Paracetamol side effects.
\r\n\tComputational fluid dynamics is composed of turbulence and modeling, turbulent heat transfer, fluid-solid interaction, chemical reactions and combustion, the finite volume method for unsteady flows, sports engineering problem and simulations - Aerodynamics, fluid dynamics, biomechanics, blood flow.
",isbn:"978-1-83968-248-3",printIsbn:"978-1-83968-247-6",pdfIsbn:"978-1-83968-321-3",doi:null,price:0,priceEur:0,priceUsd:0,slug:null,numberOfPages:0,isOpenForSubmission:!0,hash:"1f8fd29e4b72dbfe632f47840b369b11",bookSignature:"Dr. Suvanjan Bhattacharyya",publishedDate:null,coverURL:"https://cdn.intechopen.com/books/images_new/10695.jpg",keywords:"Free Turbulent Flow, Discretisation Methods, Aerodynamics, Phase Flow, Bluff-Body, Complex Geometries, Drag Force, Flow Separation, Laminar Diffusion Flame, Non-Premixed Combustion, Fluid Dynamics, Biomechanics",numberOfDownloads:null,numberOfWosCitations:0,numberOfCrossrefCitations:null,numberOfDimensionsCitations:null,numberOfTotalCitations:null,isAvailableForWebshopOrdering:!0,dateEndFirstStepPublish:"January 28th 2021",dateEndSecondStepPublish:"February 25th 2021",dateEndThirdStepPublish:"April 26th 2021",dateEndFourthStepPublish:"July 15th 2021",dateEndFifthStepPublish:"September 13th 2021",remainingDaysToSecondStep:"2 months",secondStepPassed:!0,currentStepOfPublishingProcess:3,editedByType:null,kuFlag:!1,biosketch:"Dr. Suvanjan Bhattacharyya is currently working as an Assistant Professor in the Department of Mechanical Engineering of BITS Pilani, Pilani Campus. His research interest lies in computational fluid dynamics, experimental heat transfer enhancement, solar energy, renewable energy, etc.",coeditorOneBiosketch:null,coeditorTwoBiosketch:null,coeditorThreeBiosketch:null,coeditorFourBiosketch:null,coeditorFiveBiosketch:null,editors:[{id:"233630",title:"Dr.",name:"Suvanjan",middleName:null,surname:"Bhattacharyya",slug:"suvanjan-bhattacharyya",fullName:"Suvanjan Bhattacharyya",profilePictureURL:"https://mts.intechopen.com/storage/users/233630/images/system/233630.png",biography:"Dr. Suvanjan Bhattacharyya is currently working as an Assistant Professor in the Department of Mechanical Engineering of BITS Pilani, Pilani Campus, India. Dr. Bhattacharyya completed his post-doctoral research at the Department of Mechanical and Aeronautical Engineering, University of Pretoria, South Africa. Dr. Bhattacharyya completed his Ph.D. in Mechanical Engineering from Jadavpur University, Kolkata, India and with the collaboration of Duesseldorf University of Applied Sciences, Germany. He received his Master’s degree from the Indian Institute of Engineering, Science and Technology, India (Formerly known as Bengal Engineering and Science University), on Heat-Power Engineering.\nHis research interest lies in computational fluid dynamics in fluid flow and heat transfer, specializing on laminar, turbulent, transition, steady, unsteady separated flows and convective heat transfer, experimental heat transfer enhancement, solar energy and renewable energy. He is the author and co-author of 107 papers in high ranked journals and prestigious conference proceedings. He has bagged the best paper award in a number of international conferences as well. He is also in editorial boards of 15 Journals and reviewers of more than 40 prestigious Journals.",institutionString:"Birla Institute of Technology and Science, Pilani",position:null,outsideEditionCount:0,totalCites:0,totalAuthoredChapters:"0",totalChapterViews:"0",totalEditedBooks:"1",institution:{name:"Birla Institute of Technology and Science, Pilani",institutionURL:null,country:{name:"India"}}}],coeditorOne:null,coeditorTwo:null,coeditorThree:null,coeditorFour:null,coeditorFive:null,topics:[{id:"9",title:"Computer and Information Science",slug:"computer-and-information-science"}],chapters:null,productType:{id:"1",title:"Edited Volume",chapterContentType:"chapter",authoredCaption:"Edited by"},personalPublishingAssistant:{id:"194667",firstName:"Marijana",lastName:"Francetic",middleName:null,title:"Ms.",imageUrl:"https://mts.intechopen.com/storage/users/194667/images/4752_n.jpg",email:"marijana@intechopen.com",biography:"As an Author Service Manager my responsibilities include monitoring and facilitating all publishing activities for authors and editors. From chapter submission and review, to approval and revision, copyediting and design, until final publication, I work closely with authors and editors to ensure a simple and easy publishing process. I maintain constant and effective communication with authors, editors and reviewers, which allows for a level of personal support that enables contributors to fully commit and concentrate on the chapters they are writing, editing, or reviewing. I assist authors in the preparation of their full chapter submissions and track important deadlines and ensure they are met. I help to coordinate internal processes such as linguistic review, and monitor the technical aspects of the process. As an ASM I am also involved in the acquisition of editors. Whether that be identifying an exceptional author and proposing an editorship collaboration, or contacting researchers who would like the opportunity to work with IntechOpen, I establish and help manage author and editor acquisition and contact."}},relatedBooks:[{type:"book",id:"8679",title:"Inverse Heat Conduction and Heat Exchangers",subtitle:null,isOpenForSubmission:!1,hash:"a994b17ac471c6d414d63c74a7ab74de",slug:"inverse-heat-conduction-and-heat-exchangers",bookSignature:"Suvanjan Bhattacharya, Mohammad Moghimi Ardekani, Ranjib Biswas and R. C. Mehta",coverURL:"https://cdn.intechopen.com/books/images_new/8679.jpg",editedByType:"Edited by",editors:[{id:"233630",title:"Dr.",name:"Suvanjan",surname:"Bhattacharyya",slug:"suvanjan-bhattacharyya",fullName:"Suvanjan Bhattacharyya"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"1591",title:"Infrared Spectroscopy",subtitle:"Materials Science, Engineering and Technology",isOpenForSubmission:!1,hash:"99b4b7b71a8caeb693ed762b40b017f4",slug:"infrared-spectroscopy-materials-science-engineering-and-technology",bookSignature:"Theophile Theophanides",coverURL:"https://cdn.intechopen.com/books/images_new/1591.jpg",editedByType:"Edited by",editors:[{id:"37194",title:"Dr.",name:"Theophanides",surname:"Theophile",slug:"theophanides-theophile",fullName:"Theophanides Theophile"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"3161",title:"Frontiers in Guided Wave Optics and Optoelectronics",subtitle:null,isOpenForSubmission:!1,hash:"deb44e9c99f82bbce1083abea743146c",slug:"frontiers-in-guided-wave-optics-and-optoelectronics",bookSignature:"Bishnu Pal",coverURL:"https://cdn.intechopen.com/books/images_new/3161.jpg",editedByType:"Edited by",editors:[{id:"4782",title:"Prof.",name:"Bishnu",surname:"Pal",slug:"bishnu-pal",fullName:"Bishnu Pal"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"3092",title:"Anopheles mosquitoes",subtitle:"New insights into malaria vectors",isOpenForSubmission:!1,hash:"c9e622485316d5e296288bf24d2b0d64",slug:"anopheles-mosquitoes-new-insights-into-malaria-vectors",bookSignature:"Sylvie Manguin",coverURL:"https://cdn.intechopen.com/books/images_new/3092.jpg",editedByType:"Edited by",editors:[{id:"50017",title:"Prof.",name:"Sylvie",surname:"Manguin",slug:"sylvie-manguin",fullName:"Sylvie Manguin"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"371",title:"Abiotic Stress in Plants",subtitle:"Mechanisms and Adaptations",isOpenForSubmission:!1,hash:"588466f487e307619849d72389178a74",slug:"abiotic-stress-in-plants-mechanisms-and-adaptations",bookSignature:"Arun Shanker and B. Venkateswarlu",coverURL:"https://cdn.intechopen.com/books/images_new/371.jpg",editedByType:"Edited by",editors:[{id:"58592",title:"Dr.",name:"Arun",surname:"Shanker",slug:"arun-shanker",fullName:"Arun Shanker"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"72",title:"Ionic Liquids",subtitle:"Theory, Properties, New Approaches",isOpenForSubmission:!1,hash:"d94ffa3cfa10505e3b1d676d46fcd3f5",slug:"ionic-liquids-theory-properties-new-approaches",bookSignature:"Alexander Kokorin",coverURL:"https://cdn.intechopen.com/books/images_new/72.jpg",editedByType:"Edited by",editors:[{id:"19816",title:"Prof.",name:"Alexander",surname:"Kokorin",slug:"alexander-kokorin",fullName:"Alexander Kokorin"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"314",title:"Regenerative Medicine and Tissue Engineering",subtitle:"Cells and Biomaterials",isOpenForSubmission:!1,hash:"bb67e80e480c86bb8315458012d65686",slug:"regenerative-medicine-and-tissue-engineering-cells-and-biomaterials",bookSignature:"Daniel Eberli",coverURL:"https://cdn.intechopen.com/books/images_new/314.jpg",editedByType:"Edited by",editors:[{id:"6495",title:"Dr.",name:"Daniel",surname:"Eberli",slug:"daniel-eberli",fullName:"Daniel Eberli"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"57",title:"Physics and Applications of Graphene",subtitle:"Experiments",isOpenForSubmission:!1,hash:"0e6622a71cf4f02f45bfdd5691e1189a",slug:"physics-and-applications-of-graphene-experiments",bookSignature:"Sergey Mikhailov",coverURL:"https://cdn.intechopen.com/books/images_new/57.jpg",editedByType:"Edited by",editors:[{id:"16042",title:"Dr.",name:"Sergey",surname:"Mikhailov",slug:"sergey-mikhailov",fullName:"Sergey Mikhailov"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"1373",title:"Ionic Liquids",subtitle:"Applications and Perspectives",isOpenForSubmission:!1,hash:"5e9ae5ae9167cde4b344e499a792c41c",slug:"ionic-liquids-applications-and-perspectives",bookSignature:"Alexander Kokorin",coverURL:"https://cdn.intechopen.com/books/images_new/1373.jpg",editedByType:"Edited by",editors:[{id:"19816",title:"Prof.",name:"Alexander",surname:"Kokorin",slug:"alexander-kokorin",fullName:"Alexander Kokorin"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"2270",title:"Fourier Transform",subtitle:"Materials Analysis",isOpenForSubmission:!1,hash:"5e094b066da527193e878e160b4772af",slug:"fourier-transform-materials-analysis",bookSignature:"Salih Mohammed Salih",coverURL:"https://cdn.intechopen.com/books/images_new/2270.jpg",editedByType:"Edited by",editors:[{id:"111691",title:"Dr.Ing.",name:"Salih",surname:"Salih",slug:"salih-salih",fullName:"Salih Salih"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}}]},chapter:{item:{type:"chapter",id:"73965",title:"Analgesics",doi:"10.5772/intechopen.94319",slug:"analgesics",body:'\nPain-related complaints represent as many as 70% of presenting concerns for patients in the A&E departments or GP setting [1, 2, 3]. A wide variety of options are available for the treatment of pain, from which the most known and used are the analgesics.
\nThe approach to patients in pain should use a division of pain patients into four specific treatment groups: acute pain, chronic pain, recurrent pain and chronic pain of malignancy. In this chapter we will address mostly to the acute pain management.
\nPain treatment should be initiated promptly, titrated to an acceptable level of relief, and continued during the cause’s investigation. It is inappropriate to delay analgesics use until a diagnosis has been made. There is no evidence that the administration of adequate doses of opioid analgesia to establish patient comfort impairs the medical ability to rich a diagnose of an emergency condition. To the contrary, administration of analgesia may enhance the accuracy of physical examination and patient assessment [4, 5].
\nThe medications useful in treating acute pain are similar to those used in treating other types of pain [1]. The World Health Organisation (WHO) analgesic ladder (Figure 1) developed for treating patients with cancer pain also provides a useful approach to treat acute pain. At the lowest level (mild pain) are recommended nonopioid analgesics such as paracetamol or/plus nonsteroidal anti-inflammatory drugs (NSAIDs) (e.g. ibuprofen). Such drugs have an analgesic ceiling; above a certain dose, no further analgesia effect is expected [1]. For moderate pain, are recommended combining paracetamol and/or a NSAID with an opioid (a weak opioid). The inclusion of paracetamol limits the amount of opioids that should be used within 24 hour period, with many benefits which will be discussed later in the chapter. For severe level of pain, a strong opioid such as morphine is a better choice; such opioids have no analgesic ceiling. Most postoperative or trauma patients initially respond better to a morphine-equivalent opioid. By the moment the patient is eating, drinking and ready for discharge, a combination of oral analgesics including opioids and paracetamol plus/minus NSAID are most of the time an adequate option.
\nWHO analgesic ladder.
Not all types of pain respond equally to the same medication. Usually NSAIDs and steroids are highly effective in controlling soft tissue and bone pain. Bone pain may be helped partially by opioids [1]. But overall, the combination of NSAIDs, paracetamol and opioids is synergistic in treating the most types of pain. Opioid analgesics are useful in controlling somatic and visceral pain. Neuropathic pain, often described as pain with a burning and hyperaesthesia characteristic, which responds well to a diverse group of drugs, called adjuvants, including low dose of antidepressants (amitriptyline), anticonvulsants (carbamazepine and clonazepam), antiarrhythmics (mexiletine), baclofen and alfa-adrenergic agonists (clonidine). Opioids may also be helpful [1]. Most of the time, analgesia is improved after 1–2 days of using adjuvant drugs. Adjuvants were not developed initially as analgesics but recent studies show they poses benefits in a better pain control. Drugs that control pain by different mechanisms of action may be synergistic, when used together. Also, by lower doses of two or more different agents, the patient may have better pain control with fewer side effects. This is the basic background for the multimodal analgesia concept.
\nParacetamol is the first-line agent for the treatment of both acute and chronic pain. It is one of the pain killers with the highest profile of safety and is a first pharmacologic option for controlling pain in children and adults. It has a high toxic-to-therapeutic ratio and has very few significant drug interactions compared with other analgesics [2].
\nIt can be given orally, rectally or parentally, has small anti-inflammatory activity, and is an effective analgesic and antipyretic.
\nAlthough paracetamol has been in use since 1880, its pharmacologic mechanism of action is not fully known. It has a rapid absorption from the small intestine after oral administration. Paracetamol has lower protein binding than NSAIDs (and hence fewer potential drug interactions) and higher volume of distribution [6].
\nParacetamol is the active metabolite of the earlier (more toxic) drugs acetanilide and phenacetin. The recommended dose in adults is 0.5–1 g oral, iv or rectal every 4–6 hours when necessary, without exceeding a total daily dose of 4 g [6].
\nParacetamol has a CNS action, where inhibits prostaglandin synthesis. In clinical doses it has insignificant peripheral anti-inflammatory action. Unlike morphine, paracetamol has no apparent biding sites, and unlike NSAIDs it does not inhibit peripheral cyclo-oxygenase activity. But however, his mechanisms of action include, beside central COX-2 inhibition [2, 7], inhibition of a central cyclo-oxygenase, COX-3, that is selectively susceptible to paracetamol, and modulation of descending serotonergic pathways that suppresses spinal cord nociceptive transmission. There is also evidence of agonism at the cannabinoid receptor CB1 [2, 8]. There are, other evidences that paracetamol may inhibit prostaglandin endoperoxidase H2 production at the cellular level, independent of cyclooxygenase activity [2, 6].
\nThe most recent Cochrane review [9] of RCTs of single-dose oral analgesic for acute postoperative pain in adults reported a NNT of 3·6 with 1 g paracetamol, when morphine 10 mg IM has 2.9, ibuprofen 400 mg - 2.4 and codeine 60 mg - 16.7. Efficiency of paracetamol is improved in combinations with other analgesics, such as 400 mg ibuprofen, 60 mg codeine and 10 mg oxycodone (NNT 1·5, 2·2 and 1·8 respectively) [6, 9].
\nSo, paracetamol is an effective analgesic, with potency somewhat less than standard dose of morphine. Paracetamol is an efficient adjunct to opioid analgesia, and regular administration after surgery produce an opioid sparing effect, because reduce opioid requirements by 20–30%. Paracetamol proved to be an integral component of multimodal analgesia in combination with NSAIDs and opioids. Paracetamol has less side effects than the NSAIDs and can be used when the latter are contraindicated.
\nA significant concern regarding paracetamol use relates to the development of hepatotoxicity; however, current data suggest this is unlikely to develop at therapeutic doses [10]. However, doses of more than 150 mg/kg of paracetamol taken within 24 hours may result in severe liver damage, hypoglycaemia and acute tubular necrosis, especially when associated with dehydration and chronic malnutrition [11]. Individuals taking enzyme-inducing agents are more susceptible. So, important caution should be taken in overdoses due to the risk of liver damage and less frequently renal damage. Nausea and vomiting, the only early features of poisoning, usually settle within 24 hours. Persistence beyond this time, often associated with the onset of a right-side subcostal pain and tenderness, usually indicates development of hepatic necrosis.
\nParacetamol is metabolised in the liver primarily through conjugation to sulphate or glucuronides [2]. A minor pathway for the oxidative metabolism of paracetamol produces the toxic metabolite N-acetyl-P-benzoquinone (NAPQI) [2]. NAPQI requires glutathione for detoxification and elimination. Hepatic toxicity can occur when glutathione pathways are overwhelmed by an increase in NAPQI or decrease in glutathione.
\nParacetamol is generally well tolerated with rare side effects when the right doses are prescribed (Table 1) [2, 4].
\nSide effects | \nRare | \nFrequency not known | \n
---|---|---|
General | \nAcute generalised exanthematous pustulosis Malaise Skin reactions \n
| \nBlood disorders: leucopoenia neutropenia, thrombocytopenia as is bone marrow suppression | \n
Specific | \nWith iv use, flushing and tachycardia | \nWith iv use, hypotension | \n
Paracetamol side effects.
It is associated with several important drug interactions. Many anticonvulsants, including phenytoin, barbiturates and carbamazepine induces hepatic microsomal enzymes. Increased conversion of paracetamol to its toxic metabolite may occur in patients who are taking anticonvulsants, but this rarely leads to concerning consequences in the context of the usual doses for pain management [2, 6].
\nAlthough uncommon, drug interaction resulting in an increased INR is reported for patients taking both paracetamol and warfarin, particularly among patients taking high doses of paracetamol (> 9 g/week) [2, 12, 13]. Long term use of paracetamol should be avoided in patients with hepatic or renal impairment. Patients with a history of salicylate hypersensitivity characterised by urticaria have a 11% cross-reactivity to paracetamol, and the agent should be used with caution in this group [2, 7].
\nThe NSAIDs share several properties with aspirin and may be considered together.
\nNSAIDs are particularly used for the treatment of patients with chronic disease accompanied by pain and inflammation.
\nSome of them are also used for acute pain management and in the short-term treatment of mild to moderate pain including transient musculoskeletal pain. They are also suitable for the pain control in dysmenorrhoea and to release pain caused by secondary bone tumours, many of which produce lysis of bone and increase prostaglandins synthesis. Many of the NSAIDs are also used for postoperative analgesia as part of the multimodal analgesia strategy. Selective inhibitors of COX2 may be used in preference to non-selective NSAIDs for patients at high risk of developing serious gastro-intestinal side-effects.
\nThere are some limited and low quality evidences against the use of NSAIDs in bone pathology, suggesting that prostaglandins promote bone formation and that NSAID might impair this process [14, 15], theory not proven through properly conducted studies. There is no evidence that NSAIDs administration on short term after fracture is detrimental to healing [2].
\nThese agents inhibit cyclooxygenase (COX) and, as result, the synthesis of prostaglandin, a key mediator of inflammation, in the peripheral tissues, CNS and nerves – leading to an effective raise in the threshold of nociceptors stimulation. Aspirin acetylates and irreversibly inhibits cyclo-oxygenase, while NSAIDs work by competitive inhibition, being reversible. The prostaglandins are part of the eicosanoid’s family, oxygenated metabolites of arachidonic acid and other polyunsaturated fatty acids that include leukotrienes [6].
