Species of snails that have been used for isolation of microorganisms.
\\n\\n
More than half of the publishers listed alongside IntechOpen (18 out of 30) are Social Science and Humanities publishers. IntechOpen is an exception to this as a leader in not only Open Access content but Open Access content across all scientific disciplines, including Physical Sciences, Engineering and Technology, Health Sciences, Life Science, and Social Sciences and Humanities.
\\n\\nOur breakdown of titles published demonstrates this with 47% PET, 31% HS, 18% LS, and 4% SSH books published.
\\n\\n“Even though ItechOpen has shown the potential of sci-tech books using an OA approach,” other publishers “have shown little interest in OA books.”
\\n\\nAdditionally, each book published by IntechOpen contains original content and research findings.
\\n\\nWe are honored to be among such prestigious publishers and we hope to continue to spearhead that growth in our quest to promote Open Access as a true pioneer in OA book publishing.
\\n\\n\\n\\n
\\n"}]',published:!0,mainMedia:null},components:[{type:"htmlEditorComponent",content:'
Simba Information has released its Open Access Book Publishing 2020 - 2024 report and has again identified IntechOpen as the world’s largest Open Access book publisher by title count.
\n\nSimba Information is a leading provider for market intelligence and forecasts in the media and publishing industry. The report, published every year, provides an overview and financial outlook for the global professional e-book publishing market.
\n\nIntechOpen, De Gruyter, and Frontiers are the largest OA book publishers by title count, with IntechOpen coming in at first place with 5,101 OA books published, a good 1,782 titles ahead of the nearest competitor.
\n\nSince the first Open Access Book Publishing report published in 2016, IntechOpen has held the top stop each year.
\n\n\n\nMore than half of the publishers listed alongside IntechOpen (18 out of 30) are Social Science and Humanities publishers. IntechOpen is an exception to this as a leader in not only Open Access content but Open Access content across all scientific disciplines, including Physical Sciences, Engineering and Technology, Health Sciences, Life Science, and Social Sciences and Humanities.
\n\nOur breakdown of titles published demonstrates this with 47% PET, 31% HS, 18% LS, and 4% SSH books published.
\n\n“Even though ItechOpen has shown the potential of sci-tech books using an OA approach,” other publishers “have shown little interest in OA books.”
\n\nAdditionally, each book published by IntechOpen contains original content and research findings.
\n\nWe are honored to be among such prestigious publishers and we hope to continue to spearhead that growth in our quest to promote Open Access as a true pioneer in OA book publishing.
\n\n\n\n
\n'}],latestNews:[{slug:"intechopen-authors-included-in-the-highly-cited-researchers-list-for-2020-20210121",title:"IntechOpen Authors Included in the Highly Cited Researchers List for 2020"},{slug:"intechopen-maintains-position-as-the-world-s-largest-oa-book-publisher-20201218",title:"IntechOpen Maintains Position as the World’s Largest OA Book Publisher"},{slug:"all-intechopen-books-available-on-perlego-20201215",title:"All IntechOpen Books Available on Perlego"},{slug:"oiv-awards-recognizes-intechopen-s-editors-20201127",title:"OIV Awards Recognizes IntechOpen's Editors"},{slug:"intechopen-joins-crossref-s-initiative-for-open-abstracts-i4oa-to-boost-the-discovery-of-research-20201005",title:"IntechOpen joins Crossref's Initiative for Open Abstracts (I4OA) to Boost the Discovery of Research"},{slug:"intechopen-hits-milestone-5-000-open-access-books-published-20200908",title:"IntechOpen hits milestone: 5,000 Open Access books published!"},{slug:"intechopen-books-hosted-on-the-mathworks-book-program-20200819",title:"IntechOpen Books Hosted on the MathWorks Book Program"},{slug:"intechopen-s-chapter-awarded-the-guenther-von-pannewitz-preis-2020-20200715",title:"IntechOpen's Chapter Awarded the Günther-von-Pannewitz-Preis 2020"}]},book:{item:{type:"book",id:"8926",leadTitle:null,fullTitle:"The Health Benefits of Foods - Current Knowledge and Further Development",title:"The Health Benefits of Foods",subtitle:"Current Knowledge and Further Development",reviewType:"peer-reviewed",abstract:"The global market of foods with health claims remains highly dynamic and is predicted to expand even further. Consumers have become increasingly aware of the importance of consuming healthy foods in order to have a well-balanced diet and this has increased the demand for foods with health benefits. On the other hand, the food sector companies are trying to meet the new consumers' expectations while designing a variety of novel, enhanced products. Thus, understanding the potential uses of bioactive compounds in food products, the wide range of therapeutic effects, and the possible mechanisms of action is essential for developing healthier products. Covering important aspects of valuable food molecules, this book revises the current knowledge, providing scientifically demonstrated information about the benefits and uses of functional food components, their applications, and the future challenges in nutrition and diet.",isbn:"978-1-78985-934-8",printIsbn:"978-1-78985-933-1",pdfIsbn:"978-1-83880-510-4",doi:"10.5772/intechopen.82884",price:119,priceEur:129,priceUsd:155,slug:"the-health-benefits-of-foods-current-knowledge-and-further-development",numberOfPages:178,isOpenForSubmission:!1,isInWos:null,hash:"fc0b94fd149503cbe9b4ff3fc06e969e",bookSignature:"Liana Claudia Salanță",publishedDate:"April 1st 2020",coverURL:"https://cdn.intechopen.com/books/images_new/8926.jpg",numberOfDownloads:2058,numberOfWosCitations:0,numberOfCrossrefCitations:1,numberOfDimensionsCitations:3,hasAltmetrics:1,numberOfTotalCitations:4,isAvailableForWebshopOrdering:!0,dateEndFirstStepPublish:"March 15th 2019",dateEndSecondStepPublish:"September 17th 2019",dateEndThirdStepPublish:"November 16th 2019",dateEndFourthStepPublish:"February 4th 2020",dateEndFifthStepPublish:"April 4th 2020",currentStepOfPublishingProcess:5,indexedIn:"1,2,3,4,5,6",editedByType:"Edited by",kuFlag:!1,editors:[{id:"203097",title:"Dr.",name:"Liana Claudia",middleName:null,surname:"Salanta",slug:"liana-claudia-salanta",fullName:"Liana Claudia Salanta",profilePictureURL:"https://mts.intechopen.com/storage/users/203097/images/10212_n.jpg",biography:"Liana C. Salanță received her PhD degree in Biotechnologies (2014) from the University of Agricultural Sciences and Veterinary Medicine Cluj-Napoca, Romania. She is currently a researcher and lecturer at the Faculty of Food Science and Technology, with expertise in the field of extraction and analysis of bioactive compounds (with antioxidant and antimicrobial properties), development of new functional products, food quality, and safety control. She has been involved in multiple national and international research projects as a member or project leader (3). She has published more than 70 research articles focused on bioactive compounds (bitter compounds, essential oils, and phenols), development and optimization of new functional products, sensory evaluation, and consumer acceptability.",institutionString:"University of Agricultural Sciences and Veterinary Medicine Cluj-Napoca",position:null,outsideEditionCount:0,totalCites:0,totalAuthoredChapters:"2",totalChapterViews:"0",totalEditedBooks:"1",institution:{name:"University of Agricultural Sciences and Veterinary Medicine of Cluj-Napoca",institutionURL:null,country:{name:"Romania"}}}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,coeditorOne:null,coeditorTwo:null,coeditorThree:null,coeditorFour:null,coeditorFive:null,topics:[{id:"323",title:"Food and Nutrition",slug:"food-and-nutrition"}],chapters:[{id:"71141",title:"Valuable Food Molecules with Potential Benefits for Human Health",doi:"10.5772/intechopen.91218",slug:"valuable-food-molecules-with-potential-benefits-for-human-health",totalDownloads:317,totalCrossrefCites:1,totalDimensionsCites:2,signatures:"Liana Claudia Salanță, Alina Uifălean, Cristina-Adela Iuga, Maria Tofană, Janna Cropotova, Oana Lelia Pop, Carmen Rodica Pop, Mihaela Ancuța Rotar, Mirandeli Bautista-Ávila and Claudia Velázquez González",downloadPdfUrl:"/chapter/pdf-download/71141",previewPdfUrl:"/chapter/pdf-preview/71141",authors:[{id:"203097",title:"Dr.",name:"Liana Claudia",surname:"Salanta",slug:"liana-claudia-salanta",fullName:"Liana Claudia Salanta"}],corrections:null},{id:"69014",title:"Recombinant Probiotics and Microbiota Modulation as a Good Therapy for Diseases Related to the GIT",doi:"10.5772/intechopen.88325",slug:"recombinant-probiotics-and-microbiota-modulation-as-a-good-therapy-for-diseases-related-to-the-git",totalDownloads:258,totalCrossrefCites:0,totalDimensionsCites:0,signatures:"Luís Cláudio Lima de Jesus, Fernanda Alvarenga Lima, Nina Dias Coelho-Rocha, Tales Fernando da Silva, Júlia Paz, Vasco Azevedo, Pamela Mancha-Agresti and Mariana Martins Drumond",downloadPdfUrl:"/chapter/pdf-download/69014",previewPdfUrl:"/chapter/pdf-preview/69014",authors:[{id:"299417",title:"Dr.",name:"Pamela",surname:"Mancha-Agresti",slug:"pamela-mancha-agresti",fullName:"Pamela Mancha-Agresti"}],corrections:null},{id:"69085",title:"Nutritional Profile and Medicinal Properties of Pumpkin Fruit Pulp",doi:"10.5772/intechopen.89274",slug:"nutritional-profile-and-medicinal-properties-of-pumpkin-fruit-pulp",totalDownloads:591,totalCrossrefCites:0,totalDimensionsCites:1,signatures:"Sami El Khatib and Mariam Muhieddine",downloadPdfUrl:"/chapter/pdf-download/69085",previewPdfUrl:"/chapter/pdf-preview/69085",authors:[{id:"309614",title:"Dr.",name:"Sami",surname:"El Khatib",slug:"sami-el-khatib",fullName:"Sami El Khatib"},{id:"309615",title:"MSc.",name:"Mariam",surname:"Muhieddine",slug:"mariam-muhieddine",fullName:"Mariam Muhieddine"}],corrections:null},{id:"70112",title:"Tree-Borne Edible Oilseeds as Sources of Essential Omega Fatty Acids for Human Health",doi:"10.5772/intechopen.89896",slug:"tree-borne-edible-oilseeds-as-sources-of-essential-omega-fatty-acids-for-human-health",totalDownloads:207,totalCrossrefCites:0,totalDimensionsCites:0,signatures:"Bithika Chaliha, Debajit Saikia and Siddhartha Proteem Saikia",downloadPdfUrl:"/chapter/pdf-download/70112",previewPdfUrl:"/chapter/pdf-preview/70112",authors:[{id:"300968",title:"Ph.D. Student",name:"Bithika",surname:"Chaliha",slug:"bithika-chaliha",fullName:"Bithika Chaliha"},{id:"300970",title:"Dr.",name:"Siddhartha P.",surname:"Saikia",slug:"siddhartha-p.-saikia",fullName:"Siddhartha P. Saikia"},{id:"300973",title:"Mr.",name:"Debajit",surname:"Saikia",slug:"debajit-saikia",fullName:"Debajit Saikia"}],corrections:null},{id:"71378",title:"Health Benefits of Dietary Protein throughout the Life Cycle",doi:"10.5772/intechopen.91404",slug:"health-benefits-of-dietary-protein-throughout-the-life-cycle",totalDownloads:213,totalCrossrefCites:0,totalDimensionsCites:0,signatures:"Jamie I. Baum, Elisabet Børsheim, Brittany R. Allman and Samuel Walker",downloadPdfUrl:"/chapter/pdf-download/71378",previewPdfUrl:"/chapter/pdf-preview/71378",authors:[{id:"312205",title:"Ph.D.",name:"Jamie",surname:"Baum",slug:"jamie-baum",fullName:"Jamie Baum"},{id:"312213",title:"Prof.",name:"Elisabet",surname:"Borsheim",slug:"elisabet-borsheim",fullName:"Elisabet Borsheim"},{id:"312824",title:"Mr.",name:"Samuel",surname:"Walker",slug:"samuel-walker",fullName:"Samuel Walker"},{id:"312825",title:"Dr.",name:"Brittany",surname:"Allman",slug:"brittany-allman",fullName:"Brittany Allman"}],corrections:null},{id:"70745",title:"Nutrients for Money: The Relationship between Portion Size, Nutrient Density and Consumer Choices",doi:"10.5772/intechopen.90776",slug:"nutrients-for-money-the-relationship-between-portion-size-nutrient-density-and-consumer-choices",totalDownloads:201,totalCrossrefCites:0,totalDimensionsCites:0,signatures:"Rebecca L. Haslam, Rachael Taylor, Jaimee Herbert and Tamara Bucher",downloadPdfUrl:"/chapter/pdf-download/70745",previewPdfUrl:"/chapter/pdf-preview/70745",authors:[{id:"289141",title:"Dr.",name:"Tamara",surname:"Bucher",slug:"tamara-bucher",fullName:"Tamara Bucher"},{id:"312775",title:"Dr.",name:"Rebecca",surname:"Haslam",slug:"rebecca-haslam",fullName:"Rebecca Haslam"},{id:"312776",title:"Dr.",name:"Rachael",surname:"Taylor",slug:"rachael-taylor",fullName:"Rachael Taylor"},{id:"312777",title:"Ms.",name:"Jaimee",surname:"Herbert",slug:"jaimee-herbert",fullName:"Jaimee Herbert"}],corrections:null},{id:"71082",title:"Stress, Natural Antioxidants and Future Perspectives",doi:"10.5772/intechopen.91167",slug:"stress-natural-antioxidants-and-future-perspectives",totalDownloads:274,totalCrossrefCites:0,totalDimensionsCites:0,signatures:"Nilay Seyidoglu and Cenk Aydin",downloadPdfUrl:"/chapter/pdf-download/71082",previewPdfUrl:"/chapter/pdf-preview/71082",authors:[{id:"191307",title:"Associate Prof.",name:"Nilay",surname:"Seyidoglu",slug:"nilay-seyidoglu",fullName:"Nilay Seyidoglu"},{id:"192225",title:"Prof.",name:"Cenk",surname:"Aydin",slug:"cenk-aydin",fullName:"Cenk Aydin"}],corrections:null}],productType:{id:"1",title:"Edited Volume",chapterContentType:"chapter",authoredCaption:"Edited by"}},relatedBooks:[{type:"book",id:"497",title:"Soybean and Nutrition",subtitle:null,isOpenForSubmission:!1,hash:"11aa0c9ed0f6ea8da765be93b50954bb",slug:"soybean-and-nutrition",bookSignature:"Hany El-Shemy",coverURL:"https://cdn.intechopen.com/books/images_new/497.jpg",editedByType:"Edited by",editors:[{id:"54719",title:"Prof.",name:"Hany",surname:"El-Shemy",slug:"hany-el-shemy",fullName:"Hany El-Shemy"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"496",title:"Soybean and Health",subtitle:null,isOpenForSubmission:!1,hash:"66d40dbc031b2825ba95f7ac2bfae1b6",slug:"soybean-and-health",bookSignature:"Hany El-Shemy",coverURL:"https://cdn.intechopen.com/books/images_new/496.jpg",editedByType:"Edited by",editors:[{id:"54719",title:"Prof.",name:"Hany",surname:"El-Shemy",slug:"hany-el-shemy",fullName:"Hany El-Shemy"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"1018",title:"Milk Production",subtitle:"An Up-to-Date Overview of Animal Nutrition, Management and Health",isOpenForSubmission:!1,hash:"0666bd242c21546d0c83c0290bd114ea",slug:"milk-production-an-up-to-date-overview-of-animal-nutrition-management-and-health",bookSignature:"Narongsak Chaiyabutr",coverURL:"https://cdn.intechopen.com/books/images_new/1018.jpg",editedByType:"Edited by",editors:[{id:"76047",title:"Prof.",name:"Narongsak",surname:"Chaiyabutr",slug:"narongsak-chaiyabutr",fullName:"Narongsak Chaiyabutr"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"2066",title:"Milk Production",subtitle:"Advanced Genetic Traits, Cellular Mechanism, Animal Management and Health",isOpenForSubmission:!1,hash:"0bce9f57b06503666b182457b414a9de",slug:"milk-production-advanced-genetic-traits-cellular-mechanism-animal-management-and-health",bookSignature:"Narongsak Chaiyabutr",coverURL:"https://cdn.intechopen.com/books/images_new/2066.jpg",editedByType:"Edited by",editors:[{id:"76047",title:"Prof.",name:"Narongsak",surname:"Chaiyabutr",slug:"narongsak-chaiyabutr",fullName:"Narongsak Chaiyabutr"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"6678",title:"Antioxidants in Foods and Its Applications",subtitle:null,isOpenForSubmission:!1,hash:"819eb2d8d2c889ef23affd7fd01e4e98",slug:"antioxidants-in-foods-and-its-applications",bookSignature:"Emad Shalaby and Ghada Mostafa Azzam",coverURL:"https://cdn.intechopen.com/books/images_new/6678.jpg",editedByType:"Edited by",editors:[{id:"63600",title:"Prof.",name:"Emad",surname:"Shalaby",slug:"emad-shalaby",fullName:"Emad Shalaby"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"6155",title:"Diabetes Food Plan",subtitle:null,isOpenForSubmission:!1,hash:"b826ff12304ae270954a41210f4e1582",slug:"diabetes-food-plan",bookSignature:"Viduranga Waisundara",coverURL:"https://cdn.intechopen.com/books/images_new/6155.jpg",editedByType:"Edited by",editors:[{id:"194281",title:"Dr.",name:"Viduranga Yashasvi",surname:"Waisundara",slug:"viduranga-yashasvi-waisundara",fullName:"Viduranga Yashasvi Waisundara"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"6538",title:"Current Topics on Superfoods",subtitle:null,isOpenForSubmission:!1,hash:"42525eaf5a539bc1e2318f4eb8dfea5a",slug:"current-topics-on-superfoods",bookSignature:"Naofumi Shiomi",coverURL:"https://cdn.intechopen.com/books/images_new/6538.jpg",editedByType:"Edited by",editors:[{id:"163777",title:"Prof.",name:"Naofumi",surname:"Shiomi",slug:"naofumi-shiomi",fullName:"Naofumi Shiomi"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"8030",title:"Malnutrition",subtitle:null,isOpenForSubmission:!1,hash:"d8254ed8fa15ca6eb142607d145873df",slug:"malnutrition",bookSignature:"Muhammad Imran and Ali Imran",coverURL:"https://cdn.intechopen.com/books/images_new/8030.jpg",editedByType:"Edited by",editors:[{id:"194146",title:"Dr.",name:"Muhammad",surname:"Imran",slug:"muhammad-imran",fullName:"Muhammad Imran"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"8023",title:"Honey Analysis",subtitle:"New Advances and Challenges",isOpenForSubmission:!1,hash:"d0cd45987714a9e6f8e5f9cf7fe67495",slug:"honey-analysis-new-advances-and-challenges",bookSignature:"Vagner de Alencar Arnaut de Toledo and Emerson Dechechi Chambó",coverURL:"https://cdn.intechopen.com/books/images_new/8023.jpg",editedByType:"Edited by",editors:[{id:"117226",title:"Prof.",name:"Vagner De Alencar",surname:"Arnaut De Toledo",slug:"vagner-de-alencar-arnaut-de-toledo",fullName:"Vagner De Alencar Arnaut De Toledo"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"8949",title:"Nutritional Value of Amaranth",subtitle:null,isOpenForSubmission:!1,hash:"2af686a663e37e1f663013cd1e3acbe0",slug:"nutritional-value-of-amaranth",bookSignature:"Viduranga Y. Waisundara",coverURL:"https://cdn.intechopen.com/books/images_new/8949.jpg",editedByType:"Edited by",editors:[{id:"194281",title:"Dr.",name:"Viduranga Yashasvi",surname:"Waisundara",slug:"viduranga-yashasvi-waisundara",fullName:"Viduranga Yashasvi Waisundara"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}}],ofsBooks:[]},correction:{item:{id:"66066",slug:"erratum-microbial-responses-to-different-operating-practices-for-biogas-production-systems",title:"Erratum - Microbial Responses to Different Operating Practices for Biogas Production Systems",doi:null,correctionPDFUrl:"https://cdn.intechopen.com/pdfs/66066.pdf",downloadPdfUrl:"/chapter/pdf-download/66066",previewPdfUrl:"/chapter/pdf-preview/66066",totalDownloads:null,totalCrossrefCites:null,bibtexUrl:"/chapter/bibtex/66066",risUrl:"/chapter/ris/66066",chapter:{id:"65614",slug:"microbial-responses-to-different-operating-practices-for-biogas-production-systems",signatures:"Maria Westerholm and Anna Schnürer",dateSubmitted:"June 11th 2018",dateReviewed:"November 30th 2018",datePrePublished:"February 12th 2019",datePublished:"September 4th 2019",book:{id:"6839",title:"Anaerobic Digestion",subtitle:null,fullTitle:"Anaerobic Digestion",slug:"anaerobic-digestion",publishedDate:"September 4th 2019",bookSignature:"J. Rajesh Banu",coverURL:"https://cdn.intechopen.com/books/images_new/6839.jpg",licenceType:"CC BY 3.0",editedByType:"Edited by",editors:[{id:"218539",title:"Dr.",name:"Rajesh",middleName:null,surname:"Banu",slug:"rajesh-banu",fullName:"Rajesh Banu"}],productType:{id:"1",title:"Edited Volume",chapterContentType:"chapter",authoredCaption:"Edited by"}},authors:[{id:"262546",title:"Prof.",name:"Anna",middleName:null,surname:"Schnürer",fullName:"Anna Schnürer",slug:"anna-schnurer",email:"anna.schnurer@slu.se",position:null,institution:null},{id:"263116",title:"Dr.",name:"Maria",middleName:null,surname:"Westerholm",fullName:"Maria Westerholm",slug:"maria-westerholm",email:"Maria.Westerholm@slu.se",position:null,institution:null}]}},chapter:{id:"65614",slug:"microbial-responses-to-different-operating-practices-for-biogas-production-systems",signatures:"Maria Westerholm and Anna Schnürer",dateSubmitted:"June 11th 2018",dateReviewed:"November 30th 2018",datePrePublished:"February 12th 2019",datePublished:"September 4th 2019",book:{id:"6839",title:"Anaerobic Digestion",subtitle:null,fullTitle:"Anaerobic Digestion",slug:"anaerobic-digestion",publishedDate:"September 4th 2019",bookSignature:"J. Rajesh Banu",coverURL:"https://cdn.intechopen.com/books/images_new/6839.jpg",licenceType:"CC BY 3.0",editedByType:"Edited by",editors:[{id:"218539",title:"Dr.",name:"Rajesh",middleName:null,surname:"Banu",slug:"rajesh-banu",fullName:"Rajesh Banu"}],productType:{id:"1",title:"Edited Volume",chapterContentType:"chapter",authoredCaption:"Edited by"}},authors:[{id:"262546",title:"Prof.",name:"Anna",middleName:null,surname:"Schnürer",fullName:"Anna Schnürer",slug:"anna-schnurer",email:"anna.schnurer@slu.se",position:null,institution:null},{id:"263116",title:"Dr.",name:"Maria",middleName:null,surname:"Westerholm",fullName:"Maria Westerholm",slug:"maria-westerholm",email:"Maria.Westerholm@slu.se",position:null,institution:null}]},book:{id:"6839",title:"Anaerobic Digestion",subtitle:null,fullTitle:"Anaerobic Digestion",slug:"anaerobic-digestion",publishedDate:"September 4th 2019",bookSignature:"J. Rajesh Banu",coverURL:"https://cdn.intechopen.com/books/images_new/6839.jpg",licenceType:"CC BY 3.0",editedByType:"Edited by",editors:[{id:"218539",title:"Dr.",name:"Rajesh",middleName:null,surname:"Banu",slug:"rajesh-banu",fullName:"Rajesh Banu"}],productType:{id:"1",title:"Edited Volume",chapterContentType:"chapter",authoredCaption:"Edited by"}}},ofsBook:{item:{type:"book",id:"10373",leadTitle:null,title:"Compressed Optical Imaging - Recent Advances, New Perspectives and Applications",subtitle:null,reviewType:"peer-reviewed",abstract:"
\r\n\tOptical images could be acquired either directly by using, e.g., a simple lens, or indirectly, as in the case of tomography, by using data acquisition hardware followed by a computational image reconstruction step. Computational optical imaging is a highly promising approach for direct or indirect imaging that involves the joint design of image acquisition hardware and digital processing algorithms to achieve imaging performance that would otherwise be unattainable by conventional systems.
