Malnutrition classification of children based on Z scores [20].
\nThe book is divided into three parts:
\nPart I: Ecological interpretation of land-use act - in this part, ecosystem and land use turn out to be a significant factor in the process of creating an ecological landscape.
\nPart II: Landscape district in applied ecological analysis - this part attempts to illustrate the best possible model of analysis integrated with landscape in practical case studies.
\nPart III: The anthropogenic impacts on landscape creation - this part discusses the human impact on landscape creation.",isbn:"978-953-51-2514-3",printIsbn:"978-953-51-2513-6",pdfIsbn:"978-953-51-5442-6",doi:"10.5772/61905",price:119,priceEur:129,priceUsd:155,slug:"landscape-ecology-the-influences-of-land-use-and-anthropogenic-impacts-of-landscape-creation",numberOfPages:140,isOpenForSubmission:!1,isInWos:1,hash:"354db0cb765007d8e48728a1356f2b75",bookSignature:"Amjad Almusaed",publishedDate:"July 27th 2016",coverURL:"https://cdn.intechopen.com/books/images_new/5289.jpg",numberOfDownloads:10907,numberOfWosCitations:18,numberOfCrossrefCitations:16,numberOfDimensionsCitations:35,hasAltmetrics:1,numberOfTotalCitations:69,isAvailableForWebshopOrdering:!0,dateEndFirstStepPublish:"November 12th 2015",dateEndSecondStepPublish:"December 3rd 2015",dateEndThirdStepPublish:"March 22nd 2016",dateEndFourthStepPublish:"June 20th 2016",dateEndFifthStepPublish:"July 20th 2016",currentStepOfPublishingProcess:5,indexedIn:"1,2,3,4,5,6",editedByType:"Edited by",kuFlag:!1,editors:[{id:"110471",title:"Dr.",name:"Amjad",middleName:"Zaki",surname:"Almusaed",slug:"amjad-almusaed",fullName:"Amjad Almusaed",profilePictureURL:"https://mts.intechopen.com/storage/users/110471/images/system/110471.png",biography:"Amjad Almusaed was born in 1967. He holds a PhD degree in Architecture (Environmental Design) from Ion Mincu University, Bucharest, Romania. He completed postdoctoral research in 2004 on sustainable and bioclimatic houses, from the School of Architecture in Aarhus, Denmark. His research expertise is sustainability in architecture and urban planning and design. He has carried out a great deal of research and technical survey work, and has performed several studies in the above-mentioned areas. He has edited many international books and is an active member of many worldwide architectural associations. He has published more than 170 international academic works (papers, research, books, and book chapters) in different languages.",institutionString:"Jönköping University",position:null,outsideEditionCount:0,totalCites:0,totalAuthoredChapters:"8",totalChapterViews:"0",totalEditedBooks:"9",institution:{name:"Jönköping University",institutionURL:null,country:{name:"Sweden"}}}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,coeditorOne:null,coeditorTwo:null,coeditorThree:null,coeditorFour:null,coeditorFive:null,topics:[{id:"849",title:"Landscape Ecology",slug:"landscape-ecology"}],chapters:[{id:"51201",title:"Agriculture and Its Impact on Land‐Use, Environment, and Ecosystem Services",doi:"10.5772/63719",slug:"agriculture-and-its-impact-on-land-use-environment-and-ecosystem-services",totalDownloads:6748,totalCrossrefCites:14,totalDimensionsCites:31,signatures:"Radoslava Kanianska",downloadPdfUrl:"/chapter/pdf-download/51201",previewPdfUrl:"/chapter/pdf-preview/51201",authors:[{id:"184781",title:"Ph.D.",name:"Radoslava",surname:"Kanianska",slug:"radoslava-kanianska",fullName:"Radoslava Kanianska"}],corrections:null},{id:"50964",title:"Modelling the Contribution of Land Use to Nitrate Yield from a Rural Catchment",doi:"10.5772/63718",slug:"modelling-the-contribution-of-land-use-to-nitrate-yield-from-a-rural-catchment",totalDownloads:985,totalCrossrefCites:1,totalDimensionsCites:1,signatures:"Maria-Luz Rodríguez-Blanco, Ricardo Arias, Maria-Mercedes\nTaboada-Castro, Joao Pedro Nunes, Jan Jacob Keizer and Maria-\nTeresa Taboada-Castro",downloadPdfUrl:"/chapter/pdf-download/50964",previewPdfUrl:"/chapter/pdf-preview/50964",authors:[{id:"183458",title:"Dr.",name:"María-Luz",surname:"Rodríguez-Blanco",slug:"maria-luz-rodriguez-blanco",fullName:"María-Luz Rodríguez-Blanco"}],corrections:null},{id:"51225",title:"Multitemporal Analysis in Mediterranean Forestland with Remote Sensing",doi:"10.5772/63721",slug:"multitemporal-analysis-in-mediterranean-forestland-with-remote-sensing",totalDownloads:784,totalCrossrefCites:0,totalDimensionsCites:1,signatures:"Ignacio Melendez-Pastor, Encarni I. Hernández, Jose Navarro-\nPedreño, Ignacio Gómez and Magaly Koch",downloadPdfUrl:"/chapter/pdf-download/51225",previewPdfUrl:"/chapter/pdf-preview/51225",authors:[{id:"109913",title:"Dr.",name:"Ignacio",surname:"Melendez-Pastor",slug:"ignacio-melendez-pastor",fullName:"Ignacio Melendez-Pastor"},{id:"137038",title:"Dr.",name:"Encarni I.",surname:"Hernández",slug:"encarni-i.-hernandez",fullName:"Encarni I. Hernández"},{id:"137040",title:"Prof.",name:"Jose",surname:"Navarro-Pedreño",slug:"jose-navarro-pedreno",fullName:"Jose Navarro-Pedreño"},{id:"137041",title:"Prof.",name:"Ignacio",surname:"Gómez",slug:"ignacio-gomez",fullName:"Ignacio Gómez"},{id:"183525",title:"Dr.",name:"Magaly",surname:"Koch",slug:"magaly-koch",fullName:"Magaly Koch"}],corrections:null},{id:"50268",title:"Hydrological Trend Analysis Integrated with Landscape Analysis at the Watershed Scale (Case Study: Langat Basin, Malaysia)",doi:"10.5772/62463",slug:"hydrological-trend-analysis-integrated-with-landscape-analysis-at-the-watershed-scale-case-study-lan",totalDownloads:736,totalCrossrefCites:0,totalDimensionsCites:1,signatures:"Hadi Memarian and Siva K. Balasundram",downloadPdfUrl:"/chapter/pdf-download/50268",previewPdfUrl:"/chapter/pdf-preview/50268",authors:[{id:"182821",title:"Dr.",name:"Hadi",surname:"Memarian",slug:"hadi-memarian",fullName:"Hadi Memarian"},{id:"184945",title:"Prof.",name:"Siva",surname:"Kumar Balasundram",slug:"siva-kumar-balasundram",fullName:"Siva Kumar Balasundram"}],corrections:null},{id:"51291",title:"The Anthropic Pressure on the Landscapes of the Subcarpathian and Piedmont Basin of Dâmboviţa River (Romania)",doi:"10.5772/63722",slug:"the-anthropic-pressure-on-the-landscapes-of-the-subcarpathian-and-piedmont-basin-of-d-mbovi-a-river-",totalDownloads:813,totalCrossrefCites:0,totalDimensionsCites:0,signatures:"Mihaela Sencovici and Gica Pehoiu",downloadPdfUrl:"/chapter/pdf-download/51291",previewPdfUrl:"/chapter/pdf-preview/51291",authors:[{id:"94647",title:"Dr",name:"Gica",surname:"Pehoiu",slug:"gica-pehoiu",fullName:"Gica Pehoiu"},{id:"186700",title:"Dr.",name:"Mihaela",surname:"Sencovici",slug:"mihaela-sencovici",fullName:"Mihaela Sencovici"}],corrections:null},{id:"50472",title:"Tracking Anthropogenic Influences on the Condition of Plant Communities at Sites and Landscape Scales",doi:"10.5772/62874",slug:"tracking-anthropogenic-influences-on-the-condition-of-plant-communities-at-sites-and-landscape-scale",totalDownloads:850,totalCrossrefCites:1,totalDimensionsCites:1,signatures:"Richard Thackway",downloadPdfUrl:"/chapter/pdf-download/50472",previewPdfUrl:"/chapter/pdf-preview/50472",authors:[{id:"171613",title:"Associate Prof.",name:"Richard",surname:"Thackway",slug:"richard-thackway",fullName:"Richard Thackway"}],corrections:null}],productType:{id:"1",title:"Edited Volume",chapterContentType:"chapter",authoredCaption:"Edited by"}},relatedBooks:[{type:"book",id:"6066",title:"Landscape Architecture",subtitle:"The Sense of Places, Models and Applications",isOpenForSubmission:!1,hash:"fd4ff3f5b34fb2ee8089dc8da74a843a",slug:"landscape-architecture-the-sense-of-places-models-and-applications",bookSignature:"Amjad Almusaed",coverURL:"https://cdn.intechopen.com/books/images_new/6066.jpg",editedByType:"Edited by",editors:[{id:"110471",title:"Dr.",name:"Amjad",surname:"Almusaed",slug:"amjad-almusaed",fullName:"Amjad Almusaed"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"5124",title:"Insulation Materials in Context of Sustainability",subtitle:null,isOpenForSubmission:!1,hash:"ca203e467e6f6fc2ece46fab2da10bbc",slug:"insulation-materials-in-context-of-sustainability",bookSignature:"Amjad Almusaed and Asaad Almssad",coverURL:"https://cdn.intechopen.com/books/images_new/5124.jpg",editedByType:"Edited by",editors:[{id:"110471",title:"Dr.",name:"Amjad",surname:"Almusaed",slug:"amjad-almusaed",fullName:"Amjad Almusaed"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"2005",title:"Effective Thermal Insulation",subtitle:"The Operative Factor of a Passive Building Model",isOpenForSubmission:!1,hash:"c7c6c5a9dfad00a32efaa72b9f163e71",slug:"effective-thermal-insulation-the-operative-factor-of-a-passive-building-model",bookSignature:"Amjad Almusaed",coverURL:"https://cdn.intechopen.com/books/images_new/2005.jpg",editedByType:"Edited by",editors:[{id:"110471",title:"Dr.",name:"Amjad",surname:"Almusaed",slug:"amjad-almusaed",fullName:"Amjad Almusaed"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"5889",title:"Grasses",subtitle:"Benefits, Diversities and Functional Roles",isOpenForSubmission:!1,hash:"605047fa783d21860951085f83b84f47",slug:"grasses-benefits-diversities-and-functional-roles",bookSignature:"Amjad Almusaed and Sammera Mohamed Salih Al-Samaraee",coverURL:"https://cdn.intechopen.com/books/images_new/5889.jpg",editedByType:"Edited by",editors:[{id:"110471",title:"Dr.",name:"Amjad",surname:"Almusaed",slug:"amjad-almusaed",fullName:"Amjad Almusaed"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"7205",title:"Housing",subtitle:null,isOpenForSubmission:!1,hash:"efb431be41bf8bf41facd7b4a183225e",slug:"housing",bookSignature:"Amjad Almusaed and Asaad Almssad",coverURL:"https://cdn.intechopen.com/books/images_new/7205.jpg",editedByType:"Edited by",editors:[{id:"110471",title:"Dr.",name:"Amjad",surname:"Almusaed",slug:"amjad-almusaed",fullName:"Amjad Almusaed"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"7831",title:"Sustainability in Urban Planning and Design",subtitle:null,isOpenForSubmission:!1,hash:"c924420492c8c2c9751e178d025f4066",slug:"sustainability-in-urban-planning-and-design",bookSignature:"Amjad Almusaed, Asaad Almssad and Linh Truong - Hong",coverURL:"https://cdn.intechopen.com/books/images_new/7831.jpg",editedByType:"Edited by",editors:[{id:"110471",title:"Dr.",name:"Amjad",surname:"Almusaed",slug:"amjad-almusaed",fullName:"Amjad Almusaed"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"6882",title:"Sustainable Cities",subtitle:"Authenticity, Ambition and Dream",isOpenForSubmission:!1,hash:"ba808740ddb346ea58d759f6570c8c6d",slug:"sustainable-cities-authenticity-ambition-and-dream",bookSignature:"Amjad Almusaed and Asaad Almssad",coverURL:"https://cdn.intechopen.com/books/images_new/6882.jpg",editedByType:"Edited by",editors:[{id:"110471",title:"Dr.",name:"Amjad",surname:"Almusaed",slug:"amjad-almusaed",fullName:"Amjad Almusaed"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"6378",title:"Sustainable Buildings",subtitle:"Interaction Between a Holistic Conceptual Act and Materials Properties",isOpenForSubmission:!1,hash:"1bc977aee58593c6aeecb1941cae1a0e",slug:"sustainable-buildings-interaction-between-a-holistic-conceptual-act-and-materials-properties",bookSignature:"Amjad Almusaed and Asaad Almssad",coverURL:"https://cdn.intechopen.com/books/images_new/6378.jpg",editedByType:"Edited by",editors:[{id:"110471",title:"Dr.",name:"Amjad",surname:"Almusaed",slug:"amjad-almusaed",fullName:"Amjad Almusaed"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"3560",title:"Advances in Landscape Architecture",subtitle:null,isOpenForSubmission:!1,hash:"a20614517ec5f7e91188fe8e42832138",slug:"advances-in-landscape-architecture",bookSignature:"Murat Özyavuz",coverURL:"https://cdn.intechopen.com/books/images_new/3560.jpg",editedByType:"Edited by",editors:[{id:"93073",title:"Dr.",name:"Murat",surname:"Ozyavuz",slug:"murat-ozyavuz",fullName:"Murat Ozyavuz"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"2406",title:"Landscape Planning",subtitle:null,isOpenForSubmission:!1,hash:"3c7b088d1bfbcf17d7f2fe6f47137af2",slug:"landscape-planning",bookSignature:"Murat Ozyavuz",coverURL:"https://cdn.intechopen.com/books/images_new/2406.jpg",editedByType:"Edited by",editors:[{id:"93073",title:"Dr.",name:"Murat",surname:"Ozyavuz",slug:"murat-ozyavuz",fullName:"Murat Ozyavuz"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}}],ofsBooks:[]},correction:{item:{id:"67322",slug:"corrigendum-to-sexual-dysfunction-in-patients-with-systemic-sclerosis",title:"Corrigendum to: Sexual Dysfunction in Patients with Systemic Sclerosis",doi:null,correctionPDFUrl:"https://cdn.intechopen.com/pdfs/67322.pdf",downloadPdfUrl:"/chapter/pdf-download/67322",previewPdfUrl:"/chapter/pdf-preview/67322",totalDownloads:null,totalCrossrefCites:null,bibtexUrl:"/chapter/bibtex/67322",risUrl:"/chapter/ris/67322",chapter:{id:"66966",slug:"sexual-dysfunction-in-patients-with-systemic-sclerosis",signatures:"Barbora Heřmánková",dateSubmitted:"July 16th 2018",dateReviewed:"April 5th 2019",datePrePublished:"May 3rd 2019",datePublished:null,book:{id:"8269",title:"New Insights into Systemic Sclerosis",subtitle:null,fullTitle:"New Insights into Systemic Sclerosis",slug:"new-insights-into-systemic-sclerosis",publishedDate:"September 18th 2019",bookSignature:"Michal Tomcik",coverURL:"https://cdn.intechopen.com/books/images_new/8269.jpg",licenceType:"CC BY 3.0",editedByType:"Edited by",editors:[{id:"193284",title:"Dr.",name:"Michal",middleName:null,surname:"Tomcik",slug:"michal-tomcik",fullName:"Michal Tomcik"}],productType:{id:"1",title:"Edited Volume",chapterContentType:"chapter",authoredCaption:"Edited by"}},authors:null}},chapter:{id:"66966",slug:"sexual-dysfunction-in-patients-with-systemic-sclerosis",signatures:"Barbora Heřmánková",dateSubmitted:"July 16th 2018",dateReviewed:"April 5th 2019",datePrePublished:"May 3rd 2019",datePublished:null,book:{id:"8269",title:"New Insights into Systemic Sclerosis",subtitle:null,fullTitle:"New Insights into Systemic Sclerosis",slug:"new-insights-into-systemic-sclerosis",publishedDate:"September 18th 2019",bookSignature:"Michal Tomcik",coverURL:"https://cdn.intechopen.com/books/images_new/8269.jpg",licenceType:"CC BY 3.0",editedByType:"Edited by",editors:[{id:"193284",title:"Dr.",name:"Michal",middleName:null,surname:"Tomcik",slug:"michal-tomcik",fullName:"Michal Tomcik"}],productType:{id:"1",title:"Edited Volume",chapterContentType:"chapter",authoredCaption:"Edited by"}},authors:null},book:{id:"8269",title:"New Insights into Systemic Sclerosis",subtitle:null,fullTitle:"New Insights into Systemic Sclerosis",slug:"new-insights-into-systemic-sclerosis",publishedDate:"September 18th 2019",bookSignature:"Michal Tomcik",coverURL:"https://cdn.intechopen.com/books/images_new/8269.jpg",licenceType:"CC BY 3.0",editedByType:"Edited by",editors:[{id:"193284",title:"Dr.",name:"Michal",middleName:null,surname:"Tomcik",slug:"michal-tomcik",fullName:"Michal Tomcik"}],productType:{id:"1",title:"Edited Volume",chapterContentType:"chapter",authoredCaption:"Edited by"}}},ofsBook:{item:{type:"book",id:"7035",leadTitle:null,title:"Cell Cycle and Cell Fate",subtitle:null,reviewType:"peer-reviewed",abstract:"
\r\n\tWith his simple yet paradigm shifting 1855 dictum “Omnis cellula e cellula”, Rudolph Virchow directed future scientists towards understanding cell division and how it is controlled. By 2001 a Nobel Prize in Physiology or Medicine was awarded to Leland Hartwell, Tim Hunt, and Sir Paul Nurse for their discovery and characterization of key cell cycle regulators. The cell cycle field has continued to mature with the realization that its basic tenets provide a panoply of options utilized in different ways by diverse life forms. In multicellular organisms the cell cycle machinery is an integral part of implementing cell fate decisions, and in humans its disruption contributes to many disease states. This book provides an historical perspective of how the cell cycle field developed, from recognizing cells as the basic unit of living organisms to the initial discovery of cell cycle machinery. The underlying operation and logic of this machinery is discussed, as is its specific manifestations in different biological systems. An analysis of cell cycle control in human tissues and organs provides a foundation for discussing its disruption in diverse disease states, as well as current efforts at developing cell cycle-based therapeutic approaches.
