Gas detection with sensitive materials based on CeO2.
\\n\\n
Released this past November, the list is based on data collected from the Web of Science and highlights some of the world’s most influential scientific minds by naming the researchers whose publications over the previous decade have included a high number of Highly Cited Papers placing them among the top 1% most-cited.
\\n\\nWe wish to congratulate all of the researchers named and especially our authors on this amazing accomplishment! We are happy and proud to share in their success!
Note: Edited in March 2021
\\n"}]',published:!0,mainMedia:null},components:[{type:"htmlEditorComponent",content:'IntechOpen is proud to announce that 191 of our authors have made the Clarivate™ Highly Cited Researchers List for 2020, ranking them among the top 1% most-cited.
\n\nThroughout the years, the list has named a total of 261 IntechOpen authors as Highly Cited. Of those researchers, 69 have been featured on the list multiple times.
\n\n\n\nReleased this past November, the list is based on data collected from the Web of Science and highlights some of the world’s most influential scientific minds by naming the researchers whose publications over the previous decade have included a high number of Highly Cited Papers placing them among the top 1% most-cited.
\n\nWe wish to congratulate all of the researchers named and especially our authors on this amazing accomplishment! We are happy and proud to share in their success!
Note: Edited in March 2021
\n'}],latestNews:[{slug:"intechopen-signs-new-contract-with-cepiec-china-for-distribution-of-open-access-books-20210319",title:"IntechOpen Signs New Contract with CEPIEC, China for Distribution of Open Access Books"},{slug:"150-million-downloads-and-counting-20210316",title:"150 Million Downloads and Counting"},{slug:"intechopen-secures-indefinite-content-preservation-with-clockss-20210309",title:"IntechOpen Secures Indefinite Content Preservation with CLOCKSS"},{slug:"intechopen-expands-to-all-global-amazon-channels-with-full-catalog-of-books-20210308",title:"IntechOpen Expands to All Global Amazon Channels with Full Catalog of Books"},{slug:"stanford-university-identifies-top-2-scientists-over-1-000-are-intechopen-authors-and-editors-20210122",title:"Stanford University Identifies Top 2% Scientists, Over 1,000 are IntechOpen Authors and Editors"},{slug:"intechopen-authors-included-in-the-highly-cited-researchers-list-for-2020-20210121",title:"IntechOpen Authors Included in the Highly Cited Researchers List for 2020"},{slug:"intechopen-maintains-position-as-the-world-s-largest-oa-book-publisher-20201218",title:"IntechOpen Maintains Position as the World’s Largest OA Book Publisher"},{slug:"all-intechopen-books-available-on-perlego-20201215",title:"All IntechOpen Books Available on Perlego"}]},book:{item:{type:"book",id:"9524",leadTitle:null,fullTitle:"Organ Donation and Transplantation",title:"Organ Donation and Transplantation",subtitle:null,reviewType:"peer-reviewed",abstract:"This book brings together knowledge from different fields of science and presents advances in organ transplantation and donation. It uses a multidisciplinary approach to examine the complex issues of the transplant process. Written by experts in the field, this volume is suitable for medical specialists and medical students alike.",isbn:"978-1-83962-545-9",printIsbn:"978-1-83962-531-2",pdfIsbn:"978-1-83962-549-7",doi:"10.5772/intechopen.87319",price:119,priceEur:129,priceUsd:155,slug:"organ-donation-and-transplantation",numberOfPages:170,isOpenForSubmission:!1,isInWos:null,hash:"6ef47e03cd4e6476946fc28ca51de825",bookSignature:"Vassil Mihaylov",publishedDate:"March 31st 2021",coverURL:"https://cdn.intechopen.com/books/images_new/9524.jpg",numberOfDownloads:695,numberOfWosCitations:0,numberOfCrossrefCitations:0,numberOfDimensionsCitations:0,hasAltmetrics:0,numberOfTotalCitations:0,isAvailableForWebshopOrdering:!0,dateEndFirstStepPublish:"June 12th 2020",dateEndSecondStepPublish:"July 3rd 2020",dateEndThirdStepPublish:"September 1st 2020",dateEndFourthStepPublish:"November 20th 2020",dateEndFifthStepPublish:"January 19th 2021",currentStepOfPublishingProcess:5,indexedIn:"1,2,3,4,5,6",editedByType:"Edited by",kuFlag:!1,editors:[{id:"313113",title:"Associate Prof.",name:"Vassil",middleName:null,surname:"Mihaylov",slug:"vassil-mihaylov",fullName:"Vassil Mihaylov",profilePictureURL:"https://mts.intechopen.com/storage/users/313113/images/system/313113.png",biography:"Dr. Vassil Mihaylov received his medical degree from the Medical University, Sofia, Bulgaria, and completed his general surgery residency at the Military Medical Academy, Sofia. He completed a transplant fellowship at Queen Elizabeth Hospital, Birmingham, UK, after which he returned to Sofia as a part of the HPB and transplant team at the Military Medical Academy. Dr. Mihaylov obtained his Ph.D. with a thesis on the surgical aspects of liver transplantation. He was appointed Associate Professor of Surgery in 2017. He has published more than 100 papers in peer-reviewed journals and has given many scientific presentations at international meetings. He is a Fellow of the American College of Surgeons and a member of several professional organizations including the Bulgarian Transplant Society, the European Society for Organ Transplantation (ESOT), International Liver Transplantation Society (ILTS), Society of Laparoscopic Surgeons, and International Hepato-Pancreato-Biliary Association (IHPBA). His clinical and research interests include hepatobiliary and pancreatic surgery, minimally invasive surgery, and liver transplantation.",institutionString:"Military Medical Academy",position:null,outsideEditionCount:0,totalCites:0,totalAuthoredChapters:"0",totalChapterViews:"0",totalEditedBooks:"1",institution:{name:"Military Medical Academy",institutionURL:null,country:{name:"Bulgaria"}}}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,coeditorOne:null,coeditorTwo:null,coeditorThree:null,coeditorFour:null,coeditorFive:null,topics:[{id:"202",title:"Surgery",slug:"surgery"}],chapters:[{id:"73733",title:"Pathophysiological Changes and Systemic Inflammation in Brain Dead Organ Donors: Effect on Graft Quality",doi:"10.5772/intechopen.94360",slug:"pathophysiological-changes-and-systemic-inflammation-in-brain-dead-organ-donors-effect-on-graft-qual",totalDownloads:114,totalCrossrefCites:0,totalDimensionsCites:0,signatures:"Neva Bezeljak and Željka Večerić-Haler",downloadPdfUrl:"/chapter/pdf-download/73733",previewPdfUrl:"/chapter/pdf-preview/73733",authors:[{id:"285874",title:"Prof.",name:"Željka",surname:"Večerić-Haler",slug:"zeljka-veceric-haler",fullName:"Željka Večerić-Haler"},{id:"325667",title:"Mrs.",name:"Neva",surname:"Bezeljak",slug:"neva-bezeljak",fullName:"Neva Bezeljak"}],corrections:null},{id:"74329",title:"Organ Donation and Transplantation in Sub-Saharan Africa: Opportunities and Challenges",doi:"10.5772/intechopen.94986",slug:"organ-donation-and-transplantation-in-sub-saharan-africa-opportunities-and-challenges",totalDownloads:168,totalCrossrefCites:0,totalDimensionsCites:0,signatures:"Ifeoma Ulasi, Chinwuba Ijoma, Ngozi Ifebunandu, Ejikeme Arodiwe, Uchenna Ijoma, Julius Okoye, Ugochi Onu, Chimezie Okwuonu, Sani Alhassan and Obinna Onodugo",downloadPdfUrl:"/chapter/pdf-download/74329",previewPdfUrl:"/chapter/pdf-preview/74329",authors:[{id:"326035",title:"Prof.",name:"Ifeoma",surname:"Ulasi",slug:"ifeoma-ulasi",fullName:"Ifeoma Ulasi"},{id:"326036",title:"Prof.",name:"Chinwuba",surname:"Ijoma",slug:"chinwuba-ijoma",fullName:"Chinwuba Ijoma"},{id:"326037",title:"Prof.",name:"Ejikeme",surname:"Arodiwe",slug:"ejikeme-arodiwe",fullName:"Ejikeme Arodiwe"},{id:"326038",title:"Dr.",name:"Chimezie",surname:"Okwuonu",slug:"chimezie-okwuonu",fullName:"Chimezie Okwuonu"},{id:"326039",title:"Dr.",name:"Julius",surname:"Okoye",slug:"julius-okoye",fullName:"Julius Okoye"},{id:"326040",title:"Dr.",name:"Obinna",surname:"Onodugo",slug:"obinna-onodugo",fullName:"Obinna Onodugo"},{id:"326249",title:"Prof.",name:"Sani",surname:"Alhassan",slug:"sani-alhassan",fullName:"Sani Alhassan"},{id:"336179",title:"Dr.",name:"Ugochi",surname:"Onu",slug:"ugochi-onu",fullName:"Ugochi Onu"},{id:"336182",title:"Prof.",name:"Ngozi",surname:"Ifebunandu",slug:"ngozi-ifebunandu",fullName:"Ngozi Ifebunandu"},{id:"336184",title:"Prof.",name:"Uchenna",surname:"Ijoma",slug:"uchenna-ijoma",fullName:"Uchenna Ijoma"}],corrections:null},{id:"73562",title:"Surgical Techniques of Multiorgan Procurement from a Deceased Donor",doi:"10.5772/intechopen.94156",slug:"surgical-techniques-of-multiorgan-procurement-from-a-deceased-donor",totalDownloads:100,totalCrossrefCites:0,totalDimensionsCites:0,signatures:"Farzad Kakaei",downloadPdfUrl:"/chapter/pdf-download/73562",previewPdfUrl:"/chapter/pdf-preview/73562",authors:[{id:"26626",title:"Dr.",name:"Farzad",surname:"Kakaei",slug:"farzad-kakaei",fullName:"Farzad Kakaei"}],corrections:null},{id:"75579",title:"Thoracic Organ Procurement during Multi-Organ Retrieval",doi:"10.5772/intechopen.95793",slug:"thoracic-organ-procurement-during-multi-organ-retrieval",totalDownloads:48,totalCrossrefCites:0,totalDimensionsCites:0,signatures:"Suresh Keshavamurthy, Vipin Dulam, Eros Leotta, Mohammed A. Kashem and Yoshiya Toyoda",downloadPdfUrl:"/chapter/pdf-download/75579",previewPdfUrl:"/chapter/pdf-preview/75579",authors:[{id:"179835",title:"Dr.",name:"Yoshiya",surname:"Toyoda",slug:"yoshiya-toyoda",fullName:"Yoshiya Toyoda"},{id:"243073",title:"Dr.",name:"Suresh",surname:"Keshavamurthy",slug:"suresh-keshavamurthy",fullName:"Suresh Keshavamurthy"},{id:"244736",title:"Dr.",name:"Abul",surname:"Kashem",slug:"abul-kashem",fullName:"Abul Kashem"},{id:"327378",title:"Mr.",name:"Vipin",surname:"Dulam",slug:"vipin-dulam",fullName:"Vipin Dulam"},{id:"340389",title:"Dr.",name:"Eros",surname:"Leotta",slug:"eros-leotta",fullName:"Eros Leotta"}],corrections:null},{id:"73993",title:"Pathology of Intestinal Transplantation: Rejection and a Case of Tolerance",doi:"10.5772/intechopen.94361",slug:"pathology-of-intestinal-transplantation-rejection-and-a-case-of-tolerance",totalDownloads:81,totalCrossrefCites:0,totalDimensionsCites:0,signatures:"Tatsuaki Tsuruyama",downloadPdfUrl:"/chapter/pdf-download/73993",previewPdfUrl:"/chapter/pdf-preview/73993",authors:[{id:"94907",title:"Prof.",name:"Tatsuaki",surname:"Tsuruyama",slug:"tatsuaki-tsuruyama",fullName:"Tatsuaki Tsuruyama"}],corrections:null},{id:"73970",title:"Regulatory T Cells in the Mosaic of Liver Transplantation Tolerance",doi:"10.5772/intechopen.94362",slug:"regulatory-t-cells-in-the-mosaic-of-liver-transplantation-tolerance",totalDownloads:48,totalCrossrefCites:0,totalDimensionsCites:0,signatures:"Velislava Terzieva, Yordanka Uzunova, Radosvet Gornev and Lubomir Spassov",downloadPdfUrl:"/chapter/pdf-download/73970",previewPdfUrl:"/chapter/pdf-preview/73970",authors:[{id:"326186",title:"Associate Prof.",name:"Velislava",surname:"Terzieva",slug:"velislava-terzieva",fullName:"Velislava Terzieva"}],corrections:null},{id:"74963",title:"Coupling and Deviating of Altruism-Voluntariness Relationship in Organ Transplantation",doi:"10.5772/intechopen.95895",slug:"coupling-and-deviating-of-altruism-voluntariness-relationship-in-organ-transplantation",totalDownloads:43,totalCrossrefCites:0,totalDimensionsCites:0,signatures:"Mesut Güvenbaş and Omur Sayligil",downloadPdfUrl:"/chapter/pdf-download/74963",previewPdfUrl:"/chapter/pdf-preview/74963",authors:[{id:"179771",title:"Prof.",name:"Omur",surname:"Sayligil",slug:"omur-sayligil",fullName:"Omur Sayligil"},{id:"328369",title:"MSc.",name:"Mesut",surname:"Güvenbaş",slug:"mesut-guvenbas",fullName:"Mesut Güvenbaş"}],corrections:null},{id:"73890",title:"Future Prospects of Organ Transplantation",doi:"10.5772/intechopen.94367",slug:"future-prospects-of-organ-transplantation",totalDownloads:93,totalCrossrefCites:0,totalDimensionsCites:0,signatures:"Mehmet Nur Altinörs",downloadPdfUrl:"/chapter/pdf-download/73890",previewPdfUrl:"/chapter/pdf-preview/73890",authors:[{id:"326125",title:"Prof.",name:"Mehmet Nur",surname:"Altınörs",slug:"mehmet-nur-altinors",fullName:"Mehmet Nur Altınörs"}],corrections:null}],productType:{id:"1",title:"Edited Volume",chapterContentType:"chapter",authoredCaption:"Edited by"}},relatedBooks:[{type:"book",id:"6211",title:"Medical and Surgical Education",subtitle:"Past, Present and Future",isOpenForSubmission:!1,hash:"6c32a9763401f2d6e07b50f3e6451870",slug:"medical-and-surgical-education-past-present-and-future",bookSignature:"Georgios Tsoulfas",coverURL:"https://cdn.intechopen.com/books/images_new/6211.jpg",editedByType:"Edited by",editors:[{id:"57412",title:"Prof.",name:"Georgios",surname:"Tsoulfas",slug:"georgios-tsoulfas",fullName:"Georgios Tsoulfas"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"6705",title:"Organ Donation and Transplantation",subtitle:"Current Status and Future Challenges",isOpenForSubmission:!1,hash:"e1ab81caf9179b0618c80dcd9bfd84a3",slug:"organ-donation-and-transplantation-current-status-and-future-challenges",bookSignature:"Georgios Tsoulfas",coverURL:"https://cdn.intechopen.com/books/images_new/6705.jpg",editedByType:"Edited by",editors:[{id:"57412",title:"Prof.",name:"Georgios",surname:"Tsoulfas",slug:"georgios-tsoulfas",fullName:"Georgios Tsoulfas"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"7936",title:"Surgical Recovery",subtitle:null,isOpenForSubmission:!1,hash:"7ba422a208674f010835a5ad3378b06c",slug:"surgical-recovery",bookSignature:"Selim Sozen",coverURL:"https://cdn.intechopen.com/books/images_new/7936.jpg",editedByType:"Edited by",editors:[{id:"90616",title:null,name:"Selim",surname:"Sözen",slug:"selim-sozen",fullName:"Selim Sözen"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"7877",title:"Perioperative Care for Organ Transplant Recipient",subtitle:null,isOpenForSubmission:!1,hash:"f392542b05ddea5e08e4662dbc1dc8f7",slug:"perioperative-care-for-organ-transplant-recipient",bookSignature:"Alexander Vitin",coverURL:"https://cdn.intechopen.com/books/images_new/7877.jpg",editedByType:"Edited by",editors:[{id:"201176",title:"Associate Prof.",name:"Alexander",surname:"Vitin",slug:"alexander-vitin",fullName:"Alexander Vitin"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"8267",title:"Basic Principles and Practice in Surgery",subtitle:null,isOpenForSubmission:!1,hash:"b7c5d304980da18193c583518f293f2f",slug:"basic-principles-and-practice-in-surgery",bookSignature:"Miana Gabriela Pop",coverURL:"https://cdn.intechopen.com/books/images_new/8267.jpg",editedByType:"Edited by",editors:[{id:"213382",title:"Dr.",name:"Miana Gabriela",surname:"Pop",slug:"miana-gabriela-pop",fullName:"Miana Gabriela Pop"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"1591",title:"Infrared Spectroscopy",subtitle:"Materials Science, Engineering and Technology",isOpenForSubmission:!1,hash:"99b4b7b71a8caeb693ed762b40b017f4",slug:"infrared-spectroscopy-materials-science-engineering-and-technology",bookSignature:"Theophile Theophanides",coverURL:"https://cdn.intechopen.com/books/images_new/1591.jpg",editedByType:"Edited by",editors:[{id:"37194",title:"Dr.",name:"Theophanides",surname:"Theophile",slug:"theophanides-theophile",fullName:"Theophanides Theophile"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"3161",title:"Frontiers in Guided Wave Optics and Optoelectronics",subtitle:null,isOpenForSubmission:!1,hash:"deb44e9c99f82bbce1083abea743146c",slug:"frontiers-in-guided-wave-optics-and-optoelectronics",bookSignature:"Bishnu Pal",coverURL:"https://cdn.intechopen.com/books/images_new/3161.jpg",editedByType:"Edited by",editors:[{id:"4782",title:"Prof.",name:"Bishnu",surname:"Pal",slug:"bishnu-pal",fullName:"Bishnu Pal"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"3092",title:"Anopheles mosquitoes",subtitle:"New insights into malaria vectors",isOpenForSubmission:!1,hash:"c9e622485316d5e296288bf24d2b0d64",slug:"anopheles-mosquitoes-new-insights-into-malaria-vectors",bookSignature:"Sylvie Manguin",coverURL:"https://cdn.intechopen.com/books/images_new/3092.jpg",editedByType:"Edited by",editors:[{id:"50017",title:"Prof.",name:"Sylvie",surname:"Manguin",slug:"sylvie-manguin",fullName:"Sylvie Manguin"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"371",title:"Abiotic Stress in Plants",subtitle:"Mechanisms and Adaptations",isOpenForSubmission:!1,hash:"588466f487e307619849d72389178a74",slug:"abiotic-stress-in-plants-mechanisms-and-adaptations",bookSignature:"Arun Shanker and B. Venkateswarlu",coverURL:"https://cdn.intechopen.com/books/images_new/371.jpg",editedByType:"Edited by",editors:[{id:"58592",title:"Dr.",name:"Arun",surname:"Shanker",slug:"arun-shanker",fullName:"Arun Shanker"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"72",title:"Ionic Liquids",subtitle:"Theory, Properties, New Approaches",isOpenForSubmission:!1,hash:"d94ffa3cfa10505e3b1d676d46fcd3f5",slug:"ionic-liquids-theory-properties-new-approaches",bookSignature:"Alexander Kokorin",coverURL:"https://cdn.intechopen.com/books/images_new/72.jpg",editedByType:"Edited by",editors:[{id:"19816",title:"Prof.",name:"Alexander",surname:"Kokorin",slug:"alexander-kokorin",fullName:"Alexander Kokorin"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}}],ofsBooks:[]},correction:{item:{id:"66301",slug:"corrigendum-to-denim-fabrics-woven-with-dual-core-spun-yarns",title:"Corrigendum to: Denim Fabrics Woven with Dual Core-Spun Yarns",doi:null,correctionPDFUrl:"https://cdn.intechopen.com/pdfs/66301.pdf",downloadPdfUrl:"/chapter/pdf-download/66301",previewPdfUrl:"/chapter/pdf-preview/66301",totalDownloads:null,totalCrossrefCites:null,bibtexUrl:"/chapter/bibtex/66301",risUrl:"/chapter/ris/66301",chapter:{id:"63209",slug:"denim-fabrics-woven-with-dual-core-spun-yarns",signatures:"Osman Babaarslan, Esin Sarioğlu, Halil İbrahim Çelik and Münevver\nArtek Avci",dateSubmitted:"February 5th 2018",dateReviewed:"July 12th 2018",datePrePublished:"November 5th 2018",datePublished:"February 13th 2019",book:{id:"7242",title:"Engineered Fabrics",subtitle:null,fullTitle:"Engineered Fabrics",slug:"engineered-fabrics",publishedDate:"February 13th 2019",bookSignature:"Mukesh Kumar Singh",coverURL:"https://cdn.intechopen.com/books/images_new/7242.jpg",licenceType:"CC BY 3.0",editedByType:"Edited by",editors:[{id:"36895",title:"Dr.",name:"Mukesh Kumar",middleName:null,surname:"Singh",slug:"mukesh-kumar-singh",fullName:"Mukesh Kumar Singh"}],productType:{id:"1",title:"Edited Volume",chapterContentType:"chapter",authoredCaption:"Edited by"}},authors:[{id:"119775",title:"Prof.",name:"Osman",middleName:null,surname:"Babaarslan",fullName:"Osman Babaarslan",slug:"osman-babaarslan",email:"teksob@cu.edu.tr",position:null,institution:{name:"Cukurova University",institutionURL:null,country:{name:"Turkey"}}},{id:"178353",title:"Dr.",name:"Halil",middleName:"İbrahim",surname:"Çelik",fullName:"Halil Çelik",slug:"halil-celik",email:"hcelik@gantep.edu.tr",position:null,institution:{name:"Gaziantep University",institutionURL:null,country:{name:"Turkey"}}},{id:"216179",title:"Dr.",name:"Esin",middleName:null,surname:"Sarıoğlu",fullName:"Esin Sarıoğlu",slug:"esin-sarioglu",email:"sarioglu@gantep.edu.tr",position:null,institution:{name:"Gaziantep University",institutionURL:null,country:{name:"Turkey"}}},{id:"245674",title:"Mrs.",name:"Münevver",middleName:null,surname:"Ertek Avci",fullName:"Münevver Ertek Avci",slug:"munevver-ertek-avci",email:"Munevver.ErtekAvci@calikdenim.com",position:null,institution:null}]}},chapter:{id:"63209",slug:"denim-fabrics-woven-with-dual-core-spun-yarns",signatures:"Osman Babaarslan, Esin Sarioğlu, Halil İbrahim Çelik and Münevver\nArtek Avci",dateSubmitted:"February 5th 2018",dateReviewed:"July 12th 2018",datePrePublished:"November 5th 2018",datePublished:"February 13th 2019",book:{id:"7242",title:"Engineered Fabrics",subtitle:null,fullTitle:"Engineered Fabrics",slug:"engineered-fabrics",publishedDate:"February 13th 2019",bookSignature:"Mukesh Kumar Singh",coverURL:"https://cdn.intechopen.com/books/images_new/7242.jpg",licenceType:"CC BY 3.0",editedByType:"Edited by",editors:[{id:"36895",title:"Dr.",name:"Mukesh Kumar",middleName:null,surname:"Singh",slug:"mukesh-kumar-singh",fullName:"Mukesh Kumar Singh"}],productType:{id:"1",title:"Edited Volume",chapterContentType:"chapter",authoredCaption:"Edited by"}},authors:[{id:"119775",title:"Prof.",name:"Osman",middleName:null,surname:"Babaarslan",fullName:"Osman Babaarslan",slug:"osman-babaarslan",email:"teksob@cu.edu.tr",position:null,institution:{name:"Cukurova University",institutionURL:null,country:{name:"Turkey"}}},{id:"178353",title:"Dr.",name:"Halil",middleName:"İbrahim",surname:"Çelik",fullName:"Halil Çelik",slug:"halil-celik",email:"hcelik@gantep.edu.tr",position:null,institution:{name:"Gaziantep University",institutionURL:null,country:{name:"Turkey"}}},{id:"216179",title:"Dr.",name:"Esin",middleName:null,surname:"Sarıoğlu",fullName:"Esin Sarıoğlu",slug:"esin-sarioglu",email:"sarioglu@gantep.edu.tr",position:null,institution:{name:"Gaziantep University",institutionURL:null,country:{name:"Turkey"}}},{id:"245674",title:"Mrs.",name:"Münevver",middleName:null,surname:"Ertek Avci",fullName:"Münevver Ertek Avci",slug:"munevver-ertek-avci",email:"Munevver.ErtekAvci@calikdenim.com",position:null,institution:null}]},book:{id:"7242",title:"Engineered Fabrics",subtitle:null,fullTitle:"Engineered Fabrics",slug:"engineered-fabrics",publishedDate:"February 13th 2019",bookSignature:"Mukesh Kumar Singh",coverURL:"https://cdn.intechopen.com/books/images_new/7242.jpg",licenceType:"CC BY 3.0",editedByType:"Edited by",editors:[{id:"36895",title:"Dr.",name:"Mukesh Kumar",middleName:null,surname:"Singh",slug:"mukesh-kumar-singh",fullName:"Mukesh Kumar Singh"}],productType:{id:"1",title:"Edited Volume",chapterContentType:"chapter",authoredCaption:"Edited by"}}},ofsBook:{item:{type:"book",id:"10471",leadTitle:null,title:"Advances in Dynamical Systems Theory, Models, Algorithms and Applications",subtitle:null,reviewType:"peer-reviewed",abstract:"\r\n\tThe theory of modern dynamical systems may be dated back to 1890 with the studies by Poincaré on celestial mechanics that laid rigorous foundations for the global analysis of nonlinear differential equations. The tradition was continued by Birkhoff in the US with his pivotal work on periodic orbits and flourished especially in Russia thanks to the Moscow School by Liapunov, Andronov, Pontryagin, and others. In the 60's the field was further revived by the emergence of the theory of chaotic attractors, and in modern years by the development of sophisticated computational methods that enable us accurate computer simulations.
