Fungal species dominated in cereals and cereal products
\\n\\n
Dr. Pletser’s experience includes 30 years of working with the European Space Agency as a Senior Physicist/Engineer and coordinating their parabolic flight campaigns, and he is the Guinness World Record holder for the most number of aircraft flown (12) in parabolas, personally logging more than 7,300 parabolas.
\\n\\nSeeing the 5,000th book published makes us at the same time proud, happy, humble, and grateful. This is a great opportunity to stop and celebrate what we have done so far, but is also an opportunity to engage even more, grow, and succeed. It wouldn't be possible to get here without the synergy of team members’ hard work and authors and editors who devote time and their expertise into Open Access book publishing with us.
\\n\\nOver these years, we have gone from pioneering the scientific Open Access book publishing field to being the world’s largest Open Access book publisher. Nonetheless, our vision has remained the same: to meet the challenges of making relevant knowledge available to the worldwide community under the Open Access model.
\\n\\nWe are excited about the present, and we look forward to sharing many more successes in the future.
\\n\\nThank you all for being part of the journey. 5,000 times thank you!
\\n\\nNow with 5,000 titles available Open Access, which one will you read next?
\\n\\nRead, share and download for free: https://www.intechopen.com/books
\\n\\n\\n\\n
\\n"}]',published:!0,mainMedia:null},components:[{type:"htmlEditorComponent",content:'
Preparation of Space Experiments edited by international leading expert Dr. Vladimir Pletser, Director of Space Training Operations at Blue Abyss is the 5,000th Open Access book published by IntechOpen and our milestone publication!
\n\n"This book presents some of the current trends in space microgravity research. The eleven chapters introduce various facets of space research in physical sciences, human physiology and technology developed using the microgravity environment not only to improve our fundamental understanding in these domains but also to adapt this new knowledge for application on earth." says the editor. Listen what else Dr. Pletser has to say...
\n\n\n\nDr. Pletser’s experience includes 30 years of working with the European Space Agency as a Senior Physicist/Engineer and coordinating their parabolic flight campaigns, and he is the Guinness World Record holder for the most number of aircraft flown (12) in parabolas, personally logging more than 7,300 parabolas.
\n\nSeeing the 5,000th book published makes us at the same time proud, happy, humble, and grateful. This is a great opportunity to stop and celebrate what we have done so far, but is also an opportunity to engage even more, grow, and succeed. It wouldn't be possible to get here without the synergy of team members’ hard work and authors and editors who devote time and their expertise into Open Access book publishing with us.
\n\nOver these years, we have gone from pioneering the scientific Open Access book publishing field to being the world’s largest Open Access book publisher. Nonetheless, our vision has remained the same: to meet the challenges of making relevant knowledge available to the worldwide community under the Open Access model.
\n\nWe are excited about the present, and we look forward to sharing many more successes in the future.
\n\nThank you all for being part of the journey. 5,000 times thank you!
\n\nNow with 5,000 titles available Open Access, which one will you read next?
\n\nRead, share and download for free: https://www.intechopen.com/books
\n\n\n\n
\n'}],latestNews:[{slug:"stanford-university-identifies-top-2-scientists-over-1-000-are-intechopen-authors-and-editors-20210122",title:"Stanford University Identifies Top 2% Scientists, Over 1,000 are IntechOpen Authors and Editors"},{slug:"intechopen-authors-included-in-the-highly-cited-researchers-list-for-2020-20210121",title:"IntechOpen Authors Included in the Highly Cited Researchers List for 2020"},{slug:"intechopen-maintains-position-as-the-world-s-largest-oa-book-publisher-20201218",title:"IntechOpen Maintains Position as the World’s Largest OA Book Publisher"},{slug:"all-intechopen-books-available-on-perlego-20201215",title:"All IntechOpen Books Available on Perlego"},{slug:"oiv-awards-recognizes-intechopen-s-editors-20201127",title:"OIV Awards Recognizes IntechOpen's Editors"},{slug:"intechopen-joins-crossref-s-initiative-for-open-abstracts-i4oa-to-boost-the-discovery-of-research-20201005",title:"IntechOpen joins Crossref's Initiative for Open Abstracts (I4OA) to Boost the Discovery of Research"},{slug:"intechopen-hits-milestone-5-000-open-access-books-published-20200908",title:"IntechOpen hits milestone: 5,000 Open Access books published!"},{slug:"intechopen-books-hosted-on-the-mathworks-book-program-20200819",title:"IntechOpen Books Hosted on the MathWorks Book Program"}]},book:{item:{type:"book",id:"6762",leadTitle:null,fullTitle:"Advances in Testosterone Action",title:"Advances in Testosterone Action",subtitle:null,reviewType:"peer-reviewed",abstract:"This book describes recent findings on androgens. The chapters include information on physiological and pathological conditions such as alteration in testosterone production by Leydig cells, prostate cancer, and metabolic disorders. Moreover, this book refers to the potential use of androgens in assisted human reproduction treatments and bovine breeding. Since each chapter contains background information based on evidence and emphasizes basic science, this book is aimed at professionals who already have a basic understanding of the principles of androgen biochemistry and endocrine-related diseases.",isbn:"978-1-78984-513-6",printIsbn:"978-1-78984-512-9",pdfIsbn:"978-1-83881-694-0",doi:"10.5772/intechopen.72493",price:119,priceEur:129,priceUsd:155,slug:"advances-in-testosterone-action",numberOfPages:118,isOpenForSubmission:!1,isInWos:1,hash:"c7bfdea5f2e1d85ba08b6f07b8d3af5a",bookSignature:"Manuel Estrada",publishedDate:"November 21st 2018",coverURL:"https://cdn.intechopen.com/books/images_new/6762.jpg",numberOfDownloads:3634,numberOfWosCitations:5,numberOfCrossrefCitations:7,numberOfDimensionsCitations:9,hasAltmetrics:0,numberOfTotalCitations:21,isAvailableForWebshopOrdering:!0,dateEndFirstStepPublish:"February 9th 2018",dateEndSecondStepPublish:"March 2nd 2018",dateEndThirdStepPublish:"May 1st 2018",dateEndFourthStepPublish:"July 20th 2018",dateEndFifthStepPublish:"September 18th 2018",currentStepOfPublishingProcess:5,indexedIn:"1,2,3,4,5,6",editedByType:"Edited by",kuFlag:!1,editors:[{id:"29615",title:"Dr.",name:"Manuel",middleName:null,surname:"Estrada",slug:"manuel-estrada",fullName:"Manuel Estrada",profilePictureURL:"https://mts.intechopen.com/storage/users/29615/images/system/29615.jpg",biography:"Manuel Estrada received his PhD degree in Biomedical Sciences from Universidad de Chile in 2003. From 2003 to 2006, he served as a Postdoctoral Fellow at the Department of Pharmacology, Medical School at Yale University. Since 2006 he has been an Associate Professor of Physiology at the Department of Physiology and Biophysics, Faculty of Medicine, Universidad de Chile. His research interests include rapid androgen effects and cardiomyocyte metabolic adaptations to hypertrophy. He is an author of many papers published in international peer-reviewed journals, and his presence is often requested as an Invited Speaker in congresses and diverse scientific meetings.",institutionString:"University of Chile",position:null,outsideEditionCount:0,totalCites:0,totalAuthoredChapters:"2",totalChapterViews:"0",totalEditedBooks:"1",institution:{name:"University of Chile",institutionURL:null,country:{name:"Chile"}}}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,coeditorOne:null,coeditorTwo:null,coeditorThree:null,coeditorFour:null,coeditorFive:null,topics:[{id:"1014",title:"Reproductive Endocrinology and Infertility",slug:"medicine-endocrinology-reproductive-endocrinology-and-infertility"}],chapters:[{id:"62442",title:"Morphological Bases of Human Leydig Cell Dysfunction",doi:"10.5772/intechopen.79201",slug:"morphological-bases-of-human-leydig-cell-dysfunction",totalDownloads:550,totalCrossrefCites:0,totalDimensionsCites:0,signatures:"Maria P. De Miguel, Pilar Gonzalez-Peramato and Manuel Nistal",downloadPdfUrl:"/chapter/pdf-download/62442",previewPdfUrl:"/chapter/pdf-preview/62442",authors:[{id:"199960",title:"Prof.",name:"Maria P",surname:"De Miguel",slug:"maria-p-de-miguel",fullName:"Maria P De Miguel"},{id:"248353",title:"Prof.",name:"Manuel",surname:"Nistal",slug:"manuel-nistal",fullName:"Manuel Nistal"},{id:"248354",title:"Dr.",name:"Pilar",surname:"Gonzalez-Peramato",slug:"pilar-gonzalez-peramato",fullName:"Pilar Gonzalez-Peramato"}],corrections:null},{id:"60839",title:"The Regulation of the Male Hypothalamic-Pituitary-Gonadal Axis and Testosterone Production by Adipokines",doi:"10.5772/intechopen.76321",slug:"the-regulation-of-the-male-hypothalamic-pituitary-gonadal-axis-and-testosterone-production-by-adipok",totalDownloads:672,totalCrossrefCites:6,totalDimensionsCites:7,signatures:"Alexander O. Shpakov, Julian R. Ryzhov, Andrey A. Bakhtyukov and\nKira V. Derkach",downloadPdfUrl:"/chapter/pdf-download/60839",previewPdfUrl:"/chapter/pdf-preview/60839",authors:[{id:"75888",title:"Prof.",name:"Alexander",surname:"Shpakov",slug:"alexander-shpakov",fullName:"Alexander Shpakov"},{id:"81685",title:"Dr.",name:"Kira",surname:"Derkach",slug:"kira-derkach",fullName:"Kira Derkach"},{id:"245240",title:"Mr.",name:"Julian",surname:"Ryzhov",slug:"julian-ryzhov",fullName:"Julian Ryzhov"},{id:"245241",title:"MSc.",name:"Andrey",surname:"Bakhtyukov",slug:"andrey-bakhtyukov",fullName:"Andrey Bakhtyukov"}],corrections:null},{id:"60756",title:"The Biological Role of Androgen Receptor in Prostate Cancer Progression",doi:"10.5772/intechopen.76360",slug:"the-biological-role-of-androgen-receptor-in-prostate-cancer-progression",totalDownloads:1231,totalCrossrefCites:1,totalDimensionsCites:2,signatures:"Ken-ichi Takayama",downloadPdfUrl:"/chapter/pdf-download/60756",previewPdfUrl:"/chapter/pdf-preview/60756",authors:[{id:"239221",title:"Dr.",name:"Ken-Ichi",surname:"Takayama",slug:"ken-ichi-takayama",fullName:"Ken-Ichi Takayama"}],corrections:null},{id:"63382",title:"Effects of Dehydroepiandrosterone (DHEA) Supplementation to Improve Ovarian Response and IVF Outcomes on Women with Poor Ovarian Response",doi:"10.5772/intechopen.79320",slug:"effects-of-dehydroepiandrosterone-dhea-supplementation-to-improve-ovarian-response-and-ivf-outcomes-",totalDownloads:629,totalCrossrefCites:0,totalDimensionsCites:0,signatures:"José Fernando de Macedo, Maristela Rodrigues Oliveira and Olga\nGoiana Martins",downloadPdfUrl:"/chapter/pdf-download/63382",previewPdfUrl:"/chapter/pdf-preview/63382",authors:[{id:"115594",title:"Mr.",name:"José",surname:"Macedo",slug:"jose-macedo",fullName:"José Macedo"},{id:"248124",title:"Mrs.",name:"Maristela",surname:"Oliveira",slug:"maristela-oliveira",fullName:"Maristela Oliveira"},{id:"248125",title:"Mrs.",name:"Olga",surname:"Sampaio",slug:"olga-sampaio",fullName:"Olga Sampaio"}],corrections:null},{id:"61362",title:"Influence of Testosterone on Body and Testicular Development in Zebu Cattle in the Tropical Climate",doi:"10.5772/intechopen.76706",slug:"influence-of-testosterone-on-body-and-testicular-development-in-zebu-cattle-in-the-tropical-climate",totalDownloads:558,totalCrossrefCites:0,totalDimensionsCites:0,signatures:"Marcelo Chacur, Alex Arikawa, Eunice Oba, Camila Souza and Luis\nRoberto Gabriel Filho",downloadPdfUrl:"/chapter/pdf-download/61362",previewPdfUrl:"/chapter/pdf-preview/61362",authors:[{id:"239524",title:"Prof.",name:"Marcelo George",surname:"Chacur",slug:"marcelo-george-chacur",fullName:"Marcelo George Chacur"},{id:"245222",title:"MSc.",name:"Alex",surname:"Arikawa",slug:"alex-arikawa",fullName:"Alex Arikawa"},{id:"245223",title:"MSc.",name:"Camila",surname:"Souza",slug:"camila-souza",fullName:"Camila Souza"},{id:"245224",title:"Dr.",name:"Eunice",surname:"Oba",slug:"eunice-oba",fullName:"Eunice Oba"},{id:"245225",title:"Dr.",name:"Luis Roberto",surname:"Gabriel Filho",slug:"luis-roberto-gabriel-filho",fullName:"Luis Roberto Gabriel Filho"}],corrections:null}],productType:{id:"1",title:"Edited Volume",chapterContentType:"chapter",authoredCaption:"Edited by"}},relatedBooks:[{type:"book",id:"805",title:"Sex Steroids",subtitle:null,isOpenForSubmission:!1,hash:"69b8296a72c662d5d96bf61a1b394eda",slug:"sex-steroids",bookSignature:"Scott M. Kahn",coverURL:"https://cdn.intechopen.com/books/images_new/805.jpg",editedByType:"Edited by",editors:[{id:"66905",title:"Dr.",name:"Scott",surname:"M. Kahn",slug:"scott-m.-kahn",fullName:"Scott M. Kahn"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"804",title:"Sex Hormones",subtitle:null,isOpenForSubmission:!1,hash:"0b136b00e0db35efcd27b4655045f5e1",slug:"sex-hormones",bookSignature:"Raghvendra K. Dubey",coverURL:"https://cdn.intechopen.com/books/images_new/804.jpg",editedByType:"Edited by",editors:[{id:"67895",title:"Prof.",name:"Raghvendra",surname:"Dubey",slug:"raghvendra-dubey",fullName:"Raghvendra Dubey"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"2013",title:"Steroids",subtitle:"Clinical Aspect",isOpenForSubmission:!1,hash:"31dfd32a77f71bc348d7922af48b8e62",slug:"steroids-clinical-aspect",bookSignature:"Hassan Abduljabbar",coverURL:"https://cdn.intechopen.com/books/images_new/2013.jpg",editedByType:"Edited by",editors:[{id:"68175",title:"Prof.",name:"Hassan",surname:"Abduljabbar",slug:"hassan-abduljabbar",fullName:"Hassan Abduljabbar"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"504",title:"Update on Mechanisms of Hormone Action",subtitle:"Focus on Metabolism, Growth and Reproduction",isOpenForSubmission:!1,hash:"f24c739037cec7a5dd8e9f89da59c6d9",slug:"update-on-mechanisms-of-hormone-action-focus-on-metabolism-growth-and-reproduction",bookSignature:"Gianluca Aimaretti with Paolo Marzullo and Flavia Prodam",coverURL:"https://cdn.intechopen.com/books/images_new/504.jpg",editedByType:"Edited by",editors:[{id:"42439",title:"Prof.",name:"Gianluca",surname:"Aimaretti",slug:"gianluca-aimaretti",fullName:"Gianluca Aimaretti"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"6891",title:"Estrogen",subtitle:null,isOpenForSubmission:!1,hash:"89b39414c7a2b95f9d25786d39e00af2",slug:"estrogen",bookSignature:"Wahid Ali Khan",coverURL:"https://cdn.intechopen.com/books/images_new/6891.jpg",editedByType:"Edited by",editors:[{id:"64042",title:"Dr.",name:"Wahid Ali",surname:"Khan",slug:"wahid-ali-khan",fullName:"Wahid Ali Khan"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"1591",title:"Infrared Spectroscopy",subtitle:"Materials Science, Engineering and Technology",isOpenForSubmission:!1,hash:"99b4b7b71a8caeb693ed762b40b017f4",slug:"infrared-spectroscopy-materials-science-engineering-and-technology",bookSignature:"Theophile Theophanides",coverURL:"https://cdn.intechopen.com/books/images_new/1591.jpg",editedByType:"Edited by",editors:[{id:"37194",title:"Dr.",name:"Theophanides",surname:"Theophile",slug:"theophanides-theophile",fullName:"Theophanides Theophile"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"3092",title:"Anopheles mosquitoes",subtitle:"New insights into malaria vectors",isOpenForSubmission:!1,hash:"c9e622485316d5e296288bf24d2b0d64",slug:"anopheles-mosquitoes-new-insights-into-malaria-vectors",bookSignature:"Sylvie Manguin",coverURL:"https://cdn.intechopen.com/books/images_new/3092.jpg",editedByType:"Edited by",editors:[{id:"50017",title:"Prof.",name:"Sylvie",surname:"Manguin",slug:"sylvie-manguin",fullName:"Sylvie Manguin"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"3161",title:"Frontiers in Guided Wave Optics and Optoelectronics",subtitle:null,isOpenForSubmission:!1,hash:"deb44e9c99f82bbce1083abea743146c",slug:"frontiers-in-guided-wave-optics-and-optoelectronics",bookSignature:"Bishnu Pal",coverURL:"https://cdn.intechopen.com/books/images_new/3161.jpg",editedByType:"Edited by",editors:[{id:"4782",title:"Prof.",name:"Bishnu",surname:"Pal",slug:"bishnu-pal",fullName:"Bishnu Pal"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"72",title:"Ionic Liquids",subtitle:"Theory, Properties, New Approaches",isOpenForSubmission:!1,hash:"d94ffa3cfa10505e3b1d676d46fcd3f5",slug:"ionic-liquids-theory-properties-new-approaches",bookSignature:"Alexander Kokorin",coverURL:"https://cdn.intechopen.com/books/images_new/72.jpg",editedByType:"Edited by",editors:[{id:"19816",title:"Prof.",name:"Alexander",surname:"Kokorin",slug:"alexander-kokorin",fullName:"Alexander Kokorin"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"1373",title:"Ionic Liquids",subtitle:"Applications and Perspectives",isOpenForSubmission:!1,hash:"5e9ae5ae9167cde4b344e499a792c41c",slug:"ionic-liquids-applications-and-perspectives",bookSignature:"Alexander Kokorin",coverURL:"https://cdn.intechopen.com/books/images_new/1373.jpg",editedByType:"Edited by",editors:[{id:"19816",title:"Prof.",name:"Alexander",surname:"Kokorin",slug:"alexander-kokorin",fullName:"Alexander Kokorin"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}}],ofsBooks:[]},correction:{item:{id:"57158",slug:"correction-to-chemical-composition-and-biological-activities-of-mentha-species",title:"Correction to: Chemical Composition and Biological Activities of Mentha Species",doi:null,correctionPDFUrl:"https://cdn.intechopen.com/pdfs/57158.pdf",downloadPdfUrl:"/chapter/pdf-download/57158",previewPdfUrl:"/chapter/pdf-preview/57158",totalDownloads:null,totalCrossrefCites:null,bibtexUrl:"/chapter/bibtex/57158",risUrl:"/chapter/ris/57158",chapter:{id:"54028",slug:"chemical-composition-and-biological-activities-of-mentha-species",signatures:"Fatiha Brahmi, Madani Khodir, Chibane Mohamed and Duez Pierre",dateSubmitted:"June 7th 2016",dateReviewed:"December 19th 2016",datePrePublished:null,datePublished:"March 15th 2017",book:{id:"5612",title:"Aromatic and Medicinal Plants",subtitle:"Back to Nature",fullTitle:"Aromatic and Medicinal Plants - Back to Nature",slug:"aromatic-and-medicinal-plants-back-to-nature",publishedDate:"March 15th 2017",bookSignature:"Hany A. El-Shemy",coverURL:"https://cdn.intechopen.com/books/images_new/5612.jpg",licenceType:"CC BY 3.0",editedByType:"Edited by",editors:[{id:"54719",title:"Prof.",name:"Hany",middleName:null,surname:"El-Shemy",slug:"hany-el-shemy",fullName:"Hany El-Shemy"}],productType:{id:"1",title:"Edited Volume",chapterContentType:"chapter",authoredCaption:"Edited by"}},authors:[{id:"193281",title:"Dr.",name:"Fatiha",middleName:null,surname:"Brahmi",fullName:"Fatiha Brahmi",slug:"fatiha-brahmi",email:"fatiha.brahmi@univ-bejaia.dz",position:null,institution:{name:"University of Béjaïa",institutionURL:null,country:{name:"Algeria"}}},{id:"199693",title:"Prof.",name:"Khodir",middleName:null,surname:"Madani",fullName:"Khodir Madani",slug:"khodir-madani",email:"madani28dz@yahoo.fr",position:null,institution:null},{id:"199694",title:"Prof.",name:"Pierre",middleName:null,surname:"Duez",fullName:"Pierre Duez",slug:"pierre-duez",email:"pduez@umons.be",position:null,institution:null},{id:"203738",title:"Prof.",name:"Mohamed",middleName:null,surname:"Chibane",fullName:"Mohamed Chibane",slug:"mohamed-chibane",email:"chibanem@yahoo.fr",position:null,institution:null}]}},chapter:{id:"54028",slug:"chemical-composition-and-biological-activities-of-mentha-species",signatures:"Fatiha Brahmi, Madani Khodir, Chibane Mohamed and Duez Pierre",dateSubmitted:"June 7th 2016",dateReviewed:"December 19th 2016",datePrePublished:null,datePublished:"March 15th 2017",book:{id:"5612",title:"Aromatic and Medicinal Plants",subtitle:"Back to Nature",fullTitle:"Aromatic and Medicinal Plants - Back to Nature",slug:"aromatic-and-medicinal-plants-back-to-nature",publishedDate:"March 15th 2017",bookSignature:"Hany A. El-Shemy",coverURL:"https://cdn.intechopen.com/books/images_new/5612.jpg",licenceType:"CC BY 3.0",editedByType:"Edited by",editors:[{id:"54719",title:"Prof.",name:"Hany",middleName:null,surname:"El-Shemy",slug:"hany-el-shemy",fullName:"Hany El-Shemy"}],productType:{id:"1",title:"Edited Volume",chapterContentType:"chapter",authoredCaption:"Edited by"}},authors:[{id:"193281",title:"Dr.",name:"Fatiha",middleName:null,surname:"Brahmi",fullName:"Fatiha Brahmi",slug:"fatiha-brahmi",email:"fatiha.brahmi@univ-bejaia.dz",position:null,institution:{name:"University of Béjaïa",institutionURL:null,country:{name:"Algeria"}}},{id:"199693",title:"Prof.",name:"Khodir",middleName:null,surname:"Madani",fullName:"Khodir Madani",slug:"khodir-madani",email:"madani28dz@yahoo.fr",position:null,institution:null},{id:"199694",title:"Prof.",name:"Pierre",middleName:null,surname:"Duez",fullName:"Pierre Duez",slug:"pierre-duez",email:"pduez@umons.be",position:null,institution:null},{id:"203738",title:"Prof.",name:"Mohamed",middleName:null,surname:"Chibane",fullName:"Mohamed Chibane",slug:"mohamed-chibane",email:"chibanem@yahoo.fr",position:null,institution:null}]},book:{id:"5612",title:"Aromatic and Medicinal Plants",subtitle:"Back to Nature",fullTitle:"Aromatic and Medicinal Plants - Back to Nature",slug:"aromatic-and-medicinal-plants-back-to-nature",publishedDate:"March 15th 2017",bookSignature:"Hany A. El-Shemy",coverURL:"https://cdn.intechopen.com/books/images_new/5612.jpg",licenceType:"CC BY 3.0",editedByType:"Edited by",editors:[{id:"54719",title:"Prof.",name:"Hany",middleName:null,surname:"El-Shemy",slug:"hany-el-shemy",fullName:"Hany El-Shemy"}],productType:{id:"1",title:"Edited Volume",chapterContentType:"chapter",authoredCaption:"Edited by"}}},ofsBook:{item:{type:"book",id:"10633",leadTitle:null,title:"Biotechnology to Combat COVID-19",subtitle:null,reviewType:"peer-reviewed",abstract:"
\r\n\tThe recent emergence of a novel, pathogenic coronavirus known as Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2, officially COVID-19) and its subsequent rapid spread across the world has put the global health at risk. The ongoing efforts are focused on gaining insights into the epidemiology along with the discovered genome structure and important viral factors of SARS-CoV-2. Biotechnology-based innovative solutions are being sought to develop new rapid methods including point-of-care diagnostics and surveillance technologies to detect SARS-CoV-2 early in order to control the disease and mitigate it in a timely fashion. These efforts have also focused on investigating therapeutics including significant breakthroughs in clinical trials on antiviral drugs and vaccines to alleviate the challenges of COVID-19.
\r\n\r\n\tThis book intends to provide a comprehensive overview of the current state-of-the-art in epidemiology, transmission and genome structure along with the latest breakthroughs in diagnostics, therapeutics and vaccines to combat COVID-19.
