Modified chitin and chitosan with different ionic liquids and solubility in solvents.
\r\n\tThe study of populations and plant communities in their different aspects; ecological, structural, functional and dynamic, it is essential to establish a posteriori models of forest and agricultural management.
\r\n\r\n\tFor this, the methodological approaches on the type of sampling are considered essential, since there are differences between the purely ecological and the phytosociological methods, despite the fact that both pursue the same objective.
\r\n\tAlthough the ecological method for the knowledge of the vegetation is widely extended, the phytosociological one is no less so, since in the European Union it has been developed as a consequence of policies on sustainability, through which regulations have been issued, such as the habitats directive.
\r\n\tOn the other hand, research on plant dynamics and knowledge of the landscape in an integral way, have multiplied in the last 30 years, which has favored a deep knowledge of the floristic and phytocenotic wealth, which is fundamental for agricultural management, livestock and forestry.
",isbn:"978-1-83969-386-1",printIsbn:"978-1-83969-385-4",pdfIsbn:"978-1-83969-387-8",doi:null,price:0,priceEur:0,priceUsd:0,slug:null,numberOfPages:0,isOpenForSubmission:!0,hash:"0abf2a59ee63fc1ba4fb64d77c9b1be7",bookSignature:"Dr. Eusebio Cano Carmona, Dr. Ricardo Quinto Canas, Dr. Ana Cano Ortiz and Dr. Carmelo Maria Musarella",publishedDate:null,coverURL:"https://cdn.intechopen.com/books/images_new/9662.jpg",keywords:"Climatic Factors, Bioclimate, Thermotype, Flora, Conservation, Phytocenosis, Plant Dynamics, Landscape, Cartography, Vegetation Series, Crops, Reforestation",numberOfDownloads:null,numberOfWosCitations:0,numberOfCrossrefCitations:null,numberOfDimensionsCitations:null,numberOfTotalCitations:null,isAvailableForWebshopOrdering:!0,dateEndFirstStepPublish:"November 23rd 2020",dateEndSecondStepPublish:"January 25th 2021",dateEndThirdStepPublish:"March 26th 2021",dateEndFourthStepPublish:"June 14th 2021",dateEndFifthStepPublish:"August 13th 2021",remainingDaysToSecondStep:"a month",secondStepPassed:!0,currentStepOfPublishingProcess:3,editedByType:null,kuFlag:!1,biosketch:"Dr. Cano Carmona and colleagues have directed 12 doctoral theses and more than 200 publications among articles, books, and book chapters. He has participated in national and international congresses with about 250 papers. He has held a number of different academic positions, including Dean of the Faculty of Experimental Sciences at the University of Jaen, Spain, and founder and director of the International Seminar on Management and Conservation of Biodiversity.",coeditorOneBiosketch:"Ricardo Jorge Quinto Canas is currently an Invited Assistant Professor in the Faculty of Sciences and Technology at the University of Algarve – Portugal, and a member of the Centre of Marine Sciences (CCMAR), University of Algarve. His current research projects focus on Botany, Vegetation Science (Geobotany), Biogeography, Plant Ecology, and Biology Conservation, aiming to support Nature Conservation.",coeditorTwoBiosketch:"Ana Cano Ortiz's fundamental line of research is related to botanical bioindicators. She has worked in Spain, Italy, Portugal, and Central America. It presents more than one hundred works published in various national and international journals, as well as books and book chapters; and has presented a hundred papers to national and international congresses.",coeditorThreeBiosketch:"Carmelo Maria Musarella is a biologist, specialized in Plant Biology. He is a member of the permanent scientific committee of the International Seminar on “Biodiversity Conservation and Management” guested by several European universities. He has participated in several international and national congresses, seminars, and workshops and presented oral communications and posters.",coeditorFourBiosketch:null,coeditorFiveBiosketch:null,editors:[{id:"87846",title:"Dr.",name:"Eusebio",middleName:null,surname:"Cano Carmona",slug:"eusebio-cano-carmona",fullName:"Eusebio Cano Carmona",profilePictureURL:"https://mts.intechopen.com/storage/users/87846/images/system/87846.png",biography:"Eusebio Cano Carmona obtained a PhD in Sciences from the\nUniversity of Granada, Spain. He is Professor of Botany at the\nUniversity of Jaén, Spain. His focus is flora and vegetation and he\nhas conducted research in Spain, Italy, Portugal, Palestine, the\nCaribbean islands and Mexico. As a result of these investigations,\nDr. Cano Carmona and colleagues have directed 12 doctoral theses\nand more than 200 publications among articles, books and book\nchapters. He has participated in national and international congresses with about\n250 papers/communications. He has held a number of different academic positions,\nincluding Dean of the Faculty of Experimental Sciences at the University of Jaen,\nSpain and founder and director of the International Seminar on Management and\nConservation of Biodiversity, a position he has held for 13 years. He is also a member of the Spanish, Portuguese and Italian societies of Geobotany.",institutionString:"University of Jaén",position:null,outsideEditionCount:0,totalCites:0,totalAuthoredChapters:"5",totalChapterViews:"0",totalEditedBooks:"1",institution:{name:"University of Jaén",institutionURL:null,country:{name:"Spain"}}}],coeditorOne:{id:"216982",title:"Dr.",name:"Ricardo Quinto",middleName:null,surname:"Canas",slug:"ricardo-quinto-canas",fullName:"Ricardo Quinto Canas",profilePictureURL:"https://mts.intechopen.com/storage/users/216982/images/system/216982.JPG",biography:"Ricardo Quinto Canas, Phd in Analysis and Management of Ecosystems, is currently an Invited Assistant Professor in the Faculty\nof Sciences and Technology at the University of Algarve, Portugal, and member of the Centre of Marine Sciences (CCMAR),\nUniversity of Algarve. He is also the Head of Division of Environmental Impact Assessment - Algarve Regional Coordination\nand Development Commission (CCDR - Algarve). His current\nresearch projects focus on Botany, Vegetation Science (Geobotany), Biogeography,\nPlant Ecology and Biology Conservation, aiming to support Nature Conservation.\nDr. Quinto Canas has co-authored many cited journal publication, conference articles and book chapters in above-mentioned topics.",institutionString:"University of Algarve",position:null,outsideEditionCount:0,totalCites:0,totalAuthoredChapters:"3",totalChapterViews:"0",totalEditedBooks:"0",institution:null},coeditorTwo:{id:"203697",title:"Dr.",name:"Ana",middleName:null,surname:"Cano Ortiz",slug:"ana-cano-ortiz",fullName:"Ana Cano Ortiz",profilePictureURL:"https://mts.intechopen.com/storage/users/203697/images/system/203697.png",biography:"Ana Cano Ortiz holds a PhD in Botany from the University of\nJaén, Spain. She has worked in private enterprise, in university\nand in secondary education. She is co-director of four doctoral\ntheses. Her research focus is related to botanical bioindicators.\nDr. Ortiz has worked in Spain, Italy, Portugal and Central America. She has published more than 100 works in various national\nand international journals, as well as books and book chapters.\nShe has also presented a great number of papers/communications to national and\ninternational congresses.",institutionString:"University of Jaén",position:null,outsideEditionCount:0,totalCites:0,totalAuthoredChapters:"6",totalChapterViews:"0",totalEditedBooks:"0",institution:{name:"University of Jaén",institutionURL:null,country:{name:"Spain"}}},coeditorThree:{id:"276295",title:"Dr.",name:"Carmelo Maria",middleName:null,surname:"Musarella",slug:"carmelo-maria-musarella",fullName:"Carmelo Maria Musarella",profilePictureURL:"https://mts.intechopen.com/storage/users/276295/images/system/276295.jpg",biography:"Carmelo Maria Musarella, PhD (Reggio Calabria, Italy –\n23/01/1975) is a biologist, specializing in plant biology. He\nstudied and worked in several European Universities: Messina,\nCatania, Reggio Calabria, Rome (Italy), Valencia, Jaén, Almeria\n(Spain), and Evora (Portugal). He was the Adjunct Professor\nof Plant Biology at the “Mediterranea” University of Reggio\nCalabria (Italy). His research topics are: floristic, vegetation,\nhabitat, biogeography, taxonomy, ethnobotany, endemisms, alien species, and\nbiodiversity conservation. He has authored many research articles published in\nindexed journals and books. He has been the guest editor for Plant Biosystems and a\nreferee for this same journal and others. He is a member of the permanent scientific\ncommittee of International Seminar on “Biodiversity Conservation and Management”, which includes several European universities. He has participated in several\ninternational and national congresses, seminars, workshops, and presentations of\noral communications and posters.",institutionString:'"Mediterranea" University of Reggio Calabria',position:null,outsideEditionCount:0,totalCites:0,totalAuthoredChapters:"6",totalChapterViews:"0",totalEditedBooks:"1",institution:null},coeditorFour:null,coeditorFive:null,topics:[{id:"5",title:"Agricultural and Biological Sciences",slug:"agricultural-and-biological-sciences"}],chapters:null,productType:{id:"1",title:"Edited Volume",chapterContentType:"chapter",authoredCaption:"Edited by"},personalPublishingAssistant:{id:"247865",firstName:"Jasna",lastName:"Bozic",middleName:null,title:"Ms.",imageUrl:"https://mts.intechopen.com/storage/users/247865/images/7225_n.jpg",email:"jasna.b@intechopen.com",biography:"As an Author Service Manager, my responsibilities include monitoring and facilitating all publishing activities for authors and editors. From chapter submission and review to approval and revision, copyediting and design, until final publication, I work closely with authors and editors to ensure a simple and easy publishing process. I maintain constant and effective communication with authors, editors and reviewers, which allows for a level of personal support that enables contributors to fully commit and concentrate on the chapters they are writing, editing, or reviewing. I assist authors in the preparation of their full chapter submissions and track important deadlines and ensure they are met. I help to coordinate internal processes such as linguistic review, and monitor the technical aspects of the process. As an ASM I am also involved in the acquisition of editors. Whether that be identifying an exceptional author and proposing an editorship collaboration, or contacting researchers who would like the opportunity to work with IntechOpen, I establish and help manage author and editor acquisition and contact."}},relatedBooks:[{type:"book",id:"6893",title:"Endemic Species",subtitle:null,isOpenForSubmission:!1,hash:"3290be83fff5bc015f5bd3d78ae9c6c7",slug:"endemic-species",bookSignature:"Eusebio Cano Carmona, Carmelo Maria Musarella and Ana Cano Ortiz",coverURL:"https://cdn.intechopen.com/books/images_new/6893.jpg",editedByType:"Edited by",editors:[{id:"87846",title:"Dr.",name:"Eusebio",surname:"Cano Carmona",slug:"eusebio-cano-carmona",fullName:"Eusebio Cano Carmona"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"6418",title:"Hyperspectral Imaging in Agriculture, Food and Environment",subtitle:null,isOpenForSubmission:!1,hash:"9005c36534a5dc065577a011aea13d4d",slug:"hyperspectral-imaging-in-agriculture-food-and-environment",bookSignature:"Alejandro Isabel Luna Maldonado, Humberto Rodríguez Fuentes and Juan Antonio Vidales Contreras",coverURL:"https://cdn.intechopen.com/books/images_new/6418.jpg",editedByType:"Edited by",editors:[{id:"105774",title:"Prof.",name:"Alejandro Isabel",surname:"Luna Maldonado",slug:"alejandro-isabel-luna-maldonado",fullName:"Alejandro Isabel Luna Maldonado"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"1591",title:"Infrared Spectroscopy",subtitle:"Materials Science, Engineering and Technology",isOpenForSubmission:!1,hash:"99b4b7b71a8caeb693ed762b40b017f4",slug:"infrared-spectroscopy-materials-science-engineering-and-technology",bookSignature:"Theophile Theophanides",coverURL:"https://cdn.intechopen.com/books/images_new/1591.jpg",editedByType:"Edited by",editors:[{id:"37194",title:"Dr.",name:"Theophanides",surname:"Theophile",slug:"theophanides-theophile",fullName:"Theophanides Theophile"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"3092",title:"Anopheles mosquitoes",subtitle:"New insights into malaria vectors",isOpenForSubmission:!1,hash:"c9e622485316d5e296288bf24d2b0d64",slug:"anopheles-mosquitoes-new-insights-into-malaria-vectors",bookSignature:"Sylvie Manguin",coverURL:"https://cdn.intechopen.com/books/images_new/3092.jpg",editedByType:"Edited by",editors:[{id:"50017",title:"Prof.",name:"Sylvie",surname:"Manguin",slug:"sylvie-manguin",fullName:"Sylvie Manguin"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"3161",title:"Frontiers in Guided Wave Optics and Optoelectronics",subtitle:null,isOpenForSubmission:!1,hash:"deb44e9c99f82bbce1083abea743146c",slug:"frontiers-in-guided-wave-optics-and-optoelectronics",bookSignature:"Bishnu Pal",coverURL:"https://cdn.intechopen.com/books/images_new/3161.jpg",editedByType:"Edited by",editors:[{id:"4782",title:"Prof.",name:"Bishnu",surname:"Pal",slug:"bishnu-pal",fullName:"Bishnu Pal"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"72",title:"Ionic Liquids",subtitle:"Theory, Properties, New Approaches",isOpenForSubmission:!1,hash:"d94ffa3cfa10505e3b1d676d46fcd3f5",slug:"ionic-liquids-theory-properties-new-approaches",bookSignature:"Alexander Kokorin",coverURL:"https://cdn.intechopen.com/books/images_new/72.jpg",editedByType:"Edited by",editors:[{id:"19816",title:"Prof.",name:"Alexander",surname:"Kokorin",slug:"alexander-kokorin",fullName:"Alexander Kokorin"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"1373",title:"Ionic Liquids",subtitle:"Applications and Perspectives",isOpenForSubmission:!1,hash:"5e9ae5ae9167cde4b344e499a792c41c",slug:"ionic-liquids-applications-and-perspectives",bookSignature:"Alexander Kokorin",coverURL:"https://cdn.intechopen.com/books/images_new/1373.jpg",editedByType:"Edited by",editors:[{id:"19816",title:"Prof.",name:"Alexander",surname:"Kokorin",slug:"alexander-kokorin",fullName:"Alexander Kokorin"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"57",title:"Physics and Applications of Graphene",subtitle:"Experiments",isOpenForSubmission:!1,hash:"0e6622a71cf4f02f45bfdd5691e1189a",slug:"physics-and-applications-of-graphene-experiments",bookSignature:"Sergey Mikhailov",coverURL:"https://cdn.intechopen.com/books/images_new/57.jpg",editedByType:"Edited by",editors:[{id:"16042",title:"Dr.",name:"Sergey",surname:"Mikhailov",slug:"sergey-mikhailov",fullName:"Sergey Mikhailov"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"371",title:"Abiotic Stress in Plants",subtitle:"Mechanisms and Adaptations",isOpenForSubmission:!1,hash:"588466f487e307619849d72389178a74",slug:"abiotic-stress-in-plants-mechanisms-and-adaptations",bookSignature:"Arun Shanker and B. Venkateswarlu",coverURL:"https://cdn.intechopen.com/books/images_new/371.jpg",editedByType:"Edited by",editors:[{id:"58592",title:"Dr.",name:"Arun",surname:"Shanker",slug:"arun-shanker",fullName:"Arun Shanker"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"878",title:"Phytochemicals",subtitle:"A Global Perspective of Their Role in Nutrition and Health",isOpenForSubmission:!1,hash:"ec77671f63975ef2d16192897deb6835",slug:"phytochemicals-a-global-perspective-of-their-role-in-nutrition-and-health",bookSignature:"Venketeshwer Rao",coverURL:"https://cdn.intechopen.com/books/images_new/878.jpg",editedByType:"Edited by",editors:[{id:"82663",title:"Dr.",name:"Venketeshwer",surname:"Rao",slug:"venketeshwer-rao",fullName:"Venketeshwer Rao"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}}]},chapter:{item:{type:"chapter",id:"57402",title:"Solubility of Chitin: Solvents, Solution Behaviors and Their Related Mechanisms",doi:"10.5772/intechopen.71385",slug:"solubility-of-chitin-solvents-solution-behaviors-and-their-related-mechanisms",body:'\nChitin is a polysaccharide consisting of glycosidic bonds in linear or branched fashion between two adjacent monosaccharides, 2-(acetylamino)-2-deoxy-
Polysaccharides mimic protein and amino acids structure consisting of special conformation of secondary, tertiary and quaternary architectural structures. Chitin is arranged as crystalline microfibrils clustered with six-stranded helixes of a protein structure. Polymerization of the monosaccharides, β-(1-4)-2-acetamido-2-deoxy-β-
Structure of different chitin conformations (α, β and γ-chitin domain conformation).
Chitin polysaccharides contain functional amino groups in its backbone to provide positively charged polysaccharide upon solubilization. The amount of reactive amino groups can be increased by increasing deacetylation which is quantified by the degree of deacetylation (%DD). Chitin is the only positively charged polysaccharide among all other naturally occurred biopolymers which allows a wide range of biological applications. There are two main groups in the chitin structure influences the functionality of chitin: (i) amino groups and (ii) hydroxyl groups (Figure 1). The amino sites might react with aldehyde and ketone groups for the Schiff Bases formation and influence solubility. In addition, two hydroxyl groups in chitin structure provide excellent pathways for modification and functionalization in view of an increase of solubility. Those hydroxyl groups involve in the O-acetylation, O-alkylation, H-bonds formation, etc. [5]. Also, the amino groups are responsible for the short-range primary and secondary electrostatic interaction while the second one involves the formation of hydrogen bonds. Moreover, the available unhydrolysed acetyl groups in chitin molecules form hydrophobic bonds in the solution and get aggregated [6].
