Open access peer-reviewed chapter

Current Status in Peripheral Nerve Xenotransplantation

Written By

Jose M. Lasso and Esther Deleyto

Reviewed: 11 April 2017 Published: 12 July 2017

DOI: 10.5772/intechopen.69143

From the Edited Volume

Xenotransplantation - New Insights

Edited by Shuji Miyagawa

Chapter metrics overview

1,483 Chapter Downloads

View Full Metrics

Abstract

Nerve grafts are used to repair segmental defects in peripheral nerves. However, autografts and even allografts are limited for clinical use. Xenotransplantation offers a potentially unlimited source for tissue transplantation. We have conducted a systematic review of the literature, aiming to clarify the latest and more appealing proposals and discoveries in nerve xenotransplantation. A total of 22 articles were retrieved, all of them experimentally controlled studies in animals. There are no current studies in humans. Fresh xenografts provoke an immune response that leads to graft rejection. Immunosuppressive drugs or pretreatment of the grafts are the preferred methods against immune rejection. Recently, investigative groups have proposed the use of acellular nerve xenografts, which do not elicit immune rejection while they do allow and promote axonal regeneration. The addition of human stem cells increases nerve growth. Limits to the analyzed studies are the absence of trials in humans and the short length of the nerve defects that have been successfully repaired. Further investigations and clinical trials are needed before nerve xenografting is accepted as a valid method of nerve repair.

Keywords

  • heterologous transplantation
  • immune tolerance
  • nerve repair
  • peripheral nerves
  • stem cells
  • xenografts

1. Introduction

Nerve grafts are used to bridge defects in peripheral nerves that cannot be repaired by direct suturing. However, autografts and even allografts are limited for clinical use. The ready availability of xenografts has put them in the center of clinical surgery research as an alternative graft strategy.

Xenotransplantation offers a potentially unlimited source for tissue transplantation, but with the obvious drawback of immune rejection. Many groups are investigating the molecular, immunologic, biologic, and cellular aspects of xenotransplantation and have proposed various techniques and approaches to perfect the composition of the transplanted tissue and to module the immune response, in an attempt to find the perfect nerve xenograft.

We have conducted a systematic review of the literature, aiming to clarify the latest and more appealing proposals and discoveries in nerve xenotransplantation, which we detail in the following text.

Advertisement

2. Systematic review

We searched PubMed and Embase databases, using the combined search terms “xenotransplantation” or “heterologous transplantation” and “peripheral nerve.” We screened titles and abstracts and decided which articles to retrieve. Articles were also identified by a manual search of bibliographies from all retrieved articles. Studies were eligible for inclusion if they addressed both heterologous transplantation and peripheral nervous system. Only articles with English language abstracts were included. For those articles that were not available in English, only the content of the abstracts was analyzed. Excluded studies were those addressing the central nervous system. No limits were placed on publication date or study design.

Advertisement

3. Results

A total of 22 articles were retrieved, all of them experimentally controlled studies in animals. Most studies used rats as host species [115]. Four studies used mice [1619]. The most commonly used nerve for the nerve defect was the sciatic nerve [2, 3, 5, 810, 1219]. As for donor species, New Zealand rabbits [1, 3, 6, 12] and Sprague‐Dawley rats [1619] were the most commonly used. One study compared the outcomes using different species [9]. One study used human nerves (sural nerve) [9]. Six studies used human mesenchymal stem cells laden in autologous or synthetic conduits [8, 10, 1315, 20]. There have been no studies with humans as recipients for xenografts.

Table 1 shows the details of the species and nerve defects used in each study.