",isbn:"978-1-83968-627-6",printIsbn:"978-1-83968-626-9",pdfIsbn:"978-1-83968-628-3",doi:null,price:0,priceEur:0,priceUsd:0,slug:null,numberOfPages:0,isOpenForSubmission:!1,hash:"d834c746c5b159a201a9cdadfc473486",bookSignature:"Dr. Megha Agrawal and Dr. Shyamasri Biswas",publishedDate:null,coverURL:"https://cdn.intechopen.com/books/images_new/10633.jpg",keywords:"Biological Transmission, Infectious Agent, Viral Protein, Crystal Structure, Sequencing, PCR, Microfluidics, Therapeutics, Anti-viral Drugs, Therapeutic Targets, Vaccines, Protein Engineering",numberOfDownloads:136,numberOfWosCitations:0,numberOfCrossrefCitations:0,numberOfDimensionsCitations:0,numberOfTotalCitations:0,isAvailableForWebshopOrdering:!0,dateEndFirstStepPublish:"September 14th 2020",dateEndSecondStepPublish:"December 28th 2020",dateEndThirdStepPublish:"February 23rd 2021",dateEndFourthStepPublish:"May 14th 2021",dateEndFifthStepPublish:"July 13th 2021",remainingDaysToSecondStep:"2 months",secondStepPassed:!0,currentStepOfPublishingProcess:4,editedByType:null,kuFlag:!1,biosketch:"Co-founder and executive publisher of Biotechnology Kiosk, an international scientific magazine in the USA. She held senior academic positions at top-tier US institutions including the University of Florida at Gainesville, Children’s National Medical Center in Washington, and the University of Illinois.",coeditorOneBiosketch:"Co-founder and executive publisher of Biotechnology Kiosk and Chairman of USA PRIME BIOTECH. LLC. who worked as a scientist in several labs which include the University of Massachusetts, North Carolina State University and the University of Florida at Gainesville.",coeditorTwoBiosketch:null,coeditorThreeBiosketch:null,coeditorFourBiosketch:null,coeditorFiveBiosketch:null,editors:[{id:"193723",title:"Dr.",name:"Megha",middleName:null,surname:"Agrawal",slug:"megha-agrawal",fullName:"Megha Agrawal",profilePictureURL:"https://mts.intechopen.com/storage/users/193723/images/system/193723.jpg",biography:"Dr. Megha Agrawal is co-founder and executive publisher of Biotechnology Kiosk, an international scientific magazine in the USA. She has held senior academic positions at top-tier US institutions including University of Florida at Gainesville, Children’s National Medical Center in Washington DC and the University of Illinois at Chicago, where she was a research faculty and principal investigator. She received her Ph.D. in Biotechnology from the Indian Institute of Technology at Roorkee, which is one of the premier institutions in India with an outstanding reputation across the globe. Dr. Agrawal’s research has impacted significantly to initiate new areas in neurodegeneration, neuroprotection and novel approaches to treat cerebral stroke related injuries and prevention. She has published in internationally prestigious scientific journals in the field of biotechnology, neuroscience, stroke and molecular biology. Dr. Agrawal also serves as an Associate Editor for the international journal ‘Frontiers in Molecular Bioscience (Molecular Diagnostics and Therapeutics)’, a Nature-Frontier publication. In addition, she is on the editorial board of Drug and Metabolism Reviews and a contributing editor in Vacuum Advances in Biotechnology for Vacuum Technology and Coating Magazine and writes a monthly column in biotechnology.",institutionString:"Biotechnology Kiosk, formerly University of Illinois at Chicago",position:null,outsideEditionCount:0,totalCites:0,totalAuthoredChapters:"0",totalChapterViews:"0",totalEditedBooks:"0",institution:{name:"University of Illinois at Chicago",institutionURL:null,country:{name:"United States of America"}}}],coeditorOne:{id:"329553",title:"Dr.",name:"Shyamasri",middleName:null,surname:"Biswas",slug:"shyamasri-biswas",fullName:"Shyamasri Biswas",profilePictureURL:"https://mts.intechopen.com/storage/users/329553/images/system/329553.jpg",biography:"Dr Shyamasri Biswas is co-founder and executive publisher of Biotechnology Kiosk. She received her PhD in biotechnology jointly from Banaras Hindu University, Varanasi, India and University of Potsdam, Germany. During her PhD, she received the prestigious DAAD sandwich research fellowship to carry out her PhD work on a collaborative research project in Germany. After her PhD, she was a scientist in several labs in the United States that include University of Massachusetts, Worcester MA, North Carolina State University and the University of Florida at Gainesville. She has published her research works in numerous prestigious international journals including Nature Structural and Molecular Biology, Biochemistry and Journal of Biological Chemistry to name a few. Dr. Biswas is a contributing editor in Vacuum Advances in Biotechnology for Vacuum Technology & Coating Magazine and writes a monthly column in biotechnology. In addition, she is a reviewer for many biochemistry and biotechnology journals. She gave several invited talks at national and international meetings in Biotechnology. Presently, Dr Biswas is the Chairman of a startup company (USA PRIME BIOTECH. LLC), registered in the state of Florida",institutionString:"Biotechnology Kiosk, formerly University of Florida",position:null,outsideEditionCount:0,totalCites:0,totalAuthoredChapters:"0",totalChapterViews:"0",totalEditedBooks:"0",institution:{name:"University of Florida",institutionURL:null,country:{name:"United States of America"}}},coeditorTwo:null,coeditorThree:null,coeditorFour:null,coeditorFive:null,topics:[{id:"16",title:"Medicine",slug:"medicine"}],chapters:[{id:"75208",title:"Epidemiology, Pathogenesis, and Healing Strategies of COVID-19",slug:"epidemiology-pathogenesis-and-healing-strategies-of-covid-19",totalDownloads:27,totalCrossrefCites:0,authors:[null]},{id:"75451",title:"COVID-19 Researches: Where India Stands So Far?",slug:"covid-19-researches-where-india-stands-so-far",totalDownloads:6,totalCrossrefCites:0,authors:[null]},{id:"75270",title:"Potential Therapeutics Pathways in Solving the Challenges of the COVID-19 Pandemic",slug:"potential-therapeutics-pathways-in-solving-the-challenges-of-the-covid-19-pandemic",totalDownloads:26,totalCrossrefCites:0,authors:[null]},{id:"75277",title:"Refocusing Functional Anatomy and Immunology of the Respiratory Mucosa in the Advent of Covid-19",slug:"refocusing-functional-anatomy-and-immunology-of-the-respiratory-mucosa-in-the-advent-of-covid-19",totalDownloads:29,totalCrossrefCites:0,authors:[null]},{id:"75182",title:"Control of an Epidemic of SARS-CoV-2 by Assessing Transmissibility of Its Infected Cases in Absence of a Suitable Vaccine",slug:"control-of-an-epidemic-of-sars-cov-2-by-assessing-transmissibility-of-its-infected-cases-in-absence-",totalDownloads:21,totalCrossrefCites:0,authors:[null]},{id:"75473",title:"Role of Graphene and Graphene Derived Materials to Fight with COVID-19",slug:"role-of-graphene-and-graphene-derived-materials-to-fight-with-covid-19",totalDownloads:1,totalCrossrefCites:0,authors:[null]},{id:"75255",title:"Whole Genome Sequencing: A Powerful Tool for Understanding the Diversity of Genotypes and Phenotypes among COVID-19 Infected Patients to Help in Controlling Outbreaks",slug:"whole-genome-sequencing-a-powerful-tool-for-understanding-the-diversity-of-genotypes-and-phenotypes-",totalDownloads:27,totalCrossrefCites:0,authors:[null]}],productType:{id:"1",title:"Edited Volume",chapterContentType:"chapter",authoredCaption:"Edited by"},personalPublishingAssistant:{id:"297737",firstName:"Mateo",lastName:"Pulko",middleName:null,title:"Mr.",imageUrl:"https://mts.intechopen.com/storage/users/297737/images/8492_n.png",email:"mateo.p@intechopen.com",biography:"As an Author Service Manager my responsibilities include monitoring and facilitating all publishing activities for authors and editors. From chapter submission and review, to approval and revision, copyediting and design, until final publication, I work closely with authors and editors to ensure a simple and easy publishing process. I maintain constant and effective communication with authors, editors and reviewers, which allows for a level of personal support that enables contributors to fully commit and concentrate on the chapters they are writing, editing, or reviewing. I assist authors in the preparation of their full chapter submissions and track important deadlines and ensure they are met. I help to coordinate internal processes such as linguistic review, and monitor the technical aspects of the process. As an ASM I am also involved in the acquisition of editors. Whether that be identifying an exceptional author and proposing an editorship collaboration, or contacting researchers who would like the opportunity to work with IntechOpen, I establish and help manage author and editor acquisition and contact."}},relatedBooks:[{type:"book",id:"6550",title:"Cohort Studies in Health Sciences",subtitle:null,isOpenForSubmission:!1,hash:"01df5aba4fff1a84b37a2fdafa809660",slug:"cohort-studies-in-health-sciences",bookSignature:"R. Mauricio Barría",coverURL:"https://cdn.intechopen.com/books/images_new/6550.jpg",editedByType:"Edited by",editors:[{id:"88861",title:"Dr.",name:"R. Mauricio",surname:"Barría",slug:"r.-mauricio-barria",fullName:"R. Mauricio Barría"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"1591",title:"Infrared Spectroscopy",subtitle:"Materials Science, Engineering and Technology",isOpenForSubmission:!1,hash:"99b4b7b71a8caeb693ed762b40b017f4",slug:"infrared-spectroscopy-materials-science-engineering-and-technology",bookSignature:"Theophile Theophanides",coverURL:"https://cdn.intechopen.com/books/images_new/1591.jpg",editedByType:"Edited by",editors:[{id:"37194",title:"Dr.",name:"Theophanides",surname:"Theophile",slug:"theophanides-theophile",fullName:"Theophanides Theophile"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"3092",title:"Anopheles mosquitoes",subtitle:"New insights into malaria vectors",isOpenForSubmission:!1,hash:"c9e622485316d5e296288bf24d2b0d64",slug:"anopheles-mosquitoes-new-insights-into-malaria-vectors",bookSignature:"Sylvie Manguin",coverURL:"https://cdn.intechopen.com/books/images_new/3092.jpg",editedByType:"Edited by",editors:[{id:"50017",title:"Prof.",name:"Sylvie",surname:"Manguin",slug:"sylvie-manguin",fullName:"Sylvie Manguin"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"3161",title:"Frontiers in Guided Wave Optics and Optoelectronics",subtitle:null,isOpenForSubmission:!1,hash:"deb44e9c99f82bbce1083abea743146c",slug:"frontiers-in-guided-wave-optics-and-optoelectronics",bookSignature:"Bishnu Pal",coverURL:"https://cdn.intechopen.com/books/images_new/3161.jpg",editedByType:"Edited by",editors:[{id:"4782",title:"Prof.",name:"Bishnu",surname:"Pal",slug:"bishnu-pal",fullName:"Bishnu Pal"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"72",title:"Ionic Liquids",subtitle:"Theory, Properties, New Approaches",isOpenForSubmission:!1,hash:"d94ffa3cfa10505e3b1d676d46fcd3f5",slug:"ionic-liquids-theory-properties-new-approaches",bookSignature:"Alexander Kokorin",coverURL:"https://cdn.intechopen.com/books/images_new/72.jpg",editedByType:"Edited by",editors:[{id:"19816",title:"Prof.",name:"Alexander",surname:"Kokorin",slug:"alexander-kokorin",fullName:"Alexander Kokorin"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"1373",title:"Ionic Liquids",subtitle:"Applications and Perspectives",isOpenForSubmission:!1,hash:"5e9ae5ae9167cde4b344e499a792c41c",slug:"ionic-liquids-applications-and-perspectives",bookSignature:"Alexander Kokorin",coverURL:"https://cdn.intechopen.com/books/images_new/1373.jpg",editedByType:"Edited by",editors:[{id:"19816",title:"Prof.",name:"Alexander",surname:"Kokorin",slug:"alexander-kokorin",fullName:"Alexander Kokorin"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"57",title:"Physics and Applications of Graphene",subtitle:"Experiments",isOpenForSubmission:!1,hash:"0e6622a71cf4f02f45bfdd5691e1189a",slug:"physics-and-applications-of-graphene-experiments",bookSignature:"Sergey Mikhailov",coverURL:"https://cdn.intechopen.com/books/images_new/57.jpg",editedByType:"Edited by",editors:[{id:"16042",title:"Dr.",name:"Sergey",surname:"Mikhailov",slug:"sergey-mikhailov",fullName:"Sergey Mikhailov"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"371",title:"Abiotic Stress in Plants",subtitle:"Mechanisms and Adaptations",isOpenForSubmission:!1,hash:"588466f487e307619849d72389178a74",slug:"abiotic-stress-in-plants-mechanisms-and-adaptations",bookSignature:"Arun Shanker and B. Venkateswarlu",coverURL:"https://cdn.intechopen.com/books/images_new/371.jpg",editedByType:"Edited by",editors:[{id:"58592",title:"Dr.",name:"Arun",surname:"Shanker",slug:"arun-shanker",fullName:"Arun Shanker"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"878",title:"Phytochemicals",subtitle:"A Global Perspective of Their Role in Nutrition and Health",isOpenForSubmission:!1,hash:"ec77671f63975ef2d16192897deb6835",slug:"phytochemicals-a-global-perspective-of-their-role-in-nutrition-and-health",bookSignature:"Venketeshwer Rao",coverURL:"https://cdn.intechopen.com/books/images_new/878.jpg",editedByType:"Edited by",editors:[{id:"82663",title:"Dr.",name:"Venketeshwer",surname:"Rao",slug:"venketeshwer-rao",fullName:"Venketeshwer Rao"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"4816",title:"Face Recognition",subtitle:null,isOpenForSubmission:!1,hash:"146063b5359146b7718ea86bad47c8eb",slug:"face_recognition",bookSignature:"Kresimir Delac and Mislav Grgic",coverURL:"https://cdn.intechopen.com/books/images_new/4816.jpg",editedByType:"Edited by",editors:[{id:"528",title:"Dr.",name:"Kresimir",surname:"Delac",slug:"kresimir-delac",fullName:"Kresimir Delac"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}}]},chapter:{item:{type:"chapter",id:"42603",title:"Mycotoxins in Cereal and Soybean-Based Food and Feed",doi:"10.5772/54470",slug:"mycotoxins-in-cereal-and-soybean-based-food-and-feed",body:'Cereals and soybean are plants used extensively in food and feed manufacturing as a source of proteins, carbohydrates and oils. These materials, due to their chemical composition, are particularly susceptible to microbial contamination, especially by filamentous fungi. Cereals, soybean, and other raw materials can be contaminated with fungi, either during vegetation in the field or during storage, as well as during the processing.
Fungi contaminating grains have been conventionally divided into two groups – field fungi and storage fungi. Field fungi are those that infect the crops throughout the vegetation phase of plants and they include plant pathogens such as Alternaria, Fusarium, Cladosporium, and Botrytis species. Their numbers gradually decrease during storage. They are replaced by storage fungi of Aspergillus, Penicillium, Rhizopus and Mucor genera that infect grains after harvesting, during storage [1]. Both groups of fungi include toxigenic species. Currently, this division is not so strict.
Therefore, according to [2], four types of toxigenic fungi can be distinguished:
Plant pathogens as Fusarium graminearum and Alternaria alternata;
Fungi that grow and produce mycotoxins on senescent or stressed plants, e.g. F. moniliforme and Aspergillus flavus;
Fungi that initially colonize the plant and increase the feedstock’s susceptibility to contamination after harvesting, e.g. Aspegillus flavus.
Fungi that are found on the soil or decaying plant material that occur on the developing kernels in the field and later proliferate in storage if conditions permit, e.g. Penicillium verrucosum and Aspergillus ochraceus.
Fungal growth is influenced by complex interaction of different environmental factors such as temperature, pH, humidity, water activity, aeration, availability of nutrients, mechanical damage, microbial interaction or the presence of antimicrobial compounds. Poor hygiene, inappropriate temperature and moisture during harvesting, storage, processing and handling may contribute to increased contamination extent.
Fungal contamination can cause damage in cereal grains and oilseeds, including low germination, low baking quality, discoloration, off-flavours, softening and rotting, and formation of pathogenic or allergenic propagules.
It may also decrease the kernel size and thus affect the flour yield. Moulds growing on stored cereals produce a range of volatile odour compounds, including 3-octanone, 1-octen-3-ol, geosmin, 2-methoxy-3-isopropylpyrazine, and 2-methyl-1-propanol which are responsible for an earthy-musty off-odour and affect the quality of raw materials even when present in very small amounts [3]. Moulds produce a vast number of enzymes: lipases, proteases, amylases, which are able to break down food into components leading to its spoilage. Fungi growing on stored grains can reduce the germination rate and decrease the content of carbohydrate, protein and oils. During storage of soybean seed lasting 12 months, the moisture content was at the level of 10-11%. It was observed that the germination rate decreased from initial 75% to 4% prior to the lapse of a 9-month period. In prolonged storage under natural conditions, the total carbohydrate content decreased from 21% to 16.8%, and protein and the total oil contents became slightly reduced [4]. Moulds as food and feed spoilage microorganisms have been characterized in several review articles [2, 5].
The largest producers of soybean in the World are the United States of America, Brazil, Argentina, China, and India. The climatic conditions in soybean-growing regions (moderate mean temperature and relative humidity between 50 and 80%) provide optimal conditions for fungal growth. Soybean (Glyccine max L.Merr.) is often attacked by fungi during cultivation, which significantly decreases its productivity and quality in most production areas. Fungi associated with cereal grains and oilseeds are important in assessing the potential risk of mycotoxin contamination. Mycotoxins are fungal secondary metabolites which are toxic to vertebrate animals even in small amounts when introduced orally or by inhalation.
Table 1 summarises the occurrence of contamination of different raw materials in various countries. Some of them are of mycotoxicological interest.
Soybean matrix has been rarely studied compared to cereals in relation to fungal and mycotoxin contamination. The fungi associated with soybean seeds, pods and flowers in North America were reviewed by [20]. The most common species belong to Aspergillus, Fusarium, Chaetomium, Penicillium, Alternaria and Colletotrichum genera. Most of these fungi were recorded in mature seeds prior to storage. About 10% of them are commonly referred to as storage moulds. Most of the isolated fungi are facultative parasites or saprophytes.
\n\t\t\t\t\tCommodities\n\t\t\t\t | \n\t\t\t\t\n\t\t\t\t\tCountry\n\t\t\t\t | \n\t\t\t\t\n\t\t\t\t\tFungal species\n\t\t\t\t | \n\t\t\t\t\n\t\t\t\t\tRef\n\t\t\t\t | \n\t\t\t
Soybean | \n\t\t\tEcuador | \n\t\t\t\n\t\t\t\tAspergillus flavus, A.niger, A.ochraceus, A.parasiticus, Fusarium verticillioides, F.semitectum, Penicillium janthinellum, P.simplicissimum, Nigrospora oryzae, Cladosporium cladosporioides, Arthrinium phaeospermum\n\t\t\t | \n\t\t\t[6] | \n\t\t
Romania | \n\t\t\t\n\t\t\t\tAspergillus flavus, A.parasiticus, A.candidus, A.niger, Penicillium griseofulvum, P.variabile, Fusarium culmorum, F.graminearum, F.oxysporum\n\t\t\t | \n\t\t\t[7] | \n\t\t|
India | \n\t\t\t\n\t\t\t\tAspergillus flavus, A.candidus, A.versicolor, Eurotium repens, A.sulphureus, Fusarium sp., Alternaria sp., Curvularia sp.\n\t\t\t | \n\t\t\t[4] | \n\t\t|
USA | \n\t\t\t\n\t\t\t\tDiaporthe\n\t\t\t\tphaseolorum var. sojae, Fusarium sp., Alternaria alternata, Alternaria sp., Fusarium sp., Curvularia sp., Cladosporium sp., Fusarium equiseti, F.oxysporum, F.solani\n\t\t\t | \n\t\t\t[8-10] | \n\t\t|
Croatia | \n\t\t\t\n\t\t\t\tFusarium sporotrichides, F.verticillioides, F.equiseti, F.semitecium, F.pseudograminearum, F.chlamydosporum, F.sambucinum \n\t\t\t | \n\t\t\t[11] | \n\t\t|
Argentina | \n\t\t\t\n\t\t\t\tAspergillus flavus, A.niger, A.candidus, A.fumigatus, Fusarium verticillioides, F.equiseti, F.semitecium, F.graminearum, Penicillium funiculosum, P.griseofulvum, P.canenscens, Erotium sp. Cladosporium sp., Alternaria alternata, A.infectoria, A.oregonensis\n\t\t\t | \n\t\t\t[12, 13] | \n\t\t|
Rice | \n\t\t\tEcuador | \n\t\t\t\n\t\t\t\tAspergillus flavus, A.ochraceus, Fusarium verticillioides, F.oxysporum, F.proliferatum, F.semitectum, F.solani, Penicillium janthinellum, Epicoccum nigrum, Curvularia lunata, Nigrospora oryzae, Rhizopus stolonifer, Bipolaris oryzae\n\t\t\t | \n\t\t\t[6] | \n\t\t
Wheat | \n\t\t\tArgentina | \n\t\t\t\n\t\t\t\tAspergillus flavus, A.niger, A.oryzae, Fusarium verticillioides, Penicillium funiculosum, P.oxalicum \n\t\t\t | \n\t\t\t[12] | \n\t\t
Germany | \n\t\t\t\n\t\t\t\tAspergillus candidus, A.flavus, A.versicolor, Eurotium sp., Penicillium auriantogriseum, P.verrucosum, P.viridicatum, Alternaria sp.\n\t\t\t | \n\t\t\t[14] | \n\t\t|
Poland | \n\t\t\t\n\t\t\t\tAlternaria tenuis, Aspergillus aculeatus, A.parasiticus, Fusarium moniliforme, F.verticillioides, Penicillium verrucosum, P.viridicatum P.crustosum\n\t\t\t | \n\t\t\t[15] | \n\t\t|
Croatia | \n\t\t\t\n\t\t\t\tFusarium graminearum, F.poae, F.avenaceum, F.verticillioides\n\t\t\t | \n\t\t\t[11] | \n\t\t|
Maize | \n\t\t\tEcuador | \n\t\t\t\n\t\t\t\tAspergillus flavus, A.parasiticus, Fusarium graminearum, F.verticillioides, Mucor racemosus Rhizopus stolonifer, Acremonium strictum, Alternaria alternata, Cladosporium sp. \n\t\t\t | \n\t\t\t[6] | \n\t\t
Poland | \n\t\t\t\n\t\t\t\tAspergillus aculeatus, Aspergillus parasiticus, Fusarium moniliforme, F.verticillioides\n\t\t\t | \n\t\t\t[15] | \n\t\t|
Argentina | \n\t\t\t\n\t\t\t\tFusarium verticillioides, F.proliferatum, F.subglutinans, F.dlamini, F.nygamai, Alternaria alternata, Penicillium funiculosum, P.citrinum, Aspergillus flavus\n\t\t\t | \n\t\t\t[16, 17] | \n\t\t|
Croatia | \n\t\t\t\n\t\t\t\tFusarium verticillioides, F.graminearum \n\t\t\t | \n\t\t\t[11] | \n\t\t|
Oats | \n\t\t\tPoland | \n\t\t\t\n\t\t\t\tCladosporium sp., Aspergillus sp., Penicillium sp. \n\t\t\t | \n\t\t\t[18] | \n\t\t
Breakfast cereals | \n\t\t\tPoland | \n\t\t\t\n\t\t\t\tAspergillus versicolor, A.flavus, A.sydowi, A.niger, A.ochraceus, Fusarium graminearum, Penicillium chrysogenum, Eurotium repens\n\t\t\t | \n\t\t\t[19] | \n\t\t
Wheat flour | \n\t\t\tGermany | \n\t\t\t\n\t\t\t\tAspergillus candidus, A.flavus, A.niger, Eurotium sp. Penicillium auriantogriseum, P.brevicompactum, P.citrinum, P.griseofulvum, P.verrucosum, Cladosporium cladosporioides\n\t\t\t | \n\t\t\t[14] | \n\t\t
Fungal species dominated in cereals and cereal products
Fusarium graminearum is associated with cereals and soybean growing in warmer areas such as South and North America or China, and F.culmorum in cooler areas such as Finland, France, Poland or Germany. Mechanical damage of kernels by birds or insects, e.g. European corn borer and sap beetles, predisposes corn to infections caused by Fusarium and other “field fungi”. Fusarium moniliforme and F.proliferatum are the most common fungi associated with maize. It was found that the levels of contamination with Fusarium sp. were significantly greater on the conventional than the transgenic cultivars in 2000, but in 1999 the difference between the cultivars was not statistically significant. In case of Alternaria, a greater frequency of contamination in transgenic varieties was observed. The authors concluded that the isolation frequency can vary by years and is more dependent on the environmental and cultural practices than on varieties [9]. The isolation frequencies of fungi from seeds and pods of soybean cultivars varied annually, in part due to some differences in environmental conditions (rainfall) [8].
Fusarium species occur worldwide in a variety of climates and on many plant species as epiphytes, parasites, or pathogens. Fusarium-induced diseases of soybean have been attributed to different species: Fusarium oxysporum (fusarium blight, wilt and root rot), Fusarium semitectum (pod and collar rot), F.solani (sudden death syndrome) [21, 22]. Fusarium infections are spread by air-borne conidia on the heads or by a systemic infection. The species belonging to Fusarium genera are of particular interest due to the formation of a wide range of secondary metabolites, many of which are toxic to humans or animals. Infections by Fusarium spp. were determined by [11] in different crops. The contamination expressed as the percentage of seeds with Fusarium colonies ranged from 5% to 69% for wheat, from 25% to 100% for maize, from 4% to 17% for soybean. The dominant species were F.graminearum on wheat (27% of isolates), F.verticillioides on maize (83 % of isolates), and F.sporotrichioides on soybean (34 % of isolates) [11]. This study suggested that the risk of contamination with Fusarium toxins is higher for maize and wheat than for soybean.
The mycological state of grain can be considered as good when the number of CFU is within the range 103-105 per gram [23]. In our research, the contamination of feed components such as barley, maize and wheat was in the range from 102 to 104 CFU/g, depending on the crop, region and mills [15]. It was found that wheat from organic farms was contaminated with fungi by 70.5% more and barley by 24.8% less as compared to the crops from conventional farms [24]. Similarly, the total number of fungi in Polish ecological oat products was about a hundred times higher than in conventional ones. In samples of ecological origin, the mean value of fungi was 1.1×104 CFU/g, whereas for conventional grains it was 5.0×102 CFU/g [18].
The results obtained by [14] showed that the most common moulds isolated from whole wheat and wheat flour belong to the Aspergillus and Penicillium genera. From the whole wheat flour, 83.7% of Aspergillus followed by Penicillium (7.6%), Eurotium (2.9%) and Alternaria (2.5%) species were isolated. The white flour contained 77.3% of Aspergillus, 15% of Penicillium and 4.1% of Cladosporium genera. Aspergillus candidus was the dominant species. Among all the isolated fungal species, 93.2% belonged to the group of toxigenic fungi. Several toxin-producing Aspergillus species were reported to dominate on cereals, especially A.flavus, A.candidus, A.niger, A.versicolor, A.penicillioides, and Eurotium sp. at lower water activity [25]. Among Aspergillus species isolated from Ecuadorian soybean seeds, Aspergillus flavus and A.ochraceus were the most prevalent ones. The most frequent Fusarium species were F.verticillioides and F.semitecium. All the examined samples were contaminated with these species [6]. The presence of mycobiota in raw materials and finished fattening pig feed was determined in eastern Argentina. All samples of soybean seeds were contaminated with fungi in the range from 10 to 9.0×102 CFU/g, depending on the sampling period. The most prevalent species in soybean and wheat bran were Aspergillus flavus and Fusarium verticillioides [12].
The fungal microflora changes during post-harvest drying and storage. The field fungi are adapted to growth at high water activity and they die during drying and storage, to be replaced by storage fungi that are capable of growing at lower aw. For most grains, moisture content in the range from 10% to 14% is recommended, depending on the grain type and desired storage life [1].
A wide range of microorganisms have been isolated from storage grains, including psychrotolerant, mesophilic, thermophilic, xerophilic and hydrophilic species. The extremely xerophilic species are Eurotium spp. and Aspergillus restrictus, the moderate xerophilic ones include A.candidus and A.flavus, and the slighty xerophilic one is A.fumigatus. An example of psychrotolerant species belonging to Penicillium genera is P.aurantiogriseum and P.verrucosum, mesophilic species can be represented by P.corylophilum, and thermophilic species by Talaromyces thermophilus. Among the hydrophiles, the most common are Fusarium and Acremonium species [25]. The minimum aw for conidial formation is influenced by temperature, for instance, P.aurianogriseum produces conidia to a minimum of 0.86 aw at 30oC, but to 0.83 aw at 23oC. Many species belonging to Aspergillus and Penicillium genera are highly adapted to the rapid colonisation of substrates of reduced water activity. Modifying several factors in grain storage may facilitate safe storage. Stores should be monitored for relative humidity, temperature and airflow efficiency. Moisture migration may occur during storage and create damp pockets. In addition to this, insect infestations may cause heating and the generation of moisture. Aeration with cool air may help to protect the stored commodities against fungal development.
Cereals in the field are exposed to fungi from the soil, birds, animals, insects, organic fertilizers, and from other plants in the field. Mechanical damage of raw material or food due to insects and pests is a disturbing problem mainly in tropical regions, particularly as food contaminants are present in the field more abundantly than in the storage. Many different insects, e.g. European corn borer and sap beetles have the capability of promoting infections of various crops with mycotoxigenic fungi [25].
Mycotoxin production is determined by genetic capability related to strain and environmental factors including the substrate and its nutritious content. Toxin production is dependent on physical (temperature, moisture, light), chemical (pH value, nutrients, oxygen content, preservatives), and biological factors (competitive microbiota). Each fungus requires special conditions for its growth and other conditions for its toxin production.
