rates and short half-lives. Due to their high decay rates and high radioactivity, fission products render the waste matrix in which they are detected highly radiotoxic and therefore hazardous [2]. Some of these elements are easily taken up by plants and other animal life forms upon reaching the environment [3]. As an example, the divalent cation strontium-90 (90Sr2+) is easily incorporated into bone tissue because its chemical properties resemble calcium (Ca2+) which is a critical component of the mammalian bone structure. Calcium is responsible for the bone’s structural integrity and strength and is therefore an essential component of the mammalian diet.
Currently, there are about 438 nuclear power plants in operation in 31 countries around the world providing about 14% of the world’s primary energy needs [4]. The slow progression towards wider application of nuclear energy technology worldwide is mainly due to concerns over long term radiation contamination, reactor accidents such as those which occurred in Chernobyl and Fukushima, and the possibility of proliferation of atomic bomb making materials to renegade regimes and terrorists.
Nuclear power generation is not the only source of potential radioactive pollution. Other activities such as nuclear weapon testing, radioisotope manufacturing, and biomedical research have also contributed significant amounts of radioactive waste into the environment [5]. However, most radioactive waste originating from medical and radioisotope manufacturing facilities is predominantly organic and therefore can be easily degraded [6]. Radioactive waste from the power generation industry which is identified as High Level Waste (HLW), on the other hand, consists of a higher proportion of non-degradable metallic elements such as uranium and fission products, and transuranic elements. The waste tends to be “hot” (highly radiotoxic) to living organisms and therefore requires pre-treatment before disposal.
This chapter presents recent findings from research aimed at developing environmentally friendly treatment processes for radioactive waste. Attempts have recently been made to treat components of high level radioactive waste (HLW) prior disposal in specifically engineered facilities by immobilizing and extracting the radioactive elements in the waste using a combination of biological reduction and biosorption of the toxic metallic elements. In the case of U(VI), the reduced element is easily extracted either by precipitation/deposition on cell surfaces or removed by a biologically mitigated ion exchange process using live cells of bacteria.
Uranium is found in the environment in many forms including as an oxide, organic or inorganic complex, and rarely as a free metallic ion. Free elemental uranium primarily exists in higher oxidation states typically bound to oxygen. In the aqueous phase, cationic uranium readily combines with oxygen to form oxy-cations of uranium (uranyl ions) which are highly mobile and highly reactive. For example U(VI) in the form of (UO22+) is highly soluble in water. Whereas, the reduced form U(IV), existing as uraninite (UO2) is less soluble and therefore represents a lower risk in the environment.
The toxicity of uranium compounds is closely related to its mobility. That is, the most soluble of the uranium species are associated with acute toxicity in organisms [7]. The highly soluble uranium compounds such as UF6, UO2 (NO3)2, UO2Cl2, uranyl acetate, uranyl sulphates, and uranyl carbonates exhibit high toxicity to mammalian cells whereas the less soluble uranium compounds including UO2, U3O8, uranium hydrides, and carbides are less reactive and less toxic.
The permissible body level for soluble compounds is based on chemical toxicity, while the permissible body level for insoluble compounds is based on radiotoxicity. Because all uranium isotopes (U234, U235, U238) mainly emit α-particles that have little penetrating ability, the main radiation hazard from soluble uranium compounds occurs when uranium compounds are ingested or inhaled [7]. Although, absorption of some soluble compounds through skin is possible, uptake through the skin is normally superseded by either surface damage due to exposure or accumulation to toxic levels through other routes of entry such as inhalation and ingestion.
The most common treatment strategy for uranium and radioactive waste involves the extraction of the radioactive component to reduce the volume of radioactive waste followed by treatment of the bulky nonradioactive waste using conventional methods [8]. Various options have been utilised to achieve extraction by employing a combination of physical-chemical and biological methods. For areas that have already been contaminated, further migration of the pollutants is prevented by using
Separation processes have been utilised to selectively remove cationic species from wastewater streams. Materials such as activated carbon, saw dust, and peat can remove pollutants from water. However, these materials are not selective and therefore may not be effective in removing metallic elements from nuclear waste. Specially designed resins can be utilised to target specific species by manipulating the composition of functional groups on surface of the resin. Several examples of uranium binding ion exchange systems are reported by several researchers [13-15]. Although proven successful on pilot scale, full implementation of ion exchange uranium separation is hindered by high cost. Additionally, the ion exchange resin surfaces are not self-regenerating, and therefore have limited capacity [13].
Conventional membrane systems used in treating uranium includes, nano-pore filtration, ultrafiltration, microfiltration and reverse osmosis [16]. Nano-pore membrane filters have the potential to be used in recovery of radioisotopes from water or gas streams. Membrane technology is now regarded as established technology with predictable and reliable processing capability than most current alternatives. Membranes have become relatively cheap such that there use is no longer regarded uneconomical. In spite of being economically viable membrane processes generate large quantities of used membranes which contribute to the problem of radioactive solid waste from the nuclear industry.
Chemical extraction processes have mostly been used for remediation processes mostly on land. For example, uranium can be extracted from contaminated soil using sodium carbonate/bicarbonate or citric acid [17-19]. Although this process effectively removes uranium from soil, it requires a careful balance during application since overloading the system with the acid agent may further migrate uranium in the environment [18, 20]. Certain chemical agents may oxidise other potentially toxic metals posing further risk to the environment. Furthermore, long-term stability of reaction products is of concern. Changing chemical conditions in future could remobilise the metal to its toxic form.
Biological methods have been proposed to improve or substitute the conventional physico-chemical methods for the remediation of contaminated environments. Unlike organic compounds, toxic metals cannot be degraded or destroyed but can only be transformed from high oxidation state to lower oxidation state. Microbes can potentially affect the physical and the chemical state of the uranium by altering its speciation, solubility, and sorption properties. Strategies suggested for the removal of metals and radionuclides using appropriate microbes include biosorption, bioaccumulation, bioprecipitation, and bioreduction [21-23].
Biological treatment is based on the prospect of utilising processes already devised by nature in dealing with environmental hazards. During three and a half billion years of evolution, microorganisms have evolved mechanisms to survive in hostile environments and to adapt to changes in the environment [24]. One of the most conserved mechanisms in the living cell is the biochemical pathway for electron-transport through the cytoplasmic membrane to conserve energy through the oxidation of an electron donor and reduction of an electron acceptor such as oxygen. This process has been conserved over billions of years, such that, to this day, all life on earth depends on variants of this pathway [24-26]. Most biochemical processes for degradation and/or detoxification of compounds in the living cell are linked to the above process.
Environmental engineers around the world have undertaken to find ways to tap into the mysteries of nature by diligently studying the action of microorganisms as they adapt to extreme conditions. Lately, microorganisms have been isolated that are capable of reducing the toxic forms of heavy metal and transitional metal elements in transuranic waste (TRU) to less mobile precipitable forms [27]. Other researchers have found microbial cultures with the capability to resist high radiation doses.
Most of the microorganisms discovered thus far, utilise the energy derived from change in the redox potential or oxidation states of the compounds for metabolic purposes. No organism has yet been shown to utilise the energy derived from radioactive decay for metabolism. But recent research show promise that this scenario is soon to change. For example, recent studies have shown that microorganism may not only resist radiation, but may to a certain degree utilize the radiation for metabolic advantage. One example was illustrated in a recent study in which cultures of melanising fungi from the cold regions utilized ionizing radiation to derive metabolic energy [28].
Biosorption is used to describe the metabolism independent sorption (passive process). In this process uranium-bearing water is brought into contact with either living or dead biomass that possesses abandoned functional groups (carboxyl, hydroxyl, amine, and phosphate group) within the surface layer. The charged group within the cell surface layer is able to interact with ions or charged molecules present in the uranium-bearing water. As a result metal cations become electrostatically attracted and bound to the cell surface layer.
Polymers secreted by many metabolizing microbes can also immobilize metals. Different studies on biosorption demonstrated that uranium biosorption is reversible, species-specific, and depends upon the chemistry and pH of the solution, physiological state of cells as well as the presence of the extracellular soluble polymers (EPS) [29, 30]. In this process desorption and recovery of heavy metals and radionuclides for further reuse is easy [31]. Biosorption of radionuclides to the cell surface and polymer substance is a promising technology for remediating contaminated waters. However, the effectiveness of this process is highly affected by pH of the solution and saturation of the biosorbent when metal interactive sites are occupied. Studies were done [32, 33] to investigate the biosorption of uranium under acid conditions. It was observed in these studies that biosorption under acidic conditions is not favoured in several species as at low pH the protons (H+) compete with UO22+ for sorption sites (surface hydroxyl groups–SOH), thus indicating poor selectivity of the biosorbent surface against competing ions.
In order to understand the interaction between the cell and metallic species in wastewater, the cell surface can be thoroughly characterised using Fourier Transform Infrared spectroscopy (FTIR) or Energy-Dispersive X-ray spectroscopy (EDX). In our research group at the University of Pretoria, we were able to demonstrate that different functional groups on the cell wall of sulphate reducing bacteria acted as ion exchange sites in different pH ranges.
Using autotitration date in the software MINTEQ, four equilibrium states were identified which were associated with carboxylic functional groups (pKa 4-5), phosphates (pKa 6-7), phenolics (pKa 8-9), and hydroxyl/amines (pKa 10-12). The most abundant reaction sites in sulphate reducing bacteria (SRB) were associated with the hydroxyl functional groups. Adsorption of the divalent fission product (Sr2+) was inhibited at higher pH, supposedly as a result of increased hydroxylation at the high OH- concentration in solution. Additionally, increased pH could increase the formation of SrII-OH precipitates which is counterproductive to the processes of adsorption to the cells.
Biosorption offers a unique advantage in that the biosorbent media (bacteria) is self-regenerating and can be safely disposed after expiry. Apart from the uranium species, the biosorbent can remove a range of other toxic heavy metals from the wastewater without creating hazardous sludge at costs much lower than conventionally used ion exchange systems. Regeneration of the biosorbent and concentration of the metal solution for eventual recovery further increase the cost effectiveness of the process.
Bioaccumulation is an active process wherein metals are taken up into living cells and sequestrated intracellularly by complexing with specific metal-binding components or by precipitation. Intracellular accumulation of metals occurs among all classes of microorganisms by an energy-dependent transport system. Unlike metabolically essential metals such as Fe, Cu, Zn, Co, and Mn, which accumulates intracellularly via energy transport system, intracellular uranium sequestration is attributed to non-specific transport system mainly due to increased membrane permeability resulting from uranium toxicity in the living cell [34]. Therefore, intracellular accumulation of uranium is considered as metabolism-independent process. The major drawbacks associated with the use of active uptake systems is the requirement of metabolically active cells and also the challenge in metal desorption and recovery [35]. Specifically, the cells will need to be destroyed to release the metal either by lysis or by incineration. Therefore, in this case, the medium for the uptake of metals cannot be reused.
Bioprecipitation also known as biocrystallization or biomineralization is the process by which metals and radionuclides can be precipitated with microbially generated ligands such as phosphate, sulphide or oxalate [35]. In these processes bacteria interact strongly with metal ions and concentrate them, eventually generating carbonates and hydroxide minerals at the surface of the cell. Macaskie et al. [35] investigated
Reduction of highly toxic and mobile U(VI) to sparingly soluble U(IV) using appropriate microbes has been proposed as a mechanism for preventing the migration of U(VI) with groundwater [37, 38]. The strategy is based on injecting physiological electron donors such as acetate, lactate, ethanol, or glucose to stimulate U(VI) reduction by microbial community native to contaminated aquifers [39]. Microorganisms are known to have evolved biochemical pathway for degradation or transformation of toxic compounds from their immediate environment either for survival or to derive energy by using toxic compounds as electron donors or acceptors [40, 41]. The overall transfer of electrons from the carbon sources to active uranium species can be visualised by the figure below (Figure 1).