\nChitins may have different acetylation depending on the sources such as fungi, insects, crustaceans or molluscs. Due to its crystalline structure with strong hydrogen bonds and cohesive forces, highly aggregated three-dimensional network is developed which leads to insolubility in conventional solvents. Pure chitin contains around 90% N-acetyl groups in its backbone and some deacetylation reactions take place due to the extraction process of chitin from the natural sources. There are two monomer units present in the chitin structure in different fraction: (i) 2-acetamino-2-deoxy-
The aggregation behavior of chitosan is strongly influenced by the pH of the solvent medium. In general, chitosan molecules are more or less ionized up to pH 6.0, and the ionization increases as the pH moves to low values. Therefore, the amino groups of chitin chains (low DA) at a particular pH (<6.0) capture H+ solution ions and exhibited positive surface charge which can be determined by zeta potential value. The charged amino groups resist the aggregation of chitosan in the solution, but when the DA value increases from zero to higher value the aggregation starts to dominate over the coulombic repulsion forces of the charged groups. The pH at which the net charge of a chitosan solution prevents aggregation is called critical pH. Therefore, the aggregation behavior of chitosan can be divided into two distinct types—closed and open type aggregation based on pH values. The closed type aggregation is observed at very low pH when the radius of gyration becomes constant and insensitive to chitosan concentration. This indicates that chitosan is completely protonated and the solubilized chitosan molecules maintain stable aggregation. This phenomenon can be related to the classical Rayleigh theory in all charged species fragmented into smaller charged species beyond a certain critical point of net charge. On the other hand, open type aggregation takes place when aggregation and association forces overcome the repulsive effect at pH higher than the critical pH. The radius of gyration increases with the incorporation of more chitosan molecules in the solution system. In addition, the high pH value (>6.0) also raises the number of deprotonated species in the solution and aggregation moves to agglomeration due to the generation of hydrogen bonds involving the neutralized NH2 groups of chitosan chains [8]. Moreover, the hydrolytic cleavage occurs when chitin is treated by strong acid such as highly concentrated acetic acid or HCl by involving the glycosidic bond (Figure 2: hydrolytic degradation). The detail mechanism has been discussed in Section 4.1.
\nMechanism of hylytic and non-hydrolytic degradation by organic acid (FA).
Apart from the degree of deacetylation and pH, molecular weight influences the conformational changes and solubility of chitosan. Chitosan solubility increases with the decrease of molecular weight [9]. The solubilization process of chitosan, as it happens for functionalized polymers, involves different types of chemical and physical interactions such as hydrogen bonds, hydrophobic interactions, van der Waals forces, etc. The effect of DA on the solubility of chitosan has already been discussed in previous section in which the hydrogen bonds involving acetyl groups played a dominant role. When DA value is lower than 50%, the protonated amino groups dominate the electrostatic repulsions between chitin chain and the hydrogen bonds collapse. As a result, chitin with low DA (<50%) become soluble at acidic pH. Chitin with low DA is fully ionized at pH 3.0 while deprotonation reaches to the highest value at pH 6.0 and precipitate occurs. Therefore, a transition between dissolved and undissolved chitin is mainly controlled by the medium pH and the degree of deacetylation or number of amino groups present in the chitin structure. The formation of hydrogen bonds and the impact of hydrophobic interaction on the chain aggregation are observed even though chitin molecules are fully deacetylated [6]. Therefore, deprotonation, β→α phase transition and precipitation represents the scheme for the formulation of α-chitin by aggregation. Chitosan at high molecular weight (MW 300 kDa) exhibit the α-chitin crystalline structure upon aggregation. Aggregation determines a conformational entropy loss due to the arrangement of the molecular chains in a regular crystalline array [10]. The release of water compensates the loss of entropy during chain aggregation resulting in an overall decrease of Gibbs free energy, which is a thermodynamic criterion for a process to be spontaneous. However, the circumstance changes for chitosan oligomers of low MW (2.43 kDa). In this case, the aggregation is not favored due to the formation of shorter chains which reduce the hydrogen bonds formation between macromolecules and lack of amino groups for the formation of intermolecular hydrogen bonds. As a result, the pH for the transition between dissolved and undissolved chitosan in aqueous medium shifted to pH 8.0 from pH 6.0. Therefore, the soluble and insoluble transition of chitosan occurs when the MW (weight average) range exists in the range of 3.82–4.67 kDa. The transition moves to complete solubility when the MW decreases to the monomer scale at below 3.28 kDa because no intermolecular hydrogen bond leads to chitosan aggregation and solubilization is observed at neutral pH [9].
\nIonic strength is a measure of the total concentration of ions present in a solution. In general, charged particles exhibit a net electrostatic effect up to a distance in the solution which is indicated as Debye screening length (k−1). The electric field affects the electrokinetic phenomena and migration of the charged colloidal particles in the solution. As a result, a double layer or boundary layer is developed in chitosan solution due to the total polysaccharide charged particles and the counterions around the particles. Debye screening length (k−1) can be calculated as a function of ionic strength (I) using Eq. (1),
\nwhere the parameter ε indicates water permittivity, kb is to Boltzmann constant, T is the temperature (K), e is the electronic charge (coulombic) and Nav is the Avogadro number (6.022 × 1023). It is observed that k−1 and I are inversely related to each other; however, the relationship is not linear but expressed by the square root. Chitosan acts as polyelectrolyte, when it is dissolved in a solvent. The polycationic solution develops electrostatic repulsive interactions while masking other available interactions. The addition of a salt or the increase of ionic strength from 9 × 10−3 to 0.46 M of the chitosan solution results in an inversion from repulsive to attractive interaction and the k−1 value decreases from 3.0 to 0.45 nm. The attraction inspired by the screening of amino-charged chitosan chains with anions such as CH3COO− and Cl− increases the tendency of flocculation or precipitation of chitosan. Therefore, the increase of ionic strength (>0.46 M) enhances the aggregation by chitosan-chitosan attraction over the chitosan-solvent interaction and influences chitosan solubility [11]. Chitosan in acidic medium shows an expanded conformation structure since the amino groups exert repulsive force with each other, but the addition of salt or increase of ionic strength shrink the structure by increasing chain flexibility. As a result, the occupied volume of chitosan chains in solution is reduced by increasing the ionic strength and a decrease of intrinsic viscosity of chitosan solution is observed. The intrinsic viscosities of chitosan solution decreased from 2.9 to 0.71 L/g for the increase of ionic strength from 9 × 10−3 to 0.46 M. Temperature dominates the formation and dissolution of hydrogen bonds between acetyl and hydroxyl groups up to a threshold limit of ionic strength. The temperature at which the dissolution occurs is called dissolution temperature and can be defined as a function of ionic strength above the threshold value of ionic strength (i.e. critical ionic strength, Ic). Above Ic, the dissolution temperature is proportional to the ionic strength, therefore the dissolution temperature increases as the ionic strength of the chitosan solution increases [12].
\nChitosan or modified chitin is readily soluble in dilute acidic medium below its pKa (pH = 6.5) while chitin is insoluble in organic and regular solvents. The amino groups in chitosan backbone enhance ionization at low pH by forming chit-NH3+ and increase the solubility of the polysaccharide while at higher pH value (>pH 6.0), it precipitates. Therefore, the solubility of chitin can be increased by converting to chitosan (by deacetylation reaction) which depends on the pKa value and also on the DD. The ability of acidic media to protonate chitosan mainly controls the ionization and solubility of the polyelectrolytes. Chitosan exhibits solubility in acid media (1%) such as acetic acid, formic acid [13],
Chitin liquefaction is one of the simple processes in which chitin is transformed into small soluble molecules. Formic acid (FA) can be used as liquefaction agent for chitin. Moreover, due to high vapor pressure FA can be evaporated without leaving any residue. Three different types of products are formed after the liquefaction of chitin, that is, (i) N-acetyl glucosamine having formate functional groups (NAGF), (ii) dehydrated N-acetyl glucosamine (DH) and (iii) 5-(formyloxymethyl)furfural (FMF). The total yield in this process was achieved around 16.1% in which the highest fraction of yield was found at 10.5% for N-acetyl glucosamine having formate functional groups. In addition, the dehydrated products are achieved around 3.6% while the FMF fractions are significantly lower around 2.0%. The yield of these end products depends on the time and temperature of the liquefaction process. For example, the total yield is increased to 60% (i.e. NAGF 32.7%, DH 11.3% and FMF 16.0%) when the temperature is raised to 100°C and keeping other parameters constant. In contrast, the total yields of 28% (i.e. NAGF 12.7%, DH 11.1% and FMF 4.7%) and 57.8% (i.e. NAGF 13.2%, DH 10.0% and FMF 34.6%) are achieved after only increasing the reaction times (from 12 h) to 24 and 168 h, respectively. [16]. The breakage of glycosidic linkages does not occur in the presence of strong acidic solution, due to insufficient amount of water in the reaction. Therefore, the first step of the reaction pathway follows the generation of monomers and oligomers in the form of soluble chitin by the modification of hydroxyl groups and followed by non-hydrolytic cleavage. As the water concentration increases and reaction proceeds, the depolymerization kinetics increases with the higher supply of water leading to hydrolysis and liquefaction reaction (Figure 2). Anhydrous formic acid can also be as a solvent for chitin [13].
\nMany inorganic acids, bases and salts are used for the dissolution of chitin and chitosan. The extensive decomposition and deacetylation of chitin can be obtained by alkali treatment, which increases the solubility in water of the regenerated chitin. The alkali chitin solution is prepared by using 10 times more alkali than chitin. The precipitation of chitin occurs by pouring the solution into acetone followed by neutralization with HCl [17]. The obtained precipitates are insoluble in water, but after 104 h of reaction the alkali treatment allows to reach the aqueous solubility. The enhanced solubility was due to the cleavage of chitin chain and led to the destruction of the crystalline structure of chitin. A prolonged treatment with NaOH also increases the degree of deacetylation up to 90% while 50% and more deacetylated chitin is dissolved in water. Einbu and coworkers analyzed the random degradation of chitin in 2.77 M NaOH and observed random coil conformation of chitin chains regardless of molecular weight [18]. Depolymerization, deacetylation and stability of chitin solution can be enhanced when urea is added to the alkali medium. Hu et al. dissolved chitosan in a mixture continuing 8 wt% NaOH and 4 wt% urea at the temperature of −20°C and stirred for 36 h. Chitin solubilization was not possible below 4 wt% NaOH and solution instability arises upon increasing the alkali solution above 12% NaOH. The addition of 2–8% urea in the 6–10% NaOH increases the solubility and stability of depolymerized chitin fragments in the solution. The explanations behind the achieved solubility and stability is the destruction of inter- and intramolecular hydrogen bonds and the role of urea is to limit aggregation leading to the stability of the solution [19]. The entire process of chitin solubilization is also dependent on the freezing temperature of chitin in a particular mixture of solvent. For example, the chitin solution in 8 wt% NaOH and 4 wt% urea exhibits the freezing point at −19°C. The presence of more than 4 wt% NaOH enables water molecules to get access into the chitin chain matrix; water is expanded and separated from the NaOH molecules at temperature below freezing point. The volume expansion of the chitin matrix upon freezing-induced stretch and collapses of the hydrogen bonds, which brought to depolymerization and solubilization of chitin chains (Figure 3). In contrast, the extent of chitin deacetylation in the alkali solution was greater than the same process in presence of urea. The DA value reduced from 94 to 84% after 480 h storage in the mixture of 8 wt% NaOH and 4 wt% urea indicating that urea stabilized the chitin solution and stopped the deacetylation process. Another similar study was carried out by Fang and coworkers who described the insight mechanism of dissolution property of chitin in NaOH-urea mixture [20]. The combined system (NaOH/urea) was quite suitable to prepare a chitin solution at −30°C. The hydrated NaOH captured the chitin chains by hydrogen bonds and formed complexes while urea clusters surrounded outside the complexes as a shell-like structure. The chitin chains were separated by the hydrated NaOH and urea disrupting the inter- and intramolecular hydrogen bonding network and displayed a complete dissolution. The solution was sensitive to temperature and concentration and formed an extended wormlike structure confirmed by TEM, AFM and DLS analysis [21]. Gong and coworkers have already reported a study recently with KOH and KOH-urea as a solvent for chitin dissolution. The chitin solubility was around 80% in the aqueous KOH solution (8.4–25 wt%) and the dissolution power of bases was in the order KOH > NaOH > LiOH at −30°C. Importantly, the degree of acetylation decreased only 12.5% after the treatment with KOH and storage at 4°C for 15 days. Urea did not exhibit any significant effect for enhancing the solvent capability of KOH [21]. Moreover, chitin solubility was also observed in a mixture of 5% LiCl and N,N-dimethylacetamide (DMA). The solution obtained from the mixture solubilized only 2 wt% chitin at 120°C and produced a gel, but 3 wt% chitin was dissolved when lithium thiocyanate was used as a solvent at 100°C [22]. Also, the recovery of the product in a strong acidic environment is quite difficult and expensive. For example, the hydrolysis of chitin/chitosan or depolymerization by 12.07 M inorganic acid (HCl) at 40°C for 28 h does not produce any N-deacetylated moiety [23]. Therefore, use of nitrous acid is a cheaper alternative for chitosan depolymerization by the cleavage of glycosidic bonds but the stoichiometry of the reaction depends on the amount of acidic solution. Water soluble chitosan oligosaccharides and highly deacetylated chitosan oligosaccharides were synthesized using nitrous acid [24]. The depolymerization process was carried out by adding sodium nitrite (NaNO2) to the chitosan solution (2% acetic acid) and keeping the solution for 3 h at pH 7.0, then the excess water in the reaction was evaporated at 50°C. The fractionation and extraction were carried out by methanol and filtrated for separation. The depolymerization started with the deamination of the 2-amino-2-deoxy-β-
Hydrolysis by NaOH.
Hydrolysis by NaNO2.
Strong organic and inorganic acids, strong alkali solution or other inorganic solvents such as LiCl-tertiary solvent, CaCl2-MetOH system possess some disadvantages like corrosiveness, volatility, toxicity and so on. Moreover, inappropriate segmentation of chains, unstable yields occur during the hydrolysis or depolymerization in those solvents. As a suitable alternative, ionic liquids (ILs) are considered as green solvents due to their non-volatility, excellent solvation power, wide temperature ranges in the liquid phase, strong polarity and stability of end products. 1-butyl-3-methylimidazolium chloride (BminCl) is an ionic liquid (IL) which gives a swelled state of 5 wt% chitin after treatment at 130°C for 5 h [3]. The swelling of chitin in the IL, [BminCl] occurs due to the strong coordination of the Cl− ions and partially break the hydrogen bonds of chitin chains. The complete solubility of chitin is only possible when a stronger coordinating anion than Cl− ion will destroy the entire hydrogen bonds network (─NH⋯O═C and ─OH⋯O═C) produced by N-acetyl groups. Therefore, 1-butyl-3-methylimidazolium acetate (BminAc) was used as solvent and found better solubility than the (BminCl). The acetate ions in (BminAc) exhibit itself as a strong conjugate base of a weak acid, which can interact with the H-bonds of chitin. It destroys the hydrogen bonds and solubilizes the crystal chitin. Xie and coworkers investigated the IL, 1-butyl-3-methyl-imidazolium chloride ([Bmim]Cl) as a solvent but they achieved partial dissolution of chitin and chitosan at 110°C probably due to the moderated polarity of the IL [26]. Prasad and coworkers found that 1-allyl-3-methylimidazolium bromide exhibited good solvent property for the dissolution of 5 wt% chitin when it was heated at 100°C for 48 h [27]. The obtained chitin solution was quite clear and homogeneous as confirmed by scanning electron microscopy analysis. The chitin powder recovered and regenerated by methanol treatment possessed the same crystalline structure as that of the crab shell. No degradation of chain or decrease of molecular weight had been occurred. Upon increasing the chitin amount to 7 wt%, a gel was obtained. Wang and coworkers studied the effect of three ILs: alkyl imidazolium chloride ([AMIM]Cl), alkyl imidazolium dimethyl phosphate ([MMIM][Me2PO4]) and 1-allyl-3-methyl-imidazolium acetate ([AMIM]Ac) on the solubility of a series of different DA (degree of acetylation) of chitin [28]. The dissolution of 5 wt% chitin occurs at 110°C in the [AMIM]Ac while [AMIM]Cl and [MMIM][Me2PO4] can dissolve 0.5 wt% and 1.5 wt% chitin at 45 and 60°C, respectively. The observation showed that acetate anions are more efficient to break down the network of hydrogen bonds than the chloride and dimethyl phosphate anion. Similar findings were observed when 1-butyl-3-methylimidazolium acetate ([BMIN]Ac) and 1-butyl-3-methylimidazolium chloride ([BMIN]Cl) were used as solvent at room temperature [3]. The study showed that limited chitin solubility (1 wt%) was achieved in [BMIN]Cl while the solubility increased to 5 wt% in [BMIN]Ac at room temperature. Qin and coworkers reported on the dissolution of chitin using IL, 1-ethyl-3-methylimidazolium acetate for which the required temperature was 100°C while the dissolution of cellulose with the same IL was obtained at 40°C [26]. The difference was due to the structural arrangement of chitin with acetamide group on the C2 position while cellulose shows a hydroxyl group in the same position. The major obstacle to dissolution was the strong hydrogen bonds between C = O and NH groups of the adjacent chitin chains distributed in the chitin cluster. Thanks to their strong polarity, ILs overcome the energy barrier and makes it possible to dissolve in the molten state (40°C). Shimo and coworkers used tris(2-hydroxyethyl)methylammonium (THEMA) type ILs in the absence and presence of ethylenediamine (EDA) to dissolve chitin at mild non-aqueous conditions [29]. Four different THEMA-type ILs were used to dissolve chitin: Tris(2-hydroxyethyl)methylammonium acetate ([THEMA][OAc]), Tris(2-hydroxyethyl) methylammonium methyl sulfate ([THEMA][MeOSO3]), Tris(2-hydroxyethyl) methylammoniumtrifluoromethansulfonate ([THEMA][CF3SO3]). Partial and total solubility was observed when THEMA-type ILs used as solvents in the absence and presence of EDA, respectively. For example, ([THEMA][OAc]) exhibited excellent solubility at room temperature in the presence of EDA. The reason behind the complete dissolution was revealed with the help of X-ray diffraction analysis. The analysis exhibited that the EDA penetrated into the crystalline α-chitin and formed a complex. Therefore, when EDA was added to the system of IL and chitin, the EDA easily broke the hydrogen bonds present in the α-chitin and created strong hydrogen bonds of with the IL. This mechanism leads to dissolving the dissolution of chitin at room temperature by loosen their inter-chain hydrogen bonds between chitin chains. Some references about the use of ILs in the modification of chitin and chitosan to enhance the solubility are given in Table 1.
