Open access

Methods to Transfer Foreign Genes to Plants

Written By

Yoshihiro Narusaka, Mari Narusaka, Satoshi Yamasaki and Masaki Iwabuchi

Submitted: 24 August 2011 Published: 07 March 2012

DOI: 10.5772/32773

From the Edited Volume

Transgenic Plants - Advances and Limitations

Edited by Yelda Özden Çiftçi

Chapter metrics overview

14,007 Chapter Downloads

View Full Metrics

Keywords

1. Introduction

Genome sequencing of several organisms has resulted in the rapid progress of genomic studies. Genetic transformation is a powerful tool and an important technique for the study of plant functional genomics, i.e., gene discovery, new insights into gene function, and investigation of genetically controlled characteristics. In addition, the function of genes isolated using map-based cloning of mutant alleles has been confirmed by functional complementation using genetic transformation. Furthermore, genetic transformation enables the introduction of foreign genes into crop plants, expeditiously creating new genetically modified organisms. Gene transformation and genetic engineering contribute to an overall increase in crop productivity (Sinclair et al., 2004).

This review outlines general methods for plant transformation and focuses on the development of the Arabidopsis transformation system.

Advertisement

2. Plant transformation methods

Plant transformation was first described in tobacco in 1984 (De Block et al., 1984; Horsch et al., 1984; Paszkowski et al., 1984). Since that time, rapid developments in transformation technology have resulted in the genetic modification of many plant species. Methods for introducing diverse genes into plant cells include Agrobacteriumtumefaciens-mediated transformation (De la Riva, 1998; Hooykaas&Schilperoort, 1992; Sun et al., 2006; Tepfer, 1990; Zupan&Zambryski, 1995), recently reclassified as Rhizobium radiobacter, direct gene transfer into protoplasts (Gad et al., 1990; Karesch et al., 1991; Negrutiu et al., 1990; Neuhaus&Spangenberg, 1990), and particle bombardment (Birch & Franks, 1991; Christou, 1992; Seki et al., 1991; Takeuchi et al., 1992, 1995; Yao et al., 2006).

2.1. Gene transformation

Several gene transformation techniques utilize DNA uptake into isolated protoplasts mediated by chemical procedures, electroporation, or the use of high-velocity particles (particle bombardment). Direct DNA uptake is useful for both stable transformation and transient gene expression. However, the frequency of stable transformation is low, and it takes a long time to regenerate whole transgenic plants.

2.1.1. Chemical procedures

Plant protoplasts treated with polyethylene glycol more readily take up DNA from their surrounding medium, and this DNA can be stably integrated into the plant’s chromosomal DNA (Mathur&Koncz, 1997). Protoplasts are then cultured under conditions that allowed them to grow cell walls, start dividing to form a callus, develop shoots and roots, and regenerate whole plants.

2.1.2. Electroporation

Plant cell electroporation generally utilizes the protoplast because thick plant cell walls restrict macromolecule movement (Bates, 1999). Electrical pulses are applied to a suspension of protoplasts with DNA placed between electrodes in an electroporation cuvette. Short high-voltage electrical pulses induce the formation of transient micropores in cell membranes allowing DNA to enter the cell and then the nucleus.

Figure 1.

Plant transformation process using particle bombardment includes the following steps: (1) Isolate protoplasts from leaf tissues. (2)Inject DNA-coated particles into the protoplasts using particle gun. (3)Regenerate into whole plants. (4)Acclimate the transgenic plants in a greenhouse.

2.1.3. Particle (microprojectile) bombardment

Particle bombardment is a technique used to introduce foreign DNA into plant cells (Birch & Franks, 1991; Christou, 1992, 1995; Gan, 1989; Takeuchi et al., 1992; Yao et al., 2006) (Figure 1). Gold or tungsten particles (1–2 µm) are coated with the DNA to be used for transformation. The coated particles are loaded into a particle gun and accelerated to high speed either by the electrostatic energy released from a droplet of water exposed to high voltage or using pressurized helium gas; the target could be plant cell suspensions, callus cultures, or tissues. The projectiles penetrate the plant cell walls and membranes. As the microprojectiles enter the cells, transgenes are released from the particle surface for subsequent incorporation into the plant’s chromosomal DNA.

Figure 2.