",isbn:null,printIsbn:null,pdfIsbn:null,doi:null,price:0,priceEur:null,priceUsd:null,slug:null,numberOfPages:0,isOpenForSubmission:!1,hash:"19730fec60ad6ffe143c4fe6a471ad74",bookSignature:"Prof. Robert Joseph Sheaff",publishedDate:null,coverURL:"https://cdn.intechopen.com/books/images_new/7035.jpg",keywords:"Growth Factors, Cytokines, Senescence Signaling Factors, Cell Cycle Withdrawal, Cell Cycle Arrest, p53 Mediated Cell Cycle Regulation, Signal Transduction Pathways, Regulation of Cell Cycle Machinery, Chromatin Re-Modeling, De-differentiation Signaling, Genomic Stress, Carcinogens",numberOfDownloads:null,numberOfWosCitations:0,numberOfCrossrefCitations:0,numberOfDimensionsCitations:0,numberOfTotalCitations:0,isAvailableForWebshopOrdering:!0,dateEndFirstStepPublish:"November 6th 2018",dateEndSecondStepPublish:"November 27th 2018",dateEndThirdStepPublish:"January 26th 2019",dateEndFourthStepPublish:"April 16th 2019",dateEndFifthStepPublish:"June 15th 2019",remainingDaysToSecondStep:"2 years",secondStepPassed:!0,currentStepOfPublishingProcess:5,editedByType:null,kuFlag:!1,biosketch:null,coeditorOneBiosketch:null,coeditorTwoBiosketch:null,coeditorThreeBiosketch:null,coeditorFourBiosketch:null,coeditorFiveBiosketch:null,editors:[{id:"74877",title:"Prof.",name:"Robert Joseph",middleName:null,surname:"Sheaff",slug:"robert-joseph-sheaff",fullName:"Robert Joseph Sheaff",profilePictureURL:"https://mts.intechopen.com/storage/users/74877/images/system/74877.jpeg",biography:"Associate professor of biochemistry at The University of Tulsa. Received a B.A. in biology and philosophy from the University of North Carolina at Chapel Hill in 1989, a Ph.D. in chemistry from the University of Colorado at Boulder in 1994, and did postdoctoral work at the Fred Hutchinson Cancer Research Center in Seattle. Current research interests are role of the tumor suppressor p27kip1 and drug discovery/characterization.",institutionString:"University of Tulsa",position:null,outsideEditionCount:0,totalCites:0,totalAuthoredChapters:"1",totalChapterViews:"0",totalEditedBooks:"0",institution:{name:"University of Tulsa",institutionURL:null,country:{name:"United States of America"}}}],coeditorOne:null,coeditorTwo:null,coeditorThree:null,coeditorFour:null,coeditorFive:null,topics:[{id:"47",title:"Cell Biology",slug:"biochemistry-genetics-and-molecular-biology-cell-biology"}],chapters:null,productType:{id:"1",title:"Edited Volume",chapterContentType:"chapter",authoredCaption:"Edited by"},personalPublishingAssistant:{id:"278926",firstName:"Ivana",lastName:"Barac",middleName:null,title:"Ms.",imageUrl:"https://mts.intechopen.com/storage/users/278926/images/8058_n.jpg",email:"ivana.b@intechopen.com",biography:"As an Author Service Manager my responsibilities include monitoring and facilitating all publishing activities for authors and editors. From chapter submission and review, to approval and revision, copyediting and design, until final publication, I work closely with authors and editors to ensure a simple and easy publishing process. I maintain constant and effective communication with authors, editors and reviewers, which allows for a level of personal support that enables contributors to fully commit and concentrate on the chapters they are writing, editing, or reviewing. I assist authors in the preparation of their full chapter submissions and track important deadlines and ensure they are met. I help to coordinate internal processes such as linguistic review, and monitor the technical aspects of the process. As an ASM I am also involved in the acquisition of editors. Whether that be identifying an exceptional author and proposing an editorship collaboration, or contacting researchers who would like the opportunity to work with IntechOpen, I establish and help manage author and editor acquisition and contact."}},relatedBooks:[{type:"book",id:"6964",title:"Cell Culture",subtitle:null,isOpenForSubmission:!1,hash:"045f3a964a9628162956abc06ef5777d",slug:"cell-culture",bookSignature:"Radwa Ali Mehanna",coverURL:"https://cdn.intechopen.com/books/images_new/6964.jpg",editedByType:"Edited by",editors:[{id:"182118",title:"Dr.",name:"Radwa Ali",surname:"Mehanna",slug:"radwa-ali-mehanna",fullName:"Radwa Ali Mehanna"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"6820",title:"Keratin",subtitle:null,isOpenForSubmission:!1,hash:"6def75cd4b6b5324a02b6dc0359896d0",slug:"keratin",bookSignature:"Miroslav Blumenberg",coverURL:"https://cdn.intechopen.com/books/images_new/6820.jpg",editedByType:"Edited by",editors:[{id:"31610",title:"Dr.",name:"Miroslav",surname:"Blumenberg",slug:"miroslav-blumenberg",fullName:"Miroslav Blumenberg"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"6683",title:"Ion Channels in Health and Sickness",subtitle:null,isOpenForSubmission:!1,hash:"8b02f45497488912833ba5b8e7cdaae8",slug:"ion-channels-in-health-and-sickness",bookSignature:"Kaneez Fatima Shad",coverURL:"https://cdn.intechopen.com/books/images_new/6683.jpg",editedByType:"Edited by",editors:[{id:"31988",title:"Prof.",name:"Kaneez",surname:"Fatima Shad",slug:"kaneez-fatima-shad",fullName:"Kaneez Fatima Shad"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"8774",title:"Programmed Cell Death",subtitle:null,isOpenForSubmission:!1,hash:"0459d0c7a518f61817a48fd4709c35bd",slug:"programmed-cell-death",bookSignature:"Hala Gali-Muhtasib and Omar Nasser Rahal",coverURL:"https://cdn.intechopen.com/books/images_new/8774.jpg",editedByType:"Edited by",editors:[{id:"57145",title:"Prof.",name:"Hala",surname:"Gali-Muhtasib",slug:"hala-gali-muhtasib",fullName:"Hala Gali-Muhtasib"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"7264",title:"Calcium and Signal Transduction",subtitle:null,isOpenForSubmission:!1,hash:"e373a3d1123dbd45fddf75d90e3e7c38",slug:"calcium-and-signal-transduction",bookSignature:"John N. Buchholz and Erik J. Behringer",coverURL:"https://cdn.intechopen.com/books/images_new/7264.jpg",editedByType:"Edited by",editors:[{id:"89438",title:"Dr.",name:"John N.",surname:"Buchholz",slug:"john-n.-buchholz",fullName:"John N. Buchholz"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"5907",title:"Stem Cells in Clinical Practice and Tissue Engineering",subtitle:null,isOpenForSubmission:!1,hash:"968012935832c68c09da71ccb81ca420",slug:"stem-cells-in-clinical-practice-and-tissue-engineering",bookSignature:"Rakesh Sharma",coverURL:"https://cdn.intechopen.com/books/images_new/5907.jpg",editedByType:"Edited by",editors:[{id:"98263",title:"Prof.",name:"Rakesh",surname:"Sharma",slug:"rakesh-sharma",fullName:"Rakesh Sharma"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"6883",title:"Cell Signalling",subtitle:"Thermodynamics and Molecular Control",isOpenForSubmission:!1,hash:"e4e17d85c0643c7f4d274fa9adbcc628",slug:"cell-signalling-thermodynamics-and-molecular-control",bookSignature:"Sajal Ray",coverURL:"https://cdn.intechopen.com/books/images_new/6883.jpg",editedByType:"Edited by",editors:[{id:"173697",title:"Prof.",name:"Sajal",surname:"Ray",slug:"sajal-ray",fullName:"Sajal Ray"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"6925",title:"Endoplasmic Reticulum",subtitle:null,isOpenForSubmission:!1,hash:"a9e90d2dbdbc46128dfe7dac9f87c6b4",slug:"endoplasmic-reticulum",bookSignature:"Angel Català",coverURL:"https://cdn.intechopen.com/books/images_new/6925.jpg",editedByType:"Edited by",editors:[{id:"196544",title:"Prof.",name:"Angel",surname:"Catala",slug:"angel-catala",fullName:"Angel Catala"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"8498",title:"Extracellular Vesicles and Their Importance in Human Health",subtitle:null,isOpenForSubmission:!1,hash:"eb168770441543e33da9325f16197fb4",slug:"extracellular-vesicles-and-their-importance-in-human-health",bookSignature:"Ana Gil De Bona and Jose Antonio Reales Calderon",coverURL:"https://cdn.intechopen.com/books/images_new/8498.jpg",editedByType:"Edited by",editors:[{id:"203919",title:"Dr.",name:"Ana",surname:"Gil De Bona",slug:"ana-gil-de-bona",fullName:"Ana Gil De Bona"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"7999",title:"Free Radical Medicine and Biology",subtitle:null,isOpenForSubmission:!1,hash:"083e5d427097d368a3f8a02bd6c76bf8",slug:"free-radical-medicine-and-biology",bookSignature:"Kusal Das, Swastika Das, Mallanagouda Shivanagouda Biradar, Varaprasad Bobbarala and S. Subba Tata",coverURL:"https://cdn.intechopen.com/books/images_new/7999.jpg",editedByType:"Edited by",editors:[{id:"187859",title:"Prof.",name:"Kusal",surname:"Das",slug:"kusal-das",fullName:"Kusal Das"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}}]},chapter:{item:{type:"chapter",id:"57162",title:"Processing of Ceramic Foams",doi:"10.5772/intechopen.71006",slug:"processing-of-ceramic-foams",body:'\nCeramic foams are tough foams made from ceramics, or ceramics with foam-like structure. It is a kind of porous ceramics with high porosity and sometimes called as cellular ceramics. Because of high amount of pores and surface, ceramic foams are especially suitable for filtering molten metals or hot gases, thermal protection systems, and heat exchangers [1].
\nThe basic structural unit of the ceramic foams is composed of solid struts or walls and the empty cells surrounded by them. If the ceramic phase surrounds entire cells so that each cell is isolated from its adjacent ones, it is called as closed cell structure. If all cells are connected to each other with ceramic phase only in cell edges, it is called as open structure. In fact, ceramic foams often appear in a semi-open structure between the two ideal structures. The basic cell unit is the essential difference between the ceramic foams and general porous ceramics, which is actually a solid with isolated pores. And high porosity is its important characteristic. Gibson and Ashby [2] deem that there is a transition from ceramic foams to general porous ceramics with the relative density at about 0.3.
\nThe earliest and still most common method for creating ceramic foams is the polymeric sponge replication method [3], with the products sometimes called as reticulated porous ceramics. In this method, a polymeric sponge with open pores is immersed into ceramic slurry, and after rolling to remove redundant slurry, the coated sponge is dried and pyrolyzed, leaving only the porous ceramic structure. Then, the resultant foam will be sintered for final densification to get required mechanical strength. This method is widely used because it is effective with most kinds of ceramic materials, such as silicon carbide, zirconia, silicon nitride, alumina, silica, mullite, and cordierite. However, large amount of gaseous by-product is released during pyrolysis, and consequently, leaving triangle hollows inside the ceramic struts. Cracking due to difference in thermal expansion coefficient is easy to occur [4]. Hence, there would be defects in ceramic foams fabricated by such polymeric foam replication technique, which led to lower mechanical strength [5].
\nAnother technique to fabricate ceramic foams is direct foaming method. Ceramic foams are produced by incorporating air into a suspension or liquid media, which is subsequently set in order to keep the structure of air bubbles created. Then, the consolidated foams are afterwards sintered at high temperature to obtain high-strength foams [4]. This method can result in full dense struts without defects by polymeric sponge replication method. Hence, the mechanical strengths of the products are generally higher than those of reticulated porous ceramics. The characteristic of foams by this technique is that most cells are closed or semi-closed, depending on the air bubbles incorporated [6, 7]. Figure 1(a) shows the typical morphology of the ceramic foams prepared by the direct foaming method [8], and Figure 1(b) is a cross-sectional photograph of the dense struts. This chapter describes the processing of ceramic foams by direct foaming method.
\nSEM photographs of ceramic foams consisted of (a) spherical cells and windows and (b) dense triangular struts.
A bulk foam is a substance formed by trapping gas air bubbles in liquid or solid. A bath sponge and the top of fresh beer are examples of foams. In most cases, the volume of gas is large, with thin films of liquid or solid separating the regions of gas. The equilibrium structure of foam is an elegant and well-defined arrangement of films, plateau borders, and junctions. The bubbles which are pressed together to form the foam are separated by thin films. The films meet along a line or curve, forming a liquid-filled interstitial channel called a plateau border. Where several plateau borders meet to form an interconnected network, they do so at a junction [9].
\nLiquid foams are thermodynamically unstable systems due to their high gas-liquid interfacial area. Several physical processes take place in wet foams to decrease the system free energy, leading to foam destabilization. The main destabilization mechanisms are drainage (creaming) and coarsening (Ostwald ripening). Drainage is the physical separation between the gaseous and liquid phases of the foam because of the effect of gravity. In draining foams, light gas bubbles move upwards, forming a denser foam layer on the top, while the heavier liquid phase is concentrated on the bottom, as illustrated in Figure 2 [4]. Coarsening is the gradual change of the foam structure due to gas diffusion through the films. This diffusion is driven by the pressure differences between bubbles. Small bubbles have high pressure, so they lose gas and disappear. Thus, the average bubble size increases with time.
\nPhotograph of foam drainage and foam structure [4].
Generally, real liquid foams are only stable if they contain surfactants. Good foams usually contain complex molecules that toughen the walls of the bubbles. Milk fat, for instance, serves this purpose in whipped cream. The way the bubbles stick together or slip past one another determines how the foam behaves.
\nSolid particles with tailored surface chemistry have lately been shown to efficiently stabilize gas bubbles upon adsorption at the air-water interface. The attachment of particles at gas-liquid interfaces occurs when particles are not completely wet in the liquid phase or, in other words, are partially lyophobic (hydrophobic if the liquid is water). The position of the particles at the interface is ultimately determined by a balance between the gas-liquid, gas-solid, and solid-liquid interfacial tensions, as shown in Figure 3 [10]. A simple way to describe the particle position at the interface is through the contact angle formed at equilibrium through the liquid phase. Slightly lyophobic particles remain predominantly in the liquid phase and exhibit a contact angle <90°, leading to the formation of air in water mixture, that is, foams [4].
\nDiagrammatic sketch of the particle-stabilized foams [10].
In this method, the amphiphiles added to the suspension let the particles partially hydrophobic by adsorbing with its polar anchoring group on the surface and leaving a short hydrophobic tail in contact with the aqueous phase. Studart et al. [4] summarized some amphiphilic compounds, such as valeric acid, propyl gallate, butyl gallate, and hexyl amine, for surface modification for different particles. After surface modification, air can be easily incorporated by mechanical whipping, injection of gas stream, or initiation of a chemical reaction that releases gaseous by-products directly into the initially fluid suspension.
\nHowever, the particle-stabilized wet foams are not strong enough to resist the stress during drying. Hence, they still need to be strengthened before water evaporation, either by coagulating the particles within the foam films or by chemically gelling the foam liquid phase [11].
\nIn order to manufacture ceramic foams, the liquid foams have to contain abundant ceramic particles in the liquid phase, which are going to be sintered as the main component of the corresponding ceramic foams. Figure 4 shows the diagram of the related structures for precursor foams and the resulting ceramic foams. The bubbles, which occupy the most volume of liquid foams, turn into cells of the ceramic foams. The films, which comprise liquid and ceramic particles, transform into the cell walls. Generally, the central part of the films is too thin to keep intact during sintering. Hence, there are commonly windows in the cell walls between two neighbor cells. This kind of common constitution is called as semi-open structure. If the films are extremely thin or the solid contents are too low, only plateau border is survived after sintering corresponds to the struts between three or more cells. That generates the strict open pore structure.
\nStructural diagram of (a) precursor foams and (b) the sintered ceramic foams.
Generally, the solid content influences the rheology of ceramic suspension. High solid content contributes to high viscosity and shear thin behavior. And the solid content would also associate with the final structure of the ceramic foams. Consequently, it is a practical way to adjust the porosity and structure of ceramic foams by controlling the solid content of the original suspension. Mao et al. [12] manufactured alumina foams with different morphology by changing the solid content using direct foaming and gelcasting method. Figure 5 shows the rheological flow curves of suspensions with different solid contents. All suspensions reveal pseudoplastic behavior, and the viscosity increases with solid content at the measured shear rate range. In the fabrication of ceramic foams, a slight pseudoplasticity could favor the generation of foams since lower viscosities are obtained under high speed whipping, and the foam stability would be improved because the viscosity recovery under static condition delays the collapse of fluid films around the bubbles.
\nRheological flow curves of suspensions with different solid contents [12].
The relative density of final alumina foams increases with the solid loading, while other processing conditions are constant, as indicated in Figure 6. The reason is that high solid content results in high viscosity, corresponding to low foaming capacity and high relative density. It can also be seen from Figure 6 that with the decrease of the relative density, both the mean cell size and the window size are increased.
\nSEM micrographs of alumina foams with suspension solid content of (a) 76 wt%, (b) 72 wt%, (c) 68 wt%, and (d) 60 wt% [12].
In order to evaluate the influence of the size of ceramic particles, Mao et al. [13] introduced granule particles into the original powders to manufacture the alumina foams. The coarse powder was manufactured by grinding the presintered foams obtained by the fine powder, in order to keep similar sintering ability to fine powder. The flexural strength of the sintered foams with the coarse powder is 25% lower than that by original powder. And the permeability of foams using the coarse powder is about 30% higher than that by original powder. The drop of flexural strength and the rise of permeability are related to high degree of open pores.
\nFoams and foaming phenomena are common and important in our daily lives. While putting some shaving cream or soap on our faces, and rub gradually, we will create a truly bizarre substance, which are most gas and little bit of liquid. When we whisk air into egg white or cream, bubbles form and linger because the proteins present in these viscous liquids stretch around bubbles and trap them. The foams spout out from the compressed bottle, when we style our hair with mousse.