\nChitin/chitosan | \nSolvent | \nReferences | \n
---|---|---|
Acetylated chitin | \nDimethyl sulfoxide (DMSO) | \n[30] | \n
Chitin-graft-polystyrene | \nDimethyl sulfoxide (DMSO) | \n[31] | \n
Monomethyl-modified chitosan | \nWater | \n[32] | \n
O-alkylated chitosan | \nChloroform, ethanol, water and acetic acid | \n[33] | \n
Chitosan-graft-polycaprolactone | \nDimethylformamide (DMF), DMSO, ethanol and toluene | \n[34] | \n
Modified chitin and chitosan with different ionic liquids and solubility in solvents.
Enzymatic hydrolysis is a green process to achieve chitosan excellent solubility in water by producing chitooligosaccharides (COS). The process does not require extreme conditions (very low pH or high concentration of acids) and the tuning of molecular weight, and DD of final product can be achieved by avoiding any unwanted yield. Chitinase, chitosanase are specific enzymes and many other nonspecific enzymes such as glycanases, proteases, lipase are isolated from many biological sources. Unlike acid hydrolysis, enzymatic hydrolysis affects both the depolymerization and deacetylation of chitin or chitosan through the catalytic activities, which mainly depends on the molecular structure of chitinase (enzyme). Chitinase contains four catalytic domains in its structure, that is, (i) signal sequence, (ii) catalytic domain, (iii) serine/threonine region which can accept O-glucosylation and (iv) C-terminal chitin-binding domain [41]. The depolymerization occurs in the similar style of classical acid-base catalytic reaction (Figure 3: hydrolytic cleavage) followed by retention (two steps) or inversion (one step) reaction. In the retention mechanism, firstly, the acidic residues release protons, cleavage of glycosidic bonds and subsequently positively charged oxocarbonium ions intermediates are produced. Then, secondly, the intermediates are stabilized with the help of intermediate covalent bonds (glycosal-enzyme) but the subsequent reaction with the water molecules leads to the retention of anomeric configuration again. However, the inversion mechanism involves negative-charged residue, carbonium intermediate and water molecules at a time for the degradation of chain and inversion of the anomeric configuration. Moreover, the deacetylation of chitin molecules takes place by deacetylase treatment. The chitin deacetylase enzyme isolates from Mucor rouxii and forms enzyme-polymer complexes with chitin. The hydrolysis of acetyl groups occurs by the enzymatic attack to three acetyl groups (maximum) before the reaction proceeds to next complex formation. The enzymatic deacetylation yields randomly distributed GlcNAc and GlcN residues in the form of block copolymers. Pronase was reported to increase the solubility and decrease the degree of acetylation (DA) [42]. The chitosan solution in 1% acetic acid was treated with pronase at 100:1 ratio at 37°C for 1–5 h with subsequent and re-precipitation by using NaOH (2 M). The treated chitosan exhibited the molecular weight of 8.5 kDa while the native chitosan was 71 kDa. Moreover, the DA value decreased from 25 to 14% after the isolation of new chitosan. Consequently, the chitosan after pronase digestion can be solubilized around 66–74 wt% in 0.01% acetic acid which was 13 wt% for the raw chitosan. The other enzymes used for chitosan enzymatic treatments and the operation conditions have been summarized in Table 2.
\nEnzyme | \nWater soluble modified chitosan | \nReferences | \n
---|---|---|
Lysozyme | \nChitooligosaccharides (COS) | \n[35, 36] | \n
Papain | \n||
Cellulase | \n||
O-glycoside hydrolase (EC 3.2.1) | \nLow MW chitosan (3–6 kDa) | \n[37] | \n
Chitosanase and β- | \n[38] | \n|
Chitin deacetylases | \nChitin and chitosan oligomers | \n[39] | \n
Carbohydrases from Myceliophthora sp | \nLow MW chitosan (4–28 kDa with 85% DD) | \n[40] | \n
List of enzymes for the hydrolysis of polysaccharide (chitin, chitosan).
Modification of molecular structure can enhance the solubility of chitosan in water. Phosphorylated chitosan, quaternized chitosan derivatives and carboxymethyl chitosan can be solubilized in different solvents at ambient conditions (Table 3). The solubility trend of chitin based on the modification of the molecular structure has been clearly displayed in Figure 5.
\nModified chitosan | \nSolubility in | \nReferences | \n
---|---|---|
Phosphorylated chitosan | \n||
N-methylene phosphonic chitosan | \nWater, HCl, acetic acid | \n[43] | \n
Chitosan diethyl phosphate | \nDiluted organic or mineral acid | \n[44] | \n
α-Galactosyl-chitosan conjugates | \nWater | \n[45] | \n
Chitosan-dendrimer hybrid | \nWater | \n[46] | \n
Quaternized chitosan derivatives | \n||
N-phenmethyl-N,N-dimethyl chitosan (PDCS) N-(1-pyridylmethyl-2-ylmethyl)-N,N-dimethyl chitosan N-(1-pyridylmethyl-3-ylmethyl)-N,N-dimethyl chitosan N-(1-pyridylmethyl-4-ylmethyl)-N,N-dimethyl chitosan | \n0.1–1.6 mg/ml in water | \n[47] | \n
N-[(2-hydroxy-3trimethylammonium)propyl]chitosan chloride (HTACC) | \nWater | \n[48] | \n
Carboxymethyl chitosan | \n||
O-carboxymethyl chitosan sodium | \nN-methylmorpholine-N-oxide (NMMO) | \n[49] | \n
N,N-dicarboxymethyl chitosan | \nWater | \n[50] | \n
N,O-carboxymethyl chitosan | \nWater | \n\n |
Photosensitive chitosan with benzene group | \nBenzene and toluene | \n[5, 51] | \n
Dibutyryl chitin | \nDMF, DMSO, dimethylacetamide (DMAc) and ethanol | \n[52] | \n
Modified chitosan and solubility in different solvents.
Trend of solubility and intermolecular hydrogen bond between acetyl groups.
Chitin and chitosan have shown a big potential in pharmaceuticals, biomedical, agricultural sectors as well as food and textiles industry. Despite the myriad of opportunities, chitin and chitosan poor solubility in the most common solvents is a greatly limitation for scaling up the process from lab to industrial level. High viscosity of chitin and chitosan solution is another drawback with great impact of processing operations and equipment requirements. Even though chitin is sparingly soluble in strong acidic solution, corrosive and hazardous solvents should not be practiced to meet up regulatory compliances concerning chemical safety management. In conclusion, much works is still required to exploit the opportunities of this futuristic material which can contribute to economically feasible industrial growth.
\nThe project work has been funded by EU under the framework of Erasmus Mundus Program in Sustainable Management and Design for Textile (SMDTex).
\nCarbon is one of the most important elements on earth and it plays a crucial role in living organisms and modern technological world either as complex compounds or in its elemental form. Carbon has several allotropes (e.g. graphite, diamond, lonsdaleite, Buckyball and amorphous carbon etc.) and different morphological textures (nanotube, nanowire and graphene). Specific applications in devices and other uses are highly specific to the textures and nature of the allotrope of desired properties. Notably, ever since graphite and diamond were discovered for the first time in 1779, their innovative applications have been growing untill the present. Leveraging the benefits of these carbon morphologies, the journey towards innovation and discovery has continued to advance at a steady pace and almost two centuries later, Sumio Iijima discovered for the first time the existence of multiwalled carbon nanotubes (MWCNTs) and in 1992 he observed single-walled CNTs (SWCNTs) [1]. The synthesis and characterization of CNTs is beyond the scope of this chapter. It should be noted that graphite and CNTs have some characteristic properties and features, that enable them to be used in the energy storage and conversion systems. It is worth mentioning that the carbon nanotubes (CNTs), have been envisioned to potentially impact different areas of science and technology due to their unique properties and structural features [2, 3, 4]. Specifically, CNTs have very high tensile strength of 60 GPa and high electronic conductivity reported to be 108 Scm−1 and 107 Scm−1 for single-walled and multi-walled carbon nanotubes, respectively [5, 6]. Besides the potential practical applications in chemical and bio sensors [7, 8], field emission materials [9], catalyst [10], electronic devices [11], CNTs have been used in energy storage and conversion systems like, alkali metal ion batteries [12], fuel cells [13], nano-electronic devices [14] supercapacitors [15], and hydrogen storage devices [16]. The extraordinarily high electronic conductivity of CNTs enable CNT and graphite as an additive to composite electrodes and facilitate activation of poorly conducting electrode materials making them electrochemically active. In this chapter, we emphasize the applications of CNTs in four different areas: alkali metal ion (Li, Na and K) batteries, alkali metal air batteries, supercapacitors, and fuel cells. The underlying governing structural features and morphological impact on the electrochemical performances have been discussed and the specific storage mechanisms are also highlighted.
Carbon nanotubes can be either as single-walled carbon nanotubes (SWCNTs) or multi-walled carbon nanotubes (MWCNTs). Simply a wrapped graphene sheet with a hallow fiber is the single-walled CNT. On the other hand, a combination and collection of SWCNTs is the multi-walled CNTs. It should be noted that carbon nanotubes are designated as one-dimensional (1D) structures because of the long length-to-diameter ratio (aspect ratio) [17]. The electronic properties of CNTs are associated with the geometrical structure of them which is uniquely specified by a pair of indexes called chiral indexes (n, m). There are three typical types of CNTs can be obtained: armchair (n, n), zigzag (n,0), and chiral (n, m), depending on the orientation of the graphene lattice with respect to the tube axis they are twisted [18, 19, 20]. The formation of a single-walled CNT is shown in Figure 1 by rolling a single graphene sheet in different directions. It is worth to mention that the rolling introduces strain into the carbon bonds oriented circumferentially while the single graphene sheet is made into a tube. This strain will be greater for smaller diameters; therefore, the armchair will be more strained than zigzag single-walled CNTs [21].
Lattice, two off-set triangular sublattices of graphene and graphene sheet rolling vector map. Reproduced from Ref. [21] with permission from the Royal Society of Chemistry.
Properties of CNTs: Importantly, the local electronic character of carbon nanotubes is highly dependent on the carbon framework arrangements either zigzag or armchair. Also, there is a long-range defect which is formed by displacement or disorientation of standard nanocarbon structures, including hybridization of carbons, vacancies creation, and bond rotations (Stone − Wales). These imperfections are responsible for the chemical, mechanical and optoelectronic properties of CNTs. Noting that this imperfection can modify the electronic properties of CNTs by creating Fermi levels variation and the resulted charge diffusion processes can be affected [22, 23].
The resistivity of CNTs resulted from the electrical conductivity is determined by their carbon framework (graphite) and the one-dimensional character which is regulated by the quantum mechanical properties. The resistance of CNTs is independent of the length of the tube and act as a good conductor in which the highest current density can be as high as 109 A cm−2. This important property of CNTs may improve the rate capability of electrochemical devices like batteries and capacitors. The helicity and diameter of CNT determines either it would be metallic or semiconducting in nature [24]. It should be mentioned that the strong C=C double bonds in the carbon nanotubes makes them having high Young’s modulus in its axial direction and highest tensile strength. Of course, the presence of imperfection/defects in the tube wall reduces the Young’s modulus and tensile strength remarkably. However, reported experimental data are significantly smaller than the theoretical predictions which is most probably resulted from the high flexibility and aspect ratio [25, 26]. At room temperature the thermal conductivities of individual SWCNTs is reported up to 6600 W/(m K) which is almost double than the pure diamond [27]. Besides these, the CNTs have many others useful properties such as electro-optic effect, saturable absorption and Kerr effect etc. [28, 29].
The favorable and beneficial electrical, mechanical and thermal properties of carbon nanotubes are promising for various electrochemical applications like batteries, supercapacitors, fuel cells and hydrogen storage. Some important properties of SWCNTs and MWCNTs are listed in Table 1.
Property | SWCNT | MWCNT |
---|---|---|
Specific gravity | 0.8 g cm−3 | <1.8 g cm−3 |
Elastic modulus | ~1.4 TPa | ~0.3–1 TPa |
Resistivity | 5–50 μΩ cm | 5–50 μΩ cm |
Thermal conductivity | 3000 W m−1 K−1 | 3000 W m−1 K−1 |
Magnetic susceptibility | 22 × 106 EMU g−1 | 22 × 106 EMU g−1 |
Thermal expansion | Negligible | Negligible |
Thermal stability | 600–800°C (air) 2800°C (vacuum) | 600–800°C (air) 2800°C (vacuum) |
Strength | 50–500 GPa | 10–60 GPa |
Properties of single walled and multi walled nanotubes.
Reproduced from Ref. [30] with permission from the American Chemical Society.
The values of Young’s modulus and tensile strength of CNTs are around 1.2 TPa and 160 GPa, respectively. These unique mechanical properties make CNTs one of the toughest materials and play a vital role in protecting electrode integrity during the charge–discharge cycle of alkali-metal ion batteries. Furthermore, CNT based paper can be used as active material and current collector in supercapacitors, which can reduce the contact resistance as well as electrode weight. The thermal stability of CNTs is also an important property, which can help the composite electrode for stable battery operation at high current rates. SWCNTs and DWCNTs are showing a positive thermal expansion coefficient of 1.9 x 10–5 K–1 and 2.1 x 10–5 K–1, respectively, at room temperature. This negligible thermal expansion coefficient makes CNTs feasible for high energy density battery applications.
CNTs have showed high performance as anode materials and cathode additive for alkali metal ion batteries because of their favorable properties (electrical, mechanical, and structural). The battery electrode based on CNTs attracted attention of many research groups around the world. Recently different modifications in the CNTs have been made for the deployment as a promising electrode material regarding alkali metal ion intercalation, adsorption, and diffusion [31]. In Lithium ion Batteries (LIBs), it has been well established that Li+ ions are stored via two mechanisms, one is intercalation and other one is alloying [32]. The lithium ion storage mechanism in CNTs have been investigated by many research groups. First, let us go into detail about intercalation mechanism in pure carbon nanotubes. Because of different morphologies, the amount of Li+ ion insertion is not limited to LiC6. The capacities (Li ion storage capacity) is highly dependent to the CNT morphology, especially defects and diameter of the carbon nanotubes [33].
Defects (n-rings) can be occured naturally or introduced by treatment (nitric acid treatment or ball milling) as shown Figure 2. The theoretical studies (DFT total-energy calculations using local-density approximation (LDA) and the generalized-gradient approximation (GGA)) were employed to investigate the detailed energetics of lithium ion adsorption on the defective single-wall carbon nanotubes [34]. It turned out that the presence of the holes on CNTs wall increase their capacity which is most likely favorable diffusion of lithium ion into the inside of the carbon nanotubes and reduces the diffusion path length [35, 36].
Types of defects (rings of the red dots) in a (5,5) SWCNT. Reproduced from Ref. [34] with permission from the American Physical Society.
