Anti-inflammatory and immune modulatory effects of rooibos and honeybush.
\r\n\t
",isbn:"978-1-83962-547-3",printIsbn:"978-1-83962-546-6",pdfIsbn:"978-1-83962-548-0",doi:null,price:0,priceEur:0,priceUsd:0,slug:null,numberOfPages:0,isOpenForSubmission:!0,hash:"e5ba02fedd7c87f0ab66414f3b07de0c",bookSignature:" John P. Tiefenbacher",publishedDate:null,coverURL:"https://cdn.intechopen.com/books/images_new/10765.jpg",keywords:"Managing Urbanization, Managing Development, Managing Resource Use, Drought Management, Flood Management, Water Quality Monitoring, Air Quality Monitoring, Ecological Monitoring, Modeling Extreme Natural Events, Ecological Restoration, Restoring Environmental Flows, Environmental Management Perspectives",numberOfDownloads:null,numberOfWosCitations:0,numberOfCrossrefCitations:null,numberOfDimensionsCitations:null,numberOfTotalCitations:null,isAvailableForWebshopOrdering:!0,dateEndFirstStepPublish:"January 12th 2021",dateEndSecondStepPublish:"February 9th 2021",dateEndThirdStepPublish:"April 10th 2021",dateEndFourthStepPublish:"June 29th 2021",dateEndFifthStepPublish:"August 28th 2021",remainingDaysToSecondStep:"20 days",secondStepPassed:!1,currentStepOfPublishingProcess:2,editedByType:null,kuFlag:!1,biosketch:"A geospatial scholar working at the interface of natural and human systems, collaborating internationally on innovative studies about hazards and environmental challenges. Dr. Tiefenbacher has published more than 200 papers on a diverse array of topics that examine perception and behaviors with regards to the application of pesticides, releases of toxic chemicals, environments of the U.S.-Mexico borderlands, wildlife hazards, and the geography of wine.",coeditorOneBiosketch:null,coeditorTwoBiosketch:null,coeditorThreeBiosketch:null,coeditorFourBiosketch:null,coeditorFiveBiosketch:null,editors:[{id:"73876",title:"Dr.",name:"John P.",middleName:null,surname:"Tiefenbacher",slug:"john-p.-tiefenbacher",fullName:"John P. Tiefenbacher",profilePictureURL:"https://mts.intechopen.com/storage/users/73876/images/system/73876.jfif",biography:"Dr. John P. Tiefenbacher (Ph.D., Rutgers, 1992) is a professor of Geography at Texas State University. His research has focused on various aspects of hazards and environmental management. Dr. Tiefenbacher has published on a diverse array of topics that examine perception and behaviors with regards to the application of pesticides, releases of toxic chemicals, environments of the U.S.-Mexico borderlands, wildlife hazards, and the geography of wine. More recently his work pertains to spatial adaptation to climate change, spatial responses in wine growing regions to climate change, the geographies of viticulture and wine, artificial intelligence and machine learning to predict patterns of natural processes and hazards, historical ethnic enclaves in American cities and regions, and environmental adaptations of 19th century European immigrants to North America's landscapes.",institutionString:"Texas State University",position:null,outsideEditionCount:0,totalCites:0,totalAuthoredChapters:"1",totalChapterViews:"0",totalEditedBooks:"6",institution:{name:"Texas State University",institutionURL:null,country:{name:"United States of America"}}}],coeditorOne:null,coeditorTwo:null,coeditorThree:null,coeditorFour:null,coeditorFive:null,topics:[{id:"12",title:"Environmental Sciences",slug:"environmental-sciences"}],chapters:null,productType:{id:"1",title:"Edited Volume",chapterContentType:"chapter",authoredCaption:"Edited by"},personalPublishingAssistant:{id:"194667",firstName:"Marijana",lastName:"Francetic",middleName:null,title:"Ms.",imageUrl:"https://mts.intechopen.com/storage/users/194667/images/4752_n.jpg",email:"marijana@intechopen.com",biography:"As an Author Service Manager my responsibilities include monitoring and facilitating all publishing activities for authors and editors. From chapter submission and review, to approval and revision, copyediting and design, until final publication, I work closely with authors and editors to ensure a simple and easy publishing process. I maintain constant and effective communication with authors, editors and reviewers, which allows for a level of personal support that enables contributors to fully commit and concentrate on the chapters they are writing, editing, or reviewing. I assist authors in the preparation of their full chapter submissions and track important deadlines and ensure they are met. I help to coordinate internal processes such as linguistic review, and monitor the technical aspects of the process. As an ASM I am also involved in the acquisition of editors. Whether that be identifying an exceptional author and proposing an editorship collaboration, or contacting researchers who would like the opportunity to work with IntechOpen, I establish and help manage author and editor acquisition and contact."}},relatedBooks:[{type:"book",id:"1591",title:"Infrared Spectroscopy",subtitle:"Materials Science, Engineering and Technology",isOpenForSubmission:!1,hash:"99b4b7b71a8caeb693ed762b40b017f4",slug:"infrared-spectroscopy-materials-science-engineering-and-technology",bookSignature:"Theophile Theophanides",coverURL:"https://cdn.intechopen.com/books/images_new/1591.jpg",editedByType:"Edited by",editors:[{id:"37194",title:"Dr.",name:"Theophanides",surname:"Theophile",slug:"theophanides-theophile",fullName:"Theophanides Theophile"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"3092",title:"Anopheles mosquitoes",subtitle:"New insights into malaria vectors",isOpenForSubmission:!1,hash:"c9e622485316d5e296288bf24d2b0d64",slug:"anopheles-mosquitoes-new-insights-into-malaria-vectors",bookSignature:"Sylvie Manguin",coverURL:"https://cdn.intechopen.com/books/images_new/3092.jpg",editedByType:"Edited by",editors:[{id:"50017",title:"Prof.",name:"Sylvie",surname:"Manguin",slug:"sylvie-manguin",fullName:"Sylvie Manguin"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"3161",title:"Frontiers in Guided Wave Optics and Optoelectronics",subtitle:null,isOpenForSubmission:!1,hash:"deb44e9c99f82bbce1083abea743146c",slug:"frontiers-in-guided-wave-optics-and-optoelectronics",bookSignature:"Bishnu Pal",coverURL:"https://cdn.intechopen.com/books/images_new/3161.jpg",editedByType:"Edited by",editors:[{id:"4782",title:"Prof.",name:"Bishnu",surname:"Pal",slug:"bishnu-pal",fullName:"Bishnu Pal"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"72",title:"Ionic Liquids",subtitle:"Theory, Properties, New Approaches",isOpenForSubmission:!1,hash:"d94ffa3cfa10505e3b1d676d46fcd3f5",slug:"ionic-liquids-theory-properties-new-approaches",bookSignature:"Alexander Kokorin",coverURL:"https://cdn.intechopen.com/books/images_new/72.jpg",editedByType:"Edited by",editors:[{id:"19816",title:"Prof.",name:"Alexander",surname:"Kokorin",slug:"alexander-kokorin",fullName:"Alexander Kokorin"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"1373",title:"Ionic Liquids",subtitle:"Applications and Perspectives",isOpenForSubmission:!1,hash:"5e9ae5ae9167cde4b344e499a792c41c",slug:"ionic-liquids-applications-and-perspectives",bookSignature:"Alexander Kokorin",coverURL:"https://cdn.intechopen.com/books/images_new/1373.jpg",editedByType:"Edited by",editors:[{id:"19816",title:"Prof.",name:"Alexander",surname:"Kokorin",slug:"alexander-kokorin",fullName:"Alexander Kokorin"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"57",title:"Physics and Applications of Graphene",subtitle:"Experiments",isOpenForSubmission:!1,hash:"0e6622a71cf4f02f45bfdd5691e1189a",slug:"physics-and-applications-of-graphene-experiments",bookSignature:"Sergey Mikhailov",coverURL:"https://cdn.intechopen.com/books/images_new/57.jpg",editedByType:"Edited by",editors:[{id:"16042",title:"Dr.",name:"Sergey",surname:"Mikhailov",slug:"sergey-mikhailov",fullName:"Sergey Mikhailov"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"371",title:"Abiotic Stress in Plants",subtitle:"Mechanisms and Adaptations",isOpenForSubmission:!1,hash:"588466f487e307619849d72389178a74",slug:"abiotic-stress-in-plants-mechanisms-and-adaptations",bookSignature:"Arun Shanker and B. Venkateswarlu",coverURL:"https://cdn.intechopen.com/books/images_new/371.jpg",editedByType:"Edited by",editors:[{id:"58592",title:"Dr.",name:"Arun",surname:"Shanker",slug:"arun-shanker",fullName:"Arun Shanker"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"878",title:"Phytochemicals",subtitle:"A Global Perspective of Their Role in Nutrition and Health",isOpenForSubmission:!1,hash:"ec77671f63975ef2d16192897deb6835",slug:"phytochemicals-a-global-perspective-of-their-role-in-nutrition-and-health",bookSignature:"Venketeshwer Rao",coverURL:"https://cdn.intechopen.com/books/images_new/878.jpg",editedByType:"Edited by",editors:[{id:"82663",title:"Dr.",name:"Venketeshwer",surname:"Rao",slug:"venketeshwer-rao",fullName:"Venketeshwer Rao"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"4816",title:"Face Recognition",subtitle:null,isOpenForSubmission:!1,hash:"146063b5359146b7718ea86bad47c8eb",slug:"face_recognition",bookSignature:"Kresimir Delac and Mislav Grgic",coverURL:"https://cdn.intechopen.com/books/images_new/4816.jpg",editedByType:"Edited by",editors:[{id:"528",title:"Dr.",name:"Kresimir",surname:"Delac",slug:"kresimir-delac",fullName:"Kresimir Delac"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"3621",title:"Silver Nanoparticles",subtitle:null,isOpenForSubmission:!1,hash:null,slug:"silver-nanoparticles",bookSignature:"David Pozo Perez",coverURL:"https://cdn.intechopen.com/books/images_new/3621.jpg",editedByType:"Edited by",editors:[{id:"6667",title:"Dr.",name:"David",surname:"Pozo",slug:"david-pozo",fullName:"David Pozo"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}}]},chapter:{item:{type:"chapter",id:"67374",title:"Rooibos (Aspalathus linearis) and Honeybush (Cyclopia spp.): From Bush Teas to Potential Therapy for Cardiovascular Disease",doi:"10.5772/intechopen.86410",slug:"rooibos-em-aspalathus-linearis-em-and-honeybush-em-cyclopia-em-spp-from-bush-teas-to-potential-thera",body:'\nCardiovascular disease is the leading cause of deaths worldwide, killing 17.9 million people in 2016 [1]. While the number of cardiovascular disease related morbidity and mortality in the developed world has decreased or remained steady, the developing world has seen an increase. Limited resources, poverty, poor access to affordable healthcare, poor implementation of health policies, as well as poor education may be some of the reasons for the increase in cardiovascular diseases in low to middle income countries [2]. A number of risk factors for cardiovascular disease as well as type 2 diabetes and stroke present as metabolic syndrome. Metabolic risk factors include hypertension, abdominal obesity, dyslipidaemia, increased blood glucose levels, and may also include risk factors such as vascular dysfunction, insulin resistance, low levels of high density lipoprotein cholesterol (HDL-C) and inflammation. Natural products could play a significant role in drug discovery and development with examples including morphine, isolated from the opium poppy (Papaver somniferum) and artemisinin, from Artemisia afra [3, 4, 5]. Nutraceuticals are foods or supplements with health benefits [6]. To this end, a number of nutraceuticals including fruits, vegetables, tea and herbal infusions have shown health benefits. Approximately 80% of the emerging world relies on herbal supplements [7]. This may often be a more accessible form of health or self-care, due to a lack of access to modern medicine, an alternative to modern medicine or due to the high cost of treatment of modern medicine. This practice may involve the use of herbs or plants, including polyphenol rich rooibos (Aspalathus linearis) and honeybush (Cyclopia spp.), indigenous South African plant species with reported health benefits [8]. Many nutraceuticals contain polyphenols, the most abundant antioxidants in the diet which could help in the prevention of neurodegenerative diseases, diabetes, cancer, and cardiovascular disease [9]. Oxidative stress is a key process occurring in these diseases and is marked by imbalances between oxidants and the availability of antioxidants as well as perturbations in redox signalling mechanisms [10, 11]. Drugs used in the treatment of cardiovascular disease and obesity often have side effects, hence there is a need for better tolerated, safer and more natural treatment options [12]. A number of epidemiological studies and meta-analyses show some cardiovascular benefits with the intake of tea [13]. Furthermore, a review of some clinical studies show benefits of tea consumption in reducing cardiovascular risk factors, especially in overweight or obese subjects [14]. Rooibos and honeybush have a number of reported health properties, many of them targeting risk factors for the development of cardiovascular disease. The purpose of this paper was to review the role of rooibos and honeybush as potential nutraceuticals in the treatment of cardiovascular disease.