The Agrobacterium-mediated transformation process includes the following steps: (1) Isolate genes of interest from the source organism. (2) Insert the transgene into the Ti-plasmid. (3) Introduce the T-DNA containing-plasmid into Agrobacterium. (4) Attach the bacterium to the host cell. (5) Excise the T-strand from the T-DNA region. (6) Transfer and integrate T-DNA into the plant genome.

2.2. Using Agrobacterium for plant transformation

Agrobacterium-mediated transformation is the most commonly used method for plant genetic engineering (Bartlett et al., 2008; Leplé et al., 1992; May et al., 1995; Sun et al., 2006; Tsai et al., 1994; Tzfira et al., 1997). The pathogenic soil bacteria Agrobacterium tumefaciens that causes crown gall disease has the ability to introduce part of its plasmid DNA (called transfer DNA or T-DNA) into the nuclear genome of infected plant cells (Figure 2) (Binns&Thomashaw, 1988; Gelvin, 2000; Nester et al., 1984; Tzfira et al., 2004; Zupan&Zambryski, 1995).

2.3. Transforming Arabidopsis thaliana

Arabidopsis thaliana, a small flowering plant, is a model organism widely used in plant molecular biology. The first in planta transformation of Arabidopsis included the use of tissue culture and plant regeneration (Feldmann& Marks, 1987). The Agrobacterium vacuum (Bechtold et al., 1993) and floral dipping (Clough & Bent, 1998) are efficient methods to generate transgenic plants. They allow for plant transformation without the need for tissue culture. The floral dipping method markedly advanced the ease of creating Arabidopsistransformants, and it is the most widely used transformation method. These methods were later simplified and substantially improved (Davis et al., 2009; Zhang et al., 2006), significantly reduced the required labor, cost, and time, as compared with earlier procedures.

However, these transformation methods have some problems. The floral dipping method involves dipping Arabidopsis flower buds into an Agrobacterium cell suspension, requiring large volumes of bacterial culture grown in liquid media. The large shakers and centrifuges, necessary to house the media, require sufficient experimental space. These factors limit transformation quantities. Here, we describe an improved method for Agrobacterium-mediated transformation that does not require the large volumes of liquid culture necessary for floral dipping.

2.3.1. Improved method for Agrobacterium-mediated transformation

A. thaliana can be stably transformed with high efficiency using T-DNA transfer by Agrobacteriumtumefaciens.Agrobacterium-mediated transformation using the floral dipping method is the most widely used method for transforming Arabidopsis. We have showed that A. thalianacan be transformed by inoculating flower buds with 5 µl of Agrobacterium cell suspension, thus avoiding the use of large volumes of Agrobacterium culture (Narusaka et al., 2010). Using this floral inoculatingmethod, we obtained 15–50 transgenic plants per three transformed A. thaliana plants. The floral inoculating method can be satisfactorily used in subsequent analyses. This simplified method, without floral dipping, offers an equally efficient transformation as previously reported methods. This method reduces overall labor, cost, time, and space. Another important aspect of this modified method is that it allows many independent transformations to be performed at once.

2.3.2. Agrobacterium strains

The Agrobacterium strain GV3101 (C58 derivative) is frequently used to transform many binary vectors, e.g., pBI121, pGPTV, pCB301, pCAMBIA, and pGreen, into Arabidopsis. It carries rifampicin resistance (10 mg l-1) on the chromosome (Koncz& Schell, 1986). On the other hand, LBA4404 is a popular strain for tobacco transformation but is less effective for Arabidopsis.

2.3.3. Agrobacterium transformation—freeze/thaw and electroporation procedures

Agrobacterium can be transformed with plasmid DNA using the freeze/thaw (Höfgen&Willmitzer, 1998; Holsters et al., 1978) and electroporation (den Dulk-Ras&Hooykaas, 1995; Mersereau et al., 1990; Shen& Forde, 1989) procedures. The freeze/thaw procedure is very simple and does not require special equipment.

Reagents

  • Agrobacterium strain

  • 20 mM CaCl2

  • Liquid nitrogen

  • Luria–Bertani (LB) agar plate

  • Liquid LB medium

Equipments

  • Microcentrifuge

  • Water bath

  • Eppendorf tube (1.5 ml)

  1. Pellet 1.5 ml of overnight-grown Agrobacterium (GV3101) cells by centrifugation in an Eppendorf tube at 14,000 rpm for 1 min at 4 ºC.