ReferenceHostDonorGap (mm)
1Hebebrand et al. [5]Lewis rat (sciatic n)Golden Syrian hamster (sciatic n)5
2Hebebrand et al. [21]???
3De Vaconcellos et al. [11]Sprague‐Dawley rat (median n)Beagles dog (antebrachial cutaneous n)10
4Li et al. [12]Sprague‐Dawley rat (sciatic n)Rabbit (tibial n)15
5Udina et al. [19]OF1 mouse (sciatic n)Sprague‐Dawley rat (peroneal n)6
6Choi and Raisman [4]AS strain rat (facial n)Balb‐C mouse (sciatic n)7–8 versus 15–20
7Lu et al. [7]Sprague‐Dawley rat (peroneal n)Balb‐C mouse (sciatic n)10
8Zhang et al. [2]Sprague‐Dawley rat (sciatic n)York pig (intercostal n)10
9Kvist et al. [9]Wistar rat (sciatic n)Frog Rana temporaria, NRMI mouse (sciatic n), human (sural n), pig Suidae Yorkshire (tibial n)7
10Jia et al. [3]Wistar rat (sciatic n)New Zealand rabbit (?)10
11Yu et al. [16]Balb‐C mouse (sciatic n)Sprague‐Dawley rat (sciatic n)5
12Huang et al. [22]Rhesus monkey (radial n)Landrace pig (tibial n)25
13Zhu and Lou [1]Wistar rat (facial n)New Zealand rabbit (facial n)6
14Sakar et al. [14]Sprague‐Dawley rat (sciatic n)Human cells10
15Gärtner et al. [13]Sprague‐Dawley rat (sciatic n)Human cells
16Chai et al. [18]C57 BL6 mouse (sciatic n)Sprague‐Dawley rat (sciatic n)20
17Tremp et al. [8]Sprague‐Dawley rat (sciatic n)Human cells10
18Huang et al. [6]Wistar rat (facial n)New Zealand white rabbit (facial n)10
19Lasso et al. [20]New Zealand rabbit (peroneal n)Human cells40
20Zarbakhsh et al. [10]Wistar rat (sciatic n)Human cells10
21Yu et al. [17]Balb‐C mouse (sciatic n)Sprague‐Dawley rat (sciatic n)5
22Masgutov et al. [15]Rat (sciatic n)Human cells10

Table 1.

Detail of the species and nerve defects used in each study.

Sample size ranged from 6 to 96. Follow‐up time ranged from 2 to 360 days. Table 2 shows details of the sample size, follow‐up time, and type of graft used.

ReferenceSampleFollow up (days)Type xenograft
1Hebebrand et al. [5]??Fresh xenograft ± FK506/RS61443
2Hebebrand et al. [21]???
3De Vaconcellos et al. [11]60360ANX versus fresh xenograft
4Li et al. [12]30180ANX versus fresh xenograft
5Udina et al. [19]3521Fresh xenograft ± FK506
6Choi and Raisman [4]9684Fresh xenograft ± cyclosporine
7Lu et al. [7]30(?)56Fresh xenograft
8Zhang et al. [2]690AXN + autoADSC
9Kvist et al. [9]5310ANX
10Jia et al. [3]5056ANX + BMSC
11Yu et al. [16]48 (?)30Fresh xenograft
12Huang et al. [22]10150ANX + autoADSC
13Zhu and Lou [1]40140ANX
14Sakar et al. [14]2756hMSC
15Gärtner et al. [13]140hUCSC
16Chai et al. [18]200(?)28Fresh xenograft
17Tremp et al. [8]1328Fibrin conduit + hADSC or hSVF
18Huang et al. [6]1884ANX
19Lasso et al. [20]6090Vein graft ± Cyclosporine ± hADSC
20Zarbakhsh et al. [10]2484Silicone conduit ± autoBMSC ± hUCSC
21Yu et al. [17]?3Fresh xenograft + BDNF
22Masgutov et al. [15]2965hADSC

Table 2.

Detail of sample size, follow‐up time, and type of graft used.

ANX, acellular nerve xenograft; hADSC, human adipose‐derived stem cells; ADSC, adipose‐derived stem cells; BMSC, bone marrow stem cells; BDNF, brain‐derived neurotrophic factor; hSVF, human stromal vascular fraction; hUCSC, human umbilical cord stem cells; hMSC, human mesenchymal stem cells.

3.1. Type of graft

Of the 22 retrieved articles, 7 described a study in which nerve defects were repaired with fresh nerve xenografts [4, 7, 1619]. Six studies used acellular nerve xenografts [13, 6, 9]. Two used both fresh xenografts and acellular xenografts [11, 12]. Six studies used biological or synthetic conduits seeded with xenogeneic cells [8, 10, 1315, 20]. One of the articles does not specify the type of graft used [21].