\nThe rate of prostaglandin synthesis is usually low, being regulated by trauma and tissue stimuli, which activates phospholipases to free arachidonic acid, from which prostaglandins are produced. Prostaglandins have several physiological roles, including gastric mucosal protection, bronchodilation and maintenance of renal tubular function, renal vasodilatation, regulation of tubular electrolytes and modulation the action of renal hormones [2, 6]. The side effects on the renal system of chronic NSAIDs is well known. In certain clinical settings when there are high plasma concentration of the vasoconstrictors rennin, noradrenaline, angiotensin and vasopressin, intrarenal vasodilators including prostacyclin are produced and renal function can be affected by NSAIDs administration [2]. The concomitant use of other potential nephrotoxic drugs, such as gentamicin, can worsen the renal effect of these drugs [2]. Nevertheless, with careful patient selection and closed monitoring the incidence of NSAID-renal damage is low.
\nTriggering bronchospasm is a recognised phenomenon in patients with asthma, rhinitis and nasal polyps [2]. Such “aspirin induce asthma” can be severe, and goes up to 10–15% as incidence with a feature cross sensitivity with NSAIDs. A known history of aspirin induce asthma should band the administration of NSAIDs perioperatively. The mechanism is unclear, but practice shown the reaction increases with the potency of the COX inhibition [2].
\nEndothelial released prostacyclin induces vasodilatation and prevents platelet adhesion, and platelet thromboxane produces aggregation and vasospasm. In addition to prostaglandins, cyclooxygenase induces prostacyclin synthesis, a vasodilator that also increases GI mucosal perfusion. Also, in the gastric tissue, COX-1 increases mucus and bicarbonate production, valuable feature for stomach mucosal protection [2]. Inhibition of COX-1 is affecting this protection, predisposing to ulcerations and bleeding, which can be exacerbated by concomitant NSAID-induced platelet dysfunction [2].
\nTwo subtypes of cyclo-oxygenase enzyme have been identified. These are constitutional COX-1 and inducible COX-2, the last one triggered by inflammation and trauma. The COX-1 is present in all cells and regulates various roles in homeostatic function. NSAIDs, like aspirin, are non-selective cyclo-oxygenase inhibitors that act on both COX-1 and COX-2, which results in multiple beneficial effects (reduction in inflammation, pain and fever) but also some important side effects.
\nThese two COX isoenzymes have 75% aminoacid homology, with almost identical enzymes kinetics.
\nCOX-1 is a membrane bound haemoglycoprotein found in the endoplasmic reticulum of prostaglandin-inducing cells. The COX active site is a long hydrophobic channel. NSAIDs block COX-1 halfway down the channel by hydrogen bounding in a reversible fashion. Aspirin acetylates serine, irreversibly preventing access for arachidonic acid [6].
\nCOX-2 has similar sites to COX-1 for the attachment of arachidonic acid, and a similar three-dimensional structure to COX-1.
\nUnder physiological condition COX-1 activity predominates, to produce prostaglandins that regulate rapid physiological responses such as vascular homeostasis, gastric function, platelet activity and renal function. The concentration of the COX-1 isoenzyme is low, but it may increase 2 to 4-fold, triggered by grow hormones and various hormones stimulation. Low concentration of COX-2 can normally be detected in the brain, kidney and the pregnant uterus. COX-2 mRNA expression by synovial cells, fibroblasts, monocytes may be increased 10 to 80-fold when stimulated by cytokines, bacterial lipopolysaccharides or growth factors [6] These triggers increase COX-2 synthesis and tissue PGE2 concentration, resulting in inflammation and pain.
\nInhibition of COX-1 induces antiplatelet activity that might be cardioprotective by inhibition of thromboxane synthesis more than prostacyclin. Inhibition of COX-2 inhibits prostacyclin synthesis more than thromboxane and may induce prothrombotic effects, leading to a higher risk of cardiovascular events [2]. In the case of nonselective COX inhibitors, both effects appear to be in balance each other out, resulting in minimal changes in cardiovascular risk [2]. But instead, the action of COX-2 inhibitors may result in result in an increased cardiovascular risk [16, 17].
\nProstaglandins released by COX-1 is also a factor on keeping a good glomerular filtration rate (GFR) by renal vasodilatation that maintain renal blood flow. Inhibition of COX-1, especially in dehydrated patients can lead to affect GFR and even to an acute kidney injury [2]. Other condition that might worsen under NSAIDs treatment is congestive heart failure, due to sodium and water retention, hyperkalaemia, hypertension and acute renal failure.
\nThe most common adverse effect of NSAIDs is GI mucosal erosion. In patients taking chronic NSAIDs (continuously for 1 year) 10 to 60% will experience abdominal pain, nausea, dyspepsia, and a 2 to 4% will end up with a symptomatic peptic ulcers [18]. Between the risk factors are known: age, concomitant use of corticosteroids and warfarin, coronary artery disease, congestive heart failure and diabetes mellitus. Several studies proved the efficiency of some protective agents as misoprostol and proton pump inhibitors [19]. The relative risk for causing GI effects under the NSAIDs treatment are shown in Table 2 on below.
\n\n | \n\n | \n
COX-2 inhibitor | \n0.6 | \n
Ibuprofen | \n1.0 | \n
Diclofenac | \n1.8 | \n
Naproxen | \n2.2 | \n
Indomethacin | \n2.4 | \n
Piroxicam | \n3.8 | \n
Ketoprofen | \n4.2 | \n
Ketorolac | \n24.7 | \n
\n | \nProton pump inhibitor | \n
0.09 | \nMisoprostol | \n
0.57 | \n\n |
This category of drugs is widely used, being very efficient medicines, but responsible for more serious drugs-related side effects than any other class of analgesic drugs [20]. The main side effect of NSAIDs as stated earlier is gastric erosion with the risk of GI bleeding, but also platelets dysfunction, renal failure and anaphylaxis or bronchospasm in individuals who have “aspirin – induced asthma” [2].
\nSingle dose of NSAIDs such as diclofenac and ketorolac inhibit platelet function (prolong skin bleeding time and inhibit platelet function in vitro), but do not tend to increase bleeding in normal patients. However, when concomitant anticoagulation treatment or presence of subclinical bleeding diathesis occurs, then there is an increased risk of surgical bleeding [2].
\nConversely, NSAIDs and COX-2 inhibitors have a small prothrombotic tendency. The risk is increasing by prolonged administration and by the dose taken, and for the more selective agents (COX-2) but also for diclofenac [2]. Studies shows that diclofenac 150 mg has similar risk to etoricoxib. Ibuprofen in a daily dose of 2400 mg also represents a high risk for thrombosis. But reduced doses to 1200 mg a day Ibuprofen and Naproxen 1 g daily are not associated with an increase risk [21, 22].
\nThere are many contraindications of this drug class presented on below (Table 3) [23].
\nRelative contraindications | \nAbsolute contraindication | \n
---|---|
Impaired hepatic function, diabetes, bleeding or coagulation disorder, vascular disease | \nHistory of GI bleeding or ulceration | \n
Surgery with a high risk of intraoperative haemorrhage (cardiac, vascular, etc.) | \nKnown allergy to NSAIDs | \n
Surgery where an absence of bleeding is important (eye surgery or neurosurgery) | \nSever liver dysfunction | \n
\n | Cardiac failure (risk of sodium, potassium and water retention) | \n
Concurrent use of ACE inhibitors, potassium sparing diuretics, anticoagulants, methotrexate, cyclosporin, gentamicin | \nDehydration, hypovolemia, hypotension | \n
Pregnant and lactating women | \nHyperkalaemia | \n
Age >65 years (risk of kidney impairment) | \nPre-existing renal impairment | \n
Uncontrolled hypertension | \n\n |
Aspirin-induced asthma | \n\n |
NSAIDs contraindications.
The number needed to treat (NNT, basically the number of patients in a study to whom the drug must be given to show a benefit) for diclofenac 50 mg 2.3, ketorolac 10 mg is 2.6 and ibuprofen 400 mg 2.4. For comparison, the NNT of morphine 10 mg IM is 2.9 and codeine 60 mg PO is 16.7. When given in combination with opioids, NSAIDs optimise the pain control and decrease opioid consumption by 25–50% [2]. NSAIDs are insufficient as a single pain killer use for relief of very severe pain.
\nCOX-2 inhibitors produce less clinically significant peptic ulceration than other NSAIDs. So, COX-2 inhibitors are not far from any incidence of this adverse event, and there still debates on COX-2 inhibitors use in patients who have various risk factors for gastric erosion.
\nPlatelets do not produce COX-2 (only COX-1) and so, COX-2 selective inhibitors do not affect platelet function. Studies have proved the lack of and antiplatelet effect of COX-2 inhibitors, and a reduction in surgical bleeding in comparison to other NSAIDs.
\nCOX-2 is resident (constitutive) in some tissues including the renal, and COX-2 inhibitors have similar adverse effects on renal function to the non-selective NSAIDs (Table 4) [2].
\n\n | NSAIDs | \nCOX-2 | \n
---|---|---|
Efficacy for moderate to severe acute pain (numbers to treat – NNT) | \nDiclofenac 50 mg (2.3) Ibuprofen 400 mg (2.4) Ketorolac 10 mg (2.6) | \nCelecoxib 200 mg (4.5) Parecoxib 20 mg (3.0) Etoricoxib 120 mg (1.8) | \n
\n | \nCan impair renal function postoperatively | \nSimilar adverse effects | \n
\n | \nAcute gastrointestinal damage and bleeding can occur. Risk increased with higher doses, history of GI ulceration, long term use, and elderly | \nLess clinically significant peptic ulceration | \n
\n | \nInhibit platelet function but do not significantly increase surgical blood loss in normal patients. Associated with higher incidence of post-tonsillectomy bleeding | \nDo not impair platelet function | \n
\n | \n10–15% of asthmatics affected when given aspirin. Cross-sensitivity with NSAIDs | \nDo not produces bronchospasm | \n
\n | \nImpaired in animal studies. No strong evidences that clinically important | \nSimilar to NSAIDs | \n
Comparison of non-selective NSAIDs and COX-2 inhibitors.
\n
\n
\n
\n
\n
\n
\n
In 1680, Sydenham wrote “Among the remedies it has pleased Almighty God to give to man to relive his suffering, none is so universal and so efficacious as opium” [2, 26]. Hundreds of years later, this statement is still valid, and opioids are the cornerstone of pain management. The beneficial effects have been well studied for centuries, as their toxicity and also the potential for abuse.
\nOpioid analgesics are usually used to relieve moderate to severe pain particularly of visceral origin. Repeated administration may cause dependence and tolerance, but this is not deterrent in the pain control of terminal illness. Regular use of a potent opioid may be appropriate for certain cases of chronic non-malignant pain; treatment should be supervised by medical staff and the patient should be assessed regularly. However, due to concerns about inducing opioid toxicity or addiction and sometimes due to poor understanding of the pharmacology features of these drugs, opioids are often inadequate used in clinical practice [27, 28].
\nOpioids bind to specific endorphin system receptors located throughout the nervous system but not only. Opioid receptors are G-protein-coupled transmembrane receptors. These exist throughout the CNS, with particularly high concentration in thalamus and spinal cord. They are also present outside the CNS, and these are responsible for other opioids effects (gastrointestinal tract) and their postulated value in some peripheral anaesthetic techniques, such as intra-articular infiltrations [6]. The actions of various opioids are induced by the specific binding properties of the agent to the various receptors (Table 5).
\nOpioid receptor class | \nEffects | \nAssociated endogenous endorphin | \n
---|---|---|
Miu 1 | \nEuphoria, supraspinal analgesia, confusion, dizziness, nausea, low addiction potential | \nBeta-endorphin | \n
Miu 2 | \nRespiratory depression, CV and GI effects, miosis, urinary retention | \nBeta-endorphin | \n
Delta | \nSpinal analgesia, CV depressions, decreased brain and myocardial activity, physical dependence | \nEnkephalin | \n
Kappa | \nSpinal analgesia, dysphoria, psychotomimetic effects, feedback inhibition of the endorphin system | \nDynorphin, Beta-endorphin | \n
Epsilon | \nHormone | \nBeta-endorphin | \n
Gamma | \nDysphoria, psychotomimetic effects | \nBeta-endorphin | \n
Opioids receptors end their effects.
Opioids decrease the medullary sensitivity to CO2, which may cause respiratory depression and also, suppress the medullary cough centre, for this reason some studies advocate for its use as an antitussive. Opioids can activate the chemoreceptor trigger zone, causing nausea or vomiting, but this is relatively infrequent. This drug class decrease bowel motility and smooth muscle function, responsible for constipation, and rarely, urinary retention. To a varying degree, some opioids destabilise mast cells in a dose dependent fashion, causing histamine release, manifested with pruritus, urticaria and sometimes, orthostatic hypotension.
\nOpioid agonist agents cause a range of mainly depressant and some stimulant actions of the CNS through specific receptors (Table 6). These drugs have little capacity to produce amnesia, do not alter seizure threshold and have no anticonvulsant activity [6].
\nOpioids given systemically produce analgesia through actions at two anatomically distinct regions: supraspinal and spinal sites. They efficiently reduce the intensity of pain and the associated fear. This is achieved by raising the pain threshold, modifying the reaction to pain, and inducing sleep. They are efficient for controlling dull pain rather than sharp intermittent pain. Opioids are less effective for the treatment of neuropathic pain.
\nSystem | \nEffect | \n||
---|---|---|---|
Musculoskeletal | \nGait | \nDecrease physical performance Ataxia Decrease spinal cord reflexes | \n|
\n | Rigidity | \nMuscular rigidity occurs 60–90 seconds post-injection and abolish after 10–20 minutes Mainly thoracoabdominal and arms muscles, higher risk with advanced age, high speed of injection, increased dose, use of N2O Mediated via nucleus raphe magnus | \n|
\n | Multifocal myoclonus | \nNon-convulsive related, higher risk with pethidine | \n|
Neural | \nCentral | \nSpectrum from abnormal eye movement, to contraction of extremities, to tonic-clonic movements Euphoria: especially for opioids which cross the blood-brain barrier quickly Dysphoria in some individuals Subjective feelings of body warmth and heavy extremities Apathy Decreased level of consciousness Decreased concentration and orientation | \n|
\n | EEG | \nEffects vary between different opioids: slowing of frequency, production of high voltage & waves No capacity to induce EEG silence | \n|
Vision | \nEdinger-Westphal nucleus | \nMiosis (via a decrease in inhibition to the nucleus) except pethidine Reversed by hypoxia and atropine | \n|
Cerebrovascular | \nSSEPs | \nNo effect | \n|
\n | ICP | \nNo effect | \n|
\n | CBF | \nNo effect, but increased vasoconstriction with vasodilators No loss of autoregulation or CO2 reactivity CMRO2 reduced by up to 10–25% | \n|
Thermoregulation | \nResponse | \nDecrease thermoregulation response (as for volatile agents) | \n|
\n | Peripheral effects | \nPromote hypothermia via decreased BMR (10–20%), venodilation, muscle relaxation | \n
Opioids effects on the CNS [6].
SSEPs – somatosensory evoked potential, ICP – intracranial pressure, CMRO2 – cerebral metabolic rate of oxygen consumption.
Opioids actions are also towards reduction in the level of consciousness and eventually produce sleep, with the loss of responsiveness to verbal stimulation. In anaesthesia combinations, they produce a dose related decrease in the MAC for volatile anaesthetics, with a ceiling of 60–70% decrease in MAC [6]. Another important feature in the combination with the volatile agents is increase in cerebral vasoconstriction [6]. Opioids do not cause a loss of cerebral autoregulation or reactivity to CO2. During EEC recording, there is a ceiling effect, with a slowing EEG frequency and the production of high-voltage (delta) waves [6].
\nIn normovolemic patients, opioids barely influence haemodynamic parameters, with minimal cardiac depression, no baroreceptors inhibitions and modest reduction in preload and afterload. Haemodynamic compromise may be detected in subjects whose cardiovascular integrity is dependable on a high level of sympathetic tone, because opioids decrease central sympathetic outflow when even small doses can cause hypotension and circulatory collapse [6]. Morphine has the greatest effect on the vascular system. Morphine has the greatest effect on histamine release and subsequent indirect effect on catecholamine release. This may lead to tachycardia with a reduction in systemic vascular resistance (SVR) and mean arterial pressure (MAP). This risk can be prevented by pre-treatment with an antihistaminic drug and volume loading [6].
\nOpioids induce a negative chronotropic effect through a central vagal stimulation. Pethidine, however, has a homology with atropine and can trigger tachycardia, and it is the only opioid to induce significant direct myocardial depression when used at high doses. Myocardial depression is observed also after extraordinary high doses of morphine and fentanyl, as during cardiovascular anaesthesia. Morphine has indirect positive inotropic effects at doses of 1–2 mg/kg, and blocks neurally and hormonally mediated venoconstriction to reduce preload, rendering it useful in the management of left ventricular failure [6].
\nOpioids preserve circulatory stability to a greater extent than most other anaesthetic agents [6].
\nOpioids are the most efficient of all pain analgesics drugs for attenuating the stress response associated with pain, laryngoscopy and airway manipulation. The plasma concentration of stress hormones (cortisol, catecholamines, vasopressin, aldosterone and growth factor) increases during trauma, anaesthesia or surgery. This produce increased myocardial work, tissue catabolism and hyperglycaemia – effects associated with increased morbidity and mortality. Opioids reduce nociception inhibiting the pituitary-adrenal axis, decreasing central sympathetic outflow and influencing centrally mediated neuroendocrine response. Fentanyl and its congeners are the most efficacious in this action (Table 7).
\nSystem | \n\n | Effect | \n
---|---|---|
Cardiovascular | \nHeart rate | \nSinus bradycardia via central vagal stimulation Occasionally sinus arrest exacerbated by concomitant vagal excitation (e.g. laryngoscopy) and Beta-blockers | \n
Mean arterial pressure | \nUsually no effect or a slight decrease (unless significant bradycardia) Greater decrease if associated with histamine release | \n|
Vascular system | \nNo effect on SVR (unless histamine release) Mild venodilation with a decrease in preload (due to decrease of central sympathetic outflow) | \n|
Myocardium | \nNo effect on contractility (except for pethidine which is a depressant) No effect on metabolic rate Possible ischemic preconditioning | \n|
Excitability | \nDecreased myocardial contractility Increased refractory period Increased VF threshold | \n|
Respiratory | \nMechanics | \nDecrease in rate, tidal volume and minute ventilation at equianalgesic doses Increase pauses, irregular breathing and apnoea | \n
Control | \nIncreased apnoeic threshold Decrease CO2 sensitivity Decrease carotid body chemoreception and hypoxic drive Voluntary control of respiration remains intact No effect on hypoxic pulmonary vasoconstriction | \n|
Airway reflexes | \nDecrease airway reflexes with improve tolerance to ETT Antitussive through central and peripheral actions Decrease mucociliary action Brief cough in up to 50% with pethidine bolus | \n|
Gastrointestinal | \nStomach and bowel | \nDecrease peristalsis and secretions and increase tone causing dry stool and constipation Decrease gastric acid Decrease gastric emptying with increase antral tone and decrease lower oesophageal sphincter tone promoting high aspiration risk Increase tone of pyloric, ileocecal and anal sphincters | \n
\n | Biliary tree | \nIncrease bile duct pressure Sphincter Oddi contraction (little clinical significance) | \n
Chemoreceptor trigger zone | \nNausea and vomiting | \n|
Genitourinary | \nKidney | \nAntidiuresis as a result of decrease in renal blood flow and decrease in GFR (predominates) Decrease vasopressin release in response to osmotic triggers | \n
Bladder | \nIncreased bladder and urethral tone Vesicular sphincter contraction | \n|
Immunity | \nImmune system | \nDecrease immunoglobulin production (uncertain significance) Reactivation of herpes simplex virus 2–5 days after neuraxial opioid | \n
Opioid effects on major organ system [6].
Side effects can be observed from minors to the most concerning ones and are individual and age depending beyond of disease extension, presence of organ dysfunction, concurrent administration of certain drugs, route of administration and prior of opioid exposure. Some side effects induced by the opioids are induced by the activation of the opioid receptors either peripherally or centrally, or even in both areas. Serious allergic reactions to opioids are extremely rare, although anaphylaxis has been reported.