  2. Resuspend in 1 ml of ice-cold 20 mM CaCl2.

  3. Recentrifuge at 14,000 rpm for 1 min at 4 ºC.

  4. Resuspend in 200 µl of ice-cold 20 mM CaCl2.

  5. Add binary vector DNA (500 ng or 5–10 µl from an alkalinelysisminiprep) to the suspension. Mix by pipetting.

  6. Freeze the Eppendorf tube in liquid nitrogen for 5 min and thaw at 37 ºC in a water bath for 5 min. Repeat two times.

  7. Cool on ice.

  8. Spread 50–200 µl of the cells onto LB agar medium containing appropriate antibiotics and incubate at 28 ºC for two days.

2.3.4. Selecting transformed Agrobacterium using polymerase chain reaction (PCR)

This method is designed to quickly screen for plasmid inserts directly from Agrobacterium colonies. Alternatively, the insert presence can be determined by DNA sequencing.

Reagents

PCR components (one reaction):
Autoclaved, distilled water - 11.625 µl10× PCR buffer - 1.5 µl2.5 mMdNTPs - 1.2 µl10 pmol µl-1 Primer #1 - 0.3 µl10 pmol µl-1 Primer #2 - 0.3 µlTaq DNA polymerase (5 U/µl) - 0.075 µl
Total PCR master mix volume - 15.0 µl

Table 1.

  • Taq DNA polymerase: Takara EXTaq (Takara, Otsu, Japan) (recommended)

  • TBE (Tris/Borate/EDTA) buffer

Equipments

  • PCR tubes (0.2 ml)

  • Thermocycler

  • Electrophoresis system

  1. Prepare sufficient PCR master mix for the number of samples tested.

  2. Add 15 µl of PCR master mix to each PCR tube.

  3. Select Agrobacterium colonies from the plate using a sterile toothpick or pipette tip.

  4. Insert selected colony sample into the PCR master mix and mix with a sterile toothpick or pipette tip. (Note: Sufficient mixing results in complete cell lysis and high yields.)

  5. Briefly centrifuge tubes to collect all liquid and insert them into the PCR.

  6. Set the thermocycler conditions and start PCR. Conditions: Preliminary denaturation at 95 ºC for 3 min then 40 cycles at 95 ºC for 20 sec, 55 ºC for 30 sec, and 72 ºC for 30 sec.(Note: Preliminary denaturation is very important for initial cell breakage.)

  7. Run 8–10 μl of each PCR sample on 1.0% agarose gel in 1× TBE buffer at 100 V for 30 min to visualize the PCR results. Stain gels according to your lab method.

2.3.5. Simplified Arabidopsis transformation: Floral inoculating method

Until now, a limited number of constructs could be transformed into Arabidopsis because of difficulty growing large volumes of Agrobacterium. Therefore, we focused on improvements to the floral dipping method (Figure 3) (Narusaka et al., 2010). The problem of space and volume can be solved by using a small culture volume. Each plant is transformed using only 30–50 µl of bacteria grown in 2 ml of liquid culture. Our present method, as described below, is a simple modification of the method reported by Clough & Bent (1998).

Figure 3.

Transformation using Agrobacterium and the floral inoculating method

Recent papers (Liu et al., 2008; Zhang et al., 2006) illustrate the floral dipping process. Clough and Bent (1998) reported that neither Murashige and Skoog (MS) salts and hormones nor optical density (OD) makes a difference in transformation efficiency. An Agrobacterium cell suspension containing 0.01–0.05% Silwet L-77 (vol/vol) was used in the uptake of Agrobacterium into female gametes, instead of vacuum-aided infiltration of inflorescences.

Reagents

  • A. thaliana: There are marked differences in transformation efficiency between various ecotypes. For floral dipping transformation, efficiency in the Landsbergerecta (Ler-0) ecotype is lower than that in the Columbia (Col-0) ecotype. Transformation efficiency in Wassilewskija (Ws-0) is very high among Arabidopsis ecotypes.

  • Agrobacterium strain: GV3101 (Koncz& Schell, 1986) (recommended) or others.