\nAll these techniques would be applied in the manufacture of ceramic foams. The foaming of ceramic slurries involves dispersing gas in the form of bubbles into ceramic suspension. There are two basic approaches for achieving this: (1) incorporating an external gas by mechanical frothing, or injection of a gas stream and (2) evolution of a gas in situ [14]. In order to stabilize the bubbles developed within the slurry, the surface tension of the gas-liquid interface need to be reduced by, in most cases, adding surfactant or by sometimes partially hydrophobic particles. In some cases, water-soluble polymers are added into the slurry to modify the viscosity, which will affect the foaming results and the stability.
\nOne of the ways foam is created is through dispersion, where a large amount of gas is mixed with a liquid. Mechanical stirring is the most common technique for gas dispersion. Electric beater or household whisk is convenient choice for foaming of ceramic slurries [15]. The whisking procedure involves incorporating with air-forming bubbles, and at the same time, the bubbles flow up and break because of drainage and coalescence. Hence, generally, surfactant is necessary to reduce the surface tension to stabilize the bubbles. When the speed of bubble generation and burst become equilibrium, the maximum volume of the foam is obtained.
\nFigure 7 shows the foam volume versus stirring time for alumina suspensions containing two different foaming agents, Triton X114 and Tween 80 [16]. The foam volume increases gradually up to a maximum after approximately 4 min of agitation. During this initial stirring period, gas is entrained into the suspensions and liquid is drawn around each bubble until a thin film is formed. Subsequently, the surfactant molecules of the foaming agent transfer from interior of the suspension toward the newly created surface, decreasing the surface tension. Increasing the surfactant concentration accelerates this transfer and hence increases the foaming capacity [17]. Sepulveda considers that the maximum foam volume is associated with a minimum thickness of film that can sustain a stable foam. When most surfactant molecules have attached themselves to the gas-liquid interface, the stabilization of new films is no longer possible and the volume increase becomes negligible.
\nFoam volume generated with two different foaming agents [16].
The foaming technology of this theme is the presence of a foaming agent that decomposes due to heat or a chemical reaction to generate a gas within a ceramic suspension. Kim [18, 19] used the mixture of the cross-linked polycarbosilane and polysiloxane as the preceramic polymers to manufacture the SiOC foams, which were pressed into disks and CIPed at 340 MPa. The green compacts were placed in a pressure chamber to saturate with gaseous CO2 under a pressure of 5.5 MPa. Then, a thermal dynamic instability was introduced by rapidly dropping the pressure at a rate of 2.9 MPa/s. The foamed preceramic specimens were further cross-linked, then pyrolyzed, and sintered at 1200°C in nitrogen. Takahashi et al. [20] used the blend of methylsilicone resin and polyurethane precursor to prepare the SiOC foams. The foamed blend was prepared in two steps. The first step was the addition of methylsilicone resin dissolved in CH2Cl2 to the mixture of the polyols, the amine catalysts, the surfactant, and the additional dichloromethane. The second step was the addition of polyisocyanate to the solution obtained in the first step. The expansion started during mechanical stirring by the evaporation of the solvent caused by the exothermal reactions occurring in the solution.
\nIn direct foaming method, ceramic foams are prepared by introducing large amounts of air bubbles into the slurry. The foam is essentially a metastable system, with some bubbles shrinking and others gathering. It is important to consolidate the foams in certain period, to keep the cellular structure during further heating procedure [21]. In order to prevent the foams from drainage or coarsening, it is necessary to accelerate the consolidation speed and obtain a higher strength. Suitable consolidation method would bring uniform and dense struts, which is a benefit for mechanical properties of the resulting ceramic foams.
\nFreezing method is one of the practical methods to consolidate the foamed slurry [22]. Verma et al. [23] manufactured silica foams with 85 vol% porosity content from ceramic slurries containing ovalbumin as binder along with additives of sucrose and colloidal silica by combination of direct foaming and freeze-casting routes. The foamed slurries were poured into vaseline-coated aluminum molds and cooled using liquid nitrogen for instant freezing of porous structure. The frozen samples were freeze-dried at a low temperature for 24 h. After drying, the dried foam was heated to 1150°C to remove the binder and sinter the pore walls. The advantage of the freezing method is that extra consolidation agent is unnecessary. However, during freezing procedure, the liquid solvent, for example, water, will transfer to solid crystals which entrapped between the agglomerated ceramic particles at the films. These crystals will leave micropores after the evaporation of solvent. Rapid freezing of the solvent leads to formation of fine ice crystals, while long-time freezing procedure would enlarge the size of the crystals. The corresponding large pores may not be removed during sintering and, hence, lead to lower mechanical strength. The freezing time has to be prolonged to cool down the temperature of inside parts for large-sized bulk foams since the foamed slurry is a thermal insulator, which indicates that the frozen crystals will grow during consolidation of large-scale products. Thus, the freezing technique might not be good for high-strength foam production.
\nSome natural polymers from animal and plant sources have the properties of liquid-solid transition due to denaturation which has potential applications in the consolidation of foamed slurries. Protein and polysaccharide including starch, agar, and cellulose are often used to manufacture ceramic foams and porous ceramics [23, 24, 25]. Proteins are high molecular compounds, which are formally understood as condensation products of amino acids. The amphiphilic character of these molecules causes a decrease of surface tension, therefore good foaming properties. These foaming properties are influenced by the amino acid sequence or rather the number of polar and apolar side chains as well as molecule flexibility [26]. After foaming, the foamed slurries are consolidated by changing conditions, for example, adding acid or heating over 60°C, which would trigger the irreversible changes in the spatial structure of the protein molecule.
\nGarrn et al. [26] used albumin, a major constituent of blood, as a model binder to an aqueous powder suspension to produce ceramic foams. Foaming was done in a planetary mill using PE-milling pots for 15 min. A fine cellular foam structure with approximate diameter of 50–300 μm was formed. Thermal consolidation was done in a conventional household microwave oven with a maximum microwave power of 900 W. After burn out and sintering, final densities in the range from 8 to 20% were achieved. Fish collagen and egg white [27, 28] are other specific examples of protein applied for ceramic foams. They were added into ceramic slurries which would be stirred to become foams. The foamed slurries were then heated at 80°C or higher for consolidation, attributing to the gelation of protein.
\nMethylcellulose and polysaccharide, which have similar transformation as protein in case of heating, are also typical agents for consolidation of foamed ceramic slurries. Mao et al. [17] manufactured silica foams based on the generation of foams from composite slurries with cassava starch. These slurries combined with surfactant were vigorously whisked for about 5 min to make foam structure. The as-foamed slurries were then preheated in a microwave oven with a power of 400 W for 60 s, followed by setting in a 70°C oven for 30 min to consolidate the foam structure. After sintering, the resulting silica foams with the relative density of 18–30% were obtained. Because the cassava starch is not soluble in water, the particles will residual pores inside cell walls and struts after debindering and sintering. Hence, the direct foaming and starch consolidation method can produce porous ceramics with hierarchical structures, as shown in Figure 8. Figure 8(a) shows clearly the spherical cells with the average size of about 50 μm, while Figure 8(b) reveals the pores averaging about 10 μm in the cell walls. Figure 8(c) further indicates small voids inside ceramic matrix. It can be inferred that the large-sized cells, moderate-sized pores, and small-sized voids were originated from bubbles, elimination of starch particles, and interstices among the silica grains, respectively.
\nSEM micrographs of sintered ceramics with details of (a) large-sized cells, (b) moderate-sized pores in cell wall, and (c) small-sized voids among silica grains [17].
These natural polymers which can be operated in laboratory environment, for example, simply heated at 50–80°C, are excellent agents for ceramic foams. They are environmentally friendly and low cost and, hence, are widely used. However, the consolidation procedure needs heating of the foamed slurries, which would lead to the expansion of air bubbles. The metastable structure would change during the temperature change, which should remain some defects in final ceramic foams.
\nIn recent years, the gelcasting method was developed to manufacture ceramic foams by solving the shortcomings of the mentioned natural polymer substances which need heating for denaturation. The water-soluble small molecule compounds are added into the slurries, which will form a gel through radical polymerization. The method was first proposed by Smith [29], which combines the foaming and gelcasting processes, resulting in wet foams with high strength for drying and further handling. Sepulveda and Binner have done a lot of work on the gelcasting of foams, which has been shown to be useful in a variety of ceramic systems such as zirconia, alumina, and hydroxyapatite [30]. The benefit compared with using polymers is the ability to formulate slurries with a lower viscosity, because the size of the organic molecule is smaller, so that higher solid contents can be achieved with good packing densities and excellent green strengths [31]. Such a process yields cellular structures with porosity varying from 40% to >90%, with pores closed or open depending on pore fraction. Mechanical strength of sintered foams is higher than that obtained by other routes, because of the spherical pore shape associated with fully dense matrix [15].
\nFigure 9 shows the flow chart for production of ceramic foams by gelcasting of foams. Ceramic slurries with monomers and surfactants are vigorously whisked under inert gas atmosphere to form foams. Afterwards, catalyst and initiator are added to trigger the polymerization reaction, forming a strong three-dimensional gel net. The concentration of these reagents is designed to produce an induction period such that polymerization will be initiated immediately after casting. Within the time allowed by the induction period, the foams could be placed in a desiccator with the pressure reduced using a vacuum pump to produce foams with cell size larger than those obtained directly through foaming [16]. The excellent green body strength is the main advantage of the gelcasting of ceramic foams, which may maintain a porous structure with the porosity up to 90%, compared with other consolidation methods. The investigation to the sintered foams confirms that the solid matrix has very high density, which is much perfect than those by polymeric sponge replication method. Sepulveda produced alumina foams with the bending strength in the range of 2–26 MPa, while their relative density varied in 8–30% [30].
\nFlow chart for production of ceramic foams by gelcasting of foams.
However, the usual monomers are acrylamide derivatives, and the polymerization is a free radical reaction which is inhibited by oxygen. For example, just 0.2% oxygen was sufficient to inhibit the reaction completely in foamed suspensions [30]. Thus, the foaming and polymerization procedures have to be carried out in a N2-filled chamber to insulate oxygen.
\nMao et al. [32] developed a novel gelcasting system based on epoxy resin and polyamine hardener, which could be operated in air atmosphere, because the polymerization between the epoxide group of the epoxy resin and active hydrogen of amine is a nucleophilic addition reaction which is not affected by oxygen in atmosphere. This gelcasting system was then applied to manufacture ceramic foams with some modification [12]. Aqueous suspensions with solids loading of 60–76 wt% were prepared by mixing alumina powder, dispersant, and 5 wt% polyethyleneimine solution. Vigorous stirring about 5 min was applied after adding the surfactant to generate foams. For setting the fluid foams, 10 wt% sorbitol polyglycidyl ether based on the premix solution was added with further stirring about 30 s. The foamed suspensions were immediately poured into plastic molds and sealed at room temperature for gelation.
\nYang et al. reported a novel single-component water-soluble copolymer of isobutylene and maleic anhydride, with a commercial name of Isobam, which could be used as both surfactant and gelling agent with the addition much lower than normal gelation systems [33]. Yang et al. developed this system for the consolidation of ceramic foams. A small addition of 0.3 wt% Isobam based on alumina powder is sufficient to consolidate liquid foams and maintain the wet foams for further treatments [34]. Small additive amount is benefit for further heat treatment because the exhaust gaseous by-product can be dramatically reduced. It was confirmed that Isobam could be applied to manufacture variety of ceramic materials, such as mullite and Yb3Al5O12 [35].
\nSol-gel method has been widely used in the preparation of powder, film, and bulk materials. Since the processing of sol-gel is actually a liquid-solid transformation, it can be used to consolidate the liquid foams without any other additive. The advantage of this route is that no contamination is involved, which is suitable for producing high-purity ceramic foams. Silica foams and silica-contained ceramic foams have been manufactured [36, 37, 38]. Commercial SiO2 sol or the hydrolyzate of the precursor tetraethoxysilane was modified by adding acid to the pH value in the range of 5–6. After adding surfactant, the sol is incorporated with air by mechanical stirring or in situ gas evolution. Then, the foamed sol will be gradually consolidated with the sol transfer to gel. The porosity and the pore size distribution may be controlled by changing the viscosity and foaming technology. The silica-based sol-gel system has been used in many ceramic foams, such as silica, boehmite, and zirconia [21]. Pereira et al. [37] manufactured bioactive glass and hybrid scaffolds for bone tissue engineering by sol-gel method. TEOS and calcium chloride were used as the silica and calcium precursors, respectively. The starting sol was prepared by hydrolysis of TEOS in the presence of 1 N hydrochloric acid solution with subsequent addition of calcium chloride. PVA solution, Teepol surfactant, and 5 vol% hydrofluoric acid solution were added to a 40-ml aliquot of the sol, and the mixture was foamed by vigorous agitation. HF was added in order to catalyze the gelation. The foamed gels were cast, aged at 40°C for 72 h, and dried at 40°C for 120 h. Final glass and hybrid foams can be obtained with a high porosity varying from 60 to 95% and macropore diameters ranging from 10 to 600 μm.
\nThe consolidated wet foams are a mixture of gas, liquid, and solid, which need to be dried and debindered before sintering to final ceramic foams. Since there are large amount of bubbles dispersed in the bodies, the green strength is much lower than that of normal ceramics. Hence, both drying and debindering procedures should be carried out carefully. However, the bubbles, especially the connected bubbles, would become channels for water, solvent, or pyrolyzate to escape. Generally, the drying and calcination speed should be slowed down to avoid possible crack.
\nThe foamed green bodies need to be sintered to get sufficient strength for further applications. It is important to modify the sintering schedules to get dense and strong struts and cell walls, to increase the mechanical properties of the ceramic foams. The sintering for ceramic foams is not get equivalent research intension as for foaming and consolidation, since the sintering behavior is dominantly decided by the powders. Especially for the particles inside the struts and the cell walls, the coordination particles are same within normal ceramics. However, for those particle located on the surface of cell walls or in the tip of the strut edges, their coordination particles are less than in dense green bodies. Figure 10 shows the SEM microstructures of the fracture surface of the struts and the edge of the cell window. We can see clearly that grain size inside the struts is larger than that near the cell wall surface. And the gran size becomes much smaller when the location shifts to the tip of the triangle. The ceramic sintering theory seems not simply suitable to describe the ceramic foams. The difference for grain size is related to the particle coordination, where large coordination number corresponds to large grain size. The possible reason is that more coordination particles indicate abundant mass resource for grain growth.
\nMicrostructure of alumina foams: (a) fracture surface of the struts and (b) edge of the cell window.
Due to its current and potential great application, ceramic foams attracted distinct attentions in past decades with new process routs constantly being developed and reported in the scientific literature and at conferences. As a kind of porous ceramic with special structure, the ceramic foams gradually play irreplaceable roles in many industry fields, such as diesel particulate filters, interpenetrating composites, high-temperature thermal insulators, and biomedical applications. It is very important and valuable to explore novel manufacture routes and continuously improve the performance of ceramic foams. Whereas the polymer replication process is advanced to be in commercial use for decades, now the slurry foaming techniques are developed rapidly, which yields ceramic foams with different morphologies, and hence different properties and potential applications. This provides much greater choice for the end user and far greater potential for the tailoring of structures to meet specific end-sue requirement.
\nThe author would like to acknowledge Prof. Shiwei Wang, Shunzo Shimai, and Dr. JinZhao for their work contributed to this chapter.
\nMalnutrition is a universal public health problem in both children and adults globally [1]. It is not only a public health concern but it is an impediment to global poverty eradication, productivity and economic growth. By eliminating malnutrition, it is estimated that 32% of the global disease burden would be removed [2]. As a widespread serious problem affecting children in developing countries, progress towards tackling the different forms of malnutrition remains relatively slow [3]. Malnutrition occurs due to an imbalance in the body, whereby the nutrients required by the body and the amount used by the body do not balance [1]. There are several forms of malnutrition and these include two broad categories namely undernutrition and over nutrition. Undernutrition manifests as wasting or low weight for height (acute malnutrition), stunting or low height for age (chronic malnutrition), underweight or low weight for age, and mineral and vitamin deficiencies or excessiveness. Over nutrition includes overweight, obesity and diet-related non-communicable diseases (NCDs) such as diabetes mellitus, heart disease, some forms of cancer and stroke [1]. Malnutrition is an important global issue currently, as it affects all people despite the geography, socio-economic status, sex and gender, overlapping households, communities and countries. Anyone can experience malnutrition but the most vulnerable groups affected are children, adolescents, women, as well as people who are immune-compromised, or facing the challenges of poverty [3].
\nAccording to the World Health Organization (WHO), 462 million adults are underweight, while 1.9 billion adults are overweight and/or obese. In children under 5 years of age, 155 million are stunted, 52 million are wasted, 17 million are severely wasted and 41 million are overweight and/or obese [1]. The manifestation of malnutrition is multifold, but the paths to addressing prevention are key and include exclusive breastfeeding for the first 2 years of life, diverse and nutritious foods during childhood, healthy environments, access to basic services such as water, hygiene, health and sanitation, as well as pregnant and lactating women having proper maternal nutrition before, during and after the respective phases (levels and trends) [3].
\nIt is vital that malnutrition is addressed in children as malnutrition manifestations and symptoms begin to appear in the first 2 years of life [4]. Coinciding with the mental development and growth periods in children, protein energy malnutrition (PEM) is said to be a problem at ages 6 months to 2 years. Thus, this age period is considered a window period during which it is essential to prevent and/or manage acute and chronic malnutrition manifestations [4, 5, 6]. Child and maternal malnutrition together have contributed to 3.5 million annual deaths. Furthermore, children less than 5 years of age have a disease burden of 35% [7]. In 2008, 8.8 million global deaths in children less than 5 years old were due to underweight, of which 93% occurred in Africa and Asia. Approximately one in every seven children faces mortality before their fifth birthday in sub Saharan Africa (SSA) due to malnutrition [8].