\nAt equianalgesic doses, all opioids produce equivalent degrees of respiratory depression through reducing the sensitivity to CO2 of the breathing drive. The extreme ages, elderly and neonates are at the highest risk. Tolerance arises rapidly to this effect, and with chronic opioid exposure the risk of major respiratory depression is reduced. Apnoea may occur in conscious patients, but this is rare, and is usually associated with other signs of CNS depression. In such a condition, apnoeic patients can be instructed to breath as voluntary control of ventilation remains intact. Sleep or the concomitant use of other CNS depressants (except clonidine) potentiates this risk.
\nOpioid-induce depression of airway reflexes is usually regarded as an advantage side effect for the practitioner in some condition like airway manipulation. Although at the same time the mucociliary function depression can be detrimental. All opioids have an antitussive activity at less than analgesic doses, working via central and peripheral mechanisms.
\nThe incidence of nausea after opioids use is reported to be between 10 and 60%, and this is markedly increased in pain-free and ambulatory patients (via opioid sensitisation of the vestibular nucleus). This reactivity is based on individual variability, but tolerance develops rapidly [6]. Switch to oral administration and substituting one opioid to another may reduce the incidence of nausea.
\nConstipation remains the most common side effect of chronic opioid treatment, and toxic megacolon may occur in patients with ulcerative colitis [6]. Tolerance, in this situation develops very slowly, as well as other smooth muscle effects. Loperamide is a synthetic agent, does not cross the blood brain barrier, used as an antimotility drug. All opioids are reported to increase bile duct pressure, with a spasmogenic action cause contraction of the sphincter of Oddi with effects on doses dependent activity [6]. Pethidine also, produces smooth muscle contraction via a direct action. Opioids effects on the biliary tract can be reversed by naloxone, nitroglycerine and glucagon.
\nOther effects on the smooth muscle target the genitourinary system, often leading to urinary retention and urgency. This effect is predominant in elderly and when administered neuraxially. This later feature explains a centrally mediated mechanism of action via receptors located at the sacral spinal cord.
\nThere are some others centrally mediated opioids effects. Some of these are of no clinical benefit and usually unpleasant. Often, opioids may trigger pruritus with various ranges of severity, with mechanism of action not fully discovered. The pruritus predominantly affects nose, face and chest being independent of histamine release. Substituting opioids agents will decrease the incidence. Studies has shown that low dose of naloxone will alleviate this effect. Muscle rigidity is triggered at or just after the loss of consciousness and may manifest from hoarseness in mild cases to impossibility of ventilate in severe situations. It can be minimised by co-administration of induction agents and benzodiazepines. In anaesthetic practice may be prevented by pre-treatment priming with small doses of muscle relaxants. This side effect was reported to be with a higher incidence on concomitant use of nitrous oxide [6]. It is seen more commonly with Fentanyl and its congeners than with morphine and the risk is dose depended. In emergency situation of impossibility of ventilation can be reversed by administration of naloxone.
\nOpioids agents decrease thermoregulation thresholds, except pethidine, which is a unique in its ability to reduce shivering. Tramadol also has proved to be efficacious in this regard [6].
\nHistamine release and associated hypotension are variable in incidence and severity, and are with decreased incidence where is a slow IV administration and ameliorated by intravascular fluid loading. This effect is less with fentanyl and its subclass agents, except pethidine. The histamine release may be localised or generalised, often causing facial flushing and variable itch [6].
\nPethidine has been described as a unique agent because of its non-opioid effects. It has a local anaesthetic effect of equivalent potency to cocaine and it has a quinidine-like effect on cardiac muscle to reduce cardiac irritability and arrhythmias [6]. Pethidine overdose produce a complex syndrome characterised by a cardiovascular collapse, seizures, hyperreflexia, mydriasis in addition to a respiratory depression [6].
\nThe use of phenylpiperidines family (except remifentanil) in anaesthesia has been associated with postoperative respiratory depression after high doses, due secondary peaks in plasma levels, possible from the opioids release from the body stores. This action is responsible for the increase in peripheral perfusion and postoperative shivering.
\nThe choice of route of administration depends on the opioid being utilised, pain severity, the need for agent titration, potential side effects and contraindications to a particular route. The way of administration may activate the onset of peak analgesia and the side effects. For example, respiratory depression may be triggered 7 minutes after an IV dose of morphine, but not until 30 minutes after IM or 6–10 hours after a spinal administration.
\nThere are various degree and length of pain relief effect conferred by certain routes. Spinal administration may produce a greater quality and potentially a longer duration of analgesia, with a lower incident of supraspinal effects. However, an increased incidence of specific side effects (nausea, itching, urinary retention) occurs.
\nNo opioid agonist demonstrates dose-dependent pharmacokinetics. First pass metabolism of orally administrated opioids is made in the liver and the digestive tract wall (up to 50%). Opioids given IM or SC have 100% bioavailability, but peak plasma concentration may be variable up to fivefold influenced by body temperature, site of injection and hemodynamic status. IV administration results in a much restricted rage of plasma concentration [6].
\nThe lung exerts an important first-pass effect on highly lipid-soluble opioids. Prior administration of other lipophilic amines, such propranolol decreases pulmonary uptake, by saturating biding sites [6].
\nOpioids mainly sustain a liver metabolism with a renal excretion of the more hydrophilic metabolites. A few metabolites also take the biliary excretion route. Some amounts of the more hydrophilic agents may be excreted unchanged in the urine. Liver blood flow is the main factor influencing the plasma clearance for most opioids, because of their high hepatic extraction ratio [6].
\n\n
\n
\n
\n
\n
The pharmacokinetics and dynamics of opioids may be altered in a number of physiological states as stated in Table 8.
\nPhysiological states | \nEffect | \nMechanism | \n
---|---|---|
Obesity | \nOverdosage | \nCentral volume of distribution is not reflected by actual body weight Increased volume of distribution prolongs elimination half-life | \n
Infant | \nProlonged effect | \nDecreased conjugation capacity Immature renal function | \n
Elderly | \nIncreased sensitivity to opioid | \nDecreased neuronal cell mass Decreased central volume of distribution | \n
Prolonged effect of infusion | \nDecreased lean body mass with increase adipose tissue is responsible for an increase in total volume of distribution Decreased hepatic blood flow (by 40–50% by age of 75) | \n|
Hepatic failure | \nIncreased sensitivity to opioids (in severe liver failure only) | \nSynergism if encephalopathic Altered integrity of blood-brain barrier Increased elimination half-life for pethidine and tramadol | \n
Renal failure | \nMorphine toxicity | \nAccumulation of M6G Possible hydrolysis of glucuronides back to parent compound Uraemia potentiates CNS depression and increases blood-brain barrier permeability | \n
Factors influencing opioid pharmacokinetics and pharmacodynamics.
This class of pain killers have limited but important interactions with other drugs. Their action is synergistically with other CNS depressant on the level of consciousness. Barbiturates, benzodiazepines and propofol produce effects on the loss of consciousness with a synergic action from the opioids side and also increase the risk of cardiovascular depression. With anaesthetic use, opioids may decrease the concentration of volatile agents by up to 50% while ensuring amnesia and immobility, with the preservation of hemodynamic stability at low inhaled concentrations (≤1 MAC) [6].
\nThe use of opioids (particularly pethidine and tramadol) with monoamine oxidase inhibitors (MAOI) may lead to serious and potentially fatal consequences as excitatory syndrome (type I) [2, 6]. This is complex syndrome characterised by excitatory phenomena including agitation, fever, rigidity, seizures and coma. This is triggered by the excessive CNS serotonin activity, since both MAOI and pethidine block serotonin reuptake. Rarely also can arise an inhibitory syndrome (type II) characterised by respiratory depression, coma and hypotension, which is the result of MAOI inhibition of hepatic microsomal enzymes leading to a pethidine accumulation.
\nA similar excitatory syndrome (serotoninergic) is found during the combination of tramadol and serotonin-noradrenaline reuptake inhibitors (SNRIs) [6].
\nMorphine has been recommended as the opioid of choice for use in these patients.
\nThe main opioid antagonist currently used in practice is naloxone.
\nNaloxone is an N-allyl derivate of oxymorphone. It is pure opioid antagonist, without an intrinsic pharmacological activity. It has a high affinity for miu opioid receptors but also blocks other receptors. Naloxone reverses the respiratory depression and analgesia of opioids but also precipitates the withdrawal syndrome in opioids addicts. Naloxone could also block the action of endogenous opioids. IV administration of 200–400 mcg of naloxone will reverse the respiratory depression, but incremental titration (1.5–3 mcg/kg) is referable in order to minimise the reversal of the analgesic effects of the opioids. Naloxone’s action time is roughly 30 minutes, so further doses may be considered to avoid the return of respiratory depression effects of any agonist agent that outlasts the effect of naloxone. Naloxone is also efficient in releasing the pruritus and urinary retention of the intrathecal and epidural opioids. Naloxone has very small oral availability, only 2%, because and major first pass metabolism [6].
\nTramadol is included in the opioids class of drugs, with unique and complex mode of action, only part of which is mediated through opioid receptors. Tramadol is an analogue of codeine and acts as a weak agonist at all types of opioid receptors, with some preference for the miu receptors. It has 10% of the potency of morphine. Tramadol blocks the reuptake of noradrenaline and 5-HT (serotonin) and facilitate the release of the later. By its effects, influences nociceptive transmission activating the descending inhibitory pathways in the CNS. Therefore, Naloxone only partially reverses the analgesic effects of tramadol. Effects on alfa2-adrenergic, NMDA and benzodiazepine receptors may be due to indirect effects secondary noradrenergic system effects [31].
\nTramadol is recommended in the treatment of moderate to severe pain. It is well absorbed when given orally, with a bioavailability of 68% and only 20% protein bound. Tramadol is predominantly metabolised in the liver by demethylation and conjugation, with 90% being excreted in the urine. The elimination half-life is 4–6 hours. His metabolites have longer half-life (up to 9 hours) and 2–4 times greater analgesic potency than tramadol and precautions should be taken in hepatic and renal failure.
\nTramadol exhibits small risk for respiratory depression when compared with equianalgesic doses of morphine. Also, cardiovascular effects are minimal. There is a low potency for abuse and physical dependence, but still reported. Tramadol’s known side effects include: dizziness, nausea, sedation, dry mouth, sweating and skin rashes.
\nConcomitant use of MAOIs is contraindicated and co-administration with carbamazepine may decrease the concentration and effect of tramadol.
\nA - ask about pain regularly
B - believe the patient’s/resident’s and family’s reports of pain and what relieves it
C - choose appropriate pain control options
D - deliver interventions in a timely, logical and coordinated fashion
E - empower patients
As a result of a nationwide effort to reduce unnecessary opioid use and reduce incidents of patient abuse, clinicians are encouraged to carefully assess their patient’s pain, limit the number of prescribed opioids analgesics and limit further prescribing by evaluating the patient’s pain relief and increased functional ability.
\nThe trend to lower usage has had a tremendous impact on opiod use worldwide over the last years. By 2016, paracetamol/hydrocodone, which had been the leading medication prescribed for pain, had dropped from first most prescribed pain medication to the fourth most prescribed drug in the nation, with the volume of prescriptions down to 7.2% in 2015, from 34% in 2012.
\nIn order to facilitate this continuing trend, it is recommended that the following WHO decision ladder and in-depth patient assessment be utilised before requesting or prescribing opioid compounds.
\nMultimodal analgesia is defined as the use of more than one pharmacological class of analgesic medication targeting different receptors along the pain pathway with the goal of improving analgesia while reducing individual class-related side effects. Evidence today supports the routine use of multimodal analgesia in the perioperative period to eliminate the over-reliance on opioids for pain control and to reduce opioid-related adverse events. A multimodal analgesic protocol should be surgery-specific, functioning more like a checklist than a recipe, with options to tailor to the individual patient.
\nElements of this protocol may include opioids, non-opioid systemic analgesics like paracetamol, non-steroidal anti-inflammatory drugs, gabapentins, ketamine, and local anaesthetics administered by infiltration, regional block, or the intravenous route [32, 33, 34, 35, 36, 37]. While implementation of multimodal analgesic protocols perioperatively is recommended as an intervention to decrease the prevalence of long-term opioid use following surgery, the concurrent crisis of drug shortages presents an additional challenge. Anaesthesiologists and acute pain medicine specialists will need to advocate locally and nationally to ensure a steady supply of analgesic medications and in-class alternatives for their patients’ perioperative pain management.
\nThe recommendations are on the basis of the underlying premise that optimal management begins with the patient assessment and development of a plan of care tailored to the individual and the medical status or the surgical procedure involved, with follow-up assessments and adjustments as needed. The evidences support the use of multimodal regimens in many situations, although the exact components of effective multimodal care will vary depending on the patient, setting, and surgical procedure or the medical condition. Therefore, it is important that clinicians consider their patients’ pain in the context of: biological, social and psychological factors.
\nPain-related complaints represent as many as 70% of presenting concerns for patients in the A&E departments or GP setting [1, 2, 3]. A wide variety of options are available for the treatment of pain, from which the most known and used are the analgesics.
\nThe approach to patients in pain should use a division of pain patients into four specific treatment groups: acute pain, chronic pain, recurrent pain and chronic pain of malignancy. In this chapter we will address mostly to the acute pain management.
\nPain treatment should be initiated promptly, titrated to an acceptable level of relief, and continued during the cause’s investigation. It is inappropriate to delay analgesics use until a diagnosis has been made. There is no evidence that the administration of adequate doses of opioid analgesia to establish patient comfort impairs the medical ability to rich a diagnose of an emergency condition. To the contrary, administration of analgesia may enhance the accuracy of physical examination and patient assessment [4, 5].
\nThe medications useful in treating acute pain are similar to those used in treating other types of pain [1]. The World Health Organisation (WHO) analgesic ladder (Figure 1) developed for treating patients with cancer pain also provides a useful approach to treat acute pain. At the lowest level (mild pain) are recommended nonopioid analgesics such as paracetamol or/plus nonsteroidal anti-inflammatory drugs (NSAIDs) (e.g. ibuprofen). Such drugs have an analgesic ceiling; above a certain dose, no further analgesia effect is expected [1]. For moderate pain, are recommended combining paracetamol and/or a NSAID with an opioid (a weak opioid). The inclusion of paracetamol limits the amount of opioids that should be used within 24 hour period, with many benefits which will be discussed later in the chapter. For severe level of pain, a strong opioid such as morphine is a better choice; such opioids have no analgesic ceiling. Most postoperative or trauma patients initially respond better to a morphine-equivalent opioid. By the moment the patient is eating, drinking and ready for discharge, a combination of oral analgesics including opioids and paracetamol plus/minus NSAID are most of the time an adequate option.
\nWHO analgesic ladder.
Not all types of pain respond equally to the same medication. Usually NSAIDs and steroids are highly effective in controlling soft tissue and bone pain. Bone pain may be helped partially by opioids [1]. But overall, the combination of NSAIDs, paracetamol and opioids is synergistic in treating the most types of pain. Opioid analgesics are useful in controlling somatic and visceral pain. Neuropathic pain, often described as pain with a burning and hyperaesthesia characteristic, which responds well to a diverse group of drugs, called adjuvants, including low dose of antidepressants (amitriptyline), anticonvulsants (carbamazepine and clonazepam), antiarrhythmics (mexiletine), baclofen and alfa-adrenergic agonists (clonidine). Opioids may also be helpful [1]. Most of the time, analgesia is improved after 1–2 days of using adjuvant drugs. Adjuvants were not developed initially as analgesics but recent studies show they poses benefits in a better pain control. Drugs that control pain by different mechanisms of action may be synergistic, when used together. Also, by lower doses of two or more different agents, the patient may have better pain control with fewer side effects. This is the basic background for the multimodal analgesia concept.
\nParacetamol is the first-line agent for the treatment of both acute and chronic pain. It is one of the pain killers with the highest profile of safety and is a first pharmacologic option for controlling pain in children and adults. It has a high toxic-to-therapeutic ratio and has very few significant drug interactions compared with other analgesics [2].
\nIt can be given orally, rectally or parentally, has small anti-inflammatory activity, and is an effective analgesic and antipyretic.
\nAlthough paracetamol has been in use since 1880, its pharmacologic mechanism of action is not fully known. It has a rapid absorption from the small intestine after oral administration. Paracetamol has lower protein binding than NSAIDs (and hence fewer potential drug interactions) and higher volume of distribution [6].
\nParacetamol is the active metabolite of the earlier (more toxic) drugs acetanilide and phenacetin. The recommended dose in adults is 0.5–1 g oral, iv or rectal every 4–6 hours when necessary, without exceeding a total daily dose of 4 g [6].
\nParacetamol has a CNS action, where inhibits prostaglandin synthesis. In clinical doses it has insignificant peripheral anti-inflammatory action. Unlike morphine, paracetamol has no apparent biding sites, and unlike NSAIDs it does not inhibit peripheral cyclo-oxygenase activity. But however, his mechanisms of action include, beside central COX-2 inhibition [2, 7], inhibition of a central cyclo-oxygenase, COX-3, that is selectively susceptible to paracetamol, and modulation of descending serotonergic pathways that suppresses spinal cord nociceptive transmission. There is also evidence of agonism at the cannabinoid receptor CB1 [2, 8]. There are, other evidences that paracetamol may inhibit prostaglandin endoperoxidase H2 production at the cellular level, independent of cyclooxygenase activity [2, 6].
\nThe most recent Cochrane review [9] of RCTs of single-dose oral analgesic for acute postoperative pain in adults reported a NNT of 3·6 with 1 g paracetamol, when morphine 10 mg IM has 2.9, ibuprofen 400 mg - 2.4 and codeine 60 mg - 16.7. Efficiency of paracetamol is improved in combinations with other analgesics, such as 400 mg ibuprofen, 60 mg codeine and 10 mg oxycodone (NNT 1·5, 2·2 and 1·8 respectively) [6, 9].
\nSo, paracetamol is an effective analgesic, with potency somewhat less than standard dose of morphine. Paracetamol is an efficient adjunct to opioid analgesia, and regular administration after surgery produce an opioid sparing effect, because reduce opioid requirements by 20–30%. Paracetamol proved to be an integral component of multimodal analgesia in combination with NSAIDs and opioids. Paracetamol has less side effects than the NSAIDs and can be used when the latter are contraindicated.
\nA significant concern regarding paracetamol use relates to the development of hepatotoxicity; however, current data suggest this is unlikely to develop at therapeutic doses [10]. However, doses of more than 150 mg/kg of paracetamol taken within 24 hours may result in severe liver damage, hypoglycaemia and acute tubular necrosis, especially when associated with dehydration and chronic malnutrition [11]. Individuals taking enzyme-inducing agents are more susceptible. So, important caution should be taken in overdoses due to the risk of liver damage and less frequently renal damage. Nausea and vomiting, the only early features of poisoning, usually settle within 24 hours. Persistence beyond this time, often associated with the onset of a right-side subcostal pain and tenderness, usually indicates development of hepatic necrosis.
\nParacetamol is metabolised in the liver primarily through conjugation to sulphate or glucuronides [2]. A minor pathway for the oxidative metabolism of paracetamol produces the toxic metabolite N-acetyl-P-benzoquinone (NAPQI) [2]. NAPQI requires glutathione for detoxification and elimination. Hepatic toxicity can occur when glutathione pathways are overwhelmed by an increase in NAPQI or decrease in glutathione.
\nParacetamol is generally well tolerated with rare side effects when the right doses are prescribed (Table 1) [2, 4].
\nSide effects | \nRare | \nFrequency not known | \n
---|---|---|
General | \nAcute generalised exanthematous pustulosis Malaise Skin reactions \n
| \nBlood disorders: leucopoenia neutropenia, thrombocytopenia as is bone marrow suppression | \n
Specific | \nWith iv use, flushing and tachycardia | \nWith iv use, hypotension | \n
Paracetamol side effects.
It is associated with several important drug interactions. Many anticonvulsants, including phenytoin, barbiturates and carbamazepine induces hepatic microsomal enzymes. Increased conversion of paracetamol to its toxic metabolite may occur in patients who are taking anticonvulsants, but this rarely leads to concerning consequences in the context of the usual doses for pain management [2, 6].
\nAlthough uncommon, drug interaction resulting in an increased INR is reported for patients taking both paracetamol and warfarin, particularly among patients taking high doses of paracetamol (> 9 g/week) [2, 12, 13]. Long term use of paracetamol should be avoided in patients with hepatic or renal impairment. Patients with a history of salicylate hypersensitivity characterised by urticaria have a 11% cross-reactivity to paracetamol, and the agent should be used with caution in this group [2, 7].