\r\n\r\n\tDespite much advances in computational power, the processing (and storage) of acquired signals in applications such as real-time medical imaging, remote surveillance, and spectroscopy still pose a remarkable challenge. In addition, it may be too costly, or even physically impossible, to build optical hardware to acquire imaging data at the Nyquist sampling (measurement) rate that is required for high imaging performance, i.e., high resolution, large field-of-view, and high frame rates.
\r\n\r\n\tCompressed Sensing involves the digital construction of an image using a number of samples (measurements) that are significantly less than its dimension. By assuming that the unknown image is sparse in the domain where the measurements were acquired, one could use this sparsity constraint as prior information to obtain an approximate but accurate reconstruction of the image from relatively few samples.
\r\n\r\n\tThis book will be about the design and implementation of optical imaging systems, particularly, optical microscopy, optical coherence tomography, and hyperspectral imaging, using compressed sensing approaches. It will be particularly concerned with compressed sensing data acquisition approaches, and computational challenges involved in processing very large imaging data sets that traditionally result from 3D and/or real-time biomedical and industrial imaging applications.
",isbn:"978-1-83969-111-9",printIsbn:"978-1-83969-110-2",pdfIsbn:"978-1-83969-112-6",doi:null,price:0,priceEur:0,priceUsd:0,slug:null,numberOfPages:0,isOpenForSubmission:!1,hash:"ff1a3f2754bc2515db9fe98447495a0f",bookSignature:"Prof. Sherif Sherif and Dr. Costel Flueraru",publishedDate:null,coverURL:"https://cdn.intechopen.com/books/images_new/10373.jpg",keywords:"Sparse Image Processing, Kronecker Compressed Sensing, Adaptive Compressed Sensing, Sparse Denoising, Single Pixel Imaging, Superresolution, Sparse Tomographic Image Reconstruction, Inverse Problems, Dimensionality Reduction, Endmember Identification, Visible Absorption Spectroscopy, Nir Absorption Spectroscopy",numberOfDownloads:null,numberOfWosCitations:0,numberOfCrossrefCitations:null,numberOfDimensionsCitations:null,numberOfTotalCitations:null,isAvailableForWebshopOrdering:!0,dateEndFirstStepPublish:"October 16th 2020",dateEndSecondStepPublish:"November 13th 2020",dateEndThirdStepPublish:"January 12th 2021",dateEndFourthStepPublish:"April 2nd 2021",dateEndFifthStepPublish:"June 1st 2021",remainingDaysToSecondStep:"2 months",secondStepPassed:!0,currentStepOfPublishingProcess:4,editedByType:null,kuFlag:!1,biosketch:"Dr. Sherif is an international expert on optical imaging systems and sparse signal processing with experience in both academic research and industrial R&D environments. He is an owner of four patents and author or co-author of over 110 scientific publications supporting collaboration with Academia, Government, and Industry.",coeditorOneBiosketch:"Dr. Flueraru is an international expert on optical imaging systems and an owner of two patents with over 100 scientific publications.",coeditorTwoBiosketch:null,coeditorThreeBiosketch:null,coeditorFourBiosketch:null,coeditorFiveBiosketch:null,editors:[{id:"202910",title:"Prof.",name:"Sherif",middleName:null,surname:"Sherif",slug:"sherif-sherif",fullName:"Sherif Sherif",profilePictureURL:"https://mts.intechopen.com/storage/users/202910/images/system/202910.jpg",biography:"Prof. Sherif is an Associate Professor of Electrical and Computer Engineering, University of Manitoba, he is also a Core faculty member and a member at Large of the Executive Committee, Biomedical Engineering Program, University of Manitoba. His research areas cover Optical Imaging, Statistical Signal and Image Processing. With the experience in both academic research and industrial R&D environments, Prof. Sherif has authored and co-authored over 110 scientific publications, he supervised research of 80 undergraduate, graduate students and postdoc fellows. He is a member of graduate advisory committees of 43 students, an external examiner of 3 national and 4 international Ph.D. theses. Prof. Sherif delivered 34 invited talks in Manitoba (12), Canada (5) and International (17) and an invited course on Advanced Signal Processing (15 hours), Egypt. He is the owner of 4 patents, one licenced to OmniVision CDM Optics, Inc., Boulder, Colorado, USA. With over 17 years teaching experience in higher education (3 teaching awards), he introduced and taught 2 new undergraduate (including labs) courses, and 6 new graduate courses, at U. Manitoba. Also, he developed and taught new labs for an existing undergraduate class. Prof. Sherif supports extensive collaboration with Academia, Government and Industry, has international consulting experience (Australia) and a research collaboration with groups in USA, Brazil, Thailand and UK. He was leading a 3-year optical coherence tomography-related research project in China through a prestigious travel grant from the Chinese Recruitment Program of High-end Foreign Experts program (on hold because of Covid-19). Besides, Prof. Sherif is an Adjunct Professor, Electrical and Comp. Eng. North Dakota State University, USA. He received two research related awards, Innovate Manitoba and University of Kent, UK. He also had academic visiting positions at Imperial College London, UK and University of Arizona. Finally, he is a Professional Engineer, P. Eng., Manitoba and a senior member, Optical Society of America.",institutionString:"University of Manitoba",position:null,outsideEditionCount:0,totalCites:0,totalAuthoredChapters:"2",totalChapterViews:"0",totalEditedBooks:"0",institution:{name:"University of Manitoba",institutionURL:null,country:{name:"Canada"}}}],coeditorOne:{id:"159960",title:"Dr.",name:"Costel",middleName:null,surname:"Flueraru",slug:"costel-flueraru",fullName:"Costel Flueraru",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002g6KmhQAE/Profile_Picture_1601535810351",biography:"Dr. Flueraru is a Senior Research Officer, National Research Council of Canada, he is also a Professor Adjunct with Department of Physics, Carleton University (Member of Ottawa Medical Physics Institute) and a Professor Adjunct with School of Electrical Engineering and Computer Science, University of Ottawa. Also a committee member and organizer of several international conferences and summer schools: Information Photonics Conference, IEEE International Workshop on Medical Measurements and Applications, 1st Canterbury School on Optical Coherence Tomography, and BioImaging Conference. He is an author and co-author of over 100 scientific publications and two patents as well a senior member IEEE, Professional Engineer P.Eng. Ontario.",institutionString:"National Research Council Canada",position:null,outsideEditionCount:0,totalCites:0,totalAuthoredChapters:"0",totalChapterViews:"0",totalEditedBooks:"0",institution:{name:"National Research Council Canada",institutionURL:null,country:{name:"Canada"}}},coeditorTwo:null,coeditorThree:null,coeditorFour:null,coeditorFive:null,topics:[{id:"11",title:"Engineering",slug:"engineering"}],chapters:null,productType:{id:"1",title:"Edited Volume",chapterContentType:"chapter",authoredCaption:"Edited by"},personalPublishingAssistant:{id:"297737",firstName:"Mateo",lastName:"Pulko",middleName:null,title:"Mr.",imageUrl:"https://mts.intechopen.com/storage/users/297737/images/8492_n.png",email:"mateo.p@intechopen.com",biography:"As an Author Service Manager my responsibilities include monitoring and facilitating all publishing activities for authors and editors. From chapter submission and review, to approval and revision, copyediting and design, until final publication, I work closely with authors and editors to ensure a simple and easy publishing process. I maintain constant and effective communication with authors, editors and reviewers, which allows for a level of personal support that enables contributors to fully commit and concentrate on the chapters they are writing, editing, or reviewing. I assist authors in the preparation of their full chapter submissions and track important deadlines and ensure they are met. I help to coordinate internal processes such as linguistic review, and monitor the technical aspects of the process. As an ASM I am also involved in the acquisition of editors. Whether that be identifying an exceptional author and proposing an editorship collaboration, or contacting researchers who would like the opportunity to work with IntechOpen, I establish and help manage author and editor acquisition and contact."}},relatedBooks:[{type:"book",id:"1591",title:"Infrared Spectroscopy",subtitle:"Materials Science, Engineering and Technology",isOpenForSubmission:!1,hash:"99b4b7b71a8caeb693ed762b40b017f4",slug:"infrared-spectroscopy-materials-science-engineering-and-technology",bookSignature:"Theophile Theophanides",coverURL:"https://cdn.intechopen.com/books/images_new/1591.jpg",editedByType:"Edited by",editors:[{id:"37194",title:"Dr.",name:"Theophanides",surname:"Theophile",slug:"theophanides-theophile",fullName:"Theophanides Theophile"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"3092",title:"Anopheles mosquitoes",subtitle:"New insights into malaria vectors",isOpenForSubmission:!1,hash:"c9e622485316d5e296288bf24d2b0d64",slug:"anopheles-mosquitoes-new-insights-into-malaria-vectors",bookSignature:"Sylvie Manguin",coverURL:"https://cdn.intechopen.com/books/images_new/3092.jpg",editedByType:"Edited by",editors:[{id:"50017",title:"Prof.",name:"Sylvie",surname:"Manguin",slug:"sylvie-manguin",fullName:"Sylvie Manguin"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"3161",title:"Frontiers in Guided Wave Optics and Optoelectronics",subtitle:null,isOpenForSubmission:!1,hash:"deb44e9c99f82bbce1083abea743146c",slug:"frontiers-in-guided-wave-optics-and-optoelectronics",bookSignature:"Bishnu Pal",coverURL:"https://cdn.intechopen.com/books/images_new/3161.jpg",editedByType:"Edited by",editors:[{id:"4782",title:"Prof.",name:"Bishnu",surname:"Pal",slug:"bishnu-pal",fullName:"Bishnu Pal"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"72",title:"Ionic Liquids",subtitle:"Theory, Properties, New Approaches",isOpenForSubmission:!1,hash:"d94ffa3cfa10505e3b1d676d46fcd3f5",slug:"ionic-liquids-theory-properties-new-approaches",bookSignature:"Alexander Kokorin",coverURL:"https://cdn.intechopen.com/books/images_new/72.jpg",editedByType:"Edited by",editors:[{id:"19816",title:"Prof.",name:"Alexander",surname:"Kokorin",slug:"alexander-kokorin",fullName:"Alexander Kokorin"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"1373",title:"Ionic Liquids",subtitle:"Applications and Perspectives",isOpenForSubmission:!1,hash:"5e9ae5ae9167cde4b344e499a792c41c",slug:"ionic-liquids-applications-and-perspectives",bookSignature:"Alexander Kokorin",coverURL:"https://cdn.intechopen.com/books/images_new/1373.jpg",editedByType:"Edited by",editors:[{id:"19816",title:"Prof.",name:"Alexander",surname:"Kokorin",slug:"alexander-kokorin",fullName:"Alexander Kokorin"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"57",title:"Physics and Applications of Graphene",subtitle:"Experiments",isOpenForSubmission:!1,hash:"0e6622a71cf4f02f45bfdd5691e1189a",slug:"physics-and-applications-of-graphene-experiments",bookSignature:"Sergey Mikhailov",coverURL:"https://cdn.intechopen.com/books/images_new/57.jpg",editedByType:"Edited by",editors:[{id:"16042",title:"Dr.",name:"Sergey",surname:"Mikhailov",slug:"sergey-mikhailov",fullName:"Sergey Mikhailov"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"371",title:"Abiotic Stress in Plants",subtitle:"Mechanisms and Adaptations",isOpenForSubmission:!1,hash:"588466f487e307619849d72389178a74",slug:"abiotic-stress-in-plants-mechanisms-and-adaptations",bookSignature:"Arun Shanker and B. Venkateswarlu",coverURL:"https://cdn.intechopen.com/books/images_new/371.jpg",editedByType:"Edited by",editors:[{id:"58592",title:"Dr.",name:"Arun",surname:"Shanker",slug:"arun-shanker",fullName:"Arun Shanker"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"878",title:"Phytochemicals",subtitle:"A Global Perspective of Their Role in Nutrition and Health",isOpenForSubmission:!1,hash:"ec77671f63975ef2d16192897deb6835",slug:"phytochemicals-a-global-perspective-of-their-role-in-nutrition-and-health",bookSignature:"Venketeshwer Rao",coverURL:"https://cdn.intechopen.com/books/images_new/878.jpg",editedByType:"Edited by",editors:[{id:"82663",title:"Dr.",name:"Venketeshwer",surname:"Rao",slug:"venketeshwer-rao",fullName:"Venketeshwer Rao"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"4816",title:"Face Recognition",subtitle:null,isOpenForSubmission:!1,hash:"146063b5359146b7718ea86bad47c8eb",slug:"face_recognition",bookSignature:"Kresimir Delac and Mislav Grgic",coverURL:"https://cdn.intechopen.com/books/images_new/4816.jpg",editedByType:"Edited by",editors:[{id:"528",title:"Dr.",name:"Kresimir",surname:"Delac",slug:"kresimir-delac",fullName:"Kresimir Delac"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"3621",title:"Silver Nanoparticles",subtitle:null,isOpenForSubmission:!1,hash:null,slug:"silver-nanoparticles",bookSignature:"David Pozo Perez",coverURL:"https://cdn.intechopen.com/books/images_new/3621.jpg",editedByType:"Edited by",editors:[{id:"6667",title:"Dr.",name:"David",surname:"Pozo",slug:"david-pozo",fullName:"David Pozo"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}}]},chapter:{item:{type:"chapter",id:"55399",title:"Gut Microbiome Analysis of Snails: A Biotechnological Approach",doi:"10.5772/68133",slug:"gut-microbiome-analysis-of-snails-a-biotechnological-approach",body:'The phylum Mollusca is one of the most diverse groups of animals on earth that comprises 50,000 living species. Mollusks are soft‐bodied animals that inhabit almost every kind of habitat. These are dominantly free‐living metazoans that possess a calcareous exoskeleton to provide structural support for a muscular foot and enclose mantle cavity which is generally used for feeding, respiration and sometimes locomotion [1]. It constitutes the second largest, and most variable, invertebrate phylum. The living species of the mollusks are divided into seven classes, that is aplacophora, polyplacophora, monoplacophora, gastropoda, cephalopoda, pelecypoda and scaphopoda [2]. Gastropods are the largest group of mollusks, comprising about 80% of the living mollusks with ca. 62,000 living species. The first gastropods originated during the late Cambrian period and over 500 million years ago. Since then, gastropods have radiated into marine, freshwater and terrestrial environments, changing their food preferences from herbivorous to carnivorous, endo‐parasitism or symbiont‐mediated chemoautotrophy [3].
The class gastropoda is the most speciose among animals to inhabit a variety of habitats such as oceans, rivers, etc. and are the ones that have inhabited the land among mollusks [4]. The aquatic forms have adapted to benthic forms while others remained pelagic. The life span ranges from months to decades [5, 6] and in some cases life is marked by varying periods of dormancy [7]. All gastropods are commonly called head‐foot or cephalopodium which is a typical character of all gastropods because the head and foot arise from the same region making it very difficult to differentiate where the head ends or the foot begins [8]. The head of gastropods typically has two or four sensory tentacles with eyes and a ventral large foot, which gives them their name (in Greek, gaster is stomach and poda is feet). The anterior division of the foot, that is, propodium, is used for crawling. The shell in the larval stage is called protoconch. Most gastropods have a shell that typically opens on the right‐hand side. Several species have operculum that is used to close the shell opening.