Among the studies that used acellular nerve xenografts, different extraction procedures were used. Two studies compare results with the extraction procedure as a variable [9,12].

In general, the consensus is that fresh xenografts provoke an immune response [5, 1618] that leads to graft rejection [7, 11, 12, 19]. Choi and Raisman [4] conclude that in short nerve gaps of 7–8 mm, regeneration can occur in spite of the immune rejection, without the need for immunosuppressant drugs, but longer defects of 15–20 mm require immunosuppression to achieve nerve growth. Acellular nerve xenografts do not elicit an immune response [22] and can therefore be used to bridge nerve defects without immunosuppressant drugs with good results [13, 6, 9, 11, 12, 22].

Nerve conduits are useful for nerve restoration. Xenogeneic stem cell‐laden conduits prove an increased regenerative ability [8, 10, 1315, 20].

3.2. Immunosuppression

There is a total of four studies that compare the outcomes with or without the use of immunosuppressive drugs (two use Cyclosporine A, two use FK506) [4, 5, 19, 20]. Immunosuppressant treatment with cyclosporine A, FK506, or RS61443 can reduce acute graft rejection and allow nerve regeneration [4, 5, 19].

Two studies propose that specific antibodies against interleukins could also be useful in decreasing graft rejection[16, 18].

Among the studies that use xenogeneic cells only, one compares outcomes with and without immunosuppressive therapy [20]. Tremp et al. [8] and Zarbakhsh et al. [10] suggest that human stem cells act as immunosuppressants, with an ability to induce the production of anti‐inflammatory cytokines, and they therefore do not use immunosuppressive drugs.

3.3. Defect length

The nerve defect ranged from 5 to 25 mm in the studies that used xenografts and up to 40 mm in one study that used vein grafts laden with human adipose‐derived stem cells (hADSC) [2].

The length of the gap that has been successfully bridged is 7–8 mm with unprocessed xenografts [4], 25 mm with acellular nerve grafts [5], and 40 mm with vein conduits seeded with hADSC [20]. The consensus is that only short gaps can reach complete regeneration with a xenograft, and further studies are required to find a viable conduit that bridges longer nerve gaps with a tolerable immune response.

Advertisement

4. Discussion

Nerve grafting was first reported by Philipeaux and Vulpian in 1870. The first human nerve graft was reported by Albert in 1878. For decades, research has advanced in favor of autografts, with progress being made in the understanding of nerve biology and chemical mechanisms involved in nerve repair and the perfecting of suture and surgical techniques. But although autologous nerve grafting is ideal, it has some obvious disadvantages, such as lack of availability and donor‐site morbidity. For this reason, investigations turned to nerve allografts. Attempts to reduce the rejection of nerve allografts have focused on either nerve graft pretreatment or host immunosuppression [2325]. The results have not reached those of autografting, and even allografts are a limited source. The ready availability of xenografts has recently put them in the center of clinical surgery research as an alternative graft strategy.

Much of the current research is focused on the study of host immune response to xenografts, as well as the genetics and biochemical reactions involved in graft integration. The immune response to nerve xenotransplantation is poorly understood; most of the research is based on the existing knowledge of nerve allografts.

Peripheral nerves are composed of nerve axons, fibroblasts, Schwann cells, and extracellular matrix. Host Schwann cells are critical for nerve regeneration and production of neurotrophic factors and, Schwann cells of long nerve grafts are also involved in the regenerative process [26]. But donor Schwann cells are one of the most immunogenic components of nerve allografts [27, 28] and it is immune rejection and the scar tissue that is formed due to the immune response that inhibits axon regeneration [29]. To reduce this reaction, allografts have been pretreated to decrease their antigenicity, but these treatments also reduce Schwann cell viability [30]. Recent studies are moving away from nerve graft pretreatment and toward investigating other mechanisms of immune response suppression.

Lu et al. [7] described the importance of cellular immune responses in xenograft rejection. They also described the limitations in xenografting of cold preservation of the grafts as a way to decrease rejection, a method frequently used in allografting.