The most important factor governing colonisation of grains and mycotoxin production is the availability of water which on the field comes mainly with rainfall. The second important factor is temperature. The moisture and temperature effects on mycotoxin production often differ from those on germination and growth. Table 2 presents the moisture and temperature requirements of most common toxigenic fungi for their growth and mycotoxin production.
It was found that optimal temperature for F.graminearum growth on soybean contained in the range 15-20oC (in isothermal temperature) and 15/25oC (in cycling temperature). The optimal temperature for mycotoxin production on soybean was 20oC for deoxynivalenol (DON) and 15oC for zearalenone (ZEA). After 15 days of incubation, the maximum levels 39 ppm and 1040 ppm for ZEA and DON, respectively, were detected. Fumonisins were produced by Fusarium graminearum only the on culture medium at 30oC; on soybean no fumonisins were detected [31].
Most fungi need at least 1-2% of O2 for their growth. The influence of high carbon dioxide and low oxygen concentrations on the growth and mycotoxin production by the foodborne fungal species was investigated by [32]. Three groups of species were distinguished: first, which did not grow in 20% CO2 <0.5% O2 (Penicillium commune, Eurotium chevalieri and Xeromyces bisporus); second, which grew in 20% CO2 <0.5% O2, but not 40% CO2 <0.5% O2 (Penicillium roqueforti and Aspergillus flavus); and third, which grew in 20%, 40% and 60% CO2 <0.5% O2 (Mucor plumbeus, Fusarium oxysporum, F.moniliforme, Byssochlamys fulva and B.nivea). The production of aflatoxin, patulin, and roquefortine C was greatly reduced under all of the atmospheres tested. For example, aflatoxin was not produced by A. flavus during growth under 20% CO2 for 30 days. Patulin was produced by B.nivea in the atmospheres of 20% and 40% CO2, but only at low levels [32].
\n\t\t\t\tSpecies\n\t\t\t | \n\t\t\t\n\t\t\t\tFor growth\n\t\t\t | \n\t\t\t\n\t\t\t\tFor mycotoxin production\n\t\t\t | \n\t\t\t\n\t\t\t\tRef.\n\t\t\t | \n\t\t||||
\n\t\t\t\tTemperature [oC] | \n\t\t\tMinimal a\n\t\t\t\t\n\t\t\t\t\tw\n\t\t\t\t\n\t\t\t | \n\t\t\t\n\t\t\t\tTemperature [oC] | \n\t\t\t\n\t\t\t\tMinimal a\n\t\t\t\t\n\t\t\t\t\tw\n\t\t\t\t\n\t\t\t | \n\t\t||||
\n\t\t\t\tRange\n\t\t\t | \n\t\t\t\n\t\t\t\tOptimum\n\t\t\t | \n\t\t\t\n\t\t\t\tRange\n\t\t\t | \n\t\t\t\n\t\t\t\tRange\n\t\t\t | \n\t\t\t\n\t\t\t\tOptimum\n\t\t\t | \n\t\t\t\n\t\t\t\tRange\n\t\t\t | \n\t\t||
\n\t\t\t\tAlternaria alternata\n\t\t\t | \n\t\t\t0 – 35 | \n\t\t\t20 – 25 | \n\t\t\t0.88 | \n\t\t\t5-30 | \n\t\t\t20-25 | \n\t\t\t0.95-1.0 AOH 0.90 TeA | \n\t\t\t[25, 26, 28] | \n\t\t
\n\t\t\t\tFusarium culmorum\n\t\t\t | \n\t\t\t<0 – 31 | \n\t\t\t21 | \n\t\t\t0.89 | \n\t\t\t11-30 | \n\t\t\t25-26 | \n\t\t\tNd | \n\t\t\t[25] | \n\t\t
\n\t\t\t\tFusarium graminearum\n\t\t\t | \n\t\t\tNd | \n\t\t\t24 – 26 | \n\t\t\t0.89 | \n\t\t\tNd | \n\t\t\t24-26 | \n\t\t\tNd | \n\t\t\t[25] | \n\t\t
\n\t\t\t\tFusarium sporotrichoides\n\t\t\t | \n\t\t\t-2 – 35 | \n\t\t\t22 – 28 | \n\t\t\t0.88 | \n\t\t\t6-20 | \n\t\t\tNd | \n\t\t\tNd | \n\t\t\t[25] | \n\t\t
\n\t\t\t\tPenicillium verrucosum\n\t\t\t | \n\t\t\t0-31 | \n\t\t\t20 | \n\t\t\t0.81-0.83 | \n\t\t\t4-31 | \n\t\t\t20 | \n\t\t\t0.86 | \n\t\t\t[28, 29] | \n\t\t
\n\t\t\t\tPenicillium expansum\n\t\t\t | \n\t\t\t-6 – 35 | \n\t\t\t25 – 26 | \n\t\t\t0.82 – 0.85 | \n\t\t\t0-31 | \n\t\t\t25 | \n\t\t\t0.95 | \n\t\t\t[25] | \n\t\t
\n\t\t\t\tAspergillus ochraceus\n\t\t\t | \n\t\t\t8-37 | \n\t\t\t24-30 | \n\t\t\t0.76-0.83 | \n\t\t\t12-37 | \n\t\t\t25-31 | \n\t\t\t0.85 OTA 0.88 PA | \n\t\t\t[28, 29] | \n\t\t
\n\t\t\t\tAspergillus parasiticus\n\t\t\t | \n\t\t\t10-43 | \n\t\t\t32-33 | \n\t\t\t0.84 | \n\t\t\t12-40 | \n\t\t\t25-30 | \n\t\t\t0.87 | \n\t\t\t[28, 29] | \n\t\t
\n\t\t\t\tAspergillus flavus\n\t\t\t | \n\t\t\t6 – 45 | \n\t\t\t35 – 37 | \n\t\t\t0.78 | \n\t\t\t12-40 | \n\t\t\t30 | \n\t\t\t0.82 | \n\t\t\t[25] | \n\t\t
\n\t\t\t\tAspergillus versicolor\n\t\t\t | \n\t\t\t4 – 39 | \n\t\t\t25 – 30 | \n\t\t\t0.75 | \n\t\t\t15-30 | \n\t\t\t23 – 29 | \n\t\t\t"/>0.76 | \n\t[25, 30] | \n
Environmental requirements for growth and mycotoxin production
OTA – ochratoxin A; PA – penicillic acid AOH – alternariol, TeA – tenuazonic acid, ND – no data
Nutritional factors such as carbonohydrate and nitrogen sources and microelements (copper, zinc, cobalt) affect mycotoxin production, but the mechanisms of this impact are still unclear. A relationship between mycotoxin production and sporulation has been documented in several toxigenic fungi. For example, chemical substances that inhibit sporulation of Aspergillus parasiticus have also been shown to inhibit the production of aflatoxin [33]. Chemical preservatives such as organic acids (sorbic, propionic, acetic, benzoic) or fungicides have been used to restrict the growth of mycotoxigenic fungi. It was found that propionic acid at the concentration of up to 0.05% inhibited the growth and ochratoxin production by Penicillium auriantogriseum. A more effective result in higher temperature was observed [34]. Inhibiting fungal growth and toxigenic properties by organic acids is connected with lowering the pH value. It was found that ammonium and sodium bicarbonate at the concentration of 2% fully inhibited the development of the cultures of Aspergillus ochraceus, Fusarium graminearum and Penicillium griseofulvum inoculated into corn. The production of ochratoxin A by Aspergillus ochraceus was reduced from 26 ppm in untreated corn to 0.26 ppm in bicarbonate-treated corn samples [35].
The simultaneous presence of different microorganisms, such as bacteria or other fungi, could disturb fungal growth and the production of mycotoxins. For instance, Alternaria and Fusarium are antagonistic, and Alternaria was less abundant in grain with a high incidence rate of F.culmorum. Epicoccum is a strong antagonist too [25].
At 30oC, the ochratoxin production by Aspergillus ochraceus was inhibited by A.candidus, A.flavus, and A.niger in 0.995 aw. At 18oC and 0.995 aw, the interaction between Aspergillus ochraceus and Alternaria alternata resulted in a significant stimulation of ochratoxin A production [36]. Therefore, several microorganisms were reported as effective biocontrol agents against several fungal plant pathogens [37]. It was determined that Trichoderma harzianum produces a lytic enzyme, chitinase, which manifests antifungal activity against a wide range of fungal strains. It was found that non-toxigenic T.harzianum isolates significantly reduce the production of six types of A trichothecenes in cereals [38].
According to [39], soybean is not a favourable medium for ZEA production since it possesses some features that limit the production of this toxin by Fusarium isolates. Similarly, the production of aflatoxin B1 by Aspergillus flavus was suppressed by soybean phytoalexin – glyceollin [40].
The worldwide contamination of foods and feeds with mycotoxins is a significant problem. It was estimated that 25% of the world’s crops may be contaminated with these metabolites. Mycotoxigenic fungi involved with the human food chain belong mainly to three genera Aspergillus, Penicillium and Fusarium. The toxins produced by Alternaria have recently been of particular interest. The biochemistry, physiology and genetics of mycotoxigenic fungi have been discussed in several review articles [28, 41, 42].
Mycotoxins diffuse into grain and can be found in all grind fractions and, due to their thermo-resistant properties, also in products subjected to thermal processing [43].
The characteristics of major toxins that contaminate foods and feeds in the EU, described from the economic and toxicological point of view, are presented below.
Aflatoxins are difuranocumarin derivatives. The main naturally produced aflatoxins based on their natural fluorescence (blue or green) are called B1, B2, G1, and G2. Aflatoxin M1 is a monohydroxylated derivative of AFB1 which is formed and excreted in the milk of lactating animals. AFs are very slightly soluble in water (10–30 μg/mL); insoluble in non-polar solvents; freely soluble in moderately polar organic solvents (e.g. chloroform and methanol) and extremely soluble in dimethyl sulfoxide. They are unstable under the influence of ultraviolet light in the presence of oxygen, to extremes of pH (< 3, > 10) and to oxidizing agents [44].
Aflatoxins are produced only by a closely related group of aspergilli: Aspergillus flavus, A.parasiticus, and A.nomius strains [45]. These species are very widespread in the tropical and subtropical regions of the world. Other species such as A.bombycis, A.ochraceoroseus, and A.pseudotamari are also aflatoxin-producing species, but they are found less frequently [46, 47]. Aflatoxins constitute a problem concerning many commodities (nuts, spices), however, in terms of grain they are primarily problematic in case of maize. This is because only maize can be colonised by A.flavus and related species in the field. Out of the other grains, rice is an important dietary source of aflatoxins in tropical and subtropical areas. In regions with moderate climate, the problem is connected with imported commodities or the local crops that are wet or stored in improper conditions [45]. The carcinogenicity, mutagenicity and acute toxicology of AFB1 have been well documented. The IARC determined it to be a human carcinogen (group 1A).
Ochratoxin A is a chlorinated isocumarin derivative, which contains a chlorinated isocoumarin moiety linked through a carboxyl group to L-phenylalanine via an amide bond. It is colourless, crystalline, and soluble in polar organic solvents compounds. This toxin is more stable in the environment than AFs. The studies of [45] reported that thermal destruction of OTA occurs after exceeding 250oC. OTA is produced by Penicillium species such as P.verrucosum, P.auriantiogriseum, P.nordicum, P.palitans, P. commune, P.variabile and by Aspergillus species e.g. A.ochraceus, A.melleus,\n\t\t\t\t\tA.ostanius, as well as the aspergilli species of section Nigri. In moderate climates, the main producers of OTA are Penicillium species, while Aspergillus species dominate in tropical and subtropical climates. Ochratoxin A is often found with citrinin produced by Penicillium aurantiogriseum, P.citrinum, and P.expansum [48]. Significant human exposure comes from the consumption of grape juice, wine, coffee, spices, dried fruits and cereal-based products, e.g. whole-grain breads, and in addition to this from products of animal origin, e.g. pork and pig blood-based products. The Scientific Panel on Contaminants in the Food Chain of the European Food Safety Authority (EFSA) has derived an OTA tolerable weekly intake (TWI) on the level of 120ng/kg b.w. The IARC [49] determined it to be a possible human carcinogen (group 2B). Ochratoxins are the cause of urinary tract cancers and kidney damage. In ruminants, ochratoxin A is divided to non-toxic ochratoxin alfa and phenylalanine [44].
Citrinin is a polyketide nephrotoxin produced by several species of the genera Aspergillus, Penicillium and Monascus. Some of the citrinin-producing fungi are also able to produce ochratoxin A or patulin. Citrinin is insoluble in cold water, but soluble in aqueous sodium hydroxide, sodium carbonate, or sodium acetate; in methanol, acetonitrile, ethanol, and most other polar organic solvents. Thermal decomposition of citrinin occurs at >175 °C under dry conditions, and at > 100 °C in the presence of water. The known decomposition products include citrinin H2 which did not show significant cytotoxicity, whereas the decomposition product citrinin H1 showed an increase in cytotoxicity as compared to the parent compound [50].The most commonly contaminated commodities are barley, oats, and corn, but contamination can also occur in case of other products of plant origin e.g. beans, fruits, fruit and vegetable juices, herbs and spices, and also in spoiled dairy products [50].
Fumonisins are a group of diester compounds with different tricarboxylic acids and polyhydric alcohols and primary amine moiety. There are several fumonisins, but only fumonisins B1 (FB1) and B2 (FB2) have been found in significant amounts. Some technological processes hydrolyze the tricarboxylic acid chain in fumonisin B1. The product of this reaction is more toxic than fumonisin [51].
FB1 is produced by fungi from Fusarium genera, especially by F.moniliforme and F.proliferatum. The study of [11] suggests that the risk of contamination with Fusarium toxins is higher for maize and wheat than for soybean and pea. High concentrations of fumonisins are associated with hot and dry weather, followed by the periods of high humidity. Studies on fumonisin residues in milk, meat and eggs are incomplete [52, 53]. Human exposure assessments on fumonisin B1 have rarely been reported. The mean daily intake in Switzerland is estimated to be 0.03 μg/kg bw/day. In the Netherlands the exposure estimates ranged from 0.006 to 7.1 μg/kg bw/day. In South Africa, the estimates ranged from 14 to 440 μg/kg bw/day, showing that the exposure to FB1 is considerably higher than in the other countries in which exposure assessments were performed [54]. It was concluded that for Fs there was inadequate evidence in humans for carcinogenicity. Therefore, the IARC classified Fusarium monilliforme toxins, including fumonisins, as potential carcinogens to humans (group 2B).
Zearalenone is a macrocyclic lactone with high binding affinity to oestrogen receptors. ZEA is produced mainly by Fusarium graminearum and F.sporotrichoides in the field and during storage of commodities such as maize, barley, sorghum, and soybean. The IARC has evaluated the carcinogenicity of zearalenone and found it to be a possible human carcinogen (group 2B). Residues of zearalenone in meat, milk and eggs do not appear to be a practical problem [53, 54].
Trichothecenes constitute a group of 50 mycotoxins produced by Fusarium, Cephalosporium and Stachybotrys genera in different commodities. There are including T-2 toxins, deoxynivalenol, nivalenol, and diacetoxyscirpenol. Beside trochothecenes, deoxynivalenol (DON, womitoxin) is probably the most widely distributed in cereal and soybean foods and feeds. In contaminated cereals, DON derivatives such as 3-acetyl DON and 15-acetyl DON can occur in significant amounts (10 – 20%) with DON. DON is produced by closely related Fusarium graminearum, F.culmorum and F.crokwellense species [55].
T-2 toxin produced mainly by F.sporotrichoides and F.poae is primarily associated with mould millet, wheat, rye, oats, and buckwheat. This toxin can be transmitted from dairy cattle feed to milk [56].
Alternaria species, besides Fusarium, is the most isolated fungi from soybean and other cereals. Several species are known producers of toxic metabolites called Alternaria mycotoxins. The most important Alternaria mycotoxins include alternariol (AOH), alternariol monomethyl ether (AME), altertoxins I, II, and III (ATX-I, -II, III), tenuazonic acid (TeA), and altenuene (ALT). They belong to three structural classes: dibenzopyrone derivatives, perylene derivatives, and tetramic acid derivatives. Alternariol and related metabolites (AME and ALT) are produced by Alternaria alternate, A.brassicae, A.citri, A.cucumerina, A.dauci, A.kikuchiana, A.solani, A.tenuissima, and A.tomato. These strains are known as plant, especially fruit and vegetable pathogens. In cereals, soybean and oilseeds, AOH, AME and ALT are produced mainly by Alternaria alternata, A.tennuisima, and A.infectoria. AOH has been reported to possess cytotoxic, genotoxic, mutagenic, carcinogenic, and oestrogenic properties [27]. Tenuazonic acid (TeA) is a mycotoxin and phytotoxin produced primarily by Alternaria alternata and other phytopatogenic Alternaria species. The overview of the chemical characterisation, producers, toxicity, analysis and occurrence in foodstuffs was summarised by [27].
Sterigmatocystin (STC) is a precursor of the aflatoxins produced mainly by many Aspergillus species such as A.versicolor, A.chevalieri, A.ruber, A.aureolatus, A.quadrilineatus, A.sydowi, Eurotium amstelodami, and less often by Penicillium, Bipolaris, Chaetomium, and Emericella genera [30]. Sterigmatocystin was reported as a fungal metabolite in mouldy wheat, rice, barley, rapeseed, peanut, corn, and cheeses or salami. The STC producers, occurrence and toxic properties were reviewed by [30, 57].
Food security strategy in the European Union (EU) includes the Rapid Alert System for Food and Feed. The RASFF was established by the European Parliament and Council Regulation No. 178/2002 laying down the general principles and requirements of food law, establishing the European Food Safety Authority and specifying the procedures in matters concerning food safety [58].
\n\t\t\t\tMycotoxin\n\t\t\t | \n\t\t\t\n\t\t\t\tProduced species\n\t\t\t | \n\t\t\t\n\t\t\t\tCommodities\n\t\t\t | \n\t\t
Aflatoxins | \n\t\t\n\t\t\tAspergillus flavus, A.parasiticus, A.nomius, A.bombycis, A.ochraceoroseus, A.pseudotamari\n\t\t | \n\t\tNuts, spices, Cereals, maize, soybean, rice | \n\t
Ochratoxin A | \n\t\t\n\t\t\tPenicillium verrucosum, P.auriantiogriseum, P.nordicum,\n\t\t\tP.palitans, P.commune, P.variabile, Aspergillus ochraceus, A.melleus, A.niger, A.carbonarius, A.sclerotiorum, A.sulphureus\n\t\t | \n\t\tCereals, fruits, spices, coffee, Food of animal origin | \n\t
Citrinin | \n\t\t\n\t\t\tPenicillium citrinum, P.verrucosum, P.viridicatum, Monascus purpureus\n\t\t | \n\t\tOats, rice, corn, beans, fruits, fruit and vegetable juices, herbs and spices | \n\t
Sterigmatocystin | \n\t\t\n\t\t\tAspergillus versicolor, A.nidulans, A.chevalieri, A.ruber, A.aureolatus, A.quadrilineatus, Eurotium amstelodami\n\t\t | \n\t\tCereals, cheese | \n\t
Zearalenone | \n\t\t\n\t\t\tFusarium graminearum, F.sporotrichoides, F.culmorum, F.cerealis, F.equiseti, F.incarnatum\n\t\t | \n\t\tMaize, soybean, cereals | \n\t
Deoksynivalenol | \n\t\t\n\t\t\tFusarium graminearum, F.culmorum, F.crokwellense\n\t\t | \n\t\tMaize, soybean, cereals | \n\t
Fumonisins | \n\t\t\n\t\t\tFusarium proliferatum, F.verticillioides, \n\t\t | \n\t\tMaize, soybean, cereals | \n\t
Alternariol, alternariol monomethyl ether | \n\t\t\n\t\t\tAlternaria alternata, A.brassicae, A.capsici-anui, A.citri, A.cucumerina, A.dauci, A.kikuchiana, A.solani, A.tenuissima, A.tomato, A.longipes, A.infectoria, A.oregonensis\n\t\t | \n\t\tVegetables, fruit, cereals, soybean | \n\t
Tenuazonic acid | \n\t\t\n\t\t\tAlternaria alternata, A.capsici-anui, A.citri, A.japonica, A.kikuchiana, A.mali, A.solani, A.oryzae, A.porri, A.radicina, A.tenuissima, A.tomato, A.longipes\n\t\t | \n\t\tVegetables, fruit, cereals, soybean | \n\t
Mycotoxigenic fungi and mycotoxins
In 2002 – 2011, the number of notifications to the RASFF system due to mycotoxin contamination of food was respectively: 302, 803, 880, 996, 878, 760, 933, 669, 688, 631 notifications identifying the presence of aflatoxin B1 (AFB1) and the amount of AFB1, B2, G1, G2, AFM1, ochratoxin A (OTA), fumonisins B1 and B2 (FB1, FB2), patulin, deoxynivalenol (DON) and zearalenone (ZEA) in such groups of foods, as nuts and milk, oilseeds, cereal, dried fruit, fruit, cocoa, coffee, herbs and spices, wine, milk, products for children. Approximately 95% of the notifications concerned foodstuffs contaminated with aflatoxins. During this period, the number of notifications regarding mycotoxin contamination of grains did not exceed 15% of the total number of notifications. The data in Figure 1 show that in 2002-2011 aflatoxins, ochratoxin A and fumonisins were the main contaminants isolated from cereals [59].
In the research of [60], ninety-fife cereal samples from retail shops and local markets of different locations in Pakistan were examined in terms of the presence of aflatoxins. The results showed the percentage of aflatoxin contamination samples in the commodities such as in: rice (25%), broken rice (15%), wheat (20%), maize (40%), barley (20%) and sorghum (30%), while in soybean (15%). The highest contamination levels of aflatoxins were found in one wheat sample (15.5 ppb), one maize sample (13.0 ppb) and one barley sample (12.6 µg/kg). In the research of [61], seventeen samples of wheat grain from Morocco were tested for OTA and DON contamination. The results show that only two samples (11.76%) out of 17 were contaminated with OTA, at the mean concentration of 29.4 ppb. However, seven samples (41.17%) were contaminated with DON at the mean concentration of 65.9 ppb.
The number of notifications received by RASFF on mycotoxins in cereals in 2002-2011
The aim of our own research [15] was mycotoxic analysis of grains included in the standard mixtures used in feed formulations. Eighteen samples were tested containing seeds evenly divided into three types: barley, wheat and corn. The tested seeds were from randomly selected Polish mills: the central, western, eastern and south ones (Figure 2). The aflatoxins content in 51% of the screened barley samples and in 34% of the screened wheat and maize samples did not exceed the limit set in the European Union Regulation, i.e. 4 ppb [62]. In reference to the grain origin, it was established that grains from the central and western parts of Poland exhibited the highest extent of AFs contamination. To compare, the AFs level in wheat grains from various regions of Turkey was very low, ranging from 10.4 to 634.5 ng/kg [63], whereas in the samples of barley, wheat, and oat grains from Sweden it was contained between 50 and 400 ppb [64].
Level of contamination with aflatoxins in grains coming from different regions of Poland
Level of contamination with ochratoxina A in grains coming from different regions of Poland
The OTA level in the examined grains collected from mills in central, eastern and southern Poland was low and ranged from 0.5 to 2.5 ppb (Figure 3). Therefore, it did not exceed the permissible limit set by the European Union (Commission Regulation No. 105/2010), i.e. 5 ppb [65]. Only in barley coming from a mill located in western Poland, the OTA level exceeded the limits fivefold. The extent of OTA contamination of barley, wheat, and maize grain from various regions of Mexico was also low and recorded 0.17 ppb, 0.42 ppb, and 1.08 ppb, respectively. Only 1 out of 20 examined maize grains showed the OTA level of 7.22 [66]. To compare, the OTA concentration in barley and wheat grain from the UK equalled from 1 to 33 ppb [67]. In the research of [68], among others, the levels of AFs and OTA in 532 grain and feed samples from Poland from 2002 and 2003 were determined. The average mycotoxin concentration levels were similar and quite low, i.e. AFs - 0.3 ppb and OTA - 1.1 ppb in grains and feeds from 2002, and respectively, AFs 3.1 and 1.0 ppb and OTA 0.5 and 0.7 OTA in samples from 2003. The authors of the study stressed that in 2002 and 2003 the harvesting seasons were hot and dry, which might have resulted in the low extent of fungi contamination of the examined grain. Although the extent of mycotoxin contamination of grain in the quoted studies varies, their authors concur that it is a serious issue whose scale depends on the microclimate during arable farming and the subsequent phases, i.e. grain storage. It was reported that no mycotoxins were found in barley samples stored for 20 weeks at 15% seed humidity, whereas the samples of wheat stored for the same period of time at 19% humidity recorded relatively high concentration levels: OTA - 24 ppb, citrinin - 38 ppb, and sterigmatocystin even up to 411 ppb [69].
The aim of our research was the assessment of cereal products available in trade and meant for direct consumption as for contamination with selected mycotoxins. The research included corn flakes, corn flakes with nuts and honey, various kinds of breakfast cereal products and muesli containing dried fruit, nuts as well as cereal and coconut flakes (15 samples). None of the products was contaminated with AB1 on the level exceeding the acceptable limits (2 ppb). The presence of ochratoxin A exceeding the amount of 3 ppb was discovered in four samples (two kinds of corn flakes, exotic muesli and traditional muesli). The contamination with that toxin equalled 4.5 ppb on average. According to the current regulation, contamination of breakfast flakes with deoxynivalenol DON should not exceed 500 ppb. Four samples (containing corn) exceeded this limit by 50%. In case of one sample, DON contamination was very high, almost three times higher than the acceptable level [19].
Mycotoxin contamination of soybean is not considered a significant problem as compared to commodities such as corn, cottonseed, peanuts, barley and other grains. In the early surveys conducted by the U.S. Department of Agriculture (USDA), 1046 soybean samples collected from different regions of the United States were examined for aflatoxins contamination. Aflatoxin presence was confirmed at low levels (7-14 ppb) in only two of the tested samples [70]. In the research of [71], fifty-five samples of soybean meals were analysed for the content of aflatoxins, deoxynivalenol (DON), zearalenone (ZEA) and ochratoxin A (OTA). Regarding aflatoxins, only AFB1 was detected in 32 out of the 51 non-suspicious samples, but the maximal concentration found was only 0.41 ppb. ZEA was detected in 23 out of the 51 samples with a maximum concentration of 18 ppb. DON could be detected only in one suspicious sample in a low concentration of 104 ppb. OTA was found in 5 samples, with the greatest concentration being only 1 ppb.
The research of [72] tested 122 soybean samples that came from Asia and the Pacific region. Aflatoxin was found in only in 2% (maximum of 13 ppb, median 9 ppb), zearalenone in 17% (maximum 1078 ppb, median 57 ppb), ochratoxin in 13% (maximum 11 ppb, median 7 ppb), and DON and fumonisins each in 7% of the analyzed samples (DON: maximum 1347ppb, median 264 ppb; fumonisins: maximum 331 ppb, median 154 ppb). In maize and maize products, the levels of fumonisins varied from 0.07 to 38.5 ppm in Latin America, from 0.004 to 330 ppm in North America, from 0.02 to 8.85 ppm in Africa, and from 0.01 to 153 ppm in Asia. The data available for Europe varied from 0.007 to 250 ppm in maize, and from 0.008 to 16 ppm in maize products. [54].