\nThe NSAIDs share several properties with aspirin and may be considered together.
\nNSAIDs are particularly used for the treatment of patients with chronic disease accompanied by pain and inflammation.
\nSome of them are also used for acute pain management and in the short-term treatment of mild to moderate pain including transient musculoskeletal pain. They are also suitable for the pain control in dysmenorrhoea and to release pain caused by secondary bone tumours, many of which produce lysis of bone and increase prostaglandins synthesis. Many of the NSAIDs are also used for postoperative analgesia as part of the multimodal analgesia strategy. Selective inhibitors of COX2 may be used in preference to non-selective NSAIDs for patients at high risk of developing serious gastro-intestinal side-effects.
\nThere are some limited and low quality evidences against the use of NSAIDs in bone pathology, suggesting that prostaglandins promote bone formation and that NSAID might impair this process [14, 15], theory not proven through properly conducted studies. There is no evidence that NSAIDs administration on short term after fracture is detrimental to healing [2].
\nThese agents inhibit cyclooxygenase (COX) and, as result, the synthesis of prostaglandin, a key mediator of inflammation, in the peripheral tissues, CNS and nerves – leading to an effective raise in the threshold of nociceptors stimulation. Aspirin acetylates and irreversibly inhibits cyclo-oxygenase, while NSAIDs work by competitive inhibition, being reversible. The prostaglandins are part of the eicosanoid’s family, oxygenated metabolites of arachidonic acid and other polyunsaturated fatty acids that include leukotrienes [6].
\nThe rate of prostaglandin synthesis is usually low, being regulated by trauma and tissue stimuli, which activates phospholipases to free arachidonic acid, from which prostaglandins are produced. Prostaglandins have several physiological roles, including gastric mucosal protection, bronchodilation and maintenance of renal tubular function, renal vasodilatation, regulation of tubular electrolytes and modulation the action of renal hormones [2, 6]. The side effects on the renal system of chronic NSAIDs is well known. In certain clinical settings when there are high plasma concentration of the vasoconstrictors rennin, noradrenaline, angiotensin and vasopressin, intrarenal vasodilators including prostacyclin are produced and renal function can be affected by NSAIDs administration [2]. The concomitant use of other potential nephrotoxic drugs, such as gentamicin, can worsen the renal effect of these drugs [2]. Nevertheless, with careful patient selection and closed monitoring the incidence of NSAID-renal damage is low.
\nTriggering bronchospasm is a recognised phenomenon in patients with asthma, rhinitis and nasal polyps [2]. Such “aspirin induce asthma” can be severe, and goes up to 10–15% as incidence with a feature cross sensitivity with NSAIDs. A known history of aspirin induce asthma should band the administration of NSAIDs perioperatively. The mechanism is unclear, but practice shown the reaction increases with the potency of the COX inhibition [2].
\nEndothelial released prostacyclin induces vasodilatation and prevents platelet adhesion, and platelet thromboxane produces aggregation and vasospasm. In addition to prostaglandins, cyclooxygenase induces prostacyclin synthesis, a vasodilator that also increases GI mucosal perfusion. Also, in the gastric tissue, COX-1 increases mucus and bicarbonate production, valuable feature for stomach mucosal protection [2]. Inhibition of COX-1 is affecting this protection, predisposing to ulcerations and bleeding, which can be exacerbated by concomitant NSAID-induced platelet dysfunction [2].
\nTwo subtypes of cyclo-oxygenase enzyme have been identified. These are constitutional COX-1 and inducible COX-2, the last one triggered by inflammation and trauma. The COX-1 is present in all cells and regulates various roles in homeostatic function. NSAIDs, like aspirin, are non-selective cyclo-oxygenase inhibitors that act on both COX-1 and COX-2, which results in multiple beneficial effects (reduction in inflammation, pain and fever) but also some important side effects.
\nThese two COX isoenzymes have 75% aminoacid homology, with almost identical enzymes kinetics.
\nCOX-1 is a membrane bound haemoglycoprotein found in the endoplasmic reticulum of prostaglandin-inducing cells. The COX active site is a long hydrophobic channel. NSAIDs block COX-1 halfway down the channel by hydrogen bounding in a reversible fashion. Aspirin acetylates serine, irreversibly preventing access for arachidonic acid [6].
\nCOX-2 has similar sites to COX-1 for the attachment of arachidonic acid, and a similar three-dimensional structure to COX-1.
\nUnder physiological condition COX-1 activity predominates, to produce prostaglandins that regulate rapid physiological responses such as vascular homeostasis, gastric function, platelet activity and renal function. The concentration of the COX-1 isoenzyme is low, but it may increase 2 to 4-fold, triggered by grow hormones and various hormones stimulation. Low concentration of COX-2 can normally be detected in the brain, kidney and the pregnant uterus. COX-2 mRNA expression by synovial cells, fibroblasts, monocytes may be increased 10 to 80-fold when stimulated by cytokines, bacterial lipopolysaccharides or growth factors [6] These triggers increase COX-2 synthesis and tissue PGE2 concentration, resulting in inflammation and pain.
\nInhibition of COX-1 induces antiplatelet activity that might be cardioprotective by inhibition of thromboxane synthesis more than prostacyclin. Inhibition of COX-2 inhibits prostacyclin synthesis more than thromboxane and may induce prothrombotic effects, leading to a higher risk of cardiovascular events [2]. In the case of nonselective COX inhibitors, both effects appear to be in balance each other out, resulting in minimal changes in cardiovascular risk [2]. But instead, the action of COX-2 inhibitors may result in result in an increased cardiovascular risk [16, 17].
\nProstaglandins released by COX-1 is also a factor on keeping a good glomerular filtration rate (GFR) by renal vasodilatation that maintain renal blood flow. Inhibition of COX-1, especially in dehydrated patients can lead to affect GFR and even to an acute kidney injury [2]. Other condition that might worsen under NSAIDs treatment is congestive heart failure, due to sodium and water retention, hyperkalaemia, hypertension and acute renal failure.
\nThe most common adverse effect of NSAIDs is GI mucosal erosion. In patients taking chronic NSAIDs (continuously for 1 year) 10 to 60% will experience abdominal pain, nausea, dyspepsia, and a 2 to 4% will end up with a symptomatic peptic ulcers [18]. Between the risk factors are known: age, concomitant use of corticosteroids and warfarin, coronary artery disease, congestive heart failure and diabetes mellitus. Several studies proved the efficiency of some protective agents as misoprostol and proton pump inhibitors [19]. The relative risk for causing GI effects under the NSAIDs treatment are shown in Table 2 on below.
\n\n | \n\n | \n
COX-2 inhibitor | \n0.6 | \n
Ibuprofen | \n1.0 | \n
Diclofenac | \n1.8 | \n
Naproxen | \n2.2 | \n
Indomethacin | \n2.4 | \n
Piroxicam | \n3.8 | \n
Ketoprofen | \n4.2 | \n
Ketorolac | \n24.7 | \n
\n | \nProton pump inhibitor | \n
0.09 | \nMisoprostol | \n
0.57 | \n\n |
This category of drugs is widely used, being very efficient medicines, but responsible for more serious drugs-related side effects than any other class of analgesic drugs [20]. The main side effect of NSAIDs as stated earlier is gastric erosion with the risk of GI bleeding, but also platelets dysfunction, renal failure and anaphylaxis or bronchospasm in individuals who have “aspirin – induced asthma” [2].
\nSingle dose of NSAIDs such as diclofenac and ketorolac inhibit platelet function (prolong skin bleeding time and inhibit platelet function in vitro), but do not tend to increase bleeding in normal patients. However, when concomitant anticoagulation treatment or presence of subclinical bleeding diathesis occurs, then there is an increased risk of surgical bleeding [2].
\nConversely, NSAIDs and COX-2 inhibitors have a small prothrombotic tendency. The risk is increasing by prolonged administration and by the dose taken, and for the more selective agents (COX-2) but also for diclofenac [2]. Studies shows that diclofenac 150 mg has similar risk to etoricoxib. Ibuprofen in a daily dose of 2400 mg also represents a high risk for thrombosis. But reduced doses to 1200 mg a day Ibuprofen and Naproxen 1 g daily are not associated with an increase risk [21, 22].
\nThere are many contraindications of this drug class presented on below (Table 3) [23].
\nRelative contraindications | \nAbsolute contraindication | \n
---|---|
Impaired hepatic function, diabetes, bleeding or coagulation disorder, vascular disease | \nHistory of GI bleeding or ulceration | \n
Surgery with a high risk of intraoperative haemorrhage (cardiac, vascular, etc.) | \nKnown allergy to NSAIDs | \n
Surgery where an absence of bleeding is important (eye surgery or neurosurgery) | \nSever liver dysfunction | \n
\n | Cardiac failure (risk of sodium, potassium and water retention) | \n
Concurrent use of ACE inhibitors, potassium sparing diuretics, anticoagulants, methotrexate, cyclosporin, gentamicin | \nDehydration, hypovolemia, hypotension | \n
Pregnant and lactating women | \nHyperkalaemia | \n
Age >65 years (risk of kidney impairment) | \nPre-existing renal impairment | \n
Uncontrolled hypertension | \n\n |
Aspirin-induced asthma | \n\n |
NSAIDs contraindications.
The number needed to treat (NNT, basically the number of patients in a study to whom the drug must be given to show a benefit) for diclofenac 50 mg 2.3, ketorolac 10 mg is 2.6 and ibuprofen 400 mg 2.4. For comparison, the NNT of morphine 10 mg IM is 2.9 and codeine 60 mg PO is 16.7. When given in combination with opioids, NSAIDs optimise the pain control and decrease opioid consumption by 25–50% [2]. NSAIDs are insufficient as a single pain killer use for relief of very severe pain.
\nCOX-2 inhibitors produce less clinically significant peptic ulceration than other NSAIDs. So, COX-2 inhibitors are not far from any incidence of this adverse event, and there still debates on COX-2 inhibitors use in patients who have various risk factors for gastric erosion.
\nPlatelets do not produce COX-2 (only COX-1) and so, COX-2 selective inhibitors do not affect platelet function. Studies have proved the lack of and antiplatelet effect of COX-2 inhibitors, and a reduction in surgical bleeding in comparison to other NSAIDs.
\nCOX-2 is resident (constitutive) in some tissues including the renal, and COX-2 inhibitors have similar adverse effects on renal function to the non-selective NSAIDs (Table 4) [2].
\n\n | NSAIDs | \nCOX-2 | \n
---|---|---|
Efficacy for moderate to severe acute pain (numbers to treat – NNT) | \nDiclofenac 50 mg (2.3) Ibuprofen 400 mg (2.4) Ketorolac 10 mg (2.6) | \nCelecoxib 200 mg (4.5) Parecoxib 20 mg (3.0) Etoricoxib 120 mg (1.8) | \n
\n | \nCan impair renal function postoperatively | \nSimilar adverse effects | \n
\n | \nAcute gastrointestinal damage and bleeding can occur. Risk increased with higher doses, history of GI ulceration, long term use, and elderly | \nLess clinically significant peptic ulceration | \n
\n | \nInhibit platelet function but do not significantly increase surgical blood loss in normal patients. Associated with higher incidence of post-tonsillectomy bleeding | \nDo not impair platelet function | \n
\n | \n10–15% of asthmatics affected when given aspirin. Cross-sensitivity with NSAIDs | \nDo not produces bronchospasm | \n
\n | \nImpaired in animal studies. No strong evidences that clinically important | \nSimilar to NSAIDs | \n
Comparison of non-selective NSAIDs and COX-2 inhibitors.
\n
\n
\n
\n
\n
\n
\n
In 1680, Sydenham wrote “Among the remedies it has pleased Almighty God to give to man to relive his suffering, none is so universal and so efficacious as opium” [2, 26]. Hundreds of years later, this statement is still valid, and opioids are the cornerstone of pain management. The beneficial effects have been well studied for centuries, as their toxicity and also the potential for abuse.
\nOpioid analgesics are usually used to relieve moderate to severe pain particularly of visceral origin. Repeated administration may cause dependence and tolerance, but this is not deterrent in the pain control of terminal illness. Regular use of a potent opioid may be appropriate for certain cases of chronic non-malignant pain; treatment should be supervised by medical staff and the patient should be assessed regularly. However, due to concerns about inducing opioid toxicity or addiction and sometimes due to poor understanding of the pharmacology features of these drugs, opioids are often inadequate used in clinical practice [27, 28].
\nOpioids bind to specific endorphin system receptors located throughout the nervous system but not only. Opioid receptors are G-protein-coupled transmembrane receptors. These exist throughout the CNS, with particularly high concentration in thalamus and spinal cord. They are also present outside the CNS, and these are responsible for other opioids effects (gastrointestinal tract) and their postulated value in some peripheral anaesthetic techniques, such as intra-articular infiltrations [6]. The actions of various opioids are induced by the specific binding properties of the agent to the various receptors (Table 5).
\nOpioid receptor class | \nEffects | \nAssociated endogenous endorphin | \n
---|---|---|
Miu 1 | \nEuphoria, supraspinal analgesia, confusion, dizziness, nausea, low addiction potential | \nBeta-endorphin | \n
Miu 2 | \nRespiratory depression, CV and GI effects, miosis, urinary retention | \nBeta-endorphin | \n
Delta | \nSpinal analgesia, CV depressions, decreased brain and myocardial activity, physical dependence | \nEnkephalin | \n
Kappa | \nSpinal analgesia, dysphoria, psychotomimetic effects, feedback inhibition of the endorphin system | \nDynorphin, Beta-endorphin | \n
Epsilon | \nHormone | \nBeta-endorphin | \n
Gamma | \nDysphoria, psychotomimetic effects | \nBeta-endorphin | \n
Opioids receptors end their effects.
Opioids decrease the medullary sensitivity to CO2, which may cause respiratory depression and also, suppress the medullary cough centre, for this reason some studies advocate for its use as an antitussive. Opioids can activate the chemoreceptor trigger zone, causing nausea or vomiting, but this is relatively infrequent. This drug class decrease bowel motility and smooth muscle function, responsible for constipation, and rarely, urinary retention. To a varying degree, some opioids destabilise mast cells in a dose dependent fashion, causing histamine release, manifested with pruritus, urticaria and sometimes, orthostatic hypotension.
\nOpioid agonist agents cause a range of mainly depressant and some stimulant actions of the CNS through specific receptors (Table 6). These drugs have little capacity to produce amnesia, do not alter seizure threshold and have no anticonvulsant activity [6].
\nOpioids given systemically produce analgesia through actions at two anatomically distinct regions: supraspinal and spinal sites. They efficiently reduce the intensity of pain and the associated fear. This is achieved by raising the pain threshold, modifying the reaction to pain, and inducing sleep. They are efficient for controlling dull pain rather than sharp intermittent pain. Opioids are less effective for the treatment of neuropathic pain.
\nSystem | \nEffect | \n||
---|---|---|---|
Musculoskeletal | \nGait | \nDecrease physical performance Ataxia Decrease spinal cord reflexes | \n|
\n | Rigidity | \nMuscular rigidity occurs 60–90 seconds post-injection and abolish after 10–20 minutes Mainly thoracoabdominal and arms muscles, higher risk with advanced age, high speed of injection, increased dose, use of N2O Mediated via nucleus raphe magnus | \n|
\n | Multifocal myoclonus | \nNon-convulsive related, higher risk with pethidine | \n|
Neural | \nCentral | \nSpectrum from abnormal eye movement, to contraction of extremities, to tonic-clonic movements Euphoria: especially for opioids which cross the blood-brain barrier quickly Dysphoria in some individuals Subjective feelings of body warmth and heavy extremities Apathy Decreased level of consciousness Decreased concentration and orientation | \n|
\n | EEG | \nEffects vary between different opioids: slowing of frequency, production of high voltage & waves No capacity to induce EEG silence | \n|
Vision | \nEdinger-Westphal nucleus | \nMiosis (via a decrease in inhibition to the nucleus) except pethidine Reversed by hypoxia and atropine | \n|
Cerebrovascular | \nSSEPs | \nNo effect | \n|
\n | ICP | \nNo effect | \n|
\n | CBF | \nNo effect, but increased vasoconstriction with vasodilators No loss of autoregulation or CO2 reactivity CMRO2 reduced by up to 10–25% | \n|
Thermoregulation | \nResponse | \nDecrease thermoregulation response (as for volatile agents) | \n|
\n | Peripheral effects | \nPromote hypothermia via decreased BMR (10–20%), venodilation, muscle relaxation | \n
Opioids effects on the CNS [6].
SSEPs – somatosensory evoked potential, ICP – intracranial pressure, CMRO2 – cerebral metabolic rate of oxygen consumption.
Opioids actions are also towards reduction in the level of consciousness and eventually produce sleep, with the loss of responsiveness to verbal stimulation. In anaesthesia combinations, they produce a dose related decrease in the MAC for volatile anaesthetics, with a ceiling of 60–70% decrease in MAC [6]. Another important feature in the combination with the volatile agents is increase in cerebral vasoconstriction [6]. Opioids do not cause a loss of cerebral autoregulation or reactivity to CO2. During EEC recording, there is a ceiling effect, with a slowing EEG frequency and the production of high-voltage (delta) waves [6].
\nIn normovolemic patients, opioids barely influence haemodynamic parameters, with minimal cardiac depression, no baroreceptors inhibitions and modest reduction in preload and afterload. Haemodynamic compromise may be detected in subjects whose cardiovascular integrity is dependable on a high level of sympathetic tone, because opioids decrease central sympathetic outflow when even small doses can cause hypotension and circulatory collapse [6]. Morphine has the greatest effect on the vascular system. Morphine has the greatest effect on histamine release and subsequent indirect effect on catecholamine release. This may lead to tachycardia with a reduction in systemic vascular resistance (SVR) and mean arterial pressure (MAP). This risk can be prevented by pre-treatment with an antihistaminic drug and volume loading [6].
\nOpioids induce a negative chronotropic effect through a central vagal stimulation. Pethidine, however, has a homology with atropine and can trigger tachycardia, and it is the only opioid to induce significant direct myocardial depression when used at high doses. Myocardial depression is observed also after extraordinary high doses of morphine and fentanyl, as during cardiovascular anaesthesia. Morphine has indirect positive inotropic effects at doses of 1–2 mg/kg, and blocks neurally and hormonally mediated venoconstriction to reduce preload, rendering it useful in the management of left ventricular failure [6].
\nOpioids preserve circulatory stability to a greater extent than most other anaesthetic agents [6].
\nOpioids are the most efficient of all pain analgesics drugs for attenuating the stress response associated with pain, laryngoscopy and airway manipulation. The plasma concentration of stress hormones (cortisol, catecholamines, vasopressin, aldosterone and growth factor) increases during trauma, anaesthesia or surgery. This produce increased myocardial work, tissue catabolism and hyperglycaemia – effects associated with increased morbidity and mortality. Opioids reduce nociception inhibiting the pituitary-adrenal axis, decreasing central sympathetic outflow and influencing centrally mediated neuroendocrine response. Fentanyl and its congeners are the most efficacious in this action (Table 7).
\nSystem | \n\n | Effect | \n
---|---|---|
Cardiovascular | \nHeart rate | \nSinus bradycardia via central vagal stimulation Occasionally sinus arrest exacerbated by concomitant vagal excitation (e.g. laryngoscopy) and Beta-blockers | \n
Mean arterial pressure | \nUsually no effect or a slight decrease (unless significant bradycardia) Greater decrease if associated with histamine release | \n|
Vascular system | \nNo effect on SVR (unless histamine release) Mild venodilation with a decrease in preload (due to decrease of central sympathetic outflow) | \n|
Myocardium | \nNo effect on contractility (except for pethidine which is a depressant) No effect on metabolic rate Possible ischemic preconditioning | \n|
Excitability | \nDecreased myocardial contractility Increased refractory period Increased VF threshold | \n|
Respiratory | \nMechanics | \nDecrease in rate, tidal volume and minute ventilation at equianalgesic doses Increase pauses, irregular breathing and apnoea | \n
Control | \nIncreased apnoeic threshold Decrease CO2 sensitivity Decrease carotid body chemoreception and hypoxic drive Voluntary control of respiration remains intact No effect on hypoxic pulmonary vasoconstriction | \n|
Airway reflexes | \nDecrease airway reflexes with improve tolerance to ETT Antitussive through central and peripheral actions Decrease mucociliary action Brief cough in up to 50% with pethidine bolus | \n|
Gastrointestinal | \nStomach and bowel | \nDecrease peristalsis and secretions and increase tone causing dry stool and constipation Decrease gastric acid Decrease gastric emptying with increase antral tone and decrease lower oesophageal sphincter tone promoting high aspiration risk Increase tone of pyloric, ileocecal and anal sphincters | \n
\n | Biliary tree | \nIncrease bile duct pressure Sphincter Oddi contraction (little clinical significance) | \n
Chemoreceptor trigger zone | \nNausea and vomiting | \n|
Genitourinary | \nKidney | \nAntidiuresis as a result of decrease in renal blood flow and decrease in GFR (predominates) Decrease vasopressin release in response to osmotic triggers | \n
Bladder | \nIncreased bladder and urethral tone Vesicular sphincter contraction | \n|
Immunity | \nImmune system | \nDecrease immunoglobulin production (uncertain significance) Reactivation of herpes simplex virus 2–5 days after neuraxial opioid | \n
Opioid effects on major organ system [6].