\r\n\r\n\tThe book intends to provide the reader with a comprehensive overview of the current state-of-the-art in the theory of dynamical systems, presenting some of the most significant advances of the last years alongside the definition of new models, computer algorithms and applications in areas such as medicine, chemistry, physics, neuroscience and biology. Researchers, engineers, and graduate students in both pure and applied mathematics may benefit from the papers collected in this volume.
",isbn:"978-1-83969-124-9",printIsbn:"978-1-83969-123-2",pdfIsbn:"978-1-83969-125-6",doi:null,price:0,priceEur:0,priceUsd:0,slug:null,numberOfPages:0,isOpenForSubmission:!1,hash:"689fdf3cdc78ade03f0c43a245dcf818",bookSignature:"Dr. Bruno Carpentieri",publishedDate:null,coverURL:"https://cdn.intechopen.com/books/images_new/10471.jpg",keywords:"Stability Theory, Hamiltonian Systems, Periodic Solutions, Models, Linear Algebra Algorithms, Graph Algorithms, Optimization Algorithms, Parallel Algorithms, Chaotic Orbits, Logistic Map, Fractals, Attractors",numberOfDownloads:157,numberOfWosCitations:0,numberOfCrossrefCitations:0,numberOfDimensionsCitations:0,numberOfTotalCitations:0,isAvailableForWebshopOrdering:!0,dateEndFirstStepPublish:"October 15th 2020",dateEndSecondStepPublish:"November 30th 2020",dateEndThirdStepPublish:"January 29th 2021",dateEndFourthStepPublish:"April 19th 2021",dateEndFifthStepPublish:"June 18th 2021",remainingDaysToSecondStep:"4 months",secondStepPassed:!0,currentStepOfPublishingProcess:4,editedByType:null,kuFlag:!1,biosketch:"A senior researcher in applied mathematics and high-performance scientific computing, member of the scientific advisory board of international conference panels, editorial board member of scientific journals, a consultant for European projects.",coeditorOneBiosketch:null,coeditorTwoBiosketch:null,coeditorThreeBiosketch:null,coeditorFourBiosketch:null,coeditorFiveBiosketch:null,editors:[{id:"92921",title:"Dr.",name:"Bruno",middleName:null,surname:"Carpentieri",slug:"bruno-carpentieri",fullName:"Bruno Carpentieri",profilePictureURL:"https://mts.intechopen.com/storage/users/92921/images/system/92921.png",biography:"Bruno Carpentieri obtained a Laurea degree in Applied Mathematics in 1997 from Bari University, then he furthered his Ph.D. studies in Computer Science at the National Polytechnic Institute of Toulouse. After some professional experiences as a postdoctoral researcher at the Karl-Franzens University of Graz, as a consultant for an European project in cardiac modelling at CRS4 in Sardinia, as an Assistant Professor at the University of Groningen and finally as a Reader in Applied Mathematics at the Nottingham Trent University, since May 2017 he is holding an Associate Professor appointment in Applied Mathematics at the Faculty of Computer Science, University of Bozen-Bolzano. The specialty of his research is numerical linear algebra with applications and high-performance scientific computing.",institutionString:"Free University of Bozen-Bolzano",position:null,outsideEditionCount:0,totalCites:0,totalAuthoredChapters:"2",totalChapterViews:"0",totalEditedBooks:"1",institution:{name:"Free University of Bozen-Bolzano",institutionURL:null,country:{name:"Italy"}}}],coeditorOne:null,coeditorTwo:null,coeditorThree:null,coeditorFour:null,coeditorFive:null,topics:[{id:"15",title:"Mathematics",slug:"mathematics"}],chapters:[{id:"76090",title:"Vibrations of an Elastic Beam Subjected by Two Kinds of Moving Loads and Positioned on a Foundation having Fractional Order Viscoelastic Physical Properties",slug:"vibrations-of-an-elastic-beam-subjected-by-two-kinds-of-moving-loads-and-positioned-on-a-foundation-",totalDownloads:14,totalCrossrefCites:0,authors:[null]},{id:"75359",title:"Invariants for a Dynamical System with Strong Random Perturbations",slug:"invariants-for-a-dynamical-system-with-strong-random-perturbations",totalDownloads:47,totalCrossrefCites:0,authors:[null]},{id:"75708",title:"Text Mining for Industrial Machine Predictive Maintenance with Multiple Data Sources",slug:"text-mining-for-industrial-machine-predictive-maintenance-with-multiple-data-sources",totalDownloads:24,totalCrossrefCites:0,authors:[null]},{id:"75656",title:"Chaotic Dynamics and Complexity in Real and Physical Systems",slug:"chaotic-dynamics-and-complexity-in-real-and-physical-systems",totalDownloads:12,totalCrossrefCites:0,authors:[null]},{id:"75310",title:"Stochastic Theory of Coarse-Grained Deterministic Systems: Martingales and Markov Approximations",slug:"stochastic-theory-of-coarse-grained-deterministic-systems-martingales-and-markov-approximations",totalDownloads:40,totalCrossrefCites:0,authors:[null]},{id:"75854",title:"Qualitative Analysis for Controllable Dynamical Systems: Stability with Control Lyapunov Functions",slug:"qualitative-analysis-for-controllable-dynamical-systems-stability-with-control-lyapunov-functions",totalDownloads:20,totalCrossrefCites:0,authors:[null]}],productType:{id:"1",title:"Edited Volume",chapterContentType:"chapter",authoredCaption:"Edited by"},personalPublishingAssistant:{id:"280415",firstName:"Josip",lastName:"Knapic",middleName:null,title:"Mr.",imageUrl:"https://mts.intechopen.com/storage/users/280415/images/8050_n.jpg",email:"josip@intechopen.com",biography:"As an Author Service Manager my responsibilities include monitoring and facilitating all publishing activities for authors and editors. From chapter submission and review, to approval and revision, copy-editing and design, until final publication, I work closely with authors and editors to ensure a simple and easy publishing process. I maintain constant and effective communication with authors, editors and reviewers, which allows for a level of personal support that enables contributors to fully commit and concentrate on the chapters they are writing, editing, or reviewing. I assist authors in the preparation of their full chapter submissions and track important deadlines and ensure they are met. I help to coordinate internal processes such as linguistic review, and monitor the technical aspects of the process. As an ASM I am also involved in the acquisition of editors. Whether that be identifying an exceptional author and proposing an editorship collaboration, or contacting researchers who would like the opportunity to work with IntechOpen, I establish and help manage author and editor acquisition and contact."}},relatedBooks:[{type:"book",id:"8181",title:"Applied Mathematics",subtitle:null,isOpenForSubmission:!1,hash:"85b873324d4e1af230fea39738ba9be5",slug:"applied-mathematics",bookSignature:"Bruno Carpentieri",coverURL:"https://cdn.intechopen.com/books/images_new/8181.jpg",editedByType:"Edited by",editors:[{id:"92921",title:"Dr.",name:"Bruno",surname:"Carpentieri",slug:"bruno-carpentieri",fullName:"Bruno Carpentieri"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"1591",title:"Infrared Spectroscopy",subtitle:"Materials Science, Engineering and Technology",isOpenForSubmission:!1,hash:"99b4b7b71a8caeb693ed762b40b017f4",slug:"infrared-spectroscopy-materials-science-engineering-and-technology",bookSignature:"Theophile Theophanides",coverURL:"https://cdn.intechopen.com/books/images_new/1591.jpg",editedByType:"Edited by",editors:[{id:"37194",title:"Dr.",name:"Theophanides",surname:"Theophile",slug:"theophanides-theophile",fullName:"Theophanides Theophile"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"3161",title:"Frontiers in Guided Wave Optics and Optoelectronics",subtitle:null,isOpenForSubmission:!1,hash:"deb44e9c99f82bbce1083abea743146c",slug:"frontiers-in-guided-wave-optics-and-optoelectronics",bookSignature:"Bishnu Pal",coverURL:"https://cdn.intechopen.com/books/images_new/3161.jpg",editedByType:"Edited by",editors:[{id:"4782",title:"Prof.",name:"Bishnu",surname:"Pal",slug:"bishnu-pal",fullName:"Bishnu Pal"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"3092",title:"Anopheles mosquitoes",subtitle:"New insights into malaria vectors",isOpenForSubmission:!1,hash:"c9e622485316d5e296288bf24d2b0d64",slug:"anopheles-mosquitoes-new-insights-into-malaria-vectors",bookSignature:"Sylvie Manguin",coverURL:"https://cdn.intechopen.com/books/images_new/3092.jpg",editedByType:"Edited by",editors:[{id:"50017",title:"Prof.",name:"Sylvie",surname:"Manguin",slug:"sylvie-manguin",fullName:"Sylvie Manguin"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"371",title:"Abiotic Stress in Plants",subtitle:"Mechanisms and Adaptations",isOpenForSubmission:!1,hash:"588466f487e307619849d72389178a74",slug:"abiotic-stress-in-plants-mechanisms-and-adaptations",bookSignature:"Arun Shanker and B. Venkateswarlu",coverURL:"https://cdn.intechopen.com/books/images_new/371.jpg",editedByType:"Edited by",editors:[{id:"58592",title:"Dr.",name:"Arun",surname:"Shanker",slug:"arun-shanker",fullName:"Arun Shanker"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"72",title:"Ionic Liquids",subtitle:"Theory, Properties, New Approaches",isOpenForSubmission:!1,hash:"d94ffa3cfa10505e3b1d676d46fcd3f5",slug:"ionic-liquids-theory-properties-new-approaches",bookSignature:"Alexander Kokorin",coverURL:"https://cdn.intechopen.com/books/images_new/72.jpg",editedByType:"Edited by",editors:[{id:"19816",title:"Prof.",name:"Alexander",surname:"Kokorin",slug:"alexander-kokorin",fullName:"Alexander Kokorin"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"314",title:"Regenerative Medicine and Tissue Engineering",subtitle:"Cells and Biomaterials",isOpenForSubmission:!1,hash:"bb67e80e480c86bb8315458012d65686",slug:"regenerative-medicine-and-tissue-engineering-cells-and-biomaterials",bookSignature:"Daniel Eberli",coverURL:"https://cdn.intechopen.com/books/images_new/314.jpg",editedByType:"Edited by",editors:[{id:"6495",title:"Dr.",name:"Daniel",surname:"Eberli",slug:"daniel-eberli",fullName:"Daniel Eberli"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"57",title:"Physics and Applications of Graphene",subtitle:"Experiments",isOpenForSubmission:!1,hash:"0e6622a71cf4f02f45bfdd5691e1189a",slug:"physics-and-applications-of-graphene-experiments",bookSignature:"Sergey Mikhailov",coverURL:"https://cdn.intechopen.com/books/images_new/57.jpg",editedByType:"Edited by",editors:[{id:"16042",title:"Dr.",name:"Sergey",surname:"Mikhailov",slug:"sergey-mikhailov",fullName:"Sergey Mikhailov"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"1373",title:"Ionic Liquids",subtitle:"Applications and Perspectives",isOpenForSubmission:!1,hash:"5e9ae5ae9167cde4b344e499a792c41c",slug:"ionic-liquids-applications-and-perspectives",bookSignature:"Alexander Kokorin",coverURL:"https://cdn.intechopen.com/books/images_new/1373.jpg",editedByType:"Edited by",editors:[{id:"19816",title:"Prof.",name:"Alexander",surname:"Kokorin",slug:"alexander-kokorin",fullName:"Alexander Kokorin"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"2270",title:"Fourier Transform",subtitle:"Materials Analysis",isOpenForSubmission:!1,hash:"5e094b066da527193e878e160b4772af",slug:"fourier-transform-materials-analysis",bookSignature:"Salih Mohammed Salih",coverURL:"https://cdn.intechopen.com/books/images_new/2270.jpg",editedByType:"Edited by",editors:[{id:"111691",title:"Dr.Ing.",name:"Salih",surname:"Salih",slug:"salih-salih",fullName:"Salih Salih"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}}]},chapter:{item:{type:"chapter",id:"64320",title:"Prototyping a Gas Sensors Using CeO2 as a Matrix or Dopant in Oxide Semiconductor Systems",doi:"10.5772/intechopen.80801",slug:"prototyping-a-gas-sensors-using-ceo2-as-a-matrix-or-dopant-in-oxide-semiconductor-systems",body:'Cerium represents one of the most abundant elements in the Earth’s crust (66.5 ppm) than copper (60 ppm) or tin (2.3 ppm). Ce possesses an unique electronic configuration ([Xe] 4f26s2), and presents two common valence states Ce3+ and Ce4+ [1, 2, 3], which give CeO2 excellent chemical and physical properties: 1/4 O2, at most, can be released from each CeO2 unit cell. It serves as an active oxygen donor in many reactions, such as three-way catalytic reactions to eliminate toxic automobile exhaust [1, 4], the low-temperature water gas shift reaction [1, 5], oxygen sensors, oxygen permeation membrane systems and fuel cells [1, 6]. Cerium oxide CeO2 is a semiconductor oxide with a band gap energy (3.19 eV) [7, 8]. The crystalline structure consists of a cubic fluorite structure (Fm3m) with a cell parameter of 5.41 Å at room temperature and presents a high dielectric constant ɛ = 26, almost of silicon, that it makes use in spintronic devices with silicon microelectronic devices [9, 10]. Synthesis of CeO2 nanoparticles comprise various methods as: solvothermal [2, 11, 12], sol gel [2, 13, 14], sonochemical [2, 15], hydrolysis [2, 16], hydrothermal [2, 17, 18], precipitation [2, 19] and reverse micelles [2, 20]. The dual oxidation state mentioned above means that these nanoparticles have oxygen vacancies or defects [19]. The loss of oxygen and the reduction of Ce4+ to Ce3+ in accord with Eq. 1, is accompanied by creation of an oxygen vacancy. This property is responsible for the interesting redox chemistry exhibited by ceria nanoparticles and makes them attractive for many catalytic applications [21].
Also all ceria applications are based on its potential redox between Ce3+ and Ce4+, high oxygen affinity and absorption/excitation energy bands associated with the electronic structure [22]. Another important property of CeO2 consists in their ability to release and absorb oxygen during alternating redox conditions and hence to function as oxygen buffer. The addition of dopants leads to increase of concentration of oxygen vacancies and improves the thermal stability of the parent oxide [23]. Also, CeO2 presents a great chemical stability and high diffusion coefficient with values between 10−8 and 10−6 cm2/s in the temperature range of 800–2200 K coming from oxygen vacancies (
Sensitive material | Gas detected | Range concentration, [ppm]/[%] | Operation temperature, [°C] | Detection limit, [ppm] | Response/recovery time, [s] | Ref. |
---|---|---|---|---|---|---|
CeO2-SnO2 | CO | 0–500 ppm | 430 | <5 | 26/30 | [27] |
ZnO/Al2O3/CeO2 | ethanol | 0–2000 ppm | 260 | * | 2/10 | [28] |
CeO2-Fe2O3 | methanol | 1–1000 ppm | 400 | 1–3 | * | [29] |
CeO2 | formaldehyde | 0.5–50 ppm | 30 | — | 36/1 | [30] |
CeO2 activated ZnO-TiO2 | CO2 | 286 ppm exposure | 290 | * | 24/72 | [31] |
Ce(1-x) ZrxO2 | O2 | 1–100% | 500–700 | * | * | [32] |
Gas detection with sensitive materials based on CeO2.
Data unavailable.
As doping with other ions could lead to enhanced activity for different reasons. Ceria doped with pentavalent ions as Nb, could insert extra oxygen anions that would be more easily removed [26]. In this chapter, the mixed oxides CeO2-Nb2O5, Y2O3-doped CeO2 as sensitive materials for CO2 detection and sensitive materials composed from CeO2-doped rGO (reduced graphene oxide) and CeO2-doped rGO-ZnO for NO2 detection are presented.
To conditioning the signal provided by sensing element, high-performance electronic circuits such as precision operational amplifiers, digital analogue converters and analog multipliers have been used [33, 34].
Niobium oxide has some properties that make it in principal as promising for catalytic applications. Niobia-based materials are effective catalysts in selective oxidation reactions due to its redox properties. Also, niobia-doped ceria materials have shown a good carbon deposition and excellent properties as solid oxide fuel cell (SOFC) anodes [35]. Nb5+ ions (ionic radius of Nb5+: 78 pm) may initiate the reduction of Ce4+ to Ce3+ by the doping Nb into the CeO2 structure, which results in formation of oxygen vacancies. Using the Kröger-Vink notation, it can mention two mechanisms for the dissolution: one of which occurs by electronic compensation (Eq. 2) and the other by consumption of vacancies (Eq. 3), as shown below [3, 36, 37].
where
In our case, we used the mixed binary oxides CeO2-Nb2O5 for CO2 detection. Sensitive element is composed from mechanical mixing of CeO2 (97%) and Nb2O5 (3%); both reagents purchased from Merck. The powder oxides were treated with a few drops of ethylic alcohol for ink obtaining and then introduced in a ball mill for homogenization followed by calcination at 500, 600 and 800°C for 1 hour. The powder calcined at 600°C was pressed in disc form at 2 tons force/cm2 with the dimensions ∅4 × 1 mm and mounted on the ambasis transistor. The sensor image is showed in Figure 1 [39].
Image of the CO2 sensor made with mixed oxides CeO2-Nb2O5 sensitive material.
Calcined mixed powder oxides were characterized by X-ray diffraction using a diffractometer-type X Bruker-AXS type D8 ADVANCE in conditions: CuKα radiation (λ =1.54059 Å), 40 kV/40 mA, filter kβ of Ni. pas: 0.04°, measuring time on point: 1 s, measure range 2θ = 10–100°. The mixed oxides powder with composition CeO2–3%Nb2O5 was calcined at 500, 600 and 800°C for 1 hour. It shows a cubic phase for CeO2 and orthorhombic phase for Nb2O5, Figure 2. Also, for this powder that was calcined at 800°C, was identified in addition a hexagonal Ce2O3 phase (Figure 3). It obtain for CeO2 cell parameter a = b = c = 5.407 Å. This is in accord with theoretical value of a = 5.404 Å as well as in according with card number 03–065-5923. The cell parameters for Nb2O5 orthorhombic phase were a = 6.175 Å, b = 29.175 Å and c = 3.930 Å in accord with card number 30-0873 [4]. Corresponding to hkl (Miller indices) 111, 200, 220 and 311, the crystallites size determined with Scherrer formula give values of 160.9, 145.6, 117.4 and 63.5 nm.
X-ray diffraction of CeO2-Nb2O5 calcinated at: (a) 500°C; (b) 600°C and (c) 800°C.
X-ray diffraction of CeO2-Nb2O5 calcinated at 800°C.