Electron flow during biological reduction of uranium (VI) to U(IV)
An example of a balanced stoichiometric relationship during U(VI) reduction using propanoate as an electron donor is represented by Equation 1 (below):
Microbial reduction of U(VI) was first reported in crude extracts from
Members of genera
The enzymatic system responsible for U(VI) reduction, tetraheme or periplasmic cytochrome-
Genome sequence of
Among the species that conserve metabolic energy from dissimilatory respiration utilising U(VI) an electron sink is
By assay of mutants, several proteins including the one involved in menaquinone biosynthesis, decaheme outer membrane cytochrome, a periplasmic decaheme cytochrome, outer membrane protein, and a tetraheme cytochrome were all shown to be needed for optimal U(VI) reduction [55]. The multiple pathways for electron delivery to U(VI) available in
Waste from power generation and fuel process facilities contains high levels of uranium and transuranic elements. This type of waste, classified as high level waste (HLW) or transuranic waste (TU), is usually solidified in a concrete or bitumen before it is stored in specially engineered facilities above the ground. The chances of environmental contamination from such facilities are slight. However, most of the voluminous intermediate level and low level waste (ILW and LLW) can be packed and stored underground. The underground storage facilities pose a high risk of groundwater contamination. Where contamination has actually occurred, pump-and-treat processes are utilised to intercept the polluted groundwater for treatment above ground. The water can be treated using chemicals or using biological reactors and the clean effluent is returned to the aquifer. For toxic metals, chemical agents may be added followed by precipitation to reclaim the metals [62]. The chemical reduction process utilizes toxic reducing agents that produce toxic sludge requiring further treatment before disposal into natural waters. Biological processes have been proposed for the pump-and-treat process, but this does not eliminate the problem of disposal of the product of the precipitation stage. Several techniques for installing a biological barrier have been attempted such as construction of semi-porous walls which require a fair amount of excavation (Figure 2), injection of nutrients to encourage the growth of certain types or native species in the environment (a form of bioaugmentation), and inoculation of a region down gradient of a pollutant with specialized cultures of bacteria. Molecular
Theoretical representation of the microbial permeable reactive barrier system as an intervention for U(VI) pollution in an unconfined aquifer system. The graph shows the U(VI) concentration and biomass propagation under optimum operation conditions. U = uranium (VI) concentration, Xa = concentration of active biomass, and U
The decreasing concentration of U(VI) across the barrier is envisioned if barrier is inoculated with U(VI) reducing bacterial species. In the case of U(VI) reduction across a barrier system, we hope to utilise U(VI) as an electron sink in a dissimilatory respiration process in which the organisms introduced in the barrier (
The main limitation of
U(VI) reductase activity was determined by measuring the decrease in U(VI) in the solution using UV/vis spectrophotometer (WPA, Light Wave II, and Labotech, South Africa). Arsenazo III (Sigma-Aldrich, St. Louis, Missouri, USA) (1, 8-dihydroxynaphthalene-3, 6 disulphonic acid-2, 7-bis [(azo-2)-phenylarsonic acid]), a non-specific chromogenic reagent, was selected as the complexing agent for facilitating U(VI) detection. The accuracy and the precision of the method on the UV/vis spectrophotometer was determined by measuring the concentration of standard U(VI) solution in the range of (0-80 mg/L). A linearized U(VI) standard curve was generated by plotting the absorbance at 651 nm versus the known U(VI) standard concentration. Standard curve for U(VI) measurement demonstrated high degree of accuracy with R2 = 99.7% and was used to estimate unknown U(VI) concentration.
Measurement of U(VI) was carried out by withdrawing 2 mL of homogenous solution from a 100 mL serum bottle using a disposable syringe. The sample was then centrifuged for about 10 minutes at 6000 rpm (2820
In order to achieve
Microorganisms were isolated from the soil samples collected from tailings dumps of an abandoned uranium mine. Background uranium concentration in the original sample was detected at levels as high as 29 mg/kg, much higher than values observed in natural soils (0.3-11.7 mg/kg). To select U(VI) tolerant species, microorganisms from soil were cultured overnight into a 100 mL of sterile basal mineral medium (BMM) amended with glucose as sole carbon source and a dose of U(VI) (75 mg/L uranium (VI) as uranyl nitrate). The inoculum was grown under anaerobic conditions for 24 hours at 30±2°C in 100 mL serum bottles purged with pure (nitrogen) N2 gas (99.9% pure grade) for about 5-10 minutes to expel residual oxygen before sealing the bottle with rubber stoppers and aluminium seal. After 24 hours enriched bacterial strains were isolated by serial dilution of the cultivated culture. U(VI) reduction activity was evaluated for the isolates starting with evaluation for abiotic processes to make sure that physical-chemical processes are taken into consideration when analysing the biological process.
Heat-killed cultures and sodium azide exposed cultures were used to determine the extent of abiotic U(VI) reduction in batch experiments. For U(VI) reduction experiments cultures were grown over night in a sterile nutrient or Luria-Bettani (LB) broth under anaerobic conditions. Overnight grown cells were heat killed by autoclaving at 121°C for 20 minutes and another set of overnight grown cells were incubated with 0.1% of sodium azide (NaN3). Cells were then harvested by centrifuging at 6000 rpm (2820
The results showed insignificant difference U(VI) reduction between live and heat-killed cells (Figure 3). The instantaneous U(VI) reduction in heat-killed cells may be due to the presence of the cells that escaped destruction by heat. The reduction of U(VI) observed during the first 2 hours in all treatment containing biomass presented an anomaly. It was clear from these results that another mechanism rather than the direct metabolic process was involved in the U(VI) removal from solution. On the other hand abiotic control (without bacteria) showed that U(VI) reduction process is biologically mediated.
Reverting back to the biosorption studies, it is suggested that functional groups on the cell wall surfaces (-OH, -NH2, and –COOH) may serve as ligands for U(VI)-U(IV) complexation with the cell surface. U(VI) reduction may serve as a step towards this complexation step. To evaluate these effects we conducted experiments where the pH was varied and the oxidation reduction potential (ORP) was measured with time. Results presented in Figure 4 show that that the rate of U(VI) reduction was pH dependent (Figure 4a). Electronegative conditions under anaerobic conditions created a strongly reducing environment as expected, after which the ORP increased to electropositive values (Figure 4b). As a result insignificant change over time in ORP indicated poor oxidation-reduction, while significant change in ORP over time indicated that the oxidation-reduction process approaches completeness.
Evaluation of abiotic U(VI) reduction in heat-killed and azide inhibited cells
Preliminary experiments were conducted over a wide range of U(VI) concentration (30-400 mg/L) under similar experimental conditions (100 mL serum bottles containing BMM amended with D-glucose, U(VI) solution, and then incubated at 30±2°C under anaerobic conditions) using a reconstituted consortium culture of several identified U(VI) tolerant species. Results showed complete U(VI) reduction in batch cultures at initial U(VI) concentration up to 300 mg/L within 24 hours. In all batch studies with U(VI) concentration up to 400 mg/L (80-100%) U(VI) removal was achieved within the first 5 hours of incubation. However, inhibition of the reduction process was observed at the initial U(VI) concentration of 400 mg/L over time (Figure 5a).
U(VI) reduction trends in batches using purified cultures with single species per batch showed similar trends of U(VI) reduction. Figure 5b shows the summary of results from the best performing cultures labeled Y1, Y5, and Y6. The species characterisation results for these pure cultures are presented later in the chapter. The results in Figure 5b show that the microorganisms existing as a community possess significant stability and metabolic capabilities which can be linked to the effectiveness of synergistic interactions among members of bacterial communities [64].
(a) U(VI) reduction at different pH values – U(VI) reduction rate increased with increasing pH, and (b) data showing loss of U(VI) reduction capacity as ORP increases.
(a) U(VI) reduction in reconstituted consortium culture from mine soil under the initial concentration of 300 and 400 mg/L, and (b) comparative performance of three pure isolates against the reconstituted consortium culture. The reconstituted consortium culture shows the best performance possibly due to symbiotic interactions within the culture system.
Proportional distribution of uranium precipitates in the medium and cells can be used to determine the location of U(VI) reductase activity in the culture system. This is because most the precipitates are formed from reduced uranium species. Transmission electron microscopy (TEM) was used to establish the distribution and localization of uranium deposits in the cells. The energy dispersive X-ray (EDX) spectrometer coupled to the TEM was also used for elemental characterization of the metal deposits in the medium. TEM result images show crystal structures in the medium and very little crystallisation inside the cells (Figure 6a). EDX analysis of the crystals deposited on the cell surfaces confirmed the accumulation of uranium elements in the crystal matrix. Extracellular depositions of uranium also indicate that bacteria are excellent nucleation sites for mineral formations. EDX spectra derived from the uranium deposits show that they are composed of the following elements U>Cu>P>Os>Ca>Co>Fe (according to their descending order of their weight %). The higher copper (Cu) peak results from the specimen to support grid used. Phosphorous observed in the spectrum could either be from the added phosphorous or could microbially produced. On the other hand no uranium was observed in the metal free biomass (Results not shown).
(a) TEM Scan of bacterial cells indicating deposition of uranium species on cell surface and (b) EDX spectrum of precipitate.
Proteins make up a large fraction of the biomass of actively grown microbes. To determine microbial activity over time, protein concentration was determined using a UV/Vis Spectrophotometer (WPA, Light Wave II, and Labotech, South Africa) at the wavelength of 595 nm using Coomassie Dye as a complexing agent to facilitate protein detection. Samples required pre-treatment to reduce interferences during the spectrophotometric analyses. Cell lysis was achieved by ultrasonification of acid treated cells. Results showed that microbial activity decreased with increasing U(VI) reduction (Figure 7). These results served as a confirmation of enzymatic activity as responsible agent for U(VI) reduction.
The phylogenetic characterization of cells from the mine dump soil was conducted after sub-culturing the cells in nutrient or Luria-Bettani broth. Individual colonies from a serially diluted preparation were carefully examined for colony morphology and cell morphology by Gram-staining. This process, we recognize, could eliminate a wide range of potential U(VI) reducers especially anaerobic species in the samples. But at this stage, we were targeting the species that can survive under facultative anaerobic conditions.
The purified colonies were streaked on nutrient agar followed by incubating at 30°C for 18 hours in preparation for 16S rRNA gene sequence analysis. Microbial pure cultures were grown from loop-fulls from individual colonies, transferred to fresh media containing low amounts (30-75 mg/L) of uranyl nitrate. The process was repeated at least three times for each colony type to achieve close to a pure culture of each identified species.
Genomic DNA was extracted from purified colonies according to the protocol described for the Wizard Genomic DNA purification kit (Promega Corporation, Madison, WI, USA). 16S rRNA genes were amplified by a reverse transcriptase-polymerase chain reaction (RT-PCR) using primers pA and pH1 (Primer pA corresponds to position 8-27; Primer pH to position 1541-1522 of the 16S gene under the following reaction conditions: 1 min at 94°C, 30 cycles of 30s at 94°C, 1 min at 50°C and 2 min at 72°C, and a final extension step of 10 min at 72°C). PCR fragments were then cloned into pGEM-T-easy (Promega) [Promega Wizard® Genomic DNA Purification Kit (Version 12/2010)]. The 16S rRNA gene sequences of the strains were aligned with reference sequences from
U(VI) reducing colonies were identified from the genera
Evaluation of U(VI) reduction, protein concentration and total uranium under an initial concentration of 400 mg/L.