Another important note is that Li+ ion can also penetrate the CNTs from its ends. Meunier et al., adopted ab initio simulations for investigating the lithium ion migration through the ends of open-ended carbon nanotubes [37]. It is obvious that the CNTs should be short in size to allow Li+ ions to freely intercalate/de-intercalate. The theoretical studies indicated that the capacity difference between opened and closed carbon nanotubes was almost 120 mAh g−1 [38]. It is also reported that the reversible Li storage capacity increased from LiC6 in closed ended tubes to LiC3 after etching which might be due to the short and highly defective CNTs generation [33]. Once Li+ ion entered CNT either from the end of tube or through defects, it undergoes one 1D random walk in the tube. Provided that if the tube is very large the Li+ ion will be able enter, however, it will be difficult to exit or never exit. It is indirectly proved by Wang et al., showing that capacity of a short (300 nm) CNTs is much higher than the longer CNTs (micro-meter) [39]. On the other hand, Yang et al., investigated the impact of length on electrochemical properties of CNTs. It was observed that the small size CNTs exhibit relatively less charge-transfer resistance than longer CNTs. It is not clearly explained why the lithium ion diffusion coefficients (DLi) of both the long and short CNTs reduces as the intercalation is on progress and voltage drops. It might be due to repulsive interactive as lithium concentration increases in the tube. However, in short CNTs the difference between initial and final value of diffusion was smaller than longer CNTs. Therefore, the investigation indicates that shorter the CNTs length better will be the electrochemical performances [36]. In addition, Wang et al., developed solid state cutting method to prepare the short CNTs from micro-meter long CNTS using Nickel Oxide (NiO) particle as a cutter at 900°C. They successfully obtained short CNTs around 200 nm in length and the measured electrochemical reversible capacities increases as the length of CNT is decreases [40]. The same research group used Iron (II) sulfide (FeS) as a catalyst to produce the short CNTs as well as directly grown short CNTs with length of 200–500 nm. They are able to show that the long CNTs exhibited 188 mAh g−1 while short CNTs 502 mAh g−1 capacity [39].
Furthermore, there is significant relationship between the ratio of lithium-carbon (Li/C) and the diameter of tube. If the tube diameter is bigger, the intercalated lithium atoms gravitated to form multi-shell structural feature when the system is at the equilibrium state (Figure 3). These structures with a linear chain in the axis will improve the lithium capacity. It was also reported that the interaction potential at the central region is varied with the diameter of the nanotubes and diameter of 4.68 Å has higher interaction energy, that made CNTs better candidate for lithium ion battery anode material [41, 42].
The variation of Li/C ratio as a function of tube diameter [White and grey balls represent C and Li atoms]. Reproduced from Ref. [41] with permission from Elsevier.
Another important factor for lithium storage in CNTs is conducting nature of CNTs. There are two different types of CNTs, as mention above, one is semi-conducting another one is metallic CNTs based on their chirality. The experimental measurements and modeling studies indicated that if the chiral vector is a multiple of 3, the CNT behaves like metallic; otherwise it would be semiconducting. The metallic CNTs is able to store approximately 5 times more lithium ions than semiconducting CNTs [43].
As it is discussed above, the one-dimensional carbon nanotube can be obtained as single-walled carbon nanotubes and multiwalled carbon nanotubes. Last 20 years, applications of CNTs are emerging in energy storage research on carbon structures and nano composite materials because of their excellent electrochemical properties including lower density, higher tensile strength, and higher rigidity [44].
Li-Ion Batteries (LIBs): Both single walled and multi walled carbon nanotubes are highly investigated in lithium ion battery either as an anode material or as a conductive additive in the composite electrodes. It is worth mentioning here that the one-dimensional CNTs enable to store higher amount of lithium than the conventional graphitic carbon (specific capacity of 372 mAh g−1). The CNTs exhibits reversible capacities range between 300 and 1250 mAh g−1, depending on structure and morphology and defect concentration [44, 45, 46, 47]. The SWCNTs show first discharge capacity around 2500 mAh g−1 with a voltage plateau between 1 and 2 V vs. Li/Li+. However, after first charge–discharge cycle the voltage profile varies based on the quality of CNTs and their pre-treatment [48]. Yang et al., prepared unetched SWCNTs by co-pyrolysis method and the measured capacity was 170 mAh g−1 and 266 mAh g−1 for differently treated two samples [36] although the theoretical studies indicates that the reversible capacities should be more than 1116 mAh g−1 (LiC2 stoichiometry) as it is possible for single walled CNTs [49].
Along with SWCNTs, researchers successfully demonstrated the lithium ion intercalation into MWCNTs [50] (Figure 4). It is interesting to note that the specific capacities around 8500 mAh g−1 was reported for multi-walled CNTs at slow current rate (0.1 mA cm−2). On the Contrary, however, most of the carbon nanotubes show capacities typically less than 4000 mAh g−1 [44]. A comparative study has been carried out on highly conductive, binder-free, free-standing flexible films made from three different types of carbon nanotubes (SWCNTs, DWCNTs and MWCNTs). They were able to show that the free standing MWCNT film was retain its capacity after hundreds cycles, which is better than other CNTs films [51]. Lahiri et al., prepared directly deposited MWCNTs on cooper current collector by chemical vapor deposition (CVD). It exhibits better specific capacity, at high current rate of 3C and good cyclic stability over 50 cycles [52].
(a) Schematic representation of the microstructure of nanotube array and energy storage mechanism and (b) cycle performance of carbon nanotube array (CNTA) electrodes. Reproduced from Ref. [50] with permission from Elsevier.
Charan et al., prepared aligned multiwalled carbon nanotubes (MWNTs) on stainless-steel foil and obtained high stable specific capacity of 460 mAh g−1 for 1200 cycles at 1C rate [53]. Li et al., synthesized stacked multiwall carbon nanotubes (MWCNTs) by floating catalyst chemical vapor deposition (FC-CVD) method and observed a stable discharge capacity of 310 mAh g−1 at 0.5 C rate for 300 cycles [54]. Brian et al., obtained highest capacity for SWCNT electrodes with using 1 M LiPF6 in Ethylene carbonate: Propylene carbonate: Dimethyl carbonate (EC:PC:DMC) as the electrolyte and capacity retention is more than 95% after 10 cycles [55]. Researchers have using different surface functionalization and doping (N, B) processes for getting efficient Li ion storage in CNTs [56] and highly concentrated N doped CNTs was developed and presented reversible capacity of 494 mAh g−1 which is almost double conventional CNTs capacity [57]. On the other hand, when flexible and free-standing pyridin-B-CNTs film was prepared using one-step floating catalyst chemical vapor deposition method, it delivers high specific capacity with excellent cycle stability of 548 mAh g−1 after 300 cycles at 0.1 A g−1 [56].
Up to now discussion was concentrated on the raw CNTs utilization in lithium ion battery as an anode material. Hereafter the discussion will be focused on the collective data for hybrid nanocomposites by incorporating CNTs into Li-storage compounds as new electrode (anode & cathode) materials. In this composite electrode, significance of π-orbital overlap in metallic type CNTs where electrons can transfer with mean free paths along the length of the nanotube (ballistic transport). So, when it is used as an additive, it will increase rate performance, especially combined with the poor electronic conductive cathode materials. Furthermore, CNTs have the mechanical and electrical properties along with a large surface area which is beneficial for lithium ion battery composite electrode [48]. The CNT was employed in silicon based anode consisting of silicon nanowire/graphene sheet (SiNW@G) which was intertwined architectures [58] where CNT can act either as conductive additive or active component depending on the operation voltage of the cell. The molybdenum dioxide was embedded with multiwalled carbon nanotubes (MoO2/MWCNT) by hydrothermal process where hybrid composite consists of spherical flowerlike MoO2 nanostructures interconnected by MWCNTs and exhibits reversible lithium storage capacity of 1143 mAh g−1 at a current density of 100 mA g−1. The zinc oxide was covered by N-doped carbon freestanding membrane electrodes for lithium ion batteries and the hybrid material shows the high performance with a specific capacity (850 mAh g−1at a current density of 100 mA g−1) and excellent cycling stability [59]. The polymer-derived silicon oxy-carbide/carbon nanotube (SiOC/CNT) composites exhibit stable lithium anode material [60].
The application of carbon nanotubes as an additive for anode or cathode has huge advantages compared to other carbon form like amorphous carbon, acetylene black tc.. As discussed above the CNTs have a high electrical conductivity at room temperature and very small amount (0.2% w/w) of CNTs will be able to create a percolation network for electronic conductivity [61] and therefore, could increase orders of magnitude in electrical conductivity of composite electrodes and form better percolation network. CNTs have been employed as an conducting additive for LiCoO2, LiNi0.7Co0.3O2, LiFePO4, LiMnPO4 and LiNi0.5Mn1.5O4 cathodes; showing better in the reversible capacity of the composite electrodes compared to other carbon polymorphs [62, 63, 64, 65].
Lithium Sulfur Batteries (Li-SBs): After LIBs, Lithium sulfur batteries are drawing much attention due to the high energy density of lithium-sulfur (Li-S) batteries (2600 Wh kg−1) and is natural abundance of sulfur. Beside the potential advantages, the major challenge is the electronically insulation behavior of sulfur. In addition, during the cycling processes, the polysulfides are formed which are soluble, and discharge intermediate and products migrate towards Li anode. This impacts the columbic efficiency, accelerates battery self-discharge and cycle life. Several research groups are using CNTs for sulfur encapsulation to overcome above mentioned problems [66]. The sulfur is incorporated carbon nanotubes, nano pores and/or in between nano wires for Li-S battery cathode. The electrode delivers discharge capacity of 669 mAh g−1 after 300 cycles with a low capacity fading rate of 0.166% per cycle at 0.1 C rate [67]. Sometimes functional groups were grafted on the modified multi-walled carbon nanotubes which can adsorb the dissolved polysulfides and enhance the redox reaction of lithium polysulfides and in parallel provides the electronic conduction pathway.
Sodium Ion Batteries (SIBs): Off significance, CNTs cannot be used as anode for Na ion batteries, like LIBs, because of large radius of Na ion (1.02 Å) which cannot be intercalated comfortably into the layer structure. The Na ion intercalation into graphite is thermodynamically unstable and it cannot form primary stage structures of NaC6 or NaC8. The Pure graphite can deliver a maximum capacity of ~31 mAh g−1 by forming NaC70 [68]. The defect-rich and disordered carbon nanotube structures have been synthesized for enhance the sodium storage as an anode for SIBs, which exhibits reversible capacities over 130 mAh g−1. Very recently, Han et al., prepared high defective and disorder mesoporous carbon nanotubes by ethanol flame method. The electrode displays a remarkable rate capability of 145 mAh g−1 at 1 A g−1, with excellent cyclability [69]. Another approach to obtain defective CNTs is doping of heteroatoms, such as nitrogen, which can also enhance the electrical conductivity of carbon nanotubes [70].
CNTs have been using as an additive for lower electronic conductive electrode materials in SIBs. It was reported that porous FePO4 nanoparticles were electrically connected by single-wall carbon nanotubes synthesized by hydrothermal reaction. The fabricated composite electrode shows discharge capacity of 120 mAh g−1 at a 0.1 C rate with unprecedented cycling stability [71]. The CNTs have been using as a promising additive for polyhedral cathode materials like NaTi2(PO4)3, Na3V2(PO4)2F3, Na2FePO4F, NaVPO4F, Na4VMn(PO4)3, Na4MnCr(PO4)3, Na3V2(PO4)3, Na2Fe(SO4)2, Na2MnSiO4, Na3V2O2x(PO4)2F3-2x, Na4Co3(PO4)2P2O7, Prussian blue analogues …etc. [72]. Our group published the impact of MWCNT on particle growth as well as electrochemical properties of Na3V2O2x(PO4)2F3-2x cathode. Among three carbon sources (Carbon, MWCNT & rGO), MWCNT is more effective to obtain moderate particle size with enhanced electrochemical properties (Figure 5). The prepared Na3V2O2x(PO4)2F3-2x-MWCNT composite delivers the stable capacity of 98 and 89 mAh g−1 in half cell and full cell with NaTi2(PO4)3-MWCNT configurations, respectively [73]. It should be noted that most of the alloying and conversion anode materials lose their electron conducting path due to the pulverization during charge–discharge cycles. In this case, CNT can be used as conductive additive as well as electrode integrity protector. The battery research community has been encapsulated metal based (e.g. Sn) anode with the CNTs to accommodate the volume expansion during Na insertion to avoid the pulverization. The reported results indicate that the carbon encapsulated, Sn@N-doped, nanotubes is beneficial to get good reversible capacity of 398 mAh g−1 at 100 mA g−1, with capacity retention of 67% over 150 cycles [74, 75]. The ultrathin MoS2 nanosheets was developed on the surfaces of CNTs by a hydrothermal method MoS2/CNTs, which exhibit excellent electrochemical performance as conversion anode materials for SIBs. The MoS2/CNTs, shows a reversible capacity of 504 mAh g−1 at a current rate of 50 mA g−1 over 100 cycles [76]. Many alloying and conversion anode materials have used CNTs as conductive additive, examples TiO2, MoS2, CuS, Fe2O3, & FeO.
(a) Cyclability of Na3V2O2x(PO4)2F3-2x along with three different carbon materials. Charge-discharge curves for the Na3V2O2x(PO4)2F3-2x with (b) carbon, (c) MWCNT, and (d) rGO. Reproduced from Ref. [73] with permission from Springer Nature.
Potassium Ion Batteries (PIBs): Unlike sodium, potassium ion can be intercalated into graphite structure without requiring a special electrolyte solvent for K-ion batteries (PIBs). It was reported that theoretical capacity of K battery is 279 mAh g−1 (KC8) by stepwise potassiation through KC36 and KC24 phases based on intercalation/deintercalation mechanism [77]. Noting that the insertion potential of K+ into the graphite structure is little higher than that of Li+, which could make more secure battery systems. However, the biggest obstacle is the poor cycle stability of graphite as the anode for PIBs. Battery community have been trying to improve the performances of PIBs and fulfill the requirements of commercialization [78]. Liu et al., prepared N-doped bamboo-like carbon nanotubes by simple pyrolysis method and the unique structured material shows a high reversible capacities of 204 mAh g−1 and 186 mAh g−1 at 500 mA g−1 and 1000 mA g−1, respectively [79]. The science behind the better performance is not well understood yet.
The analysis of electron density difference demonstrates the interaction between the K ion and the nitrogen doped CNTs which has strong ionic bonding, and the electron re-distributions between N5 & N6 CNTs. It is shown, in the K ion –N5 CNT systems (Figure 6A), the net gain of electronic charge on the pyrrolic N atom plays more significant role than those of the other two pyridinic N atoms. The N6 CNT (Figure 6B), the alkali metal atom associates strongly with two pyridinic N atoms, therefore, the overlapping of the corresponding peaks in Figure 6 (bottom) is seen. The bonding with the third pyridinic N atom is relatively weaker [80]. The theoretical studies predicted that inner carbon of CNT is dense while outer carbon of CNT is loosely bind. The hierarchical carbon nanotubes structures in the inner dense part act as skeleton while the outer loose-CNT effectively accommodates the K-ion accommodation, which are showing a better specific capacity of 232 mAh g−1 and good cyclic stability [81]. Like other electrode systems these carbon nanotubes are expected to act as a conducting additive assuring the electrical percolation in the composite electrode and to protect the integrity of electrode using their mechanical properties [82, 83].
Differential electron densities (A) K-ion on N5 CNT, (B) K-ion on N6 CNT: top, side view; middle, top view; bottom, electron density differences in the plane. Reproduced from Ref. [80] with permission from the Royal Society of Chemistry.
Lead acid batteries: Lead acid battery is one of the most popular electrochemical storage systems for the last 150-years, however, it has been suffering from poor lifecycle. The limited lifecycle is most probably originated due to the formation of large non-conducting uncontrolled lead sulfate (PbSO4) crystals both the positive and negative plates. The deposition of insulating PbSO4 crystals lower the electrical conductivity and accessibility of electrolytes to active material in both plates [84, 85]. Various research groups studies different amorphous carbons as a sulfation-suppressing additive in negative plates, because the sulfation is more prominent in negative plate than positive plate due to slower kinetic reaction. Recently, Prof. Aurbach and his group used SWCNTs as a suppresser of uncontrolled sulfation processes in lead-acid battery electrodes. The carbon nanotubes additive would be uniformly distributed throughout the composite electrode and capable of boosting charge acceptance at low concentrations [86, 87].
Lithium-Air Batteries (LABs): Recently battery community focused on the metal-air battery due to higher theoretical density. It is just an alternative to LIBs. The most popular and promising metal−air batteries are lithium -air and zinc-air batteries. The energy density of rechargeable lithium-air batteries very high energy (~1700 Wh kg−1) comparable to gasoline and much higher than secondary Li-ion batteries (~160 Wh kg−1). The reaction mechanism of lithium air battery is appeared to be very simple, at discharge state oxygen in air reduced by lithium ions to form lithium peroxides via 2Li+ + 2e− + O2 ⇔ Li2O2 and/or 4Li+ + 4e− + O2 ⇔ 2Li2O, and formation of lithium and oxygen from decomposition of lithium oxides during charge processes. The thermodynamic equilibrium cell voltage for the discharge reaction in LABs is 2.96 V vs. Li/Li+ [88]. In practical realization, the reported cell voltage is less than 2.96 V which is due to the cell polarization resulted from the oxygen reduction and evolution reaction during discharge and charge processes. However, breaking the discharge products during the charge processes, it requires much more than 2.96 V to drive the reverse electrochemical reaction. Either pure catalyst or carbon -supported catalyst particles have been used to accelerate the electrode reactions [89]. It should be mentioned that most of the time CNTs have been used as conductive supporting materials for metal and metal oxide catalyst particles in the metal-air batteries. The functionalized CNTs can also be used as air electrodes. It was reported that the flexible multiwalled carbon nanotube exhibited very high specific capacity of 34,600 mAh g−1 at a current density of 500 mA g−1 in the Li–O2 batteries [90]. It is indicated that CNTs have huge prospectuses as in the Li-air battery cathode component.