The gas sensors testing were performed with the apparatus as presented in Figure 4. It is realized by SYSCOM-18 Romania for National Institute for Research and Development in Electrical Engineering ICPE-CA. The voltage measurements were effected by testing module, in automated process mode. A control panel provides a lot of measuring values, at rate 1/10 s. The bench of testing for the gas sensor consists in an enclosure where there are set of testing conditions for the sensor as well as in connected equipment. The whole process of testing is automated, being controlled by a programmable automaton. The gas for testing is introduced in a controlled way in the testing enclosure, through a mass debit meter. In the testing, enclosure is set a constant temperature, controlled by a temperature regulator.
The testing gas sensor installation.
The gas testing was done in concentration of 10,000 ppm CO2 at the 25, 50 and 70°C chamber test temperature. The sensor was developed the voltages values of 48, 50 and 770 mV (Figure 5) [39].
Variation of the voltage depending on time for CO2 sensor, made with mixed oxides CeO2-Nb2O5 sensitive material.
The experimental data shows a good sensor response for CO2 detection with increasing temperature.
The Analog Devices AD620 operational amplifier is used to build the signal conditioning electronic module, provided by the sensing element. A preamp section comprised of Q1 and Q2, Figure 6, provides additional gain up front. Feedback through the Q1-A1-R1 loop and the Q2-A2-R2 loop maintains a constant collector current through the input devices Q1 and Q2, thereby impressing the input voltage across the external gain setting resistor, RG.
A simplified schematic of the AD620 [
This creates a differential gain from the inputs to the A1/A2 outputs given by Eq. (4):
The unity-gain subtractor, A3, removes any common-mode signal, yielding a single-ended output referred to the REF pin potential. The value of RG also determines the transconductance of the preamp stage [34]. As RG is reduced for larger gains, the transconductance increases asymptotically to that of the input transistors. The open-loop gain is boosted for increasing programmed gain, thus reducing gain related errors. Also, the gain bandwidth product (determined by C1, C2 and the preamplifier transconductance, Figure 6) increases with programmed gain, thus optimizing the amplifier’s frequency response. In Figure 7, the closed-loop gain of AD620 versus frequency is shown. Finally, the input voltage noise is reduced to 9 nV/√
AD620 closed-loop gain versus frequency [
So that,
where the resistor
The value of 24.7 kΩ was chosen so that standard 1% resistor values could be used to set the most popular gains. For the input resistors, R1a and R1b were used, capacitor C2p approximately five times to 0.047 μF to provide adequate RF attenuation (Figure 8). With the values shown, the circuit −3 dB bandwidth is approximately 400 Hz and noise levels 12 nV/√
The electronic module for signal conditioning provided by sensing element, designing with AD620 analog devices.
The ion conductivity of CeO2 can be significantly improved upon substitution with some trivalent oxides of lanthanides like Y2O3, Sm2O3 and Gd2O3, because the number of oxygen vacancy will be considerably increased for charge compensation. The electrical conductivity in doped ceria is influenced by factors such as: the dopant ion, the dopant concentration, the oxygen vacancy concentration and the defect association enthalpy. An example is constituted by combination Y2O3-doped CeO2 which has been used usually as the solid electrolyte for moderate temperature solid oxide fuel cells [40]. In our case, we used the Y2O3-doped CeO2 as sensitive material for CO2 detection. For Y2O3-CeO2 synthesis, it utilizes several methods such as hydrothermal [41], electrospinning [23], thermolysis [42] and sol gel [43].
Sol gel method applied for synthesis of Y2O3-doped CeO2 sensitive material, is in accord with ref. [44] and used as starting reagents Ce(SO4)2 × 4H2O (97% purity, Merck) and Y(NO3)3 × 3H2O (98% purity Karlsrushe GmbH in molar ratio CeO2/Y2O3 = 4:1). The salts were dissolved in deionized water. To 100 ml salt solution, 25 ml solution of 1 M citric acid as chelating agent was added. To obtain gel, the salt solution was heated to 70°C under constant stirring. To this solution, 40 ml ethylene glycol was added to promote citrate polymerization and heated at 90°C. The gel formed was filtered, washed and heat treated in oven at 100°C. The powder obtained was calcined at 800°C for 2 hours. The powder was pressed to disc form using 10 ton force/cm2, with dimensions diameter 4 mm, height 1 mm and then sinterized at 1100°C for 6 hours [44].
On both sides of disc, gold electrodes in circular form with diameter of 1 mm was deposed. The gold was deposed by e-beam evaporation method using Baltzer equipment with conditions: pressure P = 10−5 Torr and current I = 8 mA, for 60 s time deposition. The disc with electrodes deposed was mounted on a 12 pin TO-8 package base. Below the base, the heater element composed of Ni wire with a diameter of 0.1 mm was placed, the winding is composed from 18 turns with a diameter of
CO2 sensor, component parts: 1. Ce2O2-Y2O3 disc; 2. Gold electrode, thin film deposition of Au, in the form of the disc; 3. Ag micro-wire connections; 4. The positioning piece; 5. TO-8 package plated base; 6. The pins; 7. A, B terminals of 18 turns heating resistance.
Thermal analysis was performed with NETZSCH STA 409 simultaneous thermogravimetric balance, in the analysis conditions: inert atmosphere of argon, heating rate of 10°C/min in alumina crucible and the mass sample was 15.7 mg. Figure 10 presents the thermal analysis TG, DTA and differential thermogravimetry (DTG) curves for the dried gel. The DTA curve releases two endothermic peaks at 159.2 and 225.1°C. The last one has a correspondent in DTG curve at 219°C, the total mass loss was 86.95% from initial mass. Other thermal transformation appears at 430°C which represents on in a TG curve a loss of 4.91% which correspond to the decomposition of precursors, consisting in cerium sulfate and yttrium nitrate and in the end only Ce-Y-related oxides are obtained [44].
Thermal analysis TG, DTA and DTG curves for dried gel of CeO2-Y2O3.
The X-ray diffraction patterns of the CeO2-Y2O3 oxides powder calcinations at 800°C for 2 hours are shown in Figure 11. For comparison, Figure 12 shows the X-ray diffraction for commercial CeO2 powder. For this oxides system, the XRD pattern reveals the formation of well crystallized phases, CeO2 indexed with the cubic fluorite structure and Y2O3 with cubic structure. Also, a secondary phase with cubic structure and composition Ce0.6Y0.4O1.8 was identified [44].
X-ray diffraction of Y2O3-doped CeO2 synthesized by sol gel method.
X-ray diffraction for commercial CeO2.
Table 2 presents X-ray parameters for Y2O3-doped CeO2, cell parameters and crystallite sizes determined with Scherrer formula.
Phase | Crystal structure | Unit cell parameter (Å) a = b = c | 2Θ | Crystalline face indexes hkl | Crystallites-size (nm) | |
---|---|---|---|---|---|---|
Experimental | Theoretic card no.: | |||||
CeO2 | Cubic | 5.41325 | 5.41100 PDF 01-071-4199 | 28.536 | 111 | 48.1 |
Y2O3 | Cubic | 10.61131 | 10.61060 PDF 01-076-8044 | 29.121 | 222 | 27.0 |
Y0.4Ce0.6O1.8 | Cubic | 5.39449 | 5.39300 PDF 01-075-0177 | 28.639 | 111 | 49.2 |
CeO2 Merck | Cubic | 5.384 | 111 | 154.9 |
X-ray parameters for Y2O3-doped CeO2.
The morphological structure of Y2O3-doped CeO2 was investigate by SEM measurements using FESEM-FIB type Auriger model Carl Zeiss SMT GmbH at a high voltage acceleration of 2 and 3 kV. The SEM sample morphology was investigated trough SESI (combined detector in SEM chamber–Evernhart Thornley type with Faraday cup). Figure 13 shows the SEM image for disc CeO2-Y2O3 sintered, where it can be seen as a relative homogeneous structure and the crystallite sizes of CeO2 and Y2O3 were in range of 26–54 nm in good accord with X-ray diffraction analysis. Figure 14 shows the SEM images for CeO2-Y2O3 powder calcined at 800°C for 2 hours, where it can be see a nonhomogeneous structure composed by agglomerates [44].
SEM images for sintering disc CeO2-Y2O3.
SEM images for oxidic powder CeO2-Y2O3 calcined at 800°C for 2 hours.
N2 adsorption desorption isotherms were performed with the AUTOSORB-1, Quantachrome Instruments, United Kingdom in the following conditions: working gas N2, measured temperature: −196°C and relative pressure range P/Po = 0.001–0.99. For binary oxides CeO2-Y2O3, powder calcined at 800°C for 2 hours, BET analysis revealed the results: the specific surface area was 3.13 m2/g, the total volume of the pores was 1.066x10−3 cm3/g and pore sizes of 8.93 Å. There is a specific ratio P/Po = 0.02898 for the pores with diameters smaller than 6.9 Å [44].
The improved sensing response at CO2 can be attributed to synergistic effects between Y2O3-doped CeO2. In certain conditions such as high temperature, reduced state or pure CeO2, lose some amount of oxygen and generate oxygen vacancies in accord with Eq. (7),
When CO2 comes in contact with CeO2-activated surface, this forms carbonates as a product through the participation of surface oxide ions in accordance with Eq. (8),
The carbonates disappear when they are exposed to oxidizing conditions [31]. The sensor characteristic was performed using test installation presented in Figure 4. The sensor was exposed at CO2 atmospheres in the concentration range of 0–5000 ppm CO2 in the climatic conditions:
The sensor voltage function with CO2 concentration, for
The operational amplifier ADA4627-1, provided by analog devices (Figure 16) is a broadband and high precision amplifier. It is recommended in applications like “sensor conditioning” and electronic conditioning of the signal, due to its exceptional attributes: low noise, very low offset voltage, very high common-mode rejection ratio (CMMR) and very high slew rate. This operational amplifier combines the best “DC” features and very good dynamic characteristics [33], like: slew rate 60 V/μs; extended range of differential supply voltage: ±5 Vcc …. ± 15 Vcc; opn loop gain 120 dB; low offset voltage maximum 200 μV and the bias current: maximum 5 pA.
The electronic module for signal conditioning provided by sensing element, designing with ADA4627-1 analog devices.
In order to study the CeO2 sensor properties for NO2 detection, two sets of sensitive materials for sensors was synthesized: (a) 1%rGO/CeO2 nanocomposite as sensitive material to study the effect of rGO adding on the sensitivity and (b) 1%(wt. %)CeO2 was added at 1%(wt.%) rGO/ZnO-nanocomposite, in order to study the effect of CeO2 adding on the sensitivity.
Synthesis of 1%rGO/CeO2: 1%(wt.%) rGO/CeO2 nanocomposite was synthesized in situ by precipitation method using Ce(NO3)3 and NH3 (25% conc) at 90°C and 30 min maturation time.
Synthesis of 1%CeO2/1%rGO/ZnO: The 1%(wt.%)GO and 1%CeO2 was mixed with ZnO in ethanol. The resulted powder after ethanol evaporation was heat treated at 150°C. The GO was synthesized by Hummers’ modified method using as strong oxidant potassium permanganate (mass ratio C:oxidant = 1:3) in a solution of sodium nitrate and concentered sulfuric acid (1 g/150 ml) and graphite [45, 46].
UV-Vis diffuse reflectance spectroscopy measurements were performed a Jasco V-570 Spectrophotometer, Japan, equipped with integrating sphere for diffuse reflectance measurement mode and SPECTRALON reference as etalon, and bang gap software in order to evaluate the optical properties and band gap values of the CeO2, doped CeO2 with 1%rGO and doped 1%GO-ZnO nanocomposite with 1%CeO2. The diffuse reflectance spectrum was converted in absorbance spectrum and presented in Figure 17. The band gap was calculated using Kubelka-Munk equation with associated plot
Diffuse reflectance UV-Vis spectroscopy spectra for CeO2 (red), (1%CeO2/1%rGO) ZnO (blue), 1%rGO/ZnO (lagun) and 1%rGO/CeO2 (green).
In Table 3, the UV-Vis spectra parameters of UV-Vis measurements, for 1%rGO/CeO2 and CeO2 is also presented.
Samples | Absmax1 | I1 | Absmax2 | I2 | Band gap, [eV] | |
---|---|---|---|---|---|---|
1%rGO/CeO2 | 249 | 1.065 | 335 | 1.535 | 3.05 | |
Blue shift | Hyper chromic effect | Blue shift | Hyper chromic effect | band gap narrowing | ||
CeO2 -standard | 252 | 1.051 | 339 | 0.99 | theoretical | Commercial type |
3.19, Ref. [47] | 3.16 |
UV-Vis spectra parameters of UV-Vis measurements.
Legend: Aabs represents absorbance plasmon resonance (APR) and I represents intensity of APR.
The effect of doping of CeO2 with 1%rGO leads to blue shift of APR presented in Table 3 and Figure 17 accompanied by the hyperchromic effect for both peaks, while the band gap are narrows, keeping the same characteristic shape of the ceria spectrum. The same effect—a blue shift has been described in literature for both TiO2 aditived with GO and for ZnO aditived with GO [50, 51]. The introduction of 1%GO(wt.%) in CeO2 leads to a decrease in the effective optical band gap value from 3.16 eV to 3.05 eV, with a variation of 0.11 eV. This shows that the 1%GO(wt.%) acted as a band gap modifier [47, 48, 49, 52]. The same effect has been described in literature for the introduction of GO and related materials rGO in TiO2 leads to a decrease in band gap [50]. Earlier, a lot of researchers attempt to tailor the properties of oxide semiconductors by using band gap modifiers and in this way to improve the catalytic, photovoltaic and sensing properties; this new trend is named bend gap engineering [47, 48, 49, 52]. Many researchers obtained a band gap narrowing after heat treatment of CeO2 [52] and doping with different metals as Co [52], Gd [53], functionalized by different techniques [47], etc. Rare earth oxides present a high basicity related to ordinary oxide semiconductors such as TiO2, WO3, SnO2 and ZnO, fast oxygen ion mobility and interesting catalytic properties which are important in gas sensing application [54, 55, 56]. Table 4 presents UV-Vis spectra parameters of UV-Vis measurements for 1%CeO2/1%rGO/ZnO and 1%rGO/ZnO.
Samples | Absmax1 | I1 | Absmax2 | I2 | Band gap, [eV] |
---|---|---|---|---|---|
1%CeO2/1%rGO-ZnO | 260 | 1.104 | 293 | 1.103 | 3.19 |
Blue shift | Hyper chromic effect | Blue shift | Hyper chromic effect | Band gap narrowing | |
1%rGO-ZnO-etalon | 265 | 1.059 | 294 | 1.056 | 3.25 |
ZnO | 376 Ref. [60] | — | — | — | Theoretic |
3.37 Ref.: [48], [57, 58, 59, 60] |
UV-Vis spectra parameters of UV-Vis measurements for 1% CeO2/1%rGO/ZnO and 1%rGO/ZnO.
Legend: Aabs represents absorbance plasmon resonance (APR) and I represents intensity of APR.
In the case of doping with 1%(wt.%)CeO2 of the 1%(wt.%)rGO/ZnO nanocomposite, the effect is the same, an increasing of APR accompanied by the hyperchromic effect with the preservation of the characteristic spectra shape. But in opposite with the first case of CeO2 doped with 1%GO(wt.%), there is a decrease in effective optical band gap value from 3.24 to 3.19 eV, with a variation of 0.05 eV. This shows that the 1%CeO2(wt.%) acted as a band gap modifier. The UV-Vis spectra present a strong absorption bands below 400 nm in UV region for the nanocomposites with the main component ZnO which are attributed to ZnO NP. The APR of ZnO nanocomposites are lower, in generally, than the absorption band of bulk ZnO (373 nm) that had a wide direct band gap at room temperature of 3.37 eV [48, 57, 58, 59, 60]. CeO2 adding on ZnO nanocomposite surface leads to a significant increase of the absorption in the UV light spectrum and decrease in the visible light spectrum. Based on the above results, UV-Vis and transformed Kubelka?Munk function plots suggested that are necessary energy for generation of electrons in conduction bands and holes in valence bands is smaller for the doped 1%rGO/CeO2 than the CeO2, this makes the doped CeO2 more reactive and sensitive. Other researchers tried to improve the sensing properties of ZnO sensor, for ethanol detection, by adding noble metals such as Pd [61], Pt [62] and Au [63], other metals such as Al, In, Cu, Fe and Sn [64], oxides as TiO2 [65], CuO [66], CoO [67], RuO2 [68] and SnO2 and not in the end Ce and CeO2 [55]. There is a current practice to use band gap modifiers. Many researchers use a band gap modifier in order to improve the functional properties of nanocomposite based on semiconductors oxides. The functional properties are ranging from the photocatalytic properties, sensitivity and selectivity for different sensor types, catalysts and others [52]. Raman spectroscopy measurements was performed with Raman dispersive spectrometry–LabRam HR Evolution, Horiba Jobin Yvone, France, equipped with Laser wave 532 nm, acquisition time 5 s, 10 accumulation, 0.1% laser power, used in order characterized the order-disorder degree in the synthetized nanocomposite. Figure 18 shows the RAMAN spectra for CeO2 and rGO/CeO2.
Raman spectra for CeO2 powder (a) and synthetized 1%rGO/CeO2 (b).
Figure 18(a) presents the Raman spectrum of CeO2 powder which reveals a peak situated at 462.5 cm−1 characteristic for CeO2, corresponding to the Raman active modes F2g for Ce–O symmetric breathing mode of oxygen atoms around the Ce atoms [49]. Figure 18(b) shows the Raman spectrum of 1%rGO/CeO2 with characteristic peak of ceria at 449 cm−1 corresponding to the Raman active modes of CeO2 and characteristics graphene oxide peaks [69] at 1348.54 cm−1 (D band), 1593.30 cm−1 (G band), 2681.42 cm−1 (2D band), 2938.30 cm−1 (2D + D’ band) and 3180.64 cm−1 (G + D’ band). According to the Raman line, broadening is equivalent with lattice constant cell crystallographic parameter ao of CeO2 can be estimated by Eq. (9) [49], with 0.9 nm for CeO2 powder and 0.43 nm for the CeO2 from the 1% rGO-CeO2 nanocomposite. The characteristic peak of CeO2 was shifted with 13.05 cm−1 at lower wave number as a doping effect of 1%rGO.
where the FW is full wide at half-maximum of the Raman active mode F2g and d is the diameter particle in nm. Figure 19(a) shows the Raman spectrum of GO with characteristic peaks of graphene oxide peaks at 1347.96 cm−1 (D band), 1595.33 cm−1 (G band), 2681.77 cm−1 (2D band), 2914.68 cm−1 (2D + D’ band) and 3196.75 cm−1(G + D’ band). Figure 19(b) shows the Raman spectrum of 1%CeO2/1%rGO/ZnO with characteristic peaks of graphene oxide peaks at 1350.87 cm−1 (D band), 1605.74 cm−1 (G band), 2684.22 cm−1 (2D band) and characteristic peaks of ZnO and active modes F2g, CeO2 (462.79 cm−1), where the ID/IG can be used to evaluate quantitative the crystallinity/disorder degree and are varying between 1.05 and 1.24, lower value indicates the less defects in graphitic structure [69]. Figure 20 shows the morphologies for the three sensitive materials reveals for (a) CeO2 was evidentied a polycrystalline structure, for (b) CeO2/rGO - the micrographic image presents a 3-D layered structured of GO mixed with small polycrystalline particles of ceria and for (c) CeO2/rGO/ZnO was evidentied a mixed polycrystalline structure of preponderant small particles of wurtzite hexagonal types ZnO and minor faces of cubic CeO2 and carbon faces.
Raman spectra for rGO (a) and synthetized 1%CeO2/1%rGO/ZnO (b).
SEM images for: (a) CeO2; (b) CeO2/rGO; (c) CeO2/rGO/ZnO.
The sensor module is constituted from printed circuit board (PCB), substrate with interdigitated Ag array electrode deposed by photolitografic technology and the sensitive material in amounts 15–20 mg was deposited on surface electrode. The active area for sensitive material was 10 mm × 0.5 mm, Figure 21(a) and (b).
The NO2 gas sensing element structure (a) PCB substrate with interdigitated Ag array electrode; (b) the sensing element made with PCB substrate and sensitive material deposed on surface electrode.
In metal oxide semiconductor gas sensors, the resistance is measured as a function of the gas concentration. Generally, this devices function at elevated temperature between 200 and 600°C in air. The grain of metal oxide is covered by adsorbed oxygen molecules. Oxygen molecules present the character of electronegativity, they extract electrons from the conduction band of metal oxide causing the formation of oxygen ions
As is it known, nitrogen oxides specify as NOx have the character of oxidizing gases with very high electron affinity 2.28 eV as compared with oxygen 0.43 eV. The NOx molecules interact with the surface of metal oxide through surface adsorbed oxygen ions, thus increasing the potential barrier at grain boundaries. The redox reactions taking place on the surface of a metal oxide can be written according with Eqs. (13–14) [70].
As result, the thickness and resistance of the depletion layer increase and resistance change is reversible at operating temperature [70]. The oxygen vacancies can significantly enhance the adsorption of oxygen molecules and electrons will transfer from the oxygen vacancies from CeO2 to the oxygen molecules, resulting in more oxygen species (especially O2−). These oxygen species will react with NO2, resulting in an abrupt change in the conductivity of the sensor [71]. The graphene sheets by their good properties as: high surface area 2630 m2/g, thermal conductivity in the range of 3000–5000 W/mK at room temperature carrier mobility up to 200,000 cm2/Vs [72], electrical conductivity of 7200 S/m [73], coming from their structure two-dimensional (2D) single atom layer is used in gas sensing and in the composite leads to increase of the electrical conductivity of CeO2 and thus improve the performance to gas sensing room temperature [71].
The sensors with sensitive materials 1%rGO-doped CeO2, and 1% CeO2/1%rGO-doped ZnO were tested in NO2 atmosphere in concentrations 5 and 10 ppm. The gas testing was effected with testing installation presented in Figure 4. The gas testing was performed in order to establishment of the sensitivity sensors and response time. The sensor sensitivity was expressed in accord with Eq. (15), as the ratio of resistance in air to that in target gas, in this case NO2,
where
The response time is expressed by formula:
Notations are the same with Eq. (15) [28]. Having the resistance values, from the graph, the response time can be determined. Figure 22 shows the resistance variation with time exposure gas and Figure 23 shows the sensitivity (response) for sensing element with time exposure gas for two sensitive material: 1%rGO/CeO2 and 1%CeO2/1%rGO/ZnO. All the characteristics are considered for the 1 hour time exposure. Since the resistance of sensors decreases sharply, for a good view we opted for a semilogarithmic scale representation of resistance and sensors response with exposure time. The decreases of resistance denotes a character of type p semiconductors for both sensitive materials in oxidant gas like NO2, character given by reduced graphene oxide which is a semiconductor type p.