Of the same group, Yu et al. [16] proved that xenograft rejection is mediated especially by interferon‐gamma (IFγ)‐producing Th1 cells and IL17‐producing Th17 cells. They suggested that the rejection of a xenograft can be prevented after treatment with IL17 and IFγ‐neutralizing antibodies. In a recent study [17], they proposed brain‐derived neurotrophic factor as a promising inhibitor of peripheral nerve xenograft rejection. Chai et al. [18] studied the significance of Th22 and Treg cells interaction in the regulation of xenograft rejection.

Based on these studies of immune response, trials have been made using different types of immunosuppressive drugs. Choi and Raisman [4] propose that there is a limit distance that nerve regeneration through a xenograft is able to cover against acute host rejection, but to grow further it requires the assistance of immunosuppression (their experiments are carried out on facial nerve grafts from mouse to rat).

Hebebrand [5, 21] proved increased nerve regeneration through xenografts with immunosuppression with FK506 and RS61443 based on the knowledge that they have on neuroregenerative and neuroprotective effects independent of their immunosuppressive activity. Udina et al. [19] proved that a 5‐mg/kg/day dose of FK506 is necessary to achieve nerve regeneration in rat to mice xenografts, as opposed to a 2‐mg/kg/day dose for allografts.

There are no clinical studies in humans. Magnusson et al. [31] proposed to begin the study of pig to human xenotransplantation by describing the xenoantigenic pattern on porcine peripheral nerve.

A different line of research regarding peripheral nerve repair has focused on the application of biologic or synthetic nerve conduits [32]. Donor‐site morbidity is reduced, as is surgery time, and the problem of rejection is avoided. The ideal properties of a nerve conduit are biocompatibility, biodegradability, neuroinductivity, and neuroconductivity. The last two properties can be enhanced by adding host or xenogeneic multipotent stem cells with the ability to produce the necessary growth factors. Bone marrow stromal cells (BMSCs), human umbilical cord stromal cells (HUCSCs), undifferentiated, and adipose‐derived stem cells have been studied, with different results [8, 10, 1315, 20, 33]. Zarbakhsh et al. [10] conducted a study with 24 Wistar rats, where 10‐mm gaps in the sciatic nerve were bridged with a silicone conduit with added bone marrow stromal cells, human umbilical cord stromal cells or no cells. He concluded that both auto‐BMSCs and xeno‐UCSC have the potential to regenerate peripheral nerve injury and that BMSCs are more effective than HCUCSCs in rat. As opposed to other xenogeneic cells, stem cells did not seem to provoke an immune response in the host after transplantation [34, 35].

Silicone or fibrin scaffolds, or even veins, only provide a physical conduit for nerve regeneration. But the goal is to provide a conduit that is also able to produce the adequate molecular signals that promote cell differentiation, migration, and axonal elongation. This can only be achieved using peripheral nerves as nerve grafts. Therefore, the aim of investigators has been to find or create a non‐immunogenic xenograft. Acellular xenografts are created chemically eliminating the cellular constituents that cause immunogenic reactions but preserving the native extracellular matrix, which retains sufficient bioactivity to promote axon regeneration [36].

Huang et al. [22] used acellular xenografts with allogenic adipose‐derived stem cells in rhesus monkey, obtaining no immune response to the grafts. They later conducted a study in rat facial nerve defects, achieving similar results to those obtained with allografts [6]. Similar results were reported by Zhu et al. [1].

In 2010, Zhang et al. [2] reported that acellular nerve xenografts, similar to acellular nerve allografts (ANAs), are immunocompatible. He also proposed that short defects can regenerate along acellular scaffolds but that longer defects might require certain cellular impulses, which should be provided by added autologous stem cells.

Li et al. [12] repaired rat sciatic nerve gaps with acellular xenogeneic scaffolds, with good results.

Jia et al. [3] transplanted acellular nerve allografts and rabbit xenografts (ANX), with and without BMSC enhancement, into rat sciatic nerve gaps, comparing the different groups with autografts. They concluded that ANX implanted with BMSCs had a functional rehabilitation efficacy comparable to autografting.