\nYoung malnourished children are affected by compromised immune systems by succumbing to infectious diseases and are prone to cognitive development delays, damaging long term psychological and intellectual development effects, as well as mental and physical development that is compromised due to stunting [7, 9, 10, 11]. A malnutrition cycle exists in populations experiencing chronic undernutrition and in this cycle, the nutritional requirements are not met in pregnant women. Thus, infants born to these mothers are of low birth weight, are unable to reach their full growth potential and may therefore be stunted, susceptible to infections, illness, and mortality early in life. The cycle is aggravated when low birth weight females grow into malnourished children and adults, and are therefore more likely to give birth to infants of low birth weight as well [9]. Malnutrition is not just a health issue but also affects the global burden of malnutrition socially, economically, developmentally and medically, affecting individuals, their families and communities with serious and long lasting consequences [1].
\nStudies in Sudan, Ethiopia, Bangladesh, and Haiti have indicated that the causes of malnutrition are multi-faceted, with both environmental and dietary factors contributing to malnutrition risk in young children [12]. Diet and disease have been identified as primary immediate determinants; with household food security, access to health facilities, healthy environment, and childcare practices influenced by socio-economic conditions [13]. Mother’s antenatal visit and body mass index were also identified as risk factors for malnutrition [14]. In children under 3 years of age some of the main factors included poor nutrition, feeding practices, education and occupation of parent/caregiver, residence, household income, nutrition knowledge of mother [15]. These studies have suggested that nutrition education for the mother is important, as it is a resource that mothers can utilize for better care of their children. It can also provide the necessary skills required for childcare, improvement of her feeding practices, enable her to make choices and have preference of health facilities available, increase her nutritional needs awareness, and give her the chance of changing her beliefs regarding medicine and disease [16]. Some of the nutritional interventions that have had some success in addressing malnutrition include exclusive breastfeeding for the first 6 months of life, vitamin A supplementation, deworming, zinc treatment and rehydration salts for diarrhea, food fortification, and folic acid/iron for lactating and pregnant women, improvement of access to piped water and hygiene [17]. These interventions have positively influenced the development, growth and survival of children [18]. Malnutrition is not a uniform condition and therefore groups and areas that experience high risk of malnutrition must be identified and targeted interventions available to assist [17].
\nTo determine both over and undernutrition, assessment of the nutritional status is important. This identifies those individuals who are vulnerable and at risk, and how to guide a response [19]. In determining the nutritional status of a child, it must be referenced in comparison to a healthy child [20]. Most of the anthropometric indices are used with reference tables such as that of the National Center for Health Statistics (NCHS) and the currently widely recommended and used 2006 WHO child growth standards [21]. In expressing anthropometric indices relative to a reference population, the measurements are developed using the median and standard deviations of the reference populations, which are known as Z scores [22, 23, 24]. The Z score classification system interprets weight for age (W/A), weight for height (W/H) and height for age (H/A). Z scores describe a child’s mid upper arm circumference (MUAC)/weight/height in comparison to the median and the mid upper arm circumference (MUAC)/weight/height of the child relative to the reference population [25]. The anthropometric value is expressed by the two score system as “a number of standard deviations or Z scores below or above the reference mean or median value” [26]. Thus, the Z score is calculated as follows:
\nAs previously mentioned malnutrition consists of both over and undernutrition (Table 1).
\nUndernutrition does not only affect the health of individuals but impacts greatly on the growth of the economy and productivity, as well as the eradication of poverty. To support their growth and development, infants and young children have increased nutritional needs and therefore are most affected by undernutrition [27, 28]. Prolonged malnourished status in children can lead to the development of motor function and physical growth delays, lack of social skills, and low infection resistance, thus making them susceptible to common ailments and infections [28, 29]. Additionally, due to frequent infection, susceptible children become engaged in a negative cycle whereby infections lead to growth delays and their learning abilities are hindered, and infections in malnourished children may lead to childhood mortality [30].
\nUndernutrition is subdivided into two categories that include micronutrient malnutrition and growth failure. To differentiate between acute or chronic malnutrition, the nutritional status of an individual is assessed by using anthropometry [27]. According to Zere and McIntyre [31], anthropometry is advantageous over biochemical evaluation, as it is less invasive and cost effective; hence, in addressing child survival nutritional status anthropometry is one of the favored predictors [32]. To assess the growth status of children the most common indices used in anthropometry include low weight for height or wasting, stunting or low height for age, underweight or a low weight for age and waist/arm circumference.
\nIn PEM the condition is characterized by the individual being susceptible to infection due to long-term consumption of protein and energy that is insufficient to meet the body’s needs. While the body may first attempt to utilize the nutrients to meet the energy demands, if there is insufficient intake of energy then the consumed protein is used to meet the energy demands and does not address the functions of the protein in the body, hence leading to PEM. While PEM requires the measuring of growth parameters such as height and weight as it is not immediately obvious, in severe PEM children present with marasmus and kwashiorkor [33, 34]. Marasmus is characterized by a lack of protein and energy in the diet, while an inadequate intake of protein causes kwashiorkor. Marasmus or severe wasting (below −3SD) presents with a MUAC less than 115 mm in children under age five. Children with marasmus present with an “old man” appearance and are very thin [33]. In kwashiorkor, a child does not necessarily appear as undernourished but there is the presence of oedema. The children present with hair that is discolored and skin that is shiny and very tight. The weight for height is greater than or equal to −2SD. In marasmic-kwashiorkor bilateral oedema is present, with a weight for height less than −2SD [33, 34, 35].
\nA common presentation of PEM in children is underweight. Underweight is seen as children having a weight for age with a Z score of −2SD, with severe underweight at −3SD [36, 37]. Since proteins and/or energy are insufficient in a diet, there is weight loss or failure to gain weight. This can be accompanied by a decline in linear height [38]. While the children may present with normal body proportions such as weight to height ratios, they will be undersized and underweight [39]. Through regular monitoring of growth indices such as height and weight, underweight can be identified at an early stage [26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39]. In 2013, 99 million children less than 5 years of age were underweight. Of this figure, one third of the children were from Africa and two-thirds present in Asia. An estimated 14.6% of newborns were with low birth weight in 2015, and approximately nine out of 10 of the newborns were from low and middle income countries (LMICs). Approximately 45% of deaths in LMICs in children under age five is due to underweight. In adolescent girls the underweight prevalence increased from 5.5% in 2000 to 5.7% in 2016 [40].
\nStunting is a major public health concern that begins in intrauterine life although children are only classified as stunted at approximately age 2 years. The detrimental effects of stunting include intrauterine growth retardation, as well as inadequate nutrition required for growth and development of children [41]. High frequency of infection and decreased disease resistance such as diarrhea and pneumonia are influenced by stunting. Childhood stunting may also lead to increased mortality, poor recovery from disease and is also an obesity risk factor in adulthood [41, 42]. Stunting causes growth impairment during childhood that is associated with increased cardio-metabolic disease and obesity risk and cognitive development delay in adulthood [43]. This creates both short and long term effects that indicate the importance of stunting being identified and monitored in early life [42].
\nIn children the initial 1000 days of life are an important window period for intervention implementation and tracking for the improvement of child growth and development [7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44]. Often stunting is correlated with poor socio-economic status, as well as environmental conditions surveys in South Africa (SA) have identified an increased stunting prevalence in black people compared to their Indian or white counterparts [31]. Some surveys looked at a wider age range of children (0–14 years) and higher stunting prevalence was found in children living informal settlements within urban and rural areas [36, 37, 38, 39, 40, 41, 42, 43, 44, 45].
\nIn stunting or low height for age the Z score is below 2 standard deviations [21]. It is prevalent usually in infants and children younger than 5 years [36], who are susceptible to infection and have an insufficient intake of nutrients over the long term. Low height for age is seen as the failure of an individual to reach full linear growth and if stunting occurs before age two then irreversible poor cognitive and motor developments may occur [41]. Severe stunting is indicated by a height for age that is lesser than the median by 85% to represent a standard deviation of −3SD [46]. In 2013 in children under 5 years of age, 161 million were identified as stunted globally. The trend of global decrease were evident from the period 2000–2013, during which figures declined from 199 million to 161 million (33–25%). However, one third of stunted children were still found in Africa [47]. During 2000–2018 the number and proportion of stunted children under age five rose by 6.5 million in Central and Western Africa and by 1.4 million in Southern and Eastern Africa. Thus, the stunting burden continues to escalate in Africa, creating serious human capital development complications [40].
\nIn the last five decades overweight and obesity appears to be reaching epidemic levels in both developing and developed countries [48, 49]. Eclipsing infectious disease and under-nutrition as a significant mortality and ill-health contributor, overweight and obesity have presented as the most prevalent global nutritional problem over the last two decades. Globally an estimated 1 billion adults are overweight, with 300 million of them being obese [49]. An estimated 155 million obese children contribute to this epidemic [50]. Obese children tend to become obese adults. Obesity-related health problems occur in early years of life and progress into adulthood [51]. Several chronic disease conditions in later life are associated with childhood obesity. These chronic diseases include diabetes, stroke, high blood pressure, cancers and heart disease [52]. Despite the increased prevalence of overweight and obesity in children, research evaluating treatment in these age groups is minimal. Middle-income countries such as South Africa (SA), Brazil and China have increased overweight and obesity rates across all age groups and economic levels [49]. However, over the last few years overweight has increased in every continent. It has been postulated that the number of overweight children under age five will rise from over 40 million to approximately 43 million by 2025 [53]. As of 2018, approximately half of the overweight under five children were in Asia, with a quarter in Africa. Between 2000 and 2018 in Africa, the number of overweight under five children rose by just under 44%. In children and adolescents aged 5–19 years old, the proportion of overweight in 2000 rose from one in 10 (10.3%) to just under one in five (18.4%) in 2016 [40].
\nSome developing countries such as SA are currently facing a nutrition transition with the dual burden of over and undernutrition. This nutrition transition is the replacement of traditional home cooked balanced diet meals by energy-dense foods, as well as sedentary lifestyles due to technology and urbanization. A review study highlighted the dual burden in SA in children aged 0–20 years. The prevalence of wasting and stunting was higher in younger male children and predominant in rural areas, whereas overweight/obesity prevalence was highest in females and children in urban settings. It is important for tracking of over and undernutrition in children at a district level that can also be used to prioritize, monitor and evaluate government policies regarding malnutrition [54]. More recent years have seen the double burden of malnutrition being accompanied by a triple burden of malnutrition, affecting families, communities and countries. In countries such as India and Egypt, the problem is increasing and therefore highlights the urgent need to consider child malnutrition in the greater familial and household contexts [40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55]. A study in Ghana addressed the concurrent occurrence of obesity and stunting in children aged under 5 years, providing data for the first time on such an occurrence. The study reported a stunting prevalence of 27.5%, overweight prevalence of 2.4% and an overall concurrent stunting and overweight prevalence of 1.2% [56]. A study in South Africa, with children aged 6–12 years old, reported that 9.1% were stunted, while 14.9% were overweight/obese [57]. This highlights the need for urgent targeted interventions in children to address this double burden to prevent these malnutrition issues as they transition into adulthood.
\nIn wasting or low weight for height the Z score is below 2 standard deviations [21]. Wasting is reflective of a body mass that is low in comparison to the age and may be due to disease or starvation. Weight loss and retardation of growth occur due to inadequate intake of food and long term it leads to wasting and becomes more severe with emaciation [58]. A child falls behind another child who is growing actively when his/her own growth is affected acutely [38], and the body height and weight become less than ideal for the age of the child [59]. Severe wasting occurs when the weight for height is less than the median by 70% to represent a standard deviation of −3SD [46]. According to the national Department of Health (DoH) height measurements in all children should be conducted at least every 3 months [60]. In measuring overall growth to compare growth standards, both height and weight measurements are essential. Globally, in 2013, in children less than 5 years of age, 51 million were wasted and 17 million severely wasted. Global wasting prevalence in 2013 approximated 8%, of which 3% accounted for severe wasting. A postulated third of wasted children were present in Africa and an estimate of the children severely wasted in Africa followed the same trend [61]. As of 2018–2019 52 million children are wasted, with an estimated 16.6 suffering from severe wasting in 2018 [62]. Children left untreated with severe acute malnutrition (SAM) are at least 12 times more likely to die than healthy children [63]. South Asia is the global wasting epicenter as 15.2% of children under five are wasted. Together with other hotspots such as Oceania, Southeast Asia and SSA, improvements regarding wasting are minimal [64] (Table 2).
\n\nClassification | \nZ score values | \n
---|---|
Adequately nourished | \n−2 < Z-score < +1 | \n
Moderately malnourished | \n−3 < Z-score < −2 | \n
Severely malnourished | \nZ-score < −3 | \n
Malnutrition classification of children based on Z scores [20].
Country | \nYear of last survey | \nWasting | \nOverweight | \nStunting | \nUnderweight | \n
---|---|---|---|---|---|
Angola | \n2015–2016 | \n4.9 | \n3.4 | \n37.6 | \n19.0 | \n
Benin | \n2017–2018 | \n5.0 | \n1.9 | \n32.2 | \n16.8 | \n
Botswana | \n2007–2008 | \n7.2 | \n11.2 | \n31.4 | \n11.2 | \n
Burkina Faso | \n2017 | \n8.6 | \n1.7 | \n21.1 | \n16.2 | \n
Burundi | \n2016–2017 | \n5.1 | \n1.4 | \n55.9 | \n29.3 | \n
Cabo Verde | \n1994 | \n6.9 | \n— | \n21.4 | \n11.8 | \n
Cameroon | \n2014 | \n5.2 | \n6.7 | \n31.7 | \n14.8 | \n
Central African Republic | \n2012 | \n7.6 | \n1.9 | \n39.6 | \n24.6 | \n
Chad | \n2014–2015 | \n13.3 | \n2.8 | \n39.8 | \n29.4 | \n
Comoros | \n2012 | \n11.3 | \n10.6 | \n31.1 | \n16.9 | \n
The Congo | \n2014–2015 | \n8.2 | \n5.9 | \n21.2 | \n12.3 | \n
Cote d’Ivoire | \n2016 | \n6.1 | \n1.5 | \n21.6 | \n12.8 | \n
Democratic Republic of Congo | \n2013–2014 | \n8.1 | \n4.4 | \n42.7 | \n23.4 | \n
Djibouti | \n2012 | \n21.6 | \n8.1 | \n33.5 | \n29.9 | \n
Equatorial Guinea | \n2011 | \n3.1 | \n9.7 | \n26.2 | \n5.6 | \n
Eritrea | \n2010 | \n15.3 | \n2.0 | \n52.0 | \n39.4 | \n
Eswatini (former Swaziland) | \n2014 | \n2.0 | \n9.0 | \n25.5 | \n5.8 | \n
Ethiopia | \n2016 | \n10.0 | \n2.9 | \n38.4 | \n23.6 | \n
Gabon | \n2012 | \n3.4 | \n7.7 | \n17.0 | \n6.4 | \n
The Gambia | \n2013 | \n11.0 | \n3.2 | \n24.6 | \n16.5 | \n
Ghana | \n2014 | \n4.7 | \n2.6 | \n18.8 | \n11.2 | \n
Guinea | \n2016 | \n8.1 | \n4.0 | \n32.4 | \n18.3 | \n
Guinea—Bissau | \n2014 | \n6.0 | \n2.3 | \n27.6 | \n17.0 | \n
Kenya | \n2014 | \n4.2 | \n4.1 | \n26.2 | \n11.2 | \n
Lesotho | \n2014 | \n2.8 | \n7.5 | \n33.4 | \n10.5 | \n
Liberia | \n2013 | \n5.6 | \n3.2 | \n32.1 | \n15.3 | \n
Madagascar | \n2012–2013 | \n7.9 | \n1.1 | \n48.9 | \n32.9 | \n
Malawi | \n2015–2016 | \n2.8 | \n4.6 | \n37.4 | \n11.8 | \n
Mali | \n2015 | \n13.5 | \n1.9 | \n30.4 | \n25.0 | \n
Mauritania | \n2015 | \n14.8 | \n1.3 | \n27.9 | \n24.9 | \n
Mauritius | \n1995 | \n15.7 | \n6.5 | \n13.6 | \n13.0 | \n
Mozambique | \n2011 | \n6.1 | \n7.8 | \n42.9 | \n15.6 | \n
Namibia | \n2013 | \n7.1 | \n4.0 | \n22.7 | \n13.2 | \n
Niger | \n2016 | \n10.1 | \n1.1 | \n40.6 | \n31.4 | \n
Nigeria | \n2016–2017 | \n10.8 | \n1.5 | \n43.6 | \n31.5 | \n
Rwanda | \n2014–2015 | \n2.3 | \n7.9 | \n38.2 | \n9.6 | \n
Sao Tome and Principe | \n2014 | \n4.0 | \n2.4 | \n17.2 | \n8.8 | \n
Senegal | \n2017 | \n9.0 | \n0.9 | \n16.5 | \n14.4 | \n
Seychelles | \n2012 | \n4.3 | \n10.2 | \n7.9 | \n3.6 | \n
Sierra Leone | \n2013 | \n9.5 | \n8.8 | \n37.8 | \n18.2 | \n
Somalia | \n2009 | \n15.0 | \n3.0 | \n25.3 | \n23.0 | \n
South Africa | \n2016 | \n2.5 | \n13.3 | \n27.4 | \n5.9 | \n
South Sudan | \n2010 | \n24.3 | \n5.8 | \n31.3 | \n29.1 | \n
Togo | \n2013–2014 | \n6.6 | \n2.0 | \n27.6 | \n16.1 | \n
Uganda | \n2016 | \n3.5 | \n3.7 | \n28.9 | \n10.4 | \n
United Republic of Tanzania | \n2015–16 | \n4.5 | \n3.7 | \n34.5 | \n13.7 | \n
Zambia | \n2013–14 | \n6.2 | \n6.2 | \n40.0 | \n14.9 | \n
Zimbabwe | \n2015 | \n3.3 | \n5.6 | \n27.1 | \n8.5 | \n
Joint malnutrition country estimates of anthropometric indicators in children aged 0–59 months [65].