Side effects can be observed from minors to the most concerning ones and are individual and age depending beyond of disease extension, presence of organ dysfunction, concurrent administration of certain drugs, route of administration and prior of opioid exposure. Some side effects induced by the opioids are induced by the activation of the opioid receptors either peripherally or centrally, or even in both areas. Serious allergic reactions to opioids are extremely rare, although anaphylaxis has been reported.
\nAt equianalgesic doses, all opioids produce equivalent degrees of respiratory depression through reducing the sensitivity to CO2 of the breathing drive. The extreme ages, elderly and neonates are at the highest risk. Tolerance arises rapidly to this effect, and with chronic opioid exposure the risk of major respiratory depression is reduced. Apnoea may occur in conscious patients, but this is rare, and is usually associated with other signs of CNS depression. In such a condition, apnoeic patients can be instructed to breath as voluntary control of ventilation remains intact. Sleep or the concomitant use of other CNS depressants (except clonidine) potentiates this risk.
\nOpioid-induce depression of airway reflexes is usually regarded as an advantage side effect for the practitioner in some condition like airway manipulation. Although at the same time the mucociliary function depression can be detrimental. All opioids have an antitussive activity at less than analgesic doses, working via central and peripheral mechanisms.
\nThe incidence of nausea after opioids use is reported to be between 10 and 60%, and this is markedly increased in pain-free and ambulatory patients (via opioid sensitisation of the vestibular nucleus). This reactivity is based on individual variability, but tolerance develops rapidly [6]. Switch to oral administration and substituting one opioid to another may reduce the incidence of nausea.
\nConstipation remains the most common side effect of chronic opioid treatment, and toxic megacolon may occur in patients with ulcerative colitis [6]. Tolerance, in this situation develops very slowly, as well as other smooth muscle effects. Loperamide is a synthetic agent, does not cross the blood brain barrier, used as an antimotility drug. All opioids are reported to increase bile duct pressure, with a spasmogenic action cause contraction of the sphincter of Oddi with effects on doses dependent activity [6]. Pethidine also, produces smooth muscle contraction via a direct action. Opioids effects on the biliary tract can be reversed by naloxone, nitroglycerine and glucagon.
\nOther effects on the smooth muscle target the genitourinary system, often leading to urinary retention and urgency. This effect is predominant in elderly and when administered neuraxially. This later feature explains a centrally mediated mechanism of action via receptors located at the sacral spinal cord.
\nThere are some others centrally mediated opioids effects. Some of these are of no clinical benefit and usually unpleasant. Often, opioids may trigger pruritus with various ranges of severity, with mechanism of action not fully discovered. The pruritus predominantly affects nose, face and chest being independent of histamine release. Substituting opioids agents will decrease the incidence. Studies has shown that low dose of naloxone will alleviate this effect. Muscle rigidity is triggered at or just after the loss of consciousness and may manifest from hoarseness in mild cases to impossibility of ventilate in severe situations. It can be minimised by co-administration of induction agents and benzodiazepines. In anaesthetic practice may be prevented by pre-treatment priming with small doses of muscle relaxants. This side effect was reported to be with a higher incidence on concomitant use of nitrous oxide [6]. It is seen more commonly with Fentanyl and its congeners than with morphine and the risk is dose depended. In emergency situation of impossibility of ventilation can be reversed by administration of naloxone.
\nOpioids agents decrease thermoregulation thresholds, except pethidine, which is a unique in its ability to reduce shivering. Tramadol also has proved to be efficacious in this regard [6].
\nHistamine release and associated hypotension are variable in incidence and severity, and are with decreased incidence where is a slow IV administration and ameliorated by intravascular fluid loading. This effect is less with fentanyl and its subclass agents, except pethidine. The histamine release may be localised or generalised, often causing facial flushing and variable itch [6].
\nPethidine has been described as a unique agent because of its non-opioid effects. It has a local anaesthetic effect of equivalent potency to cocaine and it has a quinidine-like effect on cardiac muscle to reduce cardiac irritability and arrhythmias [6]. Pethidine overdose produce a complex syndrome characterised by a cardiovascular collapse, seizures, hyperreflexia, mydriasis in addition to a respiratory depression [6].
\nThe use of phenylpiperidines family (except remifentanil) in anaesthesia has been associated with postoperative respiratory depression after high doses, due secondary peaks in plasma levels, possible from the opioids release from the body stores. This action is responsible for the increase in peripheral perfusion and postoperative shivering.
\nThe choice of route of administration depends on the opioid being utilised, pain severity, the need for agent titration, potential side effects and contraindications to a particular route. The way of administration may activate the onset of peak analgesia and the side effects. For example, respiratory depression may be triggered 7 minutes after an IV dose of morphine, but not until 30 minutes after IM or 6–10 hours after a spinal administration.
\nThere are various degree and length of pain relief effect conferred by certain routes. Spinal administration may produce a greater quality and potentially a longer duration of analgesia, with a lower incident of supraspinal effects. However, an increased incidence of specific side effects (nausea, itching, urinary retention) occurs.
\nNo opioid agonist demonstrates dose-dependent pharmacokinetics. First pass metabolism of orally administrated opioids is made in the liver and the digestive tract wall (up to 50%). Opioids given IM or SC have 100% bioavailability, but peak plasma concentration may be variable up to fivefold influenced by body temperature, site of injection and hemodynamic status. IV administration results in a much restricted rage of plasma concentration [6].
\nThe lung exerts an important first-pass effect on highly lipid-soluble opioids. Prior administration of other lipophilic amines, such propranolol decreases pulmonary uptake, by saturating biding sites [6].
\nOpioids mainly sustain a liver metabolism with a renal excretion of the more hydrophilic metabolites. A few metabolites also take the biliary excretion route. Some amounts of the more hydrophilic agents may be excreted unchanged in the urine. Liver blood flow is the main factor influencing the plasma clearance for most opioids, because of their high hepatic extraction ratio [6].
\n\n
\n
\n
\n
\n
The pharmacokinetics and dynamics of opioids may be altered in a number of physiological states as stated in Table 8.
\nPhysiological states | \nEffect | \nMechanism | \n
---|---|---|
Obesity | \nOverdosage | \nCentral volume of distribution is not reflected by actual body weight Increased volume of distribution prolongs elimination half-life | \n
Infant | \nProlonged effect | \nDecreased conjugation capacity Immature renal function | \n
Elderly | \nIncreased sensitivity to opioid | \nDecreased neuronal cell mass Decreased central volume of distribution | \n
Prolonged effect of infusion | \nDecreased lean body mass with increase adipose tissue is responsible for an increase in total volume of distribution Decreased hepatic blood flow (by 40–50% by age of 75) | \n|
Hepatic failure | \nIncreased sensitivity to opioids (in severe liver failure only) | \nSynergism if encephalopathic Altered integrity of blood-brain barrier Increased elimination half-life for pethidine and tramadol | \n
Renal failure | \nMorphine toxicity | \nAccumulation of M6G Possible hydrolysis of glucuronides back to parent compound Uraemia potentiates CNS depression and increases blood-brain barrier permeability | \n
Factors influencing opioid pharmacokinetics and pharmacodynamics.
This class of pain killers have limited but important interactions with other drugs. Their action is synergistically with other CNS depressant on the level of consciousness. Barbiturates, benzodiazepines and propofol produce effects on the loss of consciousness with a synergic action from the opioids side and also increase the risk of cardiovascular depression. With anaesthetic use, opioids may decrease the concentration of volatile agents by up to 50% while ensuring amnesia and immobility, with the preservation of hemodynamic stability at low inhaled concentrations (≤1 MAC) [6].
\nThe use of opioids (particularly pethidine and tramadol) with monoamine oxidase inhibitors (MAOI) may lead to serious and potentially fatal consequences as excitatory syndrome (type I) [2, 6]. This is complex syndrome characterised by excitatory phenomena including agitation, fever, rigidity, seizures and coma. This is triggered by the excessive CNS serotonin activity, since both MAOI and pethidine block serotonin reuptake. Rarely also can arise an inhibitory syndrome (type II) characterised by respiratory depression, coma and hypotension, which is the result of MAOI inhibition of hepatic microsomal enzymes leading to a pethidine accumulation.
\nA similar excitatory syndrome (serotoninergic) is found during the combination of tramadol and serotonin-noradrenaline reuptake inhibitors (SNRIs) [6].
\nMorphine has been recommended as the opioid of choice for use in these patients.
\nThe main opioid antagonist currently used in practice is naloxone.
\nNaloxone is an N-allyl derivate of oxymorphone. It is pure opioid antagonist, without an intrinsic pharmacological activity. It has a high affinity for miu opioid receptors but also blocks other receptors. Naloxone reverses the respiratory depression and analgesia of opioids but also precipitates the withdrawal syndrome in opioids addicts. Naloxone could also block the action of endogenous opioids. IV administration of 200–400 mcg of naloxone will reverse the respiratory depression, but incremental titration (1.5–3 mcg/kg) is referable in order to minimise the reversal of the analgesic effects of the opioids. Naloxone’s action time is roughly 30 minutes, so further doses may be considered to avoid the return of respiratory depression effects of any agonist agent that outlasts the effect of naloxone. Naloxone is also efficient in releasing the pruritus and urinary retention of the intrathecal and epidural opioids. Naloxone has very small oral availability, only 2%, because and major first pass metabolism [6].
\nTramadol is included in the opioids class of drugs, with unique and complex mode of action, only part of which is mediated through opioid receptors. Tramadol is an analogue of codeine and acts as a weak agonist at all types of opioid receptors, with some preference for the miu receptors. It has 10% of the potency of morphine. Tramadol blocks the reuptake of noradrenaline and 5-HT (serotonin) and facilitate the release of the later. By its effects, influences nociceptive transmission activating the descending inhibitory pathways in the CNS. Therefore, Naloxone only partially reverses the analgesic effects of tramadol. Effects on alfa2-adrenergic, NMDA and benzodiazepine receptors may be due to indirect effects secondary noradrenergic system effects [31].
\nTramadol is recommended in the treatment of moderate to severe pain. It is well absorbed when given orally, with a bioavailability of 68% and only 20% protein bound. Tramadol is predominantly metabolised in the liver by demethylation and conjugation, with 90% being excreted in the urine. The elimination half-life is 4–6 hours. His metabolites have longer half-life (up to 9 hours) and 2–4 times greater analgesic potency than tramadol and precautions should be taken in hepatic and renal failure.
\nTramadol exhibits small risk for respiratory depression when compared with equianalgesic doses of morphine. Also, cardiovascular effects are minimal. There is a low potency for abuse and physical dependence, but still reported. Tramadol’s known side effects include: dizziness, nausea, sedation, dry mouth, sweating and skin rashes.
\nConcomitant use of MAOIs is contraindicated and co-administration with carbamazepine may decrease the concentration and effect of tramadol.
\nA - ask about pain regularly
B - believe the patient’s/resident’s and family’s reports of pain and what relieves it
C - choose appropriate pain control options
D - deliver interventions in a timely, logical and coordinated fashion
E - empower patients
As a result of a nationwide effort to reduce unnecessary opioid use and reduce incidents of patient abuse, clinicians are encouraged to carefully assess their patient’s pain, limit the number of prescribed opioids analgesics and limit further prescribing by evaluating the patient’s pain relief and increased functional ability.
\nThe trend to lower usage has had a tremendous impact on opiod use worldwide over the last years. By 2016, paracetamol/hydrocodone, which had been the leading medication prescribed for pain, had dropped from first most prescribed pain medication to the fourth most prescribed drug in the nation, with the volume of prescriptions down to 7.2% in 2015, from 34% in 2012.
\nIn order to facilitate this continuing trend, it is recommended that the following WHO decision ladder and in-depth patient assessment be utilised before requesting or prescribing opioid compounds.
\nMultimodal analgesia is defined as the use of more than one pharmacological class of analgesic medication targeting different receptors along the pain pathway with the goal of improving analgesia while reducing individual class-related side effects. Evidence today supports the routine use of multimodal analgesia in the perioperative period to eliminate the over-reliance on opioids for pain control and to reduce opioid-related adverse events. A multimodal analgesic protocol should be surgery-specific, functioning more like a checklist than a recipe, with options to tailor to the individual patient.
\nElements of this protocol may include opioids, non-opioid systemic analgesics like paracetamol, non-steroidal anti-inflammatory drugs, gabapentins, ketamine, and local anaesthetics administered by infiltration, regional block, or the intravenous route [32, 33, 34, 35, 36, 37]. While implementation of multimodal analgesic protocols perioperatively is recommended as an intervention to decrease the prevalence of long-term opioid use following surgery, the concurrent crisis of drug shortages presents an additional challenge. Anaesthesiologists and acute pain medicine specialists will need to advocate locally and nationally to ensure a steady supply of analgesic medications and in-class alternatives for their patients’ perioperative pain management.
\nThe recommendations are on the basis of the underlying premise that optimal management begins with the patient assessment and development of a plan of care tailored to the individual and the medical status or the surgical procedure involved, with follow-up assessments and adjustments as needed. The evidences support the use of multimodal regimens in many situations, although the exact components of effective multimodal care will vary depending on the patient, setting, and surgical procedure or the medical condition. Therefore, it is important that clinicians consider their patients’ pain in the context of: biological, social and psychological factors.
\n"I work with IntechOpen for a number of reasons: their professionalism, their mission in support of Open Access publishing, and the quality of their peer-reviewed publications, but also because they believe in equality. Throughout the world, we are seeing progress in attracting, retaining, and promoting women in STEMM. IntechOpen are certainly supporting this work globally by empowering all scientists and ensuring that women are encouraged and enabled to publish and take leading roles within the scientific community." Dr. Catrin Rutland, University of Nottingham, UK
",metaTitle:"Advantages of Publishing with IntechOpen",metaDescription:"We have more than a decade of experience in Open Access publishing. \n\n ",metaKeywords:null,canonicalURL:null,contentRaw:'[{"type":"htmlEditorComponent","content":"We have more than a decade of experience in Open Access publishing. The advantages of publishing with IntechOpen include:
\\n\\nOur platform – IntechOpen is the world’s leading publisher of OA books, built by scientists, for scientists.
\\n\\nOur reputation – Everything we publish goes through a two-stage peer review process. We’re proud to count Nobel laureates among our esteemed authors. We meet European Commission standards for funding, and the research we’ve published has been funded by the Bill and Melinda Gates Foundation and the Wellcome Trust, among others. IntechOpen is a member of all relevant trade associations (including the STM Association and the Association of Learned and Professional Society Publishers) and has a selection of books indexed in Web of Science's Book Citation Index.
\\n\\nOur expertise – We’ve published more than 4,500 books by more than 118,000 authors and editors.
\\n\\nOur reach – Our books have more than 130 million downloads and more than 146,150 Web of Science citations. We increase citations via indexing in all the major databases, including the Book Citation Index at Web of Science and Google Scholar.
\\n\\nOur services – The support we offer our authors and editors is second to none. Each book in our program receives the following:
\\n\\nOur end-to-end publishing service frees our authors and editors to focus on what matters: research. We empower them to shape their fields and connect with the global scientific community.
\\n\\n"In developing countries until now, advancement in science has been very limited, because insufficient economic resources are dedicated to science and education. These limitations are more marked when the scientists are women. In order to develop science in the poorest countries and decrease the gender gap that exists in scientific fields, Open Access networks like IntechOpen are essential. Free access to scientific research could contribute to ameliorating difficult life conditions and breaking down barriers." Marquidia Pacheco, National Institute for Nuclear Research (ININ), Mexico
\\n\\nInterested? Contact Ana Pantar (book.idea@intechopen.com) for more information.
\\n"}]'},components:[{type:"htmlEditorComponent",content:'We have more than a decade of experience in Open Access publishing. The advantages of publishing with IntechOpen include:
\n\nOur platform – IntechOpen is the world’s leading publisher of OA books, built by scientists, for scientists.
\n\nOur reputation – Everything we publish goes through a two-stage peer review process. We’re proud to count Nobel laureates among our esteemed authors. We meet European Commission standards for funding, and the research we’ve published has been funded by the Bill and Melinda Gates Foundation and the Wellcome Trust, among others. IntechOpen is a member of all relevant trade associations (including the STM Association and the Association of Learned and Professional Society Publishers) and has a selection of books indexed in Web of Science's Book Citation Index.
\n\nOur expertise – We’ve published more than 4,500 books by more than 118,000 authors and editors.
\n\nOur reach – Our books have more than 130 million downloads and more than 146,150 Web of Science citations. We increase citations via indexing in all the major databases, including the Book Citation Index at Web of Science and Google Scholar.
\n\nOur services – The support we offer our authors and editors is second to none. Each book in our program receives the following:
\n\nOur end-to-end publishing service frees our authors and editors to focus on what matters: research. We empower them to shape their fields and connect with the global scientific community.
\n\n"In developing countries until now, advancement in science has been very limited, because insufficient economic resources are dedicated to science and education. These limitations are more marked when the scientists are women. In order to develop science in the poorest countries and decrease the gender gap that exists in scientific fields, Open Access networks like IntechOpen are essential. Free access to scientific research could contribute to ameliorating difficult life conditions and breaking down barriers." Marquidia Pacheco, National Institute for Nuclear Research (ININ), Mexico
\n\nInterested? Contact Ana Pantar (book.idea@intechopen.com) for more information.