Resistance variation function with time.
The sensitivity variation function with time.
The sensors performances can be resumed in Table 5.
Sensitive material | Concentration NO2, [ppm] | Resistance in air, [kΩ] | Resistance in gas, [kΩ] (after 3600 s exposure) | Sensitivity, | Response time, [s] |
---|---|---|---|---|---|
1%rGO/CeO2 | 5 | 1060 | 0.53 | 2000 | 2.5 |
1%CeO2/1%rGO/ZnO | 5 | 885 | 21.43 | 41.29 | 2.8 |
1%rGO/CeO2 | 10 | 2800 | 1.54 | 1818 | 3.5 |
1%CeO2/1%rGO/ZnO | 10 | 3180 | 9.9 | 321.2 | 2.2 |
The characteristics of sensors with sensitive materials 1%rGO/CeO2 and 1%CeO2/1%rGO/ZnO.
Analyzing the obtained results, it can be concluded that the both sensitive materials show the good performance at NO2 exposure at room temperature. However, the sensitive material composed by 1%rGO/CeO2 presents very good sensitivity at NO2 exposure for 5 and 10 ppm concentrations of 2000 and 1818 and very short response time of 2.5and 3.5 s. Thus, sensitive materials with CeO2 in majority concentration in matrix with reduced oxide graphene presents the best performance at NO2 detection, face to sensitive materials 1%CeO2/1%rGO/ZnO where ZnO is majority and are a promising sensitive materials for NO2 detection.
Resistance of sensor sensing element ES, R + ΔR, Figure 24 may vary from less than 10 kΩ to several hundred kΩ, depending on the design of the sensor and the physical environment to be measured. The sensing element ES of the NO2 gas sensor is disposed in one of the Wheatstone bridge arms and shows the resistance R for a NO2 concentration of zero ppm. The resistances of resistors disposed in all of other branches of the bridge show the same value, namely R. A DC voltage excitation source U1 is connected to one of the bridge diagonals [74].
Schematic of the electronic block for signal conditioning generated by the sensing element.
If the gas concentration of NO2 is zero ppm, the sensing element ES shows the resistance R. The Wheatstone bridge is in this case at equilibrium so that the voltage measured on the other diagonal of the bridge is 0 V. Variation of NO2 gas concentration in the range from zero ppm to 10 ppm causes a voltage variation with ΔU0, which can be measured on the other diagonal of the bridge. The voltage variation up to ΔU0 is given by the relation (17):
The operational amplifier that can be used with the best performance is instrumentation type amplifier (in-amp), “resistor programmable” (Figure 24). Considering the transfer function of the electronic amplifier module and taking into account the relation (17), we obtain [74]:
where A is the amplification factor, depending on the Rg resistance value and
The continuous U1 excitation voltage source is made using a D/A digital/analog converter, a Uref reference voltage and an operational amplifier (OA) (Figure 25). Thus, depending on the values set for the least significant bit (LSB) up to the most significant bit (MSB), the resulting word can establish a desired U1 continuous excitation voltage. Figure 25 shows the schematic of the electronic block for the U1 excitation voltage source.
Schematic of the electronic block for the U1 excitation voltage source.
Schematic of the electronic linearization block of the signal generated by the Wheatstone bridge, via an operational amplifier, in-amp uses an analog multiplier [75], AD 534 or AD 734, produced by analog devices (Figure 26). The transfer function associated with the AD 534 or AD 734 analog multiplier is written [76, 77]:
where A0 is the open loop gain, X1, X2, Y1, Y2, Z1 and Z2 represent the inputs of the analog multiplier, SF a scale factor, typically SF = 10 V and W = OUT, according to Figure 26.
Schematic of the electronic linearization block of the signal generated by the Wheatstone bridge, via an operational in-amp instrumentation amplifier.
Since A0 → 72 dB can be considered as W/A0 → 0 and the relation (19) becomes:
Since Z1 = W it is obtained:
Since Z2 = U2, Y1-Y2 = βU2, 0 ≤ β < 1, X2 = 0 and X1 = Z1 = W=U3, according to Figure 26. Finally,
is obtained
The relation (6) together with the relation (2) represents the calculation method regarding the linearization of the signal generated by the Wheatstone bridge, via an operational in-amp instrumentation amplifier.
By considering the three previously analyzed electronic blocks, the electronic block for signal conditioning generated by the sensing element is obtained. Figure 27 shows the schematic of the electronic block for signal conditioning generated by the sensing element, single supply bridge applications.
Schematic of the electronic block for signal conditioning generated by the sensing element, single supply bridge applications.
It is possible to reconfigure circuits so as to improve the performance in terms of reduces the dc common-mode voltage to zero. Figure 28 shows how the use of split U1 tension in order to reduce the dc common-mode voltage to zero.
Schematic of the electronic block for signal conditioning generated by the sensing element, dual supply bridge applications.
An isolation amplifier can be useful for this application, with respect to the signal-conditioning, so that it does not exist galvanic connections between the bridge and grounded instrumentation circuitry.
Cerium, by its unique electronic configuration ([Xe] 4f26s2) and by the two common valence states Ce3+ and Ce4+ allowing a redox reaction between them which gives CeO2 excellent chemical and physical properties, is used in many applications, like as: three-way catalytic reactions to eliminate toxic automobile exhaust, the low-temperature water gas shift reaction, oxygen permeation membrane systems for fuel cells as well as gas sensors. For gas sensing applications, several sensitive elements based on CeO2 were tested to determine both this detection function as well as this performances:
By doping the CeO2 with oxides semiconductor, for example, Nb2O5 introduced in CeO2 structure, the following mechanism is triggered: Nb5+ ions initiate the reduction of Ce4+ to Ce3+ resulting in the formation of oxygen vacancies with consequences in increasing the sensitivity.
The ionic conductivity of CeO2 is improved by doping with rare earth oxides such as Sm2O3, Gd2O3 and Y2O3. The size of conductivity for doped ceria depends on the ionic radius of the doping ion. Therefore, the introduction of trivalent ions in ceria leads to the production of anion vacancies which may enhance catalytic and gas sensing.
CO2 detection using sensitive material based on mixed binary oxide CeO2-Nb2O5 in ratio 97%/3%, for 10,000 ppm CO2 at the 25, 50 and 70°C chamber test temperature, the sensor was developed voltage values of 48, 50 and 770 mV.
CO2 detection with Y2O3-doped CeO2 molar ratio CeO2/Y2O3 = 4:1 with characteristics: the CO2 concentration in the range of 0–5000 ppm, function temperature 135°C, climatic conditions
Sensitive materials based on 1%rGO/CeO2 and 1%CeO2/1%rGO/ZnO was analyzed with UV-Vis spectroscopy showing that a decreasing of band gap of CeO2 in matrix with rGO from 3.19 eV at 3.05 eV what allows for sensor to function at room temperature. The sensors were tested for 5 and 10 ppm NO2 obtaining the sensitivities of 2000 and 1818, response times of 2.5 and 3.5 s for sensitive material 1%rGO/CeO2 and sensitivities of 41.29 and 321.2, response times of 2.8 and 2.2 s for sensitive material 1%CeO/rGO/ZnO. The sensitive materials made so that the matrix in which CeO2 is in majority presents the best performance.
Also, the sensing mechanism in CO2 and NO2 detection was discussed.
Based on these results, it can be stated that CeO2 is a good candidate in gas sensors applications.
The research was performed with the support of Ministry of Research and Innovation, NUCLEU Programme Research Projects - Romania, Contract PN18240301/2018, “Sensors and electronic actuators based on new active materials”, and UEFISCDI, Program 2 - Romania, Contract 4SOL/2017, “Development and implementation of modern solutions for gas turbine propulsion systems and their associated systems”.
No conflict of interest exists with regard to this chapter.
WSN is an emerging research area that promotes wireless communication across the nodes in a network in a random fashion. A huge set of parameters relevant to natural weather conditions pertaining to spatial and temporal domains is prominent to assess the performance of WSNs. Hence, in comparison with the normal ad-hoc networks, WSN exhibits more restricted constraints and critical conditions. WSNs are designed with a wide variety of sensors designed to tune in consistent with the particular application based domain. In WSNs, each node is mostly equipped with a restricted battery, a rather tiny memory unit, a simple processing unit, and a radio transceiver. Communication through these devices leads to the actual fact that a sensor network is a wireless ad-hoc network. Each sensor node generally supports multi-hop routing where nodes act as forwarders, relaying data packets to sink or a base station. Apart from monitoring the environment, the biggest challenge posed in WSN is the computation capability. Some of the algorithmic issues that need to be tackled in a sensor network are routing, object tracking, data gathering, power saving, base station initiated querying, etc. Solutions to the aforementioned problems hence demand an innovative computing paradigm [1].
One of the main challenges in WSNs is the large scale networking that is the sheer size exhibited by the wireless sensor networks. WSNs have an extensive collection of present and future applications ranging from a few hundred to several hundred thousand, comprising of low-end sensor nodes. The first direct consequence of such a large scale is the huge amount of traffic load incurred across the network. This could easily exceed the network capacity, and hence, hamper the communication reliability due to packets loss by collisions and congestion along the chosen path to the destination from the event field [2]. The other major aspect to deal with WSNs is the growth of the network, which impacts the overall performance and functionality. In such a scenario, it becomes essential to find the optimal routes and to maintain the communication overhead at tolerable levels when data broadcasting over a large network. This plays a prominent role to assess the scalability aspect of WSN in terms of time and space complexity. As the network scales up, the routing tables and traffic to maintain these tables also increase. For this reason, networking systems must be adaptive and scalable to variation in the size of the network. Bio-inspired mechanisms such as Ant Colony Optimization (ACO) techniques provide efficient routing mechanisms for large-scale mobile ad-hoc networks. Another major challenge to be considered is the dynamic nature of WSNs. Early communication systems comprising of transmitter/receiver pairs and communication channel are all static, whereas current networking systems are dynamic due to their node behavior, mobility, bandwidth channels, demand patterns, traffic and networking conditions. It is essential to take into account the communication mode adopted across the nodes within a particular range to estimate the overall network quality. In a target tracking application, the amount of traffic generated may increase or decrease with the time which depends upon the target behavior and monitored area. This imposes a varying load on the network resulting in inefficient capacity utilization if static approaches are used. To solve this problem, the bio-inspired solutions are known to be proficient in adapting themselves to changing circumstances towards survival.
The ability to deal with resource constraints also adds up to a major challenge in WSNs. As the number of resources acquired by the nodes increases, the overall cost in terms of bandwidth utilization also increases. More specifically, for the WSNs composed of nodes that are inherently constrained in terms of energy and communication resources, these limitations directly bound their performance and mandate for intelligent resource allocation mechanisms. The biological systems help researchers by providing solution approaches to deal with the trade-off between high demand and a limited supply of resources. For example, in the foraging process [3], ants use their individual limited resources towards optimizing the global behavior of colonies in order to find a food source in a cost-effective way. The behavior of ant colonies in the foraging process inspires many resource-efficient networking techniques. The need for autonomous operation without infrastructure also contributes to a major challenge in WSNs. Infrastructure free environment calls for a mechanism to track the growing number of nodes in the network to overcome adverse impact of overall network failure. The performance of the network must be assessed before and after every operation executed either statically or dynamically across the network so that networks continue their operations without any interruption due to the potential failures. This adds up a major responsibility on the network towards self-organization, self-evolution, and survivability. In order to tackle these challenges, biological systems provide promising solutions in the context of WSNs.
Swarm Intelligence is based on the study of the collective behavior of distributed and self-organized systems such as ant colonies, swarms of bees or birds, flocks of fishes. Ant colonies exhibit interesting characteristics which are most desirable in the context of WSN management and control. Ant colonies are able to effectively coordinate themselves to achieve specified global objectives without centralized planning or organizational structure. These cooperative behaviors to accomplish the complex tasks emerge from individual ant’s much simpler behaviors and local rules which they follow by instinct. It is evident that the adaptability, flexibility, and robustness exhibited in their behaviors made them capable to solve real-world problems. In the literature [4, 5], several routing protocols with various metrics that use ant colony optimization have been reported. Ant colony optimization is a meta-heuristic approach inspired by the behavior of real ants seeking the path from their colony to the food source. Real ants explore the possible paths between a food source and their colony by depositing pheromones on their return journey to the colony and then follow the shortest path, that is, the path having the highest pheromone trails from colony to the food source. ACO is used to find the optimal path from the source (nest) to the destination (food). Forward ants select the next node randomly. Upon reaching the destination, the forward ant gets converted into backward ant and deposit pheromone trail on the path traversed. The pheromone trail will be more on the shortest path towards food. Here, the mechanism implied by the ants is said to be either random probability based or a heuristic based approach. If the mechanism followed by an ant is found to be successful, then it is adopted; else it is discarded and another path is discovered.
Secure routing is highly demanding in Wireless Sensor Networks due to the nature of routing operation in an infrastructure less environment wherein resource-constrained nodes need to cooperate with each other to route the packets. For most of the mission-critical applications, WSNs are to be deployed in harsh and hostile environments unattended where critical security issues need to be considered due to various types of threats and attacks they are exposed to. In addition to the robust key management schemes used to secure the network from external attacks [6], WSN requires strategies to mitigate the effect of insider attacks by detecting the misbehavior nodes refusing to participate in packet delivery thereby launching non-forwarding attacks. These behavior related attacks can be thwarted by assigning trust rating to nodes in the network based on the reputation they build over a period of time by being trustworthy in participating in the packet delivery. There are several insider attacks or behavior level attacks that target the routing operation in WSN [6]. In the black-hole attack, adversary nodes do not forward packets completely, whereas in a gray-hole attack, malicious nodes selectively forward some packets. Most of the insider attackers are Denial of Service (DOS) attacks [7]. Behavioral level attacks can be mitigated by providing trust enabled routing to prevent non-forwarding attacks by insider misbehaving nodes. Identity-related attacks can be avoided by providing security services based on efficient cryptography approaches to secure data confidentiality and data integrity. The various routing attacks possible against WSN can be stated as follows: Worm Hole Attack where in there is a threat on confidentiality and authenticity; Denial of Service attack (DoS) attack, where there is a threat on the availability, integrity, confidentiality and authenticity; Selective forwarding attack, which creates threat towards availability and integrity; Sink hole, gray hole and Sybil attacks posing threat on availability, integrity and authenticity; Carousel attacks holding a threat on availability, confidentiality and authenticity. Hence, there is a need to use appropriate techniques to protect data and overall network functionality from the aforementioned attacks. The number of packets dispatched correctly from source to destination, the number of packets lost, the amount of energy consumed, the fake addresses generated during the routing process, etc. are various parameters to be considered to deal with WSN attacks.
Most of the conventional networking paradigms are unable to accommodate the scalability, complexity and heterogeneity of modern world real-time scenarios. These challenges are new by-products of evolution in communication technologies in the last few decades. Hence, there is a need to identify the mechanisms that perform suitably well when dealing with a huge set of nodes, with dissimilar behavioral aspects. Particularly when dealing with WSN for insect colonies, individual node responses account for more loads and degrade the performance of the overall network. Hence, to achieve optimality in terms of resource utilization and scalability, there is a need to switch from static to dynamic access strategy. At the other end, the characteristics such as adaptive to the varying environmental circumstances, robust and resilient to failures caused by internal or external factors and self-organization lead to different levels of inspiration from biological systems towards deriving different algorithm approaches and designs at network layer for effective, robust and resilient communication. Majority of the work in the literature captures the laws of dynamics to deal with aforementioned scenarios in the modern world that may result in a probabilistic outcome. The common rationale behind this research is to capture the governing dynamics and understand the fundamentals of biological systems in order to devise new methodologies and tools for designing and managing WSNs that are inherently adaptive to dynamic environments, heterogeneous, scalable, self-organizing and evolvable. Many of the existing works in literature in the WSNs area focus on achieving better outcomes in terms of energy efficiency or optimal routing paths based on the shortest distance or scalability aspect to deal with a huge crowd of packets and nodes or distance based minimization with limited security aspects. In this work, various essential parameters like distance, threshold, energy, link quality with security are integrated to achieve productive outcomes across the network traversal. These solutions are addressed in the proposed methodology in the form of SIBER-XLP with TECB, SIBER-DELTA, and SIBER-DELTAKE.
This chapter is organized as follows—Section 2 provides brief review on the related work in the area of swarm intelligence based secure and trust enabled energy efficient routing for WSNs. Section 3 discusses the SIBER-XLP model which represents Swarm Intelligence Based Efficient Routing protocol for WSN with Improved Pheromone Update Model and Optimal Forwarder Selection Function. This section also presents the Threshold Energy Conservation and Balancing (TECB) approach developed in SIBER XLP model for static and dynamic environments. Section 4 proposes SIBER-DELTA model which is Swarm Intelligence Based Efficient Routing protocol for WSN with Distance, Energy, Link Quality, and Trust Awareness designed to suit the harsh and hostile environment where the WSN nodes are deployed. Section 5 presents SIBER-DELTAKE model, an improved ACO-KM-ECC trust aware routing protocol based on ant colony optimization technique using K-Medoids (KM) algorithm for the formation of clusters and setting up of cluster heads, and Elliptical Curve Cryptography (ECC) mechanism for secure routing with key generation and management which further takes into account Distance, Energy, Link Quality and Trust Awareness in the routing decision. In this hybrid model, both the identity and behavior related attacks are tackled with effective results depicting the overall performance of the proposed work. This is followed by a section on conclusion and future research directions.
Swarm Intelligence area, on which the routing protocols of WSN are based, leads to optimal use of resources in a distributed way. The routing capacity of a protocol is effective if it leads to the minimization of energy and cost of traversal across the nodes. Swarm intelligence based efficient routing (SIBER) is an Ant Colony Optimization (ACO) [8] based routing algorithm for WSN where the forward ants are launched at regular intervals from source node with the mission to locate the sink node with equal probability by using neighbor nodes with minimum cost along the path from source to sink. ACO in integration with WSN achieves better energy saving and reduction in communication overhead. Using variants of the basic ACO, several approaches with different constraints were proposed in the area of ACO based routing algorithms for WSN. In the Energy Efficient Ant Based Routing (EEABR) Protocol proposed in [9], pheromone distribution is used in such a way that nodes nearer to the destination have high pheromone when compared to the other nodes. It suffers from excessive packet delivery delay as it does not take into account link quality. IEEABR [5] is an improved version of EEABR which allows non-optimal paths to be selected for packet transmission, increasing network lifetime and preserving network connectivity, but incurs excessive delay in packet delivery. Sensor Driven and Cost-Aware Ant Routing (SC), Flooded Forward Ant Routing (FF) and Flooded Forward Ant Routing (FF) protocols are proposed in [10]. The SC algorithm is energy efficient but suffers from a low success rate. Flooded Forward Ant Routing, FF Protocol is a multipath routing protocol which uses broadcast method to route packets to the sink by flooding forward ants to the sink. The FF algorithm exhibits shorter time delays, but suffers from generation of significant amount of traffic. Flooded Forward Ant Routing, FF Protocol utilizes constrained flooding of both forward and data ants to route the data and to discover optimal paths. It exhibits high success rate when compared to SC and FF but suffers from high energy consumption. It has been seen from the detailed analysis of various-reported ant colony based routing algorithms for WSN in the literature [4, 5], most of the ant colony based routing techniques do not consider all the parameters to select the best quality path in terms of energy, distance, link quality and other metrics thereby leading to the selection of sub-optimal paths. WSNs form a major source for Internet of Things (IoT) due to their ability to adapt dynamically with the modern world gadgets. The computational capacity of a sensor network depletes while progress is made to transmit data across the nodes in a network. Hence the protocols to route data across the network need to be highly dynamic in nature with the ability to adapt to changes in the environment. Clustering relevant data into similar entities, ability to reduce the size of data by applying mining techniques, increasing the network life time in a robust fashion, dealing with power and network outages across widely distributed geographical locations are some of the parameters that need to be considered while the development of the routing algorithms.
A Reputation system based framework for Energy Efficient, Trust-enabled Secure Routing for Wireless Sensor Network proposed in [10, 11] incorporates a customized reputation system defined as Sensor Node Attached Reputation Evaluator (SNARE). SNARE is a collection of protocols that communicates directly with the network layer and adopts geographical routing principle to cope up with large network dimensions and relies on a distributed trust management system for the detection of malicious nodes. The system consists of three main components—monitoring component, rating component and response component. The monitoring component, observes packet forwarding events. Here a monitoring node will not be in a continuous monitoring mode of operation, rather, it will monitor the neighborhood periodically and probabilistically to save resources. When a misbehaving event is detected, it is counted and stored until an update time and then a report is forwarded to the rating component. The rating component at the other end, evaluates the amount of risk an observed node would provide for routing operation. The risk value is a quantity that represents the previous misbehaving activities that a malicious node (a node that drops packet) obtained. This value is used as an expectation for how much risk would be suffered by selecting that malicious node as a router. Risk values are updated based on the first hand information every time a new misbehavior report is received from the monitoring component. Additionally, if an observed node behavior is idle for a certain period of time, then its risk value is reduced. A monitoring node also updates the risk values of its neighbors by second hand information received periodically from some announcers. Based on the trust relations, a node will try to avoid malicious nodes based on the routing decision made by the routing protocol—Geographic, Energy, Trust Aware Routing protocol (GETAR) [11]. GETAR incorporates the trust information along with distance and energy information (routing decisions are based on a weighted routing cost function which incorporates trust, remaining energy and location attributes) to choose the best next hop for the routing operation thus allowing for better load balancing and network lifetime extension. To design a framework based on reputation for sensor networks, nodes maintain reputation for other nodes and use it to evaluate their trustworthiness. This results in the development of a robust and scalable model in a generalized fashion to deal with defects across the data transmission process. This approach employs Bayesian formulation where probability is of at most significance. Social networking plays a prominent role to determine the trust factor based on reputation of a node. The present and future behavior of nodes in the network can be judged based on the reputation of a particular node [12]. Beta reputation based system is a strong inference based system that enables to set foundation of trust between the people in e-biz world. The performance of such a system can be evaluated by changing the weight across the nodes (small or large), by changing the feedback factor (positive or negative), by changing the discount and forgetting factors (old or new), and an integration of either of these factors, all based on reputation factor of a node. The goodness of this approach is that it is not adhered to any single environment [13]. However, as it also uses probability to calculate the aforementioned parameters, the working of this system cannot assure effective results in real time.