As a developing or middle-income country, SA is still undergoing major transitions socially, economically and in the population’s health. The country is currently facing a quadruple disease burden, with non-communicable diseases linked to diet and lifestyle; the burden of Human Immunodeficiency Virus/Acquired immunodeficiency syndrome (HIV/AIDS); infectious diseases and poverty linked to under nutrition; and deaths due to injuries [66]. As a developing country SA is in a nutrition transition where both over and undernutrition coexist [67]. The first 2 years of life are a vulnerable time frame as it is during this period that malnutrition begins. According to Faber and Wenhold [68], chronic malnutrition or stunting is more prevalent in children in SA compared to wasting. Since the post-apartheid era in 1994, SA has faced great challenges in addressing the nutritional status of infants, young children and adults [69]. However, large-scale nationwide surveys were conducted to trace the progress, failures and successes in addressing malnutrition. In 1994 the South African Vitamin A Consultative Group (SAVACG) conducted a national survey on the nutritional status of children aged 6–71 months [70]. Anthropometric results revealed that approximately 10% or 660,000 children were underweight, with one in every four children (1.5 million) affected by stunting. Severe wasting was only recorded in 0.4% of children. KwaZulu-Natal (KZN), Eastern Cape and Northern Province revealed the greatest prevalence of malnutrition [70]. In 1999 the National Food Consumption Survey (NFCS) was conducted in children aged 1–9 years [71], collecting a larger set of data in comparison to the SAVACG survey. The NFCS reported 10% underweight in children, with 20% affected by stunting and 17.1% as overweight and/or obese. The NFCS secondary analysis, focusing on children aged 1–5 years, reported underweight at 6.8%, stunting at 20.1%, overweight at 20.6% and obesity at 9.5% [69]. In 2005, the National Food Consumption Survey-Fortification Baseline (NFCS-FB) reported that of children aged 1–9 years old, 20% were affected by stunting, 9.3% were underweight, wasting was found in 4.5%, and 14% were overweight or obese [72]. The South African National Health and Nutrition Examination Survey (SANHANES) conducted in 2012 reported that in children aged 0–14 years stunting prevalence was 15.4%, with 3.8% having severe stunting. Wasting was reported at 2.9%, with severe wasting at 0.8%. Underweight was reported at 5.8%, with severe underweight at 1.1%. Regarding over nutrition, SANHANES identified 18.1% of children as overweight and 4.6% as obese [36]. The prevalence of overweight and obesity was significantly greater in females (25% and 40.1%) compared to males (19.6% and 11.6%) respectively. Underweight was significantly higher in males (13.1%) in comparison to females (4.0%) [36]. Thus, it is evident that SA is facing the malnutrition epidemic at a young age and context-specific and targeted interventions are required to prevent child malnutrition before it progresses into adulthood.
\nDuring 2012–2013, WHO member states recognized the seriousness of malnutrition and its effect on global health [3]. Thus, at the United Nation’s General Assembly in 2016, the United Nations Decade of Action on Nutrition 2016–2025 was announced. This set a time frame for all forms of malnutrition to be addressed and for diet-related and nutrition targets to be met by 2025. This also set the time frame for the Sustainable Development Goals (SGDs) to be achieved before 2030, particularly SDG 2 that aims to improve nutrition, achieve food security and end hunger, as well as SDG 3 that aims to ensure healthy living and promote well-being for all [1]. To tackle the malnutrition epidemic food fortification is important to ensure that children with good weight do not risk becoming overweight or obese [73]. All malnutrition indicators must be included in interventions, and more importantly treated together rather than stand-alone issues [74]. As part of the health system strengthening and with the goal of combatting malnutrition, existing policies on child malnutrition must be evaluated. The coexistence of stunting and overweight/obesity remains a challenge in LMICs that requires multi-sectoral action. During infancy and early childhood optimal nutrition is vital to ensure that, development and rapid growth demands are met. In the efforts to tackle the nutrition disparities, the first 1000 days of life are an important window period, presenting the opportunity to prevent both stunting and overweight/obesity [75]. Interventions must be inclusive of both linear growth and appropriate weight, beginning in early life and preferably during this important window period. To further tackle the double and triple burdens of malnutrition, early screening and identification of at risk children, including those already with malnutrition, is essential at healthcare facilities [76]. Thus, a more holistic, context-specific approach is required, whereby interventions not only take into consideration the risk factors, but also consider the inclusion of nutritionists and educating mothers on self and childcare regarding nutrition [77]. Furthermore, child malnutrition research and interventions must be up-scaled from community level to provincial and national levels so that it informs policy on the intervention strategies that can address the burden of child malnutrition. This is vital as children left untreated transition into malnourished adulthood, increasing the healthcare costs and needs, weakening the healthcare systems, and perpetuating the vicious malnutrition cycle.
\n"Open access contributes to scientific excellence and integrity. It opens up research results to wider analysis. It allows research results to be reused for new discoveries. And it enables the multi-disciplinary research that is needed to solve global 21st century problems. Open access connects science with society. It allows the public to engage with research. To go behind the headlines. And look at the scientific evidence. And it enables policy makers to draw on innovative solutions to societal challenges".
\n\nCarlos Moedas, the European Commissioner for Research Science and Innovation at the STM Annual Frankfurt Conference, October 2016.
",metaTitle:"About Open Access",metaDescription:"Open access contributes to scientific excellence and integrity. It opens up research results to wider analysis. It allows research results to be reused for new discoveries. And it enables the multi-disciplinary research that is needed to solve global 21st century problems. Open access connects science with society. It allows the public to engage with research. To go behind the headlines. And look at the scientific evidence. And it enables policy makers to draw on innovative solutions to societal challenges.\n\nCarlos Moedas, the European Commissioner for Research Science and Innovation at the STM Annual Frankfurt Conference, October 2016.",metaKeywords:null,canonicalURL:"about-open-access",contentRaw:'[{"type":"htmlEditorComponent","content":"The Open Access publishing movement started in the early 2000s when academic leaders from around the world participated in the formation of the Budapest Initiative. They developed recommendations for an Open Access publishing process, “which has worked for the past decade to provide the public with unrestricted, free access to scholarly research—much of which is publicly funded. Making the research publicly available to everyone—free of charge and without most copyright and licensing restrictions—will accelerate scientific research efforts and allow authors to reach a larger number of readers” (reference: http://www.budapestopenaccessinitiative.org)
\\n\\nIntechOpen’s co-founders, both scientists themselves, created the company while undertaking research in robotics at Vienna University. Their goal was to spread research freely “for scientists, by scientists’ to the rest of the world via the Open Access publishing model. The company soon became a signatory of the Budapest Initiative, which currently has more than 1000 supporting organizations worldwide, ranging from universities to funders.
\\n\\nAt IntechOpen today, we are still as committed to working with organizations and people who care about scientific discovery, to putting the academic needs of the scientific community first, and to providing an Open Access environment where scientists can maximize their contribution to scientific advancement. By opening up access to the world’s scientific research articles and book chapters, we aim to facilitate greater opportunity for collaboration, scientific discovery and progress. We subscribe wholeheartedly to the Open Access definition:
\\n\\n“By “open access” to [peer-reviewed research literature], we mean its free availability on the public internet, permitting any users to read, download, copy, distribute, print, search, or link to the full texts of these articles, crawl them for indexing, pass them as data to software, or use them for any other lawful purpose, without financial, legal, or technical barriers other than those inseparable from gaining access to the internet itself. The only constraint on reproduction and distribution, and the only role for copyright in this domain, should be to give authors control over the integrity of their work and the right to be properly acknowledged and cited” (reference: http://www.budapestopenaccessinitiative.org)
\\n\\nOAI-PMH
\\n\\nAs a firm believer in the wider dissemination of knowledge, IntechOpen supports the Open Access Initiative Protocol for Metadata Harvesting (OAI-PMH Version 2.0). Read more
\\n\\nLicense
\\n\\nBook chapters published in edited volumes are distributed under the Creative Commons Attribution 3.0 Unported License (CC BY 3.0). IntechOpen upholds a very flexible Copyright Policy. There is no copyright transfer to the publisher and Authors retain exclusive copyright to their work. All Monographs/Compacts are distributed under the Creative Commons Attribution-NonCommercial 4.0 International (CC BY-NC 4.0). Read more
\\n\\nPeer Review Policies
\\n\\nAll scientific works are Peer Reviewed prior to publishing. Read more
\\n\\nOA Publishing Fees
\\n\\nThe Open Access publishing model employed by IntechOpen eliminates subscription charges and pay-per-view fees, enabling readers to access research at no cost. In order to sustain operations and keep our publications freely accessible we levy an Open Access Publishing Fee for manuscripts, which helps us cover the costs of editorial work and the production of books. Read more
\\n\\nDigital Archiving Policy
\\n\\nIntechOpen is committed to ensuring the long-term preservation and the availability of all scholarly research we publish. We employ a variety of means to enable us to deliver on our commitments to the scientific community. Apart from preservation by the Croatian National Library (for publications prior to April 18, 2018) and the British Library (for publications after April 18, 2018), our entire catalogue is preserved in the CLOCKSS archive.
\\n"}]'},components:[{type:"htmlEditorComponent",content:'The Open Access publishing movement started in the early 2000s when academic leaders from around the world participated in the formation of the Budapest Initiative. They developed recommendations for an Open Access publishing process, “which has worked for the past decade to provide the public with unrestricted, free access to scholarly research—much of which is publicly funded. Making the research publicly available to everyone—free of charge and without most copyright and licensing restrictions—will accelerate scientific research efforts and allow authors to reach a larger number of readers” (reference: http://www.budapestopenaccessinitiative.org)
\n\nIntechOpen’s co-founders, both scientists themselves, created the company while undertaking research in robotics at Vienna University. Their goal was to spread research freely “for scientists, by scientists’ to the rest of the world via the Open Access publishing model. The company soon became a signatory of the Budapest Initiative, which currently has more than 1000 supporting organizations worldwide, ranging from universities to funders.
\n\nAt IntechOpen today, we are still as committed to working with organizations and people who care about scientific discovery, to putting the academic needs of the scientific community first, and to providing an Open Access environment where scientists can maximize their contribution to scientific advancement. By opening up access to the world’s scientific research articles and book chapters, we aim to facilitate greater opportunity for collaboration, scientific discovery and progress. We subscribe wholeheartedly to the Open Access definition:
\n\n“By “open access” to [peer-reviewed research literature], we mean its free availability on the public internet, permitting any users to read, download, copy, distribute, print, search, or link to the full texts of these articles, crawl them for indexing, pass them as data to software, or use them for any other lawful purpose, without financial, legal, or technical barriers other than those inseparable from gaining access to the internet itself. The only constraint on reproduction and distribution, and the only role for copyright in this domain, should be to give authors control over the integrity of their work and the right to be properly acknowledged and cited” (reference: http://www.budapestopenaccessinitiative.org)
\n\nOAI-PMH
\n\nAs a firm believer in the wider dissemination of knowledge, IntechOpen supports the Open Access Initiative Protocol for Metadata Harvesting (OAI-PMH Version 2.0). Read more
\n\nLicense
\n\nBook chapters published in edited volumes are distributed under the Creative Commons Attribution 3.0 Unported License (CC BY 3.0). IntechOpen upholds a very flexible Copyright Policy. There is no copyright transfer to the publisher and Authors retain exclusive copyright to their work. All Monographs/Compacts are distributed under the Creative Commons Attribution-NonCommercial 4.0 International (CC BY-NC 4.0). Read more
\n\nPeer Review Policies
\n\nAll scientific works are Peer Reviewed prior to publishing. Read more
\n\nOA Publishing Fees
\n\nThe Open Access publishing model employed by IntechOpen eliminates subscription charges and pay-per-view fees, enabling readers to access research at no cost. In order to sustain operations and keep our publications freely accessible we levy an Open Access Publishing Fee for manuscripts, which helps us cover the costs of editorial work and the production of books. Read more
\n\nDigital Archiving Policy
\n\nIntechOpen is committed to ensuring the long-term preservation and the availability of all scholarly research we publish. We employ a variety of means to enable us to deliver on our commitments to the scientific community. Apart from preservation by the Croatian National Library (for publications prior to April 18, 2018) and the British Library (for publications after April 18, 2018), our entire catalogue is preserved in the CLOCKSS archive.
\n'}]},successStories:{items:[]},authorsAndEditors:{filterParams:{sort:"featured,name"},profiles:[{id:"6700",title:"Dr.",name:"Abbass A.",middleName:null,surname:"Hashim",slug:"abbass-a.-hashim",fullName:"Abbass A. Hashim",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/6700/images/1864_n.jpg",biography:"Currently I am carrying out research in several areas of interest, mainly covering work on chemical and bio-sensors, semiconductor thin film device fabrication and characterisation.\nAt the moment I have very strong interest in radiation environmental pollution and bacteriology treatment. The teams of researchers are working very hard to bring novel results in this field. I am also a member of the team in charge for the supervision of Ph.D. students in the fields of development of silicon based planar waveguide sensor devices, study of inelastic electron tunnelling in planar tunnelling nanostructures for sensing applications and development of organotellurium(IV) compounds for semiconductor applications. I am a specialist in data analysis techniques and nanosurface structure. I have served as the editor for many books, been a member of the editorial board in science journals, have published many papers and hold many patents.",institutionString:null,institution:{name:"Sheffield Hallam University",country:{name:"United Kingdom"}}},{id:"54525",title:"Prof.",name:"Abdul Latif",middleName:null,surname:"Ahmad",slug:"abdul-latif-ahmad",fullName:"Abdul Latif Ahmad",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:null},{id:"20567",title:"Prof.",name:"Ado",middleName:null,surname:"Jorio",slug:"ado-jorio",fullName:"Ado Jorio",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"Universidade Federal de Minas Gerais",country:{name:"Brazil"}}},{id:"47940",title:"Dr.",name:"Alberto",middleName:null,surname:"Mantovani",slug:"alberto-mantovani",fullName:"Alberto Mantovani",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:null},{id:"12392",title:"Mr.",name:"Alex",middleName:null,surname:"Lazinica",slug:"alex-lazinica",fullName:"Alex Lazinica",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/12392/images/7282_n.png",biography:"Alex Lazinica is the founder and CEO of IntechOpen. After obtaining a Master's degree in Mechanical Engineering, he continued his PhD studies in Robotics at the Vienna University of Technology. Here he worked as a robotic researcher with the university's Intelligent Manufacturing Systems Group as well as a guest researcher at various European universities, including the Swiss Federal Institute of Technology Lausanne (EPFL). During this time he published more than 20 scientific papers, gave presentations, served as a reviewer for major robotic journals and conferences and most importantly he co-founded and built the International Journal of Advanced Robotic Systems- world's first Open Access journal in the field of robotics. Starting this journal was a pivotal point in his career, since it was a pathway to founding IntechOpen - Open Access publisher focused on addressing academic researchers needs. Alex is a personification of IntechOpen key values being trusted, open and entrepreneurial. Today his focus is on defining the growth and development strategy for the company.",institutionString:null,institution:{name:"TU Wien",country:{name:"Austria"}}},{id:"19816",title:"Prof.",name:"Alexander",middleName:null,surname:"Kokorin",slug:"alexander-kokorin",fullName:"Alexander Kokorin",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/19816/images/1607_n.jpg",biography:"Alexander I. Kokorin: born: 1947, Moscow; DSc., PhD; Principal Research Fellow (Research Professor) of Department of Kinetics and Catalysis, N. Semenov Institute of Chemical Physics, Russian Academy of Sciences, Moscow.