\nA multitude of risk factors predispose to the onset of cardiovascular disease. This includes unmodifiable risk factors, such as increasing age, male gender, ethnicity, family history and genetics [15]. Modifiable risk factors include tobacco smoking, an unhealthy diet, a sedentary lifestyle, high alcohol intake, high blood pressure, being overweight or having central obesity, dyslipidaemia, impaired glucose tolerance or diabetes [15]. Diabetes not only quadrupled from 1980 to 2014 but approximately 57% of diabetic women and 67% of diabetic men are likely to present with cardiovascular disease by the age of 50 [1, 16]. Metabolic syndrome is largely preventable and includes a number of clinical findings which when occurring together, increase the risk of diabetes and cardiovascular disease. These include central obesity with any of the following risk factors including increased triglycerides, fasting plasma glucose, blood pressure and reduced HDL cholesterol levels [17]. Metabolic syndrome is also accompanied by changes in neuroendocrine and autonomic function [18]. It is known that early life stressors can predispose to disease outcome in later life, including cardiovascular disease [19]. Chronic stress influences cardiovascular outcome and anxiety and depression are also risk factors for cardiovascular disease [20, 21, 22]. This leads to changes in glucocorticoids and mineralocorticoids via modulation of the hypothalamic pituitary axis (HPA) [18]. Xenobiotics, including drugs and herbal infusions are metabolised by drug metabolising enzymes such as the phase I, cytochrome P450 system, which also influences the formation of steroid hormones [23]. CYP21A2 are precursors to both mineralocorticoids such as aldosterone and glucocorticoids such as cortisol and cortisone. Interestingly, rooibos flavonoids aspalathin and nothofagin inhibits CYP21A2 but not CYP11B1, which is responsible for converting 11-deoxycortisol to cortisol [24]. Substrate conversion of CYP117A1 and CYP21A2 was also inhibited by rooibos but other flavonoids such as rutin, orientin and vitexin were unable to inhibit CYP21A2. Rutin, under forskolin-induced stress, was the best inhibitor of steroid production followed by nothofagin and vitexin and lastly by aspalathin and nothofagin [24]. The observed effects for steroid inhibition were attributed to structural differences in these rooibos flavonoids. Rooibos also decreased rat glucocorticoids by decreasing the corticosterone, deoxycorticosterone as well as the corticosterone: testosterone ratio [25]. In the accompanying human study the cortisol: corticosterone ratio was reduced by rooibos, which also inhibited 11 β-hydroxysteroid dehydrogenase type 1 (11βHSD1). This enzyme catalyses the conversion of cortisone to cortisol and is associated with risk factors for cardiovascular disease [26]. In a stress model using steroid producing H295R cells, rooibos and rutin were able to reduce cortisol levels. The inhibition of mineralocorticoid and glucocorticoid steroids by rooibos and the dihydrochalcones aspalathin and nothofagin were also demonstrated in H295R cells [27]. This suggests that rooibos may offer a possible therapeutic role in the management of cardiovascular complications relating from stress, by altering the biosynthesis of steroid hormones via the HPA axis. Inhibition of 11βHSD1 has been suggested as a potential target mechanism for drugs to modulate the metabolic syndrome; therefore, this could be further explored in the context of rooibos or even honeybush. The cardiovascular complications of metabolic syndrome include coronary artery disease, peripheral vascular disease, hypertension as well as heart failure [28]. Primary management of metabolic syndrome is structured around lifestyle and dietary changes, including regular physical activity and a modest 5–10% initial reduction in caloric intake, failing which the use of pharmaceutical drugs may also be prescribed [17]. Approximately 1.9 billion people were overweight in 2016, of which 650 million people were obese [29]. A sedentary lifestyle, excess calories, a high fat diet and genetics contribute to the development of obesity, which is characterised by a body mass index greater (BMI) >30 kg/m2 [30]. Urbanisation and a reduction in physical activity, along with an energy-rich Western diet, have contributed to the increase in cardiovascular disease in developing countries [31]. As a largely preventable disorder, obesity increases the risk of type 2 diabetes mellitus, cancer, cardiovascular disease, infertility, respiratory illnesses and a number of other health issues. In fact, obesity is not only a major independent risk factor but also an independent predictor for cardiovascular disease [32]. Strategies to avoid unnecessary deaths could include therapeutics that are safe, easily accessible and cost-effective. Rooibos and honeybush are relatively safe but long term clinical studies considering their safety are lacking [33, 34]. Two clinical case reports recommended caution in rooibos consumption but patients had consumed infusions containing rooibos and other herbs, thus the effects of these preparations and potential interactions between them need to be considered [35, 36]. Rooibos and honeybush are caffeine free and have low tannin levels making them ideal beverages for health conscious people, pregnant women and young children [37, 38, 39]. These plants may therefore be viable options in the future, provided sufficient evidence is generated to support their use as nutraceuticals capable of reducing cardiovascular risk.
\nRooibos [Aspalathus linearis L. (Burm.f.) R. Dahlgren (Leguminosae)] is a member of the fynbos biome, which contains needle-like leguminous plants. It occurs in the Cederberg area of the Western Cape, and in South Africa it is one of the most widely consumed herbal teas or tisanes. Its marketing potential was realized by Benjamin Gunzberg in 1904 and since then its popularity has steadily risen worldwide [40]. The top five export markets for rooibos are Germany, Japan, the Netherlands, the United Kingdom and the United States of America [41]. Rooibos is used as herbal infusion, health beverage, an ingredient in skin care products and cosmetics as well as a flavourant and colouring agent in a number of food applications. Honeybush (Cyclopia spp.), another member of the fynbos biome, is a bushy shrub found between the Piketberg area in the West, and Port Elizabeth in the East of South Africa (Figure 1). The year 1996 welcomed the first commercial harvests for honeybush, followed by the establishment of the South African Honeybush Tea Association (SAHTA) to manage the farming and sustainability practices as well as commercial interests of honeybush. After harvesting of rooibos or honeybush crops, leaves and stems are cut into small pieces, moistened and are fermented, either on open heaps or alternatively for honeybush also using an oven or fermentation tank. This is followed by drying of the fermented rooibos or honeybush. Fermentation of these plants is however associated with a change in phenolic composition as well as colour compared, to the green or unfermented plants which undergoes considerably less oxidation [42, 43]. The main contributors to the commercial market out of the 24 species of Cyclopia are C. intermedia, C. genistoides and C. subternata. C. intermedia has the largest market share; however, it is harvested from the wild, making the future sustainability and profitability of the crop problematic [44]. Honeybush is a budding commercial interest, used mainly as a tisane with great potential for development and is exported to countries such as the Netherlands, Germany and Japan [45].
\nHoneybush plant in flower. Image courtesy of the SAHTA.
Polyphenols are secondary plant metabolites commonly occurring in the diet in tea, coffee, wine, fruit, vegetables and cereals. The four main types of polyphenols, namely stilbenes, phenolic acids, flavonoids and lignins, can be classified according to the number of polyphenol rings and various chemical groups associated with the rings [46]. Flavonoids share a C3-C6-C3 backbone and the classification system includes groups such as the flavonols, flavones, isoflavones, flavanones, antho-cyanidins, and flavanols [46]. A number of studies have reported a reduction in the risk of cardiovascular disease with the intake of polyphenols [47]. The most prevalent polyphenols in rooibos include aspalathin, nothofagin, orientin, iso-orientin, vitexin and isovitexin, isoquercitrin and rutin [48, 49]. Aspalathin and aspalalinin are two unique dihydrochalcones in rooibos, with the former having been widely researched to date for its antioxidant and other health promoting properties [50, 51]. The flavonoid precursor in rooibos, Z-2-(β-ᴅ-glucopyranosyloxy)-3-phenylpropenoic acid (PPAG), has also received considerable attention for its anti-diabetic properties [52]. In Cyclopia species, the xanthones mangiferin, isomangiferin and the flavanone hesperidin are predominant [43, 53]. Mangiferin is not unique to honeybush, and also occurs in mangoes (Mangifera indica) and plants such as Pyrrosia sheareri and Anemarrhena asphodeloides [54, 55, 56]. Bioavailability refers to the amount of the substance that is ingested that is available for metabolism [46]. It involves a number of processes, including intestinal absorption, plasma kinetics, metabolism, binding to plasma albumin and excretion by the liver and kidneys [46]. Factors affecting bioavailability include isomeric form, processing methods, the type of compound and matrices surrounding the compound. The bioavailability of rooibos and honeybush is poor [57, 58]. The potential benefits attributed to their intake may therefore be hampered by poor bioavailability and also affect their maximal efficacy. Recently, the use of nanoencapsulation methods have been explored in order to increase the bioavailability and stability of aspalathin which could possibly promote the use of more effective nutraceuticals [59]. Since fermentation reduces polyphenol content, a number of studies have explored the benefits of unfermented, green rooibos or so called aspalathin rich extracts of rooibos in an attempt to elucidate the health promoting properties of the tisane [60, 61]. Others have looked at the effects of single isolate polyphenols from rooibos and honeybush such as aspalathin and mangiferin, to explore their functional benefits and identify a more targeted therapeutic option (Figure 2) [63, 64].
\nChemical structures of aspalathin (a) and mangiferin (b) showing phenol rings [62].
Oxidative stress occurs due to an imbalance in the production of reactive oxygen species (ROS) and the availability of ROS scavengers. This may occur due to an excess of unstable reactive species including free radicals, such as reactive oxygen, reactive chlorine, reactive nitrogen and non-radical species, all of which may interact with cells, causing cellular damage [65]. Oxidative stress contributes to the pathobiology of cancer, cardiovascular disease, ageing, diabetes and atherosclerosis; therefore, it is plausible that dietary sources of antioxidants may be useful in reducing oxidative stress. Aerobic organisms are therefore reliant on innate antioxidant defences, e.g., superoxide dismutase (SOD), catalase (CAT), glutathione peroxidase (GPX), reduced glutathione (GSH), uric acid, albumin and peroxiredoxins, to deal with large quantities of ROS in an attempt to reduce oxidative stress. Mitochondria are key generators of ROS in aerobic organisms, producing them as they generate energy; however, ROS are also important in cell signalling and released by macrophages to promote immunological attacks [66]. Xenobiotics, including rooibos and honeybush, are metabolised by the cytochrome P450 family and in the process, radicals are also produced and further detoxification processes facilitate their removal [67]. In cardiovascular disease, oxidative stress may manifest as dysfunction in the vascular endothelium or cardiac myocytes, and may arise due to increased intracellular Ca2+ as a result of ROS [68]. Oxidative stress associated with hyperglycaemia may occur from the glycation of proteins and the formation of advanced glycation end products, the auto-oxidation of glucose and the polyol pathway. In rodent models of streptozotocin (STZ)-induced diabetes, rooibos exerted antioxidant effects through increases in the activity of superoxide dismutase, catalase, glutathione peroxidase and decreasing lipid peroxidation [64, 69, 70]. Rooibos also decreased advanced glycation end products but clinical markers of diabetes such as fructosamine, glycated haemoglobin and glucose were unaffected [70]. Nuclear factor erythroid 2-related factor 2 (Nrf2), a critical regulator of the antioxidant response of the cell, facilitates the removal of oxidants through increased antioxidant enzyme activity [67]. The regulator of Nrf2, Kelch-like ECH-associated protein 1 (Keap 1), has oxidative and electrophilic sensitive cysteine residues which upon activation allows for dissociation and activation of Nrf2 [71]. In H9c2 cardiomyocytes, aspalathin (1 μM) increased the expression of Nrf2, and antioxidant genes and enzymes, including SOD, CAT, GPX and peroxiredoxins [64]. The expression of cytoprotective genes including heme oxygenase 1 (H0-1), NAD(P)H dehydrogenase (quinone 1), uncoupling protein 2 and apoptotic genes such as B-cell lymphoma 2 (Bcl-2) were also increased after aspalathin treatment. Uncoupling protein (UCP)3 and caspase 8, were however decreased. This suggests cellular survival due to reduced caspase 8, an important trigger for cell death [72]. UCP3 and UCP2 act in concert in the mitochondrial antioxidant response with UCP2 appearing to play a greater cytoprotective role in cardiomyocytes [73]. In the diabetic (db/db) mouse model, aspalathin increased Nrf2 expression as well as its downstream gene targets [74]. High dose aspalathin (130 mg/kg) also ameliorated the effects of hyperglycaemia in the heart by reducing the expected left ventricular enlargement. It could not however reduce fasting plasma glucose levels compared to metformin in these mice. The study confirmed the role of Nrf2 in the antioxidant response of the cell, strengthened the case for the potential use of nutraceuticals such as aspalathin in the treatment of diabetes, and also provides evidence for the differential effects observed with isolates compared to whole extracts of plants. Oxidative stress and inflammation co-exists in a number of diseases. The relationship between the two appears complex and is suggested to be a possible reason why antioxidant supplements in clinical trials have been unsuccessful [75]. In humans, no clear evidence of the antioxidant effects of flavonoids or pro-oxidant effects exist [76]. Supplementation of six cups of rooibos per day over a 6 week period in adults with increased cardiovascular risk increased plasma total polyphenols, reduced glutathione (GSH), and increased the GSH: oxidized glutathione (GSSG) ratio compared to the control period [77]. Furthermore, TBARS and conjugated dienes were reduced, indicating a reduction in oxidative stress after rooibos consumption. Ferric reducing antioxidant power (FRAP), oxygen radical absorbance capacity (ORAC) and 2,2′-azinobis-(3-ethylbenzothiazoline-6-sulfonate (ABTS) were unaffected. It is however known that assays for the measurement of antioxidant status can be difficult to compare and may also be non-specific and complicated by the instability of the species they are measuring [78]. Flavanoids and other polyphenols in honeybush are responsible for its antioxidant effects [79]. Fermentation of honeybush and rooibos however reduces antioxidant activity [80]. Mangiferin was the most effective scavenger of ABTS˙+ and in terms of its ability to reduce ferric ion, than the flavanone eriocitrin or the flavone luteolin [43]. This could be due to the hydrophilic nature of mangiferin, which is a glucoside. In an in vitro study using skin cells, aqueous extracts of Cyclopia subternata sp. exhibited the highest ABTS˙+ scavenging ability compared to other unfermented species of rooibos and Camellia sinensis [53]. In addition, rooibos, honeybush and Chinese green tea demonstrated ferric reducing antioxidant power (FRAP) and oxygen radical absorbance capacity (ORAC) abilities. Rooibos and honeybush also had better ORAC values than green tea, while rooibos aqueous extracts had the highest FRAP. In another model using hairless SKH-1 mice, unfermented honeybush and mangiferin had the highest FRAP compared to the fermented honeybush and hesperidin, and also the highest total antioxidant capacity [63]. Fermented and unfermented honeybush as well as mangiferin and hesperidin also protected against ultraviolet (UV) B-induced lipid peroxidation. Fermented and unfermented extracts of honeybush as well as hesperidin increased SOD and CAT activity, while mangiferin increased SOD but not catalase activity [63]. When Chinese green tea, rooibos and honeybush were evaluated for their ability to reduce lipid peroxidation, unfermented extracts generally offered better protection against lipid peroxidation but green tea offered the highest level of protection compared to the other infusions [53]. Mangiferin activated phosphatidylinositol 3-kinase (PI3K) induced protein kinase b (PKB/Akt) and Nrf2 signalling pathways, thus decreasing oxidative stress in an in vivo model using human kidney cells exposed to tert-butyl hydroperoxide [81]. The activities of SOD, CAT, GPX and the non-enzymatic intracellular antioxidant GSH were also enhanced and lipid peroxidation was decreased. When compared to vitamin C, ROS scavenging ability as measured by the 2,2-diphenyl-1-picrylhydrazyl (DPPH) radical scavenging method and FRAP was decreased at lower concentrations compared to vitamin C, which was used as the positive control. The expression of Nrf2, HO-1, SOD, Akt and GSK-β and the mechanistic target of rapamycin (mTOR) and cyclin D were also increased by exposure to mangiferin. In an STZ-induced diabetic Wistar rat model, mangiferin improved antioxidant status and reduced apoptosis and inflammation [82]. This could be due to modulation of the AGE-RAGE/MAPK signalling pathways. Advanced glycation end products (AGEs), which are increased in diabetes, lead to upregulation and activation of the receptor for advanced glycation end products (RAGE). This interaction causes inflammation and oxidative stress, through increases in the production of ROS, leading to lipid peroxidation. AGEs can also inhibit peroxisome proliferator activated receptor (PPAR)γ, a regulator in inflammation as well as the metabolism of lipids and glucose [83]. In the study mangiferin also displayed potential as a therapeutic in preventing AGE mediated lipogenesis. Antioxidants such as β-carotene, α-tocopherol and ascorbate were unsuccessful in reducing incidences of cardiovascular [84] and other diseases such as cancer [85], in fact appearing to increase risk in some cases, e.g., with vitamin C, x-tocopherol and beta-carotene [86, 87, 88]. Antioxidant supplementation to alleviate oxidative stress could however be affected by other factors such as the dose of the antioxidant, timing of the intervention, interactions with other antioxidants, whether it as administered as an isolate or a whole extract, the type of extract, the model as well as the methods that are used to detect oxidative stress. Rooibos and honeybush exert antioxidant effects by scavenging free radicals, chelating metal ions, or upregulating indigenous antioxidant enzymes. The aromatic ring structures of polyphenols also contain free hydroxyl groups which contribute to their antioxidant ability. The structural differences between rooibos polyphenols may thus also explain differences in antioxidant activity of these compounds [89]. The antioxidant activity of rooibos and honeybush polyphenols may also be explained by their ability to increase the activity of antioxidant enzymes, through upregulation of Nrf2, PI3K and other signalling pathways involved in cell survival. It may also be explained by their ability to act as antioxidants themselves, exerting differential physiological effects. The antioxidant effects of rooibos and honeybush and their polyphenols have been extensively studied in detail elsewhere and some of these effects are discussed here under the anti-inflammatory, anti-obesity, anti-diabetic and cardiovascular effects of these nutraceuticals (Tables 1, 2, 3, 4).