At the other end, authentication and key management schemes are the most important security services to provide data security and data confidentiality in WSN. Techniques such as random key pre-distribution for pair wise key establishment and broadcast authentication to provide security without the expensive Public key cryptography operations is preferable for deployment in traditional networks. However, random key pre-distribution techniques cannot ensure key establishment among any two nodes and endure arbitrary node compromises at the same time. Moreover, it has become highly challenging task to achieve loose time synchronization required by all broadcast authentication schemes in WSNs [14]. In recent years, application of Public key cryptography on resource-restricted sensor networks in the form of Elliptic Curve Cryptography (ECC) has emerged as highest preferred approach among several PKC options as a result of its fast computation, small key size, and compact signatures. ECC is based on mathematical formulation of discrete logarithmic problem that performs scalar computations among the points on the curve. With this kind of computation, it is difficult for the intruders to extract the original message in WSN environment. ECC uses discrete log approach to generate key and to perform encryption and decryption techniques. A data packet can be encrypted using ECC upon discovery of route to the sink node [15]. ECC is further strengthened by the addition of a predetermined threshold values in the method that transmits the information by splitting the original information into several small pieces of information, based on which the appropriate secret key will be generated, making it difficult for third parties to tamper over the network. This method was found to be effective as compared to RSA algorithm for sensor networking environment. However, the size of message piece was chosen in random, without describing any standard methodology to achieve effective threshold based outcomes [16]. An efficient integrity-preserving data aggregation protocol yields better performance in terms of reduction of the communication overhead as compared to the modulo addition based methods. This integrity preserving method in conjunction with Elliptic Curve Cryptography results in achieving the maximum optimum higher bound in a secure way. The proposed work in [17] allows the verification of the authenticity of aggregated data both at the base station and aggregators. However, due to the decryption at aggregators, both these approaches suffer leakage of data privacy. Also, the method developed is applicable to hierarchical structures with level wise arrangement. The algorithm proposed in [18] to construct the optimal network architecture in a cluster form employs Elliptic Curve Cryptography to commute public and private keys using a 176-bit encryption key consisting of combining the node ID, Elliptic curve encryption key, and the distance to its cluster head. Homomorphic encryption is used to allow cluster head to aggregate the encrypted data without having to decrypt them thereby reducing the energy consumption of cluster heads. This proposed technique greatly improves the network lifetime, memory requirements, communication overhead, and energy consumption. The ECC can in turn be integrated with other Message Authentication Code (MAC) to enhance the level of security through authentication [19].
WSNs where the sensor nodes combine their data to form a global environment include base stations that process the data collected across various nodes. This may result in depletion of huge amounts of energy and scalability issues. The solution to overcome this problem is through integration of clustering algorithms. Various heuristic based clustering methods that enable the reduction in energy consumption include linked clustering, hierarchical clustering and weighted clustering algorithms like highest connectivity based clustering, Max-Min Clustering, LEACH method, etc. The linked clustering algorithms like LCA and LCA2 work well in the scenarios where there is a unique identity assigned to each node in the cluster. However, there may be limited number of clusters or nodes per cluster, making it difficult to work in dynamic environment [20]. In Highest Connectivity clustering method, the cluster head is selected based on the highest degree of a node. The clusters once chosen to act as a master may in turn act as a slave if new cluster head is elected. At the other end, in max-min clustering, stable masters and large clusters can be created with huge set of messages delivered across each node from source to destination. In weighted clustering algorithm, the mobility and transmission energy of a node enable to elect a cluster head. Large amount of energy is consumed as the cluster head is selected based on the combined weight of each node. In Low Energy Adaptive Clustering Hierarchy (LEACH) and Two Level LEACH, cluster head is chosen dynamically with local computation being carried out at each node. At the other end, distributed cluster head is elected at consuming more power in Energy Efficient Clustering Scheme. There is little or no control over the cluster head in this clustering method. In Power Efficient Gathering in Sensor Information Systems (PEGASIS), large number of nodes in a cluster can be formed, which leads to high energy efficiency but leads to long delays when the chain (huge number of connected nodes) is long. In our proposed model, k-medoids clustering is chosen that overcomes the drawbacks of the aforementioned methods, as the appointment of cluster head is done based on the distance of the data points from cluster center and hence there is no consumption of higher energy or dissipation of high power, resulting in constant performance across the nodes suitable for wireless sensor networking environment. The selection of a cluster head varies from one protocol to the other, with probability based approach being the most common one to estimate the energy level and power consumption level of a particular node in heterogeneous environment [21]. Efficient routing technique is regarded as the one that develops shortest path between the cluster head and sink, leading to the development of optimal path. Also, the energy consumption of sensor nodes in WSN can be minimized using clustering techniques where nodes with similar properties form a cluster and are close in resemblance to each other. The election of a cluster head in various clustering techniques can be made based on either a probability model or a fuzzy rule selection [22]. Fuzzy logic is built around a set of inference rules that enable to measure various parameters like distance, probability, density of a node, etc.
This section deals with the proposed model SIBER-XLP: Swarm Intelligence based Efficient Routing for WSN with Improved Pheromone Update Model (PUM) and Optimal Forwarder Selection Function (FSF). SIBER-XLP model considers the link quality of the path along with energy and distance to select the shortest path from source to destination. It has been observed from our detailed analysis of various reported ant colony based routing algorithms for WSN that the Forwarder Selection Function to select a node for packet forwarding and Pheromone update model need to be revisited. SIBER-XLP includes two variants named as SIBER-ELP having Equal Link Probability signifying the routing scheme for sensor nodes deployed in Normal Environment like schools, hospitals, commercial organizations etc., and SIBER-VLP having Variable Link Probability signifying the routing protocol for sensor nodes deployed in Harsh Environment like defense, battle fields etc. Depending on the environment where they are deployed and the prevailing networking conditions, it is noticed that link quality and other related parameters may vary which are not taken into account when selecting the next forwarder by various ant colony based routing algorithms for WSN in the literature as in [4, 5, 8, 9, 21, 22, 23]. By considering these problems into account, the proposed work in this section suggests an improved FSF, in order to select the best next neighbor to forward the packet to the sink node. It is also observed that the PUM model varies from one algorithm to another as the parameters used in the computation of the amount of pheromone concentration to be placed on the path traversed by the backward ant differ. Further, it is found that the amount of pheromone computed to be placed on the path during return journey is not proper to reflect that path as an optimal one, during the simulation period. In general, a strongest path must have more pheromone when compared to weakest path and the variations in pheromone concentration should be such that always strongest path is selected. Keeping these considerations in mind, PUM model is designed with the metrics—minimum and average energy of the nodes along the path, number of hops (i.e., distance indicating shortest path), and link quality of the path, which are collected during their journey from source to sink.
The proposed model SIBER-XLP [24] consists of two main components FSF and PUM. In this architecture, a node to traverse considers the path of its neighbors on both the sides and then proceeds accordingly based on various control parameters like alpha (α), beta (β) and gamma (γ). The SIBER-XLP architecture is depicted in Figure 1.
SIBER-XLP model architecture.
FSF uses a probabilistic approach at every node along the path from source to sink node in the network to select the best next neighbor to forward the packet to the sink node. The Forwarder Selection Function must always choose an optimal path from source to the sink to forward the packets with the sole objective to improve the Network Lifetime by balancing the energy among the nodes in the network to ensure that some nodes along the path do not get depleted fast (resulting in Network disconnections or partitioning) and at the same time selecting good quality links along the path to guarantee that node energy is not wasted due to too frequent retransmissions. Further, selection of shortest paths involving less number of nodes results in saving of energy due to the participation of few set of nodes in packet forwarding. FSF uses a probabilistic approach to select the best node among neighboring nodes to forward the information based on Pheromone Trail (PT), Node Energy level (EN) and node link quality (LP). PT function represents the concentration of pheromone deposited on the path between the nodes, that is, current node and its neighbor node considering Energy, distance and link quality along the path from source to destination. In other words, higher PT represents the better quality path from source node to the destination in terms of energy, distance and link quality. EN function represents the energy level of the neighbor node and LP function represents the quality of the link between the current node and the neighbor node.
Hence, FSF (
where
Link Probability
where
Let
where
Threshold Energy
It is observed that the amount of pheromone computed to be placed on the path during return journey is not efficient to reflect that path as an optimal one, during the simulation period. Strongest path should have largest amount of pheromone whereas weakest path should have least amount of pheromone or almost zero. Among the competing stronger paths for selection, the variations in pheromone concentration should be such that always strongest path (i.e., optimal) is selected. Taking this into consideration, improved PUM model with the following parameters collected by the forward ant is developed—
Higher average and minimum energy of nodes along the traversed path would result in a good quality path in terms of Energy.
Pheromone Update Function,
Equation (8) extracts the impact of average and minimum energy of the nodes along the optimal path. In other way, good quality optimal paths having high average and minimum energy will result in large amount of pheromone deposition on the path. If destination node is reached, then forward ant is converted to backward ant and the traversed path is updated by improved Pheromone Update Function (ΔPT).
At instances where nodes nearer to the destination are supposed to have higher pheromone deposition as compared to the nodes nearer to source, ΔPT computed in (8) is updated by the backward ant in the following fashion:
where
Whenever a node
where, ρ is a decay coefficient and (1- ρ) represents the evaporation of Pheromone trail since the last time
SIBER-XLP model with static and dynamic deployment of nodes is implemented and simulated using NS-2. To evaluate the performance of proposed model, initial scenario with random network topology is chosen to carry out the experiment with random way point mobility model selected to progress at a specified speed. The network size with 25, 50, 75 and 100 nodes is considered to demonstrate the effectiveness of results. The results obtained by the implementation of the proposed work are compared against the existing EEARB model in [9] to evaluate the efficiency of the proposed work. The parameters chosen to determine the effectiveness of the proposed model are Energy efficiency abbreviated as EE, Minimum Available Energy represented as ME, Latency shown as LT, Packet Delivery Ratio represented as PDR. The behavior of nodes in static and dynamic environments against parameters EE, ME, PDR, LT is shown in Figures 2 and 3. The results show the effectiveness of SIPER-VLP model against the other models like SIBER-ELP and EEABR for a maximum of 100 nodes. Figures 2(a) and 3(a) show a significant increase in energy efficiency for both SIBER-ELP and SIBER-VLP models when compared with EEABR in static environment, while still showing greater increase in energy efficiency in dynamic environment. As evident from Figures 2(b),(d)
(a) Static EE evaluation. (b) Static ME evaluation. (c) Static LT evaluation. (d) Static PDR evaluation.
(a) Dynamic EE evaluation. (b) Dynamic ME evaluation. (c) Dynamic LT evaluation. (d) Dynamic PDR evaluation.
Extending the life of a wireless sensor network is critical to important applications such as battlefield surveillance where the nodes of the network must continue to be monitored and reported for a maximum period rather than getting exhausted in a less span of time, leading to interruptions in the network, division due to depletion of energy, etc. Due to the constraints exhibited by nodes of the WSN, it is necessary to utilize energy in an efficient way by introducing novel techniques and approaches to extend the lifetime of the WSN [25, 26]. In this section, the significance of the conservation of energy and its balancing using threshold energy concept (TECB) among nodes [27, 28] in SIBER-XLP is presented. The basic assumption taken here is that every node can participate in packet forwarding process if and only if it has sufficient energy larger than the threshold energy (
In general, any application can be viewed with three different kinds of traffic—low level, medium level and high level. Eth can be set to these three levels in different scenarios. For low level traffic scenario, Eth can be raised to a high value, i.e. 70–80% of the energy, for the active nodes participating in the forwarding process with the intention that only little fraction of their energy can be utilized. Likewise, medium level traffic, Eth can be adjusted to a medium level value, i.e., 50% of the available energy, and then only 50% of the battery energy will be utilized. For high level traffic scenarios, a small value can be fixed for Eth, i.e. 20–30%, as a result nodes participating in packet forwarding process will have more energy available for utilization.
The role of Eth is to limit the amount of power from the nodes that will be provided for use in accordance with the capabilities in a heterogeneous network. This would help to maintain the capacity of the less proficient nodes by involving them only when needed. In addition, nodes with higher capacity are involved in routing until its capacity reaches Eth. One may not generally have balanced paths to reach the sink with a nearly identical hop count or latency in a multipath routing. Because of the preference given to smaller distance paths with nodes having high power, the shorter paths will be chosen normally, as a result a fast decrease in the node’s power in the path selected caused by the improper energy or load balance. Here, Eth parameter helps neighboring nodes to non-participate in forwarding packets if node’s energy becomes equal/or less than Eth. This Eth control attribute conserves energy in the nodes for nearly future purpose and allows less leading nodes in the neighborhood to involve in the routing process until their levels of capacity attain Eth, hence conservation and balancing of energy is achieved among the neighbor nodes all the time. NS-2 Simulator is used to find the performance of the network under varying load or traffic. Based on the load, it is decided to adjust the Eth value of the nodes in order to conserve and balance energy by involving all the nodes alternatively in data forwarding process. In this simulation, three different kinds of traffic – low level, medium level and high level are considered. Eth can be set to these three levels in different scenarios. For low level traffic scenario, Eth can be raised to a high value (20 J) as initial energy is set to 30 J, i.e. 70% of the energy, for the active nodes participating in the forwarding process with the intention that only little fraction of their energy can be utilized. Likewise, medium level traffic, Eth can be adjusted to a medium level value, i.e., 50% of the available energy (15 J), and then only 50% of the battery energy will be utilized. For high level traffic scenarios, a small value can be fixed for Eth (10 J), i.e. 30% of the initial energy, as a result nodes participating in packet forwarding process will have more energy available for utilization. In this simulation, the network performance, i.e. energy consumption is computed and how long the network is alive is seen based on the Eth value for different types of applications based on the traffic or load. Energy consumption graphs in Figure 4 show that with the increase in simulation time, energy consumption increases which is not beyond Eth and number of nodes involved in forwarding the packet also increases. It is clear from the graphs that the nodes balance energy along both shorter and longer paths by setting Eth to only a particular value such as 10 J of energy, 15 J of energy or 20 J of energy which is accessible at each node. Same amount of energy is available on all the participating nodes at the end of the simulation period. This results in balancing energy and conserving energy, thus prolonging the lifetime of the network. There is 66% of initial energy conservation in the network for Eth = 20 J. For Eth = 15 J, there is 50% and 33% for high traffic scenarios having Eth = 10 J. Energy decreases with the rise in time, but does not fall below threshold energy in each and every case.
Siber-VLP with TECB.
Prolonging the network lifetime with the introduction of Threshold Energy concept alone is not sufficient for WSN as seen in the SIBER-XLP Model because of their constraints such as limited battery energy, limited memory, security threats, etc. As all the nodes are involved in the packet forwarding process, there is a security threat occurring from the insider nodes. In mission critical applications like military, health or commercial applications, nodes play a vital role to carry and deliver very critical and secret data. But, when a node gets compromised and misroutes the data to a wrong destination, it leads to loss of information. Also, misbehavior of nodes in the network can cause performance degradation resulting in non-forwarding attacks. There will be reduction in the system throughput with these attacks as packets need to be retransmitted many times if they are not delivered. Denial of service attacks can increase the delay in delivering the packets because some nodes which are used as forwarders may be busy in replying to the attacks and forced to delay the processing of other packets. With such attacks, network can be partitioned and communication may not take place. Finally, misbehaving nodes could also affect resources of the network by making the resource unavailable for routing. Denial of Service attacks force the adversary nodes to consume more energy during packet reception and processing unnecessarily. To tackle these misbehaving nodes in the network, SIBER-DELTA (Swarm Intelligence Based Efficient Routing protocol for WSN with Distance, Energy, Link quality and Trust Awareness) is developed as an extension to SIBER-XLP to safeguard data exchange and secure data delivery. The concept of trust comes into picture in an open environment where the nodes are exposed to different types of attacks such as eavesdropping, non-forwarding attacks, denial of service attacks, etc. Hence, it is now essential to design a trust enabled routing model taking into consideration distance, energy and link quality. The proposed SIBER-DELTA Model [29] is shown in Figure 5.
SIBER-DELTA model.
SIBER-DELLTA Model has three components such as FSF, PUM and Trust Model (TM). The trust evaluation starts by an assumption that links in the network are bidirectional. Initially each node is associated with a trust value of 1 as no data transmission happens. As and when data forwarding takes place, there comes the trust model for evaluating a node’s performance. There are two types of information obtained from the nodes of the network by the source node. One is the information received from its direct interaction with the neighbor whom it is sending data which is stated as First Hand Information (FHI). The other is the information received from the remaining neighbors of the source node except the direct neighbor which is stated as Second Hand Information (SHI). The source node calculates the Forwarding Misbehavior Index (FMI) of a node by recording all the information regarding data forwarded and data received. Mistrust Index is then calculated with the help of weighted average of FMI based on FHI and SHI. With these calculations, current trust rating of a node is depicted. Over a period of simulation time, a new current trust rating is also calculated based on their behavior in the past, so as to provide some incentives to the node for active participation or punishments to the node for misbehaving such as packet dropping. At last, final trust value of a node is calculated based on weighted average of the new current trust value and average of its trust rating in the past history. This allows handling of selective forwarding attacks in a smooth fashion. Instead of completely avoiding nodes in the routing process as done in the case of Black Hole attacks, the final trust calculation helps the selective forwarding nodes to improve their trust values based on their past history.
The nodes in the network are initially assigned a trust value of 1. Upon the data forwarding from one node to another node, trust values are altered. The information received from direct neighbors and indirect neighbors allows calculating Forwarding Misbehavior Index of each neighbor node.
Forwarding Misbehavior Index (FMI) based on Direct Interaction (FHI) is given by:
where
FMI based on Indirect Interaction (SHI) is given by:
Mistrust Index (MI) is a weighted average calculation of both FMI based on FHI and SHI. Based on value of the weighted coefficient used, importance will be given to either FHI or SHI. For equal importance of FHI and SHI, the weighted coefficient must be assigned 0.5, as it lies between 0 and 1.
Current Trust Rating (CTR) of a node
New Trust Rating based on previous Trust Rating (NTR) is a weighted average calculation of the previous trust rating of a node
This is calculated because, upon the time consumption, there may be changes taking place in the node behavior. So as to provide some incentives to the node for active participation or punishments to the node for misbehaving such as packet dropping, this NTR is framed.
Final Trust Rating based on Past History (FTR) of a node is calculated based on weighted average of the New Current Trust Rating value and Average Trust Rating of node
Instead of completely avoiding nodes in the routing process, as of Black Hole attacks, the Final Trust Calculation helps the selective forwarding nodes to improve their trust values based on their past history.
Forwarder Selection Function is similar to the previously described Forwarder Selection Function in the SIBER-XLP model but with an additional trust parameter included.
The Pheromone Update Function is also similar to the previously described Pheromone Update Function in the SIBER-XLP model but with an additional Path Trust Rating parameter included.
Our proposed system, SIBER-DELTA was simulated using open source NS-2 simulator. In this simulation, we have considered static and dynamic network scenarios with random topology with nodes randomly distributed. Random way-point mobility model is used for dynamic network with the nodes having the ability to move with a specified speed.
Our proposed trust enabled routing approach SIBER-DELTA is compared with SIBER-VLP [24] without trust awareness for varying network sizes (dimension)—50 and 100 nodes by introducing 10, 20, and 30% non-forwarding attackers in the network. It is assumed that all the methods use the same data rate. The performance evaluation metrics used in this simulation are Packet Delivery Ratio, Latency, Dropped packets, Average Energy Consumed, Average Energy Remaining, Minimum Energy, Energy Efficiency(Kb/J), and Standard Deviation. In our model, all nodes are assigned initially equal trust rating during the initialization and setup phase. The Performance of the network with 50 nodes and 100 nodes in both static and dynamic scenarios are shown in Figures 6 and 7, respectively. It is clearly seen from the simulation results that SIBER-DELTA model with trust implementation exhibits high packet delivery ratio. By avoiding completely untrusted nodes and considering only trusted nodes (i.e., nodes with higher trust rating) along the paths from source to sink, SIBER-DELTA is able to achieve a high success rate of 99.51% with 10% attackers, 98.88% with 20% attackers and 98.35% with 30% attackers in the network. Since very less number of packet drops are observed during the entire simulation, it can be concluded that SIBER-DELTA performs extremely well by detecting all malicious nodes along the paths from source to sink and preventing these untrusted nodes from packet forwarding completely to achieve higher observed success rate. As evident from simulation results, SIBER-DELTA shows higher Energy Efficiency in the case of 10 and 20% attackers and slightly lower Energy Efficiency for 30% attackers as it consumes slightly higher energy due to the selection of longer alternate paths with more nodes to avoid black holes.
Performance of the network (NS = 50 nodes).
Performance of the network (NS = 100 nodes).
SIBER-DELTAKE [30] Hybrid Routing protocol for WSN, an extension to trust aware routing model SIBER-DELTA is presented in this section which uses K-medoids clustering technique integrated with ECC to enhance security while selection of cluster head. This prevents the intruders from tampering the confidential information traversed across the network. This enables the early detection and termination of malicious nodes, based on the computation of values. WSN in IoT era is highly susceptible to security attacks due to huge data generation in modern era. To achieve better security, ECC is used in conjunction with authentication, key generation, group management, random number generation and key distribution techniques there by strengthening the existing security options. This will also result in better energy utilization when considering big data environment [31]. The system flow diagram of the proposed model is shown in Figure 8. In this approach, k-medoid clustering algorithm is chosen to select the cluster head and other members of the cluster family based on the calculation of distance between the midpoint and the sink node of the cluster. Once this is done, SIBER-DELTA mechanism is applied to update the FSF and PUM of a node. Finally, a node is permitted to transmit data based on its trust value. If the trust value of a node ready to transmit is high, then before transmission of data, it is encrypted using ECC algorithm. At the other end, if the trust value is obtained low, then the node under consideration is discarded, being regarded as a malicious node. The proposed model deals with identification of attacks and performs the following simplified steps—Initialization Phase involving network deployment, Clustering Phase using K-Medoids Algorithm, Routing Phase using SIBER-DELTA Protocol and Packet Forwarding Phase using Elliptic Curve Cryptography Technique.
SIBER DELTAKE system model.
Our model SIBER-DELTAKE uses K-medoids algorithm for the formation of clusters and selection of cluster heads.