Zn-Air batteries (ZAB): Zinc−air batteries are very safe for electrical vehicles which is fabricated by non-flammable and non-explosive materials. They can be used for other safe applications. As mentioned above, the electrocatalysts is required in air electrode to efficiently accelerate the kinetics of the oxygen reactions [91] and increases the battery performances and efficiencies. It is demonstrated that the nitrogen-doped carbon nanotubes (N-CNTs) promoted notable ORR activity in acid and alkaline solutions. This is because of the inserted heterogeneous nitrogen which might activates the reaction sites and can induce in breaking the O-O bonds of O2 molecules [92].
Another critical role of CNTs in batteries is the current collector. Present, flexible CNTs based carbon papers can be fabricated from all CNTs and used as anode and current collector for aqueous battery systems. Conventional current collectors, such as carbon cloth and metal foils (stainless steel, Titanium), are low surface area and highly corrosive in aqueous media. Also, these CNTs can be used as a pure binder in primary thermal battery electrode fabrication. The electrode with the CNTs binder has better thermal stability than conventional organic binders. The traditional organic binders were decomposed before reaching the operating temperature of 500°C, and its residual material can act as an insulator.
The reaction mechanism in Li-air battery and fuel cells has great similarity where oxygen reduction reaction (ORR) and oxygen evolution reaction (OER) are important for fuel cells efficiency. To enhance the efficiency of the fuel cell, a catalyst is needed. Instead of using expensive Pt as a catalyst, researchers started using a supporter, which can improve the capability of low-cost catalyst. Commonly used catalysts supporters are porous carbon, carbon nanotubes, graphene, and other carbon polymorphs. It was demonstrated, at higher current density, CNT supported FCs, exhibited better electrochemical performances than the carbon black supported FCs [93]. Doping with heteroatoms or loading of transition metal catalysts on CNTs substantially enhance the activity of highly efficient fuel cells. There are few reports on encapsulation of Ag, Fe, Co, CuSe (Figure 7) & Ni based compounds in pure CNTs, which are showing the high ORR performance in fuel cells [94]. It is also reported that the higher oxidation state of Ni is very active for OER and inactive to ORR. However, Ni encapsulated N doped CNTs are showing very high ORR activity and less OER active. Several studies are compared the performances of the platinum catalyst with non-noble metal catalysts with the CNT support and they exhibit better catalytic activity and it reduces the cost of whole cell. Furthermore, CNTs can make the fuel cell highly stable and high resistive against corrosion during electrochemical reaction [94, 95]. CNTs not only increase the catalytic activity; enhance the corrosion resistance. Besides, CNTs improve the mass transmission capability of both electrodes in a fuel cell.
Carbon nanotubes decorated with copper selenide (CuSe) nanoparticles for microbial fuel cells. Reproduced from Ref. [94] with permission from Elsevier.
The morphology of electrode materials and fabrication process plays an important role for the performance of a supercapacitor. The capacitance value of a supercapacitor is highly dependent on electrode surface-area and porosity. The basic principle of a capacitor is to store energy by separation of charge at the electrode and electrolyte interface (i.e., double layer capacitance). The ions transfer between the two electrodes is mediated by diffusion across the electrolyte [96]. Supercapacitors exhibits better reversibility, higher power density, and longer cycle life which made it attentive and promising for energy-storage devices. It is worth to mention that supercapacitors exhibit the highest known power capability (2–5 kW kg−1), but they suffer from a moderate energy density (3–6 Wh kg−1). Carbon nanotubes (CNTs) are very promising as supercapacitor electrode materials because of their excellent electrical properties and one-dimensional nanostructures. Noting that defect free or less defect CNTs has smaller surface area and micropore content than conventional activated carbon (AC), which made them insufficient capacitance in CNT-based electrodes. However, it is reported that the formation of defects on surface and open ends by alkaline solution activation increases the surface area of CNTS [97] and exhibits better capacitance value. The SWCNTs show enhanced specific capacitance than those of MWCNTs which results from large surface area of SWCNTs. However, that MWCNTs could generate capacitance twice as high in comparison to SWCNTs which is attributed to the presence of mesopores and entangled tube structure, facilitating the transport of the ions [98]. The flexible aligned SWCNTs with high surface area and better electrical conductivity is beneficial for capacitors applications [99]. It should be mentioned that contact resistance reduces the performance of supercapacitor and therefore, polished metal foils is used as current collectors to grow the carbon nanotubes for lowering contact resistance. The better discharge efficiency can be obtained through the electrodynamics and can result high power density [100]. The cell resistance can be lower either by fabricating carbon nanotubes as thin film electrodes which has coherent structures with highly concentrated colloidal suspension or fabricating CNT based thin film electrodes using an electrophoretic deposition (EPD) method. It is reported that these flexible CNTs films are binder free and forms network with negligible electrode resistance [101]. As we mentioned in above applications, N doped CNTs may contribute to improving the power characteristics of supercapacitors their own way. The doped nitrogen modifies the conduction band and the modified electronic structure which helps to enhance the quantum capacitance and electrical conductivity of CNTs [102]. Recently researchers have started the fabrication of a high-performance wire-type supercapacitor with CNTs to get the high voltage and high energy density (Figure 8). It should be noted that the carbon nanotube sheets were wrapped to make a fiber shaped supercapacitors on elastic polymeric fibers with moderate stretch ability [103, 104].
(a) Schematic representation of the wire-type supercapacitor, (b) galvanostatic charge/discharge curves and (c) Comparison plots of areal capacitance versus current density for CF electrodes coated with CNT, CNT-IL, Ppy/CNT-Ionic Liquid, and Ppy/CNT-Ionic Liquid/AuNP. Reproduced from Ref. [104] with permission from Elsevier.
Graphitization and pore size distribution of CNT are also significant factors for supercapacitor application. While heating, the specific surface area increases, but the capacitance decreased due to the average pore diameter decreases and saturated at high temperature. Furthermore, chemically activated of CNTs also shows tubular morphology with defects on the surface that gave a significant increase in pore volume. Aligned CNTs can also significantly improve the capacitance and power density of supercapacitors. It is also reported that the highly packed and aligned CNTs showed higher capacitance and less capacitance drop when compared to other thick CNT based electrodes.
One-dimensional carbon nanotubes (CNTs) have been considered as potential candidates for the development of energy storage materials based on their unique chemical and physical properties. The architecture and quality of the CNTs plays a vital role on the electrochemical performances exhibited by both batteries and supercapacitors. It is observed that a slight modification (defects creation, heteroatoms doping & controlling the distribution of pore sizes) in the CNT structure brings out complementary properties that translate to excellent electrochemical performances. Anchored and directly grown aligned structure of CNTs trends to have high stability and fast ion transportation. The composite electrode with incorporated CNTs is being benefited from the high surface area, excellent conductivity, enhanced specific capacity, better cyclability and rate capability. CNTs can be used as an electrochemically active and inactive electrode component in energy storage systems. It turns out that all types of CNTs can serve as flexible supporting materials and can also enable next generation flexible energy storage devices. The future of advanced energy storage systems (either batteries or supercapacitor) can certainly be benefited from the incorporation of CNTs. The extraordinarily high electronic conductivity also enables CNTs and graphite as an additive to the composite electrode and enable to activate poorly conducting electrode materials to make them electrochemically active. Moreover, the structures and morphologies of CNTs are beneficial for supercapacitors and as catalyst support for fuel cells.
This manuscript has been supported by Oak Ridge Nation Laboratory (ORNL) managed by UT-Battelle, LLC, under contract DE-AC05-00OR22725 with the US Department of Energy (DOE).
Ove Odredbe i uvjeti ističu pravila i regulacije u svezi korištenja IntechOpenove stranice www.intechopen.com i svih poddomena u vlasništvu IntechOpena, tvrtke sa sjedištem u 5 Princes Gate Court, London, SW7 2QJ, Ujedinjeno Kraljevstvo.
',metaTitle:"Odredbe i uvjeti",metaDescription:"Ove Odredbe i uvjeti ističu pravila i regulacije u svezi korištenja IntechOpenove stranice www.intechopen.com i svih poddomena u vlasništvu IntechOpena, tvrtke sa sjedištem u 5 Princes Gate Court, London, SW7 2QJ, Ujedinjeno Kraljevstvo.",metaKeywords:null,canonicalURL:"/page/cro-terms-and-conditions",contentRaw:'[{"type":"htmlEditorComponent","content":"Pristupom na stranicu www.intechopen.com slažete se s ovim odredbama, sa svim primjenjivim zakonskim odredbama, te se slažete s poštovanjem svih lokalnih zakona. Korištenje i/ili pristup ovoj stranici temelji se na potpunom prihvaćanju ovih odredbi. Svi materijali na ovoj stranici zaštićeni su primjenjivim zakonima o autorskim pravima i žigu.
\\n\\nSljedeća terminologija odnosi se na Odredbe i uvjete, te na sve naše ugovore:
\\n\\nKlijent, stranka, vi, vaš odnosi se na vas, osobu koja pristupa ovoj stranici i prihvaća IntechOpenove Odredbe i uvjete;
\\n\\nKompanija, tvrtka, mi, naše odnosi se na tvrtku IntechOpen;
\\n\\nStranke, strane odnosi se na klijenta i na nas, ili samo na klijenta ili nas.
\\n\\nSve odredbe koje se odnose na ponudu, prihvat ili razmatranje plaćanja, a za koja mi pružamo asistenciju klijentu, bilo na ugovoreni ili fiksni način, a s ciljem da se ostvare potrebe i želje klijenta u svezi s našim uslugama, su podložne zakonskim odredbama Ujedinjenog Kraljevstva.
\\n\\nOsim ako nije suprotno navedeno, IntechOpen i/ili svi davatelji licence vlasnici su intelektualnog vlasništva nad svim materijalima na www.intechopen.com. Sva prava intelektualnog vlasništva su pridržana. Stranice sa www.intechopen.com možete gledati, preuzimati, dijeliti, dijeliti poveznice i printati za osobnu uporabu, a temeljem pravila sadržanih u ovim Odredbama i uvjetima.
\\n\\nMi koristimo kolačiće. Korištenjem IntechOpenove stranice slažete se s korištenjem kolačića u skladu s IntechOpenovom Politikom privatnosti. Većina modernih, interaktivnih stranica koristi kolačiće kako bi omogućila ponovno pronalaženje korisničkih detalja kod svakog posjeta. Na našoj stranici kolačići se uglavnom koriste kako bi omogućili funkcionalnost i olakšali posjetiteljima korištenje stranice.
\\n\\nIntechOpen ili njegovi suradnici niti u jednom slučaju neće biti odgovorni za štete (štete uključuju gubitak podataka ili profita, druge poslovne prekide, te sve ostale štete) koje nastanu zbog korištenja materijala na IntechOpenovoj stranici ili nemogućnosti da se iste koriste, čak i ako je IntechOpen ili njegov predstavnik o takvoj šteti obaviješten pismenim ili usmenim putem. Neke jurisdikcije ne dozvoljavaju ograničenja garancija ili ograničenja obveza za posljedične ili slučajne štete pa se u tom slučaju ova ograničenja možda ne odnose na vas.
\\n\\nMaterijali koji se pojavljuju na IntechOpenovoj stranici mogu sadržavati manje greške, tipfelere ili fotografske greške. IntechOpen može napraviti promjene na bilo kojem materijalu koji se nalazi na stranici u bilo koje vrijeme.
\\n\\nIntechOpen nije formalno povezan niti s jednom vanjskom stranicom čije poveznice vode na www.intechopen.com, osim ako to nije izravno navedeno. Iz tog razloga IntechOpen nije odgovoran za sadržaj koji se pojavljuje na takvim stranicama. Poveznica na IntechOpenovu stranicu ne implicira povezanost sa IntechOpenom. Korištenje takvih poveznica isključiva je odgovornost korisnika.
\\n\\nZadržavamo pravo vlasništva nad cjelokupnom stranicom www.intechopen.com i nad svim materijalom na toj stranici. Koristeći se našim uslugama, slažete se da maknete sve poveznice na našu stranicu odmah nakon što to od vas zatražimo. Također, zadržavamo pravo da ove Odredbe i uvjete, i politiku o poveznicama izmjenimo u bilo koje vrijeme. Koristeći se poveznicama na naše stranice slažete se s ovim Odredbama i uvjetima.
\\n\\nAko smatrate da je bilo koja poveznica na našoj stranici sumnjiva iz bilo kojeg razloga, molimo vas da nas kontaktirate. U tom slučaju razmotrit ćemo micanje poveznice s naše stranice, iako nismo obvezni to napraviti.
\\n\\nBez prethodne privole i izričite pisane dozvole, ne možete stvarati okvire oko naših stranica ili koristiti druge tehnike koje na bilo koji način mogu promijeniti prezentaciju ili izgled naše stranice.
\\n\\nIntechOpen može ove Odredbe izmijeniti u bilo koje vrijeme i bez prethodne obavijesti. Koristeći ovu stranicu vi se slažete s trenutnim Odredbama i uvjetima koje su na snazi.
\\n\\nOve Odredbe i uvjeti su sastavljeni u skladu s odredbama prava Ujedinjenog Kraljevstva, a za sve sporove nadležan je sud u Londonu, Ujedinjeno Kraljevstvo.
\\n"}]'},components:[{type:"htmlEditorComponent",content:"Pristupom na stranicu www.intechopen.com slažete se s ovim odredbama, sa svim primjenjivim zakonskim odredbama, te se slažete s poštovanjem svih lokalnih zakona. Korištenje i/ili pristup ovoj stranici temelji se na potpunom prihvaćanju ovih odredbi. Svi materijali na ovoj stranici zaštićeni su primjenjivim zakonima o autorskim pravima i žigu.
\n\nSljedeća terminologija odnosi se na Odredbe i uvjete, te na sve naše ugovore:
\n\nKlijent, stranka, vi, vaš odnosi se na vas, osobu koja pristupa ovoj stranici i prihvaća IntechOpenove Odredbe i uvjete;
\n\nKompanija, tvrtka, mi, naše odnosi se na tvrtku IntechOpen;
\n\nStranke, strane odnosi se na klijenta i na nas, ili samo na klijenta ili nas.
\n\nSve odredbe koje se odnose na ponudu, prihvat ili razmatranje plaćanja, a za koja mi pružamo asistenciju klijentu, bilo na ugovoreni ili fiksni način, a s ciljem da se ostvare potrebe i želje klijenta u svezi s našim uslugama, su podložne zakonskim odredbama Ujedinjenog Kraljevstva.
\n\nOsim ako nije suprotno navedeno, IntechOpen i/ili svi davatelji licence vlasnici su intelektualnog vlasništva nad svim materijalima na www.intechopen.com. Sva prava intelektualnog vlasništva su pridržana. Stranice sa www.intechopen.com možete gledati, preuzimati, dijeliti, dijeliti poveznice i printati za osobnu uporabu, a temeljem pravila sadržanih u ovim Odredbama i uvjetima.
\n\nMi koristimo kolačiće. Korištenjem IntechOpenove stranice slažete se s korištenjem kolačića u skladu s IntechOpenovom Politikom privatnosti. Većina modernih, interaktivnih stranica koristi kolačiće kako bi omogućila ponovno pronalaženje korisničkih detalja kod svakog posjeta. Na našoj stranici kolačići se uglavnom koriste kako bi omogućili funkcionalnost i olakšali posjetiteljima korištenje stranice.
\n\nIntechOpen ili njegovi suradnici niti u jednom slučaju neće biti odgovorni za štete (štete uključuju gubitak podataka ili profita, druge poslovne prekide, te sve ostale štete) koje nastanu zbog korištenja materijala na IntechOpenovoj stranici ili nemogućnosti da se iste koriste, čak i ako je IntechOpen ili njegov predstavnik o takvoj šteti obaviješten pismenim ili usmenim putem. Neke jurisdikcije ne dozvoljavaju ograničenja garancija ili ograničenja obveza za posljedične ili slučajne štete pa se u tom slučaju ova ograničenja možda ne odnose na vas.
\n\nMaterijali koji se pojavljuju na IntechOpenovoj stranici mogu sadržavati manje greške, tipfelere ili fotografske greške. IntechOpen može napraviti promjene na bilo kojem materijalu koji se nalazi na stranici u bilo koje vrijeme.
\n\nIntechOpen nije formalno povezan niti s jednom vanjskom stranicom čije poveznice vode na www.intechopen.com, osim ako to nije izravno navedeno. Iz tog razloga IntechOpen nije odgovoran za sadržaj koji se pojavljuje na takvim stranicama. Poveznica na IntechOpenovu stranicu ne implicira povezanost sa IntechOpenom. Korištenje takvih poveznica isključiva je odgovornost korisnika.