Most species of gastropoda include slugs and snails where the snails possess coiled shells on their body. The term snail is often used to describe marine and freshwater snails, along with terrestrial ones. More generally, the term is applied to land snails than to those from the sea or freshwater [9]. Snails generally thrive in habitats rich in calcium, limestone, marl and places with concrete and cement. They are hermaphrodite but reciprocal copulation is required to produce viable eggs. Eggs are laid 8 days after copulation producing about 400 to 1000 eggs per year [10]. Cool and moist soil is necessary for the egg hatching producing juvenile snails that eat their egg shells and remain burrowed for 2 weeks. The juveniles feed on tender shoots of plants while the adult can also digest detritus. Under unfavorable conditions, snails can bury themselves under soil and remain inactive from months to years [11].
The terrestrial snails like Achatina fulica, Achatina achatina and Archachatina marginata are large‐sized terrestrial mollusks that can grow up to 20 cm in length and 10 cm in diameter. In these snails, the brownish shell having dark stripes generally covers half of the body [12]. Among these, the shell of A. fulica is smaller that can grow up to 3–4 inches, while A. achatina has a larger shell size of 10–11 inches [9].
Snails are both ecologically as well as economically very important animals. In the modern era of technology, the utility of snails is largely neglected, particularly in developed countries. Since snails dwell in a variety of niches, they could harbor a militia of micro‐biota which could be exploited for various biotechnological purposes. This work provides insights into the microbiome of various snails. Furthermore, for the first time, we assessed the probable applications of snails in general and their gut micro‐biota in particular for various biotechnology‐based industries.
The families Lymnaeae and Planorbidae originated from the common ancestor approximately 250 million years ago during the Permian period. Some fossils belonging to family Bulininae and Planorbinae of the upper cretaceous have been obtained from Africa and India [13, 14]. The first fossil record for the family Achatinidae was obtained from the Pleistocene in Africa [15, 16] but the family clearly evolved much earlier. In the 1950s, Mead described the earliest achatinids that originated in Cameroon and Gabon, northward of the river Zambezi in Africa, which later spread to both arid and the sub‐arid areas of the southern continent and other moist parts east of the great watershed [17, 18]. This indicated that temperate species were directly evolved from tropical ancestors. Nonetheless, little is known about the evolutionary history of the achatinids.
The habitats of terrestrial snails range from dense tropical forests in Africa to the fringing riparian forests of Savannah [19, 20]. The members of the family Achatinidae comprise more than 200 species in 13 genera that are native to Africa. Several species have attained pest nature within their native African range when the habitat was modified by human activities and cropping. Furthermore, due to the increased mobility of humans and globalization of trade and travel, several alien species have been accidentally or purposefully transported to areas outside of the African continent. In these new areas, Achatinidae have caused significant economic and ecological impacts [21]. Due to its invasive capacity, Achatina fulica has spread from East Africa to many regions around the globe including rainforests, tropics, subtropics, etc. Apart from anthropogenic activities [22], the higher adaptability of this snail to variety of habitats is often contributed by its gut micro‐biota that it selectively chooses from the favorable environments for successful dispersion [23]. However, terrestrial species have a great capacity of adaptation, survival and may contain an intriguing micro‐biota serving in the efficient degradation [24] of ingested lignocellulosic plant biomass into many useful products. Due to its fast distribution and voracious feeding, this species is now considered as the most destructive terrestrial gastropod [12]. The A. fulica has been blamed as an intermediate vector of many worms and microorganisms, causing a variety of ailments [25]. The species was introduced to the USA in 1939, to India in 1947 near Kolkata and to Brazil in 1980s.
The widespread distribution of A. fulica is caused by a number of factors [26]. Sometimes, it has been deliberately introduced by humans as pet and in some cases as a source of food or for ornamental and medicinal purposes (Figure 1). It is also transported unintentionally with agricultural, horticultural and other commercial products or in containers in which they are shipped. They were also transported accidentally with military equipment in many countries [27]. The land snail, A. fulica, spreads extensively along rivers and streams, either on floating mats of vegetation or by surviving long enough in the water to float downstream.
Different methods involved in the isolation and identification of microbes of the snail gut.
The pulmonate snails are native to Africa but are currently found in Asia, the Pacific, Madagascar, Indonesia, Australia, the Caribbean Basin, the United States and South America (Colombia, Venezuela, Ecuador, Brazil and Argentina) [28, 29].
From prehistoric times, it is quite evident that mollusks have a precarious relationship with humans. Many snails are known to damage the wooden ships and poison scuba divers. Researchers have also found that snails actually harbor a secret that could help humans to stay healthy and pain free. Even some authors quoted that guts of mollusks contain a unique set of microorganisms that might save human lives. During evolution, snails have also coevolved with ancient bacteria that reside in their guts. In return, the bacteria also express some drug‐like molecules that help the snail’s proper functioning and ward off diseases [30]. For example the Leuconostoc mesenteroides strain isolated from the gut of Cornu aspersum produced some bacteriocins‐like substance that inhibited the growth of the pathogen Propionibacteriumacnes [31].
The gastropods, particularly snails, have been used both as food as well as treatment for a variety of human diseases. The fossil remains of prehistoric shellfish found in caves indicate that snails have served as a delicacy for humans for thousands of years. The snails are easy to culture and majorly composed of muscles. Snails are a rich source of proteins containing high amounts of essential amino acids [32]. From the twentieth century, the food qualities of snails were so appreciated that it was a highly sought‐after food. They are preferred as a food source in certain parts of Africa, Asia and South America. In recent decades, the snail’s consumption has increased throughout European countries, which consequently lead to their gradual disappearance from freely dwelling areas. This decrease in population contributed to predation of the species and introduction of pathogens that harmed the productivity of snails [33, 34]. The inedible parts of snails are also used in animal‐feed preparations as shown in Figure 1.
Hippocrates reportedly said that crushed snails can be used to relieve inflamed skin and pain. Two decades ago, slime of the Chilean snail was reported to quickly heal the skin lesions with no scars. This innovation later led to the production of “Elicina” which is snail slime‐based fairness products. Recently in 2010, Missha, a USA‐based cosmetic company launched a branded fairness cream, “Aqua Cell Renew Snail Cream”, containing 70% slime. The company also claimed that this cream reduces pigments, acne, scars and combats wrinkles [35]. Though snail slime contains unusual crystals of calcite, it may find some use in orthopedics also. This is because scientists at the Herriot‐Watt University stated that calcite may be used for the development of bone cement by using inorganic crystals in organic matrix [36].
In southern Miami, snail invasion is very severe because they are linked to religious rituals. In Candomblé religion, coloration of the shell is considered very important for offerings to their gods, Orishas, and symbolizes the personality of an Orisha (e.g., red indicates fire and fury, white indicates tranquility and age while yellow is for prosperity and wealth). However, the color preference can vary between nations of different areas of the religion. For example, sacrificial animals or their parts that are offered to Obatala (white Orisha) should be completely white such as the white blood of A. fulica [37].
Some snails that climb the trees rasping on the surface of leaves can influence biosphere community succession and nutrient cycling. Snails also provide some antimicrobial barriers to the plants by secreting the wax layer which contains antimicrobial compounds [38]. Mucus secreted by the gastropods has been shown to have selective antimicrobial properties as well [39, 40]. Moreover, some snails are also used for monitoring the environmental pollution. Such is the species of Arianta arbustorum, which can tolerate higher concentrations of the heavy metals, like cadmium, lead and copper, indicating elevated levels of metal pollution in their niches [41].
Many researchers have reviewed the impacts of invasive mollusks on agriculture [42, 43] biodiversity and human health. However, the annual costs associated with damage to the environment and agriculture due to alien species in the USA have been recently estimated to be US$120 billion. The combined costs associated with damage for the United States, the United Kingdom, Australia, South Africa, India and Brazil have been estimated as US$314 billion per year [43]. In the tropics, the loss caused by the snails is threefold. Primarily, there is loss of the agricultural products followed by the cost of labor and materials associated with the management of such pests. Lastly, there is opportunity losses related to the changes in agricultural practice such as cultivation of pest‐resistant species only.
Among mollusks, the giant African land snail, A. fulica tops the list of agricultural pests. A. fulica (Lissachatina fulica) is a herbivore, feeding primarily on vascular plants [21] and plant tissues containing high protein and calcium content [44, 45]. All Achatinidae species need calcium for the formation of shell and reproduction. Thus, environments rich in calcium carbonate, such as limestone landscapes having a pH of 7.0–8.0, and urban areas with abundant concrete are preferred [28].
The adult snail of A. fulica daily consumes large quantity of plant material approximately 10% of its weight [46]. The seedling stage of plants is most preferred and vulnerable. The extent of damage is based on the chemical composition of the plant and varies spatially as well as temporarily [47]. Many researchers have stated that infestations by snails to the nursery stage are so severe that demands change in cultivation practice. For example, in Malaysia, Guam and Indonesia, during the season of peak infestations of A. fulica, it is almost impossible to grow vegetables [27, 48, 49].
A. fulica is considered the most damaging land snail in the world as it can dwell on over 500 different crop species. It is a non‐host specific pest of crops like peanuts, beans, peas, cucumbers and melons. If fruits and vegetables are not available, snails can feed on variety of ornamental plants, tree barks and even paint on houses [21]. The snail also allies with other soil invertebrates to decompose the leaf litter [50] and is the most destructive pest; it is ranked second among the 100 worst alien invasive species [51]. It affects tropical and subtropical areas, causing large damages to farms, commercial plantations and domestic gardens. It can also be found on trees, decaying materials and next to garbage deposits [17]. In urban areas, the deposition of solid waste by humans is primarily responsible for the proliferation of pests [12]. This species has attained pest status also due to its voracious feeding, competing for physical space with the native fauna resulting in disequilibrium of biodiversity [12]. Apart from being an agricultural nuisance, snails can thrive in cities, crawl up the walls of buildings and skid cars on highways [27].
Snails are important both ecologically as well as economically due to a variety of factors. The prolific breeder A. fulica, soon after the introduction to a new habitat, reproduces at alarming rates making the control strategy very difficult. The control strategy of the pest is based on physical, chemical as well as biological methods. The physical control includes collection and destruction of snails and their eggs from the infested site or campaigns organized by local agencies voluntarily supported by health service officials, local people, students and teachers. After collection, snails are crushed and buried deep into the soil, covered with kaolin. Eradication of the species involves a huge amount of chemicals, hand collection and extensive public awareness programs like posters, documentaries, etc. Metaldehyde is the principal component of molluscicides and is indiscriminately used for the control of the snail A. fulica, consequently causing loss of productivity of local crops. For example, in Sao Paulo, farmers unknowingly used the molluscicide “metaldehyde” in banana fields to target snails, which killed many species including bats, skunks, lizards and small rodents which were beneficial as natural control agents of agricultural pests [12]. The physical methods are very time‐consuming and tedious while the chemicals have resistance problems, killing the non‐target flora and fauna. Therefore, biological control is the option that seems very fruitful and ecofriendly. But predatory snails (e.g., rosy wolf snail: Euglandina rosea) and flatworms have also failed to control some species such as A. fulica [52, 53]. As snails are ecologically and economically important due to the pest nature, the bacterial flora present in the gastrointestinal (GI) tract of snails may have an important role in digestion. These functionally specialized GI tract regions may be unique microenvironments and could harbor unusual bacterial communities.
In an ecosystem, the ability to procure enough food is pivotal for the survival of an organism. Feeding is necessary for the maintenance of metabolism, growth and reproductive success of animals. The process of digestion is characterized by a specific set of enzymes that often break the refractory food substances [54]. The alimentary tract of land snails is remarkably simple, possibly because of terrestrial life styles. The alimentary canal is usually divisible into buccal mass, esophagus, crop, stomach, intestine and rectum along with appendages like salivary and digestive glands (hepatopancreas) [55]. In A. fulica, like other gastropods, the food scraped by radula and ingested by the buccal mass is mixed with the secretions of the salivary gland and accumulates in the crop (ingluvius), a distensible muscular compartment. The crop and stomach are filled via two cannaliculi with the juice produced by the digestive glands. The medial part of the gut is surrounded by the digestive gland, which secretes more enzymes into the mid‐gut lumen and also absorbs nutrients. The epithelium of the digestive tube is ciliated along almost its entire length, allowing the food to mix with digestive juices and helping to transport the alimentary mass. The ciliated epithelia also allow the microbial flora to anchor on the digestive tube [56]. The gut of the giant African land snail, A. fulica, is large enough to act as a fermentation vessel where a number of metabolic reactions are mediated by the host symbionts. The unabsorbed part of the alimentary mass (bolus) is compacted and passed directly into the rectum. The snail’s digestion is primarily extracellular [55].
The gastrointestinal tracts of animals are modified as per their food requirement and physiological adaptations. All the herbivores that feed on lignocellulosic feed stock share two common features, that is enlarged digestive tract and gut micro‐biota. Digestive tract is usually long enough having different regions such as esophagus, crop, rumen, caecum and rectal paunch while gut microbes provide the host with a unique set of necessary enzymes for the digestion of plant materials [57, 58]. The guts of herbivores that largely feed on lignocellulosic rich plant materials act as natural bioreactors for the degradation of plant biomass making them efficient sources of industrially important bacteria [59]. In many herbivores and omnivores, the digestion of the plant biomass is of immense importance for the energy capture [60]. Therefore, bacterial flora present in the GI tract of these animals may have an important role in digestion. These functionally specialized GI tract regions may be unique microenvironments and could harbor unusual bacterial communities.
During the past century, scientists have focused on microbes that secrete the cellulose hydrolyzing enzymes. For instance, Seillière [61] pioneered the isolation of bacterial cellulases from the gut of the terrestrial gastropod H. pomatia. Similarly, Florkin and Lozet [62] studied the cellulases, whereas Jeuniaux [63] observed that chitinases from H. pomatia, of microbial origin, played a major role in the digestion of plant components in all phytophagous snails.
Charrier et al. [64] observed that density of bacteria in C. aspersum and H. pomatia was up to 5.109 CFU g−1 fresh tissue in the distal intestine, while in proximal region it was from 10 to 1000 fold lower than in the distal part. The H. pomatia was the least colonized by bacteria. The C. aspersum that fed on carboxymethyl cellulose (CMC) harbored approximately 107 g−1 bacteria and while those fed on native cellulose contained 106 g−1 [65]. In another study carried out in aerobic and anaerobic conditions by the same authors, it revealed that gram‐positive bacteria were in the range of 1.57 × 109 ± 0.10 × 109 CFUg−1 in the intestine. Although the score of gram‐negative aerobic bacteria accounted for 5.77 × 108 ± 1.35 × 108 CFUg−1 in the intestine, but it comprised only 27% of the total bacterial load in H. aspersa [66]. However, Simkiss observed only 0.71 × 106 CFU g−1 body weight in H. aspersa [67]. In a similar report, researchers [68] noted less than 106 g−1 bacteria growing on sterile paper. In the intestine of Tegula funebralis, the number of culturable bacteria was 25 × 105 only [69].
Several strains growing on chitin have been isolated from different species of snails such as C. gillenii, B. agrestis, B. noackiae and E. malodoratus. The presence of chitinolytic bacteria in H. pomatia has been reported by Jeuniaux [63] where he observed the bacterial density in the range of 106 CFUg−1 of the tissue. By culture‐dependent method, Pawar with his coauthors [70] enumerated from 103 to 106 CFU from the whole GI tract of A. fulica. Koleva et al. [31], while studying the gut bacteria of C. aspersum, stated that bacterial diversity varies with the different stages of life cycle and accounted for maximum 1.6 × 109 CFU ml−1 gut extract during the active stage. Since more than 95% of the bacteria in any environment including guts of animals are un‐culturable, their composition and community structure cannot be studied completely by culture‐dependent approaches. As most of these studies were done using culture‐dependent approaches, they might have not revealed much of bacterial composition and community structure in the GI tract of snails. More research is needed to study the bacterial diversity of snails by using advanced in‐silico and meta‐genomic approaches, harnessing the vast diversity of microbes in the snail guts. Very few studies have been carried out to analyze the bacterial populations in snails by using metagenomic methods. The complete details of the processes and protocols involved in the isolation and identification of the gut microbes are beyond the scope of this chapter, however, briefing the outline of most of these methodologies would be helpful. The brief outline of all these methodologies is given in Figure 2.
Ecological, economic and industrial utility of snails.
Recent evidence for the presence of various kinds of bacteria in the snails suggested that a symbiotic relationship is developed between the host and the microbes during the course of evolution. Hitherto, a large number of eukaryotic symbionts have been isolated from snails in the families particularly, Achatinidae, Ampullariidae, Helicidae, Planorbidae, etc. as given below in Table 1 [71]. Further, identification of the isolated gut bacteria has been done in vetigastropods of the genus Haliotis and in several other pulmonates. Among pulmonates, representatives of the genera Biomphalaria, Bulinus, Helisoma [72], Helix, Cornu [64, 66] and Achatina [70, 73, 74] have also been studied.
The advanced techniques like meta‐genomics have proved that the gut bacteria perform many beneficial activities for the host. These resident bacteria help the host in processes such as digestion of complex molecules into simpler forms, generating energy, synthesis of cofactors, amino acids for basic metabolism as well as preventing the growth of pathogens. Some of the bacteria isolated from the snail caused the fermentation of sugars like glucose, lactose, mannitol, rhamnose, arabinose, maltose, etc. showing the positive interaction of the snails with their gut flora [75]. Some authors [40] reported the presence of several bacterial OTUs belonging to oceanospirillales, enterobacteriaes, alteromonadales, along with α‐Proteobacteria and Rhizobiales in the fecal samples of Achatinella mustelina. Some snails thrive in toxic habitats like deep sea vents due to energy provided by the bacteria. The scaly foot snail, Chrysomallon squamiferum, discovered from the Kairei vent of Indian Ocean, flourishes by using a similar strategy, exploiting energy harnessed by the gut symbionts. That is why this snail can grow to up to 45 mm in size, when most of its close relatives did not grow beyond 15 mm in the absence of endosymbionts [76].
The physiology and diet of the host are the main components that determine the community structure of an organism. The gut microbiome of many animals including snails has been characterized recently [23, 70]. Animals are known to choose their gut microbes selectively/functionally, and the microbial cells outnumber their hosts by many folds [77, 78]. Snails, like other invertebrates, eat soil to get the useful microbes that may augment in digestion. In turn, micro‐biota provides important implications to the host’s immune system [79] preventing invasion by exogenous pathogenic microbes [80, 81]. This in other words indicates that changes in microbial flora of the snail could have a negative impact such as without which they may stop feeding and ultimately die [82].
The plant biomass is comprised of three major components that is cellulose (50%), hemicellulose (30%) and lignin (20–30%). All herbivores do not possess the ability to digest plant polysaccharides and instead depend on their gut symbionts to derive the nutritionally important compounds from the ingested material [83–85]. Therefore, many researchers have extrapolated the gut microbiomes of many animals by using meta‐genomics approach. Such studies have revealed that the gut of herbivores is a home to a consortium of microbes that have evolved to efficiently degrade and ferment the plant cellulose ingested by the host [86, 87]. These organisms possess a complex enzyme system known as cellulosome, and the complete enzymatic system includes three different enzyme types, that is exo‐β‐1, 4‐glucanases (EC 3.2.1.91), endo‐β‐1, 4‐glucanases (EC3.2.1.4) and β‐1, 4‐glucosidase (EC 3.2.1.21) along with several cofactors [88]. Cellulases act by hydrolyzing the β‐1, 4 bonds in cellulose, releasing some small chains of oligosaccharides which are concurrently broken into monosaccharides by β‐glucosidases [89]. The hydrolysis of lignin occurs due to the concomitant action of a specific set of enzymes such as laccase, lignin peroxidase, etc. In lignin degradation, the ligninolytic enzymes primarily alter the structural conformation of lignin by breaking several stable bonds resulting in production of free radicals [90]. From application point of view, bacteria are generally preferred over the fungi due to their higher growth rate allowing fast production of recombinant proteins [91]. Additionally, some glycoside hydrolases (GHs) of bacterial nature form multi‐enzyme complexes called cellulosome provide increased synergy, stability and catalytic efficiency [92], while others are multifunctional, harboring both endoglucanase and xylanase activities [93]. A list of different groups of bacteria can be isolated from snails and thereby exploited for industrial applications. Therefore, enzymes of bacterial origin could offer specific biotechnological interests due to their less dependency on mediators. However, the lignocellulose‐hydrolyzing enzymes secreted by bacteria are inducible, extracellular and cell associated [90]. Recently, Chang and his team [94] isolated a Bacillus strain that has a repertoire to remove lignin from rice straw; this biomass can be subsequently treated with lactic acid bacteria (LAB) to improve the sugars yield. These sugars can be further utilized for the production of bioethanol, biogas and bio‐hydrogen by fermentations [70].