  • 0.1% (wt/vol) agar solution

  • 70% (vol/vol) ethanol

  • Sodium hypochlorite solution containing 1% available chlorine and 0.02% (vol/vol) Tween 20

  • Distilled water

  • MS medium: 1× MS plant salt mixture (Wako Pure Chemical Industries, Osaka, Japan), 1× Gamborg’s vitamin solution (Sigma-Aldrich, St. Louis, MO, USA), 1% (wt/vol) sucrose, 0.05% (wt/vol) MES, and pH 5.7 adjusted with 1 N KOH

  • Bacto agar (Becton, Dickinson and Company, Franklin Lakes, NJ, USA) (recommended)

  • LB agar plate

  • Liquid LB

  • Glycerol

  • Transformation buffer: 1/2× MS plant salt mixture, 1× Gamborg’svitamin solution, 5% (wt/vol) sucrose, and pH 5.7, adjusted with 1 N KOH

  • 5% (wt/vol) sucrose solution

  • Silwet L-77

  • 6-Benzylaminopurine (BAP) (final concentration 0.01 µg ml-1)

  • Claforan (Aventis Pharma AG, Zürich, Switzerland) (final concentration 2 mg ml−1)

  • Kanamycin (final concentration 30 µg ml-1)

  • Hygromycin (final concentration 20 µg ml-1)

  • Bialaphos (final concentration 7.5 µg ml-1)

  • Peat moss (Soil Mix, Sakata Seed Corp., Yokohama, Japan)

  • Expanded vermiculite granules

Equipments

  • Growth chamber

  • Plant pot (3-inch)

  • Conical tube (15 ml)

  • Eppendorf tubes (2 ml)

Figure 4.

Part 1.

Figure 5.

Part 2. Floral inoculating transformation of Arabidopsisthaliana. (A) Clipping primary bolts. (B, C, and D) Using a micropipette, inoculate flower buds with 5 µl of Agrobacterium when plants have just started to flower after clipping primary bolts. (E) Place inoculated plants under a dome or cover for 16–24 hrs to maintain high humidity. (F) Remove the cover and grow the plants in a greenhouse or growth chamber until maturity. (G, H) Screening of putative transformed Arabidopsis plants. G: 10 days, H: 21 days. Arrows indicate putative transformed Arabidopsis plants.

  1. Grow A. thaliana plants. (Note: Plant health is an important factor. Healthy A. thaliana plants should be grown until they are flowering.) There are two different procedures: standard (A) and quick (B) (Zhang et al., 2006). We generally use the quick procedure, which is useful for rare seeds and seeds with low germination frequency. It is also used to retransform a transgenic line with a second construct.

    1. 1.a.Standard procedure (A): Suspend seeds in 0.1% (wt/vol) agar solution and keep in darkness for 2–4 days at 4 ºC to break dormancy. Spread seeds on wet soil (a mixture of peat moss and expanded vermiculite granules at a 1:2 ratio) in a 3-inch pot and grow under long-day conditions (16-hr light/8-hr dark) at 22 ºC. Thin to three seedlings per pot. Do not cover with a bridal veil, window screen, or cheesecloth.

    2. 1.b.Quick procedure (B): Sterilize seeds by treatment with 70% (vol/vol) ethanol for 1 min then immerse in sodium hypochlorite solution containing 1% available chlorine and 0.02% (vol/vol) Tween 20 for 7 min. Wash seeds five times with sterile distilled water. Place seeds on MS medium containing 0.8% (wt/vol) Bacto agar. Keep seeds in darkness for 2–4 days at 4 ºC to break dormancy. Grow under long-day conditions (16-hr light/8-hr dark) for 3 weeks at 22 ºC. Transfer to pots per Step 1a. Do not cover with a bridal veil, window screen, or cheesecloth.

  2. Clip primary bolts to encourage proliferation of secondary bolts (Figure 4A). Plants will be ready approximately 4–6 days after clipping.

  3. Prepare the Agrobacteriums train carrying the gene of interest. Spread a single Agrobacterium colony on an LB agar plate with suitable antibiotics. Incubate the culture at 28 ºC for two days.

  4. Use feeder culture to inoculate a 2-ml liquid culture in LB with suitable antibiotics to select for the binary plasmid in a 15-ml Conical tube at 28 ºC for 16–24 hrs. Mid-log cells or a freshly saturated culture (Clough and Bent 1998) can be used. (Optional: If needed, keep 500 µl of Agrobacterium culture in a 25% (vol/vol) glycerol stock at -80 ºC.)