The most desired approach in WSN to implement public key cryptography is ECC which is based on the algebraic structure of elliptic curves over limited fields [33]. An elliptic curve over prime field Fp, where p is a large prime number, is defined by a cubic equation of the form y2 = x3+ ax + b where a, b ∈ Fp are integers that satisfy the equation 4a3 + 27b2 ≠ 0. To have ECC based secure communication, every sensor node in the network must know an elliptic curve in addition to base point p which lies on the curve. It is assumed here that during the initial setup or the initialization phase, the elliptic curve parameters and also the base point p are loaded before only into the memory of every sensor node. Every node chooses a random prime integer as its private key and generates its public key by multiplying the private key by the base point p in order to have a secure communication between a pair of nodes. As cluster heads are involved in receiving the encrypted data from their members of cluster, then processing the data to perform data aggregation and finally forwarding the aggregated data to the base station, they consume more energy when compared to the member nodes. In order to reduce the energy consumption by cluster heads, cluster heads combine the encrypted message arriving from the members of the cluster and use Homomorphic encryption to perform aggregation of the encrypted data with no decryption thereby reducing the energy consumption of cluster heads. This results in saving of more energy and much stronger privacy of data as attackers will not be capable to hack data from intermediary nodes.
Our proposed hybrid model SIBER-DELTAKE was simulated using NS-2 simulator by considering static network scenarios with network sizes of 25, 50 and 100 nodes randomly distributed in the network area of 1000x500 m2. Our proposed SACO-KM-ECC based SIBER-DELTAKE system is compared with SIBER-DELTA [28] with trust awareness and SIBER-VLP [22] without trust awareness for varying network sizes by introducing 10, 20, and 30% attackers in the network. The performance of the network is evaluated using the following metrics—Packet Delivery Ratio, End to End Delay, Energy Consumption and Throughput. It is evident from the plots in Figure 9(a) that SIBER-DELTAKE and SIBER-DELTA models exhibit high packet delivery ratio and SIBER-DELTAKE performing better than SIBER-DELTA as more trusted and secure optimal paths are selected to forward the packets resulting in higher performance. As it is seen from simulation results, SIBER-VLP model exhibits performance degradation as malicious nodes are introduced in the network. As the number of malicious nodes increase, an increase in packet drops is observed due to the presence of more malicious nodes in the paths selected by the ants. It can be seen from Figure 9(d) that SIBER-DELTAKE consume little more energy when compared to SIBER-VLP and SIBER–DELTA but it is reasonable considering the fact that hybrid model needs to perform ECC computation to provide data confidentiality and data Integrity in the presence of trust awareness. Though packet delivery ratio is less in SIBER-VLP, but the comparable energy consumption in this case may be due to both packet routing and packet retransmissions. As far as the end to end delay is considered, it can be seen from Figure 9(c) that hybrid model has low delay when compared to other models as it selects always the most trusted and secure optimal paths. Moreover, as the number of nodes increases, there will be more number of alternate paths available to route the packets so that the malicious nodes along the selected paths can be avoided. It is clear from the Figure 9(b) that SIBER-DELTAKE has higher throughput when compared to SIBER-DELTA and SIBER-VLP. SIBER-VLP performs very poorly in the existence of larger malicious or faulty nodes in the network.
(a) Effect of malicious nodes on PDR-50 nodes. (b) Effect of malicious nodes on TP-50 nodes. (c) Effect of malicious nodes on LT– 50 nodes. (d) Effect of malicious nodes on EC-50 nodes.
In this chapter, swarm intelligence and social insects based approaches are presented to deal with bio-inspired networking framework. The proposed approaches are designed to tackle the challenges and issues in the WSN field such as large scale networking, dynamic nature, resource constraints and the need for infrastructure-less and autonomous operation having the capabilities of self-organization and survivability. This research work presents the necessity to consider a combination of evaluation parameters for efficient routing of packets from source to destination with the development of SIBER-XLP with TECB, SIBER-DELTA and SIBER-DELTAKE models, each one emerging as an improved extension over the other. NS2 simulation environment was used to develop the entire work. The outcomes achieved in terms of results can serve as a contribution to the research community in the area of WSN with further levels of security to be integrated in future due to the voluminous data generation in modern world with the development of IOT applications. Also, in this work, a set of parameters like packet delivery ratio, latency, throughput, energy consumption, minimum available energy are evaluated against a collection of nodes. In future, a different set of parameters like load balancing across the nodes in a cluster, multi-level security aspects in WSN can be developed.
Another interesting and fascinating research direction is the application of Blockchain technology in WSN area. The blockchain technology enables peer to peer transfer of digital assets without any intermediaries and was originally created to support the famous cryptocurrency, Bitcoin. With the rapid development of Ethereum platform in recent years, the blockchain has permeated a broad range of applications across many industries and poised to innovate and transform a wide range of applications including finance, healthcare, government, manufacturing and distribution namely supply chain, digital media transfer, remote service delivery, platform for decentralized business, distributed resources, identity management, etc. The blockchain infrastructure establishes a trust among the peers in a decentralized system by having a process in place to validate, verify, and confirm transactions, record the transactions in a distributed ledger of blocks, create a tamper-proof record of blocks, chain of blocks, and implement a consensus protocol for agreement on the block to be added to the chain. Thus, validation, verification, consensus, and immutable recording lead to the trust and security of the blockchain. Though the application of block chain technology to WSN is in its initial stages, there has been research reported lately in the literature [34, 35] of using blockchain technology in peer authentication and trust level management for decentralized sensor networks. The blockchain infrastructure has shown tremendous advantages in a distributed decentralized network, but due to the limited computational power, battery life, bandwidth and more importantly storage, it may not be realistic to include all the blockchain features. In order to adopt a blockchain in WSN, we need to closely examine the operations involved in the blockchain implementation. For every transaction, a block is to be created, stored, source/sink node and transaction are to be validated & verified, broadcasted in a peer to peer network environment for block update. The role of the miners is most important to determine a valid block to be added to the blockchain using a consensus protocol based on a simplified Proof-Of-Work or Proof-Of-Stake (need to avoid biased or selfish nodes colluding to stake claim) approach which calls for having high capacity, powerful nodes to act as miners in WSN. Considering the challenges and issues with respect to the use of blockchain technology, another important network model decision would be the deployment of hierarchical sensor network with efficient clustering approach. Hence, there is a stronger need to design and develop efficient frame work and techniques to tackle the huge challenges and issues faced by blockchain technology in Wireless Sensor Network as WSN has emerged as the core component of IOT area.
We are grateful to INHA University Global Education Project Group, Incheon, South Korea for all the support and funding provided for the publication of this research work.
Supporting women in scientific research and encouraging more women to pursue careers in STEM fields has been an issue on the global agenda for many years. But there is still much to be done. And IntechOpen wants to help.
",metaTitle:"IntechOpen Women in Science Program",metaDescription:"Supporting women in scientific research and encouraging more women to pursue careers in STEM fields has been an issue on the global agenda for many years. But there is still much to be done. And IntechOpen wants to help.",metaKeywords:null,canonicalURL:null,contentRaw:'[{"type":"htmlEditorComponent","content":"At IntechOpen, we’re laying the foundations for the future by publishing the best research by women in STEM – Open Access and available to all. Our Women in Science program already includes six books in progress by award-winning women scientists on topics ranging from physics to robotics, medicine to environmental science. Our editors come from all over the globe and include L’Oreal–UNESCO For Women in Science award-winners and National Science Foundation and European Commission grant recipients.
\\n\\nWe aim to publish 100 books in our Women in Science program over the next three years. We are looking for books written, edited, or co-edited by women. Contributing chapters by men are welcome. As always, the quality of the research we publish is paramount.
\\n\\nAll project proposals go through a two-stage peer review process and are selected based on the following criteria:
\\n\\nPlus, we want this project to have an impact beyond scientific circles. We will publicize the research in the Women in Science program for a wider general audience through:
\\n\\nInterested? If you have an idea for an edited volume or a monograph, we’d love to hear from you! Contact Ana Pantar at book.idea@intechopen.com.
\\n\\n“My scientific path has given me the opportunity to work with colleagues all over Europe, including Germany, France, and Norway. Editing the book Graph Theory: Advanced Algorithms and Applications with IntechOpen emphasized for me the importance of providing valuable, Open Access literature to our scientific colleagues around the world. So I am highly enthusiastic about the Women in Science book collection, which will highlight the outstanding accomplishments of women scientists and encourage others to walk the challenging path to becoming a recognized scientist." Beril Sirmacek, TU Delft, The Netherlands
\\n\\nAdvantages of Publishing with IntechOpen
\\n\\n\\n"}]'},components:[{type:"htmlEditorComponent",content:'At IntechOpen, we’re laying the foundations for the future by publishing the best research by women in STEM – Open Access and available to all. Our Women in Science program already includes six books in progress by award-winning women scientists on topics ranging from physics to robotics, medicine to environmental science. Our editors come from all over the globe and include L’Oreal–UNESCO For Women in Science award-winners and National Science Foundation and European Commission grant recipients.
\n\nWe aim to publish 100 books in our Women in Science program over the next three years. We are looking for books written, edited, or co-edited by women. Contributing chapters by men are welcome. As always, the quality of the research we publish is paramount.
\n\nAll project proposals go through a two-stage peer review process and are selected based on the following criteria:
\n\nPlus, we want this project to have an impact beyond scientific circles. We will publicize the research in the Women in Science program for a wider general audience through:
\n\nInterested? If you have an idea for an edited volume or a monograph, we’d love to hear from you! Contact Ana Pantar at book.idea@intechopen.com.
\n\n“My scientific path has given me the opportunity to work with colleagues all over Europe, including Germany, France, and Norway. Editing the book Graph Theory: Advanced Algorithms and Applications with IntechOpen emphasized for me the importance of providing valuable, Open Access literature to our scientific colleagues around the world. So I am highly enthusiastic about the Women in Science book collection, which will highlight the outstanding accomplishments of women scientists and encourage others to walk the challenging path to becoming a recognized scientist." Beril Sirmacek, TU Delft, The Netherlands
\n\n\n\n\n'}]},successStories:{items:[]},authorsAndEditors:{filterParams:{sort:"featured,name"},profiles:[{id:"6700",title:"Dr.",name:"Abbass A.",middleName:null,surname:"Hashim",slug:"abbass-a.-hashim",fullName:"Abbass A. Hashim",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/6700/images/1864_n.jpg",biography:"Currently I am carrying out research in several areas of interest, mainly covering work on chemical and bio-sensors, semiconductor thin film device fabrication and characterisation.\nAt the moment I have very strong interest in radiation environmental pollution and bacteriology treatment. The teams of researchers are working very hard to bring novel results in this field. I am also a member of the team in charge for the supervision of Ph.D. students in the fields of development of silicon based planar waveguide sensor devices, study of inelastic electron tunnelling in planar tunnelling nanostructures for sensing applications and development of organotellurium(IV) compounds for semiconductor applications. I am a specialist in data analysis techniques and nanosurface structure. I have served as the editor for many books, been a member of the editorial board in science journals, have published many papers and hold many patents.",institutionString:null,institution:{name:"Sheffield Hallam University",country:{name:"United Kingdom"}}},{id:"54525",title:"Prof.",name:"Abdul Latif",middleName:null,surname:"Ahmad",slug:"abdul-latif-ahmad",fullName:"Abdul Latif Ahmad",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:null},{id:"20567",title:"Prof.",name:"Ado",middleName:null,surname:"Jorio",slug:"ado-jorio",fullName:"Ado Jorio",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"Universidade Federal de Minas Gerais",country:{name:"Brazil"}}},{id:"47940",title:"Dr.",name:"Alberto",middleName:null,surname:"Mantovani",slug:"alberto-mantovani",fullName:"Alberto Mantovani",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:null},{id:"12392",title:"Mr.",name:"Alex",middleName:null,surname:"Lazinica",slug:"alex-lazinica",fullName:"Alex Lazinica",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/12392/images/7282_n.png",biography:"Alex Lazinica is the founder and CEO of IntechOpen. After obtaining a Master's degree in Mechanical Engineering, he continued his PhD studies in Robotics at the Vienna University of Technology. Here he worked as a robotic researcher with the university's Intelligent Manufacturing Systems Group as well as a guest researcher at various European universities, including the Swiss Federal Institute of Technology Lausanne (EPFL). During this time he published more than 20 scientific papers, gave presentations, served as a reviewer for major robotic journals and conferences and most importantly he co-founded and built the International Journal of Advanced Robotic Systems- world's first Open Access journal in the field of robotics. Starting this journal was a pivotal point in his career, since it was a pathway to founding IntechOpen - Open Access publisher focused on addressing academic researchers needs. Alex is a personification of IntechOpen key values being trusted, open and entrepreneurial. Today his focus is on defining the growth and development strategy for the company.",institutionString:null,institution:{name:"TU Wien",country:{name:"Austria"}}},{id:"19816",title:"Prof.",name:"Alexander",middleName:null,surname:"Kokorin",slug:"alexander-kokorin",fullName:"Alexander Kokorin",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/19816/images/1607_n.jpg",biography:"Alexander I. Kokorin: born: 1947, Moscow; DSc., PhD; Principal Research Fellow (Research Professor) of Department of Kinetics and Catalysis, N. Semenov Institute of Chemical Physics, Russian Academy of Sciences, Moscow.\r\nArea of research interests: physical chemistry of complex-organized molecular and nanosized systems, including polymer-metal complexes; the surface of doped oxide semiconductors. He is an expert in structural, absorptive, catalytic and photocatalytic properties, in structural organization and dynamic features of ionic liquids, in magnetic interactions between paramagnetic centers. The author or co-author of 3 books, over 200 articles and reviews in scientific journals and books. He is an actual member of the International EPR/ESR Society, European Society on Quantum Solar Energy Conversion, Moscow House of Scientists, of the Board of Moscow Physical Society.",institutionString:null,institution:{name:"Semenov Institute of Chemical Physics",country:{name:"Russia"}}},{id:"62389",title:"PhD.",name:"Ali Demir",middleName:null,surname:"Sezer",slug:"ali-demir-sezer",fullName:"Ali Demir Sezer",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/62389/images/3413_n.jpg",biography:"Dr. Ali Demir Sezer has a Ph.D. from Pharmaceutical Biotechnology at the Faculty of Pharmacy, University of Marmara (Turkey). He is the member of many Pharmaceutical Associations and acts as a reviewer of scientific journals and European projects under different research areas such as: drug delivery systems, nanotechnology and pharmaceutical biotechnology. Dr. Sezer is the author of many scientific publications in peer-reviewed journals and poster communications. Focus of his research activity is drug delivery, physico-chemical characterization and biological evaluation of biopolymers micro and nanoparticles as modified drug delivery system, and colloidal drug carriers (liposomes, nanoparticles etc.).",institutionString:null,institution:{name:"Marmara University",country:{name:"Turkey"}}},{id:"61051",title:"Prof.",name:"Andrea",middleName:null,surname:"Natale",slug:"andrea-natale",fullName:"Andrea Natale",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:null},{id:"100762",title:"Prof.",name:"Andrea",middleName:null,surname:"Natale",slug:"andrea-natale",fullName:"Andrea Natale",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"St David's Medical Center",country:{name:"United States of America"}}},{id:"107416",title:"Dr.",name:"Andrea",middleName:null,surname:"Natale",slug:"andrea-natale",fullName:"Andrea Natale",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"Texas Cardiac Arrhythmia",country:{name:"United States of America"}}},{id:"64434",title:"Dr.",name:"Angkoon",middleName:null,surname:"Phinyomark",slug:"angkoon-phinyomark",fullName:"Angkoon Phinyomark",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/64434/images/2619_n.jpg",biography:"My name is Angkoon Phinyomark. I received a B.Eng. degree in Computer Engineering with First Class Honors in 2008 from Prince of Songkla University, Songkhla, Thailand, where I received a Ph.D. degree in Electrical Engineering. My research interests are primarily in the area of biomedical signal processing and classification notably EMG (electromyography signal), EOG (electrooculography signal), and EEG (electroencephalography signal), image analysis notably breast cancer analysis and optical coherence tomography, and rehabilitation engineering. I became a student member of IEEE in 2008. During October 2011-March 2012, I had worked at School of Computer Science and Electronic Engineering, University of Essex, Colchester, Essex, United Kingdom. In addition, during a B.Eng. I had been a visiting research student at Faculty of Computer Science, University of Murcia, Murcia, Spain for three months.