\nPlant species/compound | \nModel | \nDosage | \nMechanistic effects | \nAuthor and year | \n
---|---|---|---|---|
C. genistoides; C. subternata; C. maculata | \nMesenteric lymph node cells; murine splenocytes | \nVarious up to 250 μg/ml | \nModulated immune response; increased IFN-γ, IL-4, CD4+CD25+FOXP3 TREG cells: Total CD4+ cell ratio in mesenteric lymph node cells; increased IL-10 and IL-17a in splenocytes | \nMurakami et al., 2018 [90] | \n
ASP; Noth | \nC57BL/6 mouse sepsis model | \n1 mg/kg BW | \nDecreased plasma blood urea nitrogen (BUN), creatinine, urine protein, LDH; inhibition of NF-κβ activation; decreased plasma nitric oxide (NO), TNF-α, IL-6, myeloperoxidase (MPO) and sepsis associated lethality; decreased oxidative stress by increasing kidney superoxide dismutase (SOD), catalase (CAT), glutathione peroxidase (GPx), and decreasing lipid peroxidation | \nYang et al., 2018 [91] | \n
Orientin | \n1,2-dimethyl hydrazine stimulated colorectal cancer in Wistar rats | \n10 mg/kg BW | \nDecreased inflammatory mast cells, NFκ-B, TNFX, IL-6, iNOS and cyclooxygenase-2 (COX)-2 | \nThangaraj and Vaiyapuri, 2017 [92] | \n
C. intermedia; C. subternata | \nUVB/keratinocytes (HaCaT) | \nVarious (0.09–0.1 mg/ml), aqueous extracts; 0.18-0.71/3 µg/ml, methanol extracts | \nIncreased inhibition of cell viability, proliferation induced by UVB (aqueous C. intermedia); increased apoptosis, decreased intracellular interleukin (IL) 1-α (0.09–0.1 mg/ml); C. subternata (0.09–0.1 mg/ml) increased intracellular IL1-α and decreased extracellular IL-1α; methanol extracts alleviated reduction of cell growth parameters induced by UVB | \nMagcwebeba et al., 2016 [93] | \n
Honeybush (fermented and scale up fermented honeybush extracts | \nHaCaT human keratinocyte cells exposed to UVB irradiation | \n10–100 μg/ml; 200 μg/ml (cell viability) | \nAnti-inflammatory: Decreased IL-1β, IL-6, IL-8; decreased ERK, P38, metallomatrix proteases (MMPs) and C-Jun N-terminal kinase (JNK); increased SOD, CAT activities | \nIm et al., 2016 [94] | \n
ASP; Noth | \nLPS-induced HUVECs; C57BL/6 mice | \nVarious up to 30 µM in vitro; ASP 27.1 µg/mouse, Noth 26.2 µg/mouse in vivo | \nInhibition of LPS-induced barrier disruption; decreased expression of cell adhesion molecules (CAMs); decreased adhesion/transendothelial migration of leukocytes (HUVECs); decreased in vivo LPS-induced migration of leukocytes; decreased hyperpermeability; differentially decreased TNF-α, interleukin (IL)-6, NF-κB or ERK 1/2 by LPS; decreased LPS-induced lethal endotoxemia; increased antioxidant activity, decreased ROS; ASP inhibits effects on anti-inflammatory responses > Noth | \nLee and Bae, 2015 [95] | \n
C. subternata (scolymoside; vicenin-2) | \nHUVECs; C57BL/6 mice | \nVarious up to 20 µM in vitro; 23.8 µg/mouse | \nDecreased adhesion and migration to HUVECS by human neutrophils in vitro, in vivo; decreased LPS release of transforming growth factor β-induced protein (TGFBIp); decreased TGFBIp mediated hyperpermeability; decreased TNF-α, IL-6, NF-κB, extracellular regulated kinases ½ | \nLee et al., 2015 [96] | \n
C. subternata flavonoids: scolymoside (SCL); vicenin-2 (VCN) | \nHuman umbilical vein endothelial cells (HUVECs); C57BL/6 mice | \nVCN 11.9 μg/mouse; SCL 23.8 μg/mouse (±20 μmol/L) | \nDecreased vascular permeability, monocyte adhesion, CAM expression, NFκ-B expression and ROS induced by high glucose; increased expression of SOD, CAT | \nKu and Bae, 2015 [97] | \n
Unfermented rooibos (uf) + methanol extracts; ASP, Noth | \nNon-steroidogenic transfected COS-1 cells, H295R cells | \n4.3 mg/ml; ASP (10 μm); Noth (10 μm) | \nDecreased steroid production; decreased glucocorticoids during forskolin treatment; decreased aldosterone and cortisol precursors (variable effects between individual polyphenols and extract) | \nSchloms et al., 2012 [27] | \n
Honeybush (fermented, green ethanol soluble extracts); mangiferin (Mangif); hesperidin (Hesp) | \nSKH-1 mice | \n30 mg/ml extract; 3 mg/ml (Hesp); 4 mg/ml (Mang): 100 μl applied to dorsal skin | \nAnti-inflammatory: Fermented and unfermented extract decreased oedema, epidermal hyperplasia cyclooxygenase-2 (COX-2), ornithine decarboxylase (ODC), GADD45 and OGG1/2 expression; fermented extract decreased lipid peroxidation by increasing superoxide dismutase, catalase; isolated compounds hesperidin and mangiferin less effective than whole extracts | \nPetrova et al., 2011 [63] | \n
Rooibos | \nWhole blood cultures unstimulated or stimulated with endotoxins or phytohemagglutinin PHA | \n250–7.8 μg/ml | \nIncreased IL-6, 10, IFNγ (unstimulated cells); increased IL-6, decreased IL-10 (stimulated cells) | \nHendricks and Pool, 2010 [98] | \n
Rooibos | \nLPS stimulated macrophages | \n0.5 μg/ml | \nDecreased IL-6, IL-10; increased COX2 > 25% | \nMueller et al., 2010 [99] | \n
Rooibos | \nWistar rats (Dextran sodium sulphate (DSS) induced rat colitis model) | \n1.6 g/100 ml BW ad libitum | \nIncreased SOD vs. DSS rats; decreased 8-hydroxy-2′-deoxyguanosine (8-OHdG) vs. controls | \nBaba et al., 2009 [100] | \n
Rooibos | \nMurine splenocytes | \n1–100 μg/ml | \nIncreased ovalbumin; increased sheep RBC antibody production; no effect on specific LPS stimulated antibody response; increased IL-2 in ova anti-CD3 primed splenocytes (10–100 μg/ml); decreased IL-4 in ova primed splenocytes; increased ova-induced antibody production in cyclosporine A rats; increased IL-2 in splenocytes | \nKunishiro et al., 2001 [101] | \n
Anti-inflammatory and immune modulatory effects of rooibos and honeybush.
Extracts are considered fermented unless otherwise indicated.
Plant species/compound | \nModel | \nDosage | \nMechanistic effects | \nAuthor and year | \n
---|---|---|---|---|
Unfermented green rooibos extract (GRE) | \nHuman C3A liver cells; obese insulin-resistant rats | \n10 μg/ml (cells); up to 195 mg/kg BW (6 cups), rats | \nIncreased glucose and lipid metabolism: Increased glucose metabolism in C3A cells; increased insulin sensitivity in OBIR rats: increased GLUT2 expression; increased PI3K/Akt, phosphorylated AMPK and stimulation of insulin receptor substrate (IRS) 1, 2 forkhead box protein 01 (FOXO1) and carnitine palmitoyl transferase 1 (CPT1) | \nMazibuko-Mbeje et al., 2019 [102] | \n
ASP | \nVentricular cardiomyocytes isolated from healthy, aged control and obese insulin resistant rats | \n10 μM | \nIncreased insulin mediated glucose uptake in cardiomyocytes from young and aged rats, but not in high-caloric diet animals. Insulin actions enhanced via a PI3K-dependent mechanism | \nSmit et al., 2018 [103] | \n
ASP; GRE | \nPalmitate-induced insulin resistant adipocytes | \nGRE (10 μg/ml); ASP (10 μM) | \nIncreased GLUT4 expression (GRE); Both treatments: decreased lipid-mediated insulin resistance; decreased NFκβ, IRS1 (ser307), phosphorylated AMPK (GRE); increased Akt phosphorylation; Only ASP increased peroxisome proliferator-activated receptor (PPAR) α, γ and CPT1 | \nMazibuko et al., 2015 [104] | \n
Fermented rooibos | \n3T3-L1 adipocytes | \n10 μg/ml, 100 μg/ml | \nDecreased lipid accumulation; decreased adipogenesis; decreased PPARγ, α, sterol regulatory binding factor 1 (SREBF1), fatty acid synthase (FASN) expression impaired; leptin secretion decreased | \nSanderson et al., 2014 [105] | \n
Cyclopia maculata (aqueous) | \n3T3-L1 adipocytes | \n60–100 μg/ml | \nAnti-obesogenic 60–100 μg/ml fermented extracts increased glycerol release; 80 μg/ml increased lipolysis maximally; increased expression of perilipin, hormone sensitive lipase (HSL); not cytotoxic (up to 100 μg/ml) | \nPheiffer et al., 2013 [106] | \n
Cyclopia maculata (fermented, fermented), Cyclopia subternata (unfermented) | \n3T3-L1 pre-adipocytes | \nVarious up to 1600 μg/ml | \nAnti-obesogenic: decreased adipocyte differentiation; decreased intracellular triglycerides (> 100 μg/ml); decreased cellular ATP (C. Maculata) decreased PPARγ isoform 2; increased adiponectin (fermented C. maculata); increased leptin cytotoxic: 800 µg/ml (C. maculataunfermented), 1600 µg/ml (C. maculata+ C. subternata, unfermented) | \nDhudhia et al., 2013 [107] | \n
Rooibos (not explicitly stated in paper but considered to be the fermented extract) | \nLDLr−/− mice; 3T3-L1 adipocytes | \n10 g/L (mice); 600 μg/ml (adipocytes) | \nIncreased lipolysis; decreased serum cholesterol; triglycerides, free fatty acids; increased food consumption in mice fed normal chow; decreased body weight; altered adipocyte size, number; inhibition of dietary-induced steatosis; increased liver AMPK; decreased triglyceride accumulation; anti-adipogenic in 3T3-L1 adipocytes | \nBeltrán-Debón et al., 2011 [108] | \n
Anti-obesity effects of rooibos and honeybush.