Some of the microbes such as bacteria Fibrobacter succinogenes, R. flavefaciens and R. albus [95] and some fungi are primarily responsible for degradation of plant cell walls. R. albus8 is anaerobic, fibrolytic and gram‐positive bacterium present in herbivores and can degrade both cellulose and hemicellulose [60, 96]. But R. flavefaciens and R. champanellensis are very efficient cellulose degraders due to their cellulosome secretion which is lacking in case of R. albus8 [97].
The symbiotic bacteria from the gut of gastropods are considered to participate in the digestion of carbohydrates, such as cellulose and hemicellulose comprising the major part of the plants (Table 2). Recently, we reported the presence of lignocellulolytic bacteria in the GI tract of A. fulica [73]. However, Koch et al. [71] reported that P. canaliculata can survive till 56 days on a cellulose‐rich diet and concluded the existence of bacterial endoglucanases that helps the snail to utilize cellulose polymer. Earlier studies [65, 68] showed that H. aspersa contains very few cellulose‐degrading bacteria though some authors [64] claimed the complete absence of these bacteria in the gut. Many authors have demonstrated the degradation of native cellulose, mannan and laminarin by the snails [98, 99], thereby a large set of bacteria producing hydrolytic enzymes may be involved. The cellulases of animal origin were first studied by Biedermann and Moritz [100], in Helix spp., at the end of nineteenth century. Further, snails possess a micro‐biota specialized in a variety of functions, thus contributing to an extraordinary (up to 80%) efficiency to digest plant biomass [24]. The abundance of carbohydrate‐secreting bacteria and the rate of enzyme activity in various parts of the herbivorous guts are inversely proportional to each other, therefore, bacteria have become complementary for digestion of food. However, Payne et al. [101] also reported that wherever the enzyme production is less or nil, the enzymes released by the gut microflora would be of much help for digestion. The bacterial glycoside hydrolase (GH) genes and carbohydrate‐binding modules (CBMs) are abundant in the digestive tract of animals [84, 102–106] which suggest the potential role of microbial symbionts in the hydrolysis of plant material to help extract nutrients [107]. The metagenomic and in silico studies have proved that gut symbionts perform useful functions to the host such as production of amino acids, energy generation and act as a barrier against diseases [108]. Recent works by researchers [23, 72] using advanced microbiological techniques elucidated that snails contain a vast array of microbial diversity within their guts.
Sr. No. | Snail | Habitat of snail | Family | Microbes studied | Methodology | References |
---|---|---|---|---|---|---|
1 | Achatina achatina | Terrestrial | Achatinidae | Bacteria | Biochemical | [9] |
2 | Achatina fulica | Terrestrial | Achatinidae | Bacteria, fungi, virus, protozoa | 16Sr RNA/metagenomics/ Microscopic | [23, 70, 73, 74, 137] |
3 | Achatina mustelina | Terrestrial | Achatinidae | Bacteria and fungi | Metagenomics | [40] |
4 | Archachatina marginata | Terrestrial | Achatinidae | Bacteria and fungi | Biochemical | [119, 138] |
5 | Batillus cornutus | Marine | Turbinidae | Bacteria | 16S rRNA | [139] |
6 | Helix aspersa/Cornu aspersum | Terrestrial | Helicidae | Bacteria and yeast | 16S rRNA/Biochemical | [31, 67, 68, 140, 141] |
7 | H. pomatia | Terrestrial | Helicidae | Bacteria | Metagenomics | [131] |
8 | Indoplanorbis exustus | Freshwater | Planorbidae | Bacteria | Biochemical | [75] |
9 | Lymnaea stagnalis | Freshwater | Lymnaeidae | Bacteria | Biochemical | [75] |
10 | Pomacea canaliculata | Freshwater | Ampullariidae | Bacteria | 16S rRNA | [71] |
11 | Pila globosa | Freshwater | Ampullariidae | Bacteria | 16S rRNA | [142] |
12 | Pila ovata | Freshwater | Ampullariidae | Bacteria | Biochemical | [115] |
13 | Tegula funebralis | Marine | Tegulidae | Bacteria | Biochemical | [69] |
14 | Trochus niloticus | Marine | Tegulidae | Bacteria | Biochemical | [143] |
Species of snails that have been used for isolation of microorganisms.
Sr. No. | Snail species | Bacteria | NCBI accession no. (16S rRNA) | Gram stain | References |
---|---|---|---|---|---|
1 | Achatina fulica | Klebsiella pneumoniae | AB680060 | −ve | [23, 73, 74] |
2 | Sphingobacterium mizutaii | NR042134 | −ve | ||
3 | Sphingobacterium multivorum | FJ459994 | −ve | ||
4 | Microbacterium sp. | AB646581 | +ve | ||
5 | Uncultured Flavobacterium sp. | DQ168834 | −ve | ||
6 | Aeromonas punctata | NR029252 | −ve | ||
7 | Microbacterium sp. | AB646581 | +ve | ||
8 | Klebsiella variicola | NR025635 | −ve | ||
9 | Aeromonas caviae | AB626132 | −ve | ||
10 | Aeromonas caviae | JF920485 | −ve | ||
11 | Streptomyces kunmingensis | NR043823 | +ve | ||
12 | Cellulosimicrobium sp. | AB188217 | +ve | ||
13 | Cellulosimicrobium funkei | JQ659848 | +ve | ||
14 | Klebsiella sp. | AB114637 | −ve | ||
15 | Enterobacter sp. | JQ396391 | −ve | ||
16 | Stenotrophomonas sp. | DQ242478 | +ve | ||
17 | Cellulosimicrobium cellulans | AB166888 | +ve | ||
18 | Cellulosimicrobium sp. | HM367604 | +ve | ||
19 | Agromyces allii | NR_04393 | +ve | ||
20 | Nocardiopsis sp. | HQ433551 | +ve | ||
21 | Microbacterium binotii | JQ659823 | +ve | ||
22 | Bacillus subtilis | +ve | |||
23 | Ochrobactrum sp. | KJ669202 | −ve | ||
24 | Achromobacter xylosoxidans | KJ669206 | −ve | ||
25 | Klebsiella sp. | KJ669189 | −ve | ||
26 | Enterobacter sp. | KJ669197 | −ve | ||
27 | Enterobacter cloacae | KJ669195 | −ve | ||
28 | Bacillus. sp. | KR866144 | +ve | ||
29 | Archachatina marginata | Bacillus subtilis | NA | +ve | [119] |
30 | E. casseliflavus | NA | +ve | ||
31 | Streptococcus faecalis | NA | +ve | ||
32 | Staphylococcus aureus | NA | +ve | ||
33 | Pomacea canaliculata | Nostoc sp. | NA | −ve | |
34 | Helix aspersa | Pseudomonas sp. | NA | −ve | [68, 133] |
35 | Xanthomonas sp. | NA | −ve | ||
36 | Acinobacter sp. | NA | −ve | ||
37 | Vibrio sp. | NA | −ve | ||
38 | Enterobacteriae sp. | NA | −ve | ||
39 | Bacillus sp. | NA | +ve | ||
40 | Staphylococcus sp. | NA | +ve | ||
41 | Micrococcus sp. | NA | +ve | ||
42 | Bulinus africanus, Biomphalaria pfeifferi, Helisoma duryi | Chloroacidobacteria | NA | −ve | [72] |
43 | Chryseobacterium | NA | −ve | ||
44 | Comamonadaceae | NA | −ve | ||
45 | Bacillus spp. | NA | +ve | ||
46 | Aeromonas spp. | NA | −ve | ||
47 | Verrucomicrobiae spp. | NA | −ve | ||
48 | Batillus conutus | Bacillus sp. JMP A | HM776393 | +ve | [139] |
49 | Bacillus sp. JMP B | HM776394 | +ve | ||
50 | Staphylococcus sp. JMP‐C | HM776395 | +ve | ||
51 | Pila globosa | Klebsiella oxytoca | KF017601 | −ve | [142] |
Cellulose degrading bacteria isolated from the digestive tract of different snails.
NA: not available.
The lactic acid bacteria (LAB) comprise a significant proportion of the gut‐bacterial communities of many animals including pigs, fowls, rodents, chicken, horses, gastropods and insects. These bacteria are vital for the host as they behave as protagonists in maintaining the ecological equilibrium between the different species of microorganisms inhabiting these environments. This microbial community takes part in the fermentation of the food, providing energy to the host [64]. Koleva et al. [31] isolated 55 strains of LAB from the gut of C. aspersum (Table 3). Based on 16S rRNA sequencing, Lactobacillus (18), Enterococcus (17), Lactococcus(12) and Leuconostoc (7) accounted for 33, 32, 21 and 13% of the bacterial diversity, respectively, including the strains belonging to genus Weissella. Among these genera, Enterococcus and Lactococcus exhibited the lactic acid activity, thereby indicating their role in the digestive physiology of the snail. However, the LAB are also reported to have a stimulatory response in a marine gastropod Nassarius obsoletus [109]. The epiphyte enterococci being the dominant lactic acid bacterium in the snail’s intestine is quite interesting. Lactococcus lactis is a nonpathogenic bacterium that has been extensively used in the dairy industry for the manufacture of buttermilk, yogurt and cheese. These microbes are also routinely used in the fermentation process of wines, beer, bread and pickles.
Sr. No. | Snail | Bacteria | NCBI accession no. (16S rRNA) | Gram stain | References |
---|---|---|---|---|---|
1 | Helix pomatia | Buttiauxella agrestis | DQ223869 | −ve | [64] |
2 | Citrobacter gillenii | DQ223882 | −ve | ||
3 | Buttiauxella agrestis | DQ223871 | −ve | ||
4 | Lactococcus lactis | DQ223875 | +ve | ||
5 | Kluyvera intermedia | DQ223868 | −ve | ||
6 | Lactococcus sp. | DQ223877 | +ve | ||
7 | Obesumbacterium proteus | DQ223874 | −ve | ||
8 | Enterobacter amnigenus | DQ223879 | −ve | ||
9 | Enterococcus raffinosus | DQ223885 | +ve | ||
10 | Enterococcus malodoratus | DQ223886 | +ve | ||
11 | Cornu aspersum, | Buttiauxella noackiae | DQ223870 | −ve | [66] |
12 | Clostridium sp. | DQ223883 | +ve | ||
13 | Raoultella terrigena | DQ223873 | −ve | ||
14 | Enterobacter amnigenus | DQ223878 | −ve | ||
15 | Citrobacter gillenii | DQ223881 | −ve | ||
16 | Enterococcus casseliflavus | DQ223887 | +ve | ||
17 | Citrobacter sp. | DQ223880 | −ve | ||
18 | Helix aspersa | Lactobacillus brevis | NA | +ve | [31] |
19 | Lactobacillus plantarum | NA | +ve | ||
20 | Lactococcu lactis | NA | +ve | ||
21 | Weissella confusa | NA | +ve | ||
22 | Lactobacillus curvatus | NA | +ve | ||
23 | Enterococcus mundtii | NA | +ve | ||
24 | E. faecium | NA | +ve |
List of lactic acid bacteria used by snails in fermentation of digested food.
NA: not available.
Enterococcus, a LAB, inhabiting the gut of many herbivores, is considered as beneficial for the hosts because it forms a biofilm‐like structure on the gut epithelium which could prevent the host gut from colonization of pathogenic microbes [110]. The members of the genus Enterococcus also produce some bacteriocins. The synergistic effect of this biofilm formation and production of antimicrobial compound probably impedes the entrance and establishment of perilous pathogens in the snail gut [111, 112].
Proteases are enzymes that perform proteolysis, that is, hydrolysis of peptide bonds between two amino acids of a polypeptide chain. Protease enzymes are ubiquitous [113] in nature. Some proteases determine the lifetime of functional molecules like hormones, antibodies, or other enzymes that are very important for physiological processes. In the present era of advanced technology, more research is being done on eco‐friendly products replacing the chemical processes by using enzymatic methods. Proteases have a high demand in industries like bread and meat industry, pharmaceuticals and agro‐waste disposal management [114]. They are widely used in the film industry for recovery of silver from X‐ray films, in the chemical industry for peptide synthesis, in the feed and food industry for production of protein hydrolysates, by waste processing companies, in the field of textile processing for degumming of silk and processing of wool and in the manufacture of detergents, pharmaceuticals and leather [115].
Though produced by many microorganisms, that is fungi, yeast, actinomycetes and molds, the proteases of bacterial origin are considered as most significant [116] because bacteria can be manipulated genetically to generate new enzymes with desired properties for the specific applications [117]. The bacterial proteases constitute about two‐thirds of the industrially important enzymes and account for about 60% of the total worldwide sale in markets. Protease‐producing bacteria are also useful for the ecosystem as these microbes decompose the dead and decaying animal or plant matter that is primarily composed of proteins. They can create pollution‐free environment and are responsible for the recycling of nutrients.
Ariole and Ilega [115] isolated the proteolytic Pseudomonas aeruginosa from the gut of freshwater snail, Pila ovata. They concluded that this bacterium augmented the snail in degradation of nutrients showing a maximum proteolytic activity of 372 U/ml at pH 9. The saprophagous nature of H. pomatia suggests that its gut can be a site for protein digestion [118]. Proteolytic activity contributed by the bacteria was also reported by Koleva et al. [31] in the gut of C. aspersum during the actively feeding stage.
In the African snail, A. marginata, the five‐cellulase‐and‐protease‐positive bacteria, belonging to genus B. subtilis, S. aureus, S. casseliflavus and S. faecalis, have been studied [119]. Few researchers have reported the protein digestion augmented by the gut symbionts in case of gastropods [120–122], with a 32‐kDa protease present in gut lumen and midgut gland of P. canaliculata.
Snails are cheap, easy to rear and collect and contain copious microbes in their guts that can be exploited for various industrial purposes. The industrially important enzymes, like cellulases and proteases, can be isolated, extracted and purified from the gut microbes of snails thereby reducing the cost of imported materials. These enzymes are not only used in biofuel production but also harvested for other industries like pharmaceutical, waste disposal and detergent industries [119].
The omnivorous snails feed on insects that are a rich source of chitin, and in some cases, traces are often detected in gastropod feces. The body of phytophagous gastropods consists of 10% nitrogen, while food plants dined by snails contain only 4% of nitrogen. Chitin and its derivatives like chitosans could serve as a readily available nitrogen source for the gut bacteria and ultimately their host can take advantage of chitin‐derived products [123].
Functional studies described extensively the importance of bacterial gut flora for the snail’s digestion and nutrient supply [124]. Since the endogenous enzymatic activity in the intestine of the snail is very low, the snails may use their allochthonous and autochthonous bacteria for organic matter degradation [23, 99]. The digestive tract also harbors bacteria with special functions like metal chelation [67] and fermentation activity [64, 66], particularly on chitin and soluble cellulose, thereby providing nitrogen, lactate and acetate that are used as precursors as well as energy sources [70]. The DGGE fingerprinting technique along with NMDS analysis have revealed that intestine of the land snail H. pomatia harbors a unique set of bacterial flora. These authors also stated that sequences related to Pseudomonadaceae and Enterobacteriaceae spp. dominated the intestinal and digestive gland of snail populations. However, Kiebre‐Toe et al. [125] and Charrier et al. [64] also reported the dominance of Pseudomonas sp., Pantoea sp. and Buttiauxella sp. in the intestine of Helix sp.
Lesel et al. [65] isolated the chitinolytic bacteria from the H. pomatia where chitinolytic bacteria were 10 times more abundant in the stomach and intestine than in the crop. In Redix peregra, the chitobiase activity was reduced when fed on antibiotic‐treated diet, which also resulted in the loss of bacteria. This dual reduction indicates the synthesis of chitobiase by the bacteria inhabiting the gut [54]. Same conclusion was recounted by the Jeuniaux [126] and Donachie et al. [127] for the pulmonate H. pomatia and krill (Megunyctiphunes norvegicu) by showing a reduction in the enzymatic activity of the gut after the treatment of antibiotics.
Snails are copper‐dependent animals as they use copper for the formation of the respiratory pigment haemocyanin. They also contain pore cells that can recycle the copper within the body. The sulfate‐reducing bacteria increase the availability of copper to their snail hosts possibly by the effect of their metal‐chelating activities [67]. The sulfate‐reducing bacteria Desulvibrio sp. found in the crop of H. aspersa chelates the metals like Cu, Zn, Fe and Ni and make them ready for absorption. Similarly, some authors [128] concluded that digestive gland of the pulmonate H. aspersa acts as the store of Pb, Zn and Cd, which would represent a detoxification system. On the other hand, Simkiss [67] demonstrated the presence of sulfate‐reducing bacteria in the crop of the snail C. aspersum.
Recently, Koch et al. [72] isolated the Pseudomonas, Enterobacter and Lactococcus bacterial species that were capable to degrade uric acid. However, in snails, uricase is found in several tissues, shuts down during estivation and does not participate in uric acid oxidation during arousal from this state [129]. However, tissue uricase along with bacterial uricase plays a role in nitrogen recycle of animals. In P. canaliculata, many bacteria not only help in digestion but also take part in recycling of uric acid like in arthropods.
The community structure of the microbes inhabiting the gut is predominantly altered by physiological states like hibernation and aestivation of the host [126, 130]. The physiological states like aestivation or hibernation are characterized by marked decrease in bacterial diversity due to expulsion of gut contents where some phylotypes are intentionally eliminated from the body. This gut clearance and other physico‐chemical modifications may be responsible for the restructuration of the bacterial community like absence of mollicutes and α‐proteobacteria in H. pomatia [131]. The snails also choose their gut biota as per physiological requirements. At the beginning of hibernation, certain groups are reduced and disappear while those that were meager during active stage may gain in space and become dominant. Further, during aestivation, the snails also lose large quantities of water, which may affect the viability of the gut bacteria and eventually their number and metabolism [31]. This could also be reason for the loss of allochthonous bacterial populations. During hibernation, there is a noticeable reduction of water content of the body along with reduction of food and low temperatures, which induce the snail to select the psychotropic bacteria only. These studies indicate that the gut flora is altered by different life stages and related physiological processes of the snails [132].
Though the bacteria survive during different physiological states like starvation, aestivation and hibernation of the snails, there is always a reduction in their number [64, 68] and these bacteria can be considered as autochthonous members of the snail gut. During these stages, mucous ribbon acts as the main nutritive medium for the bacterial growth [133]. In C. aspersum, amylolytic bacteria are adopted by vertical transmission [31] whereas proteolytic and cellulolytic bacteria were seen only during the adult stages of the animal. The higher cellulolytic and proteolytic activity within the snail were predominately exhibited in active stage only indicating the transient nature of these bacteria, that is being ingested with the food from the environment thereby augmenting and improving digestion processes [65]. However, proteolytic bacteria were completely absent during hibernation, aestivation and in juvenile stages. The hibernation was marked with the decline of cellulolytic bacteria.