De Vaconcellos et al. [11] repaired 2 cm median nerve gaps in rats with Beagle dog acellular frozen xenografts, managing a correct but slow regeneration, and thus suggesting that freezing suppresses the immune reaction but produces a deficient environment.

Kvist et al. [9] studied the differences in acellular xenografts from different species (frog, mice, human, and pig) transplanted into rat sciatic nerve gaps, proposing differences in axonal outgrowth which should be further studied before clinical use.

All existing studies have a clear limitation regarding the species in which the experiments are carried out on. No studies used humans as hosts, and only one study included human sural nerves as donor for xenografting. Unlike organ transplantation, peripheral nerve grafting does not usually occur in a scenario of urgency, and nerve injury is not life‐threatening. Thus, nerve xenografts can only be considered in real clinical situations when benefits are heavier than the risks associated to immunosuppression and even cross‐species disease transmission.

The future moves toward a xenograft that is immunocompatible—probably acellular, seeded with xenogeneic stem cells or similar growth factor‐producing elements—with no need of immunosuppressive therapy. Also, advance has to be made in the way of creating longer grafts or ways to make the process of regeneration occur fast enough to achieve a complete axonal growth in longer defects before scarring and inflammation block nerve advancement.

Advertisement

5. Conclusions

Most of the existing studies on nerve xenografting concur in their results of peripheral nerve xenotransplantation, which are found to be similar to those reached with nerve allografts and acceptable, though lower, compared to the results of autografting. The scenario in which these results can be reached are in all cases similar, defects of 5–25 mm in peripheral nerves, of rats or rabbits mostly, repaired with either fresh xenografts—supplemented with immunosuppressive therapy—or acellular grafts. The direction in which all investigations move is toward adding stem cells or other sources of growth factors that might improve the reach of axonal growth. A long way still separates us from creating a graft that will work in humans.