Plant species/compound | \nModel | \nDosage | \nMechanistic effects | \nAuthor and year | \n
---|---|---|---|---|
ASP | \nH9c2 Cardiomyocytes; db/db mice | \n1 μM (cardiomyocytes); (13 mg/kg BW)/130 mg/kg BW(mice) | \nDiabetic/cardioprotective/antioxidant; reduced high glucose induced oxidative stress; Nrf2-mediated activation of downstream antioxidant genes | \nDludla et al., 2017 [64] | \n
ASP | \nGlucose-exposed H9c2 cardiomyocytes | \n1 μM | \nCardioprotective, anti-diabetic, antioxidant effects: Enhanced metabolism of glucose, decreased phosphorylation of AMPK, decreased CPT1; increased GLUT4, acetyl–CoA carboxylase expression; increased glutathione, SOD; decreased ROS, increased ucp2, bcl-2: bax; Anti-apoptotic; decreased DNA nicks | \nJohnson et al., 2016 [109] | \n
Fermented Cyclopia intermedia (methanol fermented and scaled up extracts | \nHaCaT human keratinocyte cells | \n50–100 μg/ml | \nAntioxidant: Increased SOD, CAT in UVB-exposed HaCaT keratinocytes | \nIm et al., 2016 [94] | \n
Cyclopia subternata (aqueous extracts); mangiferin, isomangiferin | \nSTZ Wistar rat model; C2C12 cells | \n30–600 mg/kg (in vivo); 1 nM–100 μM (isolated compounds | \nIncreased glucose tolerance 30, 60, 120 min (600 mg/kg BW; mangiferin, isomangiferin increased glucose uptake in C2C12 cells | \nSchulze et al., 2016 [110] | \n
ASP; Green rooibos extract (GRE) | \n3T3-L1 adipocytes | \n100 μM; 10 μg/ml 10 μg/ml | \nBoth isolates decreased palmitate-induced insulin resistance; decreased NFκ-β, IRS1 (Ser307), phosphorylated AMPK; increased Akt activation; GRE increased GLUT4 expression; ASP increased PPARα, γ, CPT1 expression | \nMazibuko et al., 2015 [104] | \n
Unfermented rooibos | \nL6 myotubules; RIN-5F Cells; obese diabetic KK-Ay mice | \n350 μg/ml (L6 myotubules); 50 μg/ml (RIN-5F cells); 0.3–0.6% (mice) | \nIncreased glucose uptake; increased phosphorylated AMPK, Akt; increased GLUT4 translocation; decreased AGE-induced ROS increase; decreased fasting blood glucose | \nKamakura et al., 2015 [111] | \n
Rooibos; Aspalathin (ASP); Nothofagin (Noth) | \nHUVECs; C57BL/6 mice | \n5–50 μM | \nCardioprotective/anti-diabetic: Decreased vascular permeability caused by high blood glucose, decreased monocyte adhesion; Antioxidant: Decreased reactive oxygen species; Anti-inflammatory: Decreased NFκ-β | \nKu et al., 2014 [112] | \n
Fermented rooibos | \nH9c2 cardiomyocytes isolated from male Wistar STZ-induced diabetic rats (40 mg/kg BW); in vivo, ex-vivo rat heart perfusions | \n1, 10 μg/ml | \nAnti-diabetic/cardioprotective; decreased ROS, apoptosis; increased glutathione, metabolic activity in vitro | \nDludla et al., 2014 [113] | \n
Phenylpyruvic acid-2-O-β- | \nObese mice | \n10 mg/kg | \nProtection from diet-induced hyperglycaemia; increased beta cell mass; decreased apoptosis; In vitro, protection of β-cells from palmitate-induced apoptosis; increased Bcl-2 expression; increased β-cell mass; protective effect of PPAG via increased expression of Bcl-2 in β-cells | \nMathijs et al., 2014 [114] | \n
Mangiferin | \nDiabetic insulin resistant Wistar rats | \n20 mg/kg BW | \nNo change in body weight; decreased serum glucose; increased serum insulin; decreased HOMA IR; increased β-cell function; decreased serum TNFα; improved serum lipids; increased adiponectin; no effect on antioxidant activity | \nSaleh et al., 2014 [115] | \n
\n | ||||
Cyclopia maculata (unfermented); Mangiferin | \nRIN-5F cells | \n0.001–1000 μg/ml (C. maculata); 0.01–1000 μg/ml (mangiferin) | \nIncreased viability (0.001–1000 μg/ml) Cyclopia; no effect on viability (mangiferin) | \nChellan et al., 2014 [116] | \n
Cyclopia maculata | \nSTZ-diabetic Wistar rats | \n30/300 mg/kg BW | \nIncreased glucose tolerance; decreased fasting blood glucose; improved serum triglycerides; increased β-cell area; increased β-cell proliferation (300 mg/kg BW); decreased plasma nitrite; unaltered catalase, glutathione, liver lipid peroxidation and nitrotyrosine | \n|
\n | ||||
Z-2-(β-ᴅ-glucopyranosyloxy)-3-phenylpropenoic acid (PPAG) | \nChang cells; Obese insulin-resistant rats | \n1–31.6 μM; 0.3–3 mg/kg BW (obese rats) | \nIncreased glucose uptake; decreased fasting blood glucose; increased glucose tolerance; increased mRNA expression of liver GLUT1, 2, glucokinase, PPARγ and SOCS3 | \nMuller et al., 2013 [52] | \n
ASP | \nL6 myocytes; RIN-5F cells; type 2 diabetic ob/ob mice | \n25–100 μM 0.1% ASP (100 mg/kg BW); 10 mg/kg BW ASP (intraperitoneal glucose tolerance test) | \nIncreased glucose uptake; increased AMPK phosphorylation; increased GLUT4 translocation in L6 myoblasts and myotubules; decreased age-induced ROS; decreased blood glucose; increased glucose tolerance; decreased expression of liver gluconeogenic and lipogenic gene expression in mice | \nSon et al., 2013 [117] | \n
Unfermented green rooibos; fermented rooibos | \nC2C12 skeletal muscle cells | \n10 μg/ml | \nIncreased glucose uptake; increased mitochondrial activity; increased ATP (unfermented >fermented); decreased PKCq activation; decreased palmitate-induced insulin resistance; increased insulin-dependent Akt activation, increased AMP Insulin-independent signalling pathways; increased GLUT4 | \nMazibuko et al., 2013 [118] | \n
ASP; rutin | \nC2C12 myotubules | \n1,10,100 μM; 100 μm | \nIncreased glucose uptake | \nMuller et al., 2012 [119] | \n
Aspalathin: rutin | \nSTZ diabetic rats | \n1:1 (1.4 mg/kg BW) | \nDecreased blood glucose (not obtained by individual compounds) | \n\n |
Aspalathin rich green rooibos | \nSTZ diabetic rats | \n25 mg/kg BW, 30 mg/kg BW | \nDecreased blood glucose; increased glucose tolerance | \n\n |
Cyclopia intermedia | \nSTZ diabetic induced Wistar rats | \nAcute: 5 mg/kg bw-50 mg/kg BW (STZ rats) | \nDecreased fasting blood glucose (50 mg/kg) | \nMuller et al., 2011 [120] | \n
Obese insulin resistant (OBIR) rats | \nChronic: 538–2688 mg/ml (OBIR rats) | \nDecreased plasma cholesterol, fasting blood glucose; α:β cell mass (538–2150 mg/ml); decreased glucose tolerance (1075–2688 mg/ml) | \n\n | |
ASP from GRE | \nL6 myotubules | \n1–100 μM | \nIncreased glucose uptake | \nKawano et al., 2009 [121] | \n
RIN-5F cells | \n100 μm | \nIncreased insulin secretion | \n\n | |
db/db mice | \n0.1–0.2% | \nDecreased fasting blood glucose for 5 weeks; increased glucose tolerance 30, 60, 90, 120 min | \n\n | |
Fermented rooibos (aqueous + alkaline extracts) | \nSTZ-induced diabetic Wistar rats | \n2.5% ad libitum | \nDecrease AGE’s + MDA (plasma, lens, liver and kidney); decreased total cholesterol and creatinine | \nUličná et al., 2006 [70] | \n
Anti-diabetic effects of rooibos and honeybush.
Plant species/compound | \nModel | \nDosage | \nMechanistic effects | \nAuthor and year | \n
---|---|---|---|---|
Aspalathin | \nH9c2 cardiomyocytes; db/db mice | \n1 μm (cardiomyocytes) (13 mg/kg)/130 mg/kg | \nDiabetic/cardioprotective/antioxidant: reduced high glucose induced oxidative stress. Nrf2 activated downstream antioxidant genes; high dose aspalathin treatment was more successful than metformin or lower dose aspalathin at activating Nrf2 and antioxidant genes | \nDludla et al., 2017 [64] | \n
Aspalathin | \nH9c2 cardiomyocytes exposed to glucose | \n1 μM | \nCardioprotective/anti-diabetic: Enhanced metabolism of glucose, decreased 172 phosphorylated AMPK, decreased carnitine palmitoyltransferase (CPT)1, increased GLUT4, acetyl-CoA carboxylase expression; antioxidant effects: increased glutathione and SOD, decreased ROS, increased UCP2, Bcl-2:Bax; anti-apoptotic; decreased DNA nicks | \nJohnson et al., 2016 [109] | \n
Fermented rooibos | \nH9c2 cardiomyocytes isolated from male Wistar STZ diabetic rats (40 mg/kg BW) | \n1/10 μg/ml | \nDecreased ROS, apoptosis, increased glutathione, and metabolic activity in vitro | \nDludla et al., 2014 [113] | \n
Luteolin | \nSTZ diabetic induced Wistar rats | \n10 µ/kg BW | \nDecreased LDH, incidences of arrhythmias; decreased infarct size; increased left ventricular ejection fraction; decreased myocardial apoptosis; increased FGFR2, LIF expression; increased PI3K/Akt, Bcl-2 associated death promoter (BAD), Bcl-2:Bax ratio; inhibited MPO expression, IL-6, IL-1a and TNFα production (anti-inflammatory effects) | \nSun et al., 2012 [122] | \n
Luteolin | \nIschemia/reperfusion (I/R) Wistar rats and isolated cardiomyocytes | \nVarious up to 40 µM, model dependant | \nLuteolin pre-treatment before I/R injury increased contractions in isolated rat heart and cardiomyocytes; decreased LDH, apoptosis; increased Bcl-2: Bax ratio; decreased infarct size; protection involves ERK 1/2-PP1a-PLB-SERCA2a mechanism | \nWu et al., 2013 [123] | \n
Rooibos | \nHuman volunteers | \n400 ml (0.025 g/ml) | \nSingle dose inhibited ACE after 30, 60 min; ACE II genotype inhibited after 60 min; no effect on nitric oxide | \nPersson et al., 2010 [124] | \n
Rooibos | \nHUVEC | \n0.05 g/ml in phosphate buffered saline (PBS) | \nIncreased nitric oxide after 1 day (1:400, 1:200); no effect on ACE inhibition after 10 min | \nPersson et al., 2006 [125] | \n
Rooibos | \nHuman serum with Enalaprilat as positive control | \n0.05 g/ml in PBS | \nInhibition of ACE via a mixed inhibition method | \nPersson et al., 2012 [126] | \n
Rooibos | \nHuman volunteers at risk for cardiovascular disease | \n0.005 g/ml (6 cups/day) | \nIncreased antioxidant status and decreased oxidative stress by increased GSH: GSSG ratio, decreased lipid peroxidation (TBARS, conjugated dienes); increased HDL cholesterol | \nMarnewick et al., 2011 [77] | \n
Orientin | \nIschemia/reperfused Wistar rat hearts; cardiomyocytes injured by hypoxia/reoxygenation | \n0.5–2 mg/kg BW (rat hearts); 3–30 μmol/l (cardiomyocytes) | \nDecreased apoptosis in cardiomyocytes; increased Bcl-2, decreased bcl-2-like protein 4 (Bax), increased Bcl-2: Bax; decreased cytochrome-c, caspase expression in cardiomyocytes and myocardium | \nFu et al., 2006 [127] | \n
Orientin | \nIschemia/reperfusion injured H9c2 cardiomyocytes | \n30 μM | \nDecreased apoptosis (decreased MPTP opening) | \nLu et al., 2011 [128] | \n
Rooibos (fermented and unfermented) | \nEx vivo working heart from Wistar rats | \n2% w/v | \nIncreased aortic output; decreased cleaved caspase 3, poly (ADP-ribose) polymerase (PARP), reduced apoptosis; increased GSH: GSSG ratio | \nPantsi et al., 2011 [129] | \n
Rooibos; chrysoeriol | \nSprague Dawley rats (blood pressure effects); rabbit aorta, guinea pig atria | \n20% w/w, 10–100 mg/kg BW | \nGlibenclamide sensitive relaxation of low K+-induced contractions; weak inhibitory effect on atrial force and contraction rate; blood pressure lowering effects; chrysoeriol caused concentration-dependent, glibenclamide-sensitive relaxation of low K+ induced contractions, EC50 (61 μg/ml), n = 2 in aorta | \nKhan and Gilani, 2006 [130] | \n
Rooibos and honeybush flavonoids (various including luteolin, quercetin, rutin, genestein, hesperitin, etc.) | \nIn vitro ACE-inhibition assay | \n500 μM, 100 μM | \nACE inhibitory activity of some flavonoids found in rooibos and honeybush. Luteolin had the greatest ACE inhibitory effects compared to the other flavonoids with hesperitin and genestein exhibiting moderate but lower, yet marked effects | \nGuerrero et al., 2012 [131] | \n
Cardiovascular effects of rooibos and its flavonoids.
Inflammation and oxidative stress form a common thread in the metabolic syndrome, type 2 diabetes and cardiovascular disease [132, 133]. The rooibos flavonoid orientin from rooibos reduced the number of mast cells in colon sections as well as NFK-β, TNF-α, IL-6, iNOS and COX2, reflecting its anti-inflammatory potential [92]. Aspalathin and nothofagin inhibited LPS-mediated expression of the lipopolysaccharide (LPS) receptor (TLR4) and LPS-mediated barrier disruption. This occurred by increasing barrier integrity and inhibiting the expression of cell adhesion molecules (CAMs) and reducing neutrophil adhesion and migration in human umbilical vein endothelial cells [95]. The barrier protective effects of aspalathin and nothofagin were confirmed in a mouse model, in which the dihydrochalcones reduced LPS-induced mortality. This suggests that aspalathin and nothofagin can be regarded as potential therapeutics against vascular inflammation. The protective effects of aspalathin and nothofagin in a systemic inflammatory response induced by caecal ligation included decreases in inflammatory markers, including TNFα-expression NF-κB, NO and IL-6 production, enhanced antioxidant activity and decreased lipid peroxidation. [91]. The anti-inflammatory effects of rooibos and honeybush may involve a reduction in inflammatory cytokines such as IL-6, TNF-α, COX2 [91, 92, 94]. It may also involve a reduction in neutrophil adhesion, and other mechanisms [96], Table 1.