\n'}]},successStories:{items:[]},authorsAndEditors:{filterParams:{sort:"featured,name"},profiles:[{id:"6700",title:"Dr.",name:"Abbass A.",middleName:null,surname:"Hashim",slug:"abbass-a.-hashim",fullName:"Abbass A. Hashim",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/6700/images/1864_n.jpg",biography:"Currently I am carrying out research in several areas of interest, mainly covering work on chemical and bio-sensors, semiconductor thin film device fabrication and characterisation.\nAt the moment I have very strong interest in radiation environmental pollution and bacteriology treatment. The teams of researchers are working very hard to bring novel results in this field. I am also a member of the team in charge for the supervision of Ph.D. students in the fields of development of silicon based planar waveguide sensor devices, study of inelastic electron tunnelling in planar tunnelling nanostructures for sensing applications and development of organotellurium(IV) compounds for semiconductor applications. I am a specialist in data analysis techniques and nanosurface structure. I have served as the editor for many books, been a member of the editorial board in science journals, have published many papers and hold many patents.",institutionString:null,institution:{name:"Sheffield Hallam University",country:{name:"United Kingdom"}}},{id:"54525",title:"Prof.",name:"Abdul Latif",middleName:null,surname:"Ahmad",slug:"abdul-latif-ahmad",fullName:"Abdul Latif Ahmad",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:null},{id:"20567",title:"Prof.",name:"Ado",middleName:null,surname:"Jorio",slug:"ado-jorio",fullName:"Ado Jorio",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"Universidade Federal de Minas Gerais",country:{name:"Brazil"}}},{id:"47940",title:"Dr.",name:"Alberto",middleName:null,surname:"Mantovani",slug:"alberto-mantovani",fullName:"Alberto Mantovani",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:null},{id:"12392",title:"Mr.",name:"Alex",middleName:null,surname:"Lazinica",slug:"alex-lazinica",fullName:"Alex Lazinica",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/12392/images/7282_n.png",biography:"Alex Lazinica is the founder and CEO of IntechOpen. After obtaining a Master's degree in Mechanical Engineering, he continued his PhD studies in Robotics at the Vienna University of Technology. Here he worked as a robotic researcher with the university's Intelligent Manufacturing Systems Group as well as a guest researcher at various European universities, including the Swiss Federal Institute of Technology Lausanne (EPFL). During this time he published more than 20 scientific papers, gave presentations, served as a reviewer for major robotic journals and conferences and most importantly he co-founded and built the International Journal of Advanced Robotic Systems- world's first Open Access journal in the field of robotics. Starting this journal was a pivotal point in his career, since it was a pathway to founding IntechOpen - Open Access publisher focused on addressing academic researchers needs. Alex is a personification of IntechOpen key values being trusted, open and entrepreneurial. Today his focus is on defining the growth and development strategy for the company.",institutionString:null,institution:{name:"TU Wien",country:{name:"Austria"}}},{id:"19816",title:"Prof.",name:"Alexander",middleName:null,surname:"Kokorin",slug:"alexander-kokorin",fullName:"Alexander Kokorin",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/19816/images/1607_n.jpg",biography:"Alexander I. Kokorin: born: 1947, Moscow; DSc., PhD; Principal Research Fellow (Research Professor) of Department of Kinetics and Catalysis, N. Semenov Institute of Chemical Physics, Russian Academy of Sciences, Moscow.\r\nArea of research interests: physical chemistry of complex-organized molecular and nanosized systems, including polymer-metal complexes; the surface of doped oxide semiconductors. He is an expert in structural, absorptive, catalytic and photocatalytic properties, in structural organization and dynamic features of ionic liquids, in magnetic interactions between paramagnetic centers. The author or co-author of 3 books, over 200 articles and reviews in scientific journals and books. He is an actual member of the International EPR/ESR Society, European Society on Quantum Solar Energy Conversion, Moscow House of Scientists, of the Board of Moscow Physical Society.",institutionString:null,institution:{name:"Semenov Institute of Chemical Physics",country:{name:"Russia"}}},{id:"62389",title:"PhD.",name:"Ali Demir",middleName:null,surname:"Sezer",slug:"ali-demir-sezer",fullName:"Ali Demir Sezer",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/62389/images/3413_n.jpg",biography:"Dr. Ali Demir Sezer has a Ph.D. from Pharmaceutical Biotechnology at the Faculty of Pharmacy, University of Marmara (Turkey). He is the member of many Pharmaceutical Associations and acts as a reviewer of scientific journals and European projects under different research areas such as: drug delivery systems, nanotechnology and pharmaceutical biotechnology. Dr. Sezer is the author of many scientific publications in peer-reviewed journals and poster communications. Focus of his research activity is drug delivery, physico-chemical characterization and biological evaluation of biopolymers micro and nanoparticles as modified drug delivery system, and colloidal drug carriers (liposomes, nanoparticles etc.).",institutionString:null,institution:{name:"Marmara University",country:{name:"Turkey"}}},{id:"61051",title:"Prof.",name:"Andrea",middleName:null,surname:"Natale",slug:"andrea-natale",fullName:"Andrea Natale",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:null},{id:"100762",title:"Prof.",name:"Andrea",middleName:null,surname:"Natale",slug:"andrea-natale",fullName:"Andrea Natale",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"St David's Medical Center",country:{name:"United States of America"}}},{id:"107416",title:"Dr.",name:"Andrea",middleName:null,surname:"Natale",slug:"andrea-natale",fullName:"Andrea Natale",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"Texas Cardiac Arrhythmia",country:{name:"United States of America"}}},{id:"64434",title:"Dr.",name:"Angkoon",middleName:null,surname:"Phinyomark",slug:"angkoon-phinyomark",fullName:"Angkoon Phinyomark",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/64434/images/2619_n.jpg",biography:"My name is Angkoon Phinyomark. I received a B.Eng. degree in Computer Engineering with First Class Honors in 2008 from Prince of Songkla University, Songkhla, Thailand, where I received a Ph.D. degree in Electrical Engineering. My research interests are primarily in the area of biomedical signal processing and classification notably EMG (electromyography signal), EOG (electrooculography signal), and EEG (electroencephalography signal), image analysis notably breast cancer analysis and optical coherence tomography, and rehabilitation engineering. I became a student member of IEEE in 2008. During October 2011-March 2012, I had worked at School of Computer Science and Electronic Engineering, University of Essex, Colchester, Essex, United Kingdom. In addition, during a B.Eng. I had been a visiting research student at Faculty of Computer Science, University of Murcia, Murcia, Spain for three months.\n\nI have published over 40 papers during 5 years in refereed journals, books, and conference proceedings in the areas of electro-physiological signals processing and classification, notably EMG and EOG signals, fractal analysis, wavelet analysis, texture analysis, feature extraction and machine learning algorithms, and assistive and rehabilitative devices. I have several computer programming language certificates, i.e. Sun Certified Programmer for the Java 2 Platform 1.4 (SCJP), Microsoft Certified Professional Developer, Web Developer (MCPD), Microsoft Certified Technology Specialist, .NET Framework 2.0 Web (MCTS). I am a Reviewer for several refereed journals and international conferences, such as IEEE Transactions on Biomedical Engineering, IEEE Transactions on Industrial Electronics, Optic Letters, Measurement Science Review, and also a member of the International Advisory Committee for 2012 IEEE Business Engineering and Industrial Applications and 2012 IEEE Symposium on Business, Engineering and Industrial Applications.",institutionString:null,institution:{name:"Joseph Fourier University",country:{name:"France"}}},{id:"55578",title:"Dr.",name:"Antonio",middleName:null,surname:"Jurado-Navas",slug:"antonio-jurado-navas",fullName:"Antonio Jurado-Navas",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/55578/images/4574_n.png",biography:"Antonio Jurado-Navas received the M.S. degree (2002) and the Ph.D. degree (2009) in Telecommunication Engineering, both from the University of Málaga (Spain). He first worked as a consultant at Vodafone-Spain. From 2004 to 2011, he was a Research Assistant with the Communications Engineering Department at the University of Málaga. In 2011, he became an Assistant Professor in the same department. From 2012 to 2015, he was with Ericsson Spain, where he was working on geo-location\ntools for third generation mobile networks. Since 2015, he is a Marie-Curie fellow at the Denmark Technical University. His current research interests include the areas of mobile communication systems and channel modeling in addition to atmospheric optical communications, adaptive optics and statistics",institutionString:null,institution:{name:"University of Malaga",country:{name:"Spain"}}}],filtersByRegion:[{group:"region",caption:"North America",value:1,count:5822},{group:"region",caption:"Middle and South America",value:2,count:5289},{group:"region",caption:"Africa",value:3,count:1761},{group:"region",caption:"Asia",value:4,count:10546},{group:"region",caption:"Australia and Oceania",value:5,count:909},{group:"region",caption:"Europe",value:6,count:15938}],offset:12,limit:12,total:119319},chapterEmbeded:{data:{}},editorApplication:{success:null,errors:{}},ofsBooks:{filterParams:{hasnoeditors:"0"},books:[{type:"book",id:"8969",title:"Deserts and Desertification",subtitle:null,isOpenForSubmission:!0,hash:"4df95c7f295de7f6003e635d9a309fe9",slug:null,bookSignature:"Dr. Yajuan Zhu, Dr. Qinghong Luo and Dr. Yuguo Liu",coverURL:"https://cdn.intechopen.com/books/images_new/8969.jpg",editedByType:null,editors:[{id:"180427",title:"Dr.",name:"Yajuan",surname:"Zhu",slug:"yajuan-zhu",fullName:"Yajuan Zhu"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"9667",title:"Neuroimmunology",subtitle:null,isOpenForSubmission:!0,hash:"9cf0e8203ce088c0b84add014fd8d382",slug:null,bookSignature:"Prof. Robert Weissert",coverURL:"https://cdn.intechopen.com/books/images_new/9667.jpg",editedByType:null,editors:[{id:"79343",title:"Prof.",name:"Robert",surname:"Weissert",slug:"robert-weissert",fullName:"Robert Weissert"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"9816",title:"Idiopathic Pulmonary Fibrosis",subtitle:null,isOpenForSubmission:!0,hash:"365bb9762ba33db2d07e677690af1772",slug:null,bookSignature:"Dr. Salim Surani and Dr. Venkat Rajasurya",coverURL:"https://cdn.intechopen.com/books/images_new/9816.jpg",editedByType:null,editors:[{id:"15654",title:"Dr.",name:"Salim",surname:"Surani",slug:"salim-surani",fullName:"Salim Surani"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10176",title:"Microgrids and Local Energy Systems",subtitle:null,isOpenForSubmission:!0,hash:"c32b4a5351a88f263074b0d0ca813a9c",slug:null,bookSignature:"Prof. Nick Jenkins",coverURL:"https://cdn.intechopen.com/books/images_new/10176.jpg",editedByType:null,editors:[{id:"55219",title:"Prof.",name:"Nick",surname:"Jenkins",slug:"nick-jenkins",fullName:"Nick Jenkins"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10218",title:"Flagellar Motility in Cells",subtitle:null,isOpenForSubmission:!0,hash:"5fcc15570365a82d9f2c4816f4e0ee2e",slug:null,bookSignature:"Prof. Yusuf Bozkurt",coverURL:"https://cdn.intechopen.com/books/images_new/10218.jpg",editedByType:null,editors:[{id:"90846",title:"Prof.",name:"Yusuf",surname:"Bozkurt",slug:"yusuf-bozkurt",fullName:"Yusuf Bozkurt"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10223",title:"Obesity and Health",subtitle:null,isOpenForSubmission:!0,hash:"c202a2b74cd9a2c44b1c385f103ac65d",slug:null,bookSignature:"Dr. Venketeshwer Rao and Dr. Leticia Rao",coverURL:"https://cdn.intechopen.com/books/images_new/10223.jpg",editedByType:null,editors:[{id:"82663",title:"Dr.",name:"Venketeshwer",surname:"Rao",slug:"venketeshwer-rao",fullName:"Venketeshwer Rao"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10231",title:"Proton Therapy",subtitle:null,isOpenForSubmission:!0,hash:"f4a9009287953c8d1d89f0fa9b7597b0",slug:null,bookSignature:"",coverURL:"https://cdn.intechopen.com/books/images_new/10231.jpg",editedByType:null,editors:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10343",title:"Ocular Hypertension",subtitle:null,isOpenForSubmission:!0,hash:"0ff71cc7e0d9f394f41162c0c825588a",slug:null,bookSignature:"Prof. Michele Lanza",coverURL:"https://cdn.intechopen.com/books/images_new/10343.jpg",editedByType:null,editors:[{id:"240088",title:"Prof.",name:"Michele",surname:"Lanza",slug:"michele-lanza",fullName:"Michele Lanza"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10370",title:"Advances in Fundamental and Applied Research on Spatial Audio",subtitle:null,isOpenForSubmission:!0,hash:"f16232a481c08a05cc191ac64cf2c69e",slug:null,bookSignature:"Dr. Brian FG Katz and Dr. Piotr Majdak",coverURL:"https://cdn.intechopen.com/books/images_new/10370.jpg",editedByType:null,editors:[{id:"278731",title:"Dr.",name:"Brian FG",surname:"Katz",slug:"brian-fg-katz",fullName:"Brian FG Katz"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10504",title:"Crystallization",subtitle:null,isOpenForSubmission:!0,hash:"3478d05926950f475f4ad2825d340963",slug:null,bookSignature:"Dr. Youssef Ben Smida and Dr. Riadh Marzouki",coverURL:"https://cdn.intechopen.com/books/images_new/10504.jpg",editedByType:null,editors:[{id:"311698",title:"Dr.",name:"Youssef",surname:"Ben Smida",slug:"youssef-ben-smida",fullName:"Youssef Ben Smida"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10557",title:"Elaeis guineensis",subtitle:null,isOpenForSubmission:!0,hash:"79500ab1930271876b4e0575e2ed3966",slug:null,bookSignature:"Dr. Hesam Kamyab",coverURL:"https://cdn.intechopen.com/books/images_new/10557.jpg",editedByType:null,editors:[{id:"225957",title:"Dr.",name:"Hesam",surname:"Kamyab",slug:"hesam-kamyab",fullName:"Hesam Kamyab"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10568",title:"Hysteresis in Engineering",subtitle:null,isOpenForSubmission:!0,hash:"6482387993b3cebffafe856a916c44ce",slug:null,bookSignature:"Dr. Giuseppe Viola",coverURL:"https://cdn.intechopen.com/books/images_new/10568.jpg",editedByType:null,editors:[{id:"173586",title:"Dr.",name:"Giuseppe",surname:"Viola",slug:"giuseppe-viola",fullName:"Giuseppe Viola"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}}],filtersByTopic:[{group:"topic",caption:"Agricultural and Biological Sciences",value:5,count:28},{group:"topic",caption:"Biochemistry, Genetics and Molecular Biology",value:6,count:8},{group:"topic",caption:"Business, Management and Economics",value:7,count:3},{group:"topic",caption:"Chemistry",value:8,count:10},{group:"topic",caption:"Computer and Information Science",value:9,count:9},{group:"topic",caption:"Earth and Planetary Sciences",value:10,count:10},{group:"topic",caption:"Engineering",value:11,count:26},{group:"topic",caption:"Environmental Sciences",value:12,count:3},{group:"topic",caption:"Immunology and Microbiology",value:13,count:4},{group:"topic",caption:"Materials Science",value:14,count:7},{group:"topic",caption:"Mathematics",value:15,count:3},{group:"topic",caption:"Medicine",value:16,count:49},{group:"topic",caption:"Neuroscience",value:18,count:3},{group:"topic",caption:"Pharmacology, Toxicology and Pharmaceutical Science",value:19,count:3},{group:"topic",caption:"Physics",value:20,count:4},{group:"topic",caption:"Psychology",value:21,count:4},{group:"topic",caption:"Robotics",value:22,count:2},{group:"topic",caption:"Social Sciences",value:23,count:3},{group:"topic",caption:"Technology",value:24,count:1},{group:"topic",caption:"Veterinary Medicine and Science",value:25,count:2}],offset:12,limit:12,total:218},popularBooks:{featuredBooks:[{type:"book",id:"9154",title:"Spinal Deformities in Adolescents, Adults and Older Adults",subtitle:null,isOpenForSubmission:!1,hash:"313f1dffa803b60a14ff1e6966e93d91",slug:"spinal-deformities-in-adolescents-adults-and-older-adults",bookSignature:"Josette Bettany-Saltikov and Gokulakannan Kandasamy",coverURL:"https://cdn.intechopen.com/books/images_new/9154.jpg",editors:[{id:"94802",title:"Dr.",name:"Josette",middleName:null,surname:"Bettany-Saltikov",slug:"josette-bettany-saltikov",fullName:"Josette Bettany-Saltikov"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"7030",title:"Satellite Systems",subtitle:"Design, Modeling, Simulation and Analysis",isOpenForSubmission:!1,hash:"b9db6d2645ef248ceb1b33ea75f38e88",slug:"satellite-systems-design-modeling-simulation-and-analysis",bookSignature:"Tien Nguyen",coverURL:"https://cdn.intechopen.com/books/images_new/7030.jpg",editors:[{id:"210657",title:"Dr.",name:"Tien M.",middleName:"Manh",surname:"Nguyen",slug:"tien-m.