Effects of mycotoxins on human and animal health are now increasingly recognised. Mycotoxins enter human and animal dietary systems mainly through ingestion, but increasing evidence also points to inhalation as another entry route. Mycotoxins exhibit a wide array of biological effects and individual mycotoxins can be [73]:
carcinogenic - aflatoxins, ochratoxins, fumonisins, and possibly patulin;
mutagenic - aflatoxins and sterigmatocystin;
hematopoietic - aflatoxins and trichothecenes. Hemotopoiesis refers to the production of all types of blood cells from the primitive cells stem cells in the bone marrow. The dysfunction of hematopoiesis leads firstly to the decrease in the number of neutrophils, thus perturbing the animal’s immune system and subsequently to the decrease in red blood cells, which leads to anemia;
hepatotoxic - aflatoxins, ochratoxins, fumonisins. All of them induce significant liver damage when given to animals;
nephrotoxigenic - ochratoxins, citrinin, trichothecenes, and fumonisins;
teratogenic - aflatoxin B1, ochratoxin A, T-2 toxin, sterigmatocystin, and zearalenone;
oestrogenic - zearalenone;
neurotoxic - ergot alkaloids, fumonisins, deoksynivalenol. The effects of mycotoxins are best evidenced by vomiting and taste aversion produced by DON, seizures, focal malata and liquefaction of the brain tissue, possibly mediated by sphingolipid synthesis under the influence of fumonisins, staggering and trembling produced by many tremorgenic penitrem mycotoxins seizures and other neural effects of ergot alkaloids and parasympathomimetic activity resulting from the effects of the metabolite slaframine for selected receptors in the nervous system
immunosupresive - several mycotoxins. The predominant mycotoxins in this regard are aflatoxins, trichothecenes, and ochratoxin A. However, several other mycotoxins such as fumonisins, zearalenone, patulin, citrinin, and fescue and ergot alkaloids have been shown to produce some effects on the immune system.
Table 4 presents the groups of mycotoxins which are most harmful to human and animal organisms, together with the chosen disease symptoms they cause.
\n\t\t\t\tMycotoxin\n\t\t\t | \n\t\t\t\n\t\t\t\tToxicity class according to International Agency for Research on Cancer (IARC)\n\t\t\t | \n\t\t\t\n\t\t\t\tSymptoms and diseases\n\t\t\t | \n\t\t
Aflatoxins | \n\t\tI * | \n\t\taflatoxicosis, primary liver cancer, lung neoplasm, lung cancer, failure of the immune system, vomiting, depression, hepatitis, anorexia, jaundice, vascular coagulation | \n\t
Ochratoxins | \n\t\tII B ** | \n\t\trenal diseases, nephropathy, anorexia, vomiting, intestinal haemorrhage, tonsillitis, dehydration | \n\t
Fumonisins | \n\t\tII B ** | \n\t\tdiseases of the nervous system, cerebral softening, pulmonary oedema, liver cancers, kidney diseases, oesophagus cancers, anorexia, depression, ataxia, blindness, hysteria, vomiting, hypotension | \n\t
Zearalenone | \n\t\t- | \n\t\treproduction disruptions, abortions, pathological changes in the reproductive system | \n\t
Trichothecenes | \n\t\t- | \n\t\tnausea, vomiting, haemorrhages, anorexia, alimentary toxic aleukia, failure of the immune system, infants’ lung bleeding, increased thirst, skin rash | \n\t
The list of adverse effects of the chosen mycotoxins.
*The agent (mixture) is carcinogenic to humans. The exposure circumstance entails exposures that are carcinogenic to humans
**The agent (mixture) is possibly carcinogenic to humans. The exposure circumstance entails exposures that are possibly carcinogenic to humans.
Mycotoxicoses can be divided into acute and chronic. Acute toxicity usually has a rapid onset and obvious toxic response, chronic exposure is characterized by chronic doses over a long period of time and may lead to cancer and other effects that are generally irreversible. The symptoms of mycotoxicosis depend on the type, amount and duration of exposure, age, health and sex of the exposed individual, and many poorly understood synergistic effects involving genetics, dietary status, and interaction with other toxic contaminants. Thus, the severity of mycotoxin poisoning can be compounded by factors such as vitamin deficiency, caloric deprivation, alcohol abuse, and infectious disease status. Mycotoxicosis is difficult to diagnose because doctors do not have experience with this disease and its symptoms are so wide that it mimics many other conditions [74, 75].
Aflatoxicosis is toxic hepatitis leading to jaundice and, in severe cases, death. AFB1 has been extensively linked to human primary liver cancer and was classified by the International Agency for Research on Cancer (IARC) as a human carcinogen (Group 1A - carcinogens) [49]. Although acute aflatoxicosis in humans is rare, several outbreaks have been reported. In 2004, one of the largest aflatoxicosis outbreaks in Kenya, resulting in 317 cases and 125 deaths was observed. Contaminated corn was responsible for the outbreak, and officials found the level of aflatoxin B1 as high as 4400 ppb [76]. Research in Gambian children and adults reported a strong association between aflatoxin exposure and impaired immunocompetence suggesting that the consumption of aflatoxin reduces resistance to infections in human populations [77, 78]. In 1974, an epidemic of hepatitis in India affected 400 people resulting in 100 deaths. The death was due to consumption of corn that was contaminated with A. flavus containing up to 15000 ppb of aflatoxins [79].
Ochratoxin A was the cause of epithelial tumours of the upper urinary tract in the Balkans [80, 81]. The condition is known as Balkan endemic nephropathy. Despite the seriousness of the problem, the study did not explain the mechanism of action and the size of OTA carcinogenicity in humans [82]. Ochratoxin has been detected in blood in 6-18% of the human population in some areas where Balkan endemic nephropathy is prevalent. Ochratoxin A has also been found in human blood samples from outside the Balkan Peninsula. In some survey, over 50% of the tested samples were contaminated. A highly significant correlation was observed between Balkan nephropathy and urinary tract cancers, particularly tumours of the renal pelvis and ureter. However, no data have been published that establishes a direct causal role of ochratoxin A in the etiology of these tumours [81].
Fumonisin B1 was classified by the IARC as a group 2B carcinogen (possibly carcinogenic for humans) [44]. Fumonisins, which inhibit the absorption of folic acid through the foliate receptor, have also been implicated in the high incidence of neural tube defects in the rural population known to consume contaminated corn, such as the former Transkei region of South Africa and some areas of Northern China [75, 83].
Trichothecenes have been proposed as potential biological warfare agents. In the years 1975-1981, T-2 toxin was implicated as a chemical agent "yellow rain" used against the Lao Peoples Democratic Republic. A study conducted from 1978 to 1981 in Cambodia revealed the presence of T-2 toxin, DON, ZEA, and nivalenol in water and leaf samples taken from the affected areas [75, 84]. Clinical symptoms proceeding to death included vomiting, diarrhoea, bleeding, and difficulty with breathing, pain, blisters, headache, fatigue and dizziness. There also occurred necrosis of the mucosa of the stomach as well as the small intestine, lungs and liver [85]. One disease outbreak was recorded in China and was associated with the consumption of scabby wheat containing 1000-40000 ppb of DON. The disease is characterized by gastrointestinal symptoms. Also, in India there took place a reported infection associated with the consumption of bread made from contaminated wheat (DON 350-8300 ppb, acetyldeoxynivalenol 640-2490 ppb, NIV 30-100 ppb and T-2 toxin 500-800 ppb). The disease is characterized by gastrointestinal symptoms and throat irritation, which developed within 15 minutes to one hour after ingestion of the contaminated bread [81].
Animals may show varied symptoms upon contact with mycotoxins, depending on the genetic factors (species, breed, and strain), physiological factors (age, nutrition) and environmental factors (climatic conditions, rearing and management). The natural contamination with mycotoxins in animal feed usually does not occur at the levels that may cause acute or overt mycotoxicosis, such as hepatitis, bleeding, nephritis and necrosis of the oral and enteric epithelium, and even death. It is often difficult to observe and diagnose the symptoms of the disease, but it certainly is the most common form of mycotoxicosis in farm animals, affecting such parameters as productivity, growth and reproductive performance, feed efficiency, milk and egg production.
The negative effects of mycotoxins on the performance of poultry have been shown in numerous studies. For example, feeding the broilers with feed containing an AFs mixture (79% AFB1, 16% AFG1, AFB2 4% and 1% AFG2) in the concentration of 3.5 ppm decreased their body weight and increased their liver and kidney weight [75, 86]. Feeding OTA (0.3-1 ppm) to broilers reduced glycogenolysis and dose-dependent accumulation of glycogen in the liver. These negative metabolic reactions were attributed to inhibition of cyclic adenosine 3\',5\'-monophosphate-dependent protein kinase, and were reflected in reduced efficiency of feed utilization and teratogenic malformations [75].
Fusarium mycotoxins proved to be harmful to poultry. In addition to reduced feed intake and weight gain, sore mouth, cheeks and plaque formation was observed after 7-day-old chicks were exposed to T-2 toxin (4 or 16 ppm) [75, 87]. Pigs are among the most sensitive species to mycotoxins. In the study by [88], pigs in response to AFs (2 ppm), OTA (2 ppm), or both were evaluated. Compared to the control group, the body weight gains were reduced by 26, 24 and 52% for animals consuming diets containing AFs, OTA, or both, respectively. Additional symptoms in pig ochratoxicosis were anorexia, fainting, uncoordinated movements, and increased water consumption and urination. Pigs also are susceptible to other mycotoxins, such as fumonsins and ergot alkaloids. Fumonisin B1, for example, has been shown to cause pulmonary oedema and heart and respiratory dysfunction. The symptoms of swine pulmonary oedema included dyspnoea, cyanosis, and death [89, 90]. Mycotoxic porcine nephropathy is a serious disease, often associated with pigs consuming feed contaminated with OTA, especially in Scandinavian region. In addition to the enlarged and pale kidneys (with vascular lesions and white spots), morphological changes include a proximal tubular injury, epithelial atrophy, fibrosis and hyalinization of renal glomerular [80, 81]. Negative effects of ZEA on pigs’ reproductive function have also been demonstrated [91]. Oestrogenic effects of ZEA on gilts and sows include oedematous uterus and ovarian cysts, increased maturation of follicles, more numerous litters or decreased fertility [92].
Aflatoxins affect the quality of the milk produced by dairy cows and result in a carry-over of AFM1 with AFB1-contaminated feed. Ten ruminally-canulated Holstein cows received AFB1 (13 mg per cow daily) through a hole in the rumen for 7 days. The AFM1 levels in the milk of the treated cows ranged from 1.05 to 10.58 ng/L. The carry-over rate was higher in early lactation (2-4 weeks) compared to late lactation (34 -36 weeks) [75, 93]. The T-2 toxin causes necrosis of the lymphoid tissues. Bovine infertility and natural abortion in the last trimester of pregnancy also result from consumption of feed contaminated with T-2 toxin. Calves consuming T-2 toxin in the amount of 10-50 mg/kg of feed showed abomasal ulcers and sloughing of papillae in the rumen [75, 94, 95].
Since the discovery of aflatoxins in the 1960s, regulations have been established in many countries to protect consumers from harmful mycotoxins that can contaminate foods. Maximum levels of mycotoxins have been established by the European Commission after consultations with the Scientific Committee for Food, based on the analysis of scientific data collected by EFSA and the Codex Alimentarius.
toxicological properties of mycotoxins,
mycotoxin dietary exposure,
distribution of concentrations of mycotoxins in raw materials or a product batch
availability of analytical methods,
regulations in other countries with which trade contacts exist.
The first two factors provide the information necessary for risk assessment and exposure assessment, respectively. Risk assessment is the scientific evaluation of the likelihood of known or potential adverse health effects resulting from human exposure to food-borne hazards. It is a fundamental scientific basis for the notification of regulations. The third and fourth factors are important factors in enabling the practical enforcement of mycotoxins, through appropriate procedures as regards sampling and analysis. The last factor is the only one economic in nature, but it is equally important in decision-making to establish reasonable rules and restrictions for mycotoxins in foods and feeds [96].
According to the Commission Regulations, the maximum levels should be set at a strict level, which is reasonably achievable by following good agricultural and manufacturing practices and taking into account the risk related to the consumption of food. Health protection of infants and young children requires establishing the lowest maximum levels, which is achievable through the selection of raw materials used for the manufacturing of foods for this vulnerable group of consumers. Development of international trade, progress in research focused on mycotoxin food contamination and their toxicological properties cause changes in the mycotoxin-related legislationacross the European Union. The Commission Regulation 466/2001 [97] setting the maximum levels for certain contaminants in foodstuffs has been substantially amended many times. Te current maximum levels for mycotoxins in food are specified by the Commission Regulation EU 1881/2006 and the Commission Regulation EU 105/2010 as regards OTA, the Commission Regulation EU 165/2010 as regards aflatoxins, and the Commission Regulation EU 1126/2007 as regards Fusarium toxins [62, 65, 98, 99]. There have also been established maximum levels for aflatoxins, ochratoxin A, patulin, and Fusarium toxin (fumonisin, deoxynivalenol, zearalenone) in different products: nuts, cereals, dried fruit, unprocessed cereals, processed cereal-based food, coffee, wine, spices, and liquorices [62, 65, 97-99].
The number of countries that have regulations concerning mycotoxins is continuously increasing, and at least 100 countries are known to have founded specific limits for different combinations of mycotoxins and commodities, often accompanied by the prescribed or recommended procedures for sampling and analysis [100]. Specific regulations for food in different world regions were summarized by [101].
As for feeds, the legal situation is somewhat different and only aflatoxin B1 is regulated by the Directive 2002/32/EC on undesirable substances in animal food amended by the Commission Directive (EC) 100/2003 [102, 103]. For other mycotoxins, such as deoxynivalenol, zearalenone, ochratoxin A and fumonisin B1 and B2 - only non-binding recommendation values in the Commission Recommendation 2006/57/EC [104] are determined for feeds (Table 6). This results from the fact that with the exception of aflatoxin-contaminated feed which either directly or indirectly affects human health, there is only a slight transfer to animal products [104, 105].
Table 5 presents the current maximum levels of mycotoxin content as regards cereals and cereal-based foods and feeds.
Mycotoxins in agricultural commodities are distributed heterogeneously. Therefore, sampling plays a crucial role in making the estimation of the levels of mycotoxin presence more precise. In order to obtain representative samples, sampling procedures, and particularly homogenisation, for different matrix types have been regulated. The EU Commission Regulation (EC) 401/2006 established the methods of sampling and analysis for the official control of mycotoxins in foodstuffs [106]. Official sampling plans for aflatoxins in dry figs, groundnuts, peanuts, oilseeds, apricot kernels and tree nuts and for ochratoxins in coffee and liquorice root are provided in the Commission Regulation (EU) No 178/2010 [107 ]. The sampling frequency and the method of sampling for cereals and cereal products for lots >50 tonnes and <50 tonnes, as well as for retail packed products were presented. Moreover, the procedures of subdivision of lots into sublots depending on the product and lot weight were also summarised [106, 107].
According to the current regulations where no specific methods for the determination of mycotoxin levels in food are required by the EU regulations, laboratories may select any method provided that they meet the relevant criteria presented in [106, 107]. These criteria are different in relation to individual mycotoxins, and the limit of detection, precision, and recovery depends on the concentration range. The analytical results must be submitted corrected or uncorrected for recovery and the level of recovery expressed in % must be reported too.
The main analytical procedures for the determination of the major mycotoxins from complex biological matrices consist of the following steps: sampling, extraction, purification, detection, quantification, and finally confirmation. The current development in mycotoxin estimation was reviewed by [108-110].
\n\t\t\t\tRegulation\n\t\t\t | \n\t\t\t\n\t\t\t\tMatrix\n\t\t\t | \n\t\t\t\n\t\t\t\tMaximum levels [ppb]\n\t\t\t | \n\t\t||||
\n\t\t\t\tAFB1\n\t\t\t\t\n\t\t\t | \n\t\t\t\n\t\t\t\tOTA\n\t\t\t | \n\t\t\t\n\t\t\t\tDON\n\t\t\t | \n\t\t\t\n\t\t\t\tZEA\n\t\t\t | \n\t\t\t\n\t\t\t\tF\n\t\t\t | \n\t\t||
\n\t\t\tFOOD\n\t\t | \n\t||||||
Commission Regulation (EU) 165/2010 | \n\t\tAll cereals and all products derived from cereals | \n\t\t2.0 | \n\t\t- | \n\t\t- | \n\t\t- | \n\t\t- | \n\t
Maize and rice | \n\t\t5.0 | \n\t\t- | \n\t\t- | \n\t\t- | \n\t\t- | \n\t|
Processed cereal-based foods for infants and young children | \n\t\t0.10 | \n\t\t- | \n\t\t- | \n\t\t- | \n\t\t- | \n\t|
Commission Regulation (EC) 1126/2007 | \n\t\tUnprocessed cereals | \n\t\t- | \n\t\t- | \n\t\t1250 | \n\t\t100 | \n\t\t- | \n\t
Unprocessed durum wheat and oats | \n\t\t- | \n\t\t- | \n\t\t1750 | \n\t\t- | \n\t\t- | \n\t|
Pasta (dry) | \n\t\t- | \n\t\t- | \n\t\t750 | \n\t\t- | \n\t\t- | \n\t|
Bread (including small bakery wares), pastries, biscuits, cereal snacks and breakfast cereals | \n\t\t- | \n\t\t- | \n\t\t500 | \n\t\t50 | \n\t\t- | \n\t|
Maize-based breakfast cereals and maize-based snacks | \n\t\t- | \n\t\t- | \n\t\t- | \n\t\t- | \n\t\t800 | \n\t|
Unprocessed maize with the exception of unprocessed maize intended to be processed by wet milling | \n\t\t- | \n\t\t- | \n\t\t1750 | \n\t\t350 | \n\t\t4000 | \n\t|
Cereals intended for direct human consumption, cereal flour, bran and germ as an end product marketed for direct human consumption | \n\t\t- | \n\t\t- | \n\t\t750 | \n\t\t75 | \n\t\t- | \n\t|
Milling fractions of maize and milling products with particle size "/> 500 micron not used for direct human consumption | \n- | \n- | \n750 | \n200 | \n1400 | \n|
Milling fractions of maize and maize milling products with particle size ≤ 500 micron not used for direct human consumption | \n\t- | \n\t- | \n\t1250 | \n\t300 | \n\t2000 | \n|
Processed cereal-based foods for infants and young children | \n\t- | \n\t- | \n\t200 | \n\t20 | \n\t200 | \n|
Processed maize-based foods for infants and young children | \n\t- | \n\t- | \n\t- | \n\t20 | \n\t- | \n|
Commission Regulation (EC) 1881/2006 | \n\tUnprocessed cereals | \n\t- | \n\t5.0 | \n\t- | \n\t- | \n\t- | \n
All products derived from unprocessed cereals, including processed cereal products and cereals intended for direct human consumption | \n\t- | \n\t3.0 | \n\t- | \n\t- | \n\t- | \n|
Processed cereal-based foods for infants and young children | \n\t- | \n\t0.50 | \n\t- | \n\t- | \n\t- | \n|
\n\t\tFEED\n\t | \n||||||
Commission Recommendation (EC) 576/2006 | \n\tCereals and cereal products with the exception of maize by-products | \n\t- | \n\t250 | \n\t8000 | \n\t2000 | \n\t- | \n
Maize by-products | \n\t- | \n\t- | \n\t12000 | \n\t3000 | \n\t- | \n|
Complementary and complete feedingstuffs for pigs | \n\t- | \n\t50 | \n\t900 | \n\t250 | \n\t- | \n|
Complementary and complete feedingstuffs for calves, lambs and kids | \n\t- | \n\t- | \n\t2000 | \n\t500 | \n\t- | \n|
Complementary and complete feedingstuffs for poultry | \n\t- | \n\t100 | \n\t- | \n\t- | \n\t- | \n|
Commission Directive (EC) 100/2003 | \n\tAll feed materials | \n\t20 | \n\t- | \n\t- | \n\t- | \n\t- | \n
Complete feedingstuffs for dairy animals | \n\t5 | \n\t- | \n\t- | \n\t- | \n\t- | \n|
Complete feedingstuffs for calves and lambs | \n\t10 | \n\t- | \n\t- | \n\t- | \n\t- | \n|
Complete feedingstuffs for pigs, poultry, cattle, sheep and goats | \n\t20 | \n\t- | \n\t- | \n\t- | \n\t- | \n
Legislation on mycotoxins as regards cereals and cereal-based foods and feeds
(-) limit not established; AFB1 – aflatoxin B1; OTA – ochratoxin A; ZEA – zearalenone; DON – deoxynivalenol; F – fumonisins
Several codes of practice have been developed by Codex Alimentarius for the prevention and reduction of mycotoxins in cereals, peanuts, apple products, and other raw materials. In order for this practice to be effective, it will be necessary for the producers in each country to consider the general principles given in the Code, taking into account their local crops, climate, and agronomic practices, before attempting to implement the provisions specified in the Code. The recommendations for the reduction of various mycotoxins in cereals are divided into two parts: recommended practices based on Good Agricultural Practice (GAP) and Good Manufacturing Practice (GMP); a complementary management system to consider in the future is the use of Hazard Analysis Critical Control Point (HACCP) [111].
Recommendations to be taken into account before the harvest in order to reduce the risk of mould contamination and mycotoxin production include [112]:
use certified seed or ensure it is free from fungal infections;
avoid drought stress – irrigate if possible;
sow the seed as early as possible, so that crop matures early;
when practising minimum or zero tillage, remove crop residues;
weed regularly;
control insect and bird pests;
rotate crops;
avoid nutrient stress – apply the appropriate amount of organic or inorganic fertiliser;
plant resistant varieties where these are available
The main mycotoxin hazards associated with pre-harvest in Europe are the toxins that are produced by fungi belonging to the genus Fusarium in the growing crops. It is important to note that although Fusarium infection is generally considered to be a pre-harvest problem, it is certainly possible for poor drying practices to lead to crops’ susceptibility in storage and mycotoxin contamination [113]. This part of the book will discuss some pre-harvest strategies appropriate to reduce the prevalence of fungi belonging to the genus Fusarium and their mycotoxins.
There are inherent differences in the susceptibility of cereal species to Fusarium infections. The differences between crop species appear to vary between countries. This is probably due to the differences in the genetic pool within each country’s breeding program and the diverse environmental and agronomic conditions in which crops are cultivated [114, 115]. It was observed that oats had higher levels of DON than barley and wheat in Norway from 1996 to 1999, whereas the DON levels in wheat, barley and oats were similar when grown under the same field conditions in Western Canada in 2001 [116].
Crop rotation
Numerous studies have shown that fumonisins or DON contamination in wheat is affected by the previous crop. It was shown that a higher incidence of Fs occurred in wheat after maize and, in particular, in wheat after a succession of two maize crops and in wheat following grain maize compared to silage maize. In Ontario, Canada, in 1983, the fields where maize was the previous crop had a significantly higher incidence of fumonisins than the fields where the previous crop was a small grain cereal or soybean [117]. In a repeated study, the following year, the fields where maize was the previous crop had a 10-fold DON content than the fields following a crop other than maize [118]. The research of [119] found higher levels of fumonisins in wheat following wheat rather than wheat following fallow.
An observational study performed using commercial fields in Canada [120] identified significantly lower DON content in wheat following soybean or wheat, compared to wheat following maize. In New Zealand, an observational study determined that higher levels of DON occurred in wheat grown after maize (mean = 600 ppb) and after grass (mean = 250 ppb), compared to small grain cereals (mean = 90 ppb) and other crops (mean = 70 ppb). The highest levels were recorded in wheat-maize rotations [121].
Codex recommends that crops such as potatoes, other vegetables, clover and alfalfa that are not hosts to Fusarium species should be used in rotation to reduce the inoculum in the field [122].
Soil cultivation can be divided into ploughing, where the top 10-30 cm of soil are inverted; minimum tillage, where the crop debris is mixed with the top 10-20 cm of soil; and no till, where seed is directly drilled into the previous crop stubble with minimum disturbance to the soil structure [111]. In the 1990s, a large observational study of Fs and DON was conducted in Germany (n=1600). The DON concentration of wheat crops after maize was ten-times higher in the field that was min-tilled compared to the ploughed one [123]. In wheat the DON concentration after min-till was 1300 ppb, after no-till it was 700 ppb and after ploughing it was 500 ppb [120]. Studies in France have determined that crop debris management can have a large impact on the DON concentration at harvest, particularly after maize. The highest DON concentration was found after no-till, followed by min-till, whereas the lowest DON levels were recorded after ploughing. The reduction in DON has been linked to the reduction in crop residue on the soil surface [124]. Large replicated field trials in Germany identified that there was a significant interaction between the previous crop and the cultivation technique [125]. Following sugar beet, there was no significant difference in the DON concentration between wheat plots receiving different methods of cultivation; however, following a wheat crop without straw removal, direct drilled wheat had a significantly higher DON level compared to wheat from plots which were either ploughed or min-tilled [125].
In accordance with the guidelines contained in the Codex Alimentarius, soil should be tested to determine if there is need to apply a fertilizer and/or soil conditioners to assure adequate soil pH and plant nutrition to avoid plant stress, especially during seed development [122].
Research of [126] showed that supplementary nitrogen and a plant growth regulator increased, by up to 125%, the incidence of infection by Fusarium species in the seed of wheat, barley and triticale. Similarly, in the studies of [127], a significant increase in fumonisins and deoxynivalenol contamination in the grain of wheat and kernels was observed with increasing N fertilizer from 0 to 80 kg/ha. That research concluded that in practical crop husbandry, Fs cannot be sufficiently controlled by only manipulating the N input [111]. The study of [128] showed that the use of six different combinations of agricultural practices (sowing time, plant density, N fertilization and European corn borer (ECB) control with insecticide) can effectively lead to good control of fumonisins and deoxynivalenol in maize kernels.
In accordance with the guidelines contained in the Codex Alimentarius [122], farmers should minimize insect damage and fungal infections of the crop by proper use of registered insecticides, fungicides and other appropriate practices within an integrated pest management program.
Some studies have been conducted to examine the effectiveness of the fungicides which are applied during flowering can reduce Fusarium infections and subsequent DON in the harvested grains. The results of [129] provided that azoles, tebuconazole, metconazole and prothioconazole significantly reduced the Fusarium disease symptoms and Fusarium mycotoxin concentrations. The greatest reduction in the DON concentration occurred with prothioconazole (10-fold). Azoxystrobin had little impact on the mycotoxin concentration in the harvested grain infected by Fusarium species, but could increasing the mycotoxin concentration in grains when F. nivale was the predominant species present [130, 131]. Fungicide mixtures of azoxystrobin and azole resulted in a lower reduction of DON, compared to azole alone [120, 132]. A number of trials in Germany have indicated that some strobilurin fungicides applied before anthesis can also result in increased DON compared to unsprayed plots [133]. Reductions in DON observed in field experiments using fungicides against natural infections of Fusarium are lower and inconsistent [134]. This is probably due to the fact that during a natural infection, the infection occurs over a longer period of time.
Alternatively, a limited number of biocompetitive microorganisms have been shown useful for the management of Fusarium infections [111]. Research has demonstrated the successful use of bacteria in biocontrol of mycotoxigenic fungi. One bacterium, Enterobacter cloacae was discovered as an endophytic symbiont of corn [135]. Corn plants with roots endophytically colonized by these bacteria were observed to be fungus-free and in vitro control of F.verticillioides and other fungi with this bacterium was demonstrated. An endophytic bacterium, Bacillus subtilis showed promising for reducing the mycotoxin contamination with F.verticillioides during the endophytic growth phase [136]. Yeast antagonists such as Cryptococcus nodaensis were isolated from wheat anthers. The antagonists reduced Fusarium head blight severity by up to 93% in greenhouse and by 56% in field trials when sprayed onto flowering wheat heads [137]. The most successful antagonists reduced the DON content of grain more than 10-fold in greenhouse studies [138].