\r\nArea of research interests: physical chemistry of complex-organized molecular and nanosized systems, including polymer-metal complexes; the surface of doped oxide semiconductors. He is an expert in structural, absorptive, catalytic and photocatalytic properties, in structural organization and dynamic features of ionic liquids, in magnetic interactions between paramagnetic centers. The author or co-author of 3 books, over 200 articles and reviews in scientific journals and books. He is an actual member of the International EPR/ESR Society, European Society on Quantum Solar Energy Conversion, Moscow House of Scientists, of the Board of Moscow Physical Society.",institutionString:null,institution:{name:"Semenov Institute of Chemical Physics",country:{name:"Russia"}}},{id:"62389",title:"PhD.",name:"Ali Demir",middleName:null,surname:"Sezer",slug:"ali-demir-sezer",fullName:"Ali Demir Sezer",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/62389/images/3413_n.jpg",biography:"Dr. Ali Demir Sezer has a Ph.D. from Pharmaceutical Biotechnology at the Faculty of Pharmacy, University of Marmara (Turkey). He is the member of many Pharmaceutical Associations and acts as a reviewer of scientific journals and European projects under different research areas such as: drug delivery systems, nanotechnology and pharmaceutical biotechnology. Dr. Sezer is the author of many scientific publications in peer-reviewed journals and poster communications. Focus of his research activity is drug delivery, physico-chemical characterization and biological evaluation of biopolymers micro and nanoparticles as modified drug delivery system, and colloidal drug carriers (liposomes, nanoparticles etc.).",institutionString:null,institution:{name:"Marmara University",country:{name:"Turkey"}}},{id:"61051",title:"Prof.",name:"Andrea",middleName:null,surname:"Natale",slug:"andrea-natale",fullName:"Andrea Natale",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:null},{id:"100762",title:"Prof.",name:"Andrea",middleName:null,surname:"Natale",slug:"andrea-natale",fullName:"Andrea Natale",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"St David's Medical Center",country:{name:"United States of America"}}},{id:"107416",title:"Dr.",name:"Andrea",middleName:null,surname:"Natale",slug:"andrea-natale",fullName:"Andrea Natale",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"Texas Cardiac Arrhythmia",country:{name:"United States of America"}}},{id:"64434",title:"Dr.",name:"Angkoon",middleName:null,surname:"Phinyomark",slug:"angkoon-phinyomark",fullName:"Angkoon Phinyomark",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/64434/images/2619_n.jpg",biography:"My name is Angkoon Phinyomark. I received a B.Eng. degree in Computer Engineering with First Class Honors in 2008 from Prince of Songkla University, Songkhla, Thailand, where I received a Ph.D. degree in Electrical Engineering. My research interests are primarily in the area of biomedical signal processing and classification notably EMG (electromyography signal), EOG (electrooculography signal), and EEG (electroencephalography signal), image analysis notably breast cancer analysis and optical coherence tomography, and rehabilitation engineering. I became a student member of IEEE in 2008. During October 2011-March 2012, I had worked at School of Computer Science and Electronic Engineering, University of Essex, Colchester, Essex, United Kingdom. In addition, during a B.Eng. I had been a visiting research student at Faculty of Computer Science, University of Murcia, Murcia, Spain for three months.\n\nI have published over 40 papers during 5 years in refereed journals, books, and conference proceedings in the areas of electro-physiological signals processing and classification, notably EMG and EOG signals, fractal analysis, wavelet analysis, texture analysis, feature extraction and machine learning algorithms, and assistive and rehabilitative devices. I have several computer programming language certificates, i.e. Sun Certified Programmer for the Java 2 Platform 1.4 (SCJP), Microsoft Certified Professional Developer, Web Developer (MCPD), Microsoft Certified Technology Specialist, .NET Framework 2.0 Web (MCTS). I am a Reviewer for several refereed journals and international conferences, such as IEEE Transactions on Biomedical Engineering, IEEE Transactions on Industrial Electronics, Optic Letters, Measurement Science Review, and also a member of the International Advisory Committee for 2012 IEEE Business Engineering and Industrial Applications and 2012 IEEE Symposium on Business, Engineering and Industrial Applications.",institutionString:null,institution:{name:"Joseph Fourier University",country:{name:"France"}}},{id:"55578",title:"Dr.",name:"Antonio",middleName:null,surname:"Jurado-Navas",slug:"antonio-jurado-navas",fullName:"Antonio Jurado-Navas",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/55578/images/4574_n.png",biography:"Antonio Jurado-Navas received the M.S. degree (2002) and the Ph.D. degree (2009) in Telecommunication Engineering, both from the University of Málaga (Spain). He first worked as a consultant at Vodafone-Spain. From 2004 to 2011, he was a Research Assistant with the Communications Engineering Department at the University of Málaga. In 2011, he became an Assistant Professor in the same department. From 2012 to 2015, he was with Ericsson Spain, where he was working on geo-location\ntools for third generation mobile networks. Since 2015, he is a Marie-Curie fellow at the Denmark Technical University. His current research interests include the areas of mobile communication systems and channel modeling in addition to atmospheric optical communications, adaptive optics and statistics",institutionString:null,institution:{name:"University of Malaga",country:{name:"Spain"}}}],filtersByRegion:[{group:"region",caption:"North America",value:1,count:5774},{group:"region",caption:"Middle and South America",value:2,count:5239},{group:"region",caption:"Africa",value:3,count:1721},{group:"region",caption:"Asia",value:4,count:10411},{group:"region",caption:"Australia and Oceania",value:5,count:897},{group:"region",caption:"Europe",value:6,count:15810}],offset:12,limit:12,total:118377},chapterEmbeded:{data:{}},editorApplication:{success:null,errors:{}},ofsBooks:{filterParams:{sort:"dateEndThirdStepPublish"},books:[{type:"book",id:"10231",title:"Proton Therapy",subtitle:null,isOpenForSubmission:!0,hash:"f4a9009287953c8d1d89f0fa9b7597b0",slug:null,bookSignature:"",coverURL:"https://cdn.intechopen.com/books/images_new/10231.jpg",editedByType:null,editors:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10652",title:"Visual Object Tracking",subtitle:null,isOpenForSubmission:!0,hash:"96f3ee634a7ba49fa195e50475412af4",slug:null,bookSignature:"",coverURL:"https://cdn.intechopen.com/books/images_new/10652.jpg",editedByType:null,editors:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10653",title:"Optimization Algorithms",subtitle:null,isOpenForSubmission:!0,hash:"753812dbb9a6f6b57645431063114f6c",slug:null,bookSignature:"",coverURL:"https://cdn.intechopen.com/books/images_new/10653.jpg",editedByType:null,editors:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10655",title:"Motion Planning",subtitle:null,isOpenForSubmission:!0,hash:"809b5e290cf2dade9e7e0a5ae0ef3df0",slug:null,bookSignature:"",coverURL:"https://cdn.intechopen.com/books/images_new/10655.jpg",editedByType:null,editors:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10657",title:"Service Robots",subtitle:null,isOpenForSubmission:!0,hash:"5f81b9eea6eb3f9af984031b7af35588",slug:null,bookSignature:"",coverURL:"https://cdn.intechopen.com/books/images_new/10657.jpg",editedByType:null,editors:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10662",title:"Pedagogy",subtitle:null,isOpenForSubmission:!0,hash:"c858e1c6fb878d3b895acbacec624576",slug:null,bookSignature:"",coverURL:"https://cdn.intechopen.com/books/images_new/10662.jpg",editedByType:null,editors:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10673",title:"The Psychology of Trust",subtitle:null,isOpenForSubmission:!0,hash:"1f6cac41fd145f718ac0866264499cc8",slug:null,bookSignature:"",coverURL:"https://cdn.intechopen.com/books/images_new/10673.jpg",editedByType:null,editors:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10675",title:"Hydrostatics",subtitle:null,isOpenForSubmission:!0,hash:"c86c2fa9f835d4ad5e7efd8b01921866",slug:null,bookSignature:"",coverURL:"https://cdn.intechopen.com/books/images_new/10675.jpg",editedByType:null,editors:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10677",title:"Topology",subtitle:null,isOpenForSubmission:!0,hash:"85eac84b173d785f989522397616124e",slug:null,bookSignature:"",coverURL:"https://cdn.intechopen.com/books/images_new/10677.jpg",editedByType:null,editors:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10678",title:"Biostatistics",subtitle:null,isOpenForSubmission:!0,hash:"f63db439474a574454a66894db8b394c",slug:null,bookSignature:"",coverURL:"https://cdn.intechopen.com/books/images_new/10678.jpg",editedByType:null,editors:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10679",title:"Mass Production",subtitle:null,isOpenForSubmission:!0,hash:"2dae91102099b1a07be1a36a68852829",slug:null,bookSignature:"",coverURL:"https://cdn.intechopen.com/books/images_new/10679.jpg",editedByType:null,editors:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10689",title:"Risk Management in Construction",subtitle:null,isOpenForSubmission:!0,hash:"e3805b3d2fceb9d33e1fa805687cd296",slug:null,bookSignature:"",coverURL:"https://cdn.intechopen.com/books/images_new/10689.jpg",editedByType:null,editors:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}}],filtersByTopic:[{group:"topic",caption:"Agricultural and Biological Sciences",value:5,count:18},{group:"topic",caption:"Biochemistry, Genetics and Molecular Biology",value:6,count:5},{group:"topic",caption:"Business, Management and Economics",value:7,count:2},{group:"topic",caption:"Chemistry",value:8,count:8},{group:"topic",caption:"Computer and Information Science",value:9,count:6},{group:"topic",caption:"Earth and Planetary Sciences",value:10,count:7},{group:"topic",caption:"Engineering",value:11,count:20},{group:"topic",caption:"Environmental Sciences",value:12,count:2},{group:"topic",caption:"Immunology and Microbiology",value:13,count:4},{group:"topic",caption:"Materials Science",value:14,count:5},{group:"topic",caption:"Mathematics",value:15,count:1},{group:"topic",caption:"Medicine",value:16,count:25},{group:"topic",caption:"Neuroscience",value:18,count:2},{group:"topic",caption:"Pharmacology, Toxicology and Pharmaceutical Science",value:19,count:3},{group:"topic",caption:"Physics",value:20,count:3},{group:"topic",caption:"Psychology",value:21,count:4},{group:"topic",caption:"Robotics",value:22,count:1},{group:"topic",caption:"Social Sciences",value:23,count:3},{group:"topic",caption:"Technology",value:24,count:1},{group:"topic",caption:"Veterinary Medicine and Science",value:25,count:1}],offset:12,limit:12,total:202},popularBooks:{featuredBooks:[{type:"book",id:"9521",title:"Antimicrobial Resistance",subtitle:"A One Health Perspective",isOpenForSubmission:!1,hash:"30949e78832e1afba5606634b52056ab",slug:"antimicrobial-resistance-a-one-health-perspective",bookSignature:"Mihai Mareș, Swee Hua Erin Lim, Kok-Song Lai and Romeo-Teodor Cristina",coverURL:"https://cdn.intechopen.com/books/images_new/9521.jpg",editors:[{id:"88785",title:"Prof.",name:"Mihai",middleName:null,surname:"Mares",slug:"mihai-mares",fullName:"Mihai Mares"}],equalEditorOne:{id:"190224",title:"Dr.",name:"Swee Hua Erin",middleName:null,surname:"Lim",slug:"swee-hua-erin-lim",fullName:"Swee Hua Erin Lim",profilePictureURL:"https://mts.intechopen.com/storage/users/190224/images/system/190224.png",biography:"Dr. Erin Lim is presently working as an Assistant Professor in the Division of Health Sciences, Abu Dhabi Women\\'s College, Higher Colleges of Technology in Abu Dhabi, United Arab Emirates and is affiliated as an Associate Professor to Perdana University-Royal College of Surgeons in Ireland, Selangor, Malaysia. She obtained her Ph.D. from Universiti Putra Malaysia in 2010 with a National Science Fellowship awarded from the Ministry of Science, Technology and Innovation Malaysia and has been actively involved in research ever since. Her main research interests include analysis of carriage and transmission of multidrug resistant bacteria in non-conventional settings, besides an interest in natural products for antimicrobial testing. She is heavily involved in the elucidation of mechanisms of reversal of resistance in bacteria in addition to investigating the immunological analyses of diseases, development of vaccination and treatment models in animals. She hopes her work will support the discovery of therapeutics in the clinical setting and assist in the combat against the burden of antibiotic resistance.",institutionString:"Abu Dhabi Women’s College",position:null,outsideEditionCount:0,totalCites:0,totalAuthoredChapters:"3",totalChapterViews:"0",totalEditedBooks:"0",institution:{name:"Perdana University",institutionURL:null,country:{name:"Malaysia"}}},equalEditorTwo:{id:"221544",title:"Dr.",name:"Kok-Song",middleName:null,surname:"Lai",slug:"kok-song-lai",fullName:"Kok-Song Lai",profilePictureURL:"https://mts.intechopen.com/storage/users/221544/images/system/221544.jpeg",biography:"Dr. Lai Kok Song is an Assistant Professor in the Division of Health Sciences, Abu Dhabi Women\\'s College, Higher Colleges of Technology in Abu Dhabi, United Arab Emirates. He obtained his Ph.D. in Biological Sciences from Nara Institute of Science and Technology, Japan in 2012. Prior to his academic appointment, Dr. Lai worked as a Senior Scientist at the Ministry of Science, Technology and Innovation, Malaysia. His current research areas include antimicrobial resistance and plant-pathogen interaction. His particular interest lies in the study of the antimicrobial mechanism via membrane disruption of essential oils against multi-drug resistance bacteria through various biochemical, molecular and proteomic approaches. Ultimately, he hopes to uncover and determine novel biomarkers related to antibiotic resistance that can be developed into new therapeutic strategies.",institutionString:"Higher Colleges of Technology",position:null,outsideEditionCount:0,totalCites:0,totalAuthoredChapters:"8",totalChapterViews:"0",totalEditedBooks:"0",institution:{name:"Higher Colleges of Technology",institutionURL:null,country:{name:"United Arab Emirates"}}},equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10020",title:"Operations Management",subtitle:"Emerging Trend in the Digital Era",isOpenForSubmission:!1,hash:"526f0dbdc7e4d85b82ce8383ab894b4c",slug:"operations-management-emerging-trend-in-the-digital-era",bookSignature:"Antonella Petrillo, Fabio De Felice, Germano Lambert-Torres and Erik Bonaldi",coverURL:"https://cdn.intechopen.com/books/images_new/10020.jpg",editors:[{id:"181603",title:"Dr.",name:"Antonella",middleName:null,surname:"Petrillo",slug:"antonella-petrillo",fullName:"Antonella Petrillo"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9560",title:"Creativity",subtitle:"A Force to Innovation",isOpenForSubmission:!1,hash:"58f740bc17807d5d88d647c525857b11",slug:"creativity-a-force-to-innovation",bookSignature:"Pooja Jain",coverURL:"https://cdn.intechopen.com/books/images_new/9560.jpg",editors:[{id:"316765",title:"Dr.",name:"Pooja",middleName:null,surname:"Jain",slug:"pooja-jain",fullName:"Pooja Jain"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10192",title:"Background and Management of Muscular Atrophy",subtitle:null,isOpenForSubmission:!1,hash:"eca24028d89912b5efea56e179dff089",slug:"background-and-management-of-muscular-atrophy",bookSignature:"Julianna Cseri",coverURL:"https://cdn.intechopen.com/books/images_new/10192.jpg",editors:[{id:"135579",title:"Dr.",name:"Julianna",middleName:null,surname:"Cseri",slug:"julianna-cseri",fullName:"Julianna Cseri"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9243",title:"Coastal Environments",subtitle:null,isOpenForSubmission:!1,hash:"8e05e5f631e935eef366980f2e28295d",slug:"coastal-environments",bookSignature:"Yuanzhi Zhang and X. San Liang",coverURL:"https://cdn.intechopen.com/books/images_new/9243.jpg",editors:[{id:"77597",title:"Prof.",name:"Yuanzhi",middleName:null,surname:"Zhang",slug:"yuanzhi-zhang",fullName:"Yuanzhi Zhang"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9385",title:"Renewable Energy",subtitle:"Technologies and Applications",isOpenForSubmission:!1,hash:"a6b446d19166f17f313008e6c056f3d8",slug:"renewable-energy-technologies-and-applications",bookSignature:"Tolga Taner, Archana Tiwari and Taha Selim Ustun",coverURL:"https://cdn.intechopen.com/books/images_new/9385.jpg",editors:[{id:"197240",title:"Associate Prof.",name:"Tolga",middleName:null,surname:"Taner",slug:"tolga-taner",fullName:"Tolga Taner"}],equalEditorOne:{id:"186791",title:"Dr.",name:"Archana",middleName:null,surname:"Tiwari",slug:"archana-tiwari",fullName:"Archana Tiwari",profilePictureURL:"https://mts.intechopen.com/storage/users/186791/images/system/186791.jpg",biography:"Dr. Archana Tiwari is Associate Professor at Amity University, India. Her research interests include renewable sources of energy from microalgae and further utilizing the residual biomass for the generation of value-added products, bioremediation through microalgae and microbial consortium, antioxidative enzymes and stress, and nutraceuticals from microalgae. She has been working on algal biotechnology for the last two decades. She has published her research in many international journals and has authored many books and chapters with renowned publishing houses. She has also delivered talks as an invited speaker at many national and international conferences. Dr. Tiwari is the recipient of several awards including Researcher of the Year and Distinguished Scientist.",institutionString:"Amity University",position:null,outsideEditionCount:0,totalCites:0,totalAuthoredChapters:"3",totalChapterViews:"0",totalEditedBooks:"1",institution:{name:"Amity