-nguyen",fullName:"Tien M. Nguyen"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10201",title:"Post-Transition Metals",subtitle:null,isOpenForSubmission:!1,hash:"cc7f53ff5269916e3ce29f65a51a87ae",slug:"post-transition-metals",bookSignature:"Mohammed Muzibur Rahman, Abdullah Mohammed Asiri, Anish Khan, Inamuddin and Thamer Tabbakh",coverURL:"https://cdn.intechopen.com/books/images_new/10201.jpg",editors:[{id:"24438",title:"Prof.",name:"Mohammed Muzibur",middleName:null,surname:"Rahman",slug:"mohammed-muzibur-rahman",fullName:"Mohammed Muzibur Rahman"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10413",title:"A Collection of Papers on Chaos Theory and Its Applications",subtitle:null,isOpenForSubmission:!1,hash:"900b71b164948830fec3d6254b7881f7",slug:"a-collection-of-papers-on-chaos-theory-and-its-applications",bookSignature:"Paul Bracken and Dimo I. Uzunov",coverURL:"https://cdn.intechopen.com/books/images_new/10413.jpg",editors:[{id:"92883",title:"Prof.",name:"Paul",middleName:null,surname:"Bracken",slug:"paul-bracken",fullName:"Paul Bracken"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"8472",title:"Bioactive Compounds in Nutraceutical and Functional Food for Good Human Health",subtitle:null,isOpenForSubmission:!1,hash:"8855452919b8495810ef8e88641feb20",slug:"bioactive-compounds-in-nutraceutical-and-functional-food-for-good-human-health",bookSignature:"Kavita Sharma, Kanchan Mishra, Kula Kamal Senapati and Corina Danciu",coverURL:"https://cdn.intechopen.com/books/images_new/8472.jpg",editors:[{id:"197731",title:"Dr.",name:"Kavita",middleName:null,surname:"Sharma",slug:"kavita-sharma",fullName:"Kavita Sharma"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9515",title:"Update in Geriatrics",subtitle:null,isOpenForSubmission:!1,hash:"913e16c0ae977474b283bbd4269564c8",slug:"update-in-geriatrics",bookSignature:"Somchai Amornyotin",coverURL:"https://cdn.intechopen.com/books/images_new/9515.jpg",editors:[{id:"185484",title:"Prof.",name:"Somchai",middleName:null,surname:"Amornyotin",slug:"somchai-amornyotin",fullName:"Somchai Amornyotin"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"8148",title:"Investment Strategies in Emerging New Trends in Finance",subtitle:null,isOpenForSubmission:!1,hash:"3b714d96a68d2acdfbd7b50aba6504ca",slug:"investment-strategies-in-emerging-new-trends-in-finance",bookSignature:"Reza Gharoie Ahangar and Asma Salman",coverURL:"https://cdn.intechopen.com/books/images_new/8148.jpg",editors:[{id:"91081",title:"Dr.",name:"Reza",middleName:null,surname:"Gharoie Ahangar",slug:"reza-gharoie-ahangar",fullName:"Reza Gharoie Ahangar"}],equalEditorOne:{id:"206443",title:"Prof.",name:"Asma",middleName:null,surname:"Salman",slug:"asma-salman",fullName:"Asma Salman",profilePictureURL:"https://mts.intechopen.com/storage/users/206443/images/system/206443.png",biography:"Professor Asma Salman is a blockchain developer and Professor of Finance at the American University in the Emirates, UAE. An Honorary Global Advisor at the Global Academy of Finance and Management, USA, she completed her MBA in Finance and Accounting and earned a Ph.D. in Finance from an AACSB member, AMBA accredited, School of Management at Harbin Institute of Technology, China. Her research credentials include a one-year residency at the Brunel Business School, Brunel University, UK. Prof. Salman also served as the Dubai Cohort supervisor for DBA students under the Nottingham Business School, UK, for seven years and is currently a Ph.D. supervisor at the University of Northampton, UK, where she is a visiting fellow. She also served on the Board of Etihad Airlines during 2019–2020. One of her recent articles on “Bitcoin and Blockchain” gained wide visibility and she is an active speaker on Fintech, blockchain, and crypto events around the GCC. She holds various professional certifications including Chartered Fintech Professional (USA), Certified Financial Manager (USA), Women in Leadership and Management in Higher Education, (UK), and Taxation GCC VAT Compliance, (UK). She recently won an award for “Blockchain Trainer of the Year” from Berkeley Middle East. Other recognitions include the Women Leadership Impact Award by H.E First Lady of Armenia, Research Excellence Award, and the Global Inspirational Women Leadership Award by H.H Sheikh Juma Bin Maktoum Juma Al Maktoum.",institutionString:"American University in the Emirates",position:null,outsideEditionCount:0,totalCites:0,totalAuthoredChapters:"2",totalChapterViews:"0",totalEditedBooks:"2",institution:{name:"American University in the Emirates",institutionURL:null,country:{name:"United Arab Emirates"}}},equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9959",title:"Biomedical Signal and Image Processing",subtitle:null,isOpenForSubmission:!1,hash:"22b87a09bd6df065d78c175235d367c8",slug:"biomedical-signal-and-image-processing",bookSignature:"Yongxia Zhou",coverURL:"https://cdn.intechopen.com/books/images_new/9959.jpg",editors:[{id:"259308",title:"Dr.",name:"Yongxia",middleName:null,surname:"Zhou",slug:"yongxia-zhou",fullName:"Yongxia Zhou"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9685",title:"Agroecosystems",subtitle:"Very Complex Environmental Systems",isOpenForSubmission:!1,hash:"c44f7b43a9f9610c243dc32300d37df6",slug:"agroecosystems-very-complex-environmental-systems",bookSignature:"Marcelo L. Larramendy and Sonia Soloneski",coverURL:"https://cdn.intechopen.com/books/images_new/9685.jpg",editors:[{id:"14764",title:"Dr.",name:"Marcelo L.",middleName:null,surname:"Larramendy",slug:"marcelo-l.-larramendy",fullName:"Marcelo L. Larramendy"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9385",title:"Renewable Energy",subtitle:"Technologies and Applications",isOpenForSubmission:!1,hash:"a6b446d19166f17f313008e6c056f3d8",slug:"renewable-energy-technologies-and-applications",bookSignature:"Tolga Taner, Archana Tiwari and Taha Selim Ustun",coverURL:"https://cdn.intechopen.com/books/images_new/9385.jpg",editors:[{id:"197240",title:"Associate Prof.",name:"Tolga",middleName:null,surname:"Taner",slug:"tolga-taner",fullName:"Tolga Taner"}],equalEditorOne:{id:"186791",title:"Dr.",name:"Archana",middleName:null,surname:"Tiwari",slug:"archana-tiwari",fullName:"Archana Tiwari",profilePictureURL:"https://mts.intechopen.com/storage/users/186791/images/system/186791.jpg",biography:"Dr. Archana Tiwari is Associate Professor at Amity University, India. Her research interests include renewable sources of energy from microalgae and further utilizing the residual biomass for the generation of value-added products, bioremediation through microalgae and microbial consortium, antioxidative enzymes and stress, and nutraceuticals from microalgae. She has been working on algal biotechnology for the last two decades. She has published her research in many international journals and has authored many books and chapters with renowned publishing houses. She has also delivered talks as an invited speaker at many national and international conferences. Dr. Tiwari is the recipient of several awards including Researcher of the Year and Distinguished Scientist.",institutionString:"Amity University",position:null,outsideEditionCount:0,totalCites:0,totalAuthoredChapters:"3",totalChapterViews:"0",totalEditedBooks:"1",institution:{name:"Amity University",institutionURL:null,country:{name:"India"}}},equalEditorTwo:{id:"197609",title:"Prof.",name:"Taha Selim",middleName:null,surname:"Ustun",slug:"taha-selim-ustun",fullName:"Taha Selim Ustun",profilePictureURL:"https://mts.intechopen.com/storage/users/197609/images/system/197609.jpeg",biography:"Dr. Taha Selim Ustun received a Ph.D. in Electrical Engineering from Victoria University, Melbourne, Australia. He is a researcher with the Fukushima Renewable Energy Institute, AIST (FREA), where he leads the Smart Grid Cybersecurity Laboratory. Prior to that, he was a faculty member with the School of Electrical and Computer Engineering, Carnegie Mellon University, Pittsburgh, PA, USA. His current research interests include power systems protection, communication in power networks, distributed generation, microgrids, electric vehicle integration, and cybersecurity in smart grids. He serves on the editorial boards of IEEE Access, IEEE Transactions on Industrial Informatics, Energies, Electronics, Electricity, World Electric Vehicle and Information journals. Dr. Ustun is a member of the IEEE 2004 and 2800, IEC Renewable Energy Management WG 8, and IEC TC 57 WG17. He has been invited to run specialist courses in Africa, India, and China. He has delivered talks for the Qatar Foundation, the World Energy Council, the Waterloo Global Science Initiative, and the European Union Energy Initiative (EUEI). His research has attracted funding from prestigious programs in Japan, Australia, the European Union, and North America.",institutionString:"Fukushima Renewable Energy Institute, AIST (FREA)",position:null,outsideEditionCount:0,totalCites:0,totalAuthoredChapters:"1",totalChapterViews:"0",totalEditedBooks:"0",institution:{name:"National Institute of Advanced Industrial Science and Technology",institutionURL:null,country:{name:"Japan"}}},equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"2160",title:"MATLAB",subtitle:"A Fundamental Tool for Scientific Computing and Engineering Applications - Volume 1",isOpenForSubmission:!1,hash:"dd9c658341fbd264ed4f8d9e6aa8ca29",slug:"matlab-a-fundamental-tool-for-scientific-computing-and-engineering-applications-volume-1",bookSignature:"Vasilios N. Katsikis",coverURL:"https://cdn.intechopen.com/books/images_new/2160.jpg",editors:[{id:"12289",title:"Prof.",name:"Vasilios",middleName:"N.",surname:"Katsikis",slug:"vasilios-katsikis",fullName:"Vasilios Katsikis"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9161",title:"Frailty in the Elderly",subtitle:"Understanding and Managing Complexity",isOpenForSubmission:!1,hash:"a4f0f2fade8fb8ba35c405f5ad31a823",slug:"frailty-in-the-elderly-understanding-and-managing-complexity",bookSignature:"Sara Palermo",coverURL:"https://cdn.intechopen.com/books/images_new/9161.jpg",editors:[{id:"233998",title:"Ph.D.",name:"Sara",middleName:null,surname:"Palermo",slug:"sara-palermo",fullName:"Sara Palermo"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}}],offset:12,limit:12,total:5330},hotBookTopics:{hotBooks:[],offset:0,limit:12,total:null},publish:{},publishingProposal:{success:null,errors:{}},books:{featuredBooks:[{type:"book",id:"9154",title:"Spinal Deformities in Adolescents, Adults and Older Adults",subtitle:null,isOpenForSubmission:!1,hash:"313f1dffa803b60a14ff1e6966e93d91",slug:"spinal-deformities-in-adolescents-adults-and-older-adults",bookSignature:"Josette Bettany-Saltikov and Gokulakannan Kandasamy",coverURL:"https://cdn.intechopen.com/books/images_new/9154.jpg",editors:[{id:"94802",title:"Dr.",name:"Josette",middleName:null,surname:"Bettany-Saltikov",slug:"josette-bettany-saltikov",fullName:"Josette Bettany-Saltikov"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"7030",title:"Satellite Systems",subtitle:"Design, Modeling, Simulation and Analysis",isOpenForSubmission:!1,hash:"b9db6d2645ef248ceb1b33ea75f38e88",slug:"satellite-systems-design-modeling-simulation-and-analysis",bookSignature:"Tien Nguyen",coverURL:"https://cdn.intechopen.com/books/images_new/7030.jpg",editors:[{id:"210657",title:"Dr.",name:"Tien M.",middleName:"Manh",surname:"Nguyen",slug:"tien-m.-nguyen",fullName:"Tien M. Nguyen"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"8472",title:"Bioactive Compounds in Nutraceutical and Functional Food for Good Human Health",subtitle:null,isOpenForSubmission:!1,hash:"8855452919b8495810ef8e88641feb20",slug:"bioactive-compounds-in-nutraceutical-and-functional-food-for-good-human-health",bookSignature:"Kavita Sharma, Kanchan Mishra, Kula Kamal Senapati and Corina Danciu",coverURL:"https://cdn.intechopen.com/books/images_new/8472.jpg",editors:[{id:"197731",title:"Dr.",name:"Kavita",middleName:null,surname:"Sharma",slug:"kavita-sharma",fullName:"Kavita Sharma"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10201",title:"Post-Transition Metals",subtitle:null,isOpenForSubmission:!1,hash:"cc7f53ff5269916e3ce29f65a51a87ae",slug:"post-transition-metals",bookSignature:"Mohammed Muzibur Rahman, Abdullah Mohammed Asiri, Anish Khan, Inamuddin and Thamer Tabbakh",coverURL:"https://cdn.intechopen.com/books/images_new/10201.jpg",editors:[{id:"24438",title:"Prof.",name:"Mohammed Muzibur",middleName:null,surname:"Rahman",slug:"mohammed-muzibur-rahman",fullName:"Mohammed Muzibur Rahman"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10413",title:"A Collection of Papers on Chaos Theory and Its Applications",subtitle:null,isOpenForSubmission:!1,hash:"900b71b164948830fec3d6254b7881f7",slug:"a-collection-of-papers-on-chaos-theory-and-its-applications",bookSignature:"Paul Bracken and Dimo I. Uzunov",coverURL:"https://cdn.intechopen.com/books/images_new/10413.jpg",editors:[{id:"92883",title:"Prof.",name:"Paul",middleName:null,surname:"Bracken",slug:"paul-bracken",fullName:"Paul Bracken"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9515",title:"Update in Geriatrics",subtitle:null,isOpenForSubmission:!1,hash:"913e16c0ae977474b283bbd4269564c8",slug:"update-in-geriatrics",bookSignature:"Somchai Amornyotin",coverURL:"https://cdn.intechopen.com/books/images_new/9515.jpg",editors:[{id:"185484",title:"Prof.",name:"Somchai",middleName:null,surname:"Amornyotin",slug:"somchai-amornyotin",fullName:"Somchai Amornyotin"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"8148",title:"Investment Strategies in Emerging New Trends in Finance",subtitle:null,isOpenForSubmission:!1,hash:"3b714d96a68d2acdfbd7b50aba6504ca",slug:"investment-strategies-in-emerging-new-trends-in-finance",bookSignature:"Reza Gharoie Ahangar and Asma Salman",coverURL:"https://cdn.intechopen.com/books/images_new/8148.jpg",editors:[{id:"91081",title:"Dr.",name:"Reza",middleName:null,surname:"Gharoie Ahangar",slug:"reza-gharoie-ahangar",fullName:"Reza Gharoie Ahangar"}],equalEditorOne:{id:"206443",title:"Prof.",name:"Asma",middleName:null,surname:"Salman",slug:"asma-salman",fullName:"Asma Salman",profilePictureURL:"https://mts.intechopen.com/storage/users/206443/images/system/206443.png",biography:"Professor Asma Salman is a blockchain developer and Professor of Finance at the American University in the Emirates, UAE. An Honorary Global Advisor at the Global Academy of Finance and Management, USA, she completed her MBA in Finance and Accounting and earned a Ph.D. in Finance from an AACSB member, AMBA accredited, School of Management at Harbin Institute of Technology, China. Her research credentials include a one-year residency at the Brunel Business School, Brunel University, UK. Prof. Salman also served as the Dubai Cohort supervisor for DBA students under the Nottingham Business School, UK, for seven years and is currently a Ph.D. supervisor at the University of Northampton, UK, where she is a visiting fellow. She also served on the Board of Etihad Airlines during 2019–2020. One of her recent articles on “Bitcoin and Blockchain” gained wide visibility and she is an active speaker on Fintech, blockchain, and crypto events around the GCC. She holds various professional certifications including Chartered Fintech Professional (USA), Certified Financial Manager (USA), Women in Leadership and Management in Higher Education, (UK), and Taxation GCC VAT Compliance, (UK). She recently won an award for “Blockchain Trainer of the Year” from Berkeley Middle East. Other recognitions include the Women Leadership Impact Award by H.E First Lady of Armenia, Research Excellence Award, and the Global Inspirational Women Leadership Award by H.H Sheikh Juma Bin Maktoum Juma Al Maktoum.",institutionString:"American University in the Emirates",position:null,outsideEditionCount:0,totalCites:0,totalAuthoredChapters:"2",totalChapterViews:"0",totalEditedBooks:"2",institution:{name:"American University in the Emirates",institutionURL:null,country:{name:"United Arab Emirates"}}},equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"2160",title:"MATLAB",subtitle:"A Fundamental Tool for Scientific Computing and Engineering Applications - Volume 1",isOpenForSubmission:!1,hash:"dd9c658341fbd264ed4f8d9e6aa8ca29",slug:"matlab-a-fundamental-tool-for-scientific-computing-and-engineering-applications-volume-1",bookSignature:"Vasilios N. Katsikis",coverURL:"https://cdn.intechopen.com/books/images_new/2160.jpg",editors:[{id:"12289",title:"Prof.",name:"Vasilios",middleName:"N.",surname:"Katsikis",slug:"vasilios-katsikis",fullName:"Vasilios Katsikis"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9385",title:"Renewable Energy",subtitle:"Technologies and Applications",isOpenForSubmission:!1,hash:"a6b446d19166f17f313008e6c056f3d8",slug:"renewable-energy-technologies-and-applications",bookSignature:"Tolga Taner, Archana Tiwari and Taha Selim Ustun",coverURL:"https://cdn.intechopen.com/books/images_new/9385.jpg",editors:[{id:"197240",title:"Associate Prof.",name:"Tolga",middleName:null,surname:"Taner",slug:"tolga-taner",fullName:"Tolga Taner"}],equalEditorOne:{id:"186791",title:"Dr.",name:"Archana",middleName:null,surname:"Tiwari",slug:"archana-tiwari",fullName:"Archana Tiwari",profilePictureURL:"https://mts.intechopen.com/storage/users/186791/images/system/186791.jpg",biography:"Dr. Archana Tiwari is Associate Professor at Amity University, India. Her research interests include renewable sources of energy from microalgae and further utilizing the residual biomass for the generation of value-added products, bioremediation through microalgae and microbial consortium, antioxidative enzymes and stress, and nutraceuticals from microalgae. She has been working on algal biotechnology for the last two decades. She has published her research in many international journals and has authored many books and chapters with renowned publishing houses. She has also delivered talks as an invited speaker at many national and international conferences. Dr. Tiwari is the recipient of several awards including Researcher of the Year and Distinguished Scientist.",institutionString:"Amity University",position:null,outsideEditionCount:0,totalCites:0,totalAuthoredChapters:"3",totalChapterViews:"0",totalEditedBooks:"1",institution:{name:"Amity University",institutionURL:null,country:{name:"India"}}},equalEditorTwo:{id:"197609",title:"Prof.",name:"Taha Selim",middleName:null,surname:"Ustun",slug:"taha-selim-ustun",fullName:"Taha Selim Ustun",profilePictureURL:"https://mts.intechopen.com/storage/users/197609/images/system/197609.jpeg",biography:"Dr. Taha Selim Ustun received a Ph.D. in Electrical Engineering from Victoria University, Melbourne, Australia. He is a researcher with the Fukushima Renewable Energy Institute, AIST (FREA), where he leads the Smart Grid Cybersecurity Laboratory. Prior to that, he was a faculty member with the School of Electrical and Computer Engineering, Carnegie Mellon University, Pittsburgh, PA, USA. His current research interests include power systems protection, communication in power networks, distributed generation, microgrids, electric vehicle integration, and cybersecurity in smart grids. He serves on the editorial boards of IEEE Access, IEEE Transactions on Industrial Informatics, Energies, Electronics, Electricity, World Electric Vehicle and Information journals. Dr. Ustun is a member of the IEEE 2004 and 2800, IEC Renewable Energy Management WG 8, and IEC TC 57 WG17. He has been invited to run specialist courses in Africa, India, and China. He has delivered talks for the Qatar Foundation, the World Energy Council, the Waterloo Global Science Initiative, and the European Union Energy Initiative (EUEI). His research has attracted funding from prestigious programs in Japan, Australia, the European Union, and North America.",institutionString:"Fukushima Renewable Energy Institute, AIST (FREA)",position:null,outsideEditionCount:0,totalCites:0,totalAuthoredChapters:"1",totalChapterViews:"0",totalEditedBooks:"0",institution:{name:"National Institute of Advanced Industrial Science and Technology",institutionURL:null,country:{name:"Japan"}}},equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"3568",title:"Recent Advances in Plant in vitro Culture",subtitle:null,isOpenForSubmission:!1,hash:"830bbb601742c85a3fb0eeafe1454c43",slug:"recent-advances-in-plant-in-vitro-culture",bookSignature:"Annarita Leva and Laura M. R. Rinaldi",coverURL:"https://cdn.intechopen.com/books/images_new/3568.jpg",editors:[{id:"142145",title:"Dr.",name:"Annarita",middleName:null,surname:"Leva",slug:"annarita-leva",fullName:"Annarita Leva"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}}],latestBooks:[{type:"book",id:"9515",title:"Update in Geriatrics",subtitle:null,isOpenForSubmission:!1,hash:"913e16c0ae977474b283bbd4269564c8",slug:"update-in-geriatrics",bookSignature:"Somchai Amornyotin",coverURL:"https://cdn.intechopen.com/books/images_new/9515.jpg",editedByType:"Edited by",editors:[{id:"185484",title:"Prof.",name:"Somchai",middleName:null,surname:"Amornyotin",slug:"somchai-amornyotin",fullName:"Somchai Amornyotin"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"9021",title:"Novel Perspectives of Stem Cell Manufacturing and Therapies",subtitle:null,isOpenForSubmission:!1,hash:"522c6db871783d2a11c17b83f1fd4e18",slug:"novel-perspectives-of-stem-cell-manufacturing-and-therapies",bookSignature:"Diana Kitala and Ana Colette Maurício",coverURL:"https://cdn.intechopen.com/books/images_new/9021.jpg",editedByType:"Edited by",editors:[{id:"203598",title:"Ph.D.",name:"Diana",middleName:null,surname:"Kitala",slug:"diana-kitala",fullName:"Diana Kitala"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"7030",title:"Satellite Systems",subtitle:"Design, Modeling, Simulation and Analysis",isOpenForSubmission:!1,hash:"b9db6d2645ef248ceb1b33ea75f38e88",slug:"satellite-systems-design-modeling-simulation-and-analysis",bookSignature:"Tien Nguyen",coverURL:"https://cdn.intechopen.com/books/images_new/7030.jpg",editedByType:"Edited by",editors:[{id:"210657",title:"Dr.",name:"Tien M.",middleName:"Manh",surname:"Nguyen",slug:"tien-m.