  5. Spin down 1.5 ml of the Agrobacterium cell suspension in 2-ml Eppendorf tubes and resuspend in 1 ml transformation buffer. OD600 value adjustment is not required. Each small pot containing three plants requires approximately 150 µl of culture. (Optional: 5% (wt/vol) sucrose solution may be used instead of transformation buffer.)

    Just before inoculation, add Silwet L-77 to a concentration of 0.02% (vol/vol) and immediately mix well. (Optional: If using transformation buffer, add 0.01 µg ml-1 BAP just before transformation.)

  6. Apply 5 µl of Agrobacterium inoculum to the flower buds (Figures 4B, C, and D), inoculating each plant with a total of 30–50 µl of inoculum.

  7. Place inoculated plants under a dome or cover for 16–24 hrs to maintain high humidity (Figure 4E). Avoid excessive exposure to light. (Optional: For higher rates of transformation, inoculate newly forming flower buds with Agrobacterium 2–3 times at 7-day intervals.)

  8. Water and grow plants normally, tying up loose bolts with wax paper, tape, stakes, twist-ties, or other means. Stop watering as seeds become mature (Figure 4F).

  9. Harvest dry seeds. Though transformants are usually independent, independence can be guaranteed if seeds come from separate plants.

  10. Surface-sterilize seeds by immersion in 70% (vol/vol) ethanol for 1 min, followed by immersion in sodium hypochlorite solution containing 1% available chlorine and 0.02% (vol/vol) Tween 20 for 10 min. Then, wash seeds five times with sterile distilled water.

    To select for transformed plants, resuspend liquid-sterilized seeds in approximately 8 ml of 0.1% (wt/vol) agar solution containing 2 mg ml-1Claforan. Sow seeds per Step 1b in MS medium containing 0.8% Bacto agar and appropriate antibiotics or herbicide selective markers at the following concentrations: kanamycin (final concentration 30 µg ml-1), hygromycin (20 µg ml-1), and bialaphos (7.5 µg ml-1). Claforan is necessary for Agrobacterium decontamination (Figures 4G and H).

  11. Transplant putative transformants to soil per Step 1a. Grow, test, and use.

2.3.6. Screening of transgenic plants by PCR

Transgenes can be detected by plant genome DNA analysis with PCR (Figure 5). Although transgenes can be distinguished from their surrounding host plant genome, their presence should be determined by DNA sequencing.

PCR-based transgene detection is a simple and highly sensitive process. Subsequent PCR tests are assessed by agarose gel electrophoresis, and results are visualized by the presence or absence of the appropriately sized DNA fragment. If PCR shows a positive result, the transgene may be present. Transgene presence is confirmed by incorporating it into the genome by DNA sequencing. In contrast, a negative PCR result implies that the transgene is not present.

Simplified DNA isolation method

A small plant leaf disc (3–4 mm diameter) can be directly used as a PCR template. Arabidopsis, tomato, Chinese cabbage, Komatsuna (Brassica rapa), and tobacco leaf discs are good template candidates.

Reagents

Buffer A: 100 mM Tris-HCl (pH 9.5), 1 M KCl, 10 mM EDTA (ethylenediaminetetraacetic acid)

Equipments

  • Cork borer (3–4 mm diameter)

  • Disposable blade

  • Eppendorf tube (1.5 ml)

  • PCR tube (0.2 ml)

  • Heat block

  1. Cut each plant leaf disc using a cork borer (3–4 mm diameter) or disposable blade (leaf piece should be approximately 3 mm × 3 mm).

  2. Place the leaf disc into an Eppendorf tube.

  3. Add 100 µl of Buffer A.

  4. Incubate for 10 min at 95 ºC.

  5. Vortex thoroughly.

  6. Transfer 0.5 µl of the template DNA supernatant to a PCR tube.

PCR detection method

Reagents

PCR components (one reaction):
Autoclaved, distilled water - 3.9 µl
2× PCR buffer for KOD FX - 10.0 µl
2 mMdNTPs - 4.0 µl
10 pmol µl-1 Primer #1 - 0.6 µl
10 pmol µl-1 Primer #2 - 0.6 µl
KOD FX (1.0 U/µl) - 0.4 µl
Total PCR master mix volume - 19.5 µl
Add template DNA - 0.5 µl
Total reaction volume - 20.0 µl

Table 2.