References

  1. 1. Zhu G, Lou W. Regeneration of facial nerve defects with xenogeneic acellular nerve grafts in a rat model. Head & Neck. 2014;36(4):481-486. DOI: 10.1002/hed.23321
  2. 2. Zhang Y, Luo H, Zhang Z, Lu Y, Huang X, et al. A nerve graft constructed with xenogeneic acellular nerve matrix and autologous adipose‐derived mesenchymal stem cells. Biomaterials. 2010;31(20):5312-5324. DOI: 10.1016/j.biomaterials.2010.03.029
  3. 3. Jia H, Wang Y, Tong XJ, Liu GB, Li Q, et al. Sciatic nerve repair by acellular nerve xenografts implanted with BMSCs in rats xenograft combined with BMSCs. Synapse. 2012;66(3):256-269. DOI: 10.1002/syn.21508
  4. 4. Choi D, Raisman G. Immune rejection of a facial nerve xenograft does not prevent regeneration and the return of function: An experimental study. Neuroscience. 2003;121(2):501-507. DOI: 10.1016/S0306‐4522(03)00433‐0
  5. 5. Hebebrand D, Zohman G, Jones NF. Nerve xenograft transplantation: Immunosuppression with FK‐506 and RS‐61443. Journal of Hand Surgery (British and European volume). 1997;22(3):304-307
  6. 6. Huang H, Xiao H, Liu H, Niu Y, Yan R, Hu M. A comparative study of acellular nerve xenografts and allografts in repairing rat facial nerve defects. Molecular Medicine Reports. 2015;12(4):6330-6336. DOI: 10.3892/mmr.2015.4123
  7. 7. Lu LJ, Sun JB, Liu ZG, Gong X, Cui JL, Sun XG. Immune responses following peripheral nerve xenotransplantation in rats. J Biomed Biotechnol. 2009;2009:412598. DOI: 10.1155/2009/412598. Epub 2009 Oct 12.
  8. 8. Tremp M, Meyer zu Schwabedissen M, Kappos EA, Eangels PE, Fischmann A, et al. The regeneration potential after human and autologous stem cell transplantation in a rat sciatic nerve injury model can be monitored by MRI. Cell Transplantation. 2015;24(2):203-211. DOI: 10.3727/096368913X676934
  9. 9. Kvist M, Sondell M, Kanje M, Dahlin LB. Regeneration in, and properties of, extracted peripheral nerve allografts and xenografts. Journal of Plastic Surgery and Hand Surgery. 2011;45(3):122-128. DOI: 10.3109/2000656X.2011.571847
  10. 10. Zarbakhsh S, Goudarzi N, Shirmohammadi M, Safari M. Histological study of bone marrow and umbilical cord stromal stem cell transplantation in regenerating rat peripheral nerve. Cell Journal (Yakhteh). 2016;17(4):668
  11. 11. De Vaconcellos ZA, Duchossoy Y, Kassar‐Duchossoy L, Mira JC. Experimental median nerve repair by fresh or frozen nerve autografts and xenografts. Annales de Chirurgie de la Main et du Membre Supérieur. 1999;18(1):74-84
  12. 12. Li YJ, Chen SZ, Qu H. Repair of peripheral nerve defect by xenogeneic acellular nerve basal lamina scaffolds. Zhongguo xiu fu Chong jian wai ke za zhi = Chinese Journal of Reparative and Reconstructive Surgery. 2002;16(3):161-165
  13. 13. Gärtner A, Pereira T, Amrmada‐da‐Silva P, Amado S, Veloso A, et al. Effects of umbilical cord tissue mesenchymal stem cells (UCX) on rat sciatic nerve regeneration after neurotmesis injuries. Journal of Stem Cells and Regenerative Medicine. 2014;10(1):14-26
  14. 14. Sakar M, Korkusuz P, Demirbilek M, Çetinkaya DU, Arslan S, et al. The effect of poly(3‐hydroxybutyrate‐co‐3‐hydroxyhexanoate) (PHNHHx) and human mesenchymal stem cell (hMSC) on axonal regeneration in experimental sciatic nerve damage. International Journal of Neuroscience. 2014;124(9):685-696. DOI: 10.3109/00207454.2013.876636
  15. 15. Masgutov RF, Masgutova GA, Zhuravleva N, Salafutdinov II, Mukhametshina RT, et al. Human adipose‐derived stem cells stimulate neuroregeneration. Clinical and Experimental Medicine. 2016;16:451-461. DOI: 1 0.1007/s10238‐015‐0364‐3
  16. 16. Yu X, Jian Y, Lu L, Gong X, Sun X, et al. A crucial role of IL‐17 and INF‐y during acute rejection of peripheral nerve xenotransplantation in mice. PloS One. 2012;7(3):e34419. DOI: 10.1371/journal.pone.0034419
  17. 17. Yu X, Lu L, Liu Z, Yang T, Gong X, et al. Brain‐derived neurotrophic factor modulates immune reaction in mice with peripheral nerve xenotransplantation. Neuropsychiatric Disease and Treatment. 2016;12:685. DOI: 10.2147/NDT.S98387
  18. 18. Chai H, Yang L, Gao L, Guo Y, Li H, et al. Decreased percentages of regulatory T cells are necessary to activate Th1‐Th2‐Th22 responses during acute rejection of the peripheral nerve xenotransplantation in mice. Transplantation. 2014;98(7):729-737. DOI: 10.1097/TP.0000000000000319