\n\nZadržavamo pravo vlasništva nad cjelokupnom stranicom www.intechopen.com i nad svim materijalom na toj stranici. Koristeći se našim uslugama, slažete se da maknete sve poveznice na našu stranicu odmah nakon što to od vas zatražimo. Također, zadržavamo pravo da ove Odredbe i uvjete, i politiku o poveznicama izmjenimo u bilo koje vrijeme. Koristeći se poveznicama na naše stranice slažete se s ovim Odredbama i uvjetima.
\n\nAko smatrate da je bilo koja poveznica na našoj stranici sumnjiva iz bilo kojeg razloga, molimo vas da nas kontaktirate. U tom slučaju razmotrit ćemo micanje poveznice s naše stranice, iako nismo obvezni to napraviti.
\n\nBez prethodne privole i izričite pisane dozvole, ne možete stvarati okvire oko naših stranica ili koristiti druge tehnike koje na bilo koji način mogu promijeniti prezentaciju ili izgled naše stranice.
\n\nIntechOpen može ove Odredbe izmijeniti u bilo koje vrijeme i bez prethodne obavijesti. Koristeći ovu stranicu vi se slažete s trenutnim Odredbama i uvjetima koje su na snazi.
\n\nOve Odredbe i uvjeti su sastavljeni u skladu s odredbama prava Ujedinjenog Kraljevstva, a za sve sporove nadležan je sud u Londonu, Ujedinjeno Kraljevstvo.
\n"}]},successStories:{items:[]},authorsAndEditors:{filterParams:{sort:"featured,name"},profiles:[{id:"6700",title:"Dr.",name:"Abbass A.",middleName:null,surname:"Hashim",slug:"abbass-a.-hashim",fullName:"Abbass A. Hashim",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/6700/images/1864_n.jpg",biography:"Currently I am carrying out research in several areas of interest, mainly covering work on chemical and bio-sensors, semiconductor thin film device fabrication and characterisation.\nAt the moment I have very strong interest in radiation environmental pollution and bacteriology treatment. The teams of researchers are working very hard to bring novel results in this field. I am also a member of the team in charge for the supervision of Ph.D. students in the fields of development of silicon based planar waveguide sensor devices, study of inelastic electron tunnelling in planar tunnelling nanostructures for sensing applications and development of organotellurium(IV) compounds for semiconductor applications. I am a specialist in data analysis techniques and nanosurface structure. I have served as the editor for many books, been a member of the editorial board in science journals, have published many papers and hold many patents.",institutionString:null,institution:{name:"Sheffield Hallam University",country:{name:"United Kingdom"}}},{id:"54525",title:"Prof.",name:"Abdul Latif",middleName:null,surname:"Ahmad",slug:"abdul-latif-ahmad",fullName:"Abdul Latif Ahmad",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:null},{id:"20567",title:"Prof.",name:"Ado",middleName:null,surname:"Jorio",slug:"ado-jorio",fullName:"Ado Jorio",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"Universidade Federal de Minas Gerais",country:{name:"Brazil"}}},{id:"47940",title:"Dr.",name:"Alberto",middleName:null,surname:"Mantovani",slug:"alberto-mantovani",fullName:"Alberto Mantovani",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:null},{id:"12392",title:"Mr.",name:"Alex",middleName:null,surname:"Lazinica",slug:"alex-lazinica",fullName:"Alex Lazinica",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/12392/images/7282_n.png",biography:"Alex Lazinica is the founder and CEO of IntechOpen. After obtaining a Master's degree in Mechanical Engineering, he continued his PhD studies in Robotics at the Vienna University of Technology. Here he worked as a robotic researcher with the university's Intelligent Manufacturing Systems Group as well as a guest researcher at various European universities, including the Swiss Federal Institute of Technology Lausanne (EPFL). During this time he published more than 20 scientific papers, gave presentations, served as a reviewer for major robotic journals and conferences and most importantly he co-founded and built the International Journal of Advanced Robotic Systems- world's first Open Access journal in the field of robotics. Starting this journal was a pivotal point in his career, since it was a pathway to founding IntechOpen - Open Access publisher focused on addressing academic researchers needs. Alex is a personification of IntechOpen key values being trusted, open and entrepreneurial. Today his focus is on defining the growth and development strategy for the company.",institutionString:null,institution:{name:"TU Wien",country:{name:"Austria"}}},{id:"19816",title:"Prof.",name:"Alexander",middleName:null,surname:"Kokorin",slug:"alexander-kokorin",fullName:"Alexander Kokorin",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/19816/images/1607_n.jpg",biography:"Alexander I. Kokorin: born: 1947, Moscow; DSc., PhD; Principal Research Fellow (Research Professor) of Department of Kinetics and Catalysis, N. Semenov Institute of Chemical Physics, Russian Academy of Sciences, Moscow.\r\nArea of research interests: physical chemistry of complex-organized molecular and nanosized systems, including polymer-metal complexes; the surface of doped oxide semiconductors. He is an expert in structural, absorptive, catalytic and photocatalytic properties, in structural organization and dynamic features of ionic liquids, in magnetic interactions between paramagnetic centers. The author or co-author of 3 books, over 200 articles and reviews in scientific journals and books. He is an actual member of the International EPR/ESR Society, European Society on Quantum Solar Energy Conversion, Moscow House of Scientists, of the Board of Moscow Physical Society.",institutionString:null,institution:{name:"Semenov Institute of Chemical Physics",country:{name:"Russia"}}},{id:"62389",title:"PhD.",name:"Ali Demir",middleName:null,surname:"Sezer",slug:"ali-demir-sezer",fullName:"Ali Demir Sezer",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/62389/images/3413_n.jpg",biography:"Dr. Ali Demir Sezer has a Ph.D. from Pharmaceutical Biotechnology at the Faculty of Pharmacy, University of Marmara (Turkey). He is the member of many Pharmaceutical Associations and acts as a reviewer of scientific journals and European projects under different research areas such as: drug delivery systems, nanotechnology and pharmaceutical biotechnology. Dr. Sezer is the author of many scientific publications in peer-reviewed journals and poster communications. Focus of his research activity is drug delivery, physico-chemical characterization and biological evaluation of biopolymers micro and nanoparticles as modified drug delivery system, and colloidal drug carriers (liposomes, nanoparticles etc.).",institutionString:null,institution:{name:"Marmara University",country:{name:"Turkey"}}},{id:"61051",title:"Prof.",name:"Andrea",middleName:null,surname:"Natale",slug:"andrea-natale",fullName:"Andrea Natale",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:null},{id:"100762",title:"Prof.",name:"Andrea",middleName:null,surname:"Natale",slug:"andrea-natale",fullName:"Andrea Natale",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"St David's Medical Center",country:{name:"United States of America"}}},{id:"107416",title:"Dr.",name:"Andrea",middleName:null,surname:"Natale",slug:"andrea-natale",fullName:"Andrea Natale",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"Texas Cardiac Arrhythmia",country:{name:"United States of America"}}},{id:"64434",title:"Dr.",name:"Angkoon",middleName:null,surname:"Phinyomark",slug:"angkoon-phinyomark",fullName:"Angkoon Phinyomark",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/64434/images/2619_n.jpg",biography:"My name is Angkoon Phinyomark. I received a B.Eng. degree in Computer Engineering with First Class Honors in 2008 from Prince of Songkla University, Songkhla, Thailand, where I received a Ph.D. degree in Electrical Engineering. My research interests are primarily in the area of biomedical signal processing and classification notably EMG (electromyography signal), EOG (electrooculography signal), and EEG (electroencephalography signal), image analysis notably breast cancer analysis and optical coherence tomography, and rehabilitation engineering. I became a student member of IEEE in 2008. During October 2011-March 2012, I had worked at School of Computer Science and Electronic Engineering, University of Essex, Colchester, Essex, United Kingdom. In addition, during a B.Eng. I had been a visiting research student at Faculty of Computer Science, University of Murcia, Murcia, Spain for three months.\n\nI have published over 40 papers during 5 years in refereed journals, books, and conference proceedings in the areas of electro-physiological signals processing and classification, notably EMG and EOG signals, fractal analysis, wavelet analysis, texture analysis, feature extraction and machine learning algorithms, and assistive and rehabilitative devices. I have several computer programming language certificates, i.e. Sun Certified Programmer for the Java 2 Platform 1.4 (SCJP), Microsoft Certified Professional Developer, Web Developer (MCPD), Microsoft Certified Technology Specialist, .NET Framework 2.0 Web (MCTS). I am a Reviewer for several refereed journals and international conferences, such as IEEE Transactions on Biomedical Engineering, IEEE Transactions on Industrial Electronics, Optic Letters, Measurement Science Review, and also a member of the International Advisory Committee for 2012 IEEE Business Engineering and Industrial Applications and 2012 IEEE Symposium on Business, Engineering and Industrial Applications.",institutionString:null,institution:{name:"Joseph Fourier University",country:{name:"France"}}},{id:"55578",title:"Dr.",name:"Antonio",middleName:null,surname:"Jurado-Navas",slug:"antonio-jurado-navas",fullName:"Antonio Jurado-Navas",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/55578/images/4574_n.png",biography:"Antonio Jurado-Navas received the M.S. degree (2002) and the Ph.D. degree (2009) in Telecommunication Engineering, both from the University of Málaga (Spain). He first worked as a consultant at Vodafone-Spain. From 2004 to 2011, he was a Research Assistant with the Communications Engineering Department at the University of Málaga. In 2011, he became an Assistant Professor in the same department. From 2012 to 2015, he was with Ericsson Spain, where he was working on geo-location\ntools for third generation mobile networks. Since 2015, he is a Marie-Curie fellow at the Denmark Technical University. His current research interests include the areas of mobile communication systems and channel modeling in addition to atmospheric optical communications, adaptive optics and statistics",institutionString:null,institution:{name:"University of Malaga",country:{name:"Spain"}}}],filtersByRegion:[{group:"region",caption:"North America",value:1,count:5766},{group:"region",caption:"Middle and South America",value:2,count:5227},{group:"region",caption:"Africa",value:3,count:1717},{group:"region",caption:"Asia",value:4,count:10367},{group:"region",caption:"Australia and Oceania",value:5,count:897},{group:"region",caption:"Europe",value:6,count:15789}],offset:12,limit:12,total:118188},chapterEmbeded:{data:{}},editorApplication:{success:null,errors:{}},ofsBooks:{filterParams:{hasNoEditors:"0",sort:"dateEndThirdStepPublish"},books:[{type:"book",id:"10270",title:"Fog Computing",subtitle:null,isOpenForSubmission:!0,hash:"54853b3034f0348a6157b5591f8d95f3",slug:null,bookSignature:"Dr. Isiaka Ajewale Alimi, Dr. Nelson Muga, Dr. Qin Xin and Dr. Paulo P. Monteiro",coverURL:"https://cdn.intechopen.com/books/images_new/10270.jpg",editedByType:null,editors:[{id:"208236",title:"Dr.",name:"Isiaka",surname:"Alimi",slug:"isiaka-alimi",fullName:"Isiaka Alimi"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"9662",title:"Vegetation Index and Dynamics",subtitle:null,isOpenForSubmission:!0,hash:"0abf2a59ee63fc1ba4fb64d77c9b1be7",slug:null,bookSignature:"Dr. Eusebio Cano Carmona, Dr. Ricardo Quinto Canas, Dr. Ana Cano Ortiz and Dr. Carmelo Maria Musarella",coverURL:"https://cdn.intechopen.com/books/images_new/9662.jpg",editedByType:null,editors:[{id:"87846",title:"Dr.",name:"Eusebio",surname:"Cano Carmona",slug:"eusebio-cano-carmona",fullName:"Eusebio Cano Carmona"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10543",title:"Psychology and Patho-physiological Outcomes of Eating",subtitle:null,isOpenForSubmission:!0,hash:"2464b5fb6a39df380e935096743410a0",slug:null,bookSignature:"Dr. Akikazu Takada and Dr. Hubertus Himmerich",coverURL:"https://cdn.intechopen.com/books/images_new/10543.jpg",editedByType:null,editors:[{id:"248459",title:"Dr.",name:"Akikazu",surname:"Takada",slug:"akikazu-takada",fullName:"Akikazu Takada"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"9659",title:"Fibroblasts - Advances in Cancer, Autoimmunity and Inflammation",subtitle:null,isOpenForSubmission:!0,hash:"926fa6446f6befbd363fc74971a56de2",slug:null,bookSignature:"Ph.D. Mojca Frank Bertoncelj and Ms. Katja Lakota",coverURL:"https://cdn.intechopen.com/books/images_new/9659.jpg",editedByType:null,editors:[{id:"328755",title:"Ph.D.",name:"Mojca",surname:"Frank Bertoncelj",slug:"mojca-frank-bertoncelj",fullName:"Mojca Frank Bertoncelj"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10654",title:"Brain-Computer Interface",subtitle:null,isOpenForSubmission:!0,hash:"a5308884068cc53ed31c6baba756857f",slug:null,bookSignature:"Dr. Vahid Asadpour",coverURL:"https://cdn.intechopen.com/books/images_new/10654.jpg",editedByType:null,editors:[{id:"165328",title:"Dr.",name:"Vahid",surname:"Asadpour",slug:"vahid-asadpour",fullName:"Vahid Asadpour"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10536",title:"Campylobacter",subtitle:null,isOpenForSubmission:!0,hash:"c4b132b741dd0a2ed539b824ab63965f",slug:null,bookSignature:"Dr. Guillermo Téllez and Associate Prof. Saeed El-Ashram",coverURL:"https://cdn.intechopen.com/books/images_new/10536.jpg",editedByType:null,editors:[{id:"73465",title:"Dr.",name:"Guillermo",surname:"Téllez",slug:"guillermo-tellez",fullName:"Guillermo Téllez"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10765",title:"Environmental Management",subtitle:null,isOpenForSubmission:!0,hash:"e5ba02fedd7c87f0ab66414f3b07de0c",slug:null,bookSignature:"Dr. John P. Tiefenbacher",coverURL:"https://cdn.intechopen.com/books/images_new/10765.jpg",editedByType:null,editors:[{id:"73876",title:"Dr.",name:"John P.",surname:"Tiefenbacher",slug:"john-p.