Actions to be taken during harvest in order to reduce the risk of mould contamination and mycotoxin production include [112]:
harvest as quickly as possible
avoid field drying
transport the crop to the homestead as soon as possible
if lack of labour force or time prevents removal from the field, then dry the crops on platforms raised above ground (if climate is hot and the drying crop can be left to stay on the field on a platform or cut and tied into stooks) to dry
bundles of stover should also be placed on platforms to dry and not left lying on the soil
The post-harvest strategies include improving the drying and storage conditions together with the use of chemical, physical or biological methods.
When mycotoxin prevention is not satisfactory, some decontamination methods are needed. The use of detoxification methods is allowed only in the case of feed and feed components. Foodstuffs containing contaminants exceeding the maximum levels should not be placed on the market either as such, in the form of a mixture with other foodstuffs or used as an ingredient in other foods. Food contaminated with mycotoxins is not safe for consumers and no decontamination methods can be used.
According to FAO [111, 139, 140] the feed decontamination process must:
destroy, inactivate or remove mycotoxins
not produce toxic, carcinogenic or mutagenic residues in decontaminated final products
not decrease the nutritive value and organoleptic properties
destroy all fungal morphological forms
not significantly increase the cost of production
There are some physical methods of decontamination of feed components such as sorting grains, washing procedures, gamma radiation and UV treatment and also extraction with organic solvents. These methods are summarized by [140]. Physical removal of damaged, mouldy or discoloured kernels significantly decreased the concentration of AF in peanuts. Sorting is not effective for maize and cottonseed. Washing with water or sodium carbonate solutions could decrease the concentration of DON, ZEA and fumonisins in wheat and maize.
High temperature is not used for decontamination of agricultural products, due to thermostability of mycotoxins. Different types of radiation were tested for mycotoxin detoxification, but the results were not effective enough.
Chemical compounds such as organic acids, ammonium, sodium hydroxide, hydrogen peroxide, ozone, chloride and bisulphite were tested for their efficacy in mycotoxin decontamination [141, 142]. Chemical decontamination is very effective, but these methods are expensive and affect the feedstuff quality. Among the chemical methods, only peroxide and ammonia are mostly used for aflatoxin removal from feed. Ammoniation works by irreversibly converting AFB1 to less toxic products such as AFD1 [143]. Data show that treatment of maize contaminated with 1000 or 2000 ppb aflatoxins with 1% of aqueous ammonia for 48 h removed 98% of the aflatoxins. There was no significant change in the dietary intake, body weight gain, and feed conversion ratio in chickens fed with ammonia-treated aflatoxin-contaminated maize, whereas these parameters were suppressed in birds fed with aflatoxin-containing diet [142]. Atmospheric ammoniation of corn does not appear to be an effective method for the detoxification of F.moniliforme–contaminated material. In the research of [144], the levels of fumonisin B1 in naturally contaminated corn were reduced by about 45% due to the ammonia treatment. Despite this, the toxicity of the culture material in rats was not altered by ammoniation.
A recent and promising approach to protect animals against the harmful effects of mycotoxin-contaminated feed is the use of mycotoxin binders (MB). They are added to the diet in order to reduce the absorption of mycotoxins from the gastrointestinal tract and their distribution to blood and target organs. These feed additives may act either by binding mycotoxins to their surface (adsorption), or by degrading or transforming them into less toxic metabolites (biotransformation). Various inorganic adsorbents, such as hydrated sodium calcium aluminosilicate, zeolites, bentonites, clays, and activated carbons, have been used as mycotoxin binders. The use of mycotoxin binders is discussed in some review articles [145-147]. The best aflatoxin adsorbent seems to be HSCAS (hydrated sodium calcium aluminosilicate), which rapidly and preferentially binds aflatoxins in the gastrointestinal tract [148-150]. The prevention of aflatoxicosis in broiler folders was examined by [150]. HSCAS and activated charcoal were incorporated into the diets for broilers containing purified aflatoxin B1 (7.5 ppm), or natural aflatoxin produced by Aspergillus parasiticus on rice (5 ppm). The authors showed that HSCAS significantly decreased the growth-inhibitory effects of AFB1 or AFs on the growing chicks, namely by 50 to 67%. The authors suggest that HSCAS can modulate the toxicity of aflatoxins in chickens; however, adding activated charcoal to the diet did not appear to have protective properties against mycotoxicosis [150].
Physical and chemical methods have a lot of disadvantages; in many cases they do not meet the FAO requirements. Therefore, the use of other methods is considered. Biological methods, involving decontamination with microorganisms or enzymes, give promising results. Recently, an increase in the research connected with mycotoxin detoxification by microorganisms has been observed. Several studies have shown that some bacteria, moulds and yeasts such as Flavobacterium auriantiacum, Corynebacterium rubrum, lactic acid bacteria (Lactobacillus acidophilus, L.rhamnosus, L.bulgaricus), Aspergillus niger, Rhizopus nigricans, Candida sp., Kluyveromyces sp., etc. are able to conduct detoxification of mycotoxins (Tab. 6). Unfortunately, few of these findings have practical application.
Already in 1966, a review of microorganisms was conducted by [151] as for their capability of degrading aflatoxins. It was found that yeasts, actinomycetes and algae did not show this trait, but some moulds, such as Aspergillus niger, A. parasiticus, A. terreus, A. luchuensis, and Penicillium reistrickii, partially transformed aflatoxin B1 to a new product. Among them, only the bacteria Flavobacterium aurantiacum (now Nocardia corynebacterioides) is able to remove aflatoxin, both from the media and from the natural environments such as milk, oil, cocoa butter and grain. It was shown that to obtain the apparent loss of the toxin, it was necessary to use the bacterial population with the density of more than 1010 CFU/ml [154, 188].
\n\t\t\t\tMycotoxin\n\t\t\t | \n\t\t\t\n\t\t\t\tMicroorganism\n\t\t\t | \n\t\t\t\n\t\t\t\tReferences \n\t\t\t | \n\t\t
Aflatoxin B1\n\t\t | \n\t\tFlavobacterium aurantiacum (Nocardia corynebacterioides), Lactobacillus acidophilus, L.johnsonii, L.salivarius, L.crispatus, L.gasseri, L.rhamnosus, Lactococcus lactis, Bifidobacterium longum, B.lactis, Mycobacterium luoranthenivorans, Rhodococcus erythropolis, Bacillus megaterium, Corynebacterium rubrum, Kluyveromyces marxianus, Saccharomyces cerevisiae, Aspergillus niger, A. terreus, A.luchuensis, Penicillium reistrickii, Trichoderma viride | \n\t\t[151-165] | \n\t
Ochratoxin A | \n\t\t\n\t\t\tLactococcus salivarius subsp. thermophilus, Lactobacillus delbrueckii subsp. Bulgaricus, L. acidophilus, Bifidobacterium animalis, B. bifidum, Lactobacillus plantarum, L. brevis, L. sanfranciscensis, L.acidophilus, Acinetobacter calcoaceticus, Rhodococcus erythropolis, Oenococcus oeni, Saccharomyces cerevisiae, Kluyveromyces marxianus, Rhodotorula rubra, Phaffia rhodozyna, Xanthophyllomyces dendrorhous, Metschnikowia pulcherrima, Pichia guilliermondii, Trichosporon mycotoxinivorans, Rhizopus sp., Aureobasidium pullulans, Aspergillus niger, A.carbonarius, A. fumigatus, A. versicolor\n\t\t | \n\t\t[166-183] | \n\t
Fumonisin B1\n\t\t | \n\t\t\n\t\t\tLactobacillus rhamnosus, Lactococcus lactis, Leuconostoc mesenteroides, Saccharomyces cerevisiae, Kluyveromyces marxianus, Rhodotorula rubra\n\t\t | \n\t\t[176, 184] | \n\t
Trichotecenes | \n\t\tRuminant bacteria, chicken intestinal microflora, \n\t\t\tSaccharomyces cerevisiae, Kluyveromyces marxianus, Rhodotorula rubra\n\t\t | \n\t\t[176, 185, 186] | \n\t
Zearalenone | \n\t\tSoil bacteria, Propionibacterium fraudenreichii, Rhizopus sp., Trichosporon mycotoxinivorans\n\t\t | \n\t\t[179, 183, 187] | \n\t
Decontamination abilities of microorganisms
It was observed that cultures of toxinogenic Aspergillus flavus and Aspergillus parasiticus were able to reduce aflatoxin contamination. Aflatoxins were degraded by the strains that produce them, but only after the fragmentation of the mycelium. The cause of this phenomenon was absorption into the cell wall of mycelium [165]. In the research of [176], 10 yeast strains of the Saccharomyces, Kluyveromyces and Rhodotorula genera were studied for their ability to perform biodegradation of fumonisin B1, ochratoxin A and trichothecenes. Significant differences were demonstrated between the strains, but there were no preferences as to the types of mycotoxins. Fumonisins were removed by the majority of the strains in 100%, the removal rate for deoxynivalenol ranged from 63 to 100%, and for ochratoxin A from 69 to 100%. The possibility of using moulds to remove ochratoxin A was studied by [179, 182]. The authors selected two out of 70 isolates of the Aspergillus species - Aspergillus fumigatus and Aspergillus niger, which transformed ochratoxin A to ochratoxin α and phenylalanine within 7 days of incubation on both liquid and solid media.
In vitro studies conducted by [186] demonstrated the degradation of 12 trichothecene mycotoxins conducted by bacteria isolated from the digestive tract of chickens. The transformation of the toxin led to their partial or total deacylation and de-epoxidation. Similarly, it was shown, that the strains of anaerobic bacteria - isolated from the rumen, Gram positive, pre-classified to the genus Eubacterium - are able to perform the transformation of type A trichothecenes to non-toxic forms [185].
The above-presented examples of microbial activity aimed at removal of mycotoxins are mainly of scientific nature, allowing for a better understanding of the strains, their properties and the mechanisms of the processes. Their limited practical application made that research turned in the direction of such organisms, which can be used in biotechnological processes during production, such as fermented food production, where the raw material may be contaminated with mycotoxins. The most important among them are lactic acid bacteria and yeasts Saccharomyces cerevisiae [163].
Literature data indicate the existence of strains of lactic acid bacteria with different abilities to remove mycotoxins, as demonstrated both in in vitro and in vivo studies conducted by various authors with the use of some strains of probiotic Lactobacillus rhamnosus, Lactobacillus acidophilus, Bifidobacterium bifidum, B. longum, and Streptococcus spp., Lactococcus salivarius, Lactobacillus delbrueckii subsp. bulgaricus [155, 156, 158, 160, 169, 189, 190]. According to [191], the decontamination process is very fast; after 4h the toxin concentration was reduced from 50 to 77%. It was observed that heat-inactivated cells were more effective than living cells, which results from the changes in the surface properties of cells, which occur under high temperature [191]. The capacity to reduce the content of ochratoxin A in milk by lactic acid bacteria belonging to the species Lactococcus salivarius, Lactobacillus delbrueckii subsp. bulgaricus and Bifidobacterium bifidum was confirmed in [167]. The content of patulin in the medium decreased in the level from 10 to 82% under the influence of bacteria belonging to the genus Lactobacillus and Bifidobacterium. The decontamination process depends on the inoculum density, pH and the concentration of toxins. Among the studied strains, L.acidophilus, removes up to 96% of the toxin added to the medium in an amount of 1ppm [166].
Our in vivo experiments indicate that the use of probiotics as feed additives limited the effects of mycotoxins in animals, as well as reduced the accumulation of toxins in the tissues, thus reducing the contamination of food of animal origin with the toxins [192]. It was shown that Lactobacillus rhamnosus bacteria limited by 75% the adsorption of aflatoxin B1 in the digestive tract of chickens [189].
The second group of organisms with a potential application in detoxification is constituted by Saccharomyces cerevisiae yeasts. Our own research demonstrated that these organisms are capable of eliminating ochratoxin A from the plant raw material during fermentation and chromatographic analysis did not show any products of OTA metabolism, which proves that it was not the case of biodegradation. The amount of ochratoxin A removed by bakery yeasts after 24-hour contact equalled from 29% to 75% for 5 mg d.m/ml and 50 mg d.m./ml, respectively. The process of adsorption proved to be very fast; immediately after mixing the cells with the toxin its amount significantly decreased, and lengthening the contact up to 24 hours did not bring further notable changes. The presence of physiologically active cells is not necessary in order to remove the toxin; the dead biomass also removed OTA from the buffer and the amount of the toxin removed was much bigger than in the case of the active biomass. In the case of the 5 mg/ml density, 54% of the toxin was adsorbed, i.e. twice more than in the case of the active biomass [171]. The reason for OTA removal was adsorption of the toxin to the yeast cell wall. This mechanism was independent of the type of toxin, as demonstrated in relation to aflatoxin B1, zearalenone and T-2 toxin and patulin. The compounds of the cell wall that are involved in the binding process are probably β-D-glucan and its esterified form [193, 194]. Yeasts and their cell wall components are also used as feed additives for animals, and as adsorbents, which effectively limits mycotoxicosis in farm animals [195, 196].
The potential application of yeasts as adsorbents for foods and feeds depends on the stability of the toxin binding to the cells in the conditions of the gastrointestinal tract. According to [194], zearalenone adsorption is most effective at a pH close to neutral and acidic, and therefore those which prevail in some regions of the gastrointestinal tract. The result of the use of yeasts to remove ochratoxin A is detoxification of the environment, as demonstrated in the cytotoxicity and genotoxicity tests using pig kidney cell lines [197]. Some yeasts also exhibit features of probiotic activity, which is an additional argument for the use of these organisms
The use of microorganisms or their cell components for decontamination of foods and feeds has raised high hopes, but also the controversy from the perspective of the consumer. There are no legal regulations devoted to this issue, and the data referring to the stability of the microorganism-toxin connection in the gastrointestinal tract, as well as toxicological data are still incomplete. The only group of microorganisms, which in addition to other advantageous features of health promotion has the ability to remove toxins, is probably that of probiotic lactic acid bacteria. Also, Saccharomyces cerevisiae yeast and its cell wall component - glucan can be used for this purpose. These factors can be applied both as human dietary supplements and ingredients in animal nutrition, as well as during biotechnological processes.
Antimicrobial resistance is a global public health crisis. According to Public Health England [1], each year approximately 25,000 people die across Europe due to hospital-acquired infections caused by antibiotic-resistant and MDR bacteria such as Mycobacterium tuberculosis, Methicillin-resistant Staphylococcus aureus and multiresistant Gram-negative bacteria. Gram-negative infections include those caused by Escherichia coli, Klebsiella pneumoniae and Pseudomonas aeruginosa [2]. Nevertheless, it is estimated that by 2050, the global yearly death toll will increase to 10 million. Accelerating emerge of antimicrobial resistance seriously threatens the effectiveness of treatments for pneumonia, meningitis and tuberculosis, in addition to diminishing prevention of infections acquired during surgeries and chemotherapies. The crisis of the antibiotic resistance requires urgent, coordinated action. Misuse and overuse of antibiotics must be controlled, implementation of new policies regarding prescriptions has to be internationally addressed; and development of new therapeutics is urgently required [1].
Félix d’Herelle, known as the father of bacteriophage (or phage) therapy [3], brought an evolutionary discovery of phages as therapeutics for various infections and conditions. Phage therapy was widely enforced in the 1920s and 1930s to combat the bacterial infections. However, in the 1940s, the newly discovered antibiotics replaced the phage therapy (except Russia, Georgia and Poland) [4].
The emergence of MDR bacteria prompted a renewal of the interest to the phage therapy as an alternative treatment to overcome a broad spectrum of resistant bacterial infections. Phage therapy and phage cocktails that contain a mixture of different bacteria-specific phages, drawn interest within molecular biology and modern medical research as potential antimicrobials that could tackle the crisis of antimicrobial resistance. Nonetheless, the phage therapy remains controversial due to its disadvantages such as bacteriophage resistance: bacteria-phage evolutionary arms race that could put a burden on a long-time application of phage therapy as an anti-infectious agent [5].
Phage therapy has many advantages, primary because phages are very specific (generally limited to one species) and easy to obtain as they are widely distributed in locations populated by bacterial hosts including soil and seawater, and they do not have any known chemical side effects like antimicrobials [6].
Understanding host-phage interactions and ‘the war between bacteria and phages’ are steps towards designing engineering ‘broad-spectrum phage’ that can overcome the limitations of phage therapy and potentially overcome a wide range of resistant bacterial infections [6].
Phages are obligate intracellular parasites that distinctively infect bacterial cells. Although phages are very specific to their host, generally limited to one species, they pose an enormous threat to bacteria as in some habitats they outnumber their hosts by nearly 10-fold number [7]. Phages are the most abundant, ubiquitous and diversified organisms in the biosphere [8, 9]. Phage-host interaction and fight for the survival led to the evolution of bacterial and viral genomes and, therefore, to the evolution of resistance mechanisms. Bacteria, continuously, evolve many molecular mechanisms, driven by gene expression to prevent phage infection. These evolving phage-resistance mechanisms in bacteria induce the parallel co-evolution of phage diversity and adaptability [10, 11]. The co-evolving genetic variations and counteradaptations, in bacteria and phages, drive the evolutionary phage-host arm race [11, 12].
Leigh Van Valen, an evolutionary biologist, metaphorised the co-evolutionary arm race and proposed the Red Queen hypothesis [13].
‘It takes all the running you can do, to stay in the same place’ the Red Queen says to Alice in Through the Looking-Glass.
The Red Queen hypothesis proposes that to survive, microorganisms must constantly adapt, evolve and thrive against ever-evolving antagonistic microorganisms within the same ecological niche [14].
Bacteria have developed various anti-phage mechanisms including non-adaptive defences (non-specific) and adaptive defences associated with Clustered Regularly Interspaced Short Palindromic Repeats (CRISPR) along with CRISPR-associated (Cas) proteins [7, 15, 16, 17, 18].
The non-specific adaptations (analogues to innate immunity in multicellular organisms) act as primary mechanisms to evade viral infection, and they include mechanisms that inhibit phage adsorption and prevent nucleic acid entry, superinfection exclusion systems, restriction-modification systems and abortive infection [7, 19].
On the other hand, the adaptive resistance (analogues to the acquired immunity in multicellular organisms) serves as a second line of defence, which is very efficient and phage-specific.
Interestingly, it was observed that the bacterial anti-phage mechanisms are generally present in a genomic array, known as ‘defence islands’ [20]. The ‘defence islands’ are enriched in putative operons and contain numerous overrepresented genes encoding diverged variants of antiviral defence systems. Moreover, scientific evidence and characteristic operonic organisation of ‘defence islands’ show that many more anti-phage mechanisms are yet to be discovered [21, 22, 23, 24].
Although bacteria have developed several resistance mechanisms against phages, phages can circumvent bacterial anti-phage mechanisms on the grounds of their genomic plasticity and rapid replication rates. These counterstrategies include point mutations in specific genes and genome rearrangements that allow phages to evade bacterial antiviral systems such as CRISPR/Cas arrays by using anti-CRISPR proteins and abortive infection by hijacking bacterial antitoxins, as well as escaping from adsorption inhibition and restriction-modification mechanisms [15, 16, 17, 18].
This chapter will comment on the genetic basis of bacterial resistance to phages and different strategies used by phages to evade bacterial resistance mechanisms.
Phage adsorption to host-specific receptors on the cell surface is the initial step of the infection and host-phage interaction. Depending on the nature of bacteria, whether it is Gram-positive or Gram-negative proteins, lipopolysaccharides, teichoic acids and other cell surface structures can serve as irreversible phage-binding receptors [19]. These receptors might be present in the cell wall, bacterial capsules, slime layers, pili or flagella [25].
Bacteria have acquired various barriers to inhibit phage adsorption, such as blocking of phage receptors, production of extracellular matrix (e.g. capsule, slime layers) and production of competitive inhibitors [26, 27, 28, 29, 30, 31]. The diversity of phage receptors in the host is influenced by co-evolutionary adaptations of phages to overcome these barriers [32]. This includes diversity-generating retroelements (DGRs) and phase variation mechanisms causing phenotypical differences within the bacterial colony [7, 33, 34].
Phase variation is a heritable, yet reversible process regulating gene expression in bacteria; genes can switch between a functional (expression) and a non-functional state leading to phenotypical variations within the bacterial population even when strains have identical genotype. Sørensen et al. [35] investigated the underlying resistance mechanism of Campylobacter jejuni (NCTC11168) to phage F336. They have discovered that phage F336 relies on the hypervariable O-methyl phosphoramidate (MeOPN) modification of capsular polysaccharides (CPS) for successful adsorption to the bacterial surface. Nevertheless, loss of MeOPN receptor on the bacterial cell surface due to phase variation in the cj1421 gene encoding the MeOPN-GalfNAc transferase (MeOPN transferase attaches MeOPN to GalfNAc and Hep side chains of CPS) results in phage resistance [35, 36].
DGRs are genetic elements diversifying DNA sequences and the proteins they encode ultimately mediating the evolution of ligand-receptor interactions. Error-prone DGRs and random mutations in the bacterial genes encoding cell surface receptors lead to the alternation and change in the structural composition of the phage receptors, making them non-complementary to the phage’s anti-receptors, known as receptor-binding proteins (RBP) [34] (Figure 1(1)).
Bacterial defence mechanisms preventing phage adsorption and phage’s counteradaptations. (1) Phage adsorption to a host-specific receptor site on a host cell surface. Bacterium evolves phage resistance by the modification of these cell surface receptors; phage is incapable of binding to the altered receptor. (2) Phage’s adaptation to these modifications through mutations in receptor-binding protein gene that leads to the co-evolution of bacterial genetic variation. Bacteria are also capable of producing proteins that mask the phage recognition site receptors (3 and 4), thus making the receptor inaccessible for phage adsorption [28, 29, 30, 31]. Image courtesy of springer nature: https://www.ncbi.nlm.nih.gov/pubmed/20348932.
Yet, phage’s replication is exceedingly error-prone, therefore causing many random mutations in the genes encoding the RBP or tail fibres. Phages also possess DGRs that mediate phage’s tropism by accelerating the variability in the receptor-coding genes through reverse transcription process [37]. The changes in the nucleotide sequence in the RBP-coding gene may ultimately lead to the adaptation to the modified receptor (Figure 1(2)), thus the ability to adsorb and infect the bacterial cell.
Unsurprisingly, bacteria also exhibit different strategies to block their receptors [28, 29, 30, 31].
Figure 1(4) demonstrates the findings from studies conducted on Staphylococcus aureus by Nordstrom and Forsgren [38]. Mutants of Staphylococcus aureus producing higher anticomplementary protein A were found to adsorb fewer phages than Staphylococcus aureus mutants with scarce of protein A, which had an apparent increased ability to adsorb phages [38]. These findings indicate that some bacteria, including Staphylococcus aureus, are capable of production of surface proteins that mask the phage receptors making them inaccessible for phage recognition and attachment (Figure 1(3)).
Receptors located on bacterial cell surface serve a vital role in bacterial metabolism; they may function as membrane porins, adhesions or chemical receptors [19]. Therefore, mutation or complete loss of the receptor might be lethal for bacteria. To inhibit phage adsorption, bacteria can produce surface molecules, such as exopolysaccharides.
Exopolysaccharides are extracellular polysaccharides acting as a physical barrier, composing slime or capsules surrounding bacterial cells that lead to inaccessible host receptors for efficient phage adsorption [39] (Figure 2). Studies conducted by Looijesteijn et al. [40] shown that exopolysaccharides produced by Lactococcus lactis function as external protection from phages and the cell wall destructing lysozyme, due to masked cell surface receptors [40].
Bacterial strategies to inhibit phage adsorption and phage strategies to access host receptors. Some bacteria are capable of the production of exopolysaccharides, which act as an outer shield, protecting a cell from the phage infection [28, 29, 30, 31]. If the phage does not possess any polysaccharide-degrading enzymes, it cannot access the host cell membrane receptor. However, some phages evolved mechanisms allowing them to recognise these extracellular matrixes and degrade them by the means of hydrolases and lyases [15, 16, 17, 18]. Image courtesy of Springer Nature: https://www.ncbi.nlm.nih.gov/pubmed/20348932.
Nevertheless, some phages evolved mechanisms allowing them to recognise these extracellular matrixes and degrade them by utilising hydrolases and lyases (Figure 2) [15, 16, 17, 18]. The polysaccharide-degrading enzymes allow phages to gain access to the receptor that may lead to the viral propagation. They are commonly present bound to the RBPs or exist as free soluble enzymes from previously lysed bacterial cells [41].
If phage bypasses primary antiviral strategies, it is now able to initiate infection by adsorption to a specific receptor site on a host cell surface through phage RBP [42, 43]. Upon interaction with the cell receptors, the phage injects its genetic material (single or double-stranded DNA or RNA) into the cytoplasm of the host. Depending on the nature of the phage and growth conditions of the host cell, it follows one of the two life cycles: lytic or lysogenic (Figure 3).
Lytic and lysogenic life cycles of a temperate coliphage λ that infects Escherichia coli [44, 45]. cos—cohesive sites: the joining ends that circularise the linear phage λ DNA. Image courtesy of Springer Nature: https://www.nature.com/articles/nrg1089.
In the lytic cycle, virulent phages degrade host’s genome leading to the biosynthesis of viral proteins and nucleic acids for the assembly of phage progeny. Eventually, the bacterial cell lysis, releasing a multitude of newly assembled phages, is ready to infect a new host cell [46].
In contrast, temperate phages might enter the lytic or lysogenic cycle, if the host cell exists in adverse environmental conditions that could potentially limit the number of produced progeny (Figure 3 demonstrates typical lifecycle of temperate phage using coliphage λ as an example) [44, 45]. In the lysogenic phase, repressed phage genome integrates into the bacterial chromosome as a prophage. This process causes the proliferation of prophage during replication and binary fission of bacterial DNA.
Prophage only expresses a repressor protein-coding gene. The repressor protein binds to the operator sites of the other genes and ultimately inhibits synthesis of phage enzymes and proteins required for the lytic cycle.
When the synthesis of the repressor protein stops or if it becomes inactivated, a prophage may excise from the bacterial chromosome, initiating a lytic cycle (induction) which leads to the multiplication and release of virulent phages and lysis of a host cell [44, 45].
If the phage remains in the nearly dormant state (prophage), the lysogenic bacterium is immune to subsequent infection by other phages that are the same or closely analogous to the integrated prophage by means of Superinfection exclusion (Sie) systems [47].
Sie systems are membrane-associated proteins, generally, phage or prophage encoded, that prevent phage genome entry into a host cell [47]. Figure 4 shows the role of Sie system (proteins Imm and Sp) in blocking phage T4 DNA entry into Gram-negative Escherichia coli. Despite successful attachment to the phage-specific receptor, phage DNA is directly blocked by Imm protein from translocating into the cytoplasm of the cell. Sp system, on the other hand, prevents the degradation of the peptidoglycan layer by inhibiting the activity of T4 lysozyme [26, 27, 28, 29, 30, 31, 48].
Superinfection exclusion systems preventing phage DNA entry in Gram-negative Escherichia coli. (a). Standard T4 phage: upon attachment to phage-receptor on the surface of the host cell, an inner-membrane protein aids the translocation of phage DNA into the cell’s cytoplasm. (b) Imm encoding phage T4: Imm protein directly blocks the translocation of the phage DNA into the cytoplasm of the cell. (c) Imm and Sp encoding phage T4: phage DNA is prevented from entering the cell’s cytoplasm by Imm; and Sp protein prevents degradation of the peptidoglycan layer by inhibiting the activity of T4 lysozyme [28, 29, 30, 31]. Image courtesy of Springer Nature: https://www.ncbi.nlm.nih.gov/pubmed/20348932.