\nObesity and overweight are major risk factors for cardiovascular disease and type 2 diabetes. Insulin resistance, a key finding in the metabolic syndrome, is characterised by alterations in glucose uptake in insulin sensitive tissues such as the liver, skeletal muscle and adipose tissue [134]. Non-alcoholic fatty liver disease (NAFLD), characterised by fat accumulation in the liver, is an independent predictor of the metabolic syndrome which influences the progression of cardiovascular disease [135]. Since NAFLD is complex, utilising therapeutic strategies with multiple targets may be beneficial. The PI3K/Akt pathway is a complex insulin regulated pathway involved in glucose and lipid metabolism, as well as other cellular processes, including protein synthesis, cell signalling cell growth and apoptosis [136]. In type 2 diabetes and obesity, inhibition of the pathway interferes with beta cell function and insulin secretion, exacerbating insulin resistance. A green rooibos extract reduced lipid accumulation as well as lipolysis in C3A liver cells [102]. Rooibos also ameliorated palmitate-induced insulin resistance, by activating phosphorylated PKB/Akt and 5′ adenosine monophosphate-activated protein kinase (AMPK), as well as increasing glucose transporter (GLUT)2 expression. Furthermore, fatty acid oxidation was enhanced by increasing FOXO1, decreasing malonyl-CoA decarboxylase, increasing carnitine palmitoyl transferase 1 (CPT1) and increasing acetyl CoA carboxylase in insulin deficient cells. In the accompanying obese insulin resistant rat model, only a high dose (195 mg/kg) of green rooibos extract (GRE) could reduce insulin levels and the HOMA-IR index. No significant differences were detected in blood glucose, body weights or food intake. Insulin receptor and insulin receptor substrates 1, and 2 were however upregulated by GRE, suggesting that GRE may be beneficial in ameliorating obesity-induced insulin resistance. In 3T-L1 adipocytes, palmitate-induced insulin resistance was ameliorated by both aspalathin, as well as GRE [104]. This was accompanied by increases in Akt activation and decreases in nuclear factor (NF)-κB, IRS1 and AMP phosphorylation. GLUT4 expression was enhanced by the GRE but not aspalathin, suggesting that the whole extract rather than the isolated compound may be beneficial in providing a more multi-targeted therapeutic approach in improving palmitate-induced effects on glucose and lipids. A number of other rooibos polyphenols, such as the C-glycosidic flavones orientin, iso-orientin and luteolin, have anti-obesity effects, as reflected by their inhibition of pancreatic lipase, which is responsible for digesting and absorbing triglycerides [137]. Fermented rooibos also inhibited lipid accumulation in 3T3-L1 adipocytes [105]. Z-2-(β-ᴅ-glucopyranosyloxy)-3-phenylpropenoic acid (PPAG), increases glucose uptake, as demonstrated in Chang cells [52]. In their in vivo model of obese insulin resistant rats, basal fasting glucose decreased and glucose tolerance was improved by PPAG. Increases in mRNA expression of genes involved in glucose (GLUT1 and GLUT4) and insulin metabolism (IR) and others such as PPARα and SOCS3 in the liver were also seen. PPARα regulates the action of fatty acids in the liver, suggesting that insulin signalling, glucose and lipid metabolism may be altered by PPAG. SOCS3 associates with various proteins to inhibit cytokine signals, e.g., leptin, growth hormone, IL-6, leukaemia inhibitory factor (LIF) as well as insulin [138]. It may therefore mediate leptin resistance, which occurs in obesity but is also regulated by leptin, which may partially explain these findings. Administration of rooibos to LDL receptor deficient (Ldlr−/−) mice reduced liver steatosis and white adipose tissue and increased brown adipose tissue in high fat diet rats. Macrophage recruitment was decreased but no difference was seen in adipocyte size or number in the rooibos supplemented group. Furthermore, there appeared to be no liver toxicity, and free fatty acids, triglycerides and cholesterol were reduced by rooibos in the high fat diet group [108]. In humans, rooibos reduced oxidative stress, improved HDL-C, and triacylglycerol and low density lipoprotein cholesterol (LDL-C) in adults at risk of developing cardiovascular disease. [77]. These results suggest that rooibos and flavonoids in rooibos, such as aspalathin, may be potential adjuvants in the management of the metabolic syndrome. The anti-obesity effects of Cyclopia intermedia, C. subternata and C. maculata are limited but have been studied in 3T3-L1 adipocytes [106, 107, 139]. C. maculata and C. subternata decreased intracellular lipid and triglycerides and increased PPARγ, a regulator of glucose and lipid metabolism [107]. Their anti-obesity effects also include increased release of glycerol [106]. Hormone sensitive lipase (HSL) expression, which is regulated by SIRT1a, a rate limiter of lipolysis, was also increased by fermented C. maculata. Furthermore, perilipin expression, which appears to play a key role in the metabolism of lipids and lipolysis of adipose tissue was upregulated [140]. C. intermedia increased HSL, SIRT1, UCP3 as well as PPARγ expression in 3T3-L1 adipocytes [139]. The authors attributed increases in SIRT1 and PPARγ to be indicative of changes from white to brown adipose tissue, however the expression of UCP1, which characterises brown adipose tissue was not measured in the study [141]. While the exact function is unclear, UCP3 may protect against lipotoxicity of the mitochondria [142]. In the parallel obese db/db mouse model, no increases in body weight gain were seen with C. intermedia treatment, and neither food nor water consumption was affected [139]. Extracts of mangiferin and other polyphenols isolated from plants containing components similar to that found in honeybush have proven useful in understanding their mechanisms of action and how they could be used as nutraceuticals in the treatment of cardiovascular disease. In a double-blind randomised placebo controlled clinical trial, mangiferin (150 mg/day) from mangoes, was given to 97 overweight, hyperlipidaemic patients over a period of 12 weeks. Increased high density lipoprotein cholesterol (HDL-C), L-carnitine, as well as decreases in total cholesterol, low density lipoprotein cholesterol (LDL-C) and triglycerides were obtained in the patients [143]. No alterations in liver and kidney function markers were seen, suggesting that chronic treatment over 12 weeks was safe in human participants. Since the metabolic syndrome is so complex, providing a multi-targeted approach, such as through affecting the PI3K/Akt pathway may be somewhat beneficial. The anti-obesity effects are further described in Table 2. The limited available information on the anti-obesity effects of rooibos and honeybush however, suggests that more research is needed to fully understand and enable the translation of these effects from animals to man.
\nDiabetic hyperglycaemia involves macro-and microvascular complications [144]. Free radicals are also produced, promoting oxidative stress [145]. Evidence suggests that rooibos and its polyphenols may reduce oxidative stress associated with the pathogenesis of diabetes [34, 69]. A meta-analysis and systematic review narrowed down to 12 peer-reviewed studies reported a reduction in blood glucose levels in diabetic rodent models that had received either rooibos or its polyphenols, while no clinical trials have investigated the effects of rooibos in the context of type 2 diabetes [146]. Rooibos decreases fasting blood glucose and improves glucose tolerance [117]. The anti-diabetic actions may be related to the expression of genes responsible for glucose uptake (GLUT1, GLUT2), insulin signalling (IR), as well as other genes such as PPRα in the liver in a model of obese insulin resistant rats treated with PPAG [52]. The involvement of insulin dependent GLUT4, in skeletal muscle has also been reported [111]. Rooibos may be exerting anti-diabetic effects by affecting the metabolism and uptake of glucose. Aspalathin influences key genes involved in the metabolism of lipids, insulin resistance, inflammation and apoptosis, possibly reversing metabolic abnormalities by involving PPARγ, Adipoq, IL-6/Jak2 pathway and Bcl-2 [74]. PPAG increased beta cell mass and delayed hyperglycaemia in STZ-diabetic mice [147]. This was accompanied by increases in anti-apoptotic B-cell lymphoma 2 (Bcl-2), but no antioxidant effect, and in human islet cells PPAG also decreased cell death. This suggests that PPAG increases beta cell mass by decreasing apoptosis and increasing Bcl-2 as reflected in both STZ diabetic and obese mouse models [114, 148]. In the absence of insulin, GRE also increased phosphorylation of both AMPK and Akt, in L6 skeletal myotubules. Activation of AMPK could be a therapeutic strategy in the treatment of obese and type 2 diabetics, as animal studies suggest a dysregulation of AMPK in these states. The mechanism for the amelioration of diabetic complications in rodents by rooibos and honeybush may also be due α-glucosidase inhibition; or SGLT2 inhibiting potential of rooibos and honeybush or their respective flavonoids [119, 149, 150, 151]. α-Glucosidase is an enzyme present on the intestinal brush border where it digests starch, increasing blood glucose [152]. Anti-diabetic drugs, therefore commonly utilize strategies such as α-glucosidase inhibition or SGLT2 inhibition to facilitate their actions [152, 153]. The dihydrochalcone phlorizin, an SGLT2 inhibitor, provides a basis to explore natural plant based agents for use in the management of diabetes [154]. Strategies to target SGLT2 rather than SGLT1 is also associated with reduced drug toxicity as found in studies of phlorizin and anti-diabetic drugs [153]. In an STZ-diabetic model, unfermented extracts of Cyclopia maculata improved glucose tolerance, fasting glucose, β-cell area, triglyceride levels as well as the insulin: glucagon ratio. Plasma nitrite was reduced but no alterations were seen in other markers of nitrotyrosine and lipid peroxidation or the serum antioxidant enzymes [155]. Mangiferin and naringenin from Salacia oblonga also reduced blood glucose, normalised AST and ALT levels, improved antioxidant status and decreased protein carbonyl levels, glycogen and TBARS in the liver. Beta cell damage in the pancreas was also ameliorated by the compounds. It was proposed that activation of PPARγ and GLUT4, which was also accompanied by insulin sensitisation, may be partially responsible for the anti-diabetic effects [156]. Since naringenin is also found in honeybush, it suggests that extracts from honeybush could possibly also produce similar effects. Mangiferin from Anemarrhena asphodeloides Bunge reduced blood glucose levels and ameliorated hyperinsulinemia, the anti-diabetic properties possibly due to a reduction in insulin resistance in these rats [157]. Furthermore, mangiferin and naringenin isolated from Salacia oblonga reduced blood glucose levels, and increased GLUT4 and PPARγ expression, suggesting increased insulin sensitisation and demonstrating the anti-diabetic properties of the polyphenols. In conclusion, the anti-diabetic effects of rooibos and honeybush (Table 3) are mediated by complex signalling pathways that affect glucose and lipid metabolism as well as oxidative stress.
\nAngiotensin converting enzyme (ACE) inhibitors reduce blood pressure by inhibiting the conversion of angiotensin to angiotensin II, the latter being a potent vasoconstrictor which increases blood pressure through a variety of mechanisms [158]. Angiotensin II can also interact with the angiotensin I receptor, enhancing ROS production, which contributes to endothelial dysfunction by inactivating vasodilatory nitric oxide [158]. Endothelial dysfunction is commonly associated with risk factors of cardiovascular disease, including obesity and type 2 diabetes [159]. It also precedes atherosclerosis, which involves a number of complex processes such as the release of pro-inflammatory cytokines and inflammation, oxidation of LDL as well as macrophage recruitment and platelet adhesion [158]. Cardiovascular protective effects of rooibos have also been established in a number of studies (Table 4). In an in vitro human umbilical vein endothelial cell (HUVEC) study, rooibos could not inhibit ACE but increases in nitric oxide were detected [125]. ACE-inhibition was also determined in 17 healthy volunteers receiving a single oral dose of rooibos [124]. Inhibition of ACE occurred up to 60 min after ingestion but no change in blood pressure or nitric oxide was detected. ACE-inhibitory effects have also been reported for rooibos and honeybush and some of their flavonoids [131]. This effect on ACE could be due to the presence of the C2〓C3 double bond, the catechol group at the B-ring and the cetone group on C4 on the C-ring of flavonoids [131]. The best ACE-inhibitor in HUVEC’s was luteolin, followed by quercetin, rutin, kaempferol, rhoifolin and apigenin K. The honeybush flavonoids genistein and hesperetin also displayed ACE-inhibitory effects but these were less potent than luteolin. Rooibos probably inhibits ACE using a mixed type of inhibition, which binds to the enzyme’s active and allosteric sites [126]. Organic fractions of, as well as flavonoids in rooibos such as chrysoeriol and rutin inhibited spontaneous and low and/or high K+-induced contractions in models utilising jejunum and bronchial smooth muscle [130, 160]. Anti-contractile effects were reportedly due to the opening of K+ channels as well as a Ca2+ antagonistic action. These studies were not done in vascular smooth muscle, but it is possible that rooibos could exert antihypertensive effects via similar mechanisms in vascular smooth muscle. It also caused mild reduction of atrial force and rate of spontaneous contractions in the Guinea pig and decreased blood pressure in anaesthetised rats [130]. In comparison, isolated compounds of rooibos tested in jejunal, tracheal and aortic preparations showed variable effects. In adults with cardiovascular risk factors, six cups of rooibos was able to increase antioxidant status by increasing the GSH: GSSG ratio and decrease lipid peroxidation by decreasing TBARS and conjugated dienes [77]. Furthermore, increases in the healthy HDL cholesterol were also seen. In a recent study using a high fat diet to induce obesity in Wistar rats, treatment with an enriched GRE, containing large quantities of aspalathin, improved glucose tolerance, vascular function, as determined by aortic vascular contraction-relaxation studies and enhanced the antioxidant status. Modest improvements in blood pressure were also seen in a recent study in obese rats, suggesting cardiovascular benefits with the intake of the rooibos [161]. Fermented rooibos also improved vascular function in nicotine exposed rats [162]. Since tobacco smoking is a major risk factor for cardiovascular disease, this suggests a possible therapeutic role for rooibos in the reduction of cardiovascular complications associated with tobacco smoking, such as vascular dysfunction or oxidative stress. Cardioprotective effects of rooibos and its flavonoids typically appear to involve a reduction in lipid peroxidation and upregulation of the antioxidant enzymes through Nrf2 activation, and a reduction in apoptosis which may also be associated with increases in the Bcl-2: Bax ratio [77, 122, 129]. The anti-inflammatory effects of rooibos, also support its role as a cardioprotective agent (Table 1). No literature investigating the vascular modulating effects of honeybush are currently available and anti-inflammatory effects on HUVECs are discussed above. Decreases in VLDL, LDL-C and increases in HDL-C by naringenin and mangiferin from Salacia sp. however suggests the potential of similar isolates from honeybush to ameliorate endothelial dysfunction [156].