Phylogenetic analysis results showing the predominance of the Gram-positive (a)
In the phylogenetic analysis, the scale indicated at the bottom of the plots, e.g., 0.005 for Figure 8a represents the genetic distance, while the percentage numbers at the nodes indicate the level of bootstrap based on neighbour-joining analysis of 1000 replicates. The three species related to
To model a biological U(VI) reducing system, the reaction scheme, rate equations and kinetic constants for the processes taking place in the batch reactor are chosen from published models on enzymatic reduction hexavalent toxic metals such as U(VI). Shen and Wang [67] demonstrated that the rate of U(VI) reduction by enzymes can be expressed as the Monod equation if viable cell concentration
where:
where:
U(VI) reduction data obtained with the pure cultures and the mixed culture were analyzed using Equation 4. Parameters in Equation 4 can be analyzed using simulation software such as AQUASIM or SigmaPlot. The model is calibrated using batch data over the incubation period. The values collected under non-inhibiting conditions are suitable for estimating the kinetic parameters
The inhibition model is suitable for application where the U(VI) loading per cell is very high. This is expected during startup (inoculation) of a systems with U(VI) already present. Such would be the case during the initial operation
where:
Continuous flow systems better simulate actual systems especially where
where:
Where:
The reaction term
where:
The chapter addresses the main feature of various U(VI) remediation techniques involving the
Recently, there was an interest to extend the present dynamic link analyses (DLA) beyond the early launch period to cover the period after the space vehicle (SV) separation from launch vehicle (LV), which includes both booster and second stage engine. The dynamic link from liftoff to final orbital insertion considers both geometric (visibility coverage) and radiometric (link margins for all downlink and uplink services) adequacy in the three launch stages. The purpose of the dynamic link study for the launch is to provide the earliest and accurate time for final SV separation and orbital insertion as compared to previous method which only relied on visibility tracking coverage to the end of line of sight (LOS).
The present DLA typically covers only two stages of LV tracking, including (a) liftoff to the end of LOS link and (b) the end of LOS to a period before SV payload (PL) separation from LV, using LV, to Tracking and Data Relay Satellite System (TDRSS) [1] satellite link, which is also called beyond line of sight (BLOS) link. A third SV tracking, after SV payload separation from LV, is a tracking link between SV and a ground station (GS). This third SV tracking is now added in this chapter.
The tracking link used from liftoff to the end of LOS uses a UHF noncoherent FSK signal for command and a digital FM or BPSK for tracking telemetry link as described in detail in [2]. From the end of LOS to BLOS, the tracking telemetry link is usually a BPSK or QPSK signal, using a NASA Tracking Data Relay Satellite System to relay tracking data from the LV to White Sands or Goddard ground station (WSGT/GRGT) and finally routing it to other user ground stations. After SV payload separation and orbital insertion, the SV tracking link to an Air Force Satellite Control Network (AFSCN) ground station [3] will use Space-to-Ground Link Subsystem (SGLS) or a non-SGLS (NSGLS) waveform described in [3, 4] and in Section 3 for tracking signals along the trajectory. In the following pages, supporting link analyses for the two LV and one SV tracking stages will be presented.
Figure 1 illustrates the antenna coordinate system space vectors of interest [5].
Space vehicle and ground station vector definition.
Figure 2 defines the antenna coordinate system used in this chapter. The azimuth (AZ or Ф) or clock angle is used in the antenna cut configuration. The elevation angle (EL or ϴ) also called as cone angle is also used in the antenna gain data file. The antenna gain is a changing variable as a function of mission elapsed time (MET). The antenna gains are used in the following dynamic links.
Antenna coordinate definition.
This section provides a summary of the dynamic link model of interest [6]. More detailed derivation of other variables, especially UVZBD, UVYBD, and UVXBD, can be found in [5]. For station elevation angle, either LV or SV elevation or cone angle (EL or theta or ϴ), and LV or SV clock or azimuth angle (AZ or Phi or Ф), we have1
As mentioned in the introduction, there are three separate tracking signals along the flight trajectory that we need to analyze ensuring that they have adequate link margins of three dB or more. Most of the present DLA covers only two stages of launch coverage and neglecting the third stage coverage. The requirement for third stage tracking is explained below:
From liftoff to the end of LOS, the waveform for this link is generally a digital FM or BPSK for telemetry downlink as defined in the Range Commander Council (RCC) 119-88 [2]. The liftoff to LOS 5 link margin plot is shown in the left half of Figure 3 for five different ground stations.
From the end of LOS to NASA TDRSS at geosynchronous orbit, the telemetry link is a BPSK or QPSK (telemetry + data) which is sent from LV to TDRSS to be relayed to White Sands or Goddard ground station (WSGT/GRGT), as shown in the second right half of the Figure 3 and in more link details in Table 1.
For the third link after SV payload separation, when the satellite or SV starts its transfer orbit, the tracking link from the SV payload (or bus) to an AFSCN ground station will be in SGLS, Unified S-Band (USB), or a NSGLS waveform as described in more detail in [3, 4]. For a more secure tracking, SV normally will be using SGLS link for tracking as described in [4], with a MEO satellite in Table 2 as an example. A commercial and less secure SV launch may use USB or NSGLS for SV tracking instead of using SGLS waveform. Table 3 shows link budget for uplink and downlink C/No example for tracking links 1 and 2. Table 2 shows SGLS telemetry, tracking, and command (TT&C) link budget for tracking link 3 for a MEO satellite. If the SV is using a USB or a NSGLS [3], the tracking waveform can be an AQPSK signal with telemetry on the I channel and ranging on the Q channel.
TLM dynamic link margin from TEL4 to TDRSS versus mission elapsed time.
LV to TDRSS range TLM link (based on NASA source).
Link budgets for SGLS TT&C uplink and downlink services [4].
Typical C/No for uplink and downlink budgets.
This section describes the basic link parameters including LV or SV transmitter power amplifier gain (Pt), transmitter antenna gain (Gt), space loss (Ls), received isotropic power (RIP), and received (C/No = SNR).
A modulation signal or information data is generated at a ground station, in an LV or in an SV. This modulation signal will be used to modulate onto the radio frequency (RF) carrier to become a modulated transmit signal. This transmit system will be consisting of a high-power amplifier (HPA) which amplifies the signal to generate an output power expressed in dBW (conversion from Watts to dBW is simply dBW = 10*log10(Watts)); some cables and circuits with a loss and an antenna with a gain are added together as shown below. The output from the transmit system is therefore an effective isotropic radiated power or EIRP, which can be found in either the uplink or the downlink of an LV or an SV tracking system.
where Gt = transmit antenna gain, in dBi; LC = transmit circuit loss, in negative dB; and PT = HPA output power, in dBW.
For the uplink, where the transmit antenna is located on the ground, the antenna can be easily directed to an LV or SV. This transmit antenna is likely to be a directional high gain dish antenna for connectivity with an LV or SV located possibly far away. In Table 3, line 9, a typical ground station has a large parabolic antenna dish with a gain Gt = 43.94 dBi using the following formula.
where η = average antenna efficiency (0.70 in the calculation in Table 3); fC = uplink frequency, in Hz; D = antenna diameter, in m; and c = speed of light, in m/s.
For the downlink, the transmit antenna is typically an omnidirectional antenna that covers a larger portion of the sky or the Earth, in which case the antenna gain is small (e.g., 2 dBi) and is either specified as in line 9 of Table 3 or can be interpolated from values extracted from a table of antenna gain pattern with a specific AZ, EL, and MET, using a mission specific launch trajectory.
In general, there are terms that may be added to Tables 2 and 3. For example, the uplink transmit antenna in Table 3 may have two more loss terms, namely, radome loss to account for any loss for a radome and pointing loss to account for any pointing error in directing the boresight of the antenna. For Table 3 they are both negligible and ignored except for the polarization losses. The transmit and receive polarization losses (lines 14 and 22, respectively, in Table 3) can be accounted for as one-single combined receive polarization loss.
The signal path traverses through the transmission medium, in between transmit and receive systems. When the distance between transmit and receive systems increases, the signal beam has an angular spread which decreases the signal power collected by a receiving antenna. We know that the portion of the transmission medium near the ground station depends on the Earth’s atmosphere which attenuates the signal to different degrees, dependents on the frequency, the altitude of the GS, and the angle of the signal path through the atmospheric (GS elevation angle). Beyond the Earth’s atmosphere, the signal path traverses through the space with little atmospheric attenuation, only with free space loss to account for. Therefore, there are essentially two losses through the transmission medium, namely, the space loss to account for the spreading of the signal beam and the additional atmospheric loss [7].
where fC = carrier frequency, in Hz; c = velocity of light, in m/s; and SR = slant range between GS and SV, in m.
At L and S bands, the atmospheric loss is very small, at less than 0.001 dB/Km or 0.1 dB/100Km for a link availability of better than 98% [8].
The transmit signal, after accounting for the space and atmospheric losses, and its signal path terminates at the antenna of either the ground station, the SV, or the LV receiving system. Before considering the characteristics of the receive antenna and the receiver, a good indication of the signal strength is given by the received isotropic power. RIP is simply the transmitter EIRP after subtracting off the losses of the transmission medium, i.e.
where LA is the atmospheric loss extracted from tables or curves, in negative dB (very small at 0.02 dB/Km per Datron chart in L and S bands). Ls can also be obtained from the Datron calculator [8].
The last portion of Table 3 addresses the receiving system and assesses how well it performs. This section involves with the calculation of the signal strength and the noise strength, resulting in the ratio of signal power over noise power density (C/N0). In general, we first address the signal power and then the noise power density. Line 21 provides for the receive antenna size consistent with the receive antenna gain to be calculated later. The next parameter in Table 3 is the polarization loss, which accounts for the mismatching between the polarization axial ratios of the received signal and the receiving system. The axial ratio is the ratio of the major axis of an ellipse to its minor axis. For circularly polarized signal, the ratio should be 0 dB. Any deviation from 0 dB results in a polarization loss. Line 23 shows the values of receive antenna gain. For downlink in which the receive antenna is a dish antenna located at GS, Gr is calculated using the standard dish antenna equation (similar to Eq. (6) for Gt).
where η = average antenna efficiency (assumed to be 0.6 in the calculation in Table 3); fC = downlink frequency, in Hz; D = antenna diameter, in m; and c = velocity of light, in m/s.
At the end, the received power at the antenna feed is just the sum of RIP, minus the polarization loss, plus the receive antenna gain, i.e.
where LP is the polarization loss, in negative dB.
For the downlink transmit antenna on the SV, as in the case of uplink receive antenna, the SV antenna is a broad beam Earth coverage (EC) omnidirectional type of SV antenna, with a gain of 2 dBi (see line 23 of Table 3).
For the noise power density (N0), we need to calculate the system temperature (TS) measured at the antenna feed. The system temperature is the sum of antenna sky temperature (TA) and the composite temperature from antenna line loss (LL) and low noise amplifier noise figure (NF) which are referred to the antenna feed. In linear quantity, TS is given by [1].
where NF = low noise amplifier noise factor, in dB and LL = line loss, in dB.
The noise density (N0) is given by
where k = Boltzmann’s constant in dB = −228.6 dBW/KHz.
Using Eqs. (9) and (11), the ratio C/N0 at the receiver input is obtained in Table 3, line 31. It represents the final product before going into specific service(s) such as telemetry and ranging to evaluate their performance.