The evolution of bacterial genomes allowed bacteria to acquire vast mechanisms interfering with every step of phage infection. In a case where a phage succeeded to inject its viral nucleic acid into a host cell, bacteria possess a variety of nucleic acid degrading systems such as restriction-modification (R-M) systems and CRISPR/Cas that protect bacteria from the phage invasion.
It has been reported that R-M systems can significantly contribute to bacterial resistance to phages [49].
R-M systems incorporate activities of methyltransferases (MTases) that catalyse the transfer of a methyl group to DNA to protect self-genome from a restriction endonuclease (REase) cleavage and REases, which recognise and cut foreign unmethylated double-stranded DNA at specific recognition sites, commonly palindromic. To protect self-DNA from the degradation, methylases tag sequences recognised by the endonucleases with the methyl groups, whereas unmethylated phage (nonself) DNA is cleaved and degraded (Figure 5) [26, 27, 50, 51, 52].
General representation of the bacterial restriction-modification (R-M) systems providing a defence against invading phage genomes. R-M systems consist of two contrasting enzymatic activities: a restriction endonuclease (REase) and a methyltransferase. REase recognises and cuts nonself unmethylated double-stranded DNA at specific recognition sites, whereas MTase adds methyl groups to the same genomic recognition sites on the bacterial DNA to protect self-genome from REase cleavage [50, 51]. Image courtesy of: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3591985/.
R-M systems are diverse and ubiquitous among bacteria. There are four known types of R-M within bacterial genomes (Figure 6). Their classification is mainly based on R-M system subunit composition, sequence recognition, cleavage position, cofactor requirements and substrate specificity [26, 27, 50, 51].
Four distinct types of restriction-modification (R-M) systems. (a) Type I R-M system is composed of three subunits forming a complex: hsdR (restriction), hsdM (modification) and hsdS (specificity subunit that binds to an asymmetrical DNA sequence and determines the specificity of restriction and methylation). Two hsdM subunits and one hsdS subunit are involved in methylation of self-DNA. On the other hand, two complexes of hsdR, hsdM and hsdS (where each complex consists of two hsdR, two hsdM and one hsdS subunit) bind to the unmethylated recognition sites on phage DNA and cleave the DNA at random, far from their recognition sequences. Both reactions—methylation and cleavage—require ATP. (b) Type II R-M system is composed of two distinct enzymes: palindromic sequence methylating methyltransferase (mod) and endonuclease (res) that cleave unmethylated palindromic sequences close to or within the recognition sequence. (c) Type III R-M system is formed of methyltransferase (mod) and endonuclease (res) that form a complex. Methyltransferase transfers methyl group to one strand on the DNA, whereas two methyltransferases (endonuclease complexes) act together to bind to the complementary unmethylated recognition sites to cleave the DNA 24–26 bp away from the recognition site. (d) Type IV R-M system contains only endonuclease (res) that recognises methylated or modified DNA. Cleavage occurs within or away from the recognition sequences [26, 27, 50, 51]. Image courtesy of: https://www.annualreviews.org/doi/abs/10.1146/annurev-virology-031413-085500?journalCode=virology.
Due to the diversity of R-M systems, phages acquired several active and passive strategies to bypass cleavage by REases. Passive mechanisms include reduction in restriction sites, modification and change of the orientation of restriction sites, whereas more specific, active mechanisms include masking of restriction sites, stimulation of MTase activity on phage genome or degradation of an R-M system cofactor (Figure 7) [15, 16, 17, 18].
Phage’s passive and active strategies to bypass restriction-modification (R-M) systems. (a) Phages that possess fewer restriction sites in their genome are less prone to DNA cleavage by the host restriction endonuclease (REase). (b) Occasionally phage DNA might be modified by bacterial methyltransferase (MTase) upon successful injection into a host cell. Methylated recognition sites on viral DNA are, therefore, being protected from the cleavage and degradation by REase, leading to the initiation of the phage’s lytic cycle. In addition, some phages encode their own MTase that is cooperative with the host REase; thus viral DNA cannot be recognised as nonself. (c) Some phages, for example, coliphage P1, while injecting its DNA into a host cell, it also co-injects host-genome-binding proteins (DarA and DarB) that mask R-M recognition sites. (d) Phages such as Coliphage T7 possess proteins that can mimic the DNA backbone. Ocr, a protein expressed by Coliphage T7, mimics the DNA phosphate backbone and has a high affinity for the EcoKI REase component, thereby interfering with R-M system. (e) In addition, some phages (e.g. Ral protein of Coliphage λ) can also stimulate activity of the bacterial modification enzyme in order to protect own DNA from the recognition by the bacterial REase as nonself. The peptide Stp encoded by Coliphage T4 can as well disrupt the structural conformation of the REase-MTase complex [15, 16, 17, 18]. Image courtesy of: https://www.nature.com/articles/nrmicro3096.
Fewer restriction sites in the evading genome lead to the selective advantage of this phage as its DNA is less prone to cleavage and degradation by the host REase (Figure 7a). Also, some phages incorporate modified bases in their genomes that may lead to successful infection of the host cell as REase may not recognise the new sequences in the restriction sites. A decrease in the effective number of palindromic sites in DNA or change in the orientation of restriction-recognition sites can affect R-M targeting. Alternatively, the recognition sites within the viral genome can be too distant from each other to be recognised and cleaved by the REase [15, 16, 17, 18, 53].
Interestingly, phage genome might be methylated by bacterial MTase upon successful injection into a host cell. Methylated recognition sites on viral genomes are therefore being protected from the cleavage and degradation by REase, leading to the initiation of the phage’s lytic cycle. Viral progeny remains insensitive to this specific bacterial REase until it infects a bacterium that possesses a different type of REase, in which case the new progeny will become unmethylated again and will, therefore, be sensitive to the R-M system of the cognate bacterium [28, 29, 30, 31].
The fate of the host cell chiefly confides in the levels of R-M gene expression and ultimate proportion of the R-M enzymes and their competition for the sites in the invading phage genome [52].
Furthermore, some phages encode their own MTase that is cooperative with the host REase, and thereby viral DNA cannot be recognised as nonself. Phages can also stimulate the activity of host modification enzymes that can rapidly methylate viral DNA, thus protecting it from the activity of REase.
Alternatively, phages can bypass R-M systems by masking restriction sites. For example (Figure 7c), coliphage P1, while injecting its DNA into a host cell, it also co-injects host-genome-binding proteins (DarA and DarB) that mask R-M recognition sites [53, 54].
As shown on an example of a Coliphage T7 (Figure 7d), some phages code for proteins that directly inhibit REase. Coliphage T7 possesses proteins that can mimic the DNA backbone. Ocr, a protein expressed by Coliphage T7, directly blocks the active site of some REases by mimicking 24 bp of bent B-form DNA, and it has a high affinity for the EcoKI REase component, thereby interfering with R-M system [53].
Lastly, phage-bacteria arm race allowed phages to gain capabilities of degrading necessary cofactors of R-M systems. For instance, coliphage T3 encodes S-adenosyl-l-methionine hydrolase that destroys an essential host R-M cofactor (the S-adenosyl-l-methionine). The removal of this necessary co-factor will lead to the inhibition of the REase, thereby successfully infecting the host cell [15, 16, 17, 18].
CRISPR along with CRISPR-associated (Cas) proteins is the type of adaptive heritable ‘immunity’ of bacteria, thus very specific and effective; and it is prevalent within the bacterial domain [55]. The CRISPR are DNA loci consisting of short palindromic repeats (identical in length and sequence), interspaced by segments of DNA sequences (spacer DNA) derived from previous exposures to phages. The spacer DNA sequences act as a ‘memory’, allowing bacteria to recognise and destroy specific phages in a subsequent infection. Genes encoding Cas proteins are adjacent to CRISPR loci [56].
Although some studies have suggested that CRISPRs can be used for pathogen subtyping [57], it has been found that CRISPR typing is not useful for the epidemiological surveillance and outbreak investigation of Salmonella typhimurium [58].
The CRISPR/Cas phage resistance is mediated in three-step stages: adaptation (acquisition), where spacer phage-derived DNA sequences are incorporated into the CRISPR/Cas system; expression, where cas gene expression and CRISPR transcription lead to pre-CRISPR RNA (pre-crRNA) that is then processed into CRISPR RNA (crRNA); and interference, during which the crRNA guides Cas proteins to the target (subsequently invading DNA) for the degradation. The cleavage of the target (proto-spacer) depends on the recognition of complementary sequences in spacer and protospacer [59, 60].
CRISPR/Cas systems have been classified into three major types: Types I, II and III, which are further divided into subtypes that require different types of Cas proteins. Although the CRISPR/Cas array is diverse among the bacteria and it is continuously co-evolving in response to the host-phage interactions, the defence activity in all three types of the CRISPR is comparable [21, 22, 23] Figure 8 illustrates the defence mechanisms in three distinct CRISPR/Cas arrays.
Image showing mechanisms of adaptation, expression and interference in three different types of CRISPR/Cas arrays. Type I and Type II CRISPR/Cas arrays rely on the protospacer adjacent motif (PAM), contained within phage nucleic acid, to ‘select’ the phage-derived protospacer. Next steps in the adaptation stage are similar in all three types; protospacer is incorporated by Cas 1 and Cas2 proteins into the bacterial genome at the leader end of the CRISPR loci to form a new spacer. In expression step, CRISPR loci are transcribed into pre-crRNA. The crRNA processing and interference stage is distinct in each type of the CRISPR/Cas system. In Type I, the multisubunit CRISPR-associated complex for antiviral defence (CASCADE) binds crRNA to locate the target, and with the presence of Cas3 protein, the invading target genome is degraded whereas in Type II, Cas9 protein is essential in the processing of the crRNA. TracrRNA recognises and attaches to the complementary sequences on the repeat region that is then cut by RNase III in the presence of Cas9. Lastly, in Type III, processing of pre-crRNA into crRNA is dependent upon the activity of Cas6. Mature crRNA associated with Csm/Cmr complex targets foreign DNA or RNA for the degradation [21, 22, 23]. Image courtesy of: https://www.nature.com/articles/nrmicro2577.
The Type II, CRISPR/Cas9, which was first identified in Streptococcus pyogenes, gained considerable interest within scientific studies as a precise genome editing tool. CRISPR/Cas9 system is unique; a single Cas 9 protein (in addition to prevalent Cas 1 and Cas 2) is involved in the processing of crRNA and destruction of the target viral DNA [56, 61].
In the adaptation stage, phage-derived protospacer (snippet of DNA from the invading phage) is incorporated into the bacterial genome at the leader end of the CRISPR loci. In expression phase, the Cas9 gene expresses Cas9 protein possessing DNA cleaving HNH and RuvC-like nuclease domains; CRISPR locus is then transcribed and processed into mature crRNA. Finally, in interference step, the complex consisting of Cas9, crRNA and separate trans-activating crRNA (tracrRNA) cleave 20 base pairs crRNA-complementary target sequence that is adjacent to the protospacer adjacent motif (PAM) [62].
To bypass CRISPR/Cas that has an incredibly dynamic rate of evolution, phages acquired array of strategies to succeed in propagation; this includes mutations in the protospacers or in the PAM sequences and expression of anti-CRISPR proteins, and even some phages encode their own functional CRISPR/Cas systems [15, 16, 17, 18, 63].
Phages can evade interference step of Type I and Type II CRISPR/Cas system by a single point mutation or deletion in their protospacer region or in the PAM sequence (Figure 9). Phages with single-nucleotide substitutions or deletions positioned close to PAM sequence can bypass the CRISPR/Cas activity and complete their lytic cycles; in contrast, phages with multiple mutations at PAM-distal protospacer positions do not [15, 16, 17, 18, 28, 29, 30, 31].
Evasion by mutation. Mutations in the phage protospacers or in the PAM sequences allow the phage to escape interference step of the CRISPR/Cas system that would lead to the degradation of the phage genome [15, 16, 17, 18]. Adapted image courtesy of: https://www.nature.com/articles/nrmicro3096.
In some circumstances, however, although the phage successfully evades CRISPR/Cas interference, the host cell may survive by the acquisition of new spacer sequences (derived from invading phage) into their own CRISPR/Cas system. This new spacer provides the bacterium with an accelerated spectrum of phage resistance [15, 16, 17, 18].
Prophages integrated within Pseudomonas aeruginosa possess genes that encode anti-CRISPR proteins directly suppressing CRISPR/Cas-mediated degradation of the phage genome (Figure 10). According to Wiedenheft [64], these proteins might interrupt CRISPR RNA processing by preventing mature crRNA from binging to the crRNA-guide complex or by preventing the assembled crRNA-guided complex from interacting with target substrates through binding to it [64].
Anti-CRISPR proteins expressed against CRISPR subtype I-F systems. Temperate phages such as Pseudomonas aeruginosa possess genes encoding anti-CRISPR proteins that directly interfere with the bacterial CRISPR/Cas system [15, 16, 17, 18]. Adapted image courtesy of: https://www.nature.com/articles/nrmicro3096.
Prophages do not only contribute to bacterial resistance to invading phages, they can also encode proteins that contribute to bacterial virulence and antimicrobial resistance [58, 66].
Bacteria can also resist phages by possessing phage-inducible chromosomal islands (PICI) which prevent phage replication. Nevertheless, phages evolved their genomes to overcome this very specific antiviral strategy. For example, Vibrio cholerae ICP1 phages possess their own CRISPR/Cas systems that inactivate PICI-like elements (PLE) in Vibrio cholerae (Figure 11). Studies conducted by Naser et al. [67] have shown that phage CRISPR arrays have evolved by the acquisition of new spacers targeting diverse regions of PLEs carried by Vibrio cholerae strains. Furthermore, the addition of the new spacers within phage CRISPR/Cas loci enables the phages to expand their ability to counter PLE-mediated phage defence of diverse Vibrio cholerae strains [67].
Phage-encoded CRISPR/Cas systems in Vibrio cholerae ICP1 phages. Upon adsorption and injection of viral genome into a host cell, phage crRNAs and CRISPR/Cas complexes are expressed and target phage-inducible chromosomal island (PICI) in the host genome; in the Vibrio cholerae, they are termed as PICI-like elements (PLE). If the spacers within phage CRISPR locus are complementary to the bacterial PLE, the CRISPR machinery is then able to specifically target this genetic element and inactivate it, leading to the viral propagation. However, in the absence of such targeting, phage CRISPR/Cas system can acquire new spacers to evolve rapidly and ensure effective targeting of the PLE to restore phage replication [15, 16, 17, 18, 65]. Adapted image courtesy of: https://www.nature.com/articles/nrmicro3096.
Abortive infection (Abi) systems promote cell death of the phage-infected bacteria, inhibiting phage replication and providing protection for bacterial populations [68].
Abi systems require both toxins and antagonistic antitoxins. Antitoxins are proteins or RNAs that protect bacterial cell from the activity of toxins in a typical cell life cycle, whereas toxins are the proteins encoded in toxin-antitoxin locus that disrupt cellular metabolism (translation, replication and cell wall formation), causing cell death. During an infection, the expression of the antitoxin encoding gene is suppressed, leading to the lethal activation of the toxin [69]. Figure 12 illustrates the mechanism of Abi systems in Escherichia coli [70].
Abortive infection (Abi) systems in Escherichia coli. The Rex system is a two-component Abi system. A phage protein-DNA complex (formed during phage replication) activates the sensor protein RexA, which in turn activates RexB. RexB is an ion channel that causes depolarisation of the bacterial membrane leading to cell death [28, 29, 30, 31]. Image courtesy of Springer Nature: https://www.ncbi.nlm.nih.gov/pubmed/20348932.
Interestingly, phages evolved an array of tactics to circumvent Abi systems. This includes mutations in specific phage genes and encoding own antitoxin molecules that suppresses bacterial toxin [15, 16, 17, 18]. Figure 13 provides a broad overview of the strategies employed by the phages to by-pass Abi systems.
Escaping abortive infection mechanisms. (a) In a typical cell life cycle, antitoxins protect bacterial cell from the activity of toxins. (b) During phage infection, the expression of antitoxin encoding gene is suppressed, leading to the lethal activation of the toxin. (c) Mutations in certain phage genes can lead to escaping Abi systems activity, thereby a successful viral propagation without killing the host cell. (d) Some phages encode molecules that functionally replace the bacterial antitoxins, thus suppressing toxin activity and avoiding host cell death [15, 16, 17, 18]. Image courtesy of: https://www.nature.com/articles/nrmicro3096.
Bacteria-phage interaction is therefore very complex, and it is crucial to understand the molecular basis of this interaction and how bacteria and phages ‘fight’ each other. It has been reported that Anderson Phage Typing System of Salmonella Typhimurium can provide a valuable model system for study of phage-host interaction [71].
The rapid emergence and dissemination of MDR bacteria seriously threaten global public health, as, without effective antibiotics, prevention and treatment of both community- and hospital-acquired infections may become unsuccessful and lead to widespread outbreaks.
Carbapenems and colistin are antibiotics of last resort, generally reserved to treat bacteria which are resistant to all other antibiotics. Until not long ago, colistin resistance was only described as chromosomal, however, in 2016 Liu et al. reported the emergence of the first plasmid-mediated colistin resistance mechanism, MCR-1, in Enterobacteriaceae [72]. Furthermore, the increasing occurrence of colistin resistance among carbapenem-resistant Enterobacteriaceae has also been reported [73]. This is of significant concern as infections caused by colistin and carbapenem-resistant bacteria are very challenging to treat and control, as the treatment options are greatly limited or non-existent. Thus, the discovery and development of alternative antimicrobial therapeutics are the highest priorities of modern medicine and biotechnology.
Phages should be considered as great potential tools in MDR pathogens as they are species-specific (specificity prevents damage of normal microbiota), thus harmless to human; they have fast replication rate at the site of infection, and their short genomes can allow to further understand various molecular mechanisms implied to ‘fight’ bacteria. In addition, this understanding can enable scientists to ‘manipulate’ viral genomes and engineer a synthetic phage that combines the antibacterial characteristics of multiple phages into a single genome.
The escalating need for new antimicrobial agents attracted new attention in modern medicine, proposing several potential applications of phages as antibacterial therapeutics including phage therapy, phage lysins and genetically-engineered phages.
Phage therapy utilises strictly lytic phages that have bactericidal effect. As phages are host-specific, ‘phage cocktails’ containing multiple phages can broaden range of target cells. Nevertheless, selection of suitable phages is at the paramount to the successful elimination of clinically important pathogens, and it includes avoidance of adverse effects, such as anaphylaxis (adverse immune reaction) [74].
In order to hydrolyse and degrade the bacterial cell wall, phages possess lysins.
The spectrum of efficiency of natural lysins (derived from naturally occurring phages) is generally limited to Gram-positive bacteria; however, recombinant lysins have shown an ability to destabilise the outer membrane of Gram-negative bacteria and ultimately lead to rapid death of the target bacteria [74].
Bioengineered phages have the potential to solve inherent limitations of natural phages such as narrow host range and evolution of resistance. Various genetic engineering methods have been proposed to design phages with extended antimicrobial properties such as homologous recombination, phage recombineering of electroporated DNA, yeast-based platform, Gibson assembly and CRISPR/Cas genome editing [75].
Engineering of synthetic phages could be tailored to enhance the antibiotic activity, to reverse antibiotic resistance or to create sequence-specific antimicrobials [74].
The antagonistic host-phage relationship has led to the evolution of exceptionally disperse phage-resistance mechanisms in the bacterial domain, including inhibition of phage adsorption, prevention of nucleic acid entry, Superinfection exclusion, cutting phage nucleic acids via restriction-modification systems and CRISPR, as well as abortive infection.
Evolvement of these mechanisms has been induced by constant parallel co-evolution of phages as they attempt to coexist. To survive, phages acquired diverse counterstrategies to circumvent bacterial anti-phage mechanisms such as adaptations to new receptors, digging for receptors and masking and modification of restriction sites and point mutations in specific genes and genome rearrangements that allow phages to evade bacterial antiviral systems such as CRISPR/Cas arrays, as well as mutations in specific genes to bypass abortive infection system. Conclusively, the co-evolving genetic variations and counteradaptations, in both bacteria and phages, drive the evolutionary bacteria-host arm race.
Besides, accumulating evidence shows that phages contribute to the antimicrobial resistance through horizontal gene transfer mechanisms. Indeed, many bacterial strains have become insensitive to the conventional antibiotics, posing a growing threat to human; and although in the past, western counties withdrew phage therapy in response to the discovery of therapeutic antibiotics, now, phage therapy regains an interest within the research community. There are apparent advantages of phage therapy, such as specificity, meaning only target bacteria would encounter lysis, but not healthy microbiota inhabiting human’s system. Additionally, ‘phage cocktails’, containing multiple bacteria-specific phages, could overcome the issue of phage-resistance as phages do adapt to these resistance mechanisms. However, ‘phage cocktails’ would require large numbers of phages that would have to be grown inside pathogenic bacteria in the laboratory, putting laboratory staff and the environment at risk.
Alternatively, building up the understanding of host-phage interactions and ‘the war between bacteria and phages’ could potentially lead to defeating antimicrobial resistance by designing synthetic phages that can overcome the limitations of phage therapy.
Dr Manal Mohammed is funded by a Quinton Hogg start-up award, University of Westminster.