  19. 19. Udina E, Voda J, Gold BG, Navarro X. Comparative dose‐dependence study of FK506 on transected mouse sciatic nerve repaired by allograft or xenograft. Journal of the Peripheral Nervous System. 2003;8(3):145-154
  20. 20. Lasso JM, Cano RP, Castro Y, Arenas L, Garcia J, Fernández‐Santos ME. Xenotransplantation of human adipose‐derived stem cells in the regeneration of a rabbit peripheral nerve. Journal of Plastic, Reconstructive & Aesthetic Surgery. 2015;68(12):e189-197. DOI: 10.1016/ j.bjps.2015.07.005
  21. 21. Hebebrand D, Wagner D, Jones NF, Steinau HU. Genetic methods in experimental xenogeneic nerve transplantation. Langenbecks Arch Chir Suppl Kongressbd. 1998;115:1279-1281
  22. 22. Huang X, Zhu Q, Jiang L, Zheng C, Zhu Z, et al. Study on immune response after repair of nerve defect with acellular nerve xenograft laden with allogenic adipose‐derived stem cells in Rhesus monkey. Zhongguo xiu fu Chong jian wai ke za zhi = Chinese Journal of Reparative and Reconstructive Surgery. 2012;26(8):993-1000
  23. 23. Siemionow M, Sonmez E. Nerve allograft transplantation: A review. Journal of Reconstructive Microsurgery. 2007;23(8):511-520. DOI: 10.1055/s‐2007‐1022694
  24. 24. Brown DL, Bishop DK, Wood SY, Cederna PS. Short‐term anti‐CD40 ligand costimulatory blockade induces tolerance to peripheral nerve allografts, resulting in improved skeletal muscle function. Plastic and Reconstructive Surgery. 2006;117:2250-2258. DOI: 10.1097/01.prs.0000219341.73134.82
  25. 25. Hess JR, Brenner MJ, Fox IK, et al. Use of cold‐preserved allografts seeded with autologous Schwann cells in the treatment of a long‐gap peripheral nerve injury. Plastic and Reconstructive Surgery. 2007;119:246-259. DOI: 10.1097/01.prs.0000245341.71666.97
  26. 26. Hall S. Axonal regeneration through acellular muscle grafts. Journal of Anatomy. 1997;190(1):57-71. DOI: 10.1046/j.1469‐7580.1997.19010057.x
  27. 27. Aguayo AJ, Bray GM, Perkis CS, Duncan ID. Axon–sheath cell interactions in peripheral and central nervous system transplants. Social Neuroscience Symposium. 1979;4:361-383
  28. 28. Rovak JM, Bishop DK, Boxer LK, Wood SC, Mungara AK, Cederna PS. Peripheral nerve transplantation: The role of chemical acellularization in eliminating allograft antigenicity. Journal of Reconstructive Microsurgery. 2005;21(3):207-213. DOI: 10.1055/s‐2005‐869828
  29. 29. Evans PJ, Midha R, Mackinnon SE. The peripheral nerve allograft: A comprehensive review of regeneration and neuroimmunology. Progress in Neurobiology. 1994;43:187-233
  30. 30. Gulati AK. Evaluation of acellular and cellular nerve graft in repair of rat peripheral nerve. Journal of Neurosurgery. 1988;68:117-123
  31. 31. Magnusson S, Strokan V, Svenson L, Mansson JE, Rydberg L, Breimer LE. Expression of carbohydrate xenoantigens on porcine peripheral nerve. Xenotransplantation. 2005;12(1):49-58. DOI: 10.1111/j.1399‐3089.2004.00192.x
  32. 32. Arslantunali D, Tursun T, Yucel D, Hasirci N, Hasirci V. Peripheral nerve conduits: Technology update. Medical Devices: Evidence and Research. 2014;7:405-424. DOI: 10.2147/MDER.S59124
  33. 33. Kalbermatten DF, Kingham PJ, Mahay D, et al. Fibrin matrix for suspension of regenerative cells in an artificial nerve conduit. Journal of Plastic, Reconstructive & Aesthetic Surgery. 2008;61(6):669-675. DOI: 10.1016/j.bjps.2007.12.015
  34. 34. Kalinina NI, Sysoeva VY, Rubina KA, Parfenova YV, Tkachuk VA. Mesenchymal stem cells in tissue growth and repair. Acta Naturae. 2011;3(4):30-37
  35. 35. Santos JM, Barcia RN, Simoes SI, Gaspar MM, Calado S, et al. The role of human umbilical cord tissue‐derived mesenchymal stromal cells (UCX(R)) in the treatment of inflammatory arthritis. Journal of Translational Medicine. 2013;11:18. DOI: 10.1186/1479‐5876‐11‐18
  36. 36. Hudson TW, Liu SY, Schmidt CE. Engineering an improved acellular nerve graft via optimized chemical processing. Tissue Engineering. 2004;10:1346-1358. DOI: 10.1089/ten.2004.10.1641

Written By

Jose M. Lasso and Esther Deleyto

Reviewed: 11 April 2017 Published: 12 July 2017