For many SVs, we are interested in their uplink and downlink services. Table 2 shows an example, taken from an IEEE paper [4]. This is the standard link budget, where the ground station is an AFSCN [3] remote tracking station (RTS) using SGLS waveform [3, 4]. The waveform is described in an AFSCN interface control document (ICD) [3] and is implemented in DLA, although other waveforms can be readily incorporated. The uplink has two services of interest—carrier and command—while the downlink has three services of interest: carrier, ranging, and telemetry. In general service margins are calculated for these five services. For the SGLS waveform, command is coupled with ranging and modulated on the uplink carrier; therefore command is also turned around at the SV along with ranging. This SGLS turnaround process explains the reason that Table 2 shows a power allocation for command in the downlink and no calculation for its margin. As a result, downlink power allocated to command is essentially wasted while robbing power from other downlink services. The requirements and service margins for command and telemetry are expressed in Eb/N0, since it is the bit error rate (BER) that counts for both cases. The carrier and ranging are expressed in C/No given by a specific station. For ranging, it is the autocorrelation value between the decoded ranging code and the transmitted ranging code that needs to be maximized in order to successfully perform accurate ranging.
Table 2 represents uplink and downlink budgets for SGLS TT&C. Let us address the important aspects of the calculation of uplink and downlink services in the next few subsections. The role of modulation indices is to divide up the power for allocation to services. The modulation index is expressed in radians so that it can go right in as an argument in a sinusoidal or Bessel expression. If the modulation indices of all services are zero radians, no power is allocated to the services, and the carrier retains all the link power calculated in Section 4. If the modulation indices of services are not zero, portions of the power are taken from the carrier and allocated to the services. The remaining power stays with the carrier as the “residual carrier power.”
After SV separation, we are dealing with the SV uplink and downlink using SGLS or NASA Unified S-Band waveforms as described in [3, 4]. For telemetry service, the requirement is SNR = Pservice/NoB = Eb Rb/NoB = Eb/No in dB. For carrier and ranging, the requirements are stated in terms of C/No as mentioned before. For acquisition, the uplink carrier loop bandwidth could be as high as +/− 100 KHz, while its tracking bandwidth could be as small as a few Hz. For the station the carrier tracking loop bandwidth is about 20–50 Hz, as in Table 2 in line 36. For ranging, the bandwidth of 10 Hz represents ranging tracking loop bandwidth (Table 2, line 56), which corresponds to the sampling rate of the autocorrelation value between the detected ranging code and the transmitted ranging code. For command and telemetry, the requirements are expressed in terms of Eb/N0. The command and telemetry data bit rates of 1000 bps each are representing the lower end of their SGLS choices. As shown in Table 2, the results from the SNR calculation are the values of C/N and Eb/N0 for various received uplink services (lines 37 and 48 for command C/N or Eb/No) and for various downlink services (line 55 for ranging service Prng/No and line 70 for telemetry service Eb/No). The uplink service modulation losses for SGLS and NASA USB with subcarrier (S/C) [3, 4, 9] are shown in Table 4. The downlink service modulation losses for SGLS and NASA USB with subcarrier (S/C) [3, 4, 9] are shown in Table 4. Also note that β1, β2, and β3 represent the modulation indices for command (CMD), ranging (RNG), and telemetry (TLM), respectively, per [3, 4, 9]. These uplink and downlink modulation losses are in lines 34, 44, and 54 in Table 2.
1 | AM-3FSK/PRN RNG/PM (SGLS unfiltered uplink) [3, 4] | |||
2 | BPSK/PRN RNG/PM (USB filtered case) (Eqs. (1-22) and (1-23)) [9] | J02( | J02( | 2J12( |
3 | BPSK/Tone RNG/PM (USB unfiltered case) (Eqs. (1-18) and (1-21)) [9] | J02( | 2J02( | 2J02( +….. |
4 | PRN RNG/PSK TLM/PM (SGLS filtered case) (Eqs. (2-18) and (2-20)) [4] | J02( | 2J02( | 2J02( |
5 | Tone RNG/PSK TLM/PM (USB filtered case) (Eqs. (2-18) and (2-21)) [9] | J02( | 2J02( | 2J02( |
Uplink and downlink service modulation losses for SGLS and NASA USB.
For NSGLS waveforms such as the direct mod BPSK, QPSK, and AQPSK, the service mod losses are negligible. Finally, the calculated service SNR in Table 2 is compared with the required SNR to obtain the link margin for each service. The required SNR values capture all the performance requirements for the services, such as ranging accuracy, tracking loop loss likelihood, bit error rate, and others.
Before SV separation from the LV, we are also interested in the dynamic link from a ground station to the LV, from liftoff to the SV after separation, along the entire LV flight path using the tracking stations in the line of sight (TEL4, JDMTA, ANT, DGS, TDRSS). The waveforms for this LV tracking are described in Range Commander Council (RCC) handbook [2]. One must ensure that the downlink telemetry link from the launch vehicle to these ground stations and TDRSS relay satellite are positive as can be seen in Figure 3. The basic LV range modulations are digital FM, BPSK, QPSK, AQPSK, etc. as discussed in RCC [2]. In Figure 4, dynamic LV slant range “received TLM Eb/No” and “TLM link margin” for a specific mission are displayed together. As an example a specific LV to TDRSS BPSK link using NASA data is shown in Table 1.
LV slant range received TLM Eb/No and TLM link margin.
This chapter discusses the required three DLAs and related tracking waveforms to cover the three launch stages, namely, (a) the launch vehicle tracking link from liftoff to its end LOS using the digital FM or BPSK signal, (b) the launch vehicle tracking link from LOS to TDRSS at BLOS using NASA USB signal, and (c) the final tracking link from SV to an AFSCN ground station using AFSCN SGLS, AFSCN NSGLS, or NASA USB waveforms. In the third tracking link case, BPSK, QPSK, or AQPSK waveforms were used, in which for QPSK and AQPSK, the telemetry data is put on the I channel and the ranging signal is on the Q channel.
The chapter shows that good telemetry link margins from LV to tracking stations such as TEL4, JDMTA, and ANT or to a NASA TDRSS relay satellite can be achieved using digital FM, BPSK, QPSK, or AQPSK signals, after SV separation. The chapter also shows that good tracking link margins can be achieved from SV to AFSCN ground stations, including IOS or DGS as the first contact station.
Ove Odredbe i uvjeti ističu pravila i regulacije u svezi korištenja IntechOpenove stranice www.intechopen.com i svih poddomena u vlasništvu IntechOpena, tvrtke sa sjedištem u 5 Princes Gate Court, London, SW7 2QJ, Ujedinjeno Kraljevstvo.
',metaTitle:"Odredbe i uvjeti",metaDescription:"Ove Odredbe i uvjeti ističu pravila i regulacije u svezi korištenja IntechOpenove stranice www.intechopen.com i svih poddomena u vlasništvu IntechOpena, tvrtke sa sjedištem u 5 Princes Gate Court, London, SW7 2QJ, Ujedinjeno Kraljevstvo.",metaKeywords:null,canonicalURL:"/page/cro-terms-and-conditions",contentRaw:'[{"type":"htmlEditorComponent","content":"Pristupom na stranicu www.intechopen.com slažete se s ovim odredbama, sa svim primjenjivim zakonskim odredbama, te se slažete s poštovanjem svih lokalnih zakona. Korištenje i/ili pristup ovoj stranici temelji se na potpunom prihvaćanju ovih odredbi. Svi materijali na ovoj stranici zaštićeni su primjenjivim zakonima o autorskim pravima i žigu.
\\n\\nSljedeća terminologija odnosi se na Odredbe i uvjete, te na sve naše ugovore:
\\n\\nKlijent, stranka, vi, vaš odnosi se na vas, osobu koja pristupa ovoj stranici i prihvaća IntechOpenove Odredbe i uvjete;
\\n\\nKompanija, tvrtka, mi, naše odnosi se na tvrtku IntechOpen;
\\n\\nStranke, strane odnosi se na klijenta i na nas, ili samo na klijenta ili nas.
\\n\\nSve odredbe koje se odnose na ponudu, prihvat ili razmatranje plaćanja, a za koja mi pružamo asistenciju klijentu, bilo na ugovoreni ili fiksni način, a s ciljem da se ostvare potrebe i želje klijenta u svezi s našim uslugama, su podložne zakonskim odredbama Ujedinjenog Kraljevstva.
\\n\\nOsim ako nije suprotno navedeno, IntechOpen i/ili svi davatelji licence vlasnici su intelektualnog vlasništva nad svim materijalima na www.intechopen.com. Sva prava intelektualnog vlasništva su pridržana. Stranice sa www.intechopen.com možete gledati, preuzimati, dijeliti, dijeliti poveznice i printati za osobnu uporabu, a temeljem pravila sadržanih u ovim Odredbama i uvjetima.
\\n\\nMi koristimo kolačiće. Korištenjem IntechOpenove stranice slažete se s korištenjem kolačića u skladu s IntechOpenovom Politikom privatnosti. Većina modernih, interaktivnih stranica koristi kolačiće kako bi omogućila ponovno pronalaženje korisničkih detalja kod svakog posjeta. Na našoj stranici kolačići se uglavnom koriste kako bi omogućili funkcionalnost i olakšali posjetiteljima korištenje stranice.
\\n\\nIntechOpen ili njegovi suradnici niti u jednom slučaju neće biti odgovorni za štete (štete uključuju gubitak podataka ili profita, druge poslovne prekide, te sve ostale štete) koje nastanu zbog korištenja materijala na IntechOpenovoj stranici ili nemogućnosti da se iste koriste, čak i ako je IntechOpen ili njegov predstavnik o takvoj šteti obaviješten pismenim ili usmenim putem. Neke jurisdikcije ne dozvoljavaju ograničenja garancija ili ograničenja obveza za posljedične ili slučajne štete pa se u tom slučaju ova ograničenja možda ne odnose na vas.
\\n\\nMaterijali koji se pojavljuju na IntechOpenovoj stranici mogu sadržavati manje greške, tipfelere ili fotografske greške. IntechOpen može napraviti promjene na bilo kojem materijalu koji se nalazi na stranici u bilo koje vrijeme.
\\n\\nIntechOpen nije formalno povezan niti s jednom vanjskom stranicom čije poveznice vode na www.intechopen.com, osim ako to nije izravno navedeno. Iz tog razloga IntechOpen nije odgovoran za sadržaj koji se pojavljuje na takvim stranicama. Poveznica na IntechOpenovu stranicu ne implicira povezanost sa IntechOpenom. Korištenje takvih poveznica isključiva je odgovornost korisnika.
\\n\\nZadržavamo pravo vlasništva nad cjelokupnom stranicom www.intechopen.com i nad svim materijalom na toj stranici. Koristeći se našim uslugama, slažete se da maknete sve poveznice na našu stranicu odmah nakon što to od vas zatražimo. Također, zadržavamo pravo da ove Odredbe i uvjete, i politiku o poveznicama izmjenimo u bilo koje vrijeme. Koristeći se poveznicama na naše stranice slažete se s ovim Odredbama i uvjetima.
\\n\\nAko smatrate da je bilo koja poveznica na našoj stranici sumnjiva iz bilo kojeg razloga, molimo vas da nas kontaktirate. U tom slučaju razmotrit ćemo micanje poveznice s naše stranice, iako nismo obvezni to napraviti.
\\n\\nBez prethodne privole i izričite pisane dozvole, ne možete stvarati okvire oko naših stranica ili koristiti druge tehnike koje na bilo koji način mogu promijeniti prezentaciju ili izgled naše stranice.