abortive infection capsular polysaccharides clustered regularly interspaced short palindromic repeats crispr RNA diversity-generating retroelement deoxyribonucleic acid multidrug-resistant O-methyl phosphoramidate methyltransferase protospacer adjacent motif phage-inducible chromosomal island PICI-like element receptor-binding protein restriction endonuclease restriction-modification ribonucleic acid superinfection exclusion trans-activating crRNA
IntechOpen books are indexed by the following abstracting and indexing services:
",metaTitle:"Indexing and Abstracting",metaDescription:"IntechOpen was built by scientists, for scientists. We understand the community we serve, but to bring an even better service to the table for IntechOpen Authors and Academic Editors, we partnered with the leading companies and associations in the industry and beyond.",metaKeywords:null,canonicalURL:"/page/indexing-and-abstracting",contentRaw:'[{"type":"htmlEditorComponent","content":"Clarivate Web Of Science - Book Citation Index
\\n\\nCroatian Library (digital NSK)
\\n\\nOCLC (Online Computer Library Center) - WorldCat® Digital Collection Gateway
\\n\\n\\n\\n
\\n"}]'},components:[{type:"htmlEditorComponent",content:'
Clarivate Web Of Science - Book Citation Index
\n\nCroatian Library (digital NSK)
\n\nOCLC (Online Computer Library Center) - WorldCat® Digital Collection Gateway
\n\n\n\n
\n'}]},successStories:{items:[]},authorsAndEditors:{filterParams:{sort:"featured,name"},profiles:[{id:"6700",title:"Dr.",name:"Abbass A.",middleName:null,surname:"Hashim",slug:"abbass-a.-hashim",fullName:"Abbass A. Hashim",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/6700/images/1864_n.jpg",biography:"Currently I am carrying out research in several areas of interest, mainly covering work on chemical and bio-sensors, semiconductor thin film device fabrication and characterisation.\nAt the moment I have very strong interest in radiation environmental pollution and bacteriology treatment. The teams of researchers are working very hard to bring novel results in this field. I am also a member of the team in charge for the supervision of Ph.D. students in the fields of development of silicon based planar waveguide sensor devices, study of inelastic electron tunnelling in planar tunnelling nanostructures for sensing applications and development of organotellurium(IV) compounds for semiconductor applications. I am a specialist in data analysis techniques and nanosurface structure. I have served as the editor for many books, been a member of the editorial board in science journals, have published many papers and hold many patents.",institutionString:null,institution:{name:"Sheffield Hallam University",country:{name:"United Kingdom"}}},{id:"54525",title:"Prof.",name:"Abdul Latif",middleName:null,surname:"Ahmad",slug:"abdul-latif-ahmad",fullName:"Abdul Latif Ahmad",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:null},{id:"20567",title:"Prof.",name:"Ado",middleName:null,surname:"Jorio",slug:"ado-jorio",fullName:"Ado Jorio",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"Universidade Federal de Minas Gerais",country:{name:"Brazil"}}},{id:"47940",title:"Dr.",name:"Alberto",middleName:null,surname:"Mantovani",slug:"alberto-mantovani",fullName:"Alberto Mantovani",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:null},{id:"12392",title:"Mr.",name:"Alex",middleName:null,surname:"Lazinica",slug:"alex-lazinica",fullName:"Alex Lazinica",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/12392/images/7282_n.png",biography:"Alex Lazinica is the founder and CEO of IntechOpen. After obtaining a Master's degree in Mechanical Engineering, he continued his PhD studies in Robotics at the Vienna University of Technology. Here he worked as a robotic researcher with the university's Intelligent Manufacturing Systems Group as well as a guest researcher at various European universities, including the Swiss Federal Institute of Technology Lausanne (EPFL). During this time he published more than 20 scientific papers, gave presentations, served as a reviewer for major robotic journals and conferences and most importantly he co-founded and built the International Journal of Advanced Robotic Systems- world's first Open Access journal in the field of robotics. Starting this journal was a pivotal point in his career, since it was a pathway to founding IntechOpen - Open Access publisher focused on addressing academic researchers needs. Alex is a personification of IntechOpen key values being trusted, open and entrepreneurial. Today his focus is on defining the growth and development strategy for the company.",institutionString:null,institution:{name:"TU Wien",country:{name:"Austria"}}},{id:"19816",title:"Prof.",name:"Alexander",middleName:null,surname:"Kokorin",slug:"alexander-kokorin",fullName:"Alexander Kokorin",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/19816/images/1607_n.jpg",biography:"Alexander I. Kokorin: born: 1947, Moscow; DSc., PhD; Principal Research Fellow (Research Professor) of Department of Kinetics and Catalysis, N. Semenov Institute of Chemical Physics, Russian Academy of Sciences, Moscow.\r\nArea of research interests: physical chemistry of complex-organized molecular and nanosized systems, including polymer-metal complexes; the surface of doped oxide semiconductors. He is an expert in structural, absorptive, catalytic and photocatalytic properties, in structural organization and dynamic features of ionic liquids, in magnetic interactions between paramagnetic centers. The author or co-author of 3 books, over 200 articles and reviews in scientific journals and books. He is an actual member of the International EPR/ESR Society, European Society on Quantum Solar Energy Conversion, Moscow House of Scientists, of the Board of Moscow Physical Society.",institutionString:null,institution:{name:"Semenov Institute of Chemical Physics",country:{name:"Russia"}}},{id:"62389",title:"PhD.",name:"Ali Demir",middleName:null,surname:"Sezer",slug:"ali-demir-sezer",fullName:"Ali Demir Sezer",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/62389/images/3413_n.jpg",biography:"Dr. Ali Demir Sezer has a Ph.D. from Pharmaceutical Biotechnology at the Faculty of Pharmacy, University of Marmara (Turkey). He is the member of many Pharmaceutical Associations and acts as a reviewer of scientific journals and European projects under different research areas such as: drug delivery systems, nanotechnology and pharmaceutical biotechnology. Dr. Sezer is the author of many scientific publications in peer-reviewed journals and poster communications. Focus of his research activity is drug delivery, physico-chemical characterization and biological evaluation of biopolymers micro and nanoparticles as modified drug delivery system, and colloidal drug carriers (liposomes, nanoparticles etc.).",institutionString:null,institution:{name:"Marmara University",country:{name:"Turkey"}}},{id:"61051",title:"Prof.",name:"Andrea",middleName:null,surname:"Natale",slug:"andrea-natale",fullName:"Andrea Natale",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:null},{id:"100762",title:"Prof.",name:"Andrea",middleName:null,surname:"Natale",slug:"andrea-natale",fullName:"Andrea Natale",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"St David's Medical Center",country:{name:"United States of America"}}},{id:"107416",title:"Dr.",name:"Andrea",middleName:null,surname:"Natale",slug:"andrea-natale",fullName:"Andrea Natale",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"Texas Cardiac Arrhythmia",country:{name:"United States of America"}}},{id:"64434",title:"Dr.",name:"Angkoon",middleName:null,surname:"Phinyomark",slug:"angkoon-phinyomark",fullName:"Angkoon Phinyomark",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/64434/images/2619_n.jpg",biography:"My name is Angkoon Phinyomark. I received a B.Eng. degree in Computer Engineering with First Class Honors in 2008 from Prince of Songkla University, Songkhla, Thailand, where I received a Ph.D. degree in Electrical Engineering. My research interests are primarily in the area of biomedical signal processing and classification notably EMG (electromyography signal), EOG (electrooculography signal), and EEG (electroencephalography signal), image analysis notably breast cancer analysis and optical coherence tomography, and rehabilitation engineering. I became a student member of IEEE in 2008. During October 2011-March 2012, I had worked at School of Computer Science and Electronic Engineering, University of Essex, Colchester, Essex, United Kingdom. In addition, during a B.Eng. I had been a visiting research student at Faculty of Computer Science, University of Murcia, Murcia, Spain for three months.\n\nI have published over 40 papers during 5 years in refereed journals, books, and conference proceedings in the areas of electro-physiological signals processing and classification, notably EMG and EOG signals, fractal analysis, wavelet analysis, texture analysis, feature extraction and machine learning algorithms, and assistive and rehabilitative devices. I have several computer programming language certificates, i.e. Sun Certified Programmer for the Java 2 Platform 1.4 (SCJP), Microsoft Certified Professional Developer, Web Developer (MCPD), Microsoft Certified Technology Specialist, .NET Framework 2.0 Web (MCTS). I am a Reviewer for several refereed journals and international conferences, such as IEEE Transactions on Biomedical Engineering, IEEE Transactions on Industrial Electronics, Optic Letters, Measurement Science Review, and also a member of the International Advisory Committee for 2012 IEEE Business Engineering and Industrial Applications and 2012 IEEE Symposium on Business, Engineering and Industrial Applications.",institutionString:null,institution:{name:"Joseph Fourier University",country:{name:"France"}}},{id:"55578",title:"Dr.",name:"Antonio",middleName:null,surname:"Jurado-Navas",slug:"antonio-jurado-navas",fullName:"Antonio Jurado-Navas",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/55578/images/4574_n.png",biography:"Antonio Jurado-Navas received the M.S. degree (2002) and the Ph.D. degree (2009) in Telecommunication Engineering, both from the University of Málaga (Spain). He first worked as a consultant at Vodafone-Spain. From 2004 to 2011, he was a Research Assistant with the Communications Engineering Department at the University of Málaga. In 2011, he became an Assistant Professor in the same department. From 2012 to 2015, he was with Ericsson Spain, where he was working on geo-location\ntools for third generation mobile networks. Since 2015, he is a Marie-Curie fellow at the Denmark Technical University. His current research interests include the areas of mobile communication systems and channel modeling in addition to atmospheric optical communications, adaptive optics and statistics",institutionString:null,institution:{name:"University of Malaga",country:{name:"Spain"}}}],filtersByRegion:[{group:"region",caption:"North America",value:1,count:5766},{group:"region",caption:"Middle and South America",value:2,count:5228},{group:"region",caption:"Africa",value:3,count:1717},{group:"region",caption:"Asia",value:4,count:10370},{group:"region",caption:"Australia and Oceania",value:5,count:897},{group:"region",caption:"Europe",value:6,count:15790}],offset:12,limit:12,total:118192},chapterEmbeded:{data:{}},editorApplication:{success:null,errors:{}},ofsBooks:{filterParams:{hasNoEditors:"0",sort:"dateEndThirdStepPublish"},books:[{type:"book",id:"10270",title:"Fog Computing",subtitle:null,isOpenForSubmission:!0,hash:"54853b3034f0348a6157b5591f8d95f3",slug:null,bookSignature:"Dr. Isiaka Ajewale Alimi, Dr. Nelson Muga, Dr. Qin Xin and Dr. Paulo P. Monteiro",coverURL:"https://cdn.intechopen.com/books/images_new/10270.jpg",editedByType:null,editors:[{id:"208236",title:"Dr.",name:"Isiaka",surname:"Alimi",slug:"isiaka-alimi",fullName:"Isiaka Alimi"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"9662",title:"Vegetation Index and Dynamics",subtitle:null,isOpenForSubmission:!0,hash:"0abf2a59ee63fc1ba4fb64d77c9b1be7",slug:null,bookSignature:"Dr. Eusebio Cano Carmona, Dr. Ricardo Quinto Canas, Dr. Ana Cano Ortiz and Dr. Carmelo Maria Musarella",coverURL:"https://cdn.intechopen.com/books/images_new/9662.jpg",editedByType:null,editors:[{id:"87846",title:"Dr.",name:"Eusebio",surname:"Cano Carmona",slug:"eusebio-cano-carmona",fullName:"Eusebio Cano Carmona"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10543",title:"Psychology and Patho-physiological Outcomes of Eating",subtitle:null,isOpenForSubmission:!0,hash:"2464b5fb6a39df380e935096743410a0",slug:null,bookSignature:"Dr. Akikazu Takada and Dr. Hubertus Himmerich",coverURL:"https://cdn.intechopen.com/books/images_new/10543.jpg",editedByType:null,editors:[{id:"248459",title:"Dr.",name:"Akikazu",surname:"Takada",slug:"akikazu-takada",fullName:"Akikazu Takada"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"9659",title:"Fibroblasts - Advances in Cancer, Autoimmunity and Inflammation",subtitle:null,isOpenForSubmission:!0,hash:"926fa6446f6befbd363fc74971a56de2",slug:null,bookSignature:"Ph.D. Mojca Frank Bertoncelj and Ms. Katja Lakota",coverURL:"https://cdn.intechopen.com/books/images_new/9659.jpg",editedByType:null,editors:[{id:"328755",title:"Ph.D.",name:"Mojca",surname:"Frank Bertoncelj",slug:"mojca-frank-bertoncelj",fullName:"Mojca Frank Bertoncelj"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10536",title:"Campylobacter",subtitle:null,isOpenForSubmission:!0,hash:"c4b132b741dd0a2ed539b824ab63965f",slug:null,bookSignature:"Dr. Guillermo Téllez and Associate Prof. Saeed El-Ashram",coverURL:"https://cdn.intechopen.com/books/images_new/10536.jpg",editedByType:null,editors:[{id:"73465",title:"Dr.",name:"Guillermo",surname:"Téllez",slug:"guillermo-tellez",fullName:"Guillermo Téllez"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10654",title:"Brain-Computer Interface",subtitle:null,isOpenForSubmission:!0,hash:"a5308884068cc53ed31c6baba756857f",slug:null,bookSignature:"Dr. Vahid Asadpour",coverURL:"https://cdn.intechopen.com/books/images_new/10654.jpg",editedByType:null,editors:[{id:"165328",title:"Dr.",name:"Vahid",surname:"Asadpour",slug:"vahid-asadpour",fullName:"Vahid Asadpour"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10765",title:"Environmental Management",subtitle:null,isOpenForSubmission:!0,hash:"e5ba02fedd7c87f0ab66414f3b07de0c",slug:null,bookSignature:"Dr. John P. Tiefenbacher",coverURL:"https://cdn.intechopen.com/books/images_new/10765.jpg",editedByType:null,editors:[{id:"73876",title:"Dr.",name:"John P.",surname:"Tiefenbacher",slug:"john-p.-tiefenbacher",fullName:"John P. Tiefenbacher"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10567",title:"Uncertainty Management in Engineering - Topics in Pollution Prevention and Controls",subtitle:null,isOpenForSubmission:!0,hash:"4990db602d31f1848c590dbfe97b6409",slug:null,bookSignature:"Prof. Rehab O. Abdel Rahman and Dr. Yung-Tse Hung",coverURL:"https://cdn.intechopen.com/books/images_new/10567.jpg",editedByType:null,editors:[{id:"92718",title:"Prof.",name:"Rehab",surname:"Abdel Rahman",slug:"rehab-abdel-rahman",fullName:"Rehab Abdel Rahman"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"8977",title:"Protein Kinase - New Opportunities, Challenges and Future Perspectives",subtitle:null,isOpenForSubmission:!0,hash:"6d200cc031706a565b554fdb1c478901",slug:null,bookSignature:"Dr. Rajesh Kumar Singh",coverURL:"https://cdn.intechopen.com/books/images_new/8977.jpg",editedByType:null,editors:[{id:"329385",title:"Dr.",name:"Rajesh",surname:"Singh",slug:"rajesh-singh",fullName:"Rajesh Singh"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10582",title:"Chemical Vapor Deposition",subtitle:null,isOpenForSubmission:!0,hash:"f9177ff0e61198735fb86a81303259d0",slug:null,bookSignature:"Dr. Sadia Ameen, Dr. M. Shaheer Akhtar and Prof. Hyung-Shik Shin",coverURL:"https://cdn.intechopen.com/books/images_new/10582.jpg",editedByType:null,editors:[{id:"52613",title:"Dr.",name:"Sadia",surname:"Ameen",slug:"sadia-ameen",fullName:"Sadia Ameen"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10814",title:"Anxiety, Uncertainty, and Resilience During the Pandemic Period - Anthropological and Psychological Perspectives",subtitle:null,isOpenForSubmission:!0,hash:"2db4d2a6638d2c66f7a5741d0f8fe4ae",slug:null,bookSignature:"Prof. Fabio Gabrielli and Dr. Floriana Irtelli",coverURL:"https://cdn.intechopen.com/books/images_new/10814.jpg",editedByType:null,editors:[{id:"259407",title:"Prof.",name:"Fabio",surname:"Gabrielli",slug:"fabio-gabrielli",fullName:"Fabio Gabrielli"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10519",title:"Middleware Architecture",subtitle:null,isOpenForSubmission:!0,hash:"c326d436ae0f4c508849d2336dbdfb48",slug:null,bookSignature:"Dr. Mehdia Ajana El Khaddar",coverURL:"https://cdn.intechopen.com/books/images_new/10519.jpg",editedByType:null,editors:[{id:"26677",title:"Dr.",name:"Mehdia",surname:"Ajana El Khaddar",slug:"mehdia-ajana-el-khaddar",fullName:"Mehdia Ajana El Khaddar"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}}],filtersByTopic:[{group:"topic",caption:"Agricultural and Biological Sciences",value:5,count:16},{group:"topic",caption:"Biochemistry, Genetics and Molecular Biology",value:6,count:4},{group:"topic",caption:"Business, Management and Economics",value:7,count:1},{group:"topic",caption:"Chemistry",value:8,count:8},{group:"topic",caption:"Computer and Information Science",value:9,count:6},{group:"topic",caption:"Earth and Planetary Sciences",value:10,count:7},{group:"topic",caption:"Engineering",value:11,count:16},{group:"topic",caption:"Environmental Sciences",value:12,count:2},{group:"topic",caption:"Immunology and Microbiology",value:13,count:3},{group:"topic",caption:"Materials Science",value:14,count:5},{group:"topic",caption:"Mathematics",value:15,count:1},{group:"topic",caption:"Medicine",value:16,count:24},{group:"topic",caption:"Neuroscience",value:18,count:1},{group:"topic",caption:"Pharmacology, Toxicology and Pharmaceutical Science",value:19,count:3},{group:"topic",caption:"Physics",value:20,count:3},{group:"topic",caption:"Psychology",value:21,count:4},{group:"topic",caption:"Robotics",value:22,count:1},{group:"topic",caption:"Social Sciences",value:23,count:3},{group:"topic",caption:"Technology",value:24,count:1},{group:"topic",caption:"Veterinary Medicine and Science",value:25,count:1}],offset:12,limit:12,total:110},popularBooks:{featuredBooks:[{type:"book",id:"9385",title:"Renewable Energy",subtitle:"Technologies and Applications",isOpenForSubmission:!1,hash:"a6b446d19166f17f313008e6c056f3d8",slug:"renewable-energy-technologies-and-applications",bookSignature:"Tolga Taner, Archana Tiwari and Taha Selim Ustun",coverURL:"https://cdn.intechopen.com/books/images_new/9385.jpg",editors:[{id:"197240",title:"Associate Prof.",name:"Tolga",middleName:null,surname:"Taner",slug:"tolga-taner",fullName:"Tolga Taner"}],equalEditorOne:{id:"186791",title:"Dr.",name:"Archana",middleName:null,surname:"Tiwari",slug:"archana-tiwari",fullName:"Archana Tiwari",profilePictureURL:"https://mts.intechopen.com/storage/users/186791/images/system/186791.jpg",biography:"Dr. Archana Tiwari is Associate Professor at Amity University, India. Her research interests include renewable sources of energy from microalgae and further utilizing the residual biomass for the generation of value-added products, bioremediation through microalgae and microbial consortium, antioxidative enzymes and stress, and nutraceuticals from microalgae. She has been working on algal biotechnology for the last two decades. She has published her research in many international journals and has authored many books and chapters with renowned publishing houses. She has also delivered talks as an invited speaker at many national and international conferences. Dr. Tiwari is the recipient of several awards including Researcher of the Year and Distinguished Scientist.",institutionString:"Amity University",position:null,outsideEditionCount:0,totalCites:0,totalAuthoredChapters:"3",totalChapterViews:"0",totalEditedBooks:"1",institution:{name:"Amity University",institutionURL:null,country:{name:"India"}}},equalEditorTwo:{id:"197609",title:"Prof.",name:"Taha Selim",middleName:null,surname:"Ustun",slug:"taha-selim-ustun",fullName:"Taha Selim Ustun",profilePictureURL:"https://mts.intechopen.com/storage/users/197609/images/system/197609.jpeg",biography:"Dr. Taha Selim Ustun received a Ph.D. in Electrical Engineering from Victoria University, Melbourne, Australia. He is a researcher with the Fukushima Renewable Energy Institute, AIST (FREA), where he leads the Smart Grid Cybersecurity Laboratory. Prior to that, he was a faculty member with the School of Electrical and Computer Engineering, Carnegie Mellon University, Pittsburgh, PA, USA. His current research interests include power systems protection, communication in power networks, distributed generation, microgrids, electric vehicle integration, and cybersecurity in smart grids. He serves on the editorial boards of IEEE Access, IEEE Transactions on Industrial Informatics, Energies, Electronics, Electricity, World Electric Vehicle and Information journals. Dr. Ustun is a member of the IEEE 2004 and 2800, IEC Renewable Energy Management WG 8, and IEC TC 57 WG17. He has been invited to run specialist courses in Africa, India, and China. He has delivered talks for the Qatar Foundation, the World Energy Council, the Waterloo Global Science Initiative, and the European Union Energy Initiative (EUEI). His research has attracted funding from prestigious programs in Japan, Australia, the European Union, and North America.",institutionString:"Fukushima Renewable Energy Institute, AIST (FREA)",position:null,outsideEditionCount:0,totalCites:0,totalAuthoredChapters:"1",totalChapterViews:"0",totalEditedBooks:"0",institution:{name:"National Institute of Advanced Industrial Science and Technology",institutionURL:null,country:{name:"Japan"}}},equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10065",title:"Wavelet Theory",subtitle:null,isOpenForSubmission:!1,hash:"d8868e332169597ba2182d9b004d60de",slug:"wavelet-theory",bookSignature:"Somayeh Mohammady",coverURL:"https://cdn.intechopen.com/books/images_new/10065.jpg",editors:[{id:"109280",title:"Dr.",name:"Somayeh",middleName:null,surname:"Mohammady",slug:"somayeh-mohammady",fullName:"Somayeh Mohammady"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9644",title:"Glaciers and the Polar Environment",subtitle:null,isOpenForSubmission:!1,hash:"e8cfdc161794e3753ced54e6ff30873b",slug:"glaciers-and-the-polar-environment",bookSignature:"Masaki Kanao, Danilo Godone and Niccolò Dematteis",coverURL:"https://cdn.intechopen.com/books/images_new/9644.jpg",editors:[{id:"51959",title:"Dr.",name:"Masaki",middleName:null,surname:"Kanao",slug:"masaki-kanao",fullName:"Masaki Kanao"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"8985",title:"Natural Resources Management and Biological Sciences",subtitle:null,isOpenForSubmission:!1,hash:"5c2e219a6c021a40b5a20c041dea88c4",slug:"natural-resources-management-and-biological-sciences",bookSignature:"Edward R. Rhodes and Humood Naser",coverURL:"https://cdn.intechopen.com/books/images_new/8985.jpg",editors:[{id:"280886",title:"Prof.",name:"Edward R",middleName:null,surname:"Rhodes",slug:"edward-r-rhodes",fullName:"Edward R Rhodes"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9671",title:"Macrophages",subtitle:null,isOpenForSubmission:!1,hash:"03b00fdc5f24b71d1ecdfd75076bfde6",slug:"macrophages",bookSignature:"Hridayesh Prakash",coverURL:"https://cdn.intechopen.com/books/images_new/9671.jpg",editors:[{id:"287184",title:"Dr.",name:"Hridayesh",middleName:null,surname:"Prakash",slug:"hridayesh-prakash",fullName:"Hridayesh Prakash"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9313",title:"Clay Science and Technology",subtitle:null,isOpenForSubmission:!1,hash:"6fa7e70396ff10620e032bb6cfa6fb72",slug:"clay-science-and-technology",bookSignature:"Gustavo Morari Do Nascimento",coverURL:"https://cdn.intechopen.com/books/images_new/9313.jpg",editors:[{id:"7153",title:"Prof.",name:"Gustavo",middleName:null,surname:"Morari Do Nascimento",slug:"gustavo-morari-do-nascimento",fullName:"Gustavo Morari Do Nascimento"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9888",title:"Nuclear Power Plants",subtitle:"The Processes from the Cradle to the Grave",isOpenForSubmission:!1,hash:"c2c8773e586f62155ab8221ebb72a849",slug:"nuclear-power-plants-the-processes-from-the-cradle-to-the-grave",bookSignature:"Nasser Awwad",coverURL:"https://cdn.intechopen.com/books/images_new/9888.jpg",editors:[{id:"145209",title:"Prof.",name:"Nasser",middleName:"S",surname:"Awwad",slug:"nasser-awwad",fullName:"Nasser Awwad"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9027",title:"Human Blood Group Systems and Haemoglobinopathies",subtitle:null,isOpenForSubmission:!1,hash:"d00d8e40b11cfb2547d1122866531c7e",slug:"human-blood-group-systems-and-haemoglobinopathies",bookSignature:"Osaro Erhabor and Anjana Munshi",coverURL:"https://cdn.intechopen.com/books/images_new/9027.jpg",editors:[{id:"35140",title:null,name:"Osaro",middleName:null,surname:"Erhabor",slug:"osaro-erhabor",fullName:"Osaro Erhabor"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"7841",title:"New Insights Into Metabolic Syndrome",subtitle:null,isOpenForSubmission:!1,hash:"ef5accfac9772b9e2c9eff884f085510",slug:"new-insights-into-metabolic-syndrome",bookSignature:"Akikazu Takada",coverURL:"https://cdn.intechopen.com/books/images_new/7841.jpg",editors:[{id:"248459",title:"Dr.",name:"Akikazu",middleName:null,surname:"Takada",slug:"akikazu-takada",fullName:"Akikazu Takada"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"8558",title:"Aerodynamics",subtitle:null,isOpenForSubmission:!1,hash:"db7263fc198dfb539073ba0260a7f1aa",slug:"aerodynamics",bookSignature:"Mofid Gorji-Bandpy and Aly-Mousaad Aly",coverURL:"https://cdn.intechopen.com/books/images_new/8558.jpg",editors:[{id:"35542",title:"Prof.",name:"Mofid",middleName:null,surname:"Gorji-Bandpy",slug:"mofid-gorji-bandpy",fullName:"Mofid Gorji-Bandpy"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"7847",title:"Medical Toxicology",subtitle:null,isOpenForSubmission:!1,hash:"db9b65bea093de17a0855a1b27046247",slug:"medical-toxicology",bookSignature:"Pınar Erkekoglu and Tomohisa Ogawa",coverURL:"https://cdn.intechopen.com/books/images_new/7847.jpg",editors:[{id:"109978",title:"Prof.",name:"Pınar",middleName:null,surname:"Erkekoglu",slug:"pinar-erkekoglu",fullName:"Pınar Erkekoglu"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10432",title:"Casting Processes and Modelling of Metallic Materials",subtitle:null,isOpenForSubmission:!1,hash:"2c5c9df938666bf5d1797727db203a6d",slug:"casting-processes-and-modelling-of-metallic-materials",bookSignature:"Zakaria Abdallah and Nada Aldoumani",coverURL:"https://cdn.intechopen.com/books/images_new/10432.jpg",editors:[{id:"201670",title:"Dr.",name:"Zak",middleName:null,surname:"Abdallah",slug:"zak-abdallah",fullName:"Zak Abdallah"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}}],offset:12,limit:12,total:5238},hotBookTopics:{hotBooks:[],offset:0,limit:12,total:null},publish:{},publishingProposal:{success:null,errors:{}},books:{featuredBooks:[{type:"book",id:"10065",title:"Wavelet Theory",subtitle:null,isOpenForSubmission:!1,hash:"d8868e332169597ba2182d9b004d60de",slug:"wavelet-theory",bookSignature:"Somayeh Mohammady",coverURL:"https://cdn.intechopen.com/books/images_new/10065.jpg",editors:[{id:"109280",title:"Dr.",name:"Somayeh",middleName:null,surname:"Mohammady",slug:"somayeh-mohammady",fullName:"Somayeh Mohammady"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9644",title:"Glaciers and the Polar Environment",subtitle:null,isOpenForSubmission:!1,hash:"e8cfdc161794e3753ced54e6ff30873b",slug:"glaciers-and-the-polar-environment",bookSignature:"Masaki Kanao, Danilo Godone and Niccolò Dematteis",coverURL:"https://cdn.intechopen.com/books/images_new/9644.jpg",editors:[{id:"51959",title:"Dr.",name:"Masaki",middleName:null,surname:"Kanao",slug:"masaki-kanao",fullName:"Masaki Kanao"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9385",title:"Renewable Energy",subtitle:"Technologies and Applications",isOpenForSubmission:!1,hash:"a6b446d19166f17f313008e6c056f3d8",slug:"renewable-energy-technologies-and-applications",bookSignature:"Tolga Taner, Archana Tiwari and Taha Selim