\n\nI have published over 40 papers during 5 years in refereed journals, books, and conference proceedings in the areas of electro-physiological signals processing and classification, notably EMG and EOG signals, fractal analysis, wavelet analysis, texture analysis, feature extraction and machine learning algorithms, and assistive and rehabilitative devices. I have several computer programming language certificates, i.e. Sun Certified Programmer for the Java 2 Platform 1.4 (SCJP), Microsoft Certified Professional Developer, Web Developer (MCPD), Microsoft Certified Technology Specialist, .NET Framework 2.0 Web (MCTS). I am a Reviewer for several refereed journals and international conferences, such as IEEE Transactions on Biomedical Engineering, IEEE Transactions on Industrial Electronics, Optic Letters, Measurement Science Review, and also a member of the International Advisory Committee for 2012 IEEE Business Engineering and Industrial Applications and 2012 IEEE Symposium on Business, Engineering and Industrial Applications.",institutionString:null,institution:{name:"Joseph Fourier University",country:{name:"France"}}},{id:"55578",title:"Dr.",name:"Antonio",middleName:null,surname:"Jurado-Navas",slug:"antonio-jurado-navas",fullName:"Antonio Jurado-Navas",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/55578/images/4574_n.png",biography:"Antonio Jurado-Navas received the M.S. degree (2002) and the Ph.D. degree (2009) in Telecommunication Engineering, both from the University of Málaga (Spain). He first worked as a consultant at Vodafone-Spain. From 2004 to 2011, he was a Research Assistant with the Communications Engineering Department at the University of Málaga. In 2011, he became an Assistant Professor in the same department. From 2012 to 2015, he was with Ericsson Spain, where he was working on geo-location\ntools for third generation mobile networks. Since 2015, he is a Marie-Curie fellow at the Denmark Technical University. His current research interests include the areas of mobile communication systems and channel modeling in addition to atmospheric optical communications, adaptive optics and statistics",institutionString:null,institution:{name:"University of Malaga",country:{name:"Spain"}}}],filtersByRegion:[{group:"region",caption:"North America",value:1,count:5816},{group:"region",caption:"Middle and South America",value:2,count:5281},{group:"region",caption:"Africa",value:3,count:1754},{group:"region",caption:"Asia",value:4,count:10511},{group:"region",caption:"Australia and Oceania",value:5,count:906},{group:"region",caption:"Europe",value:6,count:15912}],offset:12,limit:12,total:119060},chapterEmbeded:{data:{}},editorApplication:{success:null,errors:{}},ofsBooks:{filterParams:{topicId:"21"},books:[{type:"book",id:"10671",title:"Connected Adolescence",subtitle:null,isOpenForSubmission:!0,hash:"f005179bb7f6cd7c531a00cd8da18eaa",slug:null,bookSignature:"Prof. Massimo Ingrassia and Prof. Loredana Benedetto",coverURL:"https://cdn.intechopen.com/books/images_new/10671.jpg",editedByType:null,editors:[{id:"193901",title:"Prof.",name:"Massimo",surname:"Ingrassia",slug:"massimo-ingrassia",fullName:"Massimo Ingrassia"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10814",title:"Anxiety, Uncertainty, and Resilience During the Pandemic Period - Anthropological and Psychological Perspectives",subtitle:null,isOpenForSubmission:!0,hash:"2db4d2a6638d2c66f7a5741d0f8fe4ae",slug:null,bookSignature:"Prof. Fabio Gabrielli and Dr. Floriana Irtelli",coverURL:"https://cdn.intechopen.com/books/images_new/10814.jpg",editedByType:null,editors:[{id:"259407",title:"Prof.",name:"Fabio",surname:"Gabrielli",slug:"fabio-gabrielli",fullName:"Fabio Gabrielli"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10908",title:"Decision Making",subtitle:null,isOpenForSubmission:!0,hash:"126486f7f91e18e2e3539a32c38be7b1",slug:null,bookSignature:"Prof. Fausto Pedro García Márquez",coverURL:"https://cdn.intechopen.com/books/images_new/10908.jpg",editedByType:null,editors:[{id:"22844",title:"Prof.",name:"Fausto Pedro",surname:"García Márquez",slug:"fausto-pedro-garcia-marquez",fullName:"Fausto Pedro García Márquez"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10909",title:"Psychometrics",subtitle:null,isOpenForSubmission:!0,hash:"51388e9ab6c536936b8da4f9c226252e",slug:null,bookSignature:"",coverURL:"https://cdn.intechopen.com/books/images_new/10909.jpg",editedByType:null,editors:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10910",title:"Learning Disabilities",subtitle:null,isOpenForSubmission:!0,hash:"8350f78c26c99f01f8130f772475504e",slug:null,bookSignature:"",coverURL:"https://cdn.intechopen.com/books/images_new/10910.jpg",editedByType:null,editors:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10981",title:"Sport Psychology in Sports, Exercise and Physical Activity",subtitle:null,isOpenForSubmission:!0,hash:"5214c44bdc42978449de0751ca364684",slug:null,bookSignature:"Ph.D. Hilde G. Nielsen",coverURL:"https://cdn.intechopen.com/books/images_new/10981.jpg",editedByType:null,editors:[{id:"158692",title:"Ph.D.",name:"Hilde G.",surname:"Nielsen",slug:"hilde-g.-nielsen",fullName:"Hilde G. Nielsen"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}}],filtersByTopic:[{group:"topic",caption:"Agricultural and Biological Sciences",value:5,count:25},{group:"topic",caption:"Biochemistry, Genetics and Molecular Biology",value:6,count:7},{group:"topic",caption:"Business, Management and Economics",value:7,count:3},{group:"topic",caption:"Chemistry",value:8,count:11},{group:"topic",caption:"Computer and Information Science",value:9,count:9},{group:"topic",caption:"Earth and Planetary Sciences",value:10,count:9},{group:"topic",caption:"Engineering",value:11,count:25},{group:"topic",caption:"Environmental Sciences",value:12,count:3},{group:"topic",caption:"Immunology and Microbiology",value:13,count:4},{group:"topic",caption:"Materials Science",value:14,count:7},{group:"topic",caption:"Mathematics",value:15,count:2},{group:"topic",caption:"Medicine",value:16,count:44},{group:"topic",caption:"Neuroscience",value:18,count:3},{group:"topic",caption:"Pharmacology, Toxicology and Pharmaceutical Science",value:19,count:3},{group:"topic",caption:"Physics",value:20,count:4},{group:"topic",caption:"Psychology",value:21,count:4},{group:"topic",caption:"Robotics",value:22,count:1},{group:"topic",caption:"Social Sciences",value:23,count:3},{group:"topic",caption:"Technology",value:24,count:1},{group:"topic",caption:"Veterinary Medicine and Science",value:25,count:2}],offset:12,limit:12,total:6},popularBooks:{featuredBooks:[{type:"book",id:"8472",title:"Bioactive Compounds in Nutraceutical and Functional Food for Good Human Health",subtitle:null,isOpenForSubmission:!1,hash:"8855452919b8495810ef8e88641feb20",slug:"bioactive-compounds-in-nutraceutical-and-functional-food-for-good-human-health",bookSignature:"Kavita Sharma, Kanchan Mishra, Kula Kamal Senapati and Corina Danciu",coverURL:"https://cdn.intechopen.com/books/images_new/8472.jpg",editors:[{id:"197731",title:"Dr.",name:"Kavita",middleName:null,surname:"Sharma",slug:"kavita-sharma",fullName:"Kavita Sharma"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9685",title:"Agroecosystems",subtitle:"Very Complex Environmental Systems",isOpenForSubmission:!1,hash:"c44f7b43a9f9610c243dc32300d37df6",slug:"agroecosystems-very-complex-environmental-systems",bookSignature:"Marcelo L. Larramendy and Sonia Soloneski",coverURL:"https://cdn.intechopen.com/books/images_new/9685.jpg",editors:[{id:"14764",title:"Dr.",name:"Marcelo L.",middleName:null,surname:"Larramendy",slug:"marcelo-l.-larramendy",fullName:"Marcelo L. Larramendy"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"8564",title:"Cell Interaction",subtitle:"Molecular and Immunological Basis for Disease Management",isOpenForSubmission:!1,hash:"98d7f080d80524285f091e72a8e92a6d",slug:"cell-interaction-molecular-and-immunological-basis-for-disease-management",bookSignature:"Bhawana Singh",coverURL:"https://cdn.intechopen.com/books/images_new/8564.jpg",editors:[{id:"315192",title:"Dr.",name:"Bhawana",middleName:null,surname:"Singh",slug:"bhawana-singh",fullName:"Bhawana Singh"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9629",title:"Electroencephalography",subtitle:"From Basic Research to Clinical Applications",isOpenForSubmission:!1,hash:"8147834b6c6deeeec40f407c71ad60b4",slug:"electroencephalography-from-basic-research-to-clinical-applications",bookSignature:"Hideki Nakano",coverURL:"https://cdn.intechopen.com/books/images_new/9629.jpg",editors:[{id:"196461",title:"Prof.",name:"Hideki",middleName:null,surname:"Nakano",slug:"hideki-nakano",fullName:"Hideki Nakano"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"8760",title:"Structure Topology and Symplectic Geometry",subtitle:null,isOpenForSubmission:!1,hash:"8974840985ec3652492c83e20233bf02",slug:"structure-topology-and-symplectic-geometry",bookSignature:"Kamal Shah and Min Lei",coverURL:"https://cdn.intechopen.com/books/images_new/8760.jpg",editors:[{id:"231748",title:"Dr.",name:"Kamal",middleName:null,surname:"Shah",slug:"kamal-shah",fullName:"Kamal Shah"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9161",title:"Frailty in the Elderly",subtitle:"Understanding and Managing Complexity",isOpenForSubmission:!1,hash:"a4f0f2fade8fb8ba35c405f5ad31a823",slug:"frailty-in-the-elderly-understanding-and-managing-complexity",bookSignature:"Sara Palermo",coverURL:"https://cdn.intechopen.com/books/images_new/9161.jpg",editors:[{id:"233998",title:"Ph.D.",name:"Sara",middleName:null,surname:"Palermo",slug:"sara-palermo",fullName:"Sara Palermo"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"8445",title:"Dam Engineering",subtitle:"Recent Advances in Design and Analysis",isOpenForSubmission:!1,hash:"a7e4d2ecbc65d78fa7582e0d2e143906",slug:"dam-engineering-recent-advances-in-design-and-analysis",bookSignature:"Zhongzhi Fu and Erich Bauer",coverURL:"https://cdn.intechopen.com/books/images_new/8445.jpg",editors:[{id:"249577",title:"Dr.",name:"Zhongzhi",middleName:null,surname:"Fu",slug:"zhongzhi-fu",fullName:"Zhongzhi Fu"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9385",title:"Renewable Energy",subtitle:"Technologies and Applications",isOpenForSubmission:!1,hash:"a6b446d19166f17f313008e6c056f3d8",slug:"renewable-energy-technologies-and-applications",bookSignature:"Tolga Taner, Archana Tiwari and Taha Selim Ustun",coverURL:"https://cdn.intechopen.com/books/images_new/9385.jpg",editors:[{id:"197240",title:"Associate Prof.",name:"Tolga",middleName:null,surname:"Taner",slug:"tolga-taner",fullName:"Tolga Taner"}],equalEditorOne:{id:"186791",title:"Dr.",name:"Archana",middleName:null,surname:"Tiwari",slug:"archana-tiwari",fullName:"Archana Tiwari",profilePictureURL:"https://mts.intechopen.com/storage/users/186791/images/system/186791.jpg",biography:"Dr. Archana Tiwari is Associate Professor at Amity University, India. Her research interests include renewable sources of energy from microalgae and further utilizing the residual biomass for the generation of value-added products, bioremediation through microalgae and microbial consortium, antioxidative enzymes and stress, and nutraceuticals from microalgae. She has been working on algal biotechnology for the last two decades. She has published her research in many international journals and has authored many books and chapters with renowned publishing houses. She has also delivered talks as an invited speaker at many national and international conferences. Dr. Tiwari is the recipient of several awards including Researcher of the Year and Distinguished Scientist.",institutionString:"Amity University",position:null,outsideEditionCount:0,totalCites:0,totalAuthoredChapters:"3",totalChapterViews:"0",totalEditedBooks:"1",institution:{name:"Amity University",institutionURL:null,country:{name:"India"}}},equalEditorTwo:{id:"197609",title:"Prof.",name:"Taha Selim",middleName:null,surname:"Ustun",slug:"taha-selim-ustun",fullName:"Taha Selim Ustun",profilePictureURL:"https://mts.intechopen.com/storage/users/197609/images/system/197609.jpeg",biography:"Dr. Taha Selim Ustun received a Ph.D. in Electrical Engineering from Victoria University, Melbourne, Australia. He is a researcher with the Fukushima Renewable Energy Institute, AIST (FREA), where he leads the Smart Grid Cybersecurity Laboratory. Prior to that, he was a faculty member with the School of Electrical and Computer Engineering, Carnegie Mellon University, Pittsburgh, PA, USA. His current research interests include power systems protection, communication in power networks, distributed generation, microgrids, electric vehicle integration, and cybersecurity in smart grids. He serves on the editorial boards of IEEE Access, IEEE Transactions on Industrial Informatics, Energies, Electronics, Electricity, World Electric Vehicle and Information journals. Dr. Ustun is a member of the IEEE 2004 and 2800, IEC Renewable Energy Management WG 8, and IEC TC 57 WG17. He has been invited to run specialist courses in Africa, India, and China. He has delivered talks for the Qatar Foundation, the World Energy Council, the Waterloo Global Science Initiative, and the European Union Energy Initiative (EUEI). His research has attracted funding from prestigious programs in Japan, Australia, the European Union, and North America.",institutionString:"Fukushima Renewable Energy Institute, AIST (FREA)",position:null,outsideEditionCount:0,totalCites:0,totalAuthoredChapters:"1",totalChapterViews:"0",totalEditedBooks:"0",institution:{name:"National Institute of Advanced Industrial Science and Technology",institutionURL:null,country:{name:"Japan"}}},equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"8937",title:"Soil Moisture Importance",subtitle:null,isOpenForSubmission:!1,hash:"3951728ace7f135451d66b72e9908b47",slug:"soil-moisture-importance",bookSignature:"Ram Swaroop Meena and Rahul Datta",coverURL:"https://cdn.intechopen.com/books/images_new/8937.jpg",editors:[{id:"313528",title:"Associate Prof.",name:"Ram Swaroop",middleName:null,surname:"Meena",slug:"ram-swaroop-meena",fullName:"Ram Swaroop Meena"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"7031",title:"Liver Pathology",subtitle:null,isOpenForSubmission:!1,hash:"631321b0565459ed0175917f1c8c727f",slug:"liver-pathology",bookSignature:"Vijay Gayam and Omer Engin",coverURL:"https://cdn.intechopen.com/books/images_new/7031.jpg",editors:[{id:"273100",title:"Dr.",name:"Vijay",middleName:null,surname:"Gayam",slug:"vijay-gayam",fullName:"Vijay Gayam"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"8158",title:"Veganism",subtitle:"a Fashion Trend or Food as a Medicine",isOpenForSubmission:!1,hash:"d8e51fc25a379e5b92a270addbb4351d",slug:"veganism-a-fashion-trend-or-food-as-a-medicine",bookSignature:"Miljana Z. Jovandaric",coverURL:"https://cdn.intechopen.com/books/images_new/8158.jpg",editors:[{id:"268043",title:"Dr.",name:"Miljana Z.",middleName:"Z",surname:"Jovandaric",slug:"miljana-z.-jovandaric",fullName:"Miljana Z. Jovandaric"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"2160",title:"MATLAB",subtitle:"A Fundamental Tool for Scientific Computing and Engineering Applications - Volume 1",isOpenForSubmission:!1,hash:"dd9c658341fbd264ed4f8d9e6aa8ca29",slug:"matlab-a-fundamental-tool-for-scientific-computing-and-engineering-applications-volume-1",bookSignature:"Vasilios N. Katsikis",coverURL:"https://cdn.intechopen.com/books/images_new/2160.jpg",editors:[{id:"12289",title:"Prof.",name:"Vasilios",middleName:"N.",surname:"Katsikis",slug:"vasilios-katsikis",fullName:"Vasilios Katsikis"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}}],offset:12,limit:12,total:5315},hotBookTopics:{hotBooks:[],offset:0,limit:12,total:null},publish:{},publishingProposal:{success:null,errors:{}},books:{featuredBooks:[{type:"book",id:"8472",title:"Bioactive Compounds in Nutraceutical and Functional Food for Good Human Health",subtitle:null,isOpenForSubmission:!1,hash:"8855452919b8495810ef8e88641feb20",slug:"bioactive-compounds-in-nutraceutical-and-functional-food-for-good-human-health",bookSignature:"Kavita Sharma, Kanchan Mishra, Kula Kamal Senapati and Corina Danciu",coverURL:"https://cdn.intechopen.com/books/images_new/8472.jpg",editors:[{id:"197731",title:"Dr.",name:"Kavita",middleName:null,surname:"Sharma",slug:"kavita-sharma",fullName:"Kavita Sharma"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9685",title:"Agroecosystems",subtitle:"Very Complex Environmental Systems",isOpenForSubmission:!1,hash:"c44f7b43a9f9610c243dc32300d37df6",slug:"agroecosystems-very-complex-environmental-systems",bookSignature:"Marcelo L. Larramendy and Sonia Soloneski",coverURL:"https://cdn.intechopen.com/books/images_new/9685.jpg",editors:[{id:"14764",title:"Dr.",name:"Marcelo L.",middleName:null,surname:"Larramendy",slug:"marcelo-l.-larramendy",fullName:"Marcelo L. Larramendy"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"8564",title:"Cell Interaction",subtitle:"Molecular and Immunological Basis for Disease Management",isOpenForSubmission:!1,hash:"98d7f080d80524285f091e72a8e92a6d",slug:"cell-interaction-molecular-and-immunological-basis-for-disease-management",bookSignature:"Bhawana Singh",coverURL:"https://cdn.intechopen.com/books/images_new/8564.jpg",editors:[{id:"315192",title:"Dr.",name:"Bhawana",middleName:null,surname:"Singh",slug:"bhawana-singh",fullName:"Bhawana Singh"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9629",title:"Electroencephalography",subtitle:"From Basic Research to Clinical Applications",isOpenForSubmission:!1,hash:"8147834b6c6deeeec40f407c71ad60b4",slug:"electroencephalography-from-basic-research-to-clinical-applications",bookSignature:"Hideki Nakano",coverURL:"https://cdn.intechopen.com/books/images_new/9629.jpg",editors:[{id:"196461",title:"Prof.",name:"Hideki",middleName:null,surname:"Nakano",slug:"hideki-nakano",fullName:"Hideki Nakano"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"8760",title:"Structure Topology and Symplectic Geometry",subtitle:null,isOpenForSubmission:!1,hash:"8974840985ec3652492c83e20233bf02",slug:"structure-topology-and-symplectic-geometry",bookSignature:"Kamal Shah and Min Lei",coverURL:"https://cdn.intechopen.com/books/images_new/8760.jpg",editors:[{id:"231748",title:"Dr.",name:"Kamal",middleName:null,surname:"Shah",slug:"kamal-shah",fullName:"Kamal Shah"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9161",title:"Frailty in the Elderly",subtitle:"Understanding and Managing Complexity",isOpenForSubmission:!1,hash:"a4f0f2fade8fb8ba35c405f5ad31a823",slug:"frailty-in-the-elderly-understanding-and-managing-complexity",bookSignature:"Sara Palermo",coverURL:"https://cdn.intechopen.com/books/images_new/9161.jpg",editors:[{id:"233998",title:"Ph.D.",name:"Sara",middleName:null,surname:"Palermo",slug:"sara-palermo",fullName:"Sara Palermo"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"8445",title:"Dam Engineering",subtitle:"Recent Advances in Design and Analysis",isOpenForSubmission:!1,hash:"a7e4d2ecbc65d78fa7582e0d2e143906",slug:"dam-engineering-recent-advances-in-design-and-analysis",bookSignature:"Zhongzhi Fu and Erich Bauer",coverURL:"https://cdn.intechopen.com/books/images_new/8445.jpg",editors:[{id:"249577",title:"Dr.",name:"Zhongzhi",middleName:null,surname:"Fu",slug:"zhongzhi-fu",fullName:"Zhongzhi Fu"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9385",title:"Renewable Energy",subtitle:"Technologies and Applications",isOpenForSubmission:!1,hash:"a6b446d19166f17f313008e6c056f3d8",slug:"renewable-energy-technologies-and-applications",bookSignature:"Tolga Taner, Archana Tiwari and Taha Selim Ustun",coverURL:"https://cdn.intechopen.com/books/images_new/9385.jpg",editors:[{id:"197240",title:"Associate Prof.",name:"Tolga",middleName:null,surname:"Taner",slug:"tolga-taner",fullName:"Tolga Taner"}],equalEditorOne:{id:"186791",title:"Dr.",name:"Archana",middleName:null,surname:"Tiwari",slug:"archana-tiwari",fullName:"Archana Tiwari",profilePictureURL:"https://mts.intechopen.com/storage/users/186791/images/system/186791.jpg",biography:"Dr. Archana Tiwari is Associate Professor at Amity University, India. Her research interests include renewable sources of energy from microalgae and further utilizing the residual biomass for the generation of value-added products, bioremediation through microalgae and microbial consortium, antioxidative enzymes and stress, and nutraceuticals from microalgae. She has been working on algal biotechnology for the last two decades. She has published her research in many international journals and has authored many books and chapters with renowned publishing houses. She has also delivered talks as an invited speaker at many national and international conferences. Dr. Tiwari is the recipient of several awards including Researcher of the Year and Distinguished Scientist.",institutionString:"Amity University",position:null,outsideEditionCount:0,totalCites:0,totalAuthoredChapters:"3",totalChapterViews:"0",totalEditedBooks:"1",institution:{name:"Amity University",institutionURL:null,country:{name:"India"}}},equalEditorTwo:{id:"197609",title:"Prof.",name:"Taha Selim",middleName:null,surname:"Ustun",slug:"taha-selim-ustun",fullName:"Taha Selim Ustun",profilePictureURL:"https://mts.intechopen.com/storage/users/197609/images/system/197609.jpeg",biography:"Dr. Taha Selim Ustun received a Ph.D. in Electrical Engineering from Victoria University, Melbourne, Australia. He is a researcher with the Fukushima Renewable Energy Institute, AIST (FREA), where he leads the Smart Grid Cybersecurity Laboratory. Prior to that, he was a faculty member with the School of Electrical and Computer Engineering, Carnegie Mellon University, Pittsburgh, PA, USA. His current research interests include power systems protection, communication in power networks, distributed generation, microgrids, electric vehicle integration, and cybersecurity in smart grids. He serves on the editorial boards of IEEE Access, IEEE Transactions on Industrial Informatics, Energies, Electronics, Electricity, World Electric Vehicle and Information journals. Dr. Ustun is a member of the IEEE 2004 and 2800, IEC Renewable Energy Management WG 8, and IEC TC 57 WG17. He has been invited to run specialist courses in Africa, India, and China. He has delivered talks for the Qatar Foundation, the World Energy Council, the Waterloo Global Science Initiative, and the European Union Energy Initiative (EUEI). His research has attracted funding from prestigious programs in Japan, Australia, the European Union, and North America.",institutionString:"Fukushima Renewable Energy Institute, AIST (FREA)",position:null,outsideEditionCount:0,totalCites:0,totalAuthoredChapters:"1",totalChapterViews:"0",totalEditedBooks:"0",institution:{name:"National Institute of Advanced Industrial Science and Technology",institutionURL:null,country:{name:"Japan"}}},equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"8937",title:"Soil Moisture Importance",subtitle:null,isOpenForSubmission:!1,hash:"3951728ace7f135451d66b72e9908b47",slug:"soil-moisture-importance",bookSignature:"Ram Swaroop Meena and Rahul Datta",coverURL:"https://cdn.intechopen.com/books/images_new/8937.jpg",editors:[{id:"313528",title:"Associate Prof.",name:"Ram Swaroop",middleName:null,surname:"Meena",slug:"ram-swaroop-meena",fullName:"Ram Swaroop Meena"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"7031",title:"Liver Pathology",subtitle:null,isOpenForSubmission:!1,hash:"631321b0565459ed0175917f1c8c727f",slug:"liver-pathology",bookSignature:"Vijay Gayam and Omer Engin",coverURL:"https://cdn.intechopen.com/books/images_new/7031.jpg",editors:[{id:"273100",title:"Dr.",name:"Vijay",middleName:null,surname:"Gayam",slug:"vijay-gayam",fullName:"Vijay Gayam"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}}],latestBooks:[{type:"book",id:"8472",title:"Bioactive Compounds in Nutraceutical and Functional Food for Good Human Health",subtitle:null,isOpenForSubmission:!1,hash:"8855452919b8495810ef8e88641feb20",slug:"bioactive-compounds-in-nutraceutical-and-functional-food-for-good-human-health",bookSignature:"Kavita Sharma, Kanchan Mishra, Kula Kamal Senapati and Corina Danciu",coverURL:"https://cdn.intechopen.com/books/images_new/8472.jpg",editedByType:"Edited by",editors:[{id:"197731",title:"Dr.",name:"Kavita",middleName:null,surname:"Sharma",slug:"kavita-sharma",fullName:"Kavita Sharma"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"8760",title:"Structure Topology and Symplectic Geometry",subtitle:null,isOpenForSubmission:!1,hash:"8974840985ec3652492c83e20233bf02",slug:"structure-topology-and-symplectic-geometry",bookSignature:"Kamal Shah and Min Lei",coverURL:"https://cdn.intechopen.com/books/images_new/8760.jpg",editedByType:"Edited by",editors:[{id:"231748",title:"Dr.",name:"Kamal",middleName:null,surname:"Shah",slug:"kamal-shah",fullName:"Kamal Shah"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"9536",title:"Education at the Intersection of Globalization and Technology",subtitle:null,isOpenForSubmission:!1,hash:"0cf6891060eb438d975d250e8b127ed6",slug:"education-at-the-intersection-of-globalization-and-technology",bookSignature:"Sharon Waller, Lee Waller, Vongai Mpofu and Mercy Kurebwa",coverURL:"https://cdn.intechopen.com/books/images_new/9536.jpg",editedByType:"Edited by",editors:[{id:"263302",title:"Dr.",name:"Sharon",middleName:null,surname:"Waller",slug:"sharon-waller",fullName:"Sharon Waller"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"8564",title:"Cell Interaction",subtitle:"Molecular and Immunological Basis for Disease Management",isOpenForSubmission:!1,hash:"98d7f080d80524285f091e72a8e92a6d",slug:"cell-interaction-molecular-and-immunological-basis-for-disease-management",bookSignature:"Bhawana Singh",coverURL:"https://cdn.intechopen.com/books/images_new/8564.jpg",editedByType:"Edited by",editors:[{id:"315192",title:"Dr.",name:"Bhawana",middleName:null,surname:"Singh",slug:"bhawana-singh",fullName:"Bhawana Singh"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"9629",title:"Electroencephalography",subtitle:"From Basic Research to Clinical Applications",isOpenForSubmission:!1,hash:"8147834b6c6deeeec40f407c71ad60b4",slug:"electroencephalography-from-basic-research-to-clinical-applications",bookSignature:"Hideki Nakano",coverURL:"https://cdn.intechopen.com/books/images_new/9629.jpg",editedByType:"Edited by",editors:[{id:"196461",title:"Prof.",name:"Hideki",middleName:null,surname:"Nakano",slug:"hideki-nakano",fullName:"Hideki Nakano"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"9685",title:"Agroecosystems",subtitle:"Very Complex Environmental Systems",isOpenForSubmission:!1,hash:"c44f7b43a9f9610c243dc32300d37df6",slug:"agroecosystems-very-complex-environmental-systems",bookSignature:"Marcelo L. Larramendy and Sonia Soloneski",coverURL:"https://cdn.intechopen.com/books/images_new/9685.jpg",editedByType:"Edited by",editors:[{id:"14764",title:"Dr.",name:"Marcelo L.",middleName:null,surname:"Larramendy",slug:"marcelo-l.