\\n\\nIntechOpen može ove Odredbe izmijeniti u bilo koje vrijeme i bez prethodne obavijesti. Koristeći ovu stranicu vi se slažete s trenutnim Odredbama i uvjetima koje su na snazi.
\\n\\nOve Odredbe i uvjeti su sastavljeni u skladu s odredbama prava Ujedinjenog Kraljevstva, a za sve sporove nadležan je sud u Londonu, Ujedinjeno Kraljevstvo.
\\n"}]'},components:[{type:"htmlEditorComponent",content:"Pristupom na stranicu www.intechopen.com slažete se s ovim odredbama, sa svim primjenjivim zakonskim odredbama, te se slažete s poštovanjem svih lokalnih zakona. Korištenje i/ili pristup ovoj stranici temelji se na potpunom prihvaćanju ovih odredbi. Svi materijali na ovoj stranici zaštićeni su primjenjivim zakonima o autorskim pravima i žigu.
\n\nSljedeća terminologija odnosi se na Odredbe i uvjete, te na sve naše ugovore:
\n\nKlijent, stranka, vi, vaš odnosi se na vas, osobu koja pristupa ovoj stranici i prihvaća IntechOpenove Odredbe i uvjete;
\n\nKompanija, tvrtka, mi, naše odnosi se na tvrtku IntechOpen;
\n\nStranke, strane odnosi se na klijenta i na nas, ili samo na klijenta ili nas.
\n\nSve odredbe koje se odnose na ponudu, prihvat ili razmatranje plaćanja, a za koja mi pružamo asistenciju klijentu, bilo na ugovoreni ili fiksni način, a s ciljem da se ostvare potrebe i želje klijenta u svezi s našim uslugama, su podložne zakonskim odredbama Ujedinjenog Kraljevstva.
\n\nOsim ako nije suprotno navedeno, IntechOpen i/ili svi davatelji licence vlasnici su intelektualnog vlasništva nad svim materijalima na www.intechopen.com. Sva prava intelektualnog vlasništva su pridržana. Stranice sa www.intechopen.com možete gledati, preuzimati, dijeliti, dijeliti poveznice i printati za osobnu uporabu, a temeljem pravila sadržanih u ovim Odredbama i uvjetima.
\n\nMi koristimo kolačiće. Korištenjem IntechOpenove stranice slažete se s korištenjem kolačića u skladu s IntechOpenovom Politikom privatnosti. Većina modernih, interaktivnih stranica koristi kolačiće kako bi omogućila ponovno pronalaženje korisničkih detalja kod svakog posjeta. Na našoj stranici kolačići se uglavnom koriste kako bi omogućili funkcionalnost i olakšali posjetiteljima korištenje stranice.
\n\nIntechOpen ili njegovi suradnici niti u jednom slučaju neće biti odgovorni za štete (štete uključuju gubitak podataka ili profita, druge poslovne prekide, te sve ostale štete) koje nastanu zbog korištenja materijala na IntechOpenovoj stranici ili nemogućnosti da se iste koriste, čak i ako je IntechOpen ili njegov predstavnik o takvoj šteti obaviješten pismenim ili usmenim putem. Neke jurisdikcije ne dozvoljavaju ograničenja garancija ili ograničenja obveza za posljedične ili slučajne štete pa se u tom slučaju ova ograničenja možda ne odnose na vas.
\n\nMaterijali koji se pojavljuju na IntechOpenovoj stranici mogu sadržavati manje greške, tipfelere ili fotografske greške. IntechOpen može napraviti promjene na bilo kojem materijalu koji se nalazi na stranici u bilo koje vrijeme.
\n\nIntechOpen nije formalno povezan niti s jednom vanjskom stranicom čije poveznice vode na www.intechopen.com, osim ako to nije izravno navedeno. Iz tog razloga IntechOpen nije odgovoran za sadržaj koji se pojavljuje na takvim stranicama. Poveznica na IntechOpenovu stranicu ne implicira povezanost sa IntechOpenom. Korištenje takvih poveznica isključiva je odgovornost korisnika.
\n\nZadržavamo pravo vlasništva nad cjelokupnom stranicom www.intechopen.com i nad svim materijalom na toj stranici. Koristeći se našim uslugama, slažete se da maknete sve poveznice na našu stranicu odmah nakon što to od vas zatražimo. Također, zadržavamo pravo da ove Odredbe i uvjete, i politiku o poveznicama izmjenimo u bilo koje vrijeme. Koristeći se poveznicama na naše stranice slažete se s ovim Odredbama i uvjetima.
\n\nAko smatrate da je bilo koja poveznica na našoj stranici sumnjiva iz bilo kojeg razloga, molimo vas da nas kontaktirate. U tom slučaju razmotrit ćemo micanje poveznice s naše stranice, iako nismo obvezni to napraviti.
\n\nBez prethodne privole i izričite pisane dozvole, ne možete stvarati okvire oko naših stranica ili koristiti druge tehnike koje na bilo koji način mogu promijeniti prezentaciju ili izgled naše stranice.
\n\nIntechOpen može ove Odredbe izmijeniti u bilo koje vrijeme i bez prethodne obavijesti. Koristeći ovu stranicu vi se slažete s trenutnim Odredbama i uvjetima koje su na snazi.
\n\nOve Odredbe i uvjeti su sastavljeni u skladu s odredbama prava Ujedinjenog Kraljevstva, a za sve sporove nadležan je sud u Londonu, Ujedinjeno Kraljevstvo.
\n"}]},successStories:{items:[]},authorsAndEditors:{filterParams:{sort:"featured,name"},profiles:[],filtersByRegion:[],offset:0,limit:12,total:null},chapterEmbeded:{data:{}},editorApplication:{success:null,errors:{}},ofsBooks:{filterParams:{topicId:"20"},books:[{type:"book",id:"10672",title:"Nonlinear Optics",subtitle:null,isOpenForSubmission:!0,hash:"cfe87b713a8bee22c19361b86b03d506",slug:null,bookSignature:"Dr. Boris I. Lembrikov",coverURL:"https://cdn.intechopen.com/books/images_new/10672.jpg",editedByType:null,editors:[{id:"2359",title:"Dr.",name:"Boris",surname:"Lembrikov",slug:"boris-lembrikov",fullName:"Boris Lembrikov"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10674",title:"Topics on Quantum Information Science",subtitle:null,isOpenForSubmission:!0,hash:"d7481712cff0157cd8f849cba865727d",slug:null,bookSignature:"Prof. Sergio Curilef and Dr. Angel Ricardo Plastino",coverURL:"https://cdn.intechopen.com/books/images_new/10674.jpg",editedByType:null,editors:[{id:"125424",title:"Prof.",name:"Sergio",surname:"Curilef",slug:"sergio-curilef",fullName:"Sergio Curilef"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10852",title:"Electromagnetic Compatibility",subtitle:null,isOpenForSubmission:!0,hash:"f5d2cce3a2adbd5d108d3301ee97025b",slug:null,bookSignature:"Dr. Ahmed Kishk",coverURL:"https://cdn.intechopen.com/books/images_new/10852.jpg",editedByType:null,editors:[{id:"150146",title:"Dr.",name:"Ahmed",surname:"Kishk",slug:"ahmed-kishk",fullName:"Ahmed Kishk"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10921",title:"Plasma Science and Technology",subtitle:null,isOpenForSubmission:!0,hash:"c45670ef4b081fd9eebaf911b2b4627b",slug:null,bookSignature:"Dr. Aamir Shahzad",coverURL:"https://cdn.intechopen.com/books/images_new/10921.jpg",editedByType:null,editors:[{id:"288354",title:"Dr.",name:"Aamir",surname:"Shahzad",slug:"aamir-shahzad",fullName:"Aamir Shahzad"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10956",title:"Pulsed Lasers",subtitle:null,isOpenForSubmission:!0,hash:"88bd906b149fc3d1c5d6fdbd9916826c",slug:null,bookSignature:"",coverURL:"https://cdn.intechopen.com/books/images_new/10956.jpg",editedByType:null,editors:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}}],filtersByTopic:[{group:"topic",caption:"Agricultural and Biological Sciences",value:5,count:28},{group:"topic",caption:"Biochemistry, Genetics and Molecular Biology",value:6,count:9},{group:"topic",caption:"Business, Management and Economics",value:7,count:3},{group:"topic",caption:"Chemistry",value:8,count:11},{group:"topic",caption:"Computer and Information Science",value:9,count:10},{group:"topic",caption:"Earth and Planetary Sciences",value:10,count:10},{group:"topic",caption:"Engineering",value:11,count:25},{group:"topic",caption:"Environmental Sciences",value:12,count:2},{group:"topic",caption:"Immunology and Microbiology",value:13,count:4},{group:"topic",caption:"Materials Science",value:14,count:7},{group:"topic",caption:"Mathematics",value:15,count:3},{group:"topic",caption:"Medicine",value:16,count:48},{group:"topic",caption:"Neuroscience",value:18,count:3},{group:"topic",caption:"Pharmacology, Toxicology and Pharmaceutical Science",value:19,count:3},{group:"topic",caption:"Physics",value:20,count:4},{group:"topic",caption:"Psychology",value:21,count:5},{group:"topic",caption:"Robotics",value:22,count:2},{group:"topic",caption:"Social Sciences",value:23,count:3},{group:"topic",caption:"Technology",value:24,count:1},{group:"topic",caption:"Veterinary Medicine and Science",value:25,count:2}],offset:12,limit:12,total:5},popularBooks:{featuredBooks:[],offset:0,limit:12,total:null},hotBookTopics:{hotBooks:[],offset:0,limit:12,total:null},publish:{},publishingProposal:{success:null,errors:{}},books:{featuredBooks:[{type:"book",id:"8472",title:"Bioactive Compounds in Nutraceutical and Functional Food for Good Human Health",subtitle:null,isOpenForSubmission:!1,hash:"8855452919b8495810ef8e88641feb20",slug:"bioactive-compounds-in-nutraceutical-and-functional-food-for-good-human-health",bookSignature:"Kavita Sharma, Kanchan Mishra, Kula Kamal Senapati and Corina Danciu",coverURL:"https://cdn.intechopen.com/books/images_new/8472.jpg",editors:[{id:"197731",title:"Dr.",name:"Kavita",middleName:null,surname:"Sharma",slug:"kavita-sharma",fullName:"Kavita Sharma"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9685",title:"Agroecosystems",subtitle:"Very Complex Environmental Systems",isOpenForSubmission:!1,hash:"c44f7b43a9f9610c243dc32300d37df6",slug:"agroecosystems-very-complex-environmental-systems",bookSignature:"Marcelo L. Larramendy and Sonia Soloneski",coverURL:"https://cdn.intechopen.com/books/images_new/9685.jpg",editors:[{id:"14764",title:"Dr.",name:"Marcelo L.",middleName:null,surname:"Larramendy",slug:"marcelo-l.