Ustun",coverURL:"https://cdn.intechopen.com/books/images_new/9385.jpg",editors:[{id:"197240",title:"Associate Prof.",name:"Tolga",middleName:null,surname:"Taner",slug:"tolga-taner",fullName:"Tolga Taner"}],equalEditorOne:{id:"186791",title:"Dr.",name:"Archana",middleName:null,surname:"Tiwari",slug:"archana-tiwari",fullName:"Archana Tiwari",profilePictureURL:"https://mts.intechopen.com/storage/users/186791/images/system/186791.jpg",biography:"Dr. Archana Tiwari is Associate Professor at Amity University, India. Her research interests include renewable sources of energy from microalgae and further utilizing the residual biomass for the generation of value-added products, bioremediation through microalgae and microbial consortium, antioxidative enzymes and stress, and nutraceuticals from microalgae. She has been working on algal biotechnology for the last two decades. She has published her research in many international journals and has authored many books and chapters with renowned publishing houses. She has also delivered talks as an invited speaker at many national and international conferences. Dr. Tiwari is the recipient of several awards including Researcher of the Year and Distinguished Scientist.",institutionString:"Amity University",position:null,outsideEditionCount:0,totalCites:0,totalAuthoredChapters:"3",totalChapterViews:"0",totalEditedBooks:"1",institution:{name:"Amity University",institutionURL:null,country:{name:"India"}}},equalEditorTwo:{id:"197609",title:"Prof.",name:"Taha Selim",middleName:null,surname:"Ustun",slug:"taha-selim-ustun",fullName:"Taha Selim Ustun",profilePictureURL:"https://mts.intechopen.com/storage/users/197609/images/system/197609.jpeg",biography:"Dr. Taha Selim Ustun received a Ph.D. in Electrical Engineering from Victoria University, Melbourne, Australia. He is a researcher with the Fukushima Renewable Energy Institute, AIST (FREA), where he leads the Smart Grid Cybersecurity Laboratory. Prior to that, he was a faculty member with the School of Electrical and Computer Engineering, Carnegie Mellon University, Pittsburgh, PA, USA. His current research interests include power systems protection, communication in power networks, distributed generation, microgrids, electric vehicle integration, and cybersecurity in smart grids. He serves on the editorial boards of IEEE Access, IEEE Transactions on Industrial Informatics, Energies, Electronics, Electricity, World Electric Vehicle and Information journals. Dr. Ustun is a member of the IEEE 2004 and 2800, IEC Renewable Energy Management WG 8, and IEC TC 57 WG17. He has been invited to run specialist courses in Africa, India, and China. He has delivered talks for the Qatar Foundation, the World Energy Council, the Waterloo Global Science Initiative, and the European Union Energy Initiative (EUEI). His research has attracted funding from prestigious programs in Japan, Australia, the European Union, and North America.",institutionString:"Fukushima Renewable Energy Institute, AIST (FREA)",position:null,outsideEditionCount:0,totalCites:0,totalAuthoredChapters:"1",totalChapterViews:"0",totalEditedBooks:"0",institution:{name:"National Institute of Advanced Industrial Science and Technology",institutionURL:null,country:{name:"Japan"}}},equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"8985",title:"Natural Resources Management and Biological Sciences",subtitle:null,isOpenForSubmission:!1,hash:"5c2e219a6c021a40b5a20c041dea88c4",slug:"natural-resources-management-and-biological-sciences",bookSignature:"Edward R. Rhodes and Humood Naser",coverURL:"https://cdn.intechopen.com/books/images_new/8985.jpg",editors:[{id:"280886",title:"Prof.",name:"Edward R",middleName:null,surname:"Rhodes",slug:"edward-r-rhodes",fullName:"Edward R Rhodes"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9671",title:"Macrophages",subtitle:null,isOpenForSubmission:!1,hash:"03b00fdc5f24b71d1ecdfd75076bfde6",slug:"macrophages",bookSignature:"Hridayesh Prakash",coverURL:"https://cdn.intechopen.com/books/images_new/9671.jpg",editors:[{id:"287184",title:"Dr.",name:"Hridayesh",middleName:null,surname:"Prakash",slug:"hridayesh-prakash",fullName:"Hridayesh Prakash"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9313",title:"Clay Science and Technology",subtitle:null,isOpenForSubmission:!1,hash:"6fa7e70396ff10620e032bb6cfa6fb72",slug:"clay-science-and-technology",bookSignature:"Gustavo Morari Do Nascimento",coverURL:"https://cdn.intechopen.com/books/images_new/9313.jpg",editors:[{id:"7153",title:"Prof.",name:"Gustavo",middleName:null,surname:"Morari Do Nascimento",slug:"gustavo-morari-do-nascimento",fullName:"Gustavo Morari Do Nascimento"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9888",title:"Nuclear Power Plants",subtitle:"The Processes from the Cradle to the Grave",isOpenForSubmission:!1,hash:"c2c8773e586f62155ab8221ebb72a849",slug:"nuclear-power-plants-the-processes-from-the-cradle-to-the-grave",bookSignature:"Nasser Awwad",coverURL:"https://cdn.intechopen.com/books/images_new/9888.jpg",editors:[{id:"145209",title:"Prof.",name:"Nasser",middleName:"S",surname:"Awwad",slug:"nasser-awwad",fullName:"Nasser Awwad"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9027",title:"Human Blood Group Systems and Haemoglobinopathies",subtitle:null,isOpenForSubmission:!1,hash:"d00d8e40b11cfb2547d1122866531c7e",slug:"human-blood-group-systems-and-haemoglobinopathies",bookSignature:"Osaro Erhabor and Anjana Munshi",coverURL:"https://cdn.intechopen.com/books/images_new/9027.jpg",editors:[{id:"35140",title:null,name:"Osaro",middleName:null,surname:"Erhabor",slug:"osaro-erhabor",fullName:"Osaro Erhabor"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10432",title:"Casting Processes and Modelling of Metallic Materials",subtitle:null,isOpenForSubmission:!1,hash:"2c5c9df938666bf5d1797727db203a6d",slug:"casting-processes-and-modelling-of-metallic-materials",bookSignature:"Zakaria Abdallah and Nada Aldoumani",coverURL:"https://cdn.intechopen.com/books/images_new/10432.jpg",editors:[{id:"201670",title:"Dr.",name:"Zak",middleName:null,surname:"Abdallah",slug:"zak-abdallah",fullName:"Zak Abdallah"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"7841",title:"New Insights Into Metabolic Syndrome",subtitle:null,isOpenForSubmission:!1,hash:"ef5accfac9772b9e2c9eff884f085510",slug:"new-insights-into-metabolic-syndrome",bookSignature:"Akikazu Takada",coverURL:"https://cdn.intechopen.com/books/images_new/7841.jpg",editors:[{id:"248459",title:"Dr.",name:"Akikazu",middleName:null,surname:"Takada",slug:"akikazu-takada",fullName:"Akikazu Takada"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}}],latestBooks:[{type:"book",id:"9550",title:"Entrepreneurship",subtitle:"Contemporary Issues",isOpenForSubmission:!1,hash:"9b4ac1ee5b743abf6f88495452b1e5e7",slug:"entrepreneurship-contemporary-issues",bookSignature:"Mladen Turuk",coverURL:"https://cdn.intechopen.com/books/images_new/9550.jpg",editedByType:"Edited by",editors:[{id:"319755",title:"Prof.",name:"Mladen",middleName:null,surname:"Turuk",slug:"mladen-turuk",fullName:"Mladen Turuk"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10065",title:"Wavelet Theory",subtitle:null,isOpenForSubmission:!1,hash:"d8868e332169597ba2182d9b004d60de",slug:"wavelet-theory",bookSignature:"Somayeh Mohammady",coverURL:"https://cdn.intechopen.com/books/images_new/10065.jpg",editedByType:"Edited by",editors:[{id:"109280",title:"Dr.",name:"Somayeh",middleName:null,surname:"Mohammady",slug:"somayeh-mohammady",fullName:"Somayeh Mohammady"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"9313",title:"Clay Science and Technology",subtitle:null,isOpenForSubmission:!1,hash:"6fa7e70396ff10620e032bb6cfa6fb72",slug:"clay-science-and-technology",bookSignature:"Gustavo Morari Do Nascimento",coverURL:"https://cdn.intechopen.com/books/images_new/9313.jpg",editedByType:"Edited by",editors:[{id:"7153",title:"Prof.",name:"Gustavo",middleName:null,surname:"Morari Do Nascimento",slug:"gustavo-morari-do-nascimento",fullName:"Gustavo Morari Do Nascimento"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"9888",title:"Nuclear Power Plants",subtitle:"The Processes from the Cradle to the Grave",isOpenForSubmission:!1,hash:"c2c8773e586f62155ab8221ebb72a849",slug:"nuclear-power-plants-the-processes-from-the-cradle-to-the-grave",bookSignature:"Nasser Awwad",coverURL:"https://cdn.intechopen.com/books/images_new/9888.jpg",editedByType:"Edited by",editors:[{id:"145209",title:"Prof.",name:"Nasser",middleName:"S",surname:"Awwad",slug:"nasser-awwad",fullName:"Nasser Awwad"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"8098",title:"Resources of Water",subtitle:null,isOpenForSubmission:!1,hash:"d251652996624d932ef7b8ed62cf7cfc",slug:"resources-of-water",bookSignature:"Prathna Thanjavur Chandrasekaran, Muhammad Salik Javaid, Aftab Sadiq",coverURL:"https://cdn.intechopen.com/books/images_new/8098.jpg",editedByType:"Edited by",editors:[{id:"167917",title:"Dr.",name:"Prathna",middleName:null,surname:"Thanjavur Chandrasekaran",slug:"prathna-thanjavur-chandrasekaran",fullName:"Prathna Thanjavur Chandrasekaran"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"9644",title:"Glaciers and the Polar Environment",subtitle:null,isOpenForSubmission:!1,hash:"e8cfdc161794e3753ced54e6ff30873b",slug:"glaciers-and-the-polar-environment",bookSignature:"Masaki Kanao, Danilo Godone and Niccolò Dematteis",coverURL:"https://cdn.intechopen.com/books/images_new/9644.jpg",editedByType:"Edited by",editors:[{id:"51959",title:"Dr.",name:"Masaki",middleName:null,surname:"Kanao",slug:"masaki-kanao",fullName:"Masaki Kanao"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10432",title:"Casting Processes and Modelling of Metallic Materials",subtitle:null,isOpenForSubmission:!1,hash:"2c5c9df938666bf5d1797727db203a6d",slug:"casting-processes-and-modelling-of-metallic-materials",bookSignature:"Zakaria Abdallah and Nada Aldoumani",coverURL:"https://cdn.intechopen.com/books/images_new/10432.jpg",editedByType:"Edited by",editors:[{id:"201670",title:"Dr.",name:"Zak",middleName:null,surname:"Abdallah",slug:"zak-abdallah",fullName:"Zak Abdallah"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"9671",title:"Macrophages",subtitle:null,isOpenForSubmission:!1,hash:"03b00fdc5f24b71d1ecdfd75076bfde6",slug:"macrophages",bookSignature:"Hridayesh Prakash",coverURL:"https://cdn.intechopen.com/books/images_new/9671.jpg",editedByType:"Edited by",editors:[{id:"287184",title:"Dr.",name:"Hridayesh",middleName:null,surname:"Prakash",slug:"hridayesh-prakash",fullName:"Hridayesh Prakash"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"8415",title:"Extremophilic Microbes and Metabolites",subtitle:"Diversity, Bioprospecting and Biotechnological Applications",isOpenForSubmission:!1,hash:"93e0321bc93b89ff73730157738f8f97",slug:"extremophilic-microbes-and-metabolites-diversity-bioprospecting-and-biotechnological-applications",bookSignature:"Afef Najjari, Ameur Cherif, Haïtham Sghaier and Hadda Imene Ouzari",coverURL:"https://cdn.intechopen.com/books/images_new/8415.jpg",editedByType:"Edited by",editors:[{id:"196823",title:"Dr.",name:"Afef",middleName:null,surname:"Najjari",slug:"afef-najjari",fullName:"Afef Najjari"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"9731",title:"Oxidoreductase",subtitle:null,isOpenForSubmission:!1,hash:"852e6f862c85fc3adecdbaf822e64e6e",slug:"oxidoreductase",bookSignature:"Mahmoud Ahmed Mansour",coverURL:"https://cdn.intechopen.com/books/images_new/9731.jpg",editedByType:"Edited by",editors:[{id:"224662",title:"Prof.",name:"Mahmoud Ahmed",middleName:null,surname:"Mansour",slug:"mahmoud-ahmed-mansour",fullName:"Mahmoud Ahmed Mansour"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}}]},subject:{topic:{id:"16",title:"Medicine",slug:"medicine",parent:{title:"Health Sciences",slug:"health-sciences"},numberOfBooks:1510,numberOfAuthorsAndEditors:39547,numberOfWosCitations:21767,numberOfCrossrefCitations:11483,numberOfDimensionsCitations:29213,videoUrl:null,fallbackUrl:null,description:null},booksByTopicFilter:{topicSlug:"medicine",sort:"-publishedDate",limit:12,offset:0},booksByTopicCollection:[{type:"book",id:"9027",title:"Human Blood Group Systems and Haemoglobinopathies",subtitle:null,isOpenForSubmission:!1,hash:"d00d8e40b11cfb2547d1122866531c7e",slug:"human-blood-group-systems-and-haemoglobinopathies",bookSignature:"Osaro Erhabor and Anjana Munshi",coverURL:"https://cdn.intechopen.com/books/images_new/9027.jpg",editedByType:"Edited by",editors:[{id:"35140",title:null,name:"Osaro",middleName:null,surname:"Erhabor",slug:"osaro-erhabor",fullName:"Osaro Erhabor"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"9406",title:"Clinical Implementation of Bone Regeneration and Maintenance",subtitle:null,isOpenForSubmission:!1,hash:"875a140c01518fa7a9bceebd688b0147",slug:"clinical-implementation-of-bone-regeneration-and-maintenance",bookSignature:"Mike Barbeck, Nahum Rosenberg, Patrick Rider, Željka Perić Kačarević and Ole Jung",coverURL:"https://cdn.intechopen.com/books/images_new/9406.jpg",editedByType:"Edited by",editors:[{id:"204918",title:"Dr.",name:"Mike",middleName:null,surname:"Barbeck",slug:"mike-barbeck",fullName:"Mike Barbeck"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"9122",title:"Cosmetic Surgery",subtitle:null,isOpenForSubmission:!1,hash:"207026ca4a4125e17038e770d00ee152",slug:"cosmetic-surgery",bookSignature:"Yueh-Bih Tang",coverURL:"https://cdn.intechopen.com/books/images_new/9122.jpg",editedByType:"Edited by",editors:[{id:"202122",title:"Prof.",name:"Yueh-Bih",middleName:null,surname:"Tang",slug:"yueh-bih-tang",fullName:"Yueh-Bih Tang"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"9134",title:"Recent Advances in Digital System Diagnosis and Management of Healthcare",subtitle:null,isOpenForSubmission:!1,hash:"ff00a5718f23cb880b7337b1c36b5434",slug:"recent-advances-in-digital-system-diagnosis-and-management-of-healthcare",bookSignature:"Kamran Sartipi and Thierry Edoh",coverURL:"https://cdn.intechopen.com/books/images_new/9134.jpg",editedByType:"Edited by",editors:[{id:"29601",title:"Dr.",name:"Kamran",middleName:null,surname:"Sartipi",slug:"kamran-sartipi",fullName:"Kamran Sartipi"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"9569",title:"Methods in Molecular Medicine",subtitle:null,isOpenForSubmission:!1,hash:"691d3f3c4ac25a8093414e9b270d2843",slug:"methods-in-molecular-medicine",bookSignature:"Yusuf Tutar",coverURL:"https://cdn.intechopen.com/books/images_new/9569.jpg",editedByType:"Edited by",editors:[{id:"158492",title:"Prof.",name:"Yusuf",middleName:null,surname:"Tutar",slug:"yusuf-tutar",fullName:"Yusuf Tutar"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"9157",title:"Neurodegenerative Diseases",subtitle:"Molecular Mechanisms and Current Therapeutic Approaches",isOpenForSubmission:!1,hash:"bc8be577966ef88735677d7e1e92ed28",slug:"neurodegenerative-diseases-molecular-mechanisms-and-current-therapeutic-approaches",bookSignature:"Nagehan Ersoy Tunalı",coverURL:"https://cdn.intechopen.com/books/images_new/9157.jpg",editedByType:"Edited by",editors:[{id:"82778",title:"Ph.D.",name:"Nagehan",middleName:null,surname:"Ersoy Tunalı",slug:"nagehan-ersoy-tunali",fullName:"Nagehan Ersoy Tunalı"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"9839",title:"Outdoor Recreation",subtitle:"Physiological and Psychological Effects on Health",isOpenForSubmission:!1,hash:"5f5a0d64267e32567daffa5b0c6a6972",slug:"outdoor-recreation-physiological-and-psychological-effects-on-health",bookSignature:"Hilde G. Nielsen",coverURL:"https://cdn.intechopen.com/books/images_new/9839.jpg",editedByType:"Edited by",editors:[{id:"158692",title:"Ph.D.",name:"Hilde G.",middleName:null,surname:"Nielsen",slug:"hilde-g.-nielsen",fullName:"Hilde G. Nielsen"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"9139",title:"Topics in Primary Care Medicine",subtitle:null,isOpenForSubmission:!1,hash:"ea774a4d4c1179da92a782e0ae9cde92",slug:"topics-in-primary-care-medicine",bookSignature:"Thomas F. Heston",coverURL:"https://cdn.intechopen.com/books/images_new/9139.jpg",editedByType:"Edited by",editors:[{id:"217926",title:"Dr.",name:"Thomas F.",middleName:null,surname:"Heston",slug:"thomas-f.-heston",fullName:"Thomas F. Heston"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"9785",title:"Endometriosis",subtitle:null,isOpenForSubmission:!1,hash:"f457ca61f29cf7e8bc191732c50bb0ce",slug:"endometriosis",bookSignature:"Courtney Marsh",coverURL:"https://cdn.intechopen.com/books/images_new/9785.jpg",editedByType:"Edited by",editors:[{id:"255491",title:"Dr.",name:"Courtney",middleName:null,surname:"Marsh",slug:"courtney-marsh",fullName:"Courtney Marsh"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"9018",title:"Some RNA Viruses",subtitle:null,isOpenForSubmission:!1,hash:"a5cae846dbe3692495fc4add2f60fd84",slug:"some-rna-viruses",bookSignature:"Yogendra Shah and Eltayb Abuelzein",coverURL:"https://cdn.intechopen.com/books/images_new/9018.jpg",editedByType:"Edited by",editors:[{id:"278914",title:"Ph.D.",name:"Yogendra",middleName:null,surname:"Shah",slug:"yogendra-shah",fullName:"Yogendra Shah"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"9523",title:"Oral and Maxillofacial Surgery",subtitle:null,isOpenForSubmission:!1,hash:"5eb6ec2db961a6c8965d11180a58d5c1",slug:"oral-and-maxillofacial-surgery",bookSignature:"Gokul Sridharan",coverURL:"https://cdn.intechopen.com/books/images_new/9523.jpg",editedByType:"Edited by",editors:[{id:"82453",title:"Dr.",name:"Gokul",middleName:null,surname:"Sridharan",slug:"gokul-sridharan",fullName:"Gokul Sridharan"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"9585",title:"Advances in Complex Valvular Disease",subtitle:null,isOpenForSubmission:!1,hash:"ef64f11e211621ecfe69c46e60e7ca3d",slug:"advances-in-complex-valvular-disease",bookSignature:"Michael S. Firstenberg and Imran Khan",coverURL:"https://cdn.intechopen.com/books/images_new/9585.jpg",editedByType:"Edited by",editors:[{id:"64343",title:null,name:"Michael",middleName:"S.",surname:"Firstenberg",slug:"michael-firstenberg",fullName:"Michael Firstenberg"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}}],booksByTopicTotal:1510,mostCitedChapters:[{id:"19013",doi:"10.5772/21983",title:"Cell Responses to Surface and Architecture of Tissue Engineering Scaffolds",slug:"cell-responses-to-surface-and-architecture-of-tissue-engineering-scaffolds",totalDownloads:9689,totalCrossrefCites:106,totalDimensionsCites:227,book:{slug:"regenerative-medicine-and-tissue-engineering-cells-and-biomaterials",title:"Regenerative Medicine and Tissue Engineering",fullTitle:"Regenerative Medicine and Tissue Engineering - Cells and Biomaterials"},signatures:"Hsin-I Chang and Yiwei Wang",authors:[{id:"45747",title:"Dr.",name:"Hsin-I",middleName:null,surname:"Chang",slug:"hsin-i-chang",fullName:"Hsin-I Chang"},{id:"53659",title:"Ms.",name:"Yiwei",middleName:null,surname:"Wang",slug:"yiwei-wang",fullName:"Yiwei Wang"}]},{id:"46479",doi:"10.5772/57353",title:"Floating Drug Delivery Systems for Eradication of Helicobacter pylori in Treatment of Peptic Ulcer Disease",slug:"floating-drug-delivery-systems-for-eradication-of-helicobacter-pylori-in-treatment-of-peptic-ulcer-d",totalDownloads:1984,totalCrossrefCites:75,totalDimensionsCites:171,book:{slug:"trends-in-helicobacter-pylori-infection",title:"Trends in Helicobacter pylori Infection",fullTitle:"Trends in Helicobacter pylori Infection"},signatures:"Yousef Javadzadeh and Sanaz Hamedeyazdan",authors:[{id:"94276",title:"Prof.",name:"Yousef",middleName:null,surname:"Javadzadeh",slug:"yousef-javadzadeh",fullName:"Yousef Javadzadeh"},{id:"98229",title:"Dr.",name:"Sanaz",middleName:null,surname:"Hamedeyazdan",slug:"sanaz-hamedeyazdan",fullName:"Sanaz Hamedeyazdan"}]},{id:"25512",doi:"10.5772/30872",title:"Epidemiology of Psychological Distress",slug:"epidemiology-of-psychological-distress",totalDownloads:8053,totalCrossrefCites:57,totalDimensionsCites:144,book:{slug:"mental-illnesses-understanding-prediction-and-control",title:"Mental Illnesses",fullTitle:"Mental Illnesses - Understanding, Prediction and Control"},signatures:"Aline Drapeau, Alain Marchand and Dominic Beaulieu-Prévost",authors:[{id:"84582",title:"Dr.",name:"Aline",middleName:null,surname:"Drapeau",slug:"aline-drapeau",fullName:"Aline Drapeau"},{id:"84605",title:"Dr.",name:"Alain",middleName:null,surname:"Marchand",slug:"alain-marchand",fullName:"Alain Marchand"},{id:"84606",title:"Dr.",name:"Dominic",middleName:null,surname:"Beaulieu-Prévost",slug:"dominic-beaulieu-prevost",fullName:"Dominic Beaulieu-Prévost"}]}],mostDownloadedChaptersLast30Days:[{id:"43758",title:"Anxiety Disorders in Pregnancy and the Postpartum Period",slug:"anxiety-disorders-in-pregnancy-and-the-postpartum-period",totalDownloads:39759,totalCrossrefCites:11,totalDimensionsCites:20,book:{slug:"new-insights-into-anxiety-disorders",title:"New Insights into Anxiety Disorders",fullTitle:"New Insights into Anxiety Disorders"},signatures:"Roberta Anniverno, Alessandra Bramante, Claudio Mencacci and Federico Durbano",authors:[{id:"157077",title:"Dr.",name:"Federico",middleName:null,surname:"Durbano",slug:"federico-durbano",fullName:"Federico Durbano"},{id:"166382",title:"Dr.",name:"Roberta",middleName:null,surname:"Anniverno",slug:"roberta-anniverno",fullName:"Roberta Anniverno"}]},{id:"70711",title:"Fetal Growth Restriction",slug:"fetal-growth-restriction",totalDownloads:1661,totalCrossrefCites:1,totalDimensionsCites:1,book:{slug:"growth-disorders-and-acromegaly",title:"Growth Disorders and Acromegaly",fullTitle:"Growth Disorders and Acromegaly"},signatures:"Edurne Mazarico Gallego, Ariadna Torrecillas Pujol, Alex Joan Cahuana Bartra and Maria Dolores Gómez Roig",authors:[{id:"202446",title:"Ph.D.",name:"Maria Dolores",middleName:null,surname:"Gómez Roig",slug:"maria-dolores-gomez-roig",fullName:"Maria Dolores Gómez Roig"},{id:"311835",title:"Dr.",name:"Edurne",middleName:null,surname:"Mazarico",slug:"edurne-mazarico",fullName:"Edurne Mazarico"}]},{id:"70405",title:"Hemostasis in Cardiac Surgery: How We Do it with Limited Resources",slug:"hemostasis-in-cardiac-surgery-how-we-do-it-with-limited-resources",totalDownloads:2661,totalCrossrefCites:0,totalDimensionsCites:0,book:{slug:null,title:"Contemporary Applications of Biologic Hemostatic Agents across Surgical Specialties - Volume 1",fullTitle:"Contemporary Applications of Biologic Hemostatic Agents across Surgical Specialties - Volume 1"},signatures:"Fevzi Sarper Türker",authors:null},{id:"64851",title:"Herbal Medicines in African Traditional Medicine",slug:"herbal-medicines-in-african-traditional-medicine",totalDownloads:9932,totalCrossrefCites:10,totalDimensionsCites:17,book:{slug:"herbal-medicine",title:"Herbal Medicine",fullTitle:"Herbal Medicine"},signatures:"Ezekwesili-Ofili Josephine Ozioma and Okaka Antoinette Nwamaka\nChinwe",authors:[{id:"191264",title:"Prof.",name:"Josephine",middleName:"Ozioma",surname:"Ezekwesili-Ofili",slug:"josephine-ezekwesili-ofili",fullName:"Josephine Ezekwesili-Ofili"},{id:"211585",title:"Prof.",name:"Antoinette",middleName:null,surname:"Okaka",slug:"antoinette-okaka",fullName:"Antoinette Okaka"}]},{id:"74970",title:"The Influence of Sagittal Plane Spine Alignment on Neurophysiology and Sensorimotor Control Measures: Optimization of Function through Structural Correction",slug:"the-influence-of-sagittal-plane-spine-alignment-on-neurophysiology-and-sensorimotor-control-measures",totalDownloads:365,totalCrossrefCites:0,totalDimensionsCites:0,book:{slug:null,title:"Neurological Physical Therapy",fullTitle:"Neurological Physical Therapy"},signatures:"Paul A. Oakley, Ibrahim M. Moustafa and Deed E. Harrison",authors:null},{id:"59779",title:"Effective Communication in Nursing",slug:"effective-communication-in-nursing",totalDownloads:6479,totalCrossrefCites:2,totalDimensionsCites:4,book:{slug:"nursing",title:"Nursing",fullTitle:"Nursing"},signatures:"Maureen Nokuthula Sibiya",authors:[{id:"73330",title:"Dr.",name:"Nokuthula",middleName:null,surname:"Sibiya",slug:"nokuthula-sibiya",fullName:"Nokuthula Sibiya"}]},{id:"64858",title:"The Neurobiology of Anorexia Nervosa",slug:"the-neurobiology-of-anorexia-nervosa",totalDownloads:884,totalCrossrefCites:0,totalDimensionsCites:0,book:{slug:"anorexia-and-bulimia-nervosa",title:"Anorexia and Bulimia Nervosa",fullTitle:"Anorexia and Bulimia Nervosa"},signatures:"Ashley Higgins",authors:null},{id:"61866",title:"Plants Secondary Metabolites: The Key Drivers of the Pharmacological Actions of Medicinal Plants",slug:"plants-secondary-metabolites-the-key-drivers-of-the-pharmacological-actions-of-medicinal-plants",totalDownloads:5548,totalCrossrefCites:13,totalDimensionsCites:32,book:{slug:"herbal-medicine",title:"Herbal Medicine",fullTitle:"Herbal Medicine"},signatures:"Rehab A. Hussein and Amira A. El-Anssary",authors:[{id:"212117",title:"Dr.",name:"Rehab",middleName:null,surname:"Hussein",slug:"rehab-hussein",fullName:"Rehab Hussein"},{id:"221140",title:"Dr.",name:"Amira",middleName:null,surname:"El-Anssary",slug:"amira-el-anssary",fullName:"Amira El-Anssary"}]},{id:"63771",title:"The Role of Catheter Reshaping at the Angiographic Success",slug:"the-role-of-catheter-reshaping-at-the-angiographic-success",totalDownloads:531,totalCrossrefCites:0,totalDimensionsCites:0,book:{slug:"angiography",title:"Angiography",fullTitle:"Angiography"},signatures:"Yakup Balaban",authors:[{id:"252647",title:"Associate Prof.",name:"Yakup",middleName:null,surname:"Balaban",slug:"yakup-balaban",fullName:"Yakup Balaban"}]},{id:"17956",title:"Sexual and Reproductive Function in Chronic Kidney Disease and Effect of Kidney Transplantation",slug:"sexual-and-reproductive-function-in-chronic-kidney-disease-and-effect-of-kidney-transplantation",totalDownloads:11769,totalCrossrefCites:1,totalDimensionsCites:1,book:{slug:"after-the-kidney-transplant-the-patients-and-their-allograft",title:"After the Kidney Transplant",fullTitle:"After the Kidney Transplant - The Patients and Their Allograft"},signatures:"Mahboob Lessan-Pezeshki and Shirin Ghazizadeh",authors:[{id:"26564",title:"Prof.",name:"Mahboob",middleName:null,surname:"Lessan Pezeshki",slug:"mahboob-lessan-pezeshki",fullName:"Mahboob Lessan Pezeshki"},{id:"26571",title:"Prof.",name:"Shirin",middleName:null,surname:"Ghazizadeh",slug:"shirin-ghazizadeh",fullName:"Shirin Ghazizadeh"}]}],onlineFirstChaptersFilter:{topicSlug:"medicine",limit:3,offset:0},onlineFirstChaptersCollection:[{id:"75511",title:"Vaginal Delivery",slug:"vaginal-delivery",totalDownloads:0,totalDimensionsCites:null,doi:"10.5772/intechopen.96097",book:{title:"Midwifery"},signatures:"Kizito Omona"},{id:"75360",title:"In vitro Approaches to Model Breast Tumor Complexity",slug:"in-vitro-approaches-to-model-breast-tumor-complexity",totalDownloads:0,totalDimensionsCites:null,doi:"10.5772/intechopen.96338",book:{title:"Breast Cancer"},signatures:"Heizel Rosado-Galindo, Lyanne Suarez and Maribella Domenech"},{id:"75508",title:"Structural Insight of the Anticancer Properties of Doxazosin on Overexpressing EGFR/HER2 Cell Lines",slug:"structural-insight-of-the-anticancer-properties-of-doxazosin-on-overexpressing-egfr-her2-cell-lines",totalDownloads:0,totalDimensionsCites:null,doi:"10.5772/intechopen.96628",book:{title:"Breast Cancer"},signatures:"Martiniano Bello and Miguel Ángel Vargas Mejía"}],onlineFirstChaptersTotal:640},preDownload:{success:null,errors:{}},aboutIntechopen:{},privacyPolicy:{},peerReviewing:{},howOpenAccessPublishingWithIntechopenWorks:{},sponsorshipBooks:{sponsorshipBooks:[{type:"book",id:"10176",title:"Microgrids and Local Energy Systems",subtitle:null,isOpenForSubmission:!0,hash:"c32b4a5351a88f263074b0d0ca813a9c",slug:null,bookSignature:"Prof. Nick Jenkins",coverURL:"https://cdn.intechopen.com/books/images_new/10176.jpg",editedByType:null,editors:[{id:"55219",title:"Prof.",name:"Nick",middleName:null,surname:"Jenkins",slug:"nick-jenkins",fullName:"Nick Jenkins"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}}],offset:8,limit:8,total:1},route:{name:"chapter.detail",path:"/books/soybean-pest-resistance/mycotoxins-in-cereal-and-soybean-based-food-and-feed",hash:"",query:{},params:{book:"soybean-pest-resistance",chapter:"mycotoxins-in-cereal-and-soybean-based-food-and-feed"},fullPath:"/books/soybean-pest-resistance/mycotoxins-in-cereal-and-soybean-based-food-and-feed",meta:{},from:{name:null,path:"/",hash:"",query:{},params:{},fullPath:"/",meta:{}}}},function(){var e;(e=document.currentScript||document.scripts[document.scripts.length-1]).parentNode.removeChild(e)}()