University",institutionURL:null,country:{name:"India"}}},equalEditorTwo:{id:"197609",title:"Prof.",name:"Taha Selim",middleName:null,surname:"Ustun",slug:"taha-selim-ustun",fullName:"Taha Selim Ustun",profilePictureURL:"https://mts.intechopen.com/storage/users/197609/images/system/197609.jpeg",biography:"Dr. Taha Selim Ustun received a Ph.D. in Electrical Engineering from Victoria University, Melbourne, Australia. He is a researcher with the Fukushima Renewable Energy Institute, AIST (FREA), where he leads the Smart Grid Cybersecurity Laboratory. Prior to that, he was a faculty member with the School of Electrical and Computer Engineering, Carnegie Mellon University, Pittsburgh, PA, USA. His current research interests include power systems protection, communication in power networks, distributed generation, microgrids, electric vehicle integration, and cybersecurity in smart grids. He serves on the editorial boards of IEEE Access, IEEE Transactions on Industrial Informatics, Energies, Electronics, Electricity, World Electric Vehicle and Information journals. Dr. Ustun is a member of the IEEE 2004 and 2800, IEC Renewable Energy Management WG 8, and IEC TC 57 WG17. He has been invited to run specialist courses in Africa, India, and China. He has delivered talks for the Qatar Foundation, the World Energy Council, the Waterloo Global Science Initiative, and the European Union Energy Initiative (EUEI). His research has attracted funding from prestigious programs in Japan, Australia, the European Union, and North America.",institutionString:"Fukushima Renewable Energy Institute, AIST (FREA)",position:null,outsideEditionCount:0,totalCites:0,totalAuthoredChapters:"1",totalChapterViews:"0",totalEditedBooks:"0",institution:{name:"National Institute of Advanced Industrial Science and Technology",institutionURL:null,country:{name:"Japan"}}},equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"8985",title:"Natural Resources Management and Biological Sciences",subtitle:null,isOpenForSubmission:!1,hash:"5c2e219a6c021a40b5a20c041dea88c4",slug:"natural-resources-management-and-biological-sciences",bookSignature:"Edward R. Rhodes and Humood Naser",coverURL:"https://cdn.intechopen.com/books/images_new/8985.jpg",editors:[{id:"280886",title:"Prof.",name:"Edward R",middleName:null,surname:"Rhodes",slug:"edward-r-rhodes",fullName:"Edward R Rhodes"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10065",title:"Wavelet Theory",subtitle:null,isOpenForSubmission:!1,hash:"d8868e332169597ba2182d9b004d60de",slug:"wavelet-theory",bookSignature:"Somayeh Mohammady",coverURL:"https://cdn.intechopen.com/books/images_new/10065.jpg",editors:[{id:"109280",title:"Dr.",name:"Somayeh",middleName:null,surname:"Mohammady",slug:"somayeh-mohammady",fullName:"Somayeh Mohammady"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9644",title:"Glaciers and the Polar Environment",subtitle:null,isOpenForSubmission:!1,hash:"e8cfdc161794e3753ced54e6ff30873b",slug:"glaciers-and-the-polar-environment",bookSignature:"Masaki Kanao, Danilo Godone and Niccolò Dematteis",coverURL:"https://cdn.intechopen.com/books/images_new/9644.jpg",editors:[{id:"51959",title:"Dr.",name:"Masaki",middleName:null,surname:"Kanao",slug:"masaki-kanao",fullName:"Masaki Kanao"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9550",title:"Entrepreneurship",subtitle:"Contemporary Issues",isOpenForSubmission:!1,hash:"9b4ac1ee5b743abf6f88495452b1e5e7",slug:"entrepreneurship-contemporary-issues",bookSignature:"Mladen Turuk",coverURL:"https://cdn.intechopen.com/books/images_new/9550.jpg",editors:[{id:"319755",title:"Prof.",name:"Mladen",middleName:null,surname:"Turuk",slug:"mladen-turuk",fullName:"Mladen Turuk"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9027",title:"Human Blood Group Systems and Haemoglobinopathies",subtitle:null,isOpenForSubmission:!1,hash:"d00d8e40b11cfb2547d1122866531c7e",slug:"human-blood-group-systems-and-haemoglobinopathies",bookSignature:"Osaro Erhabor and Anjana Munshi",coverURL:"https://cdn.intechopen.com/books/images_new/9027.jpg",editors:[{id:"35140",title:null,name:"Osaro",middleName:null,surname:"Erhabor",slug:"osaro-erhabor",fullName:"Osaro Erhabor"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"8558",title:"Aerodynamics",subtitle:null,isOpenForSubmission:!1,hash:"db7263fc198dfb539073ba0260a7f1aa",slug:"aerodynamics",bookSignature:"Mofid Gorji-Bandpy and Aly-Mousaad Aly",coverURL:"https://cdn.intechopen.com/books/images_new/8558.jpg",editors:[{id:"35542",title:"Prof.",name:"Mofid",middleName:null,surname:"Gorji-Bandpy",slug:"mofid-gorji-bandpy",fullName:"Mofid Gorji-Bandpy"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}}],offset:12,limit:12,total:5249},hotBookTopics:{hotBooks:[],offset:0,limit:12,total:null},publish:{},publishingProposal:{success:null,errors:{}},books:{featuredBooks:[{type:"book",id:"9521",title:"Antimicrobial Resistance",subtitle:"A One Health Perspective",isOpenForSubmission:!1,hash:"30949e78832e1afba5606634b52056ab",slug:"antimicrobial-resistance-a-one-health-perspective",bookSignature:"Mihai Mareș, Swee Hua Erin Lim, Kok-Song Lai and Romeo-Teodor Cristina",coverURL:"https://cdn.intechopen.com/books/images_new/9521.jpg",editors:[{id:"88785",title:"Prof.",name:"Mihai",middleName:null,surname:"Mares",slug:"mihai-mares",fullName:"Mihai Mares"}],equalEditorOne:{id:"190224",title:"Dr.",name:"Swee Hua Erin",middleName:null,surname:"Lim",slug:"swee-hua-erin-lim",fullName:"Swee Hua Erin Lim",profilePictureURL:"https://mts.intechopen.com/storage/users/190224/images/system/190224.png",biography:"Dr. Erin Lim is presently working as an Assistant Professor in the Division of Health Sciences, Abu Dhabi Women\\'s College, Higher Colleges of Technology in Abu Dhabi, United Arab Emirates and is affiliated as an Associate Professor to Perdana University-Royal College of Surgeons in Ireland, Selangor, Malaysia. She obtained her Ph.D. from Universiti Putra Malaysia in 2010 with a National Science Fellowship awarded from the Ministry of Science, Technology and Innovation Malaysia and has been actively involved in research ever since. Her main research interests include analysis of carriage and transmission of multidrug resistant bacteria in non-conventional settings, besides an interest in natural products for antimicrobial testing. She is heavily involved in the elucidation of mechanisms of reversal of resistance in bacteria in addition to investigating the immunological analyses of diseases, development of vaccination and treatment models in animals. She hopes her work will support the discovery of therapeutics in the clinical setting and assist in the combat against the burden of antibiotic resistance.",institutionString:"Abu Dhabi Women’s College",position:null,outsideEditionCount:0,totalCites:0,totalAuthoredChapters:"3",totalChapterViews:"0",totalEditedBooks:"0",institution:{name:"Perdana University",institutionURL:null,country:{name:"Malaysia"}}},equalEditorTwo:{id:"221544",title:"Dr.",name:"Kok-Song",middleName:null,surname:"Lai",slug:"kok-song-lai",fullName:"Kok-Song Lai",profilePictureURL:"https://mts.intechopen.com/storage/users/221544/images/system/221544.jpeg",biography:"Dr. Lai Kok Song is an Assistant Professor in the Division of Health Sciences, Abu Dhabi Women\\'s College, Higher Colleges of Technology in Abu Dhabi, United Arab Emirates. He obtained his Ph.D. in Biological Sciences from Nara Institute of Science and Technology, Japan in 2012. Prior to his academic appointment, Dr. Lai worked as a Senior Scientist at the Ministry of Science, Technology and Innovation, Malaysia. His current research areas include antimicrobial resistance and plant-pathogen interaction. His particular interest lies in the study of the antimicrobial mechanism via membrane disruption of essential oils against multi-drug resistance bacteria through various biochemical, molecular and proteomic approaches. Ultimately, he hopes to uncover and determine novel biomarkers related to antibiotic resistance that can be developed into new therapeutic strategies.",institutionString:"Higher Colleges of Technology",position:null,outsideEditionCount:0,totalCites:0,totalAuthoredChapters:"8",totalChapterViews:"0",totalEditedBooks:"0",institution:{name:"Higher Colleges of Technology",institutionURL:null,country:{name:"United Arab Emirates"}}},equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10020",title:"Operations Management",subtitle:"Emerging Trend in the Digital Era",isOpenForSubmission:!1,hash:"526f0dbdc7e4d85b82ce8383ab894b4c",slug:"operations-management-emerging-trend-in-the-digital-era",bookSignature:"Antonella Petrillo, Fabio De Felice, Germano Lambert-Torres and Erik Bonaldi",coverURL:"https://cdn.intechopen.com/books/images_new/10020.jpg",editors:[{id:"181603",title:"Dr.",name:"Antonella",middleName:null,surname:"Petrillo",slug:"antonella-petrillo",fullName:"Antonella Petrillo"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9560",title:"Creativity",subtitle:"A Force to Innovation",isOpenForSubmission:!1,hash:"58f740bc17807d5d88d647c525857b11",slug:"creativity-a-force-to-innovation",bookSignature:"Pooja Jain",coverURL:"https://cdn.intechopen.com/books/images_new/9560.jpg",editors:[{id:"316765",title:"Dr.",name:"Pooja",middleName:null,surname:"Jain",slug:"pooja-jain",fullName:"Pooja Jain"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10192",title:"Background and Management of Muscular Atrophy",subtitle:null,isOpenForSubmission:!1,hash:"eca24028d89912b5efea56e179dff089",slug:"background-and-management-of-muscular-atrophy",bookSignature:"Julianna Cseri",coverURL:"https://cdn.intechopen.com/books/images_new/10192.jpg",editors:[{id:"135579",title:"Dr.",name:"Julianna",middleName:null,surname:"Cseri",slug:"julianna-cseri",fullName:"Julianna Cseri"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9243",title:"Coastal Environments",subtitle:null,isOpenForSubmission:!1,hash:"8e05e5f631e935eef366980f2e28295d",slug:"coastal-environments",bookSignature:"Yuanzhi Zhang and X. San Liang",coverURL:"https://cdn.intechopen.com/books/images_new/9243.jpg",editors:[{id:"77597",title:"Prof.",name:"Yuanzhi",middleName:null,surname:"Zhang",slug:"yuanzhi-zhang",fullName:"Yuanzhi Zhang"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9385",title:"Renewable Energy",subtitle:"Technologies and Applications",isOpenForSubmission:!1,hash:"a6b446d19166f17f313008e6c056f3d8",slug:"renewable-energy-technologies-and-applications",bookSignature:"Tolga Taner, Archana Tiwari and Taha Selim Ustun",coverURL:"https://cdn.intechopen.com/books/images_new/9385.jpg",editors:[{id:"197240",title:"Associate Prof.",name:"Tolga",middleName:null,surname:"Taner",slug:"tolga-taner",fullName:"Tolga Taner"}],equalEditorOne:{id:"186791",title:"Dr.",name:"Archana",middleName:null,surname:"Tiwari",slug:"archana-tiwari",fullName:"Archana Tiwari",profilePictureURL:"https://mts.intechopen.com/storage/users/186791/images/system/186791.jpg",biography:"Dr. Archana Tiwari is Associate Professor at Amity University, India. Her research interests include renewable sources of energy from microalgae and further utilizing the residual biomass for the generation of value-added products, bioremediation through microalgae and microbial consortium, antioxidative enzymes and stress, and nutraceuticals from microalgae. She has been working on algal biotechnology for the last two decades. She has published her research in many international journals and has authored many books and chapters with renowned publishing houses. She has also delivered talks as an invited speaker at many national and international conferences. Dr. Tiwari is the recipient of several awards including Researcher of the Year and Distinguished Scientist.",institutionString:"Amity University",position:null,outsideEditionCount:0,totalCites:0,totalAuthoredChapters:"3",totalChapterViews:"0",totalEditedBooks:"1",institution:{name:"Amity University",institutionURL:null,country:{name:"India"}}},equalEditorTwo:{id:"197609",title:"Prof.",name:"Taha Selim",middleName:null,surname:"Ustun",slug:"taha-selim-ustun",fullName:"Taha Selim Ustun",profilePictureURL:"https://mts.intechopen.com/storage/users/197609/images/system/197609.jpeg",biography:"Dr. Taha Selim Ustun received a Ph.D. in Electrical Engineering from Victoria University, Melbourne, Australia. He is a researcher with the Fukushima Renewable Energy Institute, AIST (FREA), where he leads the Smart Grid Cybersecurity Laboratory. Prior to that, he was a faculty member with the School of Electrical and Computer Engineering, Carnegie Mellon University, Pittsburgh, PA, USA. His current research interests include power systems protection, communication in power networks, distributed generation, microgrids, electric vehicle integration, and cybersecurity in smart grids. He serves on the editorial boards of IEEE Access, IEEE Transactions on Industrial Informatics, Energies, Electronics, Electricity, World Electric Vehicle and Information journals. Dr. Ustun is a member of the IEEE 2004 and 2800, IEC Renewable Energy Management WG 8, and IEC TC 57 WG17. He has been invited to run specialist courses in Africa, India, and China. He has delivered talks for the Qatar Foundation, the World Energy Council, the Waterloo Global Science Initiative, and the European Union Energy Initiative (EUEI). His research has attracted funding from prestigious programs in Japan, Australia, the European Union, and North America.",institutionString:"Fukushima Renewable Energy Institute, AIST (FREA)",position:null,outsideEditionCount:0,totalCites:0,totalAuthoredChapters:"1",totalChapterViews:"0",totalEditedBooks:"0",institution:{name:"National Institute of Advanced Industrial Science and Technology",institutionURL:null,country:{name:"Japan"}}},equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"8985",title:"Natural Resources Management and Biological Sciences",subtitle:null,isOpenForSubmission:!1,hash:"5c2e219a6c021a40b5a20c041dea88c4",slug:"natural-resources-management-and-biological-sciences",bookSignature:"Edward R. Rhodes and Humood Naser",coverURL:"https://cdn.intechopen.com/books/images_new/8985.jpg",editors:[{id:"280886",title:"Prof.",name:"Edward R",middleName:null,surname:"Rhodes",slug:"edward-r-rhodes",fullName:"Edward R Rhodes"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10065",title:"Wavelet Theory",subtitle:null,isOpenForSubmission:!1,hash:"d8868e332169597ba2182d9b004d60de",slug:"wavelet-theory",bookSignature:"Somayeh Mohammady",coverURL:"https://cdn.intechopen.com/books/images_new/10065.jpg",editors:[{id:"109280",title:"Dr.",name:"Somayeh",middleName:null,surname:"Mohammady",slug:"somayeh-mohammady",fullName:"Somayeh Mohammady"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9644",title:"Glaciers and the Polar Environment",subtitle:null,isOpenForSubmission:!1,hash:"e8cfdc161794e3753ced54e6ff30873b",slug:"glaciers-and-the-polar-environment",bookSignature:"Masaki Kanao, Danilo Godone and Niccolò Dematteis",coverURL:"https://cdn.intechopen.com/books/images_new/9644.jpg",editors:[{id:"51959",title:"Dr.",name:"Masaki",middleName:null,surname:"Kanao",slug:"masaki-kanao",fullName:"Masaki Kanao"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9550",title:"Entrepreneurship",subtitle:"Contemporary Issues",isOpenForSubmission:!1,hash:"9b4ac1ee5b743abf6f88495452b1e5e7",slug:"entrepreneurship-contemporary-issues",bookSignature:"Mladen Turuk",coverURL:"https://cdn.intechopen.com/books/images_new/9550.jpg",editors:[{id:"319755",title:"Prof.",name:"Mladen",middleName:null,surname:"Turuk",slug:"mladen-turuk",fullName:"Mladen Turuk"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}}],latestBooks:[{type:"book",id:"9243",title:"Coastal Environments",subtitle:null,isOpenForSubmission:!1,hash:"8e05e5f631e935eef366980f2e28295d",slug:"coastal-environments",bookSignature:"Yuanzhi Zhang and X. San Liang",coverURL:"https://cdn.intechopen.com/books/images_new/9243.jpg",editedByType:"Edited by",editors:[{id:"77597",title:"Prof.",name:"Yuanzhi",middleName:null,surname:"Zhang",slug:"yuanzhi-zhang",fullName:"Yuanzhi Zhang"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10020",title:"Operations Management",subtitle:"Emerging Trend in the Digital Era",isOpenForSubmission:!1,hash:"526f0dbdc7e4d85b82ce8383ab894b4c",slug:"operations-management-emerging-trend-in-the-digital-era",bookSignature:"Antonella Petrillo, Fabio De Felice, Germano Lambert-Torres and Erik Bonaldi",coverURL:"https://cdn.intechopen.com/books/images_new/10020.jpg",editedByType:"Edited by",editors:[{id:"181603",title:"Dr.",name:"Antonella",middleName:null,surname:"Petrillo",slug:"antonella-petrillo",fullName:"Antonella Petrillo"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"9521",title:"Antimicrobial Resistance",subtitle:"A One Health Perspective",isOpenForSubmission:!1,hash:"30949e78832e1afba5606634b52056ab",slug:"antimicrobial-resistance-a-one-health-perspective",bookSignature:"Mihai Mareș, Swee Hua Erin Lim, Kok-Song Lai and Romeo-Teodor Cristina",coverURL:"https://cdn.intechopen.com/books/images_new/9521.jpg",editedByType:"Edited by",editors:[{id:"88785",title:"Prof.",name:"Mihai",middleName:null,surname:"Mares",slug:"mihai-mares",fullName:"Mihai Mares"}],equalEditorOne:{id:"190224",title:"Dr.",name:"Swee Hua Erin",middleName:null,surname:"Lim",slug:"swee-hua-erin-lim",fullName:"Swee Hua Erin Lim",profilePictureURL:"https://mts.intechopen.com/storage/users/190224/images/system/190224.png",biography:"Dr. Erin Lim is presently working as an Assistant Professor in the Division of Health Sciences, Abu Dhabi Women\\'s College, Higher Colleges of Technology in Abu Dhabi, United Arab Emirates and is affiliated as an Associate Professor to Perdana University-Royal College of Surgeons in Ireland, Selangor, Malaysia. She obtained her Ph.D. from Universiti Putra Malaysia in 2010 with a National Science Fellowship awarded from the Ministry of Science, Technology and Innovation Malaysia and has been actively involved in research ever since. Her main research interests include analysis of carriage and transmission of multidrug resistant bacteria in non-conventional settings, besides an interest in natural products for antimicrobial testing. She is heavily involved in the elucidation of mechanisms of reversal of resistance in bacteria in addition to investigating the immunological analyses of diseases, development of vaccination and treatment models in animals. She hopes her work will support the discovery of therapeutics in the clinical setting and assist in the combat against