\nRooibos and honeybush have a number of health benefits. The evidence for their use as functional nutraceuticals is reflected in anti-diabetic, anti-inflammatory, antioxidant, anti-obesity, and vascular effects in animal and in vitro studies. The translation of these results into human medical care has however been limited. The inability to translate animal studies to that of humans may be due to the result of the controlled genetic background and environmental conditions of animals used as models to study disease [163]. Given the unstable nature of ROS and the limitations in assays used to detect oxidative stress, it is noteworthy to remember that intervention studies may only as good as the biomarkers used to measure the intervention. As we investigate the therapeutic role of rooibos or honeybush in the treatment of cardiovascular disease, it is evident that we are only but scratching the surface. These plants have complex chemical compositions and while isolating single components could be beneficial, the interplay and additive effects of other components in whole extracts could be more beneficial [111]. The mechanisms behind these benefits involve numerous signalling pathways that regulate their effects. Understanding these complexities may be what is needed to promote their transition from bush teas to nutraceutical therapy against cardiovascular disease but until then we may as well enjoy a cuppa.
\nThere is no conflict of interest to disclose.
\nThanks go to Professor H. Kuivaniemi for proofreading this manuscript and to the SAHTA for allowing the use of the honeybush image.
\nTeeth are a topic of interest to paleontologists because they are very well preserved. As a matter of fact, the dental remains have made it possible to study the evolution of mammals by analyzing their morphology. In developmental biology, the mouse model is an interesting model for studying dental development.
Humans have two dentitions (temporary and permanent) and different types of teeth, incisor, canine, premolar, and molar with different morphologies, whereas mice only have two types (incisor and molar) separated by a diastema from which the incisors have unlimited growth. Despite these differences, the dental development process is similar in humans and mice, and regulatory phenomena have been maintained over the evolution.
Teeth, such as mammary glands, hair, and feathers, develop from two adjacent tissues: the epithelium and the mesenchyme, although they all have different morphologies. Indeed, during development, the specific shape of each organ is defined in relation to epithelial-mesenchymal proliferation and to all the changes that the epithelium undergoes [1].
The embryological aspect of the molars was addressed in order to clarify the etiopathogenic aspect and to adapt therapeutic attitudes according to the diagnosis.
The objective of this chapter is to address the embryology of human molars by focusing on its molecular and morphological characteristics.
Teeth represent a new morphological feature of mammals [2, 3]. Molars are complex teeth able to become occluded. Interlocking intercuspation between upper and lower molars allows food to be crushed [4]. Evolutionary dietary radiations are related to the great diversity of the current mammalian molars. They are clarified in the fossil record, where new molar organizations are often related to significant line diversifications. Several theories have been advanced to explain the evolution of molars. Like all primates, Man is a placental mammal, and the ancestor of contemporary humans is Homo sapiens. For 200 million years, in Therian mammals, the molars have trigonodontal morphology; in other words, the three tubercles are arranged in a triangle [5].
In 1965, the discovery of a fossil of a lower molar made it possible to show that on this Therian branch around 135 million years ago, these molars already existed. They were called tribosphenic by Simpson in 1936 [6]. These mandibular molars have six tubercles, three of which are pointed, high, sharp, and are arranged in a triangle and distal position. The three others tubercles are lower and are arranged in a central basin to receive the main palatal tubercle of the opposite teeth that have only three cusps. The fact of having six tubercles is of physiological interest when taking food.
Nearly 110 million years ago, the oldest placental mammals had a dental formula with 52 teeth, including 3 molars in a decreasing series, the first being the largest. This primitive disposition is found in modern man.
Around 75 million years ago, with the dinosaurs extinction, other species invaded space, and the dental formula was reduced to 44 teeth for all placental mammals including the man.
In the Catarrhini, the loss of one incisor and two premolars leads to a dental formula with 32 teeth found in monkeys of the ancient world (Afro-Eurasia), the Hominids, and the contemporary Men. It has been recognized for 45 million years [7].
In the genus Homo, the 32-teeth morphology does not differ much from the modern men, except for the great variability in size. Root morphology may vary from one group to another. The reduction in the number of cusps observed in humans can be considered as a specialization trait and not as a step backward. However, the reduction in the dental formula in the placentals and primates mainly affected the incisors, premolars, and even canines but not the molars.
Wisdom tooth agenesis, especially mandibular agenesis, is often considered as a sign of evolution. On the other hand, the presence of supernumerary teeth or hypergenesis is explained as a return to ancestral forms
The odontogenic epithelium is formed from the oral epithelium that lines the primary oral cavity called the “stomodeum.” It appears as a localized thickening of the oral epithelium, and it is formed by several cellular layers resulting from a series of localized mitoses affecting the oral epithelium. The mitotic spindle of dividing cells is oriented perpendicular to the basal membrane that separates the epithelium from the ectomesenchyma.
Epithelial thickening continues to proliferate and sinks into the underlying ectomesenchymal tissue forming a plunging wall (also called a primitive dental blade). This latter splits into two blades: vestibular and dental. The vestibular blade determines the formation of the buccal vestibule, which is the space between the cheek/lip and the dental arch.
In humans, as in rats and mice, the dental blade will give birth to the dental placodes that will be at the origin of the formation of future dental germs. Dental placodes are cellular clusters attached to the dental blade by a net of epithelial cells called the primary dental blade. Each dental arch initially contains 10 dental placodes. From the primary dental blade develops the secondary dental blade, which is at the origin of the 16 permanent teeth per arch.
Each placode will undergo morphological changes that are described as three successive stages: bud stage, cup stage, and bell stage [1].
Since the three molars are not preceded by temporary teeth, they evolve from the distal end of the initial dental blade, which proliferates in a posterior direction. The primary dental blade of the second temporary molar will cause the formation of four secondary dental blades. For each half of the arch, starting from the anterior area toward the posterior area, each of these four secondary dental blades will give the permanent germ of the following teeth: the first permanent molar, the second permanent molar, and the third permanent molar.
The secondary dental blades that are at the origin of the formation of the 1st and 2nd molar will orient themselves vertically as long as they have space that allows them to orient themselves in the mesenchyma. On the other hand, in most cases for the 3rd molar, orientation problems arise because there is not enough space for its secondary dental blade to be parallel to the other two blades [8].
All dental buds, with the exception of the second and third permanent molars, are present and begin to develop before birth [9]. The chronology of the appearance of molar germs remains variable according to the authors; however, it is often found that the germ of the first molar appears around the 4th or 5th month of intrauterine life. The one of the second molar appears around the 9th month or 1 year after birth.
The germ of the third molar does not appear until around 4 or 5 years of age. Mineralization begins between 7, 9, and 10 years, and the crown is completed between 12 and 16 years. The emergence in the oral cavity is between 17- and 21-year-olds; the tooth will then slide along the distal surface of the second molar to reach the occlusion level. Root building ends between the ages of 18 and 25 years. The place it has depends on the growth in the posterior region of the arch. The main activity of the dental blade is spread over a period of about 5 years. However, the dental blade near the third molar continues to be active until about 15 years of age [9].
A number of anomalies can occur during the development of the tooth. The development of excess dental blade can lead to an increase in the number of dental buds, resulting in too many teeth (supernumerary). A deficient dental blade can lead to a reduction in the number of teeth (hypodontia) [9].
Molars are multiradiculated teeth. Indeed, the vast majority of the first maxillary molars have three roots. The second maxillary molar has more frequent variations in the number of roots than the first maxillary molar, and the first mandibular molar and the second have two roots in the majority.
Root formation or radiculogenesis or rhizagenesis is the development of the root pulpo-dentinary organ in close relationship with cemenesis, the outline of the dentoalveolar ligament and the construction of the alveolar bone. It begins when the final dimensions are acquired. The Hertwig epithelial sheath is at the origin of root formation, depending on their number, shape, and size [10].
As for the crown, root development is governed by interactions involving the Hertwig epithelial sheath, basement membrane, mesenchymal papilla, and dental follicle.
The Hertwig epithelial sheath originates from the reflection zone or cervical loop which is the place where the external and internal adamantin epitheliums (EAE and EAI) meet to form a double epithelial layer. Hertwig epithelial sheath has an annular structure surrounded by a basal membrane that separates it from the pulpal and follicular mesenchyma. This basement membrane has anchoring fibrils on the pulp side. The internal epithelium faces the papilla and the external epithelium faces the dental follicle. The Hertwig epithelial sheath will emit tongues in the centripetal direction that will fuse in the central region of the papilla and form rings from which the roots can be identified. The number of strips emitted is proportional to the number of roots that each molar can have. For example, for the molar which will have two roots, two tongues are formed, and after fusion of two rings, each of the two will be at the origin of the formation of a root. These two leaves remain attached and progress in the underlying connective tissue in the apical direction defining the future shape of the dental root [11].
Root elongation and tissue formation are related to the coordinated proliferation of sheath epithelial cells and surrounding mesenchymal cells [12].
Root dentin forms in parallel with the proliferation in the apical direction of the Hertwig sheath. The latter gradually induces odontoblastic differentiation. The pulp parenchyma cells close to the anchor fibrils differentiate into odontoblasts. These odontoblasts produce preentine, which mineralizes to form dentin. The cells of the outer dental epithelium forming the outer layer of the sheath do not differentiate into ameloblasts as is the case for the crown. Then, the basement membrane degrades, and the epithelial blade involutes and gradually dissociates.
Developmental defects of the Hertwig sheath at the apical third of the root are at the origin of the formation of the lateral canals following a stop of dentinogenesis at this site due to the nondifferentiation of pulp fibroblasts into odontoblasts.
The cells of the sheath can undergo three spells: some can form the “Malassez epithelial debris,” others can die by apoptosis, while others can undergo epithelial-mesenchymal transformation.
As the sheath disintegrates, follicular cells near the surface of the root dentin differentiate into cementoblasts. These synthesize and deposit the cement matrix in contact with the dentin.
As the root development progresses, the epithelial ring forming the Hertwig epithelial sheath gradually shrinks as a result of a reduction in mitosis, thereby reducing the size of the root tube. This narrowing allows the development of one or more orifices (or foramina), which are the place where vascular and nervous elements intended for the pulp to pass through.
The development of the root ends with the construction of the apex, which is a slow process. In humans, for example, for the 1st permanent molar, this operation is performed until the age of 9–10 years. In the case of permanent teeth, this phenomenon lasts longer and requires more time than the development of the root itself.
In humans, dental development includes the morphogenesis of crowns and roots and results in the formation of the enamel organ, odontoblastic, ameloblastic, and cementoblastic differentiation. Huge advances in research have made it possible to understand the phenomena of molecular regulation of dental development.
Dental development follows a precisely controlled and regulated genetic program. The dental organ consists of an epithelial part that derives from the ectoderm and a mesenchymal part that derives from mesodermal cells on the one hand and cells from neural ridges on the other hand [13, 14, 15, 16].
The dental organ develops from a communication between the epithelium and the underlying mesenchyma. The communication language has been preserved throughout the evolution. This communication between the epithelium and the mesenchyma is done through signaling molecules and growth factors [17, 18, 19].
The studies carried out on the mouse molar have enabled us to gather a body of knowledge with many similarities to those of humans. However, the experimental data obtained in animals can be extrapolated relatively reliably to understand what is actually happening in humans.
Several families have been described, including:
TGF-beta (transforming growth factor beta) including BMP (bone morphogenetic proteins) activins and follistatin;
FGF (Fibroblast growth factors);
Hedgehog (only Sonic hedgehog (Shh) is known for its role in odontogenesis);
These molecules send their message to the nucleus through the signaling pathways and receptors on the cell membrane surface. Transcription factors will then modulate the expression of different target genes and induce changes in cell response and behavior (Figure 1) [25].
Signaling in tooth development [25].
Genes represented in “light blue” colored squares or rectangles are responsible, when inactivated, for stopping dental development.
It should be remembered that the odontogenic epithelium is formed at the first gill arch. The latter undergoes pharyngeal regionalization, resulting in the expression of Fgf8 and 9 (fibroblast growth factors 8 and 9) and Lhx-6 and -7 (LIM homeobox 6 and 7) in the oral part (rostral) and Gsc (goosecoid) in the aboral part (caudal). Indeed, the expression of Fgf8 in the odontogenic epithelium in the oral part of the first pharyngeal arch causes the expression of Lhx-7 in the underlying ectomesenchyma. In the aboral region, there is an important expression of Gsc in the ectomesenchyma. Gsc expression in the caudal region is not responsible for inhibiting Lhx-7 expression in this area; however, Lhx-7 expression in the rostral region will result in blocking Gsc gene expression in this.
In addition to Fgf8, a second BMP4 signaling molecule (bone morphogenetic protein 4) is expressed in the epithelium in the distal and therefore in the median region of the 1st arc.