  • DNA polymerase: KOD FX (Toyobo Co., Ltd, Osaka, Japan) (required)

  • TBE buffer

Equipments

  1. PCR tubes (0.2 ml)

  2. Thermocycler

  3. Electrophoresis system

  1. Add 19.5 µl of PCR master mix to the template DNA and gently mix by pipetting.

  2. Briefly centrifuge tubes to collect all liquid and insert into the PCR.

  3. Set the Thermocycler condition and start PCR. Conditions: Preliminary denaturation step at 94 ºC for 2 min, followed by 40 cycles at 98 ºC for 10 sec, 55 ºC for 15 sec, and 68 ºC for 30 sec.

  4. Run 8–10 PCR samples on 1.0% agarose gel in 1× TBE buffer at 100 V for 30 min to visualize the PCR results. Stain gels according to your lab method.

Figure 6.

Screening regimen for transgenic plants by PCR.

Advertisement

3. Conclusion

The floral inoculating method resulted in 15–50 transgenic plants per three transformed A. thaliana plants (Table 1). The method can be satisfactorily used for subsequent analyses. This simplified method does not utilize plant inversion or floral dipping, which requires large volumes of Agrobacterium culture. It offers equally efficient transformation as previously reported methods with the added benefit of reduced labor, cost, time, and space. Of further importance, this modified method allows many independent transformations to be performed at once.

Vector Antibiotic marker(final concentration) Ecotype %Transformationa
pBI101



pGWB1b
kanamycin (30 µg ml-1)


kanamycin (30 µg ml-1)
hygromycin (20 µg ml-1)
Columbia (Col-0)
Wassilewskija (Ws-0)
Wassilewskija (Ws-0)
0.32 ± 0.02
0.86 ± 0.12
0.31 ± 0.05
aValues are mean ± SE.b Refer to Nakagawa et al. (2007).

Table 3.