In H. pomatia, γ‐proteobacteria and α‐proteobacteria were the most abundant classes in all populations of snails. Only one phylotype of firmicutes has been reported during hibernation of snail populations. In non‐hibernating snails, firmicutes were found only in the proximal intestine and digestive gland. In active snails, firmicutes were observed in distal intestine, with Mollicute specimen established abundantly in all three gut regions. However, they were restricted to the distal intestine and digestive gland at the beginning of hibernation [131].
The changes in the pH of the gut have serious effects on the microbial community. During anaerobioses, these bacteria in turn change the pH of the gut through fermentative reactions [119] producing end products that affect the acid‐base balance of the digestive tract. But Churchill and Storey [134] postulated that in dormant snails, there is no accumulation of end‐products (lactate and succinate) in dormant snails.
Besides all these functions that are contributed by the bacteria to their hosts, they also influence cold hardiness in their hosts. In snails such as H. pomatia and C. aspersum, the gut bacteria participate in ice‐nucleating activity thereby reducing the cold hardiness in these snails [131, 135]. H. pomatia is known to decrease its supercooling point ca. by 3°, from –2 during its active state to –7°C in hibernation depending on the geographic location [136]. Lastly, enzymes secreted by the gut microbial community are very suitable for various biotechnological applications within the food, pharmaceutical and chemical industries along with detoxification of many hazardous chemicals.
In conclusion, snails present a vast diversity among mollusks with inherent industrial importance. Snails provide benefits not only as food for humans but are also routinely used in agriculture for the control of many insect pests. Though there are pros and cons associated with mollusks, a key need is better knowledge of the basic biology of these useful animals, with rigorous documentation of their habitats for the possible conservation. Little is known about the composition of snail micro‐biota because a large number of species have been underestimated. Understanding the microbial ecology of snails may illustrate many useful processes like development of medicines from mucus or utilization of gut symbionts to challenge the emerging issues of environmental pollution and energy crisis. There is a dire need to explore more and more diversity of microbes that is encrypted in extreme environments like digestive tracts of snails. To accomplish this, many advanced techniques like high throughput next generation sequences (NGSs) along with other metagenomic techniques can be employed to unleash the role of these microbes in the host physiology.
Mudasir A. Dar acknowledges UGC, New Delhi, India, for providing the Maulana Azad National fellowship.
In England Anne Longfield, England’s Children’s Commissioner, has written to the biggest social media companies, urging them to commit to tackling issues of disturbing content. Her letter follows the suicide of 14-year-old Molly Russell, who tragically killed herself after viewing distressing self-harm images on Instagram. The letter urges social media companies to back the introduction of a statutory duty of care where they would have to prioritise the safety and wellbeing of children using their platforms. Ms. Longfield’s letter ends with the following message to the digital industry:
\n\n \nWith great power comes great responsibility and it is your responsibility to support measures that give children the information and tools they need growing up in this digital world—or to admit that you cannot control what anyone sees on your platforms.\n
According to literature use of the internet has risen rapidly in the last decade [1]. The way in which young people interact has changed significantly over the last decade. Social media enables them to develop online connections with people within their immediate friendship group but also to form connects with people who are more geographically dispersed. As a result of the digital revolution in recent years, young people are now able to communicate with others more efficiently and gain access to knowledge and advice more rapidly. For those living in rural communities, social media can facilitate social communications which otherwise would not be possible.
\nMy own discussions with young people in schools indicates that social media is an extremely important part of their daily lives. It brings many benefits but is also exposes them to risks. Young people are often very aware of these risks and understand how to keep themselves safe. However, sadly this does not prevent all of them from harm, as is evident through recent cases of teenage suicides as a result of social media, which have been highlighted in the media in the United Kingdom (UK) and more widely.
\nThis chapter highlights some of the detrimental and positive effects of social media use on children and young people’s mental health. The implications for schools, parents, social media and advertising companies and the government are addressed. This chapter highlights that schools cannot solve all of the problems and that other stakeholders also have a responsibility to keep young people safe when they are online.
\nResearch suggests that social media use is far more prevalent among young people than older generations [1]. Young people aged 16–24 are the most active social media users with 91% using the internet for social media [1]. Young people use social media for a variety of purposes, including for entertainment, to share information and network with others and to gain support and health information [1].
\nEvidence suggests that social media use can result in young people developing conditions including anxiety, stress and depression [1]. There are various reasons for this, and this section will explore the contributing factors. Research has found that four of the five most used social media platforms make young people’s feelings of anxiety worse [1]. Research suggests that young people who use social media heavily, i.e., those who spend more than 2 hours per day on social networking sites are more likely to report poor mental health, including psychological distress [2].
\nCyber-bullying is a significant problem which affects young people. Evidence suggests that seven in 10 young people experience cyberbullying [1]. Cyberbullying exists in a variety of forms. It can include the posting of hurtful comments online, threats and intimidation towards others in the online space and posting photographs or videos that are intended to cause distress. This is not an exhaustive list. Cyberbullying is fundamentally different to bullying which takes place in person. The victim of the bullying may find it difficult to escape from because it exists within the victim’s personal and private spaces such as their homes and bedrooms. Additionally, the number of people witnessing the bullying can be extremely large because of the potential of social media for online posts to be shared across hundreds, thousands and millions of people. For the victim this can be significantly humiliating and result in a loss of confidence and self-worth. Humiliating messages, photographs and videos can be stored permanently online, resulting in the victim repeatedly experiencing the bullying every time they go online. Victims of cyberbullying can experience depression, anxiety, loss of sleep, self-harm and feelings of loneliness [3].
\nSocial media has also been associated with body image concerns. Research indicates that when young girls and women in their teens and early twenties view Facebook for only a short period of time, body image concerns are higher compared to non-users [4]. Young people view images of “ideal” bodies and start to make comparisons with their own bodies. This can result in low body-esteem, particularly if young people feel that their own bodies do not compare favourably to the “perfect” bodies they see online. Young people are heavily influenced by celebrities and may desire to look like them. If they feel that this is unattainable it can result in depression, body-surveillance and low body-confidence. Young people can then start to develop conditions such as eating disorders. The issue of body image is not just a female issue. Young males are also vulnerable and influenced by the muscular, well-toned bodies that they see online. We now live in an age when males are taking increasing interest in their appearance and viewing images of muscular, toned bodies can result in them putting their bodies through extensive fitness regimes and males are also vulnerable to developing eating disorders.
\nThe opportunity for people to use digital editing software to edit their appearance on photographs can also result in young people developing a false sense of beauty. It is worrying that there is a rise in the number of young people seeking to obtain cosmetic surgery [1] and the popularity of “selfies” in recent years has resulted in an increase in images which portray beauty and perfection. These images can have a negative impact on body-esteem and body-confidence.
\nResearch demonstrates that increased social media use has a significant association with poor sleep quality in young people [5]. It seems that young people enjoy being constantly connected to the online world. They develop a “Fear of Missing Out” (FoMO) which is associated with lower mood and lower life satisfaction [6]. This can result in young people constantly checking their devices for messages, even during the night, resulting in broken sleep. Sleep is particularly important during adolescence and broken sleep can result in exhaustion and lack of opportunity for the brain to become refreshed. Lack of sleep quality can have a range of detrimental effects, but it can also impact on school performance and their behaviour. My own conversations with school leaders suggest that many adolescents demonstrate signs of tiredness during the school day. This can result in disengagement in lessons, thus having a detrimental effect on academic attainment.
\nThe link between social media use, self-harm and even suicide is particularly worrying [1]. The fact that young people can access distressing content online that promotes self-harm and suicide is a significant cause for concern. This content attempts to “normalise” self-harm and suicide and can result in young people replicating the actions that they are exposed to.
\nResearch suggests that young people are increasingly using social media to gain emotional support to prevent and address mental health issues [7]. This is particularly pertinent for young people who represent minority groups, including those who identify as lesbian, gay, bisexual or transgender (LGBT), those with disabilities and those representing black and minority ethnic groups. The use of social media to form online digital communities with others who share similar characteristics can be extremely powerful. Young people from minority groups are able to become “global citizens,” thus reducing isolation. Participating in online networks presents them with an opportunity to meet with others who share their identities, to gain mutual support and advice and to gain solidarity. These networks can reduce feelings of loneliness and support the development of a positive, personal identity. They can also support young people to become more resilient to adverse situations which can help them to stay mentally healthy.
\nWhile online communities can be beneficial, they also bring associated risks. For example, members of the LGBT networks can become easy targets for abuse, discrimination, harassment and prejudice. It is therefore critical that young people understand how to keep themselves safe online and develop appropriate digital resilience to enable them to address these challenges.
\nSocial media use can allow young people to express themselves positively, letting young people put forward a positive image of themselves [8]. The problem with this is that people tend to use social media to present the best version of themselves and of their lives. This can result in others making unhealthy comparisons between their own lives and the idealised lives that are depicted on the internet, resulting in low self-esteem.
\nSocial media platforms enable young people to share creative content and express their interests and passions with others [1]. This can help to strengthen the development of a positive identity among young people and provide them with numerous opportunities to experiment with a range of interests. This is particularly important for young people who live in rural communities who may find it more challenging to develop social connections in the offline world.
\nStudents living in boarding schools benefit from using social media platforms because it enables them to maintain contact with family members and friends at home. This is particularly important because students living away from home may experience isolation and homesickness and social media platforms facilitate these connections.
\nSocial media platforms offer young people a useful tool to make, maintain or build social connections with others [1]. Additionally, research suggests that strong adolescent friendships can be enhanced by social media interactions [9]. Thus, young people can use social media to cement the friendships that they have formed in the offline world and to develop new friendships that would not have been possible in the offline word due to geographical restrictions.
\nSchools play a critical role in keeping children safe online. A well-planned digital curriculum should cover themes such as digital resilience and digital citizenship so that young people know how to respond to distressing content and how to behave responsibly online. The curriculum should also provide digital literacy skills so that children and young people have the skills to keep their own accounts safe through privacy settings, blocking perpetrators of abuse, reporting abuse and setting passwords. Schools should also support children and young people to critically engage with content they see online. They should be taught to question and interrogate content for accuracy, exploitation, abuse and discrimination.
\nSchools also play a critical role in developing young people’s mental health literacy. This should cover common mental health conditions, including stress, anxiety, depression, self-harm and cyberbullying. Educating young people about mental health is essential and reduces the stigma that has traditionally been associated with mental health conditions. Young people also need to have strategies for managing their own mental health. If their mental health is adversely affected by their experiences online, they need to be taught strategies to self-regulate their emotions and strategies to aid digital resilience. Some young people who have negative experiences online respond by closing down their social media accounts. This situates the control with the perpetrators of abuse and removes control from the victim because they are disadvantaged. Developing practical approaches to aid digital resilience in the face of adversity must be a key component of the digital curriculum that schools provide. Young people need to know how to respond to abuse, who to report it to and how to block the accounts of perpetrators. In addition, they need to be taught about the importance of maintaining secure social media accounts and how to keep themselves safe by not sharing personal information.
\nSchools need to provide a social need to provide a social media curriculum which is progressive and age appropriate. Given the prevalence of fake content online and content which has been digitally edited, young people need to be taught to critically evaluate content that appears online so that they understand the harmful effects of some content. Themes including exploitation, body-esteem and gender stereotyping can be addressed through critically evaluating online content.
\nChildren and young people often have a good understanding of the issues associated with social media because they are the users of it. Therefore, they experience the issues, sometimes frequently. Working in partnership with young people through empowering them to lead on aspects of social media education is a powerful way of developing student partnership and empowers them to be leaders. Often, young people understand the online applications better than teachers and they are acutely aware of the issues that occur online. Student-led events such as student-led workshops and conferences, which highlight the issues that relate to social media and mental health, are powerful ways of providing ownership to students. Developing digital ambassadors who act as peer mentors to younger students is also a powerful strategy for developing students’ confidence and leadership skills. Young people who need someone to talk to about the issues that they are experiencing online can be paired with a digital ambassador who can provide them with confidential advice. Processes for recruiting digital ambassadors would need to be carefully considered by schools and the scheme would need to be properly led and managed by a member of staff to monitor its effectiveness. Student-led peer mentoring schemes are valuable because some students prefer to talk to peers about the issues that they are experiencing rather than teachers or parents.
\nSchools also play a critical role in educating parents about the relationship between social media and mental health. It is important that parents understand the online applications that their children are using, and schools can play a critical role in developing their understanding. Schools can also provide guidance to parents on the signs and symptoms of mental ill health so that they are better able to identify mental health problems in their child. Schools can provide guidance to parents on how to support their child’s mental health at home and guidelines about responsible use of social media in the home. It is critical that parents understand the association between poor sleep quality, mental health and academic attainment and schools can play an important role in this. Schools also play a crucial role in developing parents’ knowledge about how to be a good social media role model for their child.
\nSchools cannot solve the problems associated with social media in isolation. This section outlines the responsibilities of parents, social media companies and advertising companies. The responsibilities of the government are also outlined.
\nParents are in a unique position to influence their child’s social media use. They should establish clear expectations about the amount of time their child spends online. However, imposing rules on children can lead to conflict and the breakdown of relationships between parents and children. It is far more effective for parents and children to negotiate the rules jointly so that young people have ownership of determining the boundaries of acceptable and unacceptable behaviour. If rules are imposed rather than negotiated it is likely that young people will find ways to break the rules and therefore adopting a top-down approach may not be the most effective way of encouraging young people to develop healthy social media use.
\nSome parents may try to restrict their child’s use of social media by installing filters or by disconnecting the internet supply at specific times of the day or week. However, young people will find ways to subvert this and policing their use of the internet in this way is unlikely to foster digital responsibility. It might be more effective for parents to talk to their child about what it means to be a digitally responsible citizen and to explain why it is important to restrict screen time, particularly during the night. Families might want to consider allocating specific time each day or week when no-one accesses technology.
\nIn addition, parents also need to be role models. They cannot expect their child to demonstrate the skills of digital citizenship and digital responsibility if they are not prepared to demonstrate these skills. It is therefore important for parents to model healthy online behaviours so that their children can then replicate these. It is also important for parents to develop their own digital literacy, so they are aware of the platforms and software that their child is interacting with. Parents also need to develop knowledge of the risks that their children are exposed to, given that these are constantly changing. If parents do not keep abreast of developments, they will not be able to support their child effectively.
\nParents should negotiate rules with their children about what constitutes appropriate use of the internet. Imposing rules on children is unlikely to be effective because young people will find ways to resist or subvert these. It is also important that parents provide their children with a degree of autonomy about their internet use. It is unlikely to be helpful if parents continually monitor what their children are doing online. However, it is reasonable for parents to set some rules for appropriate use to protect their child from harm. Examples include:
not using technology during the night;
restricting technology use during mealtimes or other social occasions;
limiting the amount of screen time which children are exposed to.
It will be more effective if young people are involved in discussions with their parents about what might constitute appropriate use of the internet.
\nSocial media companies have a responsibility to protect young people from harm. They can do this in a variety of ways by:
establishing strict and robust policies on the age at which users can access platforms;
blocking accounts of perpetrators of abuse;
reporting abuse to the police;
removing inappropriate content immediately;
filtering specific content before it goes live;
producing information to service users about responsible and safe use of social media;
generating warning messages when users have exceeded reasonable levels of screen time;
responding rapidly to reports of abuse.
This is not an exhaustive list. However, it illustrates the sorts of actions that can be adopted by social media companies to protect children and young people from harm. Companies have not responded quickly enough to reports of abuse or inappropriate content as cases of suicide in the UK suggest that social media companies have failed to protect young people from harm. The government also has a clear responsibility to hold companies to account which fail to protect children and young people from harm. Simply fining companies is not enough and will not necessarily address the problem. The government needs to take firmer action against social media companies which breach their safeguarding responsibilities.
\nIn addition, advertising companies have a responsibility to ensure that young people do not develop low body confidence. They can achieve this in a variety of ways. These include:
providing warning messages that images may have been digitally edited;
ensuring that images of bodies on products represent a range of body types, including a range of body sizes, disabled bodies and people of colour;
avoiding gender-stereotypes when advertising products;
producing warning messages about the dangers associated with product-use so that young people are aware of the risks;
portraying natural bodies without make-up on some products.
Our own research in Cambridge [10] with students in secondary schools demonstrates that they had a good understanding of the benefits and risks associated with social media. Focus groups demonstrated that the students had developed an excellent understanding of the benefits of social media and the relationship between social media use and mental ill health, including sleep deprivation, cyberbullying and low body-esteem. They had also developed a better understanding of how to keep themselves safe online. The quotes and Figure 1 below are taken from our research report [10].
\nStudents’ perspectives on social media.
\nSocial media helps you to communicate with your friends if they are far away. It makes you feel good when you get a like on your posts. (Student Y8)
\n\nYou can talk to your friends and family on social media. The disadvantages are that you can get stalked. People can create fake accounts. You can get cyber-bullied. People can hack into other people’s accounts and you might not know who is communicating with you. People can become jealous of other people’s lives and this can make you sad and depressed. (Student Y9)
\n\nSome of the pictures can be fake so people can make out that they are leading an exciting life but really, they are not, and this can make others feel worthless. (Student Y8)
\n\nSocial media results in an expectation to show the good part of your life. It can impact on others because they think you are having a good time and they might not be having such a good time. (Student Y9)
\n\nPeople make mean comments and it makes you feel bad. The bullying can be anonymous, and it reaches a larger audience. You can ignore the insults and carry on with your life. You can report the person or block them. (Student Y9)
\n\nMen are expected to be muscular. You get upset because you think “why don’t I look like that?” (Student Y8)
\n\nI realize that social media has an impact on my sleep. I find it addictive and I am always checking what friends are doing through social media and texting. (Student Y9)
\n\nI think online bullying is different to bullying in school. It is easier to say horrible things to someone through social media because you are not saying it to their face. (Student Y8)
\n\nWe can become stressed through social media because celebrities show images of being slim. This mainly affects women but now men are becoming bothered about how they look. This is stress that becomes a mental health problem. (Student Y9)
\n\nYou feel you must look as good as celebrity people because people feel you need to be as good looking otherwise you don’t get a good reputation. (Student Y8)
\n\nCyber bullying is when you post hateful messages online to directly hurt a person. (Student Y8)
\n\nSeeing slim models online (body image) can make your self-esteem feel low. (Student Y8).
\nThe students summarised the advantages and disadvantages of social media below:
\nCyberbullying is bullying which takes place in the online world, including bullying which takes place on social media. It takes multiple forms. These include:
posting hurtful comments;
posting videos which are targeted directly at a person to cause distress;
posting photographs which are designed to cause distress;
inciting others to make hurtful comments aimed at a person;
sending hurtful text messages using a mobile phone;
sending hurtful private messages to a person [11].
According to Glazzard and Mitchell [11]:
\n\nCyberbullying is fundamentally different to face-to-face bullying in several ways. Firstly, victims cannot escape from it when they are at home because it takes place on mobile phones, tablets and computers. Secondly the abuse is witnessed by a larger audience; messages are in the public domain and can be repeatedly forwarded. This can result in victims experiencing the abuse on multiple occasions, which results in further psychological distress. Thirdly, the evidence of the abuse is usually permanently stored online which means that the abuse is not erased. These messages serve as a permanent reminder of the abuse and this can result in abuse being continually experienced by the victim.
\nForms of cyberbullying are outlined below and taken from Glazzard and Mitchell [11]:
\nHarassment: Harassment is the act of sending offensive, rude, and insulting messages and being abusive. It includes nasty or degrading comments on posts, photos and in chat rooms and making offensive comments on gaming sites. Posting false and malicious things about people on the internet can be classed as harassment [11].
\nDenigration: This is when someone may send information about another person that is fake, damaging and untrue. It includes sharing photographs of someone for the purpose to ridicule and spreading fake rumours and gossip. This can be on any site online or on apps. It includes purposely altering photographs of others to ridicule and cause distress [11].