-larramendy",fullName:"Marcelo L. Larramendy"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"8564",title:"Cell Interaction",subtitle:"Molecular and Immunological Basis for Disease Management",isOpenForSubmission:!1,hash:"98d7f080d80524285f091e72a8e92a6d",slug:"cell-interaction-molecular-and-immunological-basis-for-disease-management",bookSignature:"Bhawana Singh",coverURL:"https://cdn.intechopen.com/books/images_new/8564.jpg",editors:[{id:"315192",title:"Dr.",name:"Bhawana",middleName:null,surname:"Singh",slug:"bhawana-singh",fullName:"Bhawana Singh"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9629",title:"Electroencephalography",subtitle:"From Basic Research to Clinical Applications",isOpenForSubmission:!1,hash:"8147834b6c6deeeec40f407c71ad60b4",slug:"electroencephalography-from-basic-research-to-clinical-applications",bookSignature:"Hideki Nakano",coverURL:"https://cdn.intechopen.com/books/images_new/9629.jpg",editors:[{id:"196461",title:"Prof.",name:"Hideki",middleName:null,surname:"Nakano",slug:"hideki-nakano",fullName:"Hideki Nakano"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"8760",title:"Structure Topology and Symplectic Geometry",subtitle:null,isOpenForSubmission:!1,hash:"8974840985ec3652492c83e20233bf02",slug:"structure-topology-and-symplectic-geometry",bookSignature:"Kamal Shah and Min Lei",coverURL:"https://cdn.intechopen.com/books/images_new/8760.jpg",editors:[{id:"231748",title:"Dr.",name:"Kamal",middleName:null,surname:"Shah",slug:"kamal-shah",fullName:"Kamal Shah"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9161",title:"Frailty in the Elderly",subtitle:"Understanding and Managing Complexity",isOpenForSubmission:!1,hash:"a4f0f2fade8fb8ba35c405f5ad31a823",slug:"frailty-in-the-elderly-understanding-and-managing-complexity",bookSignature:"Sara Palermo",coverURL:"https://cdn.intechopen.com/books/images_new/9161.jpg",editors:[{id:"233998",title:"Ph.D.",name:"Sara",middleName:null,surname:"Palermo",slug:"sara-palermo",fullName:"Sara Palermo"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9385",title:"Renewable Energy",subtitle:"Technologies and Applications",isOpenForSubmission:!1,hash:"a6b446d19166f17f313008e6c056f3d8",slug:"renewable-energy-technologies-and-applications",bookSignature:"Tolga Taner, Archana Tiwari and Taha Selim Ustun",coverURL:"https://cdn.intechopen.com/books/images_new/9385.jpg",editors:[{id:"197240",title:"Associate Prof.",name:"Tolga",middleName:null,surname:"Taner",slug:"tolga-taner",fullName:"Tolga Taner"}],equalEditorOne:{id:"186791",title:"Dr.",name:"Archana",middleName:null,surname:"Tiwari",slug:"archana-tiwari",fullName:"Archana Tiwari",profilePictureURL:"https://mts.intechopen.com/storage/users/186791/images/system/186791.jpg",biography:"Dr. Archana Tiwari is Associate Professor at Amity University, India. Her research interests include renewable sources of energy from microalgae and further utilizing the residual biomass for the generation of value-added products, bioremediation through microalgae and microbial consortium, antioxidative enzymes and stress, and nutraceuticals from microalgae. She has been working on algal biotechnology for the last two decades. She has published her research in many international journals and has authored many books and chapters with renowned publishing houses. She has also delivered talks as an invited speaker at many national and international conferences. Dr. Tiwari is the recipient of several awards including Researcher of the Year and Distinguished Scientist.",institutionString:"Amity University",position:null,outsideEditionCount:0,totalCites:0,totalAuthoredChapters:"3",totalChapterViews:"0",totalEditedBooks:"1",institution:{name:"Amity University",institutionURL:null,country:{name:"India"}}},equalEditorTwo:{id:"197609",title:"Prof.",name:"Taha Selim",middleName:null,surname:"Ustun",slug:"taha-selim-ustun",fullName:"Taha Selim Ustun",profilePictureURL:"https://mts.intechopen.com/storage/users/197609/images/system/197609.jpeg",biography:"Dr. Taha Selim Ustun received a Ph.D. in Electrical Engineering from Victoria University, Melbourne, Australia. He is a researcher with the Fukushima Renewable Energy Institute, AIST (FREA), where he leads the Smart Grid Cybersecurity Laboratory. Prior to that, he was a faculty member with the School of Electrical and Computer Engineering, Carnegie Mellon University, Pittsburgh, PA, USA. His current research interests include power systems protection, communication in power networks, distributed generation, microgrids, electric vehicle integration, and cybersecurity in smart grids. He serves on the editorial boards of IEEE Access, IEEE Transactions on Industrial Informatics, Energies, Electronics, Electricity, World Electric Vehicle and Information journals. Dr. Ustun is a member of the IEEE 2004 and 2800, IEC Renewable Energy Management WG 8, and IEC TC 57 WG17. He has been invited to run specialist courses in Africa, India, and China. He has delivered talks for the Qatar Foundation, the World Energy Council, the Waterloo Global Science Initiative, and the European Union Energy Initiative (EUEI). His research has attracted funding from prestigious programs in Japan, Australia, the European Union, and North America.",institutionString:"Fukushima Renewable Energy Institute, AIST (FREA)",position:null,outsideEditionCount:0,totalCites:0,totalAuthoredChapters:"1",totalChapterViews:"0",totalEditedBooks:"0",institution:{name:"National Institute of Advanced Industrial Science and Technology",institutionURL:null,country:{name:"Japan"}}},equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"2160",title:"MATLAB",subtitle:"A Fundamental Tool for Scientific Computing and Engineering Applications - Volume 1",isOpenForSubmission:!1,hash:"dd9c658341fbd264ed4f8d9e6aa8ca29",slug:"matlab-a-fundamental-tool-for-scientific-computing-and-engineering-applications-volume-1",bookSignature:"Vasilios N. Katsikis",coverURL:"https://cdn.intechopen.com/books/images_new/2160.jpg",editors:[{id:"12289",title:"Prof.",name:"Vasilios",middleName:"N.",surname:"Katsikis",slug:"vasilios-katsikis",fullName:"Vasilios Katsikis"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"7031",title:"Liver Pathology",subtitle:null,isOpenForSubmission:!1,hash:"631321b0565459ed0175917f1c8c727f",slug:"liver-pathology",bookSignature:"Vijay Gayam and Omer Engin",coverURL:"https://cdn.intechopen.com/books/images_new/7031.jpg",editors:[{id:"273100",title:"Dr.",name:"Vijay",middleName:null,surname:"Gayam",slug:"vijay-gayam",fullName:"Vijay Gayam"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"3568",title:"Recent Advances in Plant in vitro Culture",subtitle:null,isOpenForSubmission:!1,hash:"830bbb601742c85a3fb0eeafe1454c43",slug:"recent-advances-in-plant-in-vitro-culture",bookSignature:"Annarita Leva and Laura M. R. Rinaldi",coverURL:"https://cdn.intechopen.com/books/images_new/3568.jpg",editors:[{id:"142145",title:"Dr.",name:"Annarita",middleName:null,surname:"Leva",slug:"annarita-leva",fullName:"Annarita Leva"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}}],latestBooks:[{type:"book",id:"9515",title:"Update in Geriatrics",subtitle:null,isOpenForSubmission:!1,hash:"913e16c0ae977474b283bbd4269564c8",slug:"update-in-geriatrics",bookSignature:"Somchai Amornyotin",coverURL:"https://cdn.intechopen.com/books/images_new/9515.jpg",editedByType:"Edited by",editors:[{id:"185484",title:"Prof.",name:"Somchai",middleName:null,surname:"Amornyotin",slug:"somchai-amornyotin",fullName:"Somchai Amornyotin"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"9021",title:"Novel Perspectives of Stem Cell Manufacturing and Therapies",subtitle:null,isOpenForSubmission:!1,hash:"522c6db871783d2a11c17b83f1fd4e18",slug:"novel-perspectives-of-stem-cell-manufacturing-and-therapies",bookSignature:"Diana Kitala and Ana Colette Maurício",coverURL:"https://cdn.intechopen.com/books/images_new/9021.jpg",editedByType:"Edited by",editors:[{id:"203598",title:"Ph.D.",name:"Diana",middleName:null,surname:"Kitala",slug:"diana-kitala",fullName:"Diana Kitala"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"7030",title:"Satellite Systems",subtitle:"Design, Modeling, Simulation and Analysis",isOpenForSubmission:!1,hash:"b9db6d2645ef248ceb1b33ea75f38e88",slug:"satellite-systems-design-modeling-simulation-and-analysis",bookSignature:"Tien Nguyen",coverURL:"https://cdn.intechopen.com/books/images_new/7030.jpg",editedByType:"Edited by",editors:[{id:"210657",title:"Dr.",name:"Tien M.",middleName:"Manh",surname:"Nguyen",slug:"tien-m.-nguyen",fullName:"Tien M. Nguyen"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10413",title:"A Collection of Papers on Chaos Theory and Its Applications",subtitle:null,isOpenForSubmission:!1,hash:"900b71b164948830fec3d6254b7881f7",slug:"a-collection-of-papers-on-chaos-theory-and-its-applications",bookSignature:"Paul Bracken and Dimo I. Uzunov",coverURL:"https://cdn.intechopen.com/books/images_new/10413.jpg",editedByType:"Edited by",editors:[{id:"92883",title:"Prof.",name:"Paul",middleName:null,surname:"Bracken",slug:"paul-bracken",fullName:"Paul Bracken"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"9154",title:"Spinal Deformities in Adolescents, Adults and Older Adults",subtitle:null,isOpenForSubmission:!1,hash:"313f1dffa803b60a14ff1e6966e93d91",slug:"spinal-deformities-in-adolescents-adults-and-older-adults",bookSignature:"Josette Bettany-Saltikov and Gokulakannan Kandasamy",coverURL:"https://cdn.intechopen.com/books/images_new/9154.jpg",editedByType:"Edited by",editors:[{id:"94802",title:"Dr.",name:"Josette",middleName:null,surname:"Bettany-Saltikov",slug:"josette-bettany-saltikov",fullName:"Josette Bettany-Saltikov"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"8148",title:"Investment Strategies in Emerging New Trends in Finance",subtitle:null,isOpenForSubmission:!1,hash:"3b714d96a68d2acdfbd7b50aba6504ca",slug:"investment-strategies-in-emerging-new-trends-in-finance",bookSignature:"Reza Gharoie Ahangar and Asma Salman",coverURL:"https://cdn.intechopen.com/books/images_new/8148.jpg",editedByType:"Edited by",editors:[{id:"91081",title:"Dr.",name:"Reza",middleName:null,surname:"Gharoie Ahangar",slug:"reza-gharoie-ahangar",fullName:"Reza Gharoie Ahangar"}],equalEditorOne:{id:"206443",title:"Prof.",name:"Asma",middleName:null,surname:"Salman",slug:"asma-salman",fullName:"Asma Salman",profilePictureURL:"https://mts.intechopen.com/storage/users/206443/images/system/206443.png",biography:"Professor Asma Salman is a blockchain developer and Professor of Finance at the American University in the Emirates, UAE. An Honorary Global Advisor at the Global Academy of Finance and Management, USA, she completed