-tiefenbacher",fullName:"John P. Tiefenbacher"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10567",title:"Uncertainty Management in Engineering - Topics in Pollution Prevention and Controls",subtitle:null,isOpenForSubmission:!0,hash:"4990db602d31f1848c590dbfe97b6409",slug:null,bookSignature:"Prof. Rehab O. Abdel Rahman and Dr. Yung-Tse Hung",coverURL:"https://cdn.intechopen.com/books/images_new/10567.jpg",editedByType:null,editors:[{id:"92718",title:"Prof.",name:"Rehab",surname:"Abdel Rahman",slug:"rehab-abdel-rahman",fullName:"Rehab Abdel Rahman"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"8977",title:"Protein Kinase - New Opportunities, Challenges and Future Perspectives",subtitle:null,isOpenForSubmission:!0,hash:"6d200cc031706a565b554fdb1c478901",slug:null,bookSignature:"Dr. Rajesh Kumar Singh",coverURL:"https://cdn.intechopen.com/books/images_new/8977.jpg",editedByType:null,editors:[{id:"329385",title:"Dr.",name:"Rajesh",surname:"Singh",slug:"rajesh-singh",fullName:"Rajesh Singh"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10582",title:"Chemical Vapor Deposition",subtitle:null,isOpenForSubmission:!0,hash:"f9177ff0e61198735fb86a81303259d0",slug:null,bookSignature:"Dr. Sadia Ameen, Dr. M. Shaheer Akhtar and Prof. Hyung-Shik Shin",coverURL:"https://cdn.intechopen.com/books/images_new/10582.jpg",editedByType:null,editors:[{id:"52613",title:"Dr.",name:"Sadia",surname:"Ameen",slug:"sadia-ameen",fullName:"Sadia Ameen"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10814",title:"Anxiety, Uncertainty, and Resilience During the Pandemic Period - Anthropological and Psychological Perspectives",subtitle:null,isOpenForSubmission:!0,hash:"2db4d2a6638d2c66f7a5741d0f8fe4ae",slug:null,bookSignature:"Prof. Fabio Gabrielli and Dr. Floriana Irtelli",coverURL:"https://cdn.intechopen.com/books/images_new/10814.jpg",editedByType:null,editors:[{id:"259407",title:"Prof.",name:"Fabio",surname:"Gabrielli",slug:"fabio-gabrielli",fullName:"Fabio Gabrielli"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10519",title:"Middleware Architecture",subtitle:null,isOpenForSubmission:!0,hash:"c326d436ae0f4c508849d2336dbdfb48",slug:null,bookSignature:"Dr. Mehdia Ajana El Khaddar",coverURL:"https://cdn.intechopen.com/books/images_new/10519.jpg",editedByType:null,editors:[{id:"26677",title:"Dr.",name:"Mehdia",surname:"Ajana El Khaddar",slug:"mehdia-ajana-el-khaddar",fullName:"Mehdia Ajana El Khaddar"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}}],filtersByTopic:[{group:"topic",caption:"Agricultural and Biological Sciences",value:5,count:14},{group:"topic",caption:"Biochemistry, Genetics and Molecular Biology",value:6,count:3},{group:"topic",caption:"Business, Management and Economics",value:7,count:1},{group:"topic",caption:"Chemistry",value:8,count:7},{group:"topic",caption:"Computer and Information Science",value:9,count:6},{group:"topic",caption:"Earth and Planetary Sciences",value:10,count:7},{group:"topic",caption:"Engineering",value:11,count:15},{group:"topic",caption:"Environmental Sciences",value:12,count:2},{group:"topic",caption:"Immunology and Microbiology",value:13,count:3},{group:"topic",caption:"Materials Science",value:14,count:5},{group:"topic",caption:"Mathematics",value:15,count:1},{group:"topic",caption:"Medicine",value:16,count:24},{group:"topic",caption:"Neuroscience",value:18,count:1},{group:"topic",caption:"Pharmacology, Toxicology and Pharmaceutical Science",value:19,count:2},{group:"topic",caption:"Physics",value:20,count:2},{group:"topic",caption:"Psychology",value:21,count:4},{group:"topic",caption:"Social Sciences",value:23,count:2},{group:"topic",caption:"Technology",value:24,count:1},{group:"topic",caption:"Veterinary Medicine and Science",value:25,count:1}],offset:12,limit:12,total:101},popularBooks:{featuredBooks:[],offset:0,limit:12,total:null},hotBookTopics:{hotBooks:[],offset:0,limit:12,total:null},publish:{},publishingProposal:{success:null,errors:{}},books:{featuredBooks:[{type:"book",id:"10065",title:"Wavelet Theory",subtitle:null,isOpenForSubmission:!1,hash:"d8868e332169597ba2182d9b004d60de",slug:"wavelet-theory",bookSignature:"Somayeh Mohammady",coverURL:"https://cdn.intechopen.com/books/images_new/10065.jpg",editors:[{id:"109280",title:"Dr.",name:"Somayeh",middleName:null,surname:"Mohammady",slug:"somayeh-mohammady",fullName:"Somayeh Mohammady"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9644",title:"Glaciers and the Polar Environment",subtitle:null,isOpenForSubmission:!1,hash:"e8cfdc161794e3753ced54e6ff30873b",slug:"glaciers-and-the-polar-environment",bookSignature:"Masaki Kanao, Danilo Godone and Niccolò Dematteis",coverURL:"https://cdn.intechopen.com/books/images_new/9644.jpg",editors:[{id:"51959",title:"Dr.",name:"Masaki",middleName:null,surname:"Kanao",slug:"masaki-kanao",fullName:"Masaki Kanao"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9385",title:"Renewable Energy",subtitle:"Technologies and Applications",isOpenForSubmission:!1,hash:"a6b446d19166f17f313008e6c056f3d8",slug:"renewable-energy-technologies-and-applications",bookSignature:"Tolga Taner, Archana Tiwari and Taha Selim Ustun",coverURL:"https://cdn.intechopen.com/books/images_new/9385.jpg",editors:[{id:"197240",title:"Associate Prof.",name:"Tolga",middleName:null,surname:"Taner",slug:"tolga-taner",fullName:"Tolga Taner"}],equalEditorOne:{id:"186791",title:"Dr.",name:"Archana",middleName:null,surname:"Tiwari",slug:"archana-tiwari",fullName:"Archana Tiwari",profilePictureURL:"https://mts.intechopen.com/storage/users/186791/images/system/186791.jpg",biography:"Dr. Archana Tiwari is Associate Professor at Amity University, India. Her research interests include renewable sources of energy from microalgae and further utilizing the residual biomass for the generation of value-added products, bioremediation through microalgae and microbial consortium, antioxidative enzymes and stress, and nutraceuticals from microalgae. She has been working on algal biotechnology for the last two decades. She has published her research in many international journals and has authored many books and chapters with renowned publishing houses. She has also delivered talks as an invited speaker at many national and international conferences. Dr. Tiwari is the recipient of several awards including Researcher of the Year and Distinguished Scientist.",institutionString:"Amity University",position:null,outsideEditionCount:0,totalCites:0,totalAuthoredChapters:"3",totalChapterViews:"0",totalEditedBooks:"1",institution:{name:"Amity University",institutionURL:null,country:{name:"India"}}},equalEditorTwo:{id:"197609",title:"Prof.",name:"Taha Selim",middleName:null,surname:"Ustun",slug:"taha-selim-ustun",fullName:"Taha Selim Ustun",profilePictureURL:"https://mts.intechopen.com/storage/users/197609/images/system/197609.jpeg",biography:"Dr. Taha Selim Ustun received a Ph.D. in Electrical Engineering from Victoria University, Melbourne, Australia. He is a researcher with the Fukushima Renewable Energy Institute, AIST (FREA), where he leads the Smart Grid Cybersecurity Laboratory. Prior to that, he was a faculty member with the School of Electrical and Computer Engineering, Carnegie Mellon University, Pittsburgh, PA, USA. His current research interests include power systems protection, communication in power networks, distributed generation, microgrids, electric vehicle integration, and cybersecurity in smart grids. He serves on the editorial boards of IEEE Access, IEEE Transactions on Industrial Informatics, Energies, Electronics, Electricity, World Electric Vehicle and Information journals. Dr. Ustun is a member of the IEEE 2004 and 2800, IEC Renewable Energy Management WG 8, and IEC TC 57 WG17. He has been invited to run specialist courses in Africa, India, and China. He has delivered talks for the Qatar Foundation, the World Energy Council, the Waterloo Global Science Initiative, and the European Union Energy Initiative (EUEI). His research has attracted funding from prestigious programs in Japan, Australia, the European Union, and North America.",institutionString:"Fukushima Renewable Energy Institute, AIST (FREA)",position:null,outsideEditionCount:0,totalCites:0,totalAuthoredChapters:"1",totalChapterViews:"0",totalEditedBooks:"0",institution:{name:"National Institute of Advanced Industrial Science and Technology",institutionURL:null,country:{name:"Japan"}}},equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"8985",title:"Natural Resources Management and Biological Sciences",subtitle:null,isOpenForSubmission:!1,hash:"5c2e219a6c021a40b5a20c041dea88c4",slug:"natural-resources-management-and-biological-sciences",bookSignature:"Edward R. Rhodes and Humood Naser",coverURL:"https://cdn.intechopen.com/books/images_new/8985.jpg",editors:[{id:"280886",title:"Prof.",name:"Edward R",middleName:null,surname:"Rhodes",slug:"edward-r-rhodes",fullName:"Edward R Rhodes"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9671",title:"Macrophages",subtitle:null,isOpenForSubmission:!1,hash:"03b00fdc5f24b71d1ecdfd75076bfde6",slug:"macrophages",bookSignature:"Hridayesh Prakash",coverURL:"https://cdn.intechopen.com/books/images_new/9671.jpg",editors:[{id:"287184",title:"Dr.",name:"Hridayesh",middleName:null,surname:"Prakash",slug:"hridayesh-prakash",fullName:"Hridayesh Prakash"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9313",title:"Clay Science and Technology",subtitle:null,isOpenForSubmission:!1,hash:"6fa7e70396ff10620e032bb6cfa6fb72",slug:"clay-science-and-technology",bookSignature:"Gustavo Morari Do Nascimento",coverURL:"https://cdn.intechopen.com/books/images_new/9313.jpg",editors:[{id:"7153",title:"Prof.",name:"Gustavo",middleName:null,surname:"Morari Do Nascimento",slug:"gustavo-morari-do-nascimento",fullName:"Gustavo Morari Do Nascimento"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9888",title:"Nuclear Power Plants",subtitle:"The Processes from the Cradle to the Grave",isOpenForSubmission:!1,hash:"c2c8773e586f62155ab8221ebb72a849",slug:"nuclear-power-plants-the-processes-from-the-cradle-to-the-grave",bookSignature:"Nasser Awwad",coverURL:"https://cdn.intechopen.com/books/images_new/9888.jpg",editors:[{id:"145209",title:"Prof.",name:"Nasser",middleName:"S",surname:"Awwad",slug:"nasser-awwad",fullName:"Nasser Awwad"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9027",title:"Human Blood Group Systems and Haemoglobinopathies",subtitle:null,isOpenForSubmission:!1,hash:"d00d8e40b11cfb2547d1122866531c7e",slug:"human-blood-group-systems-and-haemoglobinopathies",bookSignature:"Osaro Erhabor and Anjana Munshi",coverURL:"https://cdn.intechopen.com/books/images_new/9027.jpg",editors:[{id:"35140",title:null,name:"Osaro",middleName:null,surname:"Erhabor",slug:"osaro-erhabor",fullName:"Osaro Erhabor"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10432",title:"Casting Processes and Modelling of Metallic Materials",subtitle:null,isOpenForSubmission:!1,hash:"2c5c9df938666bf5d1797727db203a6d",slug:"casting-processes-and-modelling-of-metallic-materials",bookSignature:"Zakaria Abdallah and Nada Aldoumani",coverURL:"https://cdn.intechopen.com/books/images_new/10432.jpg",editors:[{id:"201670",title:"Dr.",name:"Zak",middleName:null,surname:"Abdallah",slug:"zak-abdallah",fullName:"Zak Abdallah"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"7841",title:"New Insights Into Metabolic Syndrome",subtitle:null,isOpenForSubmission:!1,hash:"ef5accfac9772b9e2c9eff884f085510",slug:"new-insights-into-metabolic-syndrome",bookSignature:"Akikazu Takada",coverURL:"https://cdn.intechopen.com/books/images_new/7841.jpg",editors:[{id:"248459",title:"Dr.",name:"Akikazu",middleName:null,surname:"Takada",slug:"akikazu-takada",fullName:"Akikazu Takada"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}}],latestBooks:[{type:"book",id:"9550",title:"Entrepreneurship",subtitle:"Contemporary Issues",isOpenForSubmission:!1,hash:"9b4ac1ee5b743abf6f88495452b1e5e7",slug:"entrepreneurship-contemporary-issues",bookSignature:"Mladen Turuk",coverURL:"https://cdn.intechopen.com/books/images_new/9550.jpg",editedByType:"Edited by",editors:[{id:"319755",title:"Prof.",name:"Mladen",middleName:null,surname:"Turuk",slug:"mladen-turuk",fullName:"Mladen Turuk"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10065",title:"Wavelet Theory",subtitle:null,isOpenForSubmission:!1,hash:"d8868e332169597ba2182d9b004d60de",slug:"wavelet-theory",bookSignature:"Somayeh Mohammady",coverURL:"https://cdn.intechopen.com/books/images_new/10065.jpg",editedByType:"Edited by",editors:[{id:"109280",title:"Dr.",name:"Somayeh",middleName:null,surname:"Mohammady",slug:"somayeh-mohammady",fullName:"Somayeh Mohammady"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"9313",title:"Clay Science and Technology",subtitle:null,isOpenForSubmission:!1,hash:"6fa7e70396ff10620e032bb6cfa6fb72",slug:"clay-science-and-technology",bookSignature:"Gustavo Morari Do Nascimento",coverURL:"https://cdn.intechopen.com/books/images_new/9313.jpg",editedByType:"Edited by",editors:[{id:"7153",title:"Prof.",name:"Gustavo",middleName:null,surname:"Morari Do Nascimento",slug:"gustavo-morari-do-nascimento",fullName:"Gustavo Morari Do Nascimento"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"9888",title:"Nuclear Power Plants",subtitle:"The Processes from the Cradle to the Grave",isOpenForSubmission:!1,hash:"c2c8773e586f62155ab8221ebb72a849",slug:"nuclear-power-plants-the-processes-from-the-cradle-to-the-grave",bookSignature:"Nasser Awwad",coverURL:"https://cdn.intechopen.com/books/images_new/9888.jpg",editedByType:"Edited by",editors:[{id:"145209",title:"Prof.",name:"Nasser",middleName:"S",surname:"Awwad",slug:"nasser-awwad",fullName:"Nasser Awwad"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"8098",title:"Resources of Water",subtitle:null,isOpenForSubmission:!1,hash:"d251652996624d932ef7b8ed62cf7cfc",slug:"resources-of-water",bookSignature:"Prathna Thanjavur Chandrasekaran, Muhammad Salik Javaid, Aftab Sadiq",coverURL:"https://cdn.intechopen.com/books/images_new/8098.jpg",editedByType:"Edited by",editors:[{id:"167917",title:"Dr.",name:"Prathna",middleName:null,surname:"Thanjavur Chandrasekaran",slug:"prathna-thanjavur-chandrasekaran",fullName:"Prathna Thanjavur Chandrasekaran"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"9644",title:"Glaciers and the Polar Environment",subtitle:null,isOpenForSubmission:!1,hash:"e8cfdc161794e3753ced54e6ff30873b",slug:"glaciers-and-the-polar-environment",bookSignature:"Masaki Kanao, Danilo Godone and Niccolò Dematteis",coverURL:"https://cdn.intechopen.com/books/images_new/9644.jpg",editedByType:"Edited by",editors:[{id:"51959",title:"Dr.",name:"Masaki",middleName:null,surname:"Kanao",slug:"masaki-kanao",fullName:"Masaki Kanao"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10432",title:"Casting Processes and Modelling of Metallic Materials",subtitle:null,isOpenForSubmission:!1,hash:"2c5c9df938666bf5d1797727db203a6d",slug:"casting-processes-and-modelling-of-metallic-materials",bookSignature:"Zakaria Abdallah and Nada Aldoumani",coverURL:"https://cdn.intechopen.com/books/images_new/10432.jpg",editedByType:"Edited by",editors:[{id:"201670",title:"Dr.",name:"Zak",middleName:null,surname:"Abdallah",slug:"zak-abdallah",fullName:"Zak Abdallah"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"9671",title:"Macrophages",subtitle:null,isOpenForSubmission:!1,hash:"03b00fdc5f24b71d1ecdfd75076bfde6",slug:"macrophages",bookSignature:"Hridayesh Prakash",coverURL:"https://cdn.intechopen.com/books/images_new/9671.jpg",editedByType:"Edited by",editors:[{id:"287184",title:"Dr.",name:"Hridayesh",middleName:null,surname:"Prakash",slug:"hridayesh-prakash",fullName:"Hridayesh Prakash"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"8415",title:"Extremophilic Microbes and Metabolites",subtitle:"Diversity, Bioprospecting and Biotechnological Applications",isOpenForSubmission:!1,hash:"93e0321bc93b89ff73730157738f8f97",slug:"extremophilic-microbes-and-metabolites-diversity-bioprospecting-and-biotechnological-applications",bookSignature:"Afef Najjari, Ameur Cherif, Haïtham Sghaier and Hadda Imene Ouzari",coverURL:"https://cdn.intechopen.com/books/images_new/8415.jpg",editedByType:"Edited by",editors:[{id:"196823",title:"Dr.",name:"Afef",middleName:null,surname:"Najjari",slug:"afef-najjari",fullName:"Afef Najjari"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"9731",title:"Oxidoreductase",subtitle:null,isOpenForSubmission:!1,hash:"852e6f862c85fc3adecdbaf822e64e6e",slug:"oxidoreductase",bookSignature:"Mahmoud