Transformation efficiency using floral inoculating

References

  1. 1. Bartlett J. G. Alves S. C. Smedley M. John W. Snape J. W. Harwood W. A. (2008).High-throughput Agrobacterium-mediated barley transformation.Plant Methods, 4 22 1 12 , 1746-4811
  2. 2. Bates G. W. (1999).Plant transformation via protoplast electroporation.Methods in Molecular Biology, 111 359 366 , 1064-3745
  3. 3. Bechtold N. Ellis J. Pelletier G. (1993).In planta Agrobacterium mediated gene transfer by infiltration of adult Arabidopsis thaliana plants. Comptesrendus de l’Académie desSciences, 316 1194 1199 , 0000-0764- 4469
  4. 4. Binns A. N. . Thomashow M. F. (1988).Cell biology of Agrobacterium infection and transformation of plants.Annual Reviews in Microbiology, 42 575 606 , 0066-4227
  5. 5. Birch R. G. Franks T. (1991).Development and optimization of micropojectile systems for plant genetic transformation.Australian Journal of Plant Physiology, 18 453 469 , 0310-7841
  6. 6. Christou P. 1992 Genetic transformation of crop plants using microprojectile bombardment. The Plant Journal, 2 275 281 , 0960-7412
  7. 7. Christou P. 1995 Strategies for variety-independent genetic transformation of important cereals, legumes and woody species utilizing particle bombardment.Euphytica, 85 13 27 , 0014-2336
  8. 8. Clough S. J. Bent A. F. 1998 Floral dip: a simplified method for Agrobacterium-mediated transformation of Arabidopsis thaliana. ThePlant Journal, 16 735 743 , 0960-7412
  9. 9. Davis A. M. Hall A. Millar A. J. Darrah C. Davis S. J. 2009 Protocol: Streamlined sub-protocols for floral-dip transformation and selection of transformants in Arabidopsis thaliana. Plant Methods, 5 1 7 , 1746-4811
  10. 10. De Block M. Herrera-Estrella L. van Montagu M. Schell J. . Zambryski P. (1984).Expression of foreign genes in regenerated plants and their progeny.EMBO Journal, 3 1681 1689 , 0261-4189
  11. 11. De la Riva G. A. González-Cabrera J. Vázquez-Padrón R. . Ayra-Pardo C. (1998).Agrobacterium tumefaciens: a natural tool for plant transformation. Electronic Journal of Biotechnology, 1 3 118 133 , 0717-3458
  12. 12. Den-Ras Dulk. A. Hooykaas P.J.J.. (1995). Electroporation of Agrobacterium tumefaciens.Methods in Molecular Biology, 55 63 72 , 1064-3745
  13. 13. Feldmann K. A. Marks M. D. (1987).Agrobacterium-mediated transformation of germinating seeds of Arabidopsis thaliana: a non-tissue culture approach. Molecular and General Genetics, 208 1 9 , 0026-8925
  14. 14. Gad A. E. Rosenberg N. Altman A. 1990 Liposome-mediated gene delivery into plant cells.PhysiologiaPlantarum, 79 177 183 , 0031-9317
  15. 15. Gan C. 1989 Gene gun accelerates DNA-coated particles to transform intact cells. The Scientist, 3 18 25 0890-3670
  16. 16. Gelvin S. B. 2000 Agrobacterium and plant genes involved in T-DNA transfer and integration. Annual Review of Plant Physiology and Plant Molecular Biology, 51 223 256 , 1040-2519
  17. 17. Höfgen R. . Willmitzer L. (1998).Storage of competent cells for Agrobacterium transformation.Nucleic Acids Research, 16 9877 0305-1048
  18. 18. Holsters M. de Waele D. Depicker A. Messens E. van Montagu M. Schell J. 1978 Transfection and transformation of Agrobacterium tumefaciens.Molecular and General Genetics, 163 181 187 , ISSN
  19. 19. Hooykaas P. J. J. . Schilperoort R. A. (1992).Agrobacterium and plant genetic engineering.Plant Molecular Biology, 19 15 38 , 0167-4412
  20. 20. Horsch R. B. Fraley R. T. Rogers S. G. Sanders P. R. Lloyd A. Hoffmann N. (1984).Inheritance of functional foreign genes in plants.Science, 223 223 496 498 , 0036-8075
  21. 21. Karesch H. Bilang R. Scheid O. M. . Potrykus I. 1991 Direct gene transfer to protoplasts of Arabidopsis thaliana. Plant Cell Reports, 9 571 574 , 0721-7714
  22. 22. Koncz C. Schell J. 1986 The promoter of the TL-DNA gene 5 controls the tissue-specific expression of chimeric genes carried by a novel type of Agrobacterium binary vector. Molecular and General Genetics, 204 383 396 , 0026-8925
  23. 23. Leplé J. C. Brasileiro A. C. M. Michel M. F. Delmotte F. . Jouanin L. 1992 Transgenic poplars: expression of chimeric genes using four different constructs. Plant Cell Reports, 11 137 141 , 0721-7714
  24. 24. Liu N. Y. Zhang Z. F. Yang W. C. 2008 Isolation of embryo-specific mutants in Arabidopsis: plant transformation. Methods in Molecular Biology, 427 91 100 , 1064-3745