\nFlaming: Flaming is when someone purposely uses extreme and offensive language and deliberately gets into online arguments and fights. They do this to deliberately cause distress in others [11].
\nImpersonation: Impersonation is when someone hacks into someone’s email or social networking account and uses the person’s online identity to send or post vicious or embarrassing material to or about others. It also includes making up fake profiles of others [11].
\nOuting and trickery: This is when someone shares personal information about someone else or tricks someone into revealing secrets and subsequently forwards it to others. They may also do this with private images and videos too [11].
\nCyberstalking: Cyberstalking is the act of repeatedly sending messages that include threats of harm, harassment, intimidating messages, or engaging in other online activities that make a person afraid for their safety. The actions may be illegal depending on what they are doing. Cyberstalking can take place on the internet or via mobile ‘phones. Examples include:
silent calls;
insulting and threatening texts;
abusive verbal messages;
cases of stolen identities [11]
Exclusion: This is when others intentionally leave someone out of a group such as group messages, online apps, gaming sites and other online engagement. This is also a form of social bullying and is very common [11].
\nBullying by spreading rumours and gossip: Online abuse, rumours and gossip can go viral very quickly and be shared by many people within several minutes. It is not uncommon for former close friends or partners to share personal secrets about victims [11].
\nThreatening behaviour: Threatening behaviour which is directed at a victim to cause alarm and distress is a criminal offence. Taking screenshots of the evidence and reporting it is one way of challenging this [11].
\nHappy slapping: This is an incident where a person is assaulted while other people take photographs or videos on their mobile phones. The pictures or videos are then circulated by mobile phone or uploaded on the internet [11].
\nGrooming: Grooming is when someone builds an emotional connection with a child to gain their trust for the purposes of abuse and exploitation. It is conducted by strangers (or new “friends”) and may include:
pressurising someone to do something they do not wish to do;
making someone take their clothes off;
pressurising someone to engage in sexual conversations;
pressurising someone to take naked photographs of themselves;
making someone engage in sexual activity via the internet [11].
Groomers may spend a long time establishing a “relationship” with the victim by using the following strategies:
pretending to be someone they are not, for example, saying they are the same age online;
offering advice or understanding;
buying gifts;
giving the child attention;
using their professional position or reputation;
giving compliments;
taking them on trips, outings or holidays [11].
Inappropriate images: It is very easy to save any pictures of anyone on any site and upload them to the internet. Uploading pictures of someone to cause distress is a form of cyberbullying. This also includes digitally altering pictures to embarrass someone [11].
\nBystander effect: Witnessing cyberbullying and doing nothing about it is not acceptable. Some people are worried about getting involved but victims of bullying need brave witnesses to make a stand. Perpetrators of bullying thrive when they have an audience. Making a stand against what they are doing is an important way to reduce their power. Most sites now operate a reporting facility so that online abuse can be reported and addressed. Bystanders are not innocent. They have a responsibility to report abuse that they witness [11].
\nThe following text is taken from our blog [12].
\n\nResearch from Queensland University of Technology has identified that half of young people aged 18–24 are less productive and more tired because of their mobile phones. Scientists have adopted the term “technoference” to describe the way that mobile phones intrude on and interrupt everyday conversations and the way they interrupt other aspects of people’s daily lives.
\n\nIt is worrying that family life is being interrupted by technology. While technology has significant benefits, continual use of technology can impact detrimentally on the quality of people’s interactions and conversations. We live in a society where people are constantly attached to their technology. People interact with technology on public transport, in meetings and during leisure time rather than engaging in productive, meaningful conversations. It seems that people would rather interact with a phone rather than having a conversation and while this is not necessarily a problem in some contexts, it can have a negative impact in other contexts. For example, young children require social interaction with adults. This allows them to develop secure attachments with significant others, it enables them to learn about the world and through conversation children are exposed to language. Exposure to language underpins reading and writing development. Children who have rich exposure to language become better readers, better writers and understand far better what they are reading. Lack of exposure to language can impact detrimentally on the structure of the brain. This can create reading difficulties and even lead to difficulties which are consistent with dyslexia, even though the difficulties may not have a genetic origin. The brain is malleable. It is responsive to environmental influences and lack of exposure to language can impact on phonological and phonemic awareness. Both of these skills play a critical role in reading development. Interacting with technology can restrict opportunities for communication between babies, children and their parents and can interrupt the flow of normal conversation.\n
\n\nIt would appear that adolescents seem to be attached to their phones during the night. They are desperate to network and keep up-to-date with their online peers. This results in broken sleep and tiredness during the school day. Adolescents need approximately 8–10 hours sleep but our research demonstrates that some get as little as 2 hours sleep. These students attend school in a state of exhaustion. They are too tired to concentrate and it affects their learning and their behaviour. Disengagement in lessons results in them falling behind in their schoolwork and they then develop other problems such as low confidence and low self-worth.
\n\nReal-time social connections are vital for positive wellbeing. Schools play a key role in teaching young people about how to stay healthy and in particular, the need for sleep. However, parents also play a critical role in supporting young people to develop positive habits through setting boundaries. Examples of boundaries might include restricting access to technology in bedrooms and at mealtimes. Also, parents need to be good role models by ensuring that they do not allow technology to interrupt conversations and other daily experiences.\n
\nStatistics demonstrate the risks of internet use on young people’s lives. Key statistics are summarised below [13]:
year on year increases in the numbers and rates of police-recorded online child sexual offences in England and Wales and Northern Ireland
increases in police-recorded offences of obscene publications or indecent photos in all four UK nations over the last 5 years
increases in the number of URLs confirmed by the Internet Watch Foundation (IWF) as containing child sexual abuse imagery since 2015
less than half of children aged 12–15 say they know how to change their settings to control who can view their social media
the majority of parents, carers and members of the public agree that social networks should have a legal responsibility to keep children safe on their platforms.
Additionally:
a total of 5161 crimes of sexual communication with a child have been recorded in 18 months [14];
in 2019 there has been almost a 50% increase in offence in offences recorded in latest 6 months compared to same period in previous year [14];
in 2010 there has been a 200% rise in recorded instances in the use of Instagram to target and abuse children over the same time period [14];
there have been over 5000 online grooming offences recorded in 18 months [14].
Social media use can have a detrimental impact on children and young people’s mental health. It can result in anxiety, depression, body image concerns, self-harm, substance abuse and even death. However, for young people social media is a tool for networking, keeping in touch with friends, exchanging information, a source of support and advice and a rich source of knowledge. Preventing children and young people from using social media is not an appropriate solution, given all the benefits that come with it. Schools, parents and the digital industry need to do all they can to keep children safe from harm through adopting a proactive approach rather than a reactive approach when crises occur.
\nWe wish to thank Leeds Beckett University and the Carnegie Centre of Excellence for Mental Health in Schools for facilitating this research.
\nThe authors declare no conflict of interest.
IntechOpen's Authorship Policy is based on ICMJE criteria for authorship. An Author, one must:
',metaTitle:"Authorship Policy",metaDescription:"IN TECH's Authorship Policy is based on ICMJE criteria for authorship. In order to be identified as an Author, one must:",metaKeywords:null,canonicalURL:"/page/authorship-policy",contentRaw:'[{"type":"htmlEditorComponent","content":"All contributors who meet these criteria are listed as Authors. Their exact contributions should be described in the manuscript at the time of submission.
\\n\\nConversely, all contributors who do not meet these criteria should be listed in the Acknowledgments section of the manuscript, along with a short description of their specific contributions.
\\n\\nCHANGES IN AUTHORSHIP
\\n\\nIf it is felt necessary to make changes to the list of Authors after a manuscript has been submitted or published, it is the responsibility of the Author concerned to provide a valid reason to amend the published list. Additionally, all listed Authors must verify and approve the proposed changes in order for any amendments to be made.
\\n\\nAFFILIATION
\\n\\nAuthors are responsible for ensuring all addresses and emails provided are correct. Under affiliation(s) all Authors should indicate where the research was conducted. Please note that no changes to the affiliation(s) can be made after the chapter has been published.
\\n\\nPolicy last updated: 2017-05-29
\\n"}]'},components:[{type:"htmlEditorComponent",content:"All contributors who meet these criteria are listed as Authors. Their exact contributions should be described in the manuscript at the time of submission.
\n\nConversely, all contributors who do not meet these criteria should be listed in the Acknowledgments section of the manuscript, along with a short description of their specific contributions.
\n\nCHANGES IN AUTHORSHIP
\n\nIf it is felt necessary to make changes to the list of Authors after a manuscript has been submitted or published, it is the responsibility of the Author concerned to provide a valid reason to amend the published list. Additionally, all listed Authors must verify and approve the proposed changes in order for any amendments to be made.
\n\nAFFILIATION
\n\nAuthors are responsible for ensuring all addresses and emails provided are correct. Under affiliation(s) all Authors should indicate where the research was conducted. Please note that no changes to the affiliation(s) can be made after the chapter has been published.
\n\nPolicy last updated: 2017-05-29
\n"}]},successStories:{items:[]},authorsAndEditors:{filterParams:{sort:"featured,name"},profiles:[{id:"6700",title:"Dr.",name:"Abbass A.",middleName:null,surname:"Hashim",slug:"abbass-a.-hashim",fullName:"Abbass A. Hashim",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/6700/images/1864_n.jpg",biography:"Currently I am carrying out research in several areas of interest, mainly covering work on chemical and bio-sensors, semiconductor thin film device fabrication and characterisation.\nAt the moment I have very strong interest in radiation environmental pollution and bacteriology treatment. The teams of researchers are working very hard to bring novel results in this field. I am also a member of the team in charge for the supervision of Ph.D. students in the fields of development of silicon based planar waveguide sensor devices, study of inelastic electron tunnelling in planar tunnelling nanostructures for sensing applications and development of organotellurium(IV) compounds for semiconductor applications. I am a specialist in data analysis techniques and nanosurface structure. I have served as the editor for many books, been a member of the editorial board in science journals, have published many papers and hold many patents.",institutionString:null,institution:{name:"Sheffield Hallam University",country:{name:"United Kingdom"}}},{id:"54525",title:"Prof.",name:"Abdul Latif",middleName:null,surname:"Ahmad",slug:"abdul-latif-ahmad",fullName:"Abdul Latif Ahmad",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:null},{id:"20567",title:"Prof.",name:"Ado",middleName:null,surname:"Jorio",slug:"ado-jorio",fullName:"Ado Jorio",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"Universidade Federal de Minas Gerais",country:{name:"Brazil"}}},{id:"47940",title:"Dr.",name:"Alberto",middleName:null,surname:"Mantovani",slug:"alberto-mantovani",fullName:"Alberto Mantovani",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:null},{id:"12392",title:"Mr.",name:"Alex",middleName:null,surname:"Lazinica",slug:"alex-lazinica",fullName:"Alex Lazinica",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/12392/images/7282_n.png",biography:"Alex Lazinica is the founder and CEO of IntechOpen. After obtaining a Master's degree in Mechanical Engineering, he continued his PhD studies in Robotics at the Vienna University of Technology. Here he worked as a robotic researcher with the university's Intelligent Manufacturing Systems Group as well as a guest researcher at various European universities, including the Swiss Federal Institute of Technology Lausanne (EPFL). During this time he published more than 20 scientific papers, gave presentations, served as a reviewer for major robotic journals and conferences and most importantly he co-founded and built the International Journal of Advanced Robotic Systems- world's first Open Access journal in the field of robotics. Starting this journal was a pivotal point in his career, since it was a pathway to founding IntechOpen - Open Access publisher focused on addressing academic researchers needs. Alex is a personification of IntechOpen key values being trusted, open and entrepreneurial. Today his focus is on defining the growth and development strategy for the company.",institutionString:null,institution:{name:"TU Wien",country:{name:"Austria"}}},{id:"19816",title:"Prof.",name:"Alexander",middleName:null,surname:"Kokorin",slug:"alexander-kokorin",fullName:"Alexander Kokorin",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/19816/images/1607_n.jpg",biography:"Alexander I. Kokorin: born: 1947, Moscow; DSc., PhD; Principal Research Fellow (Research Professor) of Department of Kinetics and Catalysis, N. Semenov Institute of Chemical Physics, Russian Academy of Sciences, Moscow.\r\nArea of research interests: physical chemistry of complex-organized molecular and nanosized systems, including polymer-metal complexes; the surface of doped oxide semiconductors. He is an expert in structural, absorptive, catalytic and photocatalytic properties, in structural organization and dynamic features of ionic liquids, in magnetic interactions between paramagnetic centers. The author or co-author of 3 books, over 200 articles and reviews in scientific journals and books. He is an actual member of the International EPR/ESR Society, European Society on Quantum Solar Energy Conversion, Moscow House of Scientists, of the Board of Moscow Physical Society.",institutionString:null,institution:{name:"Semenov Institute of Chemical Physics",country:{name:"Russia"}}},{id:"62389",title:"PhD.",name:"Ali Demir",middleName:null,surname:"Sezer",slug:"ali-demir-sezer",fullName:"Ali Demir Sezer",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/62389/images/3413_n.jpg",biography:"Dr. Ali Demir Sezer has a Ph.D. from Pharmaceutical Biotechnology at the Faculty of Pharmacy, University of Marmara (Turkey). He is the member of many Pharmaceutical Associations and acts as a reviewer of scientific journals and European projects under different research areas such as: drug delivery systems, nanotechnology and pharmaceutical biotechnology. Dr. Sezer is the author of many scientific publications in peer-reviewed journals and poster communications. Focus of his research activity is drug delivery, physico-chemical characterization and biological evaluation of biopolymers micro and nanoparticles as modified drug delivery system, and colloidal drug carriers (liposomes, nanoparticles etc.).",institutionString:null,institution:{name:"Marmara University",country:{name:"Turkey"}}},{id:"61051",title:"Prof.",name:"Andrea",middleName:null,surname:"Natale",slug:"andrea-natale",fullName:"Andrea Natale",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:null},{id:"100762",title:"Prof.",name:"Andrea",middleName:null,surname:"Natale",slug:"andrea-natale",fullName:"Andrea Natale",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"St David's Medical Center",country:{name:"United States of America"}}},{id:"107416",title:"Dr.",name:"Andrea",middleName:null,surname:"Natale",slug:"andrea-natale",fullName:"Andrea Natale",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"Texas Cardiac Arrhythmia",country:{name:"United States of America"}}},{id:"64434",title:"Dr.",name:"Angkoon",middleName:null,surname:"Phinyomark",slug:"angkoon-phinyomark",fullName:"Angkoon Phinyomark",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/64434/images/2619_n.jpg",biography:"My name is Angkoon Phinyomark. I received a B.Eng. degree in Computer Engineering with First Class Honors in 2008 from Prince of Songkla University, Songkhla, Thailand, where I received a Ph.D. degree in Electrical Engineering. My research interests are primarily in the area of biomedical signal processing and classification notably EMG (electromyography signal), EOG (electrooculography signal), and EEG (electroencephalography signal), image analysis notably breast cancer analysis and optical coherence tomography, and rehabilitation engineering. I became a student member of IEEE in 2008. During October 2011-March 2012, I had worked at School of Computer Science and Electronic Engineering, University of Essex, Colchester, Essex, United Kingdom. In addition, during a B.Eng. I had been a visiting research student at Faculty of Computer Science, University of Murcia, Murcia, Spain for three months.