the burden of antibiotic resistance.",institutionString:"Abu Dhabi Women’s College",position:null,outsideEditionCount:0,totalCites:0,totalAuthoredChapters:"3",totalChapterViews:"0",totalEditedBooks:"0",institution:{name:"Perdana University",institutionURL:null,country:{name:"Malaysia"}}},equalEditorTwo:{id:"221544",title:"Dr.",name:"Kok-Song",middleName:null,surname:"Lai",slug:"kok-song-lai",fullName:"Kok-Song Lai",profilePictureURL:"https://mts.intechopen.com/storage/users/221544/images/system/221544.jpeg",biography:"Dr. Lai Kok Song is an Assistant Professor in the Division of Health Sciences, Abu Dhabi Women\\'s College, Higher Colleges of Technology in Abu Dhabi, United Arab Emirates. He obtained his Ph.D. in Biological Sciences from Nara Institute of Science and Technology, Japan in 2012. Prior to his academic appointment, Dr. Lai worked as a Senior Scientist at the Ministry of Science, Technology and Innovation, Malaysia. His current research areas include antimicrobial resistance and plant-pathogen interaction. His particular interest lies in the study of the antimicrobial mechanism via membrane disruption of essential oils against multi-drug resistance bacteria through various biochemical, molecular and proteomic approaches. Ultimately, he hopes to uncover and determine novel biomarkers related to antibiotic resistance that can be developed into new therapeutic strategies.",institutionString:"Higher Colleges of Technology",position:null,outsideEditionCount:0,totalCites:0,totalAuthoredChapters:"8",totalChapterViews:"0",totalEditedBooks:"0",institution:{name:"Higher Colleges of Technology",institutionURL:null,country:{name:"United Arab Emirates"}}},equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"9560",title:"Creativity",subtitle:"A Force to Innovation",isOpenForSubmission:!1,hash:"58f740bc17807d5d88d647c525857b11",slug:"creativity-a-force-to-innovation",bookSignature:"Pooja Jain",coverURL:"https://cdn.intechopen.com/books/images_new/9560.jpg",editedByType:"Edited by",editors:[{id:"316765",title:"Dr.",name:"Pooja",middleName:null,surname:"Jain",slug:"pooja-jain",fullName:"Pooja Jain"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"9669",title:"Recent Advances in Rice Research",subtitle:null,isOpenForSubmission:!1,hash:"12b06cc73e89af1e104399321cc16a75",slug:"recent-advances-in-rice-research",bookSignature:"Mahmood-ur- Rahman Ansari",coverURL:"https://cdn.intechopen.com/books/images_new/9669.jpg",editedByType:"Edited by",editors:[{id:"185476",title:"Dr.",name:"Mahmood-Ur-",middleName:null,surname:"Rahman Ansari",slug:"mahmood-ur-rahman-ansari",fullName:"Mahmood-Ur- Rahman Ansari"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10192",title:"Background and Management of Muscular Atrophy",subtitle:null,isOpenForSubmission:!1,hash:"eca24028d89912b5efea56e179dff089",slug:"background-and-management-of-muscular-atrophy",bookSignature:"Julianna Cseri",coverURL:"https://cdn.intechopen.com/books/images_new/10192.jpg",editedByType:"Edited by",editors:[{id:"135579",title:"Dr.",name:"Julianna",middleName:null,surname:"Cseri",slug:"julianna-cseri",fullName:"Julianna Cseri"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"9550",title:"Entrepreneurship",subtitle:"Contemporary Issues",isOpenForSubmission:!1,hash:"9b4ac1ee5b743abf6f88495452b1e5e7",slug:"entrepreneurship-contemporary-issues",bookSignature:"Mladen Turuk",coverURL:"https://cdn.intechopen.com/books/images_new/9550.jpg",editedByType:"Edited by",editors:[{id:"319755",title:"Prof.",name:"Mladen",middleName:null,surname:"Turuk",slug:"mladen-turuk",fullName:"Mladen Turuk"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10065",title:"Wavelet Theory",subtitle:null,isOpenForSubmission:!1,hash:"d8868e332169597ba2182d9b004d60de",slug:"wavelet-theory",bookSignature:"Somayeh Mohammady",coverURL:"https://cdn.intechopen.com/books/images_new/10065.jpg",editedByType:"Edited by",editors:[{id:"109280",title:"Dr.",name:"Somayeh",middleName:null,surname:"Mohammady",slug:"somayeh-mohammady",fullName:"Somayeh Mohammady"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"9313",title:"Clay Science and Technology",subtitle:null,isOpenForSubmission:!1,hash:"6fa7e70396ff10620e032bb6cfa6fb72",slug:"clay-science-and-technology",bookSignature:"Gustavo Morari Do Nascimento",coverURL:"https://cdn.intechopen.com/books/images_new/9313.jpg",editedByType:"Edited by",editors:[{id:"7153",title:"Prof.",name:"Gustavo",middleName:null,surname:"Morari Do Nascimento",slug:"gustavo-morari-do-nascimento",fullName:"Gustavo Morari Do Nascimento"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"9888",title:"Nuclear Power Plants",subtitle:"The Processes from the Cradle to the Grave",isOpenForSubmission:!1,hash:"c2c8773e586f62155ab8221ebb72a849",slug:"nuclear-power-plants-the-processes-from-the-cradle-to-the-grave",bookSignature:"Nasser Awwad",coverURL:"https://cdn.intechopen.com/books/images_new/9888.jpg",editedByType:"Edited by",editors:[{id:"145209",title:"Prof.",name:"Nasser",middleName:"S",surname:"Awwad",slug:"nasser-awwad",fullName:"Nasser Awwad"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}}]},subject:{topic:{id:"263",title:"Archaeology",slug:"archaeology",parent:{title:"Social Sciences",slug:"social-sciences"},numberOfBooks:3,numberOfAuthorsAndEditors:62,numberOfWosCitations:41,numberOfCrossrefCitations:21,numberOfDimensionsCitations:47,videoUrl:null,fallbackUrl:null,description:null},booksByTopicFilter:{topicSlug:"archaeology",sort:"-publishedDate",limit:12,offset:0},booksByTopicCollection:[{type:"book",id:"9251",title:"Pleistocene Archaeology",subtitle:"Migration, Technology, and Adaptation",isOpenForSubmission:!1,hash:"65e1040ad23f0385a56f2d0472b4aee5",slug:"pleistocene-archaeology-migration-technology-and-adaptation",bookSignature:"Rintaro Ono and Alfred Pawlik",coverURL:"https://cdn.intechopen.com/books/images_new/9251.jpg",editedByType:"Edited by",editors:[{id:"177123",title:"Ph.D.",name:"Rintaro",middleName:null,surname:"Ono",slug:"rintaro-ono",fullName:"Rintaro Ono"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"7699",title:"Advanced Methods and New Materials for Cultural Heritage Preservation",subtitle:null,isOpenForSubmission:!1,hash:"4e4bd9a9b8cef15b9739f45ef05927c8",slug:"advanced-methods-and-new-materials-for-cultural-heritage-preservation",bookSignature:"Daniela Turcanu-Carutiu and Rodica-Mariana Ion",coverURL:"https://cdn.intechopen.com/books/images_new/7699.jpg",editedByType:"Edited by",editors:[{id:"176482",title:"Prof.",name:"Daniela",middleName:null,surname:"Turcanu-Carutiu",slug:"daniela-turcanu-carutiu",fullName:"Daniela Turcanu-Carutiu"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"1999",title:"Archaeology",subtitle:"New Approaches in Theory and Techniques",isOpenForSubmission:!1,hash:"ec63f4de8c846ec578d2bca6cbf35ac2",slug:"archaeology-new-approaches-in-theory-and-techniques",bookSignature:"Imma Ollich-Castanyer",coverURL:"https://cdn.intechopen.com/books/images_new/1999.jpg",editedByType:"Edited by",editors:[{id:"118972",title:"Dr.",name:"Imma",middleName:null,surname:"Ollich-Castanyer",slug:"imma-ollich-castanyer",fullName:"Imma Ollich-Castanyer"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}}],booksByTopicTotal:3,mostCitedChapters:[{id:"36571",doi:"10.5772/38066",title:"Archaeometallurgical Investigation of Iron Artifacts from Shipwrecks - A Review",slug:"archaeometallurgical-investigation-of-iron-artifacts-from-shipwrecks-a-review",totalDownloads:4868,totalCrossrefCites:3,totalDimensionsCites:12,book:{slug:"archaeology-new-approaches-in-theory-and-techniques",title:"Archaeology",fullTitle:"Archaeology, New Approaches in Theory and Techniques"},signatures:"D. Ashkenazi, E. Mentovich, D. Cvikel, O. Barkai, A. Aronson and Y. Kahanov",authors:[{id:"115412",title:"Dr.",name:"Dana",middleName:null,surname:"Ashkenazi",slug:"dana-ashkenazi",fullName:"Dana Ashkenazi"},{id:"115414",title:"Dr.",name:"Elad",middleName:null,surname:"Mentovich",slug:"elad-mentovich",fullName:"Elad Mentovich"},{id:"115415",title:"Dr.",name:"Yaacov",middleName:null,surname:"Kahanov",slug:"yaacov-kahanov",fullName:"Yaacov Kahanov"},{id:"115416",title:"Dr.",name:"Deborah",middleName:null,surname:"Cvikel",slug:"deborah-cvikel",fullName:"Deborah Cvikel"},{id:"115419",title:"MSc.",name:"Ofra",middleName:null,surname:"Barkai",slug:"ofra-barkai",fullName:"Ofra Barkai"},{id:"115420",title:"BSc.",name:"Ayal",middleName:null,surname:"Aronson",slug:"ayal-aronson",fullName:"Ayal Aronson"}]},{id:"36570",doi:"10.5772/45619",title:"Archaeological Geophysics - From Basics to New Perspectives",slug:"archaeological-geophysics-from-basics-to-new-perspectives",totalDownloads:5754,totalCrossrefCites:1,totalDimensionsCites:5,book:{slug:"archaeology-new-approaches-in-theory-and-techniques",title:"Archaeology",fullTitle:"Archaeology, New Approaches in Theory and Techniques"},signatures:"Roger Sala, Ekhine Garcia and Robert Tamba",authors:[{id:"131865",title:"Mr.",name:"Roger",middleName:null,surname:"Sala",slug:"roger-sala",fullName:"Roger Sala"}]},{id:"70612",doi:"10.5772/intechopen.89154",title:"The Technological Diversity of Lithic Industries in Eastern South America during the Late Pleistocene-Holocene Transition",slug:"the-technological-diversity-of-lithic-industries-in-eastern-south-america-during-the-late-pleistocen",totalDownloads:198,totalCrossrefCites:1,totalDimensionsCites:4,book:{slug:"pleistocene-archaeology-migration-technology-and-adaptation",title:"Pleistocene Archaeology",fullTitle:"Pleistocene Archaeology - Migration, Technology, and Adaptation"},signatures:"João Carlos Moreno De Sousa",authors:[{id:"303361",title:"Dr.",name:"João Carlos",middleName:null,surname:"Moreno De Sousa",slug:"joao-carlos-moreno-de-sousa",fullName:"João Carlos Moreno De Sousa"}]}],mostDownloadedChaptersLast30Days:[{id:"36570",title:"Archaeological Geophysics - From Basics to New Perspectives",slug:"archaeological-geophysics-from-basics-to-new-perspectives",totalDownloads:5757,totalCrossrefCites:1,totalDimensionsCites:5,book:{slug:"archaeology-new-approaches-in-theory-and-techniques",title:"Archaeology",fullTitle:"Archaeology, New Approaches in Theory and Techniques"},signatures:"Roger Sala, Ekhine Garcia and Robert Tamba",authors:[{id:"131865",title:"Mr.",name:"Roger",middleName:null,surname:"Sala",slug:"roger-sala",fullName:"Roger Sala"}]},{id:"36569",title:"GIS Techniques in Archaeology: An Archaeoastronomical Approach",slug:"gis-techniques-in-archaeology-an-archaeoastronomical-approach",totalDownloads:2620,totalCrossrefCites:2,totalDimensionsCites:3,book:{slug:"archaeology-new-approaches-in-theory-and-techniques",title:"Archaeology",fullTitle:"Archaeology, New Approaches in Theory and Techniques"},signatures:"J. Mejuto, J. Gómez Castaño and G. Rodríguez-Caderot",authors:[{id:"118683",title:"Dr.",name:"Gracia",middleName:null,surname:"Rodriguez-Caderot",slug:"gracia-rodriguez-caderot",fullName:"Gracia Rodriguez-Caderot"},{id:"138620",title:"Dr.",name:"Javier",middleName:null,surname:"Mejuto",slug:"javier-mejuto",fullName:"Javier Mejuto"}]},{id:"73386",title:"Island Migration, Resource Use, and Lithic Technology by Anatomically Modern Humans in Wallacea",slug:"island-migration-resource-use-and-lithic-technology-by-anatomically-modern-humans-in-wallacea",totalDownloads:231,totalCrossrefCites:1,totalDimensionsCites:2,book:{slug:"pleistocene-archaeology-migration-technology-and-adaptation",title:"Pleistocene Archaeology",fullTitle:"Pleistocene Archaeology - Migration, Technology, and Adaptation"},signatures:"Rintaro Ono, Alfred Pawlik and Riczar Fuentes",authors:[{id:"177123",title:"Ph.D.",name:"Rintaro",middleName:null,surname:"Ono",slug:"rintaro-ono",fullName:"Rintaro Ono"},{id:"300616",title:"Dr.",name:"Alfred",middleName:null,surname:"Pawlik",slug:"alfred-pawlik",fullName:"Alfred Pawlik"},{id:"330591",title:"Dr.",name:"Riczar",middleName:null,surname:"Fuentes",slug:"riczar-fuentes",fullName:"Riczar Fuentes"}]},{id:"36567",title:"An Integrated Implementation of Written and Material Sources - Conceptual Challenge and Technological Resources",slug:"an-integrated-implementation-of-written-and-material-sources-conceptual-challenge-and-technological-",totalDownloads:1881,totalCrossrefCites:1,totalDimensionsCites:2,book:{slug:"archaeology-new-approaches-in-theory-and-techniques",title:"Archaeology",fullTitle:"Archaeology, New Approaches in Theory and Techniques"},signatures:"Alfred Mauri, Esther Travé and Pablo del Fresno",authors:[{id:"123472",title:"Dr.",name:"Alfred",middleName:null,surname:"Mauri",slug:"alfred-mauri",fullName:"Alfred Mauri"},{id:"123476",title:"Dr.",name:"Esther",middleName:null,surname:"Travé",slug:"esther-trave",fullName:"Esther Travé"},{id:"123477",title:"Mr.",name:"Pablo",middleName:null,surname:"Del Fresno",slug:"pablo-del-fresno",fullName:"Pablo Del Fresno"}]},{id:"36568",title:"Geoarchaeology of Palaeo-American Sites in Pleistocene Glacigenic Deposits",slug:"geoarchaeology-of-the-palaeo-american-sites-buried-in-pleistocene-glacial-glacigenic-contexts",totalDownloads:2740,totalCrossrefCites:1,totalDimensionsCites:1,book:{slug:"archaeology-new-approaches-in-theory-and-techniques",title:"Archaeology",fullTitle:"Archaeology, New Approaches in Theory and Techniques"},signatures:"Jiří Chlachula",authors:[{id:"58290",title:"Dr.",name:"Jiri",middleName:null,surname:"Chlachula",slug:"jiri-chlachula",fullName:"Jiri Chlachula"}]},{id:"36573",title:"Experimental Archaeology at L'Esquerda - Crops, Storage, Metalcraft and Earthworks in Mediaeval and Ancient Times",slug:"experimental-archaeology-at-l-esquerda-crops-storage-metalcraft-and-earthworks-in-mediaeval-and-anci",totalDownloads:2270,totalCrossrefCites:1,totalDimensionsCites:2,book:{slug:"archaeology-new-approaches-in-theory-and-techniques",title:"Archaeology",fullTitle:"Archaeology, New Approaches in Theory and Techniques"},signatures:"Imma Ollich, Montserrat de Rocafiguera, Maria Ocaña, Carme Cubero and Oriol Amblàs",authors:[{id:"118972",title:"Dr.",name:"Imma",middleName:null,surname:"Ollich-Castanyer",slug:"imma-ollich-castanyer",fullName:"Imma Ollich-Castanyer"},{id:"120142",title:"Dr.",name:"Carme",middleName:null,surname:"Cubero",slug:"carme-cubero",fullName:"Carme Cubero"},{id:"120208",title:"MSc.",name:"Montserrat",middleName:null,surname:"Rocafiguera",slug:"montserrat-rocafiguera",fullName:"Montserrat Rocafiguera"},{id:"120209",title:"MSc.",name:"Maria",middleName:null,surname:"Ocana",slug:"maria-ocana",fullName:"Maria Ocana"},{id:"120210",title:"MSc.",name:"Oriol",middleName:null,surname:"Amblas",slug:"oriol-amblas",fullName:"Oriol Amblas"}]},{id:"65726",title:"Introductory Chapter: Environmental Characteristics of a Dobrudja Famous Archeological Monument",slug:"introductory-chapter-environmental-characteristics-of-a-dobrudja-famous-archeological-monument",totalDownloads:409,totalCrossrefCites:0,totalDimensionsCites:0,book:{slug:"advanced-methods-and-new-materials-for-cultural-heritage-preservation",title:"Advanced Methods and New Materials for Cultural Heritage Preservation",fullTitle:"Advanced Methods and New Materials for Cultural Heritage Preservation"},signatures:"Daniela Turcanu-Carutiu and Rodica-Mariana Ion",authors:[{id:"176482",title:"Prof.",name:"Daniela",middleName:null,surname:"Turcanu-Carutiu",slug:"daniela-turcanu-carutiu",fullName:"Daniela Turcanu-Carutiu"}]},{id:"73769",title:"Human Evolution in the Center of the Old World: An Updated Review of the South Asian Paleolithic",slug:"human-evolution-in-the-center-of-the-old-world-an-updated-review-of-the-south-asian-paleolithic",totalDownloads:188,totalCrossrefCites:0,totalDimensionsCites:0,book:{slug:"pleistocene-archaeology-migration-technology-and-adaptation",title:"Pleistocene Archaeology",fullTitle:"Pleistocene Archaeology - Migration, Technology, and Adaptation"},signatures:"Parth R. Chauhan",authors:[{id:"307040",title:"Dr.",name:"Parth",middleName:null,surname:"Chauhan",slug:"parth-chauhan",fullName:"Parth Chauhan"}]},{id:"72184",title:"The Migration, Culture, and Lifestyle of the Paleolithic Ryukyu Islanders",slug:"the-migration-culture-and-lifestyle-of-the-paleolithic-ryukyu-islanders",totalDownloads:215,totalCrossrefCites:1,totalDimensionsCites:1,book:{slug:"pleistocene-archaeology-migration-technology-and-adaptation",title:"Pleistocene Archaeology",fullTitle:"Pleistocene Archaeology - Migration, Technology, and Adaptation"},signatures:"Masaki Fujita, Shinji Yamasaki and Ryohei Sawaura",authors:[{id:"304926",title:"Ph.D.",name:"Masaki",middleName:null,surname:"Fujita",slug:"masaki-fujita",fullName:"Masaki Fujita"},{id:"304927",title:"Dr.",name:"Shinji",middleName:null,surname:"Yamasaki",slug:"shinji-yamasaki",fullName:"Shinji Yamasaki"},{id:"304929",title:"Dr.",name:"Ryohei",middleName:null,surname:"Sawaura",slug:"ryohei-sawaura",fullName:"Ryohei Sawaura"}]},{id:"36575",title:"Heritage Protection in Pécs/Sopianae",slug:"heritage-protection-in-p-cs-sopianae",totalDownloads:2318,totalCrossrefCites:0,totalDimensionsCites:0,book:{slug:"archaeology-new-approaches-in-theory-and-techniques",title:"Archaeology",fullTitle:"Archaeology, New Approaches in Theory and Techniques"},signatures:"Tamás Molnár",authors:[{id:"112700",title:"Dr.",name:"Tamás",middleName:null,surname:"Molnár",slug:"tamas-molnar",fullName:"Tamás Molnár"}]}],onlineFirstChaptersFilter:{topicSlug:"archaeology",limit:3,offset:0},onlineFirstChaptersCollection:[],onlineFirstChaptersTotal:0},preDownload:{success:null,errors:{}},aboutIntechopen:{},privacyPolicy:{},peerReviewing:{},howOpenAccessPublishingWithIntechopenWorks:{},sponsorshipBooks:{sponsorshipBooks:[{type:"book",id:"10176",title:"Microgrids and Local Energy Systems",subtitle:null,isOpenForSubmission:!0,hash:"c32b4a5351a88f263074b0d0ca813a9c",slug:null,bookSignature:"Prof. Nick Jenkins",coverURL:"https://cdn.intechopen.com/books/images_new/10176.jpg",editedByType:null,editors:[{id:"55219",title:"Prof.",name:"Nick",middleName:null,surname:"Jenkins",slug:"nick-jenkins",fullName:"Nick Jenkins"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}}],offset:8,limit:8,total:1},route:{name:"chapter.detail",path:"/books/recent-advances-in-porous-ceramics/processing-of-ceramic-foams",hash:"",query:{},params:{book:"recent-advances-in-porous-ceramics",chapter:"processing-of-ceramic-foams"},fullPath:"/books/recent-advances-in-porous-ceramics/processing-of-ceramic-foams",meta:{},from:{name:null,path:"/",hash:"",query:{},params:{},fullPath:"/",meta:{}}}},function(){var e;(e=document.currentScript||document.scripts[document.scripts.length-1]).parentNode.removeChild(e)}()