InTech uses cookies to offer you the best online experience. By continuing to use our site, you agree to our Privacy Policy.

Earth and Planetary Sciences » "Contributions to Mineralization", book edited by Ali Ismail Al-Juboury, ISBN 978-953-51-3749-8, Print ISBN 978-953-51-3748-1, Published: January 24, 2018 under CC BY 3.0 license. © The Author(s).

Chapter 3

Lead-, Zinc-, and Iron-Sulfide Mineralization from Northern Iraq

By Ali Ismail Al-Juboury, Waleed S. Shingaly, Elias M. Elias and Mohsin M. Ghazal
DOI: 10.5772/intechopen.72483

  1. Al-Bassam K, Hak J, Watkinson D. Contribution to the origin of the Serguza lead-zinc-pyrite deposit, Northern Iraq, Mineral. Deposita. 1982;17:133-149

  2. Awadh SM. Mineralogy, geochemistry and origin of the zinc–lead–barite deposits from selected areas from north of Zakho, Northern Iraq [thesis]. Iraq: University of Baghdad; 2006

  3. Awadh SM, Al-Ameri TK, Jassim SY, Bayraktutan MS. Fluid inclusions usage for assessing oil migration in Duhok, north Iraq. Positioning. 2010;1:42-49

  4. Shingaly WSA. The role of carbonate host rocks in the genesis of lead-zinc sulfide deposits at Dure and Lefan sections and iron-sulfide deposit at Sinjar Section-Northern Iraq [thesis]. Iraq: Mosul University; 2013

  5. Sharland PR, Archer R, Casey D, et al. Arabian Plate Sequence Stratigrpahy, GeoArabia, Special Publication 2, Gulf Petrolik. Manama, Bahrain; 2001. 371 p

  6. Bellen RC, van Dunnington HV, Wetzel R, Morton DM. Lexique stratigraphique international. Asie, Iraq: International Geology Congress Commission de Stratigraphique, Fasco.10a. 1959;3:333

  7. Buday T. The regional geology of Iraq. Stratigraphy and Paleogeography. Dar Al-Kutub pub. University of Mosul, Iraq. 1980:1:445

  8. Jassim SZ, Goff, JC. Geology of Iraq, Published by Dolin, Prague and Moravian Museum, Brno. Printed in the Czech Republic. 2006. 341 p

  9. Van den-Kerkhof AM, Hein UF. Fluid inclusion petrography. In: Andersen T, Frezzotti ML, Burke EA, editors. Fluid Inclusions: Phase Relationships-methods-applications (Special Issue). Lithos. 2001;55(1-4):320

  10. Shingaly WS, Al-Juboury AI, Elias ME. The role of carbonate-host rocks on the genesis of lead-zinc deposits in Kurdistan Region, Northern Iraq. Journal of Tethys. 2015;3(1):31-47

  11. Bodnar RJ, Reynolds TJ, Kuehn CA. Fluid inclusion systematics in epithermal systems. In: Berger BR, Bethke PM, editors. Reviews in economic geology: geology and geochemistry of epithermal systems. Society of Economic Geologists. 1985;2:73-97

  12. Bodnar RJ, Vityk MO. Interpretation of microthermometric data for H2O-NaCl fluid inclusions. In: De Vivo B, Frezzotti ML, editors. Fluid Inclusions in Minerals: Methods and Applications. Blacksburg: Virginia Technical Publication; 1994. pp. 117-130

  13. Roedder E. Fluid Inclusions, Mineralogical Society of America, Reviews in Mineralogy; 1984;12:644

  14. Leach DL, Sangster DF. Mississippi valley-type lead–zinc deposits. In: Kirkham RV, Sinclair WD, Thorpe RI Duke JM, editors. Mineral Deposit Modeling. Geological Association of Canada, Special Paper; 1993;40:289-314

  15. Paradis S, Hannigan P, Dewing K. Mississippi Valley-Type lead-zinc deposits. In: Goodfellow WD, editor. Mineral Deposits of Canada: A Synthesis of Major Deposit-types, District Metallogeny, the Evolution of Geological Provinces, and Exploration Methods. Geological Association of Canada, Mineral Deposits Division. 2007;5:185-203

  16. Leach DL, Sangster DF, Kelly KD, Large RR, Garven G, Allen CR, Gutzmer J, Walters S. Sediment-hosted lead–zinc deposits: A global perspective. Economic Geology. 2005;100th Anniversary Volume:561-607

  17. Leach DL, Taylor RD, Fey DL, Diehl SF, Saltus RW. A Deposit Model for Mississippi Valley-Type Lead-Zinc Ores, Chapter A of Mineral Deposit Models for Resource Assessment, USGS, Sci. Inv. Report 5070A. 2010. 52 p

  18. Taylor M, Kesler SE, Cloke PL, Kelly WC. Fluid inclusion evidence for fluid mixing, Mascot-Jefferson City zinc district, Tennessee. Economic Geology. 1983;78:1425-1439

  19. Gratz JF, Misra KC. Fluid inclusion study of the Gordonsville zinc deposit, central Tennessee. Economic Geology. 1987;82:1790-1804

  20. Hanor JS. The sedimentary genesis of hydrothermal fluids. In: Barnes HL, editor. Geochemistry of Hydrothennal ore Deposits. New York: Wiley Inter-science; 1979. pp. 137-142

  21. Schütfort EG. The Genesis of the San Vicente Lead Zinc Rhythmite Deposit, Peru—A Petrologic, Geochemical, and Sulfur Isotope Study [thesis]. USA: Oregon State University; 2001

  22. Ohmoto H, Rye RO. Isotopes of sulphur and carbon. In: Barnes HL, editor. Geochemistry of Hydrothermal Ore Deposits. New York: Wiley-Interscience; 1979. pp. 509-567

  23. Eldridge CS, Williams N, Walshe JL. Sulfur isotope variability in sediment-hosted massive sulfide deposits as determined using the ion microprobe SHRIMP: II. A study of the H.Y.C. deposit at McArthur river, Northern Territory, Australia. Economic Geology. 1993;88:1-26

  24. Sherlock RL, Roth T, Spooner ET, Bray CJ. Origin of the Eskay Creek precious metal-rich volcanogenic massive sulfide deposit: Fluid inclusion and stable isotope evidence. Economic Geology. 1999;94:803-824

  25. Roth T, Taylor BE. Sulfur isotope and textural zoning of pyrite in mudstone about the polymetallic Eskay Creek Deposit, Northwestern British Columbia, Canada. In: Volcanic Environments and Massive Sulfide Deposits International Conference; Hobart, Tasmania. 2000. pp. 16-19

  26. Al-Qaraghuli N, Lang H. Geochemical and mineralogical investigation of pyrite-sphalerite-galena deposit in Duri-Serguza area, Northern Iraq. Geological Society of Iraq. 1978;11:46-66

  27. He L, Song Y, Chen K, Hou Z, Yu F, Yang Z, Wei J, Li Z, Liu Y. Thrust-controlled, sediment-hosted, Himalayan Zn–Pb–Cu–Ag deposits in the Lanping foreland fold belt, eastern margin of Tibetan Plateau. Ore Geology Reviews. 2009;36:106-132