-nguyen",fullName:"Tien M. Nguyen"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10413",title:"A Collection of Papers on Chaos Theory and Its Applications",subtitle:null,isOpenForSubmission:!1,hash:"900b71b164948830fec3d6254b7881f7",slug:"a-collection-of-papers-on-chaos-theory-and-its-applications",bookSignature:"Paul Bracken and Dimo I. Uzunov",coverURL:"https://cdn.intechopen.com/books/images_new/10413.jpg",editedByType:"Edited by",editors:[{id:"92883",title:"Prof.",name:"Paul",middleName:null,surname:"Bracken",slug:"paul-bracken",fullName:"Paul Bracken"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"9154",title:"Spinal Deformities in Adolescents, Adults and Older Adults",subtitle:null,isOpenForSubmission:!1,hash:"313f1dffa803b60a14ff1e6966e93d91",slug:"spinal-deformities-in-adolescents-adults-and-older-adults",bookSignature:"Josette Bettany-Saltikov and Gokulakannan Kandasamy",coverURL:"https://cdn.intechopen.com/books/images_new/9154.jpg",editedByType:"Edited by",editors:[{id:"94802",title:"Dr.",name:"Josette",middleName:null,surname:"Bettany-Saltikov",slug:"josette-bettany-saltikov",fullName:"Josette Bettany-Saltikov"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"8148",title:"Investment Strategies in Emerging New Trends in Finance",subtitle:null,isOpenForSubmission:!1,hash:"3b714d96a68d2acdfbd7b50aba6504ca",slug:"investment-strategies-in-emerging-new-trends-in-finance",bookSignature:"Reza Gharoie Ahangar and Asma Salman",coverURL:"https://cdn.intechopen.com/books/images_new/8148.jpg",editedByType:"Edited by",editors:[{id:"91081",title:"Dr.",name:"Reza",middleName:null,surname:"Gharoie Ahangar",slug:"reza-gharoie-ahangar",fullName:"Reza Gharoie Ahangar"}],equalEditorOne:{id:"206443",title:"Prof.",name:"Asma",middleName:null,surname:"Salman",slug:"asma-salman",fullName:"Asma Salman",profilePictureURL:"https://mts.intechopen.com/storage/users/206443/images/system/206443.png",biography:"Professor Asma Salman is a blockchain developer and Professor of Finance at the American University in the Emirates, UAE. An Honorary Global Advisor at the Global Academy of Finance and Management, USA, she completed her MBA in Finance and Accounting and earned a Ph.D. in Finance from an AACSB member, AMBA accredited, School of Management at Harbin Institute of Technology, China. Her research credentials include a one-year residency at the Brunel Business School, Brunel University, UK. Prof. Salman also served as the Dubai Cohort supervisor for DBA students under the Nottingham Business School, UK, for seven years and is currently a Ph.D. supervisor at the University of Northampton, UK, where she is a visiting fellow. She also served on the Board of Etihad Airlines during 2019–2020. One of her recent articles on “Bitcoin and Blockchain” gained wide visibility and she is an active speaker on Fintech, blockchain, and crypto events around the GCC. She holds various professional certifications including Chartered Fintech Professional (USA), Certified Financial Manager (USA), Women in Leadership and Management in Higher Education, (UK), and Taxation GCC VAT Compliance, (UK). She recently won an award for “Blockchain Trainer of the Year” from Berkeley Middle East. Other recognitions include the Women Leadership Impact Award by H.E First Lady of Armenia, Research Excellence Award, and the Global Inspirational Women Leadership Award by H.H Sheikh Juma Bin Maktoum Juma Al Maktoum.",institutionString:"American University in the Emirates",position:null,outsideEditionCount:0,totalCites:0,totalAuthoredChapters:"2",totalChapterViews:"0",totalEditedBooks:"2",institution:{name:"American University in the Emirates",institutionURL:null,country:{name:"United Arab Emirates"}}},equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10201",title:"Post-Transition Metals",subtitle:null,isOpenForSubmission:!1,hash:"cc7f53ff5269916e3ce29f65a51a87ae",slug:"post-transition-metals",bookSignature:"Mohammed Muzibur Rahman, Abdullah Mohammed Asiri, Anish Khan, Inamuddin and Thamer Tabbakh",coverURL:"https://cdn.intechopen.com/books/images_new/10201.jpg",editedByType:"Edited by",editors:[{id:"24438",title:"Prof.",name:"Mohammed Muzibur",middleName:null,surname:"Rahman",slug:"mohammed-muzibur-rahman",fullName:"Mohammed Muzibur Rahman"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"9959",title:"Biomedical Signal and Image Processing",subtitle:null,isOpenForSubmission:!1,hash:"22b87a09bd6df065d78c175235d367c8",slug:"biomedical-signal-and-image-processing",bookSignature:"Yongxia Zhou",coverURL:"https://cdn.intechopen.com/books/images_new/9959.jpg",editedByType:"Edited by",editors:[{id:"259308",title:"Dr.",name:"Yongxia",middleName:null,surname:"Zhou",slug:"yongxia-zhou",fullName:"Yongxia Zhou"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"8472",title:"Bioactive Compounds in Nutraceutical and Functional Food for Good Human Health",subtitle:null,isOpenForSubmission:!1,hash:"8855452919b8495810ef8e88641feb20",slug:"bioactive-compounds-in-nutraceutical-and-functional-food-for-good-human-health",bookSignature:"Kavita Sharma, Kanchan Mishra, Kula Kamal Senapati and Corina Danciu",coverURL:"https://cdn.intechopen.com/books/images_new/8472.jpg",editedByType:"Edited by",editors:[{id:"197731",title:"Dr.",name:"Kavita",middleName:null,surname:"Sharma",slug:"kavita-sharma",fullName:"Kavita Sharma"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"8760",title:"Structure Topology and Symplectic Geometry",subtitle:null,isOpenForSubmission:!1,hash:"8974840985ec3652492c83e20233bf02",slug:"structure-topology-and-symplectic-geometry",bookSignature:"Kamal Shah and Min Lei",coverURL:"https://cdn.intechopen.com/books/images_new/8760.jpg",editedByType:"Edited by",editors:[{id:"231748",title:"Dr.",name:"Kamal",middleName:null,surname:"Shah",slug:"kamal-shah",fullName:"Kamal Shah"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}}]},subject:{topic:{id:"1382",title:"Theriogenology",slug:"genesiology-theriogenology",parent:{title:"Genesiology",slug:"genesiology"},numberOfBooks:2,numberOfAuthorsAndEditors:73,numberOfWosCitations:33,numberOfCrossrefCitations:25,numberOfDimensionsCitations:60,videoUrl:null,fallbackUrl:null,description:null},booksByTopicFilter:{topicSlug:"genesiology-theriogenology",sort:"-publishedDate",limit:12,offset:0},booksByTopicCollection:[{type:"book",id:"7233",title:"New Insights into Theriogenology",subtitle:null,isOpenForSubmission:!1,hash:"74f4147e3fb214dd050e5edd3aaf53bc",slug:"new-insights-into-theriogenology",bookSignature:"Rita Payan-Carreira",coverURL:"https://cdn.intechopen.com/books/images_new/7233.jpg",editedByType:"Edited by",editors:[{id:"38652",title:"Dr.",name:"Rita",middleName:null,surname:"Payan-Carreira",slug:"rita-payan-carreira",fullName:"Rita Payan-Carreira"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"5105",title:"Insights from Animal Reproduction",subtitle:null,isOpenForSubmission:!1,hash:"25cd16b683d1f098bc304cbbdb3206cd",slug:"insights-from-animal-reproduction",bookSignature:"Rita Payan Carreira",coverURL:"https://cdn.intechopen.com/books/images_new/5105.jpg",editedByType:"Edited by",editors:[{id:"38652",title:"Dr.",name:"Rita",middleName:null,surname:"Payan-Carreira",slug:"rita-payan-carreira",fullName:"Rita Payan-Carreira"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}}],booksByTopicTotal:2,mostCitedChapters:[{id:"49736",doi:"10.5772/62053",title:"Chromosome Abnormalities in Domestic Animals as Causes of Disorders of Sex Development or Impaired Fertility",slug:"chromosome-abnormalities-in-domestic-animals-as-causes-of-disorders-of-sex-development-or-impaired-f",totalDownloads:3336,totalCrossrefCites:5,totalDimensionsCites:16,book:{slug:"insights-from-animal-reproduction",title:"Insights from Animal Reproduction",fullTitle:"Insights from Animal Reproduction"},signatures:"Izabela Szczerbal and Marek Switonski",authors:[{id:"177030",title:"Prof.",name:"Marek",middleName:null,surname:"Switonski",slug:"marek-switonski",fullName:"Marek Switonski"},{id:"177045",title:"Dr.",name:"Izabela",middleName:null,surname:"Szczerbal",slug:"izabela-szczerbal",fullName:"Izabela Szczerbal"}]},{id:"49857",doi:"10.5772/62207",title:"Germ Cell Determinant Transmission, Segregation, and Function in the Zebrafish Embryo",slug:"germ-cell-determinant-transmission-segregation-and-function-in-the-zebrafish-embryo",totalDownloads:1727,totalCrossrefCites:4,totalDimensionsCites:10,book:{slug:"insights-from-animal-reproduction",title:"Insights from Animal Reproduction",fullTitle:"Insights from Animal Reproduction"},signatures:"Celeste Eno and Francisco Pelegri",authors:[{id:"177209",title:"Prof.",name:"Francisco",middleName:null,surname:"Pelegri",slug:"francisco-pelegri",fullName:"Francisco Pelegri"}]},{id:"62171",doi:"10.5772/intechopen.79106",title:"Intraoviductal Instillation of a Solution as an Effective Route for Manipulating Preimplantation Mammalian Embryos in vivo",slug:"intraoviductal-instillation-of-a-solution-as-an-effective-route-for-manipulating-preimplantation-mam",totalDownloads:668,totalCrossrefCites:7,totalDimensionsCites:8,book:{slug:"new-insights-into-theriogenology",title:"New Insights into Theriogenology",fullTitle:"New Insights into Theriogenology"},signatures:"Masahiro Sato, Masato Ohtsuka and Shingo Nakamura",authors:[{id:"177440",title:"Dr.",name:"Masato",middleName:null,surname:"Ohtsuka",slug:"masato-ohtsuka",fullName:"Masato Ohtsuka"},{id:"177444",title:"Dr.",name:"Shingo",middleName:null,surname:"Nakamura",slug:"shingo-nakamura",fullName:"Shingo Nakamura"},{id:"245795",title:"Prof.",name:"Masahiro",middleName:null,surname:"Sato",slug:"masahiro-sato",fullName:"Masahiro Sato"}]}],mostDownloadedChaptersLast30Days:[{id:"63404",title:"Subclinical Endometritis in Dairy Cattle",slug:"subclinical-endometritis-in-dairy-cattle",totalDownloads:1208,totalCrossrefCites:1,totalDimensionsCites:3,book:{slug:"new-insights-into-theriogenology",title:"New Insights into Theriogenology",fullTitle:"New Insights into Theriogenology"},signatures:"Luis Angel Quintela Arias, Marcos Vigo Fernández, Juan José\nBecerra González, Mónica Barrio López, Pedro José García Herradón\nand Ana Isabel Peña Martínez",authors:[{id:"243272",title:"Prof.",name:"Luis Angel",middleName:null,surname:"Quintela Arias",slug:"luis-angel-quintela-arias",fullName:"Luis Angel Quintela Arias"},{id:"243886",title:"Prof.",name:"Ana Isabel",middleName:null,surname:"Peña Martínez",slug:"ana-isabel-pena-martinez",fullName:"Ana Isabel Peña Martínez"},{id:"243887",title:"Prof.",name:"Pedro",middleName:null,surname:"García Herradón",slug:"pedro-garcia-herradon",fullName:"Pedro García Herradón"},{id:"243888",title:"Prof.",name:"Juan José",middleName:null,surname:"Becerra González",slug:"juan-jose-becerra-gonzalez",fullName:"Juan José Becerra González"},{id:"256852",title:"Dr.",name:"Mónica",middleName:null,surname:"Barrio López",slug:"monica-barrio-lopez",fullName:"Mónica Barrio López"},{id:"256854",title:"Dr.",name:"Marcos",middleName:null,surname:"Vigo Fernández",slug:"marcos-vigo-fernandez",fullName:"Marcos Vigo Fernández"}]},{id:"49802",title:"The Primordial to Primary Follicle Transition — A Reliable Marker of Ovarian Function",slug:"the-primordial-to-primary-follicle-transition-a-reliable-marker-of-ovarian-function",totalDownloads:2506,totalCrossrefCites:1,totalDimensionsCites:3,book:{slug:"insights-from-animal-reproduction",title:"Insights from Animal Reproduction",fullTitle:"Insights from Animal Reproduction"},signatures:"Duda Malgorzata, Grzesiak Malgorzata, Knet-Seweryn Malgorzata\nand Zbigniew Tabarowski",authors:[{id:"177042",title:"Ph.D.",name:"Malgorzata",middleName:null,surname:"Duda",slug:"malgorzata-duda",fullName:"Malgorzata Duda"},{id:"177916",title:"Dr.",name:"Malgorzata",middleName:null,surname:"Grzesiak",slug:"malgorzata-grzesiak",fullName:"Malgorzata Grzesiak"},{id:"177917",title:"Dr.",name:"Malgorzata",middleName:null,surname:"Knet-Seweryn",slug:"malgorzata-knet-seweryn",fullName:"Malgorzata Knet-Seweryn"},{id:"177918",title:"Dr.",name:"Zbigniew",middleName:null,surname:"Tabarowski",slug:"zbigniew-tabarowski",fullName:"Zbigniew Tabarowski"}]},{id:"49863",title:"Major Components in Limiting Litter Size",slug:"major-components-in-limiting-litter-size",totalDownloads:1639,totalCrossrefCites:3,totalDimensionsCites:5,book:{slug:"insights-from-animal-reproduction",title:"Insights from Animal Reproduction",fullTitle:"Insights from Animal Reproduction"},signatures:"María-José Argente",authors:[{id:"176987",title:"Ph.D.",name:"María-José",middleName:"Carrascosa",surname:"Argente",slug:"maria-jose-argente",fullName:"María-José Argente"}]},{id:"49736",title:"Chromosome Abnormalities in Domestic Animals as Causes of Disorders of Sex Development or Impaired Fertility",slug:"chromosome-abnormalities-in-domestic-animals-as-causes-of-disorders-of-sex-development-or-impaired-f",totalDownloads:3336,totalCrossrefCites:5,totalDimensionsCites:16,book:{slug:"insights-from-animal-reproduction",title:"Insights from Animal Reproduction",fullTitle:"Insights from Animal Reproduction"},signatures:"Izabela Szczerbal and Marek Switonski",authors:[{id:"177030",title:"Prof.",name:"Marek",middleName:null,surname:"Switonski",slug:"marek-switonski",fullName:"Marek Switonski"},{id:"177045",title:"Dr.",name:"Izabela",middleName:null,surname:"Szczerbal",slug:"izabela-szczerbal",fullName:"Izabela Szczerbal"}]},{id:"49791",title:"Cryopreservation of Sheep Produced Embryos – Current and Future Perspectives",slug:"cryopreservation-of-sheep-produced-embryos-current-and-future-perspectives",totalDownloads:1732,totalCrossrefCites:1,totalDimensionsCites:1,book:{slug:"insights-from-animal-reproduction",title:"Insights from Animal Reproduction",fullTitle:"Insights from Animal Reproduction"},signatures:"Ricardo Romão, Carla C. Marques, Elisa Bettencourt and Rosa M.L.N.\nPereira",authors:[{id:"177221",title:"Prof.",name:"Ricardo",middleName:null,surname:"Romão",slug:"ricardo-romao",fullName:"Ricardo Romão"},{id:"177223",title:"Prof.",name:"Carla",middleName:null,surname:"Marques",slug:"carla-marques",fullName:"Carla Marques"},{id:"177224",title:"Prof.",name:"Elisa",middleName:null,surname:"Bettencourt",slug:"elisa-bettencourt",fullName:"Elisa Bettencourt"},{id:"177225",title:"Prof.",name:"Rosa",middleName:"Maria Lino Neto",surname:"Pereira",slug:"rosa-pereira",fullName:"Rosa Pereira"}]},{id:"49944",title:"The Use of Reproductive Technologies to Produce Transgenic Goats",slug:"the-use-of-reproductive-technologies-to-produce-transgenic-goats",totalDownloads:1849,totalCrossrefCites:2,totalDimensionsCites:3,book:{slug:"insights-from-animal-reproduction",title:"Insights from Animal Reproduction",fullTitle:"Insights from Animal Reproduction"},signatures:"Vicente J. F. Freitas, Luciana M. Melo, Dárcio I.A. Teixeira, Maajid H.\nBhat, Irina A. Serova, Lyudmila E. Andreeva and Oleg L. Serov",authors:[{id:"177122",title:"Dr.",name:"Vicente",middleName:null,surname:"Freitas",slug:"vicente-freitas",fullName:"Vicente Freitas"},{id:"177194",title:"Dr.",name:"Luciana",middleName:null,surname:"Melo",slug:"luciana-melo",fullName:"Luciana Melo"},{id:"177195",title:"Dr.",name:"Dárcio",middleName:null,surname:"Teixeira",slug:"darcio-teixeira",fullName:"Dárcio Teixeira"},{id:"177196",title:"Dr.",name:"Maajid",middleName:null,surname:"Bhat",slug:"maajid-bhat",fullName:"Maajid Bhat"},{id:"185365",title:"Dr.",name:"Irina",middleName:null,surname:"Aleksandrovna SEROVA",slug:"irina-aleksandrovna-serova",fullName:"Irina Aleksandrovna SEROVA"},{id:"185366",title:"Dr.",name:"Lyudmila",middleName:null,surname:"Evgenievna ANDREEVA",slug:"lyudmila-evgenievna-andreeva",fullName:"Lyudmila Evgenievna ANDREEVA"},{id:"185367",title:"Dr.",name:"Oleg",middleName:null,surname:"Leonidovich SEROV",slug:"oleg-leonidovich-serov",fullName:"Oleg Leonidovich SEROV"}]},{id:"49857",title:"Germ Cell Determinant Transmission, Segregation, and Function in the Zebrafish Embryo",slug:"germ-cell-determinant-transmission-segregation-and-function-in-the-zebrafish-embryo",totalDownloads:1727,totalCrossrefCites:4,totalDimensionsCites:10,book:{slug:"insights-from-animal-reproduction",title:"Insights from Animal Reproduction",fullTitle:"Insights from Animal Reproduction"},signatures:"Celeste Eno and Francisco Pelegri",authors:[{id:"177209",title:"Prof.",name:"Francisco",middleName:null,surname:"Pelegri",slug:"francisco-pelegri",fullName:"Francisco Pelegri"}]},{id:"62171",title:"Intraoviductal Instillation of a Solution as an Effective Route for Manipulating Preimplantation Mammalian Embryos in vivo",slug:"intraoviductal-instillation-of-a-solution-as-an-effective-route-for-manipulating-preimplantation-mam",totalDownloads:668,totalCrossrefCites:7,totalDimensionsCites:8,book:{slug:"new-insights-into-theriogenology",title:"New Insights into Theriogenology",fullTitle:"New Insights into Theriogenology"},signatures:"Masahiro Sato, Masato Ohtsuka and Shingo Nakamura",authors:[{id:"177440",title:"Dr.",name:"Masato",middleName:null,surname:"Ohtsuka",slug:"masato-ohtsuka",fullName:"Masato Ohtsuka"},{id:"177444",title:"Dr.",name:"Shingo",middleName:null,surname:"Nakamura",slug:"shingo-nakamura",fullName:"Shingo Nakamura"},{id:"245795",title:"Prof.",name:"Masahiro",middleName:null,surname:"Sato",slug:"masahiro-sato",fullName:"Masahiro Sato"}]},{id:"63632",title:"Embryo Manipulation Techniques in the Rabbit",slug:"embryo-manipulation-techniques-in-the-rabbit",totalDownloads:661,totalCrossrefCites:1,totalDimensionsCites:3,book:{slug:"new-insights-into-theriogenology",title:"New Insights into Theriogenology",fullTitle:"New Insights into Theriogenology"},signatures:"María-Luz García",authors:[{id:"245306",title:"Ph.D.",name:"María Luz",middleName:null,surname:"Garcia Pardo",slug:"maria-luz-garcia-pardo",fullName:"María Luz Garcia Pardo"}]},{id:"49953",title:"The Effects of Extremely Low-Frequency Magnetic Fields on Reproductive Function in Rodents",slug:"the-effects-of-extremely-low-frequency-magnetic-fields-on-reproductive-function-in-rodents",totalDownloads:1492,totalCrossrefCites:0,totalDimensionsCites:1,book:{slug:"insights-from-animal-reproduction",title:"Insights from Animal Reproduction",fullTitle:"Insights from Animal Reproduction"},signatures:"Sang-Kon Lee, Sungman Park and Yoon-Won Kim",authors:[{id:"177219",title:"Prof.",name:"Yoon-Won",middleName:null,surname:"Kim",slug:"yoon-won-kim",fullName:"Yoon-Won Kim"},{id:"182060",title:"Dr.",name:"Sungman",middleName:null,surname:"Park",slug:"sungman-park",fullName:"Sungman Park"},{id:"182061",title:"Dr.",name:"Sang-Kon",middleName:null,surname:"Lee",slug:"sang-kon-lee",fullName:"Sang-Kon Lee"}]}],onlineFirstChaptersFilter:{topicSlug:"genesiology-theriogenology",limit:3,offset:0},onlineFirstChaptersCollection:[],onlineFirstChaptersTotal:0},preDownload:{success:null,errors:{}},aboutIntechopen:{},privacyPolicy:{},peerReviewing:{},howOpenAccessPublishingWithIntechopenWorks:{},sponsorshipBooks:{sponsorshipBooks:[{type:"book",id:"10176",title:"Microgrids and Local Energy Systems",subtitle:null,isOpenForSubmission:!0,hash:"c32b4a5351a88f263074b0d0ca813a9c",slug:null,bookSignature:"Prof. Nick Jenkins",coverURL:"https://cdn.intechopen.com/books/images_new/10176.jpg",editedByType:null,editors:[{id:"55219",title:"Prof.",name:"Nick",middleName:null,surname:"Jenkins",slug:"nick-jenkins",fullName:"Nick Jenkins"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}}],offset:8,limit:8,total:1},route:{name:"chapter.detail",path:"/books/pain-management-practices-novel-therapies-and-bioactives/analgesics",hash:"",query:{},params:{book:"pain-management-practices-novel-therapies-and-bioactives",chapter:"analgesics"},fullPath:"/books/pain-management-practices-novel-therapies-and-bioactives/analgesics",meta:{},from:{name:null,path:"/",hash:"",query:{},params:{},fullPath:"/",meta:{}}}},function(){var e;(e=document.currentScript||document.scripts[document.scripts.length-1]).parentNode.removeChild(e)}()