her MBA in Finance and Accounting and earned a Ph.D. in Finance from an AACSB member, AMBA accredited, School of Management at Harbin Institute of Technology, China. Her research credentials include a one-year residency at the Brunel Business School, Brunel University, UK. Prof. Salman also served as the Dubai Cohort supervisor for DBA students under the Nottingham Business School, UK, for seven years and is currently a Ph.D. supervisor at the University of Northampton, UK, where she is a visiting fellow. She also served on the Board of Etihad Airlines during 2019–2020. One of her recent articles on “Bitcoin and Blockchain” gained wide visibility and she is an active speaker on Fintech, blockchain, and crypto events around the GCC. She holds various professional certifications including Chartered Fintech Professional (USA), Certified Financial Manager (USA), Women in Leadership and Management in Higher Education, (UK), and Taxation GCC VAT Compliance, (UK). She recently won an award for “Blockchain Trainer of the Year” from Berkeley Middle East. Other recognitions include the Women Leadership Impact Award by H.E First Lady of Armenia, Research Excellence Award, and the Global Inspirational Women Leadership Award by H.H Sheikh Juma Bin Maktoum Juma Al Maktoum.",institutionString:"American University in the Emirates",position:null,outsideEditionCount:0,totalCites:0,totalAuthoredChapters:"2",totalChapterViews:"0",totalEditedBooks:"2",institution:{name:"American University in the Emirates",institutionURL:null,country:{name:"United Arab Emirates"}}},equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10201",title:"Post-Transition Metals",subtitle:null,isOpenForSubmission:!1,hash:"cc7f53ff5269916e3ce29f65a51a87ae",slug:"post-transition-metals",bookSignature:"Mohammed Muzibur Rahman, Abdullah Mohammed Asiri, Anish Khan, Inamuddin and Thamer Tabbakh",coverURL:"https://cdn.intechopen.com/books/images_new/10201.jpg",editedByType:"Edited by",editors:[{id:"24438",title:"Prof.",name:"Mohammed Muzibur",middleName:null,surname:"Rahman",slug:"mohammed-muzibur-rahman",fullName:"Mohammed Muzibur Rahman"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"9959",title:"Biomedical Signal and Image Processing",subtitle:null,isOpenForSubmission:!1,hash:"22b87a09bd6df065d78c175235d367c8",slug:"biomedical-signal-and-image-processing",bookSignature:"Yongxia Zhou",coverURL:"https://cdn.intechopen.com/books/images_new/9959.jpg",editedByType:"Edited by",editors:[{id:"259308",title:"Dr.",name:"Yongxia",middleName:null,surname:"Zhou",slug:"yongxia-zhou",fullName:"Yongxia Zhou"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"8472",title:"Bioactive Compounds in Nutraceutical and Functional Food for Good Human Health",subtitle:null,isOpenForSubmission:!1,hash:"8855452919b8495810ef8e88641feb20",slug:"bioactive-compounds-in-nutraceutical-and-functional-food-for-good-human-health",bookSignature:"Kavita Sharma, Kanchan Mishra, Kula Kamal Senapati and Corina Danciu",coverURL:"https://cdn.intechopen.com/books/images_new/8472.jpg",editedByType:"Edited by",editors:[{id:"197731",title:"Dr.",name:"Kavita",middleName:null,surname:"Sharma",slug:"kavita-sharma",fullName:"Kavita Sharma"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"8760",title:"Structure Topology and Symplectic Geometry",subtitle:null,isOpenForSubmission:!1,hash:"8974840985ec3652492c83e20233bf02",slug:"structure-topology-and-symplectic-geometry",bookSignature:"Kamal Shah and Min Lei",coverURL:"https://cdn.intechopen.com/books/images_new/8760.jpg",editedByType:"Edited by",editors:[{id:"231748",title:"Dr.",name:"Kamal",middleName:null,surname:"Shah",slug:"kamal-shah",fullName:"Kamal Shah"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}}]},subject:{topic:{id:"347",title:"Pestology",slug:"insectology-pestology",parent:{title:"Insectology",slug:"insectology"},numberOfBooks:5,numberOfAuthorsAndEditors:152,numberOfWosCitations:203,numberOfCrossrefCitations:78,numberOfDimensionsCitations:266,videoUrl:null,fallbackUrl:null,description:null},booksByTopicFilter:{topicSlug:"insectology-pestology",sort:"-publishedDate",limit:12,offset:0},booksByTopicCollection:[{type:"book",id:"8246",title:"Trends in Integrated Insect Pest Management",subtitle:null,isOpenForSubmission:!1,hash:"af438c4e55f7313c78437813d1f9eff0",slug:"trends-in-integrated-insect-pest-management",bookSignature:"R. P. Soundararajan and Chitra Narayanasamy",coverURL:"https://cdn.intechopen.com/books/images_new/8246.jpg",editedByType:"Edited by",editors:[{id:"145081",title:"Dr.",name:"R.P.",middleName:null,surname:"Soundararajan",slug:"r.p.-soundararajan",fullName:"R.P. Soundararajan"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"7545",title:"Pests Control and Acarology",subtitle:null,isOpenForSubmission:!1,hash:"0022220ff47783a2098bdaf73c7640de",slug:"pests-control-and-acarology",bookSignature:"Dalila Haouas and Levente Hufnagel",coverURL:"https://cdn.intechopen.com/books/images_new/7545.jpg",editedByType:"Edited by",editors:[{id:"235583",title:"Dr.",name:"Dalila",middleName:null,surname:"Haouas",slug:"dalila-haouas",fullName:"Dalila Haouas"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"5976",title:"Drosophila melanogaster",subtitle:"Model for Recent Advances in Genetics and Therapeutics",isOpenForSubmission:!1,hash:"46ff086c2ae55b49970a648d604634cc",slug:"drosophila-melanogaster-model-for-recent-advances-in-genetics-and-therapeutics",bookSignature:"Farzana Khan Perveen",coverURL:"https://cdn.intechopen.com/books/images_new/5976.jpg",editedByType:"Edited by",editors:[{id:"75563",title:"Dr.",name:"Farzana Khan",middleName:null,surname:"Perveen",slug:"farzana-khan-perveen",fullName:"Farzana Khan Perveen"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"843",title:"Insecticides",subtitle:"Pest Engineering",isOpenForSubmission:!1,hash:"88f3cc3c937f853057f544c152ef7491",slug:"insecticides-pest-engineering",bookSignature:"Farzana Perveen",coverURL:"https://cdn.intechopen.com/books/images_new/843.jpg",editedByType:"Edited by",editors:[{id:"75563",title:"Dr.",name:"Farzana Khan",middleName:null,surname:"Perveen",slug:"farzana-khan-perveen",fullName:"Farzana Khan Perveen"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"2035",title:"Insecticides",subtitle:"Basic and Other Applications",isOpenForSubmission:!1,hash:"a1a58545e043b9616c972a9eed86b0f1",slug:"insecticides-basic-and-other-applications",bookSignature:"Sonia Soloneski and Marcelo Larramendy",coverURL:"https://cdn.intechopen.com/books/images_new/2035.jpg",editedByType:"Edited by",editors:[{id:"14863",title:"Dr.",name:"Sonia",middleName:null,surname:"Soloneski",slug:"sonia-soloneski",fullName:"Sonia Soloneski"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}}],booksByTopicTotal:5,mostCitedChapters:[{id:"28275",doi:"10.5772/28749",title:"Trends in Insecticide Resistance in Natural Populations of Malaria Vectors in Burkina Faso, West Africa: 10 Years’ Surveys",slug:"trends-in-insecticide-resistance-in-natural-populations-of-malaria-vectors-in-burkina-faso-west-afri",totalDownloads:1842,totalCrossrefCites:0,totalDimensionsCites:26,book:{slug:"insecticides-pest-engineering",title:"Insecticides",fullTitle:"Insecticides - Pest Engineering"},signatures:"K. R. Dabiré, A. Diabaté, M. Namountougou, L. Djogbenou, C. Wondji, F. Chandre, F. Simard, J-B. Ouédraogo, T. Martin, M. Weill and T. Baldet",authors:[{id:"75213",title:"Dr.",name:"Kounbobr Roch",middleName:null,surname:"Dabiré",slug:"kounbobr-roch-dabire",fullName:"Kounbobr Roch Dabiré"},{id:"140689",title:"Dr.",name:"Abdoulaye",middleName:null,surname:"Diabate",slug:"abdoulaye-diabate",fullName:"Abdoulaye Diabate"},{id:"140690",title:"Dr.",name:"Moussa",middleName:null,surname:"Namountougou",slug:"moussa-namountougou",fullName:"Moussa Namountougou"},{id:"140691",title:"Dr.",name:"Luc",middleName:null,surname:"Djogbenou",slug:"luc-djogbenou",fullName:"Luc Djogbenou"},{id:"140692",title:"Dr.",name:"Charles S.",middleName:null,surname:"Wondji",slug:"charles-s.-wondji",fullName:"Charles S. Wondji"},{id:"140693",title:"Dr.",name:"Fabrice",middleName:null,surname:"Chandre",slug:"fabrice-chandre",fullName:"Fabrice Chandre"},{id:"140694",title:"Dr.",name:"Frédéric",middleName:null,surname:"Simard",slug:"frederic-simard",fullName:"Frédéric Simard"},{id:"140695",title:"Dr.",name:"Jean-Bosco",middleName:null,surname:"Ouédraogo",slug:"jean-bosco-ouedraogo",fullName:"Jean-Bosco Ouédraogo"},{id:"140696",title:"Dr.",name:"Mylène",middleName:null,surname:"Weill",slug:"mylene-weill",fullName:"Mylène Weill"},{id:"140697",title:"Dr.",name:"Thierry",middleName:null,surname:"Balder",slug:"thierry-balder",fullName:"Thierry Balder"}]},{id:"28269",doi:"10.5772/29355",title:"Management Strategies for Western Flower Thrips and the Role of Insecticides",slug:"management-strategies-for-western-flower-thrips-and-the-role-of-insecticides",totalDownloads:3855,totalCrossrefCites:0,totalDimensionsCites:22,book:{slug:"insecticides-pest-engineering",title:"Insecticides",fullTitle:"Insecticides - Pest Engineering"},signatures:"Stuart R. Reitz and Joe Funderburk",authors:[{id:"77440",title:"Dr.",name:"Stuart",middleName:null,surname:"Reitz",slug:"stuart-reitz",fullName:"Stuart Reitz"},{id:"83482",title:"Dr.",name:"Joe",middleName:null,surname:"Funderburk",slug:"joe-funderburk",fullName:"Joe Funderburk"}]},{id:"28270",doi:"10.5772/28460",title:"The Past and Present of Pear Protection Against the Pear Psylla, Cacopsylla pyri L.",slug:"the-past-and-present-of-pear-protection-against-the-pear-psylla-cacopsylla-pyri-l-",totalDownloads:4022,totalCrossrefCites:9,totalDimensionsCites:17,book:{slug:"insecticides-pest-engineering",title:"Insecticides",fullTitle:"Insecticides - Pest Engineering"},signatures:"Stefano Civolani",authors:[{id:"73950",title:"Dr.",name:"Stefano",middleName:null,surname:"Civolani",slug:"stefano-civolani",fullName:"Stefano Civolani"}]}],mostDownloadedChaptersLast30Days:[{id:"54451",title:"Introduction to Drosophila",slug:"introduction-to-drosophila",totalDownloads:11053,totalCrossrefCites:1,totalDimensionsCites:4,book:{slug:"drosophila-melanogaster-model-for-recent-advances-in-genetics-and-therapeutics",title:"Drosophila melanogaster",fullTitle:"Drosophila melanogaster - Model for Recent Advances in Genetics and Therapeutics"},signatures:"Farzana Khan Perveen",authors:[{id:"75563",title:"Dr.",name:"Farzana Khan",middleName:null,surname:"Perveen",slug:"farzana-khan-perveen",fullName:"Farzana Khan Perveen"}]},{id:"58489",title:"Drosophila Imaginal Discs as a Playground for Genetic Analysis: Concepts, Techniques and Expectations for Biomedical Research",slug:"drosophila-imaginal-discs-as-a-playground-for-genetic-analysis-concepts-techniques-and-expectations-",totalDownloads:867,totalCrossrefCites:0,totalDimensionsCites:1,book:{slug:"drosophila-melanogaster-model-for-recent-advances-in-genetics-and-therapeutics",title:"Drosophila melanogaster",fullTitle:"Drosophila melanogaster - Model for Recent Advances in Genetics and Therapeutics"},signatures:"Cristina M. Ostalé, Ana Ruiz-Gómez, Patricia Vega, Mireya Ruiz-\nLosada, Carlos Estella and Jose F. de Celis",authors:[{id:"201401",title:"Prof.",name:"Jose F.",middleName:null,surname:"De Celis",slug:"jose-f.