  25. 25. Mathur J. . Koncz C. (1997).PEG-mediated protoplast transformation with naked DNA.Methods in Molecular Biology, 82 267 276 , 1064-3745
  26. 26. May G. D. Afza R. Mason H. S. Wiecko A. Novak F. J. . Arntzen C. J. (1995).Generation of transgenic banana (Musa acuminata) plants via Agrobacterium-mediated transformation.Nature Biotechnology, 13 13 486 492 , 1087-0156
  27. 27. Mersereau M. Pazour G. J. Das A. 1990 Efficient transformation of Agrobacterium tumefaciens by electroporation. Gene, 90 149 151 , 0378-1119
  28. 28. Nakagawa T. Kurose T. Hino T. Tanaka K. Kawamukai M. Niwa Y. Toyooka K. Matsuoka K. Jinbo T. . Kimura T. 2007 Development of series of gateway binary vectors, pGWBs, for realizing efficient construction of fusion genes for plant transformation.Journal of Bioscience and Bioengineering, 104 34 41 , 1389-1723
  29. 29. Narusaka M. Shiraishi T. Iwabuchi M. . Narusaka Y. 2010 The floral inoculating protocol: a simplified Arabidopsis thaliana transformation method modified from floral dipping. Plant Biotechnology, 27 349 351 , 1467-7644
  30. 30. Negrutiu I. Dewulf J. Pietrzak M. Botterman J. Rietveld E. Wurzer-Figurelli E. M. Ye De Jacobs M. 1990 Hybrid genes in the analysis of transformation conditions. II. Transient expression vs stable transformation: analysis of parameters influencing gene expression levels and transformation efficiency. PhysiologiaPlantarum, 79 197 205 , 0031-9317
  31. 31. Nester E. W. Gordon M. P. Amasino R. M. . Yanofsky M. F. 1984 Crown gall: a molecular and physiological analysis. Annual Review of Plant Physiology, 35 387 413 , 0066-4294
  32. 32. Neuhaus G. . Spangenberg G. (1990).Plant transformation by microinjection techniques.PhysiologiaPlantarum, 79 213 217 , 0031-9317
  33. 33. Paszkowski J. Shillito R. D. Saul M. Mandak V. Hohn T. . Potrykus I. 1984 Direct gene transfer to plants. EMBO Journal, 3 12 2717 2722 , 0261-4189
  34. 34. Seki M. Shigemoto N. Komeda Y. Imamura J. Yamada Y. . Morikawa H. (1991).Transgenic Arabidopsis thaliana plants obtained by particle-bombardment-mediated transformation.Applied Microbiology and Biotechnology, 36 228 230 , 0175-7598
  35. 35. Shen W. J. Forde B. G. (1989).Efficient transformation of Agrobacterium spp. by high voltage electroporation. Nucleic Acids Research, 17 885 0305-1048
  36. 36. Sinclair T. R. Purcell L. C. . Sneller C. H. (2004).Crop transformation and the challenge to increase yield potential.TRENDS in Plant Science, 9 2 70 75 , 1360-1385
  37. 37. Sun, H.J.; Uchii, S.; Watanabe, S. &Ezura, H. (2006).A highly efficient transformation protocol for micro-Tom, a model cultivar for tomato functional genomics.Plant and Cell Physiology, Vol.47, 426 431, 0032-0781
  38. 38. Takeuchi, Y.; Dotson, M. & Keen, N.T. (1992). Plant transformation: a simple particle bombardment device based on flowing helium. Plant Molecular Biology, 18, No.4, 835 839,0167-4412
  39. 39. Tepfer, D. (1990). Genetic transformation using Agrobacteriumrhizogenes.PhysiologiaPlantarum, 79, pp. 140 146, 0031-9317
  40. 40. Tsai, C.J.; Podila, G.K. &Chiang, V.L. (1994).Agrobacterium-mediated transformation of quaking aspen (Populustremuloides) and regeneration of transgenic plants.Plant Cell Reports, 14, 94 97, 0721-7714
  41. 41. Tzfira, T.; Jensen, C.S.; Wang, W.; Zuker, A.; Vincour, B.; Altman, A. &Vainstein, A. (1997). Transgenic Populustremula: a step-by-step protocol for its Agrobacterium-mediated transformation. Plant Molecular Biology Reporter, 15, 219 235,0735-9640
  42. 42. Tzfira, T.; Li, J.; Lacroix, B. &Citovsky, V. (2004).Agrobacterium T-DNA integration: molecules and models. TRENDS in Genetics,20, 375 383, 0168-9525
  43. 43. Yao, Q.; Cong, L.; Chang, J.L.; Li, K.X.; Yang, G.X. & He, G.Y. (2006). Low copy number gene transfer and stable expression in a commercial wheat cultivar via particle bombardment. Journal of Experimental Botany, 57, 14, 3737 , 0022-0957
  44. 44. Zhang, X.; Henriques, R.; Lin, S.S.; Niu, Q.W. & Chua, N.H. (2006).Agrobacterium-mediated transformation of Arabidopsis thaliana using the floral dip method.Nature Protocols, 1, 1 , 1754-2189
  45. 45. Zupan, J.R. &Zambryski, P. (1995). Transfer of T-DNA from Agrobacterium to the plant cell. Plant Physiology, 107, 1041 1047, 0032-0889

Written By

Yoshihiro Narusaka, Mari Narusaka, Satoshi Yamasaki and Masaki Iwabuchi

Submitted: 24 August 2011 Published: 07 March 2012