\n\nI have published over 40 papers during 5 years in refereed journals, books, and conference proceedings in the areas of electro-physiological signals processing and classification, notably EMG and EOG signals, fractal analysis, wavelet analysis, texture analysis, feature extraction and machine learning algorithms, and assistive and rehabilitative devices. I have several computer programming language certificates, i.e. Sun Certified Programmer for the Java 2 Platform 1.4 (SCJP), Microsoft Certified Professional Developer, Web Developer (MCPD), Microsoft Certified Technology Specialist, .NET Framework 2.0 Web (MCTS). I am a Reviewer for several refereed journals and international conferences, such as IEEE Transactions on Biomedical Engineering, IEEE Transactions on Industrial Electronics, Optic Letters, Measurement Science Review, and also a member of the International Advisory Committee for 2012 IEEE Business Engineering and Industrial Applications and 2012 IEEE Symposium on Business, Engineering and Industrial Applications.",institutionString:null,institution:{name:"Joseph Fourier University",country:{name:"France"}}},{id:"55578",title:"Dr.",name:"Antonio",middleName:null,surname:"Jurado-Navas",slug:"antonio-jurado-navas",fullName:"Antonio Jurado-Navas",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/55578/images/4574_n.png",biography:"Antonio Jurado-Navas received the M.S. degree (2002) and the Ph.D. degree (2009) in Telecommunication Engineering, both from the University of Málaga (Spain). He first worked as a consultant at Vodafone-Spain. From 2004 to 2011, he was a Research Assistant with the Communications Engineering Department at the University of Málaga. In 2011, he became an Assistant Professor in the same department. From 2012 to 2015, he was with Ericsson Spain, where he was working on geo-location\ntools for third generation mobile networks. Since 2015, he is a Marie-Curie fellow at the Denmark Technical University. His current research interests include the areas of mobile communication systems and channel modeling in addition to atmospheric optical communications, adaptive optics and statistics",institutionString:null,institution:{name:"University of Malaga",country:{name:"Spain"}}}],filtersByRegion:[{group:"region",caption:"North America",value:1,count:5698},{group:"region",caption:"Middle and South America",value:2,count:5172},{group:"region",caption:"Africa",value:3,count:1689},{group:"region",caption:"Asia",value:4,count:10243},{group:"region",caption:"Australia and Oceania",value:5,count:888},{group:"region",caption:"Europe",value:6,count:15647}],offset:12,limit:12,total:117315},chapterEmbeded:{data:{}},editorApplication:{success:null,errors:{}},ofsBooks:{filterParams:{sort:"dateendthirdsteppublish"},books:[],filtersByTopic:[{group:"topic",caption:"Agricultural and Biological Sciences",value:5,count:9},{group:"topic",caption:"Biochemistry, Genetics and Molecular Biology",value:6,count:18},{group:"topic",caption:"Business, Management and Economics",value:7,count:2},{group:"topic",caption:"Chemistry",value:8,count:7},{group:"topic",caption:"Computer and Information Science",value:9,count:11},{group:"topic",caption:"Earth and Planetary Sciences",value:10,count:5},{group:"topic",caption:"Engineering",value:11,count:15},{group:"topic",caption:"Environmental Sciences",value:12,count:2},{group:"topic",caption:"Immunology and Microbiology",value:13,count:5},{group:"topic",caption:"Materials Science",value:14,count:4},{group:"topic",caption:"Mathematics",value:15,count:1},{group:"topic",caption:"Medicine",value:16,count:62},{group:"topic",caption:"Nanotechnology and Nanomaterials",value:17,count:1},{group:"topic",caption:"Neuroscience",value:18,count:1},{group:"topic",caption:"Pharmacology, Toxicology and Pharmaceutical Science",value:19,count:6},{group:"topic",caption:"Physics",value:20,count:2},{group:"topic",caption:"Psychology",value:21,count:3},{group:"topic",caption:"Robotics",value:22,count:1},{group:"topic",caption:"Social Sciences",value:23,count:3},{group:"topic",caption:"Technology",value:24,count:1},{group:"topic",caption:"Veterinary Medicine and Science",value:25,count:2}],offset:0,limit:12,total:null},popularBooks:{featuredBooks:[{type:"book",id:"7802",title:"Modern Slavery and Human Trafficking",subtitle:null,isOpenForSubmission:!1,hash:"587a0b7fb765f31cc98de33c6c07c2e0",slug:"modern-slavery-and-human-trafficking",bookSignature:"Jane Reeves",coverURL:"https://cdn.intechopen.com/books/images_new/7802.jpg",editors:[{id:"211328",title:"Prof.",name:"Jane",middleName:null,surname:"Reeves",slug:"jane-reeves",fullName:"Jane Reeves"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"8545",title:"Animal Reproduction in Veterinary Medicine",subtitle:null,isOpenForSubmission:!1,hash:"13aaddf5fdbbc78387e77a7da2388bf6",slug:"animal-reproduction-in-veterinary-medicine",bookSignature:"Faruk Aral, Rita Payan-Carreira and Miguel Quaresma",coverURL:"https://cdn.intechopen.com/books/images_new/8545.jpg",editors:[{id:"25600",title:"Prof.",name:"Faruk",middleName:null,surname:"Aral",slug:"faruk-aral",fullName:"Faruk Aral"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9961",title:"Data Mining",subtitle:"Methods, Applications and Systems",isOpenForSubmission:!1,hash:"ed79fb6364f2caf464079f94a0387146",slug:"data-mining-methods-applications-and-systems",bookSignature:"Derya Birant",coverURL:"https://cdn.intechopen.com/books/images_new/9961.jpg",editors:[{id:"15609",title:"Dr.",name:"Derya",middleName:null,surname:"Birant",slug:"derya-birant",fullName:"Derya Birant"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9157",title:"Neurodegenerative Diseases",subtitle:"Molecular Mechanisms and Current Therapeutic Approaches",isOpenForSubmission:!1,hash:"bc8be577966ef88735677d7e1e92ed28",slug:"neurodegenerative-diseases-molecular-mechanisms-and-current-therapeutic-approaches",bookSignature:"Nagehan Ersoy Tunalı",coverURL:"https://cdn.intechopen.com/books/images_new/9157.jpg",editors:[{id:"82778",title:"Ph.D.",name:"Nagehan",middleName:null,surname:"Ersoy Tunalı",slug:"nagehan-ersoy-tunali",fullName:"Nagehan Ersoy Tunalı"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"8686",title:"Direct Torque Control Strategies of Electrical Machines",subtitle:null,isOpenForSubmission:!1,hash:"b6ad22b14db2b8450228545d3d4f6b1a",slug:"direct-torque-control-strategies-of-electrical-machines",bookSignature:"Fatma Ben Salem",coverURL:"https://cdn.intechopen.com/books/images_new/8686.jpg",editors:[{id:"295623",title:"Associate Prof.",name:"Fatma",middleName:null,surname:"Ben Salem",slug:"fatma-ben-salem",fullName:"Fatma Ben Salem"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"7434",title:"Molecular Biotechnology",subtitle:null,isOpenForSubmission:!1,hash:"eceede809920e1ec7ecadd4691ede2ec",slug:"molecular-biotechnology",bookSignature:"Sergey Sedykh",coverURL:"https://cdn.intechopen.com/books/images_new/7434.jpg",editors:[{id:"178316",title:"Ph.D.",name:"Sergey",middleName:null,surname:"Sedykh",slug:"sergey-sedykh",fullName:"Sergey Sedykh"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9839",title:"Outdoor Recreation",subtitle:"Physiological and Psychological Effects on Health",isOpenForSubmission:!1,hash:"5f5a0d64267e32567daffa5b0c6a6972",slug:"outdoor-recreation-physiological-and-psychological-effects-on-health",bookSignature:"Hilde G. Nielsen",coverURL:"https://cdn.intechopen.com/books/images_new/9839.jpg",editors:[{id:"158692",title:"Ph.D.",name:"Hilde G.",middleName:null,surname:"Nielsen",slug:"hilde-g.-nielsen",fullName:"Hilde G. Nielsen"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9208",title:"Welding",subtitle:"Modern Topics",isOpenForSubmission:!1,hash:"7d6be076ccf3a3f8bd2ca52d86d4506b",slug:"welding-modern-topics",bookSignature:"Sadek Crisóstomo Absi Alfaro, Wojciech Borek and Błażej Tomiczek",coverURL:"https://cdn.intechopen.com/books/images_new/9208.jpg",editors:[{id:"65292",title:"Prof.",name:"Sadek Crisostomo Absi",middleName:"C. Absi",surname:"Alfaro",slug:"sadek-crisostomo-absi-alfaro",fullName:"Sadek Crisostomo Absi Alfaro"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9139",title:"Topics in Primary Care Medicine",subtitle:null,isOpenForSubmission:!1,hash:"ea774a4d4c1179da92a782e0ae9cde92",slug:"topics-in-primary-care-medicine",bookSignature:"Thomas F. Heston",coverURL:"https://cdn.intechopen.com/books/images_new/9139.jpg",editors:[{id:"217926",title:"Dr.",name:"Thomas F.",middleName:null,surname:"Heston",slug:"thomas-f.-heston",fullName:"Thomas F. Heston"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9343",title:"Trace Metals in the Environment",subtitle:"New Approaches and Recent Advances",isOpenForSubmission:!1,hash:"ae07e345bc2ce1ebbda9f70c5cd12141",slug:"trace-metals-in-the-environment-new-approaches-and-recent-advances",bookSignature:"Mario Alfonso Murillo-Tovar, Hugo Saldarriaga-Noreña and Agnieszka Saeid",coverURL:"https://cdn.intechopen.com/books/images_new/9343.jpg",editors:[{id:"255959",title:"Dr.",name:"Mario Alfonso",middleName:null,surname:"Murillo-Tovar",slug:"mario-alfonso-murillo-tovar",fullName:"Mario Alfonso Murillo-Tovar"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"8697",title:"Virtual Reality and Its Application in Education",subtitle:null,isOpenForSubmission:!1,hash:"ee01b5e387ba0062c6b0d1e9227bda05",slug:"virtual-reality-and-its-application-in-education",bookSignature:"Dragan Cvetković",coverURL:"https://cdn.intechopen.com/books/images_new/8697.jpg",editors:[{id:"101330",title:"Dr.",name:"Dragan",middleName:"Mladen",surname:"Cvetković",slug:"dragan-cvetkovic",fullName:"Dragan Cvetković"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"7831",title:"Sustainability in Urban Planning and Design",subtitle:null,isOpenForSubmission:!1,hash:"c924420492c8c2c9751e178d025f4066",slug:"sustainability-in-urban-planning-and-design",bookSignature:"Amjad Almusaed, Asaad Almssad and Linh Truong - Hong",coverURL:"https://cdn.intechopen.com/books/images_new/7831.jpg",editors:[{id:"110471",title:"Dr.",name:"Amjad",middleName:"Zaki",surname:"Almusaed",slug:"amjad-almusaed",fullName:"Amjad Almusaed"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}}],offset:12,limit:12,total:5141},hotBookTopics:{hotBooks:[],offset:0,limit:12,total:null},publish:{},publishingProposal:{success:null,errors:{}},books:{featuredBooks:[{type:"book",id:"9208",title:"Welding",subtitle:"Modern Topics",isOpenForSubmission:!1,hash:"7d6be076ccf3a3f8bd2ca52d86d4506b",slug:"welding-modern-topics",bookSignature:"Sadek Crisóstomo Absi Alfaro, Wojciech Borek and Błażej Tomiczek",coverURL:"https://cdn.intechopen.com/books/images_new/9208.jpg",editors:[{id:"65292",title:"Prof.",name:"Sadek Crisostomo Absi",middleName:"C. Absi",surname:"Alfaro",slug:"sadek-crisostomo-absi-alfaro",fullName:"Sadek Crisostomo Absi Alfaro"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9139",title:"Topics in Primary Care Medicine",subtitle:null,isOpenForSubmission:!1,hash:"ea774a4d4c1179da92a782e0ae9cde92",slug:"topics-in-primary-care-medicine",bookSignature:"Thomas F. Heston",coverURL:"https://cdn.intechopen.com/books/images_new/9139.jpg",editors:[{id:"217926",title:"Dr.",name:"Thomas F.",middleName:null,surname:"Heston",slug:"thomas-f.-heston",fullName:"Thomas F. Heston"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"8697",title:"Virtual Reality and Its Application in Education",subtitle:null,isOpenForSubmission:!1,hash:"ee01b5e387ba0062c6b0d1e9227bda05",slug:"virtual-reality-and-its-application-in-education",bookSignature:"Dragan Cvetković",coverURL:"https://cdn.intechopen.com/books/images_new/8697.jpg",editors:[{id:"101330",title:"Dr.",name:"Dragan",middleName:"Mladen",surname:"Cvetković",slug:"dragan-cvetkovic",fullName:"Dragan Cvetković"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9343",title:"Trace Metals in the Environment",subtitle:"New Approaches and Recent Advances",isOpenForSubmission:!1,hash:"ae07e345bc2ce1ebbda9f70c5cd12141",slug:"trace-metals-in-the-environment-new-approaches-and-recent-advances",bookSignature:"Mario Alfonso Murillo-Tovar, Hugo Saldarriaga-Noreña and Agnieszka Saeid",coverURL:"https://cdn.intechopen.com/books/images_new/9343.jpg",editors:[{id:"255959",title:"Dr.",name:"Mario Alfonso",middleName:null,surname:"Murillo-Tovar",slug:"mario-alfonso-murillo-tovar",fullName:"Mario Alfonso Murillo-Tovar"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9785",title:"Endometriosis",subtitle:null,isOpenForSubmission:!1,hash:"f457ca61f29cf7e8bc191732c50bb0ce",slug:"endometriosis",bookSignature:"Courtney Marsh",coverURL:"https://cdn.intechopen.com/books/images_new/9785.jpg",editors:[{id:"255491",title:"Dr.",name:"Courtney",middleName:null,surname:"Marsh",slug:"courtney-marsh",fullName:"Courtney Marsh"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"7831",title:"Sustainability in Urban Planning and Design",subtitle:null,isOpenForSubmission:!1,hash:"c924420492c8c2c9751e178d025f4066",slug:"sustainability-in-urban-planning-and-design",bookSignature:"Amjad Almusaed, Asaad Almssad and Linh Truong - Hong",coverURL:"https://cdn.intechopen.com/books/images_new/7831.jpg",editors:[{id:"110471",title:"Dr.",name:"Amjad",middleName:"Zaki",surname:"Almusaed",slug:"amjad-almusaed",fullName:"Amjad Almusaed"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9376",title:"Contemporary Developments and Perspectives in International Health Security",subtitle:"Volume 1",isOpenForSubmission:!1,hash:"b9a00b84cd04aae458fb1d6c65795601",slug:"contemporary-developments-and-perspectives-in-international-health-security-volume-1",bookSignature:"Stanislaw P. Stawicki, Michael S. Firstenberg, Sagar C. Galwankar, Ricardo Izurieta and Thomas Papadimos",coverURL:"https://cdn.intechopen.com/books/images_new/9376.jpg",editors:[{id:"181694",title:"Dr.",name:"Stanislaw P.",middleName:null,surname:"Stawicki",slug:"stanislaw-p.-stawicki",fullName:"Stanislaw P. Stawicki"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"7769",title:"Medical Isotopes",subtitle:null,isOpenForSubmission:!1,hash:"f8d3c5a6c9a42398e56b4e82264753f7",slug:"medical-isotopes",bookSignature:"Syed Ali Raza Naqvi and Muhammad Babar Imrani",coverURL:"https://cdn.intechopen.com/books/images_new/7769.jpg",editors:[{id:"259190",title:"Dr.",name:"Syed Ali Raza",middleName:null,surname:"Naqvi",slug:"syed-ali-raza-naqvi",fullName:"Syed Ali Raza Naqvi"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9279",title:"Concepts, Applications and Emerging Opportunities in Industrial Engineering",subtitle:null,isOpenForSubmission:!1,hash:"9bfa87f9b627a5468b7c1e30b0eea07a",slug:"concepts-applications-and-emerging-opportunities-in-industrial-engineering",bookSignature:"Gary Moynihan",coverURL:"https://cdn.intechopen.com/books/images_new/9279.jpg",editors:[{id:"16974",title:"Dr.",name:"Gary",middleName:null,surname:"Moynihan",slug:"gary-moynihan",fullName:"Gary Moynihan"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"7807",title:"A Closer Look at Organizational Culture in Action",subtitle:null,isOpenForSubmission:!1,hash:"05c608b9271cc2bc711f4b28748b247b",slug:"a-closer-look-at-organizational-culture-in-action",bookSignature:"Süleyman Davut Göker",coverURL:"https://cdn.intechopen.com/books/images_new/7807.jpg",editors:[{id:"190035",title:"Associate Prof.",name:"Süleyman Davut",middleName:null,surname:"Göker",slug:"suleyman-davut-goker",fullName:"Süleyman Davut Göker"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}}],latestBooks:[{type:"book",id:"7434",title:"Molecular Biotechnology",subtitle:null,isOpenForSubmission:!1,hash:"eceede809920e1ec7ecadd4691ede2ec",slug:"molecular-biotechnology",bookSignature:"Sergey Sedykh",coverURL:"https://cdn.intechopen.com/books/images_new/7434.jpg",editedByType:"Edited by",editors:[{id:"178316",title:"Ph.D.",name:"Sergey",middleName:null,surname:"Sedykh",slug:"sergey-sedykh",fullName:"Sergey Sedykh"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"8545",title:"Animal Reproduction in Veterinary Medicine",subtitle:null,isOpenForSubmission:!1,hash:"13aaddf5fdbbc78387e77a7da2388bf6",slug:"animal-reproduction-in-veterinary-medicine",bookSignature:"Faruk Aral, Rita Payan-Carreira and Miguel Quaresma",coverURL:"https://cdn.intechopen.com/books/images_new/8545.jpg",editedByType:"Edited by",editors:[{id:"25600",title:"Prof.",name:"Faruk",middleName:null,surname:"Aral",slug:"faruk-aral",fullName:"Faruk Aral"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"9569",title:"Methods in Molecular Medicine",subtitle:null,isOpenForSubmission:!1,hash:"691d3f3c4ac25a8093414e9b270d2843",slug:"methods-in-molecular-medicine",bookSignature:"Yusuf Tutar",coverURL:"https://cdn.intechopen.com/books/images_new/9569.jpg",editedByType:"Edited by",editors:[{id:"158492",title:"Prof.",name:"Yusuf",middleName:null,surname:"Tutar",slug:"yusuf-tutar",fullName:"Yusuf Tutar"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"9839",title:"Outdoor Recreation",subtitle:"Physiological and Psychological Effects on Health",isOpenForSubmission:!1,hash:"5f5a0d64267e32567daffa5b0c6a6972",slug:"outdoor-recreation-physiological-and-psychological-effects-on-health",bookSignature:"Hilde G. Nielsen",coverURL:"https://cdn.intechopen.com/books/images_new/9839.jpg",editedByType:"Edited by",editors:[{id:"158692",title:"Ph.D.",name:"Hilde G.",middleName:null,surname:"Nielsen",slug:"hilde-g.