Ahmed Mansour",coverURL:"https://cdn.intechopen.com/books/images_new/9731.jpg",editedByType:"Edited by",editors:[{id:"224662",title:"Prof.",name:"Mahmoud Ahmed",middleName:null,surname:"Mansour",slug:"mahmoud-ahmed-mansour",fullName:"Mahmoud Ahmed Mansour"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}}]},subject:{topic:{id:"196",title:"Pharmacology",slug:"medicine-pharmacology",parent:{title:"Medicine",slug:"medicine"},numberOfBooks:7,numberOfAuthorsAndEditors:126,numberOfWosCitations:23,numberOfCrossrefCitations:22,numberOfDimensionsCitations:44,videoUrl:null,fallbackUrl:null,description:null},booksByTopicFilter:{topicSlug:"medicine-pharmacology",sort:"-publishedDate",limit:12,offset:0},booksByTopicCollection:[{type:"book",id:"8166",title:"Receptors P1 and P2 as Targets for Drug Therapy in Humans",subtitle:null,isOpenForSubmission:!1,hash:"546c9abc8145b3a3ecf13557a03f7590",slug:"receptors-p1-and-p2-as-targets-for-drug-therapy-in-humans",bookSignature:"Robson Faria",coverURL:"https://cdn.intechopen.com/books/images_new/8166.jpg",editedByType:"Edited by",editors:[{id:"79615",title:"Dr.",name:"Robson",middleName:null,surname:"Faria",slug:"robson-faria",fullName:"Robson Faria"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"7116",title:"Antidepressants",subtitle:"Preclinical, Clinical and Translational Aspects",isOpenForSubmission:!1,hash:"1bd4340dfebb60697e12fc04a461d9ac",slug:"antidepressants-preclinical-clinical-and-translational-aspects",bookSignature:"Olivier Berend",coverURL:"https://cdn.intechopen.com/books/images_new/7116.jpg",editedByType:"Edited by",editors:[{id:"71579",title:"Prof.",name:"Berend",middleName:null,surname:"Olivier",slug:"berend-olivier",fullName:"Berend Olivier"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"6679",title:"Serotonin",subtitle:null,isOpenForSubmission:!1,hash:"9c833c86546ec9d3c38fb24a1072dbd0",slug:"serotonin",bookSignature:"Ying Qu",coverURL:"https://cdn.intechopen.com/books/images_new/6679.jpg",editedByType:"Edited by",editors:[{id:"94028",title:"Dr.",name:"Ying",middleName:null,surname:"Qu",slug:"ying-qu",fullName:"Ying Qu"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"7256",title:"Dopamine",subtitle:"Health and Disease",isOpenForSubmission:!1,hash:"e46d08f526c35d787be15bcb17126fb8",slug:"dopamine-health-and-disease",bookSignature:"Sarat Chandra Yenisetti",coverURL:"https://cdn.intechopen.com/books/images_new/7256.jpg",editedByType:"Edited by",editors:[{id:"181774",title:"Prof.",name:"Sarat Chandra",middleName:null,surname:"Yenisetti",slug:"sarat-chandra-yenisetti",fullName:"Sarat Chandra Yenisetti"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"6404",title:"Drug Addiction",subtitle:null,isOpenForSubmission:!1,hash:"f432d0ab93a06628d3592b4c0fea44ae",slug:"drug-addiction",bookSignature:"Fang Zhao and Meng Li",coverURL:"https://cdn.intechopen.com/books/images_new/6404.jpg",editedByType:"Edited by",editors:[{id:"207525",title:"Dr.",name:"Fang",middleName:null,surname:"Zhao",slug:"fang-zhao",fullName:"Fang Zhao"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"5894",title:"Neurotoxins",subtitle:null,isOpenForSubmission:!1,hash:"4ed24b0789b6d0bf230c24637f2f7575",slug:"neurotoxins",bookSignature:"J. Eric McDuffie",coverURL:"https://cdn.intechopen.com/books/images_new/5894.jpg",editedByType:"Edited by",editors:[{id:"161246",title:"Dr.",name:"J. Eric",middleName:null,surname:"McDuffie",slug:"j.-eric-mcduffie",fullName:"J. Eric McDuffie"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"3819",title:"Topics in Spinal Anaesthesia",subtitle:null,isOpenForSubmission:!1,hash:"d7bf34d33972bf5002ed97828eb508ad",slug:"topics-in-spinal-anaesthesia",bookSignature:"Victor M. Whizar-Lugo",coverURL:"https://cdn.intechopen.com/books/images_new/3819.jpg",editedByType:"Edited by",editors:[{id:"169249",title:"Prof.",name:"Víctor M.",middleName:null,surname:"Whizar-Lugo",slug:"victor-m.-whizar-lugo",fullName:"Víctor M. Whizar-Lugo"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}}],booksByTopicTotal:7,mostCitedChapters:[{id:"47285",doi:"10.5772/58851",title:"Spinal Additives in Subarachnoid Anaesthesia for Cesarean Section",slug:"spinal-additives-in-subarachnoid-anaesthesia-for-cesarean-section",totalDownloads:5179,totalCrossrefCites:1,totalDimensionsCites:7,book:{slug:"topics-in-spinal-anaesthesia",title:"Topics in Spinal Anaesthesia",fullTitle:"Topics in Spinal Anaesthesia"},signatures:"Hala M. Goma, Juan C. Flores-Carrillo and Víctor Whizar-Lugo",authors:[{id:"42540",title:"Dr.",name:"Hala",middleName:"Mostafa",surname:"Goma",slug:"hala-goma",fullName:"Hala Goma"},{id:"170431",title:"Prof.",name:"Amr",middleName:null,surname:"Aboela",slug:"amr-aboela",fullName:"Amr Aboela"}]},{id:"63723",doi:"10.5772/intechopen.81036",title:"Oxidative Polymerization of Dopamine: A High-Definition Multifunctional Coatings for Electrospun Nanofibers - An Overview",slug:"oxidative-polymerization-of-dopamine-a-high-definition-multifunctional-coatings-for-electrospun-nano",totalDownloads:1127,totalCrossrefCites:2,totalDimensionsCites:6,book:{slug:"dopamine-health-and-disease",title:"Dopamine",fullTitle:"Dopamine - Health and Disease"},signatures:"Rajamani Lakshminarayanan, Srinivasan Madhavi and Christina Poh\nChoo Sim",authors:[{id:"256023",title:"Associate Prof.",name:"Lakshminarayanan",middleName:null,surname:"Rajamani",slug:"lakshminarayanan-rajamani",fullName:"Lakshminarayanan Rajamani"},{id:"270706",title:"Prof.",name:"Madhavi",middleName:null,surname:"Srinivasan",slug:"madhavi-srinivasan",fullName:"Madhavi Srinivasan"},{id:"270707",title:"Dr.",name:"Christina Poh Choo",middleName:null,surname:"Sim",slug:"christina-poh-choo-sim",fullName:"Christina Poh Choo Sim"}]},{id:"47012",doi:"10.5772/58702",title:"Spinal or Epidural Haematoma",slug:"spinal-or-epidural-haematoma",totalDownloads:2929,totalCrossrefCites:5,totalDimensionsCites:5,book:{slug:"topics-in-spinal-anaesthesia",title:"Topics in Spinal Anaesthesia",fullTitle:"Topics in Spinal Anaesthesia"},signatures:"R. Hakan Erbay, Nimet Senoglu and Habip Atalay",authors:[{id:"169248",title:"Dr.",name:"Rıza Hakan",middleName:null,surname:"Erbay",slug:"riza-hakan-erbay",fullName:"Rıza Hakan Erbay"},{id:"170302",title:"Dr.",name:"Nimet",middleName:null,surname:"Senoglu",slug:"nimet-senoglu",fullName:"Nimet Senoglu"},{id:"170303",title:"Dr.",name:"Habip",middleName:null,surname:"Atalay",slug:"habip-atalay",fullName:"Habip Atalay"}]}],mostDownloadedChaptersLast30Days:[{id:"59036",title:"Nursing Care for Persons with Drug Addiction",slug:"nursing-care-for-persons-with-drug-addiction",totalDownloads:1231,totalCrossrefCites:0,totalDimensionsCites:0,book:{slug:"drug-addiction",title:"Drug Addiction",fullTitle:"Drug Addiction"},signatures:"Ek-uma Imkome",authors:[{id:"219235",title:"Associate Prof.",name:"Ek-Uma",middleName:null,surname:"Imkome",slug:"ek-uma-imkome",fullName:"Ek-Uma Imkome"}]},{id:"47166",title:"Complications in Spinal Anaesthesia",slug:"complications-in-spinal-anaesthesia",totalDownloads:8285,totalCrossrefCites:1,totalDimensionsCites:2,book:{slug:"topics-in-spinal-anaesthesia",title:"Topics in Spinal Anaesthesia",fullTitle:"Topics in Spinal Anaesthesia"},signatures:"Alparslan Apan and Özgün Cuvaş Apan",authors:[{id:"33951",title:"Prof.",name:"Alparslan",middleName:null,surname:"Apan",slug:"alparslan-apan",fullName:"Alparslan Apan"}]},{id:"47217",title:"Spinal Anaesthesia in Spinal Surgery",slug:"spinal-anaesthesia-in-spinal-surgery",totalDownloads:2409,totalCrossrefCites:0,totalDimensionsCites:0,book:{slug:"topics-in-spinal-anaesthesia",title:"Topics in Spinal Anaesthesia",fullTitle:"Topics in Spinal Anaesthesia"},signatures:"Nicola Nicassio and Irfan Malik",authors:[{id:"169250",title:"Dr.",name:"Nicola",middleName:null,surname:"Nicassio",slug:"nicola-nicassio",fullName:"Nicola Nicassio"},{id:"172599",title:"Dr.",name:"Irfan",middleName:null,surname:"Malik",slug:"irfan-malik",fullName:"Irfan Malik"}]},{id:"59317",title:"Effect of Alcohol on Brain Development",slug:"effect-of-alcohol-on-brain-development",totalDownloads:544,totalCrossrefCites:0,totalDimensionsCites:0,book:{slug:"drug-addiction",title:"Drug Addiction",fullTitle:"Drug Addiction"},signatures:"Farhin Patel and Palash Mandal",authors:[{id:"217215",title:"Dr.",name:"Palash",middleName:null,surname:"Mandal",slug:"palash-mandal",fullName:"Palash Mandal"},{id:"219333",title:"Ms.",name:"Farhin",middleName:null,surname:"Patel",slug:"farhin-patel",fullName:"Farhin Patel"}]},{id:"67568",title:"Resistant Depression",slug:"resistant-depression",totalDownloads:511,totalCrossrefCites:0,totalDimensionsCites:0,book:{slug:"antidepressants-preclinical-clinical-and-translational-aspects",title:"Antidepressants",fullTitle:"Antidepressants - Preclinical, Clinical and Translational Aspects"},signatures:"Jose Alfonso Ontiveros",authors:[{id:"272204",title:"M.D.",name:"Jose",middleName:null,surname:"Ontiveros",slug:"jose-ontiveros",fullName:"Jose Ontiveros"}]},{id:"59298",title:"Investigation of Emotion Characters of Internet Abusers Using Psychophysiological Signals",slug:"investigation-of-emotion-characters-of-internet-abusers-using-psychophysiological-signals",totalDownloads:644,totalCrossrefCites:0,totalDimensionsCites:1,book:{slug:"drug-addiction",title:"Drug Addiction",fullTitle:"Drug Addiction"},signatures:"Dai-Ling Hsieh and Tzu-Chien Hsiao",authors:[{id:"219667",title:"Ph.D.",name:"Dai-Ling",middleName:null,surname:"Hsieh",slug:"dai-ling-hsieh",fullName:"Dai-Ling Hsieh"},{id:"219677",title:"Dr.",name:"Tzu-Chien",middleName:null,surname:"Hsiao",slug:"tzu-chien-hsiao",fullName:"Tzu-Chien Hsiao"}]},{id:"65220",title:"Influences of Maternal Vulnerability and Antidepressant Treatment during Pregnancy on the Developing Offspring",slug:"influences-of-maternal-vulnerability-and-antidepressant-treatment-during-pregnancy-on-the-developing",totalDownloads:446,totalCrossrefCites:0,totalDimensionsCites:0,book:{slug:"antidepressants-preclinical-clinical-and-translational-aspects",title:"Antidepressants",fullTitle:"Antidepressants - Preclinical, Clinical and Translational Aspects"},signatures:"Laura Staal and Jocelien DA Olivier",authors:[{id:"197644",title:"Dr.",name:"Jocelien D.A.",middleName:null,surname:"Olivier",slug:"jocelien-d.a.-olivier",fullName:"Jocelien D.A. Olivier"},{id:"289159",title:"MSc.",name:"Laura",middleName:null,surname:"Staal",slug:"laura-staal",fullName:"Laura Staal"}]},{id:"63060",title:"Dopamine and Early Onset Parkinson’s Disease",slug:"dopamine-and-early-onset-parkinson-s-disease",totalDownloads:558,totalCrossrefCites:0,totalDimensionsCites:0,book:{slug:"dopamine-health-and-disease",title:"Dopamine",fullTitle:"Dopamine - Health and Disease"},signatures:"Katarzyna Wize, Wojciech Kozubski and Jolanta Dorszewska",authors:[{id:"31962",title:"Dr.",name:"Jolanta",middleName:null,surname:"Dorszewska",slug:"jolanta-dorszewska",fullName:"Jolanta Dorszewska"},{id:"83372",title:"Prof.",name:"Wojciech",middleName:null,surname:"Kozubski",slug:"wojciech-kozubski",fullName:"Wojciech Kozubski"},{id:"190030",title:"Ms.",name:"Katarzyna",middleName:null,surname:"Wize",slug:"katarzyna-wize",fullName:"Katarzyna Wize"}]},{id:"62118",title:"Physiology and Metabolic Anomalies of Dopamine in Horses: A Review",slug:"physiology-and-metabolic-anomalies-of-dopamine-in-horses-a-review",totalDownloads:575,totalCrossrefCites:2,totalDimensionsCites:2,book:{slug:"dopamine-health-and-disease",title:"Dopamine",fullTitle:"Dopamine - Health and Disease"},signatures:"Katy Satué Ambrojo, Juan Carlos Gardon Poggi and María Marcilla\nCorzano",authors:[{id:"125292",title:"Dr.",name:"Katy",middleName:null,surname:"Satué Ambrojo",slug:"katy-satue-ambrojo",fullName:"Katy Satué Ambrojo"},{id:"251313",title:"Dr.",name:"María",middleName:null,surname:"Marcilla",slug:"maria-marcilla",fullName:"María Marcilla"},{id:"251314",title:"Dr.",name:"Juan Carlos",middleName:null,surname:"Gardón",slug:"juan-carlos-gardon",fullName:"Juan Carlos Gardón"}]},{id:"67255",title:"The Role of Purinergic Signaling in the Pathophysiology of Perinatal Hypoxic-Ischemic Encephalopathy",slug:"the-role-of-purinergic-signaling-in-the-pathophysiology-of-perinatal-hypoxic-ischemic-encephalopathy",totalDownloads:380,totalCrossrefCites:0,totalDimensionsCites:0,book:{slug:"receptors-p1-and-p2-as-targets-for-drug-therapy-in-humans",title:"Receptors P1 and P2 as Targets for Drug Therapy in Humans",fullTitle:"Receptors P1 and P2 as Targets for Drug Therapy in Humans"},signatures:"Tagore M. Morais-Lima, Joana C. Vicentini, Anael V.P. Alberto, Pedro H.M. de Freitas, Caio M. Perret, Natiele C. da Silva Ferreira, Deepaneeta Sarmah, Bharati Sinha, Gopika Das, Pallab Bhattacharya, Xin Wang, Luiz A. Alves and Renato Rozental",authors:[{id:"29743",title:"Prof.",name:"Xin",middleName:null,surname:"Wang",slug:"xin-wang",fullName:"Xin Wang"},{id:"76663",title:"Prof.",name:"Luiz A.",middleName:null,surname:"Alves",slug:"luiz-a.-alves",fullName:"Luiz A. Alves"},{id:"288865",title:"M.D.",name:"Renato",middleName:null,surname:"Rozental",slug:"renato-rozental",fullName:"Renato Rozental"},{id:"292694",title:"Dr.",name:"Anael V.P.",middleName:null,surname:"Alberto",slug:"anael-v.p.-alberto",fullName:"Anael V.P. Alberto"},{id:"297140",title:"BSc.",name:"Caio M.",middleName:null,surname:"Perret",slug:"caio-m.-perret",fullName:"Caio M. Perret"},{id:"297141",title:"BSc.",name:"Tagore M.",middleName:null,surname:"Morais-Lima",slug:"tagore-m.-morais-lima",fullName:"Tagore M. Morais-Lima"},{id:"297142",title:"BSc.",name:"Joana C.",middleName:null,surname:"Vicentini",slug:"joana-c.-vicentini",fullName:"Joana C. Vicentini"},{id:"297145",title:"Dr.",name:"Natiele C.",middleName:null,surname:"da Silva Ferreira",slug:"natiele-c.-da-silva-ferreira",fullName:"Natiele C. da Silva Ferreira"},{id:"297147",title:"Dr.",name:"Pallab",middleName:null,surname:"Bhattacharya",slug:"pallab-bhattacharya",fullName:"Pallab Bhattacharya"},{id:"297148",title:"Dr.",name:"Deepaneeta",middleName:null,surname:"Sarmah",slug:"deepaneeta-sarmah",fullName:"Deepaneeta Sarmah"},{id:"297149",title:"Dr.",name:"Gopika",middleName:null,surname:"Das",slug:"gopika-das",fullName:"Gopika Das"},{id:"297150",title:"Dr.",name:"Bharati",middleName:null,surname:"Sinha",slug:"bharati-sinha",fullName:"Bharati Sinha"},{id:"297151",title:"BSc.",name:"Pedro H.M.",middleName:null,surname:"de Freitas",slug:"pedro-h.m.-de-freitas",fullName:"Pedro H.M. de Freitas"}]}],onlineFirstChaptersFilter:{topicSlug:"medicine-pharmacology",limit:3,offset:0},onlineFirstChaptersCollection:[],onlineFirstChaptersTotal:0},preDownload:{success:null,errors:{}},aboutIntechopen:{},privacyPolicy:{},peerReviewing:{},howOpenAccessPublishingWithIntechopenWorks:{},sponsorshipBooks:{sponsorshipBooks:[],offset:0,limit:8,total:null},route:{name:"chapter.detail",path:"/books/solubility-of-polysaccharides/solubility-of-chitin-solvents-solution-behaviors-and-their-related-mechanisms",hash:"",query:{},params:{book:"solubility-of-polysaccharides",chapter:"solubility-of-chitin-solvents-solution-behaviors-and-their-related-mechanisms"},fullPath:"/books/solubility-of-polysaccharides/solubility-of-chitin-solvents-solution-behaviors-and-their-related-mechanisms",meta:{},from:{name:null,path:"/",hash:"",query:{},params:{},fullPath:"/",meta:{}}}},function(){var e;(e=document.currentScript||document.scripts[document.scripts.length-1]).parentNode.removeChild(e)}()