The activation and inhibition of transcription factors allows the delimitation of the odontogenic territory by BMP4 and Fgf8a double signalling. (Figure 2) [19].
Pattern of gene expression in the developing tooth [19]. (a) Signaling within the epithelium and between the epithelium and the mesenchyme at embryonic day (E) 10.5. The diagram shows an isolated mandibular arch. Positive autoregulatory loops and mutual repression within the epithelium lead to the formation of strict boundaries of gene expression, which sets up the presumptive incisor and molar fields. Members of the bone morphogenetic protein (BMP) and fibroblast growth factor (FGF) families of protein in the epithelium induce and inhibit the expression of various homeobox genes. This results in a complex pattern of gene expression in the mesenchyme, across both the proximal–distal and oral–aboral/rostral–caudal axes. (b) The odontogenic homeobox code model of dental patterning. The nested expression pattern of homeobox genes in the mandible produces a homeobox code that defines tooth type. Bapx1 (bagpipe homeobox gene 1 homolog); Barx1 (BarH-like homeobox 1); Dlx (distalless homeobox); Gsc (goosecoid); Lhx (LIM homeodomain genes); Msx (homeobox, msh-like); Pitx (paired-related homeobox gene).
Mammalian teeth are meristic series. The determination of different morphology was explained by two theories:
The gradient theory proposed by Butler [26] which stipulates the presence of morphogenetic fields and that the determination of the shape of the tooth is a function of its position in the field independent of local factors.
The theory of clones proposed by Osborn [27] which stipulates that ectomesenchyma is already differentiated into three cellular clones, incisal, canine, and molar clones, before its migration. The proposal of this second concept suggested that the two theories are competing.
In 1995, the theory of odontogenic homeocode was developed by Sharpe [22], which represents a synthesis of the two theories: gradients and clones and shows that the latter two are complementary. These two concepts were explained in the light of the discovery of new genes and signaling molecules (Figure 3) [26, 27, 28].
(A) Regional field theory. (B) Clone theory. (C) Homeobox [26, 27, 28].
The identity of each tooth, including the molars, is characterized by its homeocode, which represents the combination of homeogens that defines the position and identity of the tooth. Indeed, different homeogens are expressed by the neural crest cells of the ectomesenchyma under the instructive induction of the oral epithelial cells. These homeogens are divergent and therefore of the nonhox type.
This odontogenic homeocode theory involves four homogenous genes: muscle segment homeodomain-homeobox 1 (Msx-1), muscle segment homeodomain-homeobox 2 (Msx-2), distal-less homeobox 1 (Dlx1), and goosecoide. In the molar sector, Msx-1 and Dlx-1 are expressed and Msx-2 and goosecoide are not expressed. In the canine sector, Msx-1, Msx-2, and goosecoide are expressed, and Dlx-1 is not expressed; in incisal sector, Msx-1 and goosecoide are expressed, Msx-2 and Dlx-1 are not expressed.
In the concept of morphogenetic fields, the consideration of various genetic factors and their epigenetic modulation influences dental development [29].
According to Mitsiadis’ work in 2006, the three models, gradients, clones, and homeocodes, could be grouped into a single model to explain dental identity. Indeed, dental identity, including molars, is given by the presence of morphogenetic fields defined by the diffusion of growth factors. The odontogenic epithelium expresses gradients of signaling molecules that are mainly Fgf, Bmp, Shh, and Wint that will diffuse to the underlying mesenchymal tissue containing neural peak cells. Depending on the location and instruction received by these cells, they will express a set of divergent genes in relation to concentrations of signaling molecules. The locally defined tooth type is related to the locally expressed divergent homeogen combinatorics of these ridge cells (Figure 4) [30].
Dental identity determination (adapted from Ref. [30]).
The Mitsiadis model combines the three concepts: morphogenetic fields, clone, and odontogenic homeocode.
These three models should be viewed as complementary rather than contradictory and propose that this unifying view can be extended into the clinical setting using findings on dental patterning in individuals with missing teeth. The proposals are compatible with the unifying etiological model developed by Brook in 1984 based on human epidemiological and clinical findings. Indeed, this new synthesis can provide a sound foundation for clinical diagnosis, counseling, and management of patients with various anomalies of dental development, as well as suggesting hypotheses for future studies.
The root development process involves a set of signaling cascades. Various growth factors, including BMPs (bone morphogenetic proteins), EGF (epidermal growth factor), IGF (insulin-like growth factor), FGF (fibroblast growth factor), transcription factors Msx1, Msx2, Runx-2, Sonic Hedgehog (Shh), enamel proteins (secreted by HGH cells), and other proteins such as follistatin and activin A, are involved in the root development process. Indeed, they are involved in the growth and/or differentiation of odontoblasts and cementoblasts and/or in the mineralization of dentin and/or cementum [21, 31, 32, 33, 34, 35, 36].
Dental morphology is controlled by an epithelial signaling center called the enamel node. The node of the enamel is a particular and transient histological structure formed by a cellular cluster that appears at the basal part of the internal dental epithelium. The node of the primary enamel is present in the dental germs of all types of teeth including incisors.
Because the enamel nodes link cell differentiation to morphogenesis, Thesleff suggests that the latter can be considered as central regulators of dental development [37].
During molar development, the node of the secondary enamel is formed during the bell stage at the location of future cusp areas. At this point, the expression of signaling molecules precedes the folding and growth of the dental epithelium [38, 39].
The Slit1 gene is expressed in the nodes of the primary and secondary enamel during the formation of molar cusps [40].
The approaches provided by Line and Mitsiadis have advanced the clinic’s understanding of dental identity establishment based on gradient, clone, and homeocode theories [29, 30].
The multifactorial model involving genetic, epigenetic, and environmental determinants has provided better explanations and helped to understand missing and supernumerary teeth in monozygotic twins [41].
In humans, dental problems are observed during pathologies of dental development or syndromes.
Mutations in genes known as divergent homeobox genes encoding transcription factors such as MSX1 and PAX9 (paired domain box gene 9) are at the origin of oligodontia. Indeed, a mutation in the homeobox of the MSX1 gene (substitution of an arginine by a proline in the homeodomain region) is associated with the agenesis of third molars, indicating the involvement of MSX1 in the dentition pattern [42, 43, 44].
Also, mutations in the PAX9 gene cause oligodontia characteristic of molars [45, 46, 47, 48]. The severity of dental agenesis appears to be correlated with the ability of the mutated PAX9 protein to bind to DNA [49].
A misdirection mutation during the sequencing of the PAX9 gene may explain a different phenotype of hereditary oligodontia observed in humans, which affects not only molars but also other tooth lines; and is characterized by tooth small size in both types of dentition. This mutation is characterized by a replacement of the amino acid arginine by tryptophan in a region entirely preserved in all genes of the matched sequenced box [50].
In humans, Pitx2 expression deficiency associated with Rieger syndrome is characterized by oligodontia [51].
The biological process is the same for all teeth, including molars, regardless of their identity, but epithelial signaling and homeogenic combination differ from one tooth type to another.
The study of first molar of the mouse has allowed us to better understand and follow the stages of dental development in humans. The general pattern remains the same, unlike the training time, the complexity of the dental system, the presence of two types of teeth in humans, and unlimited incisors growth in mice.
The multidisciplinary approach between fundamental and clinical research is essential to clarify the relationship between molecular involvement and clinical manifestations.
Understanding the molecular mechanisms of dental anomalies, including those affecting human molars, helps to propose diagnostic hypotheses and thus to improve patient management.
Future research should focus on synergizing molecular and genetic approaches to further analyze the action mechanisms of key genes involved in the development of human molars.
The authors declare that they have no conflicts of interest with the contents of this article.
Supporting women in scientific research and encouraging more women to pursue careers in STEM fields has been an issue on the global agenda for many years. But there is still much to be done. And IntechOpen wants to help.
",metaTitle:"IntechOpen Women in Science Program",metaDescription:"Supporting women in scientific research and encouraging more women to pursue careers in STEM fields has been an issue on the global agenda for many years. But there is still much to be done. And IntechOpen wants to help.",metaKeywords:null,canonicalURL:null,contentRaw:'[{"type":"htmlEditorComponent","content":"At IntechOpen, we’re laying the foundations for the future by publishing the best research by women in STEM – Open Access and available to all. Our Women in Science program already includes six books in progress by award-winning women scientists on topics ranging from physics to robotics, medicine to environmental science. Our editors come from all over the globe and include L’Oreal–UNESCO For Women in Science award-winners and National Science Foundation and European Commission grant recipients.
\\n\\nWe aim to publish 100 books in our Women in Science program over the next three years. We are looking for books written, edited, or co-edited by women. Contributing chapters by men are welcome. As always, the quality of the research we publish is paramount.
\\n\\nAll project proposals go through a two-stage peer review process and are selected based on the following criteria:
\\n\\nPlus, we want this project to have an impact beyond scientific circles. We will publicize the research in the Women in Science program for a wider general audience through:
\\n\\nInterested? If you have an idea for an edited volume or a monograph, we’d love to hear from you! Contact Ana Pantar at book.idea@intechopen.com.
\\n\\n“My scientific path has given me the opportunity to work with colleagues all over Europe, including Germany, France, and Norway. Editing the book Graph Theory: Advanced Algorithms and Applications with IntechOpen emphasized for me the importance of providing valuable, Open Access literature to our scientific colleagues around the world. So I am highly enthusiastic about the Women in Science book collection, which will highlight the outstanding accomplishments of women scientists and encourage others to walk the challenging path to becoming a recognized scientist." Beril Sirmacek, TU Delft, The Netherlands
\\n\\nAdvantages of Publishing with IntechOpen
\\n\\n\\n"}]'},components:[{type:"htmlEditorComponent",content:'At IntechOpen, we’re laying the foundations for the future by publishing the best research by women in STEM – Open Access and available to all. Our Women in Science program already includes six books in progress by award-winning women scientists on topics ranging from physics to robotics, medicine to environmental science. Our editors come from all over the globe and include L’Oreal–UNESCO For Women in Science award-winners and National Science Foundation and European Commission grant recipients.
\n\nWe aim to publish 100 books in our Women in Science program over the next three years. We are looking for books written, edited, or co-edited by women. Contributing chapters by men are welcome. As always, the quality of the research we publish is paramount.
\n\nAll project proposals go through a two-stage peer review process and are selected based on the following criteria:
\n\nPlus, we want this project to have an impact beyond scientific circles. We will publicize the research in the Women in Science program for a wider general audience through:
\n\nInterested? If you have an idea for an edited volume or a monograph, we’d love to hear from you! Contact Ana Pantar at book.idea@intechopen.com.