-larramendy",fullName:"Marcelo L. Larramendy"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"9524",title:"Organ Donation and Transplantation",subtitle:null,isOpenForSubmission:!1,hash:"6ef47e03cd4e6476946fc28ca51de825",slug:"organ-donation-and-transplantation",bookSignature:"Vassil Mihaylov",coverURL:"https://cdn.intechopen.com/books/images_new/9524.jpg",editedByType:"Edited by",editors:[{id:"313113",title:"Associate Prof.",name:"Vassil",middleName:null,surname:"Mihaylov",slug:"vassil-mihaylov",fullName:"Vassil Mihaylov"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"9280",title:"Underwater Work",subtitle:null,isOpenForSubmission:!1,hash:"647b4270d937deae4a82f5702d1959ec",slug:"underwater-work",bookSignature:"Sérgio António Neves Lousada",coverURL:"https://cdn.intechopen.com/books/images_new/9280.jpg",editedByType:"Edited by",editors:[{id:"248645",title:"Dr.",name:"Sérgio António",middleName:null,surname:"Neves Lousada",slug:"sergio-antonio-neves-lousada",fullName:"Sérgio António Neves Lousada"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"9161",title:"Frailty in the Elderly",subtitle:"Understanding and Managing Complexity",isOpenForSubmission:!1,hash:"a4f0f2fade8fb8ba35c405f5ad31a823",slug:"frailty-in-the-elderly-understanding-and-managing-complexity",bookSignature:"Sara Palermo",coverURL:"https://cdn.intechopen.com/books/images_new/9161.jpg",editedByType:"Edited by",editors:[{id:"233998",title:"Ph.D.",name:"Sara",middleName:null,surname:"Palermo",slug:"sara-palermo",fullName:"Sara Palermo"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"8158",title:"Veganism",subtitle:"a Fashion Trend or Food as a Medicine",isOpenForSubmission:!1,hash:"d8e51fc25a379e5b92a270addbb4351d",slug:"veganism-a-fashion-trend-or-food-as-a-medicine",bookSignature:"Miljana Z. Jovandaric",coverURL:"https://cdn.intechopen.com/books/images_new/8158.jpg",editedByType:"Edited by",editors:[{id:"268043",title:"Dr.",name:"Miljana Z.",middleName:"Z",surname:"Jovandaric",slug:"miljana-z.-jovandaric",fullName:"Miljana Z. Jovandaric"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}}]},subject:{topic:{id:"536",title:"Mobile Computing",slug:"communications-and-security-mobile-computing",parent:{title:"Communications and Security",slug:"communications-and-security"},numberOfBooks:9,numberOfAuthorsAndEditors:249,numberOfWosCitations:123,numberOfCrossrefCitations:89,numberOfDimensionsCitations:157,videoUrl:null,fallbackUrl:null,description:null},booksByTopicFilter:{topicSlug:"communications-and-security-mobile-computing",sort:"-publishedDate",limit:12,offset:0},booksByTopicCollection:[{type:"book",id:"8678",title:"Mobile Computing",subtitle:null,isOpenForSubmission:!1,hash:"3c2cf4e62010e495199b294278d852c4",slug:"mobile-computing",bookSignature:"Jesus Hamilton Ortiz",coverURL:"https://cdn.intechopen.com/books/images_new/8678.jpg",editedByType:"Edited by",editors:[{id:"283288",title:"Dr.",name:"Jesus Hamilton",middleName:null,surname:"Ortiz",slug:"jesus-hamilton-ortiz",fullName:"Jesus Hamilton Ortiz"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"6498",title:"Mobile Computing",subtitle:"Technology and Applications",isOpenForSubmission:!1,hash:"ad8ae044b3a753dcd905348a5219549c",slug:"mobile-computing-technology-and-applications",bookSignature:"Mutamed Khatib and Nael Salman",coverURL:"https://cdn.intechopen.com/books/images_new/6498.jpg",editedByType:"Edited by",editors:[{id:"22273",title:"Dr.",name:"Mutamed",middleName:null,surname:"Khatib",slug:"mutamed-khatib",fullName:"Mutamed Khatib"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"1902",title:"Mobile Networks",subtitle:null,isOpenForSubmission:!1,hash:"5351aa9d45ae2f6c117f48979caa469a",slug:"mobile-networks",bookSignature:"Jesus Hamilton Ortiz",coverURL:"https://cdn.intechopen.com/books/images_new/1902.jpg",editedByType:"Edited by",editors:[{id:"97704",title:"Dr.",name:"Jesús Hamilton",middleName:null,surname:"Ortiz",slug:"jesus-hamilton-ortiz",fullName:"Jesús Hamilton Ortiz"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"1937",title:"Advances and Applications in Mobile Computing",subtitle:null,isOpenForSubmission:!1,hash:"6849926929e1a2a8dbc973860c55e882",slug:"advances-and-applications-in-mobile-computing",bookSignature:"Adem Karahoca",coverURL:"https://cdn.intechopen.com/books/images_new/1937.jpg",editedByType:"Edited by",editors:[{id:"1586",title:"Associate Prof.",name:"Adem",middleName:null,surname:"Karahoca",slug:"adem-karahoca",fullName:"Adem Karahoca"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"1636",title:"Telecommunications Networks",subtitle:"Current Status and Future Trends",isOpenForSubmission:!1,hash:"3cd52027cd1f450d5770cede2b712b46",slug:"telecommunications-networks-current-status-and-future-trends",bookSignature:"Jesus Hamilton Ortiz",coverURL:"https://cdn.intechopen.com/books/images_new/1636.jpg",editedByType:"Edited by",editors:[{id:"97704",title:"Dr.",name:"Jesús Hamilton",middleName:null,surname:"Ortiz",slug:"jesus-hamilton-ortiz",fullName:"Jesús Hamilton Ortiz"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"856",title:"Mobile Multimedia",subtitle:"User and Technology Perspectives",isOpenForSubmission:!1,hash:"9e415ab7b4b8bec2caabd9e3daf961ef",slug:"mobile-multimedia-user-and-technology-perspectives",bookSignature:"Dian Tjondronegoro",coverURL:"https://cdn.intechopen.com/books/images_new/856.jpg",editedByType:"Edited by",editors:[{id:"70836",title:"Dr.",name:"Dian",middleName:null,surname:"Tjondronegoro",slug:"dian-tjondronegoro",fullName:"Dian Tjondronegoro"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"858",title:"Recent Developments in Mobile Communications",subtitle:"A Multidisciplinary Approach",isOpenForSubmission:!1,hash:"d9051720bd0c3f7ff7f171bcbbb599f0",slug:"recent-developments-in-mobile-communications-a-multidisciplinary-approach",bookSignature:"Juan P. Maícas",coverURL:"https://cdn.intechopen.com/books/images_new/858.jpg",editedByType:"Edited by",editors:[{id:"66181",title:"Dr",name:"Juan P.",middleName:null,surname:"Maícas",slug:"juan-p.-maicas",fullName:"Juan P. Maícas"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"189",title:"Novel Applications of the UWB Technologies",subtitle:null,isOpenForSubmission:!1,hash:"ed2f8e92a107244ca4c22888843e374f",slug:"novel-applications-of-the-uwb-technologies",bookSignature:"Boris Lembrikov",coverURL:"https://cdn.intechopen.com/books/images_new/189.jpg",editedByType:"Edited by",editors:[{id:"2359",title:"Dr.",name:"Boris",middleName:"I.",surname:"Lembrikov",slug:"boris-lembrikov",fullName:"Boris Lembrikov"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"3629",title:"Mobile and Wireless Communications",subtitle:"Physical Layer Development and Implementatiom",isOpenForSubmission:!1,hash:null,slug:"mobile-and-wireless-communications-physical-layer-development-and-implementatiom",bookSignature:"Salma Ait Fares and Fumiyuki Adachi",coverURL:"https://cdn.intechopen.com/books/images_new/3629.jpg",editedByType:"Edited by",editors:[{id:"3125",title:"Dr.",name:"Salma",middleName:null,surname:"Ait Fares",slug:"salma-ait-fares",fullName:"Salma Ait Fares"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}}],booksByTopicTotal:9,mostCitedChapters:[{id:"33209",doi:"10.5772/38360",title:"Review of Optimization Problems in Wireless Sensor Networks",slug:"review-of-optimization-problems-in-wireless-sensor-networks",totalDownloads:3945,totalCrossrefCites:12,totalDimensionsCites:18,book:{slug:"telecommunications-networks-current-status-and-future-trends",title:"Telecommunications Networks",fullTitle:"Telecommunications Networks - Current Status and Future Trends"},signatures:"Ada Gogu, Dritan Nace, Arta Dilo and Nirvana Meratnia",authors:[{id:"35368",title:"Dr.",name:"Nirvana",middleName:null,surname:"Meratnia",slug:"nirvana-meratnia",fullName:"Nirvana Meratnia"},{id:"116841",title:"Prof.",name:"Dritan",middleName:null,surname:"Nace",slug:"dritan-nace",fullName:"Dritan Nace"},{id:"116843",title:"Dr.",name:"Arta",middleName:null,surname:"Dilo",slug:"arta-dilo",fullName:"Arta Dilo"},{id:"116844",title:"MSc.",name:"Ada",middleName:null,surname:"Gogu",slug:"ada-gogu",fullName:"Ada Gogu"}]},{id:"26695",doi:"10.5772/39053",title:"Understanding User Experience of Mobile Video: Framework, Measurement, and Optimization",slug:"understanding-user-experience-of-mobile-video-framework-measurement-and-optimization",totalDownloads:3114,totalCrossrefCites:9,totalDimensionsCites:13,book:{slug:"mobile-multimedia-user-and-technology-perspectives",title:"Mobile Multimedia",fullTitle:"Mobile Multimedia - User and Technology Perspectives"},signatures:"Wei Song, Dian Tjondronegoro and Michael Docherty",authors:[{id:"133409",title:"Ms.",name:"Wei",middleName:null,surname:"Song",slug:"wei-song",fullName:"Wei Song"}]},{id:"24907",doi:"10.5772/25921",title:"Multiband and Wideband Antennas for Mobile Communication Systems",slug:"multiband-and-wideband-antennas-for-mobile-communication-systems",totalDownloads:13639,totalCrossrefCites:5,totalDimensionsCites:10,book:{slug:"recent-developments-in-mobile-communications-a-multidisciplinary-approach",title:"Recent Developments in Mobile Communications",fullTitle:"Recent Developments in Mobile Communications - A Multidisciplinary Approach"},signatures:"Mustafa Secmen",authors:[{id:"64991",title:"Dr.",name:"Mustafa",middleName:null,surname:"Secmen",slug:"mustafa-secmen",fullName:"Mustafa Secmen"}]}],mostDownloadedChaptersLast30Days:[{id:"26700",title:"Designing and Evaluating Mobile Multimedia User Experiences in Public Urban Places: Making Sense of the Field",slug:"designing-and-evaluating-mobile-multimedia-user-experiences-in-public-urban-places-making-sense-of-t",totalDownloads:1953,totalCrossrefCites:1,totalDimensionsCites:2,book:{slug:"mobile-multimedia-user-and-technology-perspectives",title:"Mobile Multimedia",fullTitle:"Mobile Multimedia - User and Technology Perspectives"},signatures:"Jan Seeburger, Marcus Foth and Dian Tjondronegoro",authors:[{id:"70836",title:"Dr.",name:"Dian",middleName:null,surname:"Tjondronegoro",slug:"dian-tjondronegoro",fullName:"Dian Tjondronegoro"},{id:"132430",title:"Mr.",name:"Jan",middleName:null,surname:"Seeburger",slug:"jan-seeburger",fullName:"Jan Seeburger"},{id:"132491",title:"Dr.",name:"Marcus",middleName:null,surname:"Foth",slug:"marcus-foth",fullName:"Marcus Foth"}]},{id:"17463",title:"A Telematics System Using In-Vehicle UWB Communications",slug:"a-telematics-system-using-in-vehicle-uwb-communications",totalDownloads:2176,totalCrossrefCites:1,totalDimensionsCites:3,book:{slug:"novel-applications-of-the-uwb-technologies",title:"Novel Applications of the UWB Technologies",fullTitle:"Novel Applications of the UWB Technologies"},signatures:"I.J. Garcia Zuazola, J.M.H. Elmirghani and J.C. Batchelor",authors:[{id:"58943",title:"Dr.",name:null,middleName:null,surname:"Garcia Zuazola",slug:"garcia-zuazola",fullName:"Garcia Zuazola"}]},{id:"60121",title:"Adaptive Security Framework in Internet of Things (IoT) for Providing Mobile Cloud Computing",slug:"adaptive-security-framework-in-internet-of-things-iot-for-providing-mobile-cloud-computing",totalDownloads:822,totalCrossrefCites:2,totalDimensionsCites:2,book:{slug:"mobile-computing-technology-and-applications",title:"Mobile Computing",fullTitle:"Mobile Computing - Technology and Applications"},signatures:"Feda AlShahwan",authors:[{id:"225941",title:"Dr.",name:"Feda",middleName:null,surname:"Alshahwan",slug:"feda-alshahwan",fullName:"Feda Alshahwan"}]},{id:"60665",title:"Taxonomy of Cloud Lock-in Challenges",slug:"taxonomy-of-cloud-lock-in-challenges",totalDownloads:626,totalCrossrefCites:2,totalDimensionsCites:4,book:{slug:"mobile-computing-technology-and-applications",title:"Mobile Computing",fullTitle:"Mobile Computing - Technology and Applications"},signatures:"Justice Opara-Martins",authors:[{id:"222657",title:"Dr.",name:"Justice",middleName:null,surname:"Opara-Martins",slug:"justice-opara-martins",fullName:"Justice Opara-Martins"}]},{id:"33215",title:"Modelling a Network Traffic Probe Over a Multiprocessor Architecture",slug:"modelling-a-network-traffic-probe-over-a-multiprocessor-architecture",totalDownloads:1958,totalCrossrefCites:1,totalDimensionsCites:1,book:{slug:"telecommunications-networks-current-status-and-future-trends",title:"Telecommunications Networks",fullTitle:"Telecommunications Networks - Current Status and Future Trends"},signatures:"Luis Zabala, Armando Ferro, Alberto Pineda and Alejandro Muñoz",authors:[{id:"111211",title:"Mr.",name:"Alejandro",middleName:null,surname:"Muñoz",slug:"alejandro-munoz",fullName:"Alejandro Muñoz"},{id:"111364",title:"Mr.",name:"Luis",middleName:null,surname:"Zabala",slug:"luis-zabala",fullName:"Luis Zabala"},{id:"111381",title:"Dr.",name:"Armando",middleName:null,surname:"Ferro",slug:"armando-ferro",fullName:"Armando Ferro"},{id:"138241",title:"Mr.",name:"Alberto",middleName:null,surname:"Pineda",slug:"alberto-pineda",fullName:"Alberto Pineda"}]},{id:"35015",title:"Supporting Inclusive Design of Mobile Devices with a Context Model",slug:"supporting-inclusive-design-of-mobile-devices-with-a-context-model-",totalDownloads:2432,totalCrossrefCites:0,totalDimensionsCites:2,book:{slug:"advances-and-applications-in-mobile-computing",title:"Advances and Applications in Mobile Computing",fullTitle:"Advances and Applications in Mobile Computing"},signatures:"Pierre T. Kirisci, Klaus-Dieter Thoben, Patrick Klein, Martin Hilbig, Markus Modzelewski, Michael Lawo, Antoinette Fennell, Joshue O’Connor, Thomas Fiddian, Yehya Mohamad, Markus Klann, Thomas Bergdahl, Haluk Gokmen and Edmilson Klen",authors:[{id:"116760",title:"Mr.",name:"Pierre Taner",middleName:null,surname:"Kirisci",slug:"pierre-taner-kirisci",fullName:"Pierre Taner Kirisci"},{id:"138197",title:"Prof.",name:"Klaus-Dieter",middleName:null,surname:"Thoben",slug:"klaus-dieter-thoben",fullName:"Klaus-Dieter Thoben"},{id:"138198",title:"Mr.",name:"Patrick",middleName:null,surname:"Klein",slug:"patrick-klein",fullName:"Patrick Klein"},{id:"138199",title:"Mr.",name:"Martin",middleName:null,surname:"Hilbig",slug:"martin-hilbig",fullName:"Martin Hilbig"},{id:"138200",title:"Mr.",name:"Markus",middleName:null,surname:"Modzelewski",slug:"markus-modzelewski",fullName:"Markus Modzelewski"},{id:"138201",title:"Prof.",name:"Michael",middleName:null,surname:"Lawo",slug:"michael-lawo",fullName:"Michael Lawo"},{id:"138202",title:"Mrs.",name:"Antoinette",middleName:null,surname:"Fennell",slug:"antoinette-fennell",fullName:"Antoinette Fennell"},{id:"138203",title:"Mr.",name:"Josh",middleName:null,surname:"O Connor",slug:"josh-o-connor",fullName:"Josh O Connor"},{id:"138204",title:"Mr.",name:"Thomas",middleName:null,surname:"Fiddian",slug:"thomas-fiddian",fullName:"Thomas Fiddian"},{id:"138205",title:"Dr.",name:"Yehya",middleName:null,surname:"Mohammad",slug:"yehya-mohammad",fullName:"Yehya Mohammad"},{id:"138206",title:"Mr.",name:"Thomas",middleName:null,surname:"Bergdahl",slug:"thomas-bergdahl",fullName:"Thomas Bergdahl"},{id:"138207",title:"Mr.",name:"Haluk",middleName:"H.",surname:"Gökmen",slug:"haluk-gokmen",fullName:"Haluk Gökmen"},{id:"138208",title:"Prof.",name:"Edmilson",middleName:null,surname:"Klen",slug:"edmilson-klen",fullName:"Edmilson Klen"},{id:"138209",title:"Mr.",name:"Markus",middleName:null,surname:"Klann",slug:"markus-klann",fullName:"Markus Klann"}]},{id:"17456",title:"A 0.13um CMOS 6-9GHz 9-Bands Double-Carrier OFDM Transceiver for Ultra Wideband Applications",slug:"a-0-13um-cmos-6-9ghz-9-bands-double-carrier-ofdm-transceiver-for-ultra-wideband-applications",totalDownloads:2636,totalCrossrefCites:0,totalDimensionsCites:0,book:{slug:"novel-applications-of-the-uwb-technologies",title:"Novel Applications of the UWB Technologies",fullTitle:"Novel Applications of the UWB Technologies"},signatures:"Li Wei, Chen Yunfeng, Gao Ting, Zhou Feng, Chen Danfeng, Fu Haipeng and Cai Deyun",authors:[{id:"25715",title:"Dr.",name:"Wei",middleName:null,surname:"Li",slug:"wei-li",fullName:"Wei Li"}]},{id:"17468",title:"Ultra-Wideband Pulse-Based Microwave Imaging for Breast Cancer Detection: Experimental Issues and Compensations",slug:"ultra-wideband-pulse-based-microwave-imaging-for-breast-cancer-detection-experimental-issues-and-com",totalDownloads:3004,totalCrossrefCites:0,totalDimensionsCites:1,book:{slug:"novel-applications-of-the-uwb-technologies",title:"Novel Applications of the UWB Technologies",fullTitle:"Novel Applications of the UWB Technologies"},signatures:"Joshua C. Y. Lai, Cheong Boon Soh,\nKay Soon Low and Erry Gunawan",authors:[{id:"35582",title:"Dr.",name:"Cheong Boon",middleName:null,surname:"Soh",slug:"cheong-boon-soh",fullName:"Cheong Boon Soh"}]},{id:"71868",title:"Energy Consumption Model for Green Computing",slug:"energy-consumption-model-for-green-computing",totalDownloads:246,totalCrossrefCites:0,totalDimensionsCites:1,book:{slug:"mobile-computing",title:"Mobile Computing",fullTitle:"Mobile Computing"},signatures:"Jesus Hamilton Ortiz, Fernando Velez Varela and Bazil Taha Ahmed",authors:[{id:"26364",title:"Dr.",name:"Bazil Taha",middleName:null,surname:"Ahmed",slug:"bazil-taha-ahmed",fullName:"Bazil Taha Ahmed"},{id:"283288",title:"Dr.",name:"Jesus Hamilton",middleName:null,surname:"Ortiz",slug:"jesus-hamilton-ortiz",fullName:"Jesus Hamilton Ortiz"},{id:"319427",title:"Dr.",name:"Fernando",middleName:null,surname:"Velez Varela",slug:"fernando-velez-varela",fullName:"Fernando Velez Varela"}]},{id:"17461",title:"UWB Technology for WSN Applications",slug:"uwb-technology-for-wsn-applications",totalDownloads:2907,totalCrossrefCites:0,totalDimensionsCites:0,book:{slug:"novel-applications-of-the-uwb-technologies",title:"Novel Applications of the UWB Technologies",fullTitle:"Novel Applications of the UWB Technologies"},signatures:"Anwarul Azim, M. A Matin, Asaduzzaman and Nowshad Amin",authors:[{id:"12623",title:"Prof.",name:"Mohammad Abdul",middleName:"A",surname:"Matin",slug:"mohammad-abdul-matin",fullName:"Mohammad Abdul Matin"},{id:"19625",title:"Dr.",name:"Nowshad",middleName:null,surname:"Amin",slug:"nowshad-amin",fullName:"Nowshad Amin"},{id:"35578",title:"Mr",name:"Md. Anwarul",middleName:null,surname:"Azim",slug:"md.-anwarul-azim",fullName:"Md. Anwarul Azim"},{id:"88691",title:"Mr.",name:"Dr.",middleName:null,surname:"Asaduzzaman",slug:"dr.-asaduzzaman",fullName:"Dr. Asaduzzaman"}]}],onlineFirstChaptersFilter:{topicSlug:"communications-and-security-mobile-computing",limit:3,offset:0},onlineFirstChaptersCollection:[],onlineFirstChaptersTotal:0},preDownload:{success:null,errors:{}},aboutIntechopen:{},privacyPolicy:{},peerReviewing:{},howOpenAccessPublishingWithIntechopenWorks:{},sponsorshipBooks:{sponsorshipBooks:[{type:"book",id:"10176",title:"Microgrids and Local Energy Systems",subtitle:null,isOpenForSubmission:!0,hash:"c32b4a5351a88f263074b0d0ca813a9c",slug:null,bookSignature:"Prof. Nick Jenkins",coverURL:"https://cdn.intechopen.com/books/images_new/10176.jpg",editedByType:null,editors:[{id:"55219",title:"Prof.",name:"Nick",middleName:null,surname:"Jenkins",slug:"nick-jenkins",fullName:"Nick Jenkins"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}}],offset:8,limit:8,total:1},route:{name:"book.detail",path:"/books/organ-donation-and-transplantation",hash:"",query:{},params:{book:"organ-donation-and-transplantation"},fullPath:"/books/organ-donation-and-transplantation",meta:{},from:{name:null,path:"/",hash:"",query:{},params:{},fullPath:"/",meta:{}}}},function(){var e;(e=document.currentScript||document.scripts[document.scripts.length-1]).parentNode.removeChild(e)}()