-nielsen",fullName:"Hilde G. Nielsen"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"7802",title:"Modern Slavery and Human Trafficking",subtitle:null,isOpenForSubmission:!1,hash:"587a0b7fb765f31cc98de33c6c07c2e0",slug:"modern-slavery-and-human-trafficking",bookSignature:"Jane Reeves",coverURL:"https://cdn.intechopen.com/books/images_new/7802.jpg",editedByType:"Edited by",editors:[{id:"211328",title:"Prof.",name:"Jane",middleName:null,surname:"Reeves",slug:"jane-reeves",fullName:"Jane Reeves"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"8063",title:"Food Security in Africa",subtitle:null,isOpenForSubmission:!1,hash:"8cbf3d662b104d19db2efc9d59249efc",slug:"food-security-in-africa",bookSignature:"Barakat Mahmoud",coverURL:"https://cdn.intechopen.com/books/images_new/8063.jpg",editedByType:"Edited by",editors:[{id:"92016",title:"Dr.",name:"Barakat",middleName:null,surname:"Mahmoud",slug:"barakat-mahmoud",fullName:"Barakat Mahmoud"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10118",title:"Plant Stress Physiology",subtitle:null,isOpenForSubmission:!1,hash:"c68b09d2d2634fc719ae3b9a64a27839",slug:"plant-stress-physiology",bookSignature:"Akbar Hossain",coverURL:"https://cdn.intechopen.com/books/images_new/10118.jpg",editedByType:"Edited by",editors:[{id:"280755",title:"Dr.",name:"Akbar",middleName:null,surname:"Hossain",slug:"akbar-hossain",fullName:"Akbar Hossain"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"9157",title:"Neurodegenerative Diseases",subtitle:"Molecular Mechanisms and Current Therapeutic Approaches",isOpenForSubmission:!1,hash:"bc8be577966ef88735677d7e1e92ed28",slug:"neurodegenerative-diseases-molecular-mechanisms-and-current-therapeutic-approaches",bookSignature:"Nagehan Ersoy Tunalı",coverURL:"https://cdn.intechopen.com/books/images_new/9157.jpg",editedByType:"Edited by",editors:[{id:"82778",title:"Ph.D.",name:"Nagehan",middleName:null,surname:"Ersoy Tunalı",slug:"nagehan-ersoy-tunali",fullName:"Nagehan Ersoy Tunalı"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"9961",title:"Data Mining",subtitle:"Methods, Applications and Systems",isOpenForSubmission:!1,hash:"ed79fb6364f2caf464079f94a0387146",slug:"data-mining-methods-applications-and-systems",bookSignature:"Derya Birant",coverURL:"https://cdn.intechopen.com/books/images_new/9961.jpg",editedByType:"Edited by",editors:[{id:"15609",title:"Dr.",name:"Derya",middleName:null,surname:"Birant",slug:"derya-birant",fullName:"Derya Birant"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"8686",title:"Direct Torque Control Strategies of Electrical Machines",subtitle:null,isOpenForSubmission:!1,hash:"b6ad22b14db2b8450228545d3d4f6b1a",slug:"direct-torque-control-strategies-of-electrical-machines",bookSignature:"Fatma Ben Salem",coverURL:"https://cdn.intechopen.com/books/images_new/8686.jpg",editedByType:"Edited by",editors:[{id:"295623",title:"Associate Prof.",name:"Fatma",middleName:null,surname:"Ben Salem",slug:"fatma-ben-salem",fullName:"Fatma Ben Salem"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}}]},subject:{topic:{id:"1047",title:"Pulmonology",slug:"pulmonology",parent:{title:"Internal Medicine",slug:"internal-medicine"},numberOfBooks:33,numberOfAuthorsAndEditors:861,numberOfWosCitations:209,numberOfCrossrefCitations:147,numberOfDimensionsCitations:360,videoUrl:null,fallbackUrl:null,description:null},booksByTopicFilter:{topicSlug:"pulmonology",sort:"-publishedDate",limit:12,offset:0},booksByTopicCollection:[{type:"book",id:"7990",title:"Update in Respiratory Diseases",subtitle:null,isOpenForSubmission:!1,hash:"6451d7376123e392f1c86ad58c6efd27",slug:"update-in-respiratory-diseases",bookSignature:"Jose Carlos Herrera Garcia",coverURL:"https://cdn.intechopen.com/books/images_new/7990.jpg",editedByType:"Edited by",editors:[{id:"224037",title:"Dr.",name:"Jose Carlos",middleName:null,surname:"Herrera Garcia",slug:"jose-carlos-herrera-garcia",fullName:"Jose Carlos Herrera Garcia"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"9126",title:"Respiratory Physiology",subtitle:null,isOpenForSubmission:!1,hash:"e57374d11c8da9e7c70631881dcf55fa",slug:"respiratory-physiology",bookSignature:"Ketevan Nemsadze",coverURL:"https://cdn.intechopen.com/books/images_new/9126.jpg",editedByType:"Edited by",editors:[{id:"149748",title:"Dr.",name:"Ketevan",middleName:null,surname:"Nemsadze",slug:"ketevan-nemsadze",fullName:"Ketevan Nemsadze"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"7872",title:"Cystic Fibrosis",subtitle:"Heterogeneity and Personalized Treatment",isOpenForSubmission:!1,hash:"5e2772740d2d4ebda048e06f2eee0b94",slug:"cystic-fibrosis-heterogeneity-and-personalized-treatment",bookSignature:"Dennis Wat and Dilip Nazareth",coverURL:"https://cdn.intechopen.com/books/images_new/7872.jpg",editedByType:"Edited by",editors:[{id:"92549",title:"Dr.",name:"Dennis",middleName:null,surname:"Wat",slug:"dennis-wat",fullName:"Dennis Wat"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"7155",title:"Diseases of Pleura",subtitle:null,isOpenForSubmission:!1,hash:"0c5e2d001498cc246b2c2e335e71b3dc",slug:"diseases-of-pleura",bookSignature:"Jelena Stojšić",coverURL:"https://cdn.intechopen.com/books/images_new/7155.jpg",editedByType:"Edited by",editors:[{id:"192769",title:"Ph.D.",name:"Jelena",middleName:null,surname:"Stojšić",slug:"jelena-stojsic",fullName:"Jelena Stojšić"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"8325",title:"Interventional Pulmonology and Pulmonary Hypertension",subtitle:"Updates on Specific Topics",isOpenForSubmission:!1,hash:"eaef88d222f670a00c67f12c5ebdb5e0",slug:"interventional-pulmonology-and-pulmonary-hypertension-updates-on-specific-topics",bookSignature:"Theodoros Aslanidis",coverURL:"https://cdn.intechopen.com/books/images_new/8325.jpg",editedByType:"Edited by",editors:[{id:"200252",title:"Dr.",name:"Theodoros",middleName:null,surname:"Aslanidis",slug:"theodoros-aslanidis",fullName:"Theodoros Aslanidis"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"7093",title:"Pneumothorax",subtitle:null,isOpenForSubmission:!1,hash:"0b1fdb8bb0448f48c2f234753898f3f8",slug:"pneumothorax",bookSignature:"Khalid Amer",coverURL:"https://cdn.intechopen.com/books/images_new/7093.jpg",editedByType:"Edited by",editors:[{id:"63412",title:"Dr.",name:"Khalid",middleName:null,surname:"Amer",slug:"khalid-amer",fullName:"Khalid Amer"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"8250",title:"The Burden of Respiratory Syncytial Virus Infection in the Young",subtitle:null,isOpenForSubmission:!1,hash:"576eea34382b48ecff475d3f267837a2",slug:"the-burden-of-respiratory-syncytial-virus-infection-in-the-young",bookSignature:"Bernhard Resch",coverURL:"https://cdn.intechopen.com/books/images_new/8250.jpg",editedByType:"Edited by",editors:[{id:"66173",title:"Prof.",name:"Bernhard",middleName:null,surname:"Resch",slug:"bernhard-resch",fullName:"Bernhard Resch"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"8674",title:"Interstitial Lung Diseases",subtitle:null,isOpenForSubmission:!1,hash:"ec93938ba596b2062c6744b2885d23ea",slug:"interstitial-lung-diseases",bookSignature:"Jelena Stojšić",coverURL:"https://cdn.intechopen.com/books/images_new/8674.jpg",editedByType:"Edited by",editors:[{id:"192769",title:"Ph.D.",name:"Jelena",middleName:null,surname:"Stojšić",slug:"jelena-stojsic",fullName:"Jelena Stojšić"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"8738",title:"Asthma",subtitle:"Biological Evidences",isOpenForSubmission:!1,hash:"b0af4d7a29f41b1408f487f13af4216d",slug:"asthma-biological-evidences",bookSignature:"Celso Pereira",coverURL:"https://cdn.intechopen.com/books/images_new/8738.jpg",editedByType:"Edited by",editors:[{id:"66336",title:"Prof.",name:"Celso",middleName:null,surname:"Pereira",slug:"celso-pereira",fullName:"Celso Pereira"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"6523",title:"Asthma Diagnosis and Management",subtitle:null,isOpenForSubmission:!1,hash:"bc182ff614fdd60e11dc8ef59f7f3df5",slug:"asthma-diagnosis-and-management-approach-based-on-phenotype-and-endotype",bookSignature:"Kuan-Hsiang Gary Huang and Chen Hsuan Sherry Tsai",coverURL:"https://cdn.intechopen.com/books/images_new/6523.jpg",editedByType:"Edited by",editors:[{id:"87842",title:"Dr.",name:"Kuan-Hsiang Gary",middleName:null,surname:"Huang",slug:"kuan-hsiang-gary-huang",fullName:"Kuan-Hsiang Gary Huang"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"6097",title:"COPD",subtitle:"An Update in Pathogenesis and Clinical Management",isOpenForSubmission:!1,hash:"aeea9ee8ddad49657d60b4ae35f11600",slug:"copd-an-update-in-pathogenesis-and-clinical-management",bookSignature:"Cormac McCarthy",coverURL:"https://cdn.intechopen.com/books/images_new/6097.jpg",editedByType:"Edited by",editors:[{id:"169423",title:"Dr.",name:"Cormac",middleName:null,surname:"McCarthy",slug:"cormac-mccarthy",fullName:"Cormac McCarthy"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"5938",title:"Contemporary Topics of Pneumonia",subtitle:null,isOpenForSubmission:!1,hash:"7b8f70c5a40d7270ab454c8a1e9959e8",slug:"contemporary-topics-of-pneumonia",bookSignature:"Zissis C. Chroneos",coverURL:"https://cdn.intechopen.com/books/images_new/5938.jpg",editedByType:"Edited by",editors:[{id:"80345",title:"Dr.",name:"Zissis",middleName:null,surname:"Chroneos",slug:"zissis-chroneos",fullName:"Zissis Chroneos"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}}],booksByTopicTotal:33,mostCitedChapters:[{id:"30257",doi:"10.5772/31495",title:"Pulmonary Paracoccidioidomycosis: Clinical, Immunological and Histopathological Aspects",slug:"pulmonary-paracoccidioidomycosis-clinical-immunological-and-histopathological-aspects",totalDownloads:1629,totalCrossrefCites:0,totalDimensionsCites:11,book:{slug:"lung-diseases-selected-state-of-the-art-reviews",title:"Lung Diseases",fullTitle:"Lung Diseases - Selected State of the Art Reviews"},signatures:"Luz E. Cano, Ángel González, Damaris Lopera, Tonny W. Naranjo and Ángela Restrepo",authors:[{id:"87441",title:"Dr.",name:"Luz Elena",middleName:null,surname:"Cano",slug:"luz-elena-cano",fullName:"Luz Elena Cano"},{id:"87467",title:"Dr.",name:"Angel",middleName:null,surname:"Gonzalez",slug:"angel-gonzalez",fullName:"Angel Gonzalez"},{id:"87469",title:"Dr.",name:"Damaris",middleName:null,surname:"Lopera",slug:"damaris-lopera",fullName:"Damaris Lopera"},{id:"87470",title:"Dr.",name:"Tonny",middleName:null,surname:"Naranjo",slug:"tonny-naranjo",fullName:"Tonny Naranjo"},{id:"87475",title:"Prof.",name:"Angela",middleName:null,surname:"Restrepo",slug:"angela-restrepo",fullName:"Angela Restrepo"}]},{id:"46627",doi:"10.5772/58252",title:"Lung Inflammation, Oxidative Stress and Air Pollution",slug:"lung-inflammation-oxidative-stress-and-air-pollution",totalDownloads:1628,totalCrossrefCites:8,totalDimensionsCites:11,book:{slug:"lung-inflammation",title:"Lung Inflammation",fullTitle:"Lung Inflammation"},signatures:"Elisa Couto Gomes and Geraint Florida-James",authors:[{id:"91768",title:"Dr.",name:"Elisa",middleName:null,surname:"Gomes",slug:"elisa-gomes",fullName:"Elisa Gomes"},{id:"170705",title:"Dr.",name:"Geraint",middleName:null,surname:"Florida-James",slug:"geraint-florida-james",fullName:"Geraint Florida-James"}]},{id:"42381",doi:"10.5772/53957",title:"Structural and Functional Aspects of Viroporins in Human Respiratory Viruses: Respiratory Syncytial Virus and Coronaviruses",slug:"structural-and-functional-aspects-of-viroporins-in-human-respiratory-viruses-respiratory-syncytial-v",totalDownloads:2734,totalCrossrefCites:3,totalDimensionsCites:9,book:{slug:"respiratory-disease-and-infection-a-new-insight",title:"Respiratory Disease and Infection",fullTitle:"Respiratory Disease and Infection - A New Insight"},signatures:"Wahyu Surya, Montserrat Samsó and Jaume Torres",authors:[{id:"75210",title:"Prof.",name:"Jaume",middleName:null,surname:"Torres",slug:"jaume-torres",fullName:"Jaume Torres"},{id:"158475",title:"Mr.",name:"Wahyu",middleName:null,surname:"Surya",slug:"wahyu-surya",fullName:"Wahyu Surya"}]}],mostDownloadedChaptersLast30Days:[{id:"57668",title:"Pneumonia of Viral Etiologies",slug:"pneumonia-of-viral-etiologies",totalDownloads:1601,totalCrossrefCites:1,totalDimensionsCites:1,book:{slug:"contemporary-topics-of-pneumonia",title:"Contemporary Topics of Pneumonia",fullTitle:"Contemporary Topics of Pneumonia"},signatures:"Al Johani Sameera and Akhter Javed",authors:[{id:"76522",title:"Dr.",name:"Javed",middleName:null,surname:"Akhter",slug:"javed-akhter",fullName:"Javed Akhter"},{id:"80162",title:"Dr.",name:"Sameera",middleName:"M.",surname:"Al Johani",slug:"sameera-al-johani",fullName:"Sameera Al Johani"}]},{id:"42381",title:"Structural and Functional Aspects of Viroporins in Human Respiratory Viruses: Respiratory Syncytial Virus and Coronaviruses",slug:"structural-and-functional-aspects-of-viroporins-in-human-respiratory-viruses-respiratory-syncytial-v",totalDownloads:2734,totalCrossrefCites:3,totalDimensionsCites:9,book:{slug:"respiratory-disease-and-infection-a-new-insight",title:"Respiratory Disease and Infection",fullTitle:"Respiratory Disease and Infection - A New Insight"},signatures:"Wahyu Surya, Montserrat Samsó and Jaume Torres",authors:[{id:"75210",title:"Prof.",name:"Jaume",middleName:null,surname:"Torres",slug:"jaume-torres",fullName:"Jaume Torres"},{id:"158475",title:"Mr.",name:"Wahyu",middleName:null,surname:"Surya",slug:"wahyu-surya",fullName:"Wahyu Surya"}]},{id:"71803",title:"Long-Term Adherence and Maintenance of Benefits in Pulmonary Rehabilitation",slug:"long-term-adherence-and-maintenance-of-benefits-in-pulmonary-rehabilitation",totalDownloads:157,totalCrossrefCites:0,totalDimensionsCites:0,book:{slug:"update-in-respiratory-diseases",title:"Update in Respiratory Diseases",fullTitle:"Update in Respiratory Diseases"},signatures:"Hulya Sahin",authors:null},{id:"42375",title:"Pathogenesis of Viral Respiratory Infection",slug:"pathogenesis-of-viral-respiratory-infection",totalDownloads:3882,totalCrossrefCites:2,totalDimensionsCites:8,book:{slug:"respiratory-disease-and-infection-a-new-insight",title:"Respiratory Disease and Infection",fullTitle:"Respiratory Disease and Infection - A New Insight"},signatures:"Ma. Eugenia Manjarrez-Zavala, Dora Patricia Rosete-Olvera, Luis Horacio Gutiérrez-González, Rodolfo Ocadiz-Delgado and Carlos Cabello-Gutiérrez",authors:[{id:"91060",title:"Dr.",name:"Maria Eugenia",middleName:null,surname:"Manjarrez",slug:"maria-eugenia-manjarrez",fullName:"Maria Eugenia Manjarrez"},{id:"95405",title:"Dr.",name:"Carlos",middleName:null,surname:"Cabello Gutiérrez",slug:"carlos-cabello-gutierrez",fullName:"Carlos Cabello Gutiérrez"},{id:"95406",title:"Prof.",name:"Dora Patricia",middleName:null,surname:"Rosete",slug:"dora-patricia-rosete",fullName:"Dora Patricia Rosete"},{id:"166672",title:"Dr.",name:"Luis Horacio",middleName:null,surname:"Gutiérrez-González",slug:"luis-horacio-gutierrez-gonzalez",fullName:"Luis Horacio Gutiérrez-González"}]},{id:"59631",title:"Phosphodiesterase 3 and 4 Inhibition: Facing a Bright Future in Asthma Control",slug:"phosphodiesterase-3-and-4-inhibition-facing-a-bright-future-in-asthma-control",totalDownloads:613,totalCrossrefCites:1,totalDimensionsCites:1,book:{slug:"asthma-diagnosis-and-management-approach-based-on-phenotype-and-endotype",title:"Asthma Diagnosis and Management",fullTitle:"Asthma Diagnosis and Management - Approach Based on Phenotype and Endotype"},signatures:"Jan Beute, Vincent Manganiello and Alex KleinJan",authors:[{id:"100286",title:"Dr.",name:"Alex",middleName:null,surname:"Kleinjan",slug:"alex-kleinjan",fullName:"Alex Kleinjan"},{id:"197845",title:"Dr.",name:"Jan",middleName:null,surname:"Beute",slug:"jan-beute",fullName:"Jan Beute"},{id:"197848",title:"Dr.",name:"Vincent",middleName:null,surname:"Manganiello",slug:"vincent-manganiello",fullName:"Vincent Manganiello"}]},{id:"53221",title:"Hypoxia and its Emerging Therapeutics in Neurodegenerative, Inflammatory and Renal Diseases",slug:"hypoxia-and-its-emerging-therapeutics-in-neurodegenerative-inflammatory-and-renal-diseases",totalDownloads:1236,totalCrossrefCites:0,totalDimensionsCites:4,book:{slug:"hypoxia-and-human-diseases",title:"Hypoxia and Human Diseases",fullTitle:"Hypoxia and Human Diseases"},signatures:"Deepak Bhatia, Mohammad Sanaei Ardekani, Qiwen Shi and\nShahrzad Movafagh",authors:[{id:"189604",title:"Dr.",name:"Shahrzad",middleName:null,surname:"Movafagh",slug:"shahrzad-movafagh",fullName:"Shahrzad Movafagh"},{id:"192092",title:"Dr.",name:"Deepak",middleName:null,surname:"Bhatia",slug:"deepak-bhatia",fullName:"Deepak Bhatia"},{id:"192093",title:"Dr.",name:"Mohammad",middleName:null,surname:"Sanaei Ardekani",slug:"mohammad-sanaei-ardekani",fullName:"Mohammad Sanaei Ardekani"},{id:"195341",title:"Dr.",name:"Qiwen",middleName:null,surname:"Shi",slug:"qiwen-shi",fullName:"Qiwen Shi"}]},{id:"65946",title:"The Role of Pulmonary Rehabilitation in Patients with Idiopathic Pulmonary Fibrosis",slug:"the-role-of-pulmonary-rehabilitation-in-patients-with-idiopathic-pulmonary-fibrosis",totalDownloads:800,totalCrossrefCites:2,totalDimensionsCites:2,book:{slug:"interstitial-lung-diseases",title:"Interstitial Lung Diseases",fullTitle:"Interstitial Lung Diseases"},signatures:"Elena Dantes, Emanuela Tudorache and Milena Adina Man",authors:[{id:"207947",title:"Dr.",name:"Emanuela",middleName:null,surname:"Tudorache",slug:"emanuela-tudorache",fullName:"Emanuela Tudorache"},{id:"277501",title:"Dr.",name:"Elena",middleName:null,surname:"Dantes",slug:"elena-dantes",fullName:"Elena Dantes"},{id:"290427",title:"Dr.",name:"Man",middleName:null,surname:"Milena Adina",slug:"man-milena-adina",fullName:"Man Milena Adina"}]},{id:"52481",title:"The Multifaceted Role of Hypoxia‐Inducible Factor 1 (HIF1) in Lipid Metabolism",slug:"the-multifaceted-role-of-hypoxia-inducible-factor-1-hif1-in-lipid-metabolism",totalDownloads:1635,totalCrossrefCites:0,totalDimensionsCites:1,book:{slug:"hypoxia-and-human-diseases",title:"Hypoxia and Human Diseases",fullTitle:"Hypoxia and Human Diseases"},signatures:"Guomin Shen and Xiaobo Li",authors:[{id:"188938",title:"Ph.D.",name:"Guomin",middleName:null,surname:"Shen",slug:"guomin-shen",fullName:"Guomin Shen"},{id:"194848",title:"Dr.",name:"Xiaobo",middleName:null,surname:"Li",slug:"xiaobo-li",fullName:"Xiaobo Li"}]},{id:"55737",title:"Multidrug-Resistant Gram-Negative Pneumonia and Infection in Intensive Care Unit",slug:"multidrug-resistant-gram-negative-pneumonia-and-infection-in-intensive-care-unit",totalDownloads:1123,totalCrossrefCites:0,totalDimensionsCites:0,book:{slug:"contemporary-topics-of-pneumonia",title:"Contemporary Topics of Pneumonia",fullTitle:"Contemporary Topics of Pneumonia"},signatures:"Mauricio Rodriguez and Salim R. Surani",authors:[{id:"15654",title:"Dr.",name:"Salim",middleName:null,surname:"Surani",slug:"salim-surani",fullName:"Salim Surani"},{id:"201286",title:"Mr.",name:"Mauricio",middleName:null,surname:"Rodriguez",slug:"mauricio-rodriguez",fullName:"Mauricio Rodriguez"}]},{id:"52428",title:"Cardiovascular Adaptation to High-Altitude Hypoxia",slug:"cardiovascular-adaptation-to-high-altitude-hypoxia",totalDownloads:1647,totalCrossrefCites:2,totalDimensionsCites:4,book:{slug:"hypoxia-and-human-diseases",title:"Hypoxia and Human Diseases",fullTitle:"Hypoxia and Human Diseases"},signatures:"Jun Ke, Lei Wang and Daliao Xiao",authors:[{id:"188957",title:"Dr.",name:"DaLiao",middleName:null,surname:"Xiao",slug:"daliao-xiao",fullName:"DaLiao Xiao"},{id:"190730",title:"Dr.",name:"Jun",middleName:null,surname:"Ke",slug:"jun-ke",fullName:"Jun Ke"},{id:"190731",title:"Dr.",name:"Lei",middleName:null,surname:"Wang",slug:"lei-wang",fullName:"Lei Wang"}]}],onlineFirstChaptersFilter:{topicSlug:"pulmonology",limit:3,offset:0},onlineFirstChaptersCollection:[],onlineFirstChaptersTotal:0},preDownload:{success:null,errors:{}},aboutIntechopen:{},privacyPolicy:{},peerReviewing:{},howOpenAccessPublishingWithIntechopenWorks:{},sponsorshipBooks:{sponsorshipBooks:[{type:"book",id:"10176",title:"Microgrids and Local Energy Systems",subtitle:null,isOpenForSubmission:!0,hash:"c32b4a5351a88f263074b0d0ca813a9c",slug:null,bookSignature:"Prof. Nick Jenkins",coverURL:"https://cdn.intechopen.com/books/images_new/10176.jpg",editedByType:null,editors:[{id:"55219",title:"Prof.",name:"Nick",middleName:null,surname:"Jenkins",slug:"nick-jenkins",fullName:"Nick Jenkins"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}}],offset:8,limit:8,total:1},route:{name:"chapter.detail",path:"/books/organismal-and-molecular-malacology/gut-microbiome-analysis-of-snails-a-biotechnological-approach",hash:"",query:{},params:{book:"organismal-and-molecular-malacology",chapter:"gut-microbiome-analysis-of-snails-a-biotechnological-approach"},fullPath:"/books/organismal-and-molecular-malacology/gut-microbiome-analysis-of-snails-a-biotechnological-approach",meta:{},from:{name:null,path:"/",hash:"",query:{},params:{},fullPath:"/",meta:{}}}},function(){var e;(e=document.currentScript||document.scripts[document.scripts.length-1]).parentNode.removeChild(e)}()