-de-celis",fullName:"Jose F. De Celis"},{id:"201405",title:"BSc.",name:"Cristina",middleName:null,surname:"Martínez-Ostalé",slug:"cristina-martinez-ostale",fullName:"Cristina Martínez-Ostalé"},{id:"227839",title:"Prof.",name:"Ana",middleName:null,surname:"Ruiz-Gómez",slug:"ana-ruiz-gomez",fullName:"Ana Ruiz-Gómez"},{id:"227840",title:"MSc.",name:"Patricia",middleName:null,surname:"Vega",slug:"patricia-vega",fullName:"Patricia Vega"},{id:"227842",title:"MSc.",name:"Mireya",middleName:null,surname:"Ruiz-Losada",slug:"mireya-ruiz-losada",fullName:"Mireya Ruiz-Losada"},{id:"227844",title:"Dr.",name:"Carlos",middleName:null,surname:"Estella",slug:"carlos-estella",fullName:"Carlos Estella"}]},{id:"58694",title:"The Fruit Fly, Drosophila melanogaster: The Making of a Model (Part I)",slug:"the-fruit-fly-drosophila-melanogaster-the-making-of-a-model-part-i-",totalDownloads:1804,totalCrossrefCites:3,totalDimensionsCites:3,book:{slug:"drosophila-melanogaster-model-for-recent-advances-in-genetics-and-therapeutics",title:"Drosophila melanogaster",fullTitle:"Drosophila melanogaster - Model for Recent Advances in Genetics and Therapeutics"},signatures:"Mariateresa Allocca, Sheri Zola and Paola Bellosta",authors:[{id:"219543",title:"Associate Prof.",name:"Paola",middleName:null,surname:"Bellosta",slug:"paola-bellosta",fullName:"Paola Bellosta"},{id:"233005",title:"MSc.",name:"Mariateresa",middleName:null,surname:"Allocca",slug:"mariateresa-allocca",fullName:"Mariateresa Allocca"},{id:"233006",title:"MSc.",name:"Sheri",middleName:null,surname:"Zola",slug:"sheri-zola",fullName:"Sheri Zola"}]},{id:"58858",title:"The Fruit Fly, Drosophila melanogaster: Modeling of Human Diseases (Part II)",slug:"the-fruit-fly-drosophila-melanogaster-modeling-of-human-diseases-part-ii-",totalDownloads:1775,totalCrossrefCites:7,totalDimensionsCites:10,book:{slug:"drosophila-melanogaster-model-for-recent-advances-in-genetics-and-therapeutics",title:"Drosophila melanogaster",fullTitle:"Drosophila melanogaster - Model for Recent Advances in Genetics and Therapeutics"},signatures:"Mariateresa Allocca, Sheri Zola and Paola Bellosta",authors:[{id:"219543",title:"Associate Prof.",name:"Paola",middleName:null,surname:"Bellosta",slug:"paola-bellosta",fullName:"Paola Bellosta"}]},{id:"59005",title:"Drosophila Chromosomal Polymorphism: From Population Aspects to Origin Mechanisms of Inversions",slug:"drosophila-chromosomal-polymorphism-from-population-aspects-to-origin-mechanisms-of-inversions",totalDownloads:752,totalCrossrefCites:2,totalDimensionsCites:3,book:{slug:"drosophila-melanogaster-model-for-recent-advances-in-genetics-and-therapeutics",title:"Drosophila melanogaster",fullTitle:"Drosophila melanogaster - Model for Recent Advances in Genetics and Therapeutics"},signatures:"Carolina Garcia and Vera L. S. Valente",authors:[{id:"204362",title:"Dr.",name:"Carolina",middleName:null,surname:"Garcia",slug:"carolina-garcia",fullName:"Carolina Garcia"},{id:"204415",title:"Dr.",name:"Vera",middleName:null,surname:"L. S. Valente",slug:"vera-l.-s.-valente",fullName:"Vera L. S. Valente"}]},{id:"58710",title:"Swiss Cheese, Drosophila Ortholog of Hereditary Spastic Paraplegia Gene NTE, Maintains Neuromuscular Junction Development and Microtubule Network",slug:"swiss-cheese-drosophila-ortholog-of-hereditary-spastic-paraplegia-gene-nte-maintains-neuromuscular-j",totalDownloads:730,totalCrossrefCites:4,totalDimensionsCites:5,book:{slug:"drosophila-melanogaster-model-for-recent-advances-in-genetics-and-therapeutics",title:"Drosophila melanogaster",fullTitle:"Drosophila melanogaster - Model for Recent Advances in Genetics and Therapeutics"},signatures:"Elena Ryabova, Nataliya Matiytsiv, Olena Trush, Iryna Mohylyak,\nGalina Kislik, Pavel Melentev and Svetlana Sarantseva",authors:[{id:"219724",title:"Dr.",name:"Svetlana",middleName:null,surname:"Sarantseva",slug:"svetlana-sarantseva",fullName:"Svetlana Sarantseva"},{id:"228876",title:"Ms.",name:"Elena",middleName:null,surname:"Ryabova",slug:"elena-ryabova",fullName:"Elena Ryabova"},{id:"228877",title:"Dr.",name:"Nataliya",middleName:null,surname:"Matiytsiv",slug:"nataliya-matiytsiv",fullName:"Nataliya Matiytsiv"},{id:"228879",title:"Ms.",name:"Olena",middleName:null,surname:"Trush",slug:"olena-trush",fullName:"Olena Trush"},{id:"228880",title:"Dr.",name:"Iryna",middleName:null,surname:"Mohylyak",slug:"iryna-mohylyak",fullName:"Iryna Mohylyak"},{id:"228881",title:"Ms.",name:"Galina",middleName:null,surname:"Kislik",slug:"galina-kislik",fullName:"Galina Kislik"},{id:"228883",title:"Dr.",name:"Pavel",middleName:null,surname:"Melentev",slug:"pavel-melentev",fullName:"Pavel Melentev"}]},{id:"57519",title:"Cell Cycle Regulators in Female Meiosis of Drosophila melanogaster",slug:"cell-cycle-regulators-in-female-meiosis-of-drosophila-melanogaster",totalDownloads:806,totalCrossrefCites:0,totalDimensionsCites:0,book:{slug:"drosophila-melanogaster-model-for-recent-advances-in-genetics-and-therapeutics",title:"Drosophila melanogaster",fullTitle:"Drosophila melanogaster - Model for Recent Advances in Genetics and Therapeutics"},signatures:"Mohammed Bourouh and Andrew Swan",authors:[{id:"119027",title:"Dr.",name:"Andrew",middleName:null,surname:"Swan",slug:"andrew-swan",fullName:"Andrew Swan"},{id:"203182",title:"BSc.",name:"Mohammed",middleName:null,surname:"Bourouh",slug:"mohammed-bourouh",fullName:"Mohammed Bourouh"}]},{id:"55560",title:"Antiviral Immunity in the Fruit Fly, Drosophila melanogaster",slug:"antiviral-immunity-in-the-fruit-fly-drosophila-melanogaster",totalDownloads:868,totalCrossrefCites:1,totalDimensionsCites:2,book:{slug:"drosophila-melanogaster-model-for-recent-advances-in-genetics-and-therapeutics",title:"Drosophila melanogaster",fullTitle:"Drosophila melanogaster - Model for Recent Advances in Genetics and Therapeutics"},signatures:"Wilfredo A. Lopez, Alexis M. Page, Brad L. Ericson, Darby J. Carlson\nand Kimberly A. Carlson",authors:[{id:"202812",title:"Dr.",name:"Kimberly",middleName:null,surname:"Carlson",slug:"kimberly-carlson",fullName:"Kimberly Carlson"},{id:"202815",title:"Mr.",name:"Wilfredo",middleName:null,surname:"Lopez",slug:"wilfredo-lopez",fullName:"Wilfredo Lopez"},{id:"202817",title:"Ms.",name:"Alexis",middleName:null,surname:"Page",slug:"alexis-page",fullName:"Alexis Page"},{id:"202818",title:"Dr.",name:"Brad",middleName:null,surname:"Ericson",slug:"brad-ericson",fullName:"Brad Ericson"},{id:"202819",title:"Mr.",name:"Darby",middleName:null,surname:"Carlson",slug:"darby-carlson",fullName:"Darby Carlson"}]},{id:"57879",title:"Parkinson’s Disease: Insights from Drosophila Model",slug:"parkinson-s-disease-insights-from-drosophila-model",totalDownloads:987,totalCrossrefCites:1,totalDimensionsCites:1,book:{slug:"drosophila-melanogaster-model-for-recent-advances-in-genetics-and-therapeutics",title:"Drosophila melanogaster",fullTitle:"Drosophila melanogaster - Model for Recent Advances in Genetics and Therapeutics"},signatures:"Mohamad Ayajuddin, Abhik Das, Limamanen Phom, Priyanka Modi,\nRahul Chaurasia, Zevelou Koza, Abuno Thepa, Nukshimenla Jamir,\nPukhrambam Rajesh Singh, Sentinungla Longkumer, Pardeshi Lal\nand Sarat Chandra Yenisetti",authors:[{id:"181774",title:"Prof.",name:"Sarat Chandra",middleName:null,surname:"Yenisetti",slug:"sarat-chandra-yenisetti",fullName:"Sarat Chandra Yenisetti"}]},{id:"57586",title:"Non-genetic Transgenerational Inheritance of Acquired Traits in Drosophila",slug:"non-genetic-transgenerational-inheritance-of-acquired-traits-in-drosophila",totalDownloads:870,totalCrossrefCites:0,totalDimensionsCites:0,book:{slug:"drosophila-melanogaster-model-for-recent-advances-in-genetics-and-therapeutics",title:"Drosophila melanogaster",fullTitle:"Drosophila melanogaster - Model for Recent Advances in Genetics and Therapeutics"},signatures:"Brian Xia and J. Steven de Belle",authors:[{id:"218815",title:"Mr.",name:"Brian",middleName:null,surname:"Xia",slug:"brian-xia",fullName:"Brian Xia"},{id:"221917",title:"Dr.",name:"Steven",middleName:"Steven",surname:"De Belle",slug:"steven-de-belle",fullName:"Steven De Belle"}]}],onlineFirstChaptersFilter:{topicSlug:"insectology-pestology",limit:3,offset:0},onlineFirstChaptersCollection:[],onlineFirstChaptersTotal:0},preDownload:{success:null,errors:{}},aboutIntechopen:{},privacyPolicy:{},peerReviewing:{},howOpenAccessPublishingWithIntechopenWorks:{},sponsorshipBooks:{sponsorshipBooks:[],offset:0,limit:8,total:null},route:{name:"bookSubject",path:"/books/subject/insectology-pestology",hash:"",query:{},params:{slug:"insectology-pestology"},fullPath:"/books/subject/insectology-pestology",meta:{},from:{name:null,path:"/",hash:"",query:{},params:{},fullPath:"/",meta:{}}}},function(){var e;(e=document.currentScript||document.scripts[document.scripts.length-1]).parentNode.removeChild(e)}()