\n\n“My scientific path has given me the opportunity to work with colleagues all over Europe, including Germany, France, and Norway. Editing the book Graph Theory: Advanced Algorithms and Applications with IntechOpen emphasized for me the importance of providing valuable, Open Access literature to our scientific colleagues around the world. So I am highly enthusiastic about the Women in Science book collection, which will highlight the outstanding accomplishments of women scientists and encourage others to walk the challenging path to becoming a recognized scientist." Beril Sirmacek, TU Delft, The Netherlands
\n\n\n\n\n'}]},successStories:{items:[]},authorsAndEditors:{filterParams:{sort:"featured,name"},profiles:[{id:"289905",title:"Dr.",name:null,middleName:null,surname:"Inamuddin",slug:"inamuddin",fullName:"Inamuddin",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/289905/images/system/289905.jpeg",biography:"Dr. Inamuddin is currently working as an assistant professor in the Chemistry Department, Faculty of Science, King Abdulaziz University, Jeddah, Saudi Arabia. He has extensive research experience in multidisciplinary fields of analytical chemistry, materials chemistry, electrochemistry, and more specifically, renewable energy and the environment. He has published 127 research articles in international journals of repute and 18 book chapters in knowledge-based book editions published by renowned international publishers. He has published 39 edited books with Springer, United Kingdom, Elsevier, Nova Science Publishers, Inc. USA, CRC Press Taylor & Francis, Asia Pacific, Trans Tech Publications Ltd., Switzerland, and Materials Science Forum, USA. He is a member of various editorial boards serving as associate editor for journals such as Environmental Chemistry Letter, Applied Water Science, Euro-Mediterranean Journal for Environmental Integration, Springer-Nature, Scientific Reports-Nature, and the editor of Eurasian Journal of Analytical Chemistry.",institutionString:"King Abdulaziz University",institution:{name:"King Abdulaziz University",country:{name:"Saudi Arabia"}}},{id:"99002",title:"Dr.",name:null,middleName:null,surname:"Koontongkaew",slug:"koontongkaew",fullName:"Koontongkaew",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"Thammasat University",country:{name:"Thailand"}}},{id:"156647",title:"Dr.",name:"A K M Mamunur",middleName:null,surname:"Rashid",slug:"a-k-m-mamunur-rashid",fullName:"A K M Mamunur Rashid",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:"MBBS, DCH, MD(Paed.), Grad. Cert. P. Rheum.(UWA, Australia), FRCP(Edin.)",institutionString:null,institution:{name:"Khulna Medical College",country:{name:"Bangladesh"}}},{id:"234696",title:"Prof.",name:"A K M Mominul",middleName:null,surname:"Islam",slug:"a-k-m-mominul-islam",fullName:"A K M Mominul Islam",position:null,profilePictureURL:"https://intech-files.s3.amazonaws.com/a043Y00000cA8dpQAC/Co2_Profile_Picture-1588761796759",biography:"Prof. Dr. A. K. M. Mominul Islam received both of his bachelor's and Master’s degree from Bangladesh Agricultural University. After that, he joined as Lecturer of Agronomy at Bangladesh Agricultural University (BAU), Mymensingh, Bangladesh, and became Professor in the same department of the university. Dr. Islam did his second Master’s in Physical Land Resources from Ghent University, Belgium. He is currently serving as a postdoctoral researcher at the Department of Horticulture & Landscape Architecture at Purdue University, USA. Dr. Islam has obtained his Ph.D. degree in Plant Allelopathy from The United Graduate School of Agricultural Sciences, Ehime University, Japan. The dissertation title of Dr. Islam was “Allelopathy of five Lamiaceae medicinal plant species”. Dr. Islam is the author of 38 articles published in nationally and internationally reputed journals, 1 book chapter, and 3 books. He is a member of the editorial board and referee of several national and international journals. He is supervising the research of MS and Ph.D. students in areas of Agronomy. Prof. Islam is conducting research on crop management, bio-herbicides, and allelopathy.",institutionString:"Bangladesh Agricultural University",institution:{name:"Bangladesh Agricultural University",country:{name:"Bangladesh"}}},{id:"214531",title:"Mr.",name:"A T M Sakiur",middleName:null,surname:"Rahman",slug:"a-t-m-sakiur-rahman",fullName:"A T M Sakiur Rahman",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"University of Rajshahi",country:{name:"Bangladesh"}}},{id:"66545",title:"Dr.",name:"A. F.",middleName:null,surname:"Omar",slug:"a.-f.-omar",fullName:"A. F. Omar",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:"Dr. A. F. Omar obtained\nhis Bachelor degree in electrical and\nelectronics engineering from Universiti\nSains Malaysia in 2002, Master of Science in electronics\nengineering from Open University\nMalaysia in 2008 and PhD in optical physics from Universiti\nSains Malaysia in 2012. His research mainly\nfocuses on the development of optical\nand electronics systems for spectroscopy\napplication in environmental monitoring,\nagriculture and dermatology. He has\nmore than 10 years of teaching\nexperience in subjects related to\nelectronics, mathematics and applied optics for\nuniversity students and industrial engineers.",institutionString:null,institution:{name:"Universiti Sains Malaysia",country:{name:"Malaysia"}}},{id:"191072",title:"Prof.",name:"A. K. M. Aminul",middleName:null,surname:"Islam",slug:"a.-k.-m.-aminul-islam",fullName:"A. K. M. Aminul Islam",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/191072/images/system/191072.jpg",biography:"Prof. Dr. A. K. M. Aminul Islam received both of his bachelor and Master’s degree from Bangladesh Agricultural University. After that he joined as Lecturer of Genetics and Plant Breeding at Bangabandhu Sheikh Mujibur Rahman Agricultural University (BSMRAU), Gazipur, Bangladesh and became Professor in the same department of the university. He is currently serving as Director (Research) of Bangabandhu Sheikh Mujibur Rahman Agricultural University (BSMRAU), Gazipur, Bangladesh. Dr. Islam has obtained his Ph D degree in Chemical and Process Engineering from Universiti Kebangsaan Malaysia. The dissertation title of Dr. Islam was “Improvement of Biodiesel Production through Genetic Studies of Jatropha (Jatropha curcas L.)”. Dr. Islam is the author of 98 articles published in nationally and internationally reputed journals, 11 book chapters and 3 books. He is a member of editorial board and referee of several national and international journals. He is also serving as the General Secretary of Plant Breeding and Genetics Society of Bangladesh, Seminar and research Secretary of JICA Alumni Association of Bangladesh and member of several professional societies. Prof. Islam acted as Principal Breeder in the releasing system of BU Hybrid Lau 1, BU Lau 1, BU Capsicum 1, BU Lalshak 1, BU Baromashi Seem 1, BU Sheem 1, BU Sheem 2, BU Sheem 3 and BU Sheem 4. He supervised 50 MS and 3 Ph D students. Prof. Islam currently supervising research of 5 MS and 3 Ph D students in areas Plant Breeding & Seed Technologies. Conducting research on development of hybrid vegetables, hybrid Brassica napus using CMS system, renewable energy research with Jatropha curcas.",institutionString:"Bangabandhu Sheikh Mujibur Rahman Agricultural University",institution:{name:"Bangabandhu Sheikh Mujibur Rahman Agricultural University",country:{name:"Bangladesh"}}},{id:"322225",title:"Dr.",name:"A. K. M. Aminul",middleName:null,surname:"Islam",slug:"a.-k.-m.-aminul-islam",fullName:"A. K. M. Aminul Islam",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/no_image.jpg",biography:"Prof. Dr. A. K. M. Aminul Islam received both of his bachelor's and Master’s degree from Bangladesh Agricultural University. After that he joined as Lecturer of Genetics and Plant Breeding at Bangabandhu Sheikh Mujibur Rahman Agricultural University (BSMRAU), Gazipur, Bangladesh, and became Professor in the same department of the university. He is currently serving as Director (Research) of Bangabandhu Sheikh Mujibur Rahman Agricultural University (BSMRAU), Gazipur, Bangladesh. Dr. Islam has obtained his Ph.D. degree in Chemical and Process Engineering from Universiti Kebangsaan Malaysia. The dissertation title of Dr. Islam was 'Improvement of Biodiesel Production through Genetic Studies of Jatropha (Jatropha curcas L.)”. Dr. Islam is the author of 99 articles published in nationally and internationally reputed journals, 11 book chapters, 3 books, and 20 proceedings and conference paper. He is a member of the editorial board and referee of several national and international journals. He is also serving as the General Secretary of Plant Breeding and Genetics Society of Bangladesh, Seminar, and research Secretary of JICA Alumni Association of Bangladesh and a member of several professional societies. Prof. Islam acted as Principal Breeder in the releasing system of BU Hybrid Lau 1, BU Lau 1, BU Capsicum 1, BU Lalshak 1, BU Baromashi Seem 1, BU Sheem 1, BU Sheem 2, BU Sheem 3 and BU Sheem 4. He supervised 50 MS and 3 PhD students. Prof. Islam currently supervising the research of 5 MS and 3 PhD students in areas Plant Breeding & Seed Technologies. Conducting research on the development of hybrid vegetables, hybrid Brassica napus using CMS system, renewable energy research with Jatropha curcas.",institutionString:"Bangabandhu Sheikh Mujibur Rahman Agricultural University",institution:{name:"Bangabandhu Sheikh Mujibur Rahman Agricultural University",country:{name:"Bangladesh"}}},{id:"91977",title:"Dr.",name:"A.B.M. Sharif",middleName:null,surname:"Hossain",slug:"a.b.m.-sharif-hossain",fullName:"A.B.M. Sharif Hossain",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"University of Malaya",country:{name:"Malaysia"}}},{id:"97123",title:"Prof.",name:"A.M.M.",middleName:null,surname:"Sharif Ullah",slug:"a.m.m.-sharif-ullah",fullName:"A.M.M. Sharif Ullah",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/97123/images/4209_n.jpg",biography:"AMM Sharif Ullah is currently an Associate Professor of Design and Manufacturing in Department of Mechanical Engineering at Kitami Institute of Technology, Japan. He received the Bachelor of Science Degree in Mechanical Engineering in 1992 from the Bangladesh University of Engineering and Technology, Dhaka, Bangladesh. In 1993, he moved to Japan for graduate studies. He received the Master of Engineering degree in 1996 from the Kansai University Graduate School of Engineering in Mechanical Engineering (Major: Manufacturing Engineering). He also received the Doctor of Engineering degree from the same institute in the same field in 1999. He began his academic career in 2000 as an Assistant Professor in the Industrial Systems Engineering Program at the Asian Institute of Technology, Thailand, as an Assistant Professor in the Industrial Systems Engineering Program. In 2002, he took up the position of Assistant Professor in the Department of Mechanical Engineering at the United Arab Emirates (UAE) University. He was promoted to Associate Professor in 2006 at the UAE University. He moved to his current employer in 2009. His research field is product realization engineering (design, manufacturing, operations, and sustainability). He teaches design and manufacturing related courses at undergraduate and graduate degree programs. He has been mentoring a large number of students for their senior design projects and theses. He has published more than 90 papers in refereed journals, edited books, and international conference proceedings. He made more than 35 oral presentations. Since 2005, he directs the advanced manufacturing engineering research laboratory at Kitami Institute of Technology.",institutionString:null,institution:{name:"Kitami Institute of Technology",country:{name:"Japan"}}},{id:"213441",title:"Dr.",name:"A.R.Kavitha",middleName:null,surname:"Balaji",slug:"a.r.kavitha-balaji",fullName:"A.R.Kavitha Balaji",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"Anna University, Chennai",country:{name:"India"}}},{id:"172688",title:"Prof.",name:"A.V.",middleName:null,surname:"Salker",slug:"a.v.-salker",fullName:"A.V. Salker",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"Goa University",country:{name:"India"}}}],filtersByRegion:[{group:"region",caption:"North America",value:1,count:5684},{group:"region",caption:"Middle and South America",value:2,count:5166},{group:"region",caption:"Africa",value:3,count:1682},{group:"region",caption:"Asia",value:4,count:10211},{group:"region",caption:"Australia and Oceania",value:5,count:887},{group:"region",caption:"Europe",value:6,count:15616}],offset:12,limit:12,total:10241},chapterEmbeded:{data:{}},editorApplication:{success:null,errors:{}},ofsBooks:{filterParams:{topicId:"6"},books:[{type:"book",id:"7901",title:"Advances in Germ Cell Biology – New Technologies, Applications and Perspectives",subtitle:null,isOpenForSubmission:!0,hash:"4adab31469b82dd5a99eec04dbbe09f2",slug:null,bookSignature:"Ph.D. Sonia Oliveira and Prof. Maria De Lourdes Pereira",coverURL:"https://cdn.intechopen.com/books/images_new/7901.jpg",editedByType:null,editors:[{id:"323848",title:"Ph.D.",name:"Sonia",surname:"Oliveira",slug:"sonia-oliveira",fullName:"Sonia Oliveira"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"7921",title:"Optogenetics",subtitle:null,isOpenForSubmission:!0,hash:"3ae7e24d8f03ff3932bceee4b8d3e727",slug:null,bookSignature:"Dr. Thomas Heinbockel",coverURL:"https://cdn.intechopen.com/books/images_new/7921.jpg",editedByType:null,editors:[{id:"70569",title:"Dr.",name:"Thomas",surname:"Heinbockel",slug:"thomas-heinbockel",fullName:"Thomas Heinbockel"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"8575",title:"Animal Regeneration",subtitle:null,isOpenForSubmission:!0,hash:"689b9f46c48cd54a2874b8da7386549d",slug:null,bookSignature:"Dr. Hussein Abdelhay Essayed Kaoud",coverURL:"https://cdn.intechopen.com/books/images_new/8575.jpg",editedByType:null,editors:[{id:"265070",title:"Dr.",name:"Hussein Abdelhay",surname:"Essayed Kaoud",slug:"hussein-abdelhay-essayed-kaoud",fullName:"Hussein Abdelhay Essayed Kaoud"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"8977",title:"Protein Kinase - New Opportunities, Challenges and Future Perspectives",subtitle:null,isOpenForSubmission:!0,hash:"6d200cc031706a565b554fdb1c478901",slug:null,bookSignature:"Dr. Rajesh Kumar Singh",coverURL:"https://cdn.intechopen.com/books/images_new/8977.jpg",editedByType:null,editors:[{id:"329385",title:"Dr.",name:"Rajesh",surname:"Singh",slug:"rajesh-singh",fullName:"Rajesh Singh"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"9008",title:"Vitamin K - Recent Advances, New Perspectives and Applications for Human Health",subtitle:null,isOpenForSubmission:!0,hash:"8b43add5389ba85743e0a9491e4b9943",slug:null,bookSignature:"Prof. Hiroyuki Kagechika and Dr. Hitoshi Shirakawa",coverURL:"https://cdn.intechopen.com/books/images_new/9008.jpg",editedByType:null,editors:[{id:"180528",title:"Prof.",name:"Hiroyuki",surname:"Kagechika",slug:"hiroyuki-kagechika",fullName:"Hiroyuki Kagechika"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"9655",title:"Bioluminescence",subtitle:null,isOpenForSubmission:!0,hash:"26b9e7dade717a5ffdc2dbcfaa1ea43d",slug:null,bookSignature:"Dr. Hirobumi Suzuki and Dr. Katsunori Ogoh",coverURL:"https://cdn.intechopen.com/books/images_new/9655.jpg",editedByType:null,editors:[{id:"185746",title:"Dr.",name:"Hirobumi",surname:"Suzuki",slug:"hirobumi-suzuki",fullName:"Hirobumi Suzuki"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"9659",title:"Fibroblasts - Advances in Cancer, Autoimmunity and Inflammation",subtitle:null,isOpenForSubmission:!0,hash:"926fa6446f6befbd363fc74971a56de2",slug:null,bookSignature:"Ph.D. Mojca Frank Bertoncelj and Ms. Katja Lakota",coverURL:"https://cdn.intechopen.com/books/images_new/9659.jpg",editedByType:null,editors:[{id:"328755",title:"Ph.D.",name:"Mojca",surname:"Frank Bertoncelj",slug:"mojca-frank-bertoncelj",fullName:"Mojca Frank Bertoncelj"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"9734",title:"Chromatin Organization in Health and Disease",subtitle:null,isOpenForSubmission:!0,hash:"ad6935289971d793d26ff2584f57143b",slug:null,bookSignature:"Associate Prof. Jehane Eid",coverURL:"https://cdn.intechopen.com/books/images_new/9734.jpg",editedByType:null,editors:[{id:"325814",title:"Associate Prof.",name:"Jehane",surname:"Eid",slug:"jehane-eid",fullName:"Jehane Eid"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"9836",title:"KRAS Gene",subtitle:null,isOpenForSubmission:!0,hash:"4fc73beb0e4416a20cc70c8163fe436f",slug:null,bookSignature:"Dr. Pinar Erkekoglu",coverURL:"https://cdn.intechopen.com/books/images_new/9836.jpg",editedByType:null,editors:[{id:"109978",title:"Prof.",name:"Pinar",surname:"Erkekoglu",slug:"pinar-erkekoglu",fullName:"Pinar Erkekoglu"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10213",title:"Secretomics",subtitle:null,isOpenForSubmission:!0,hash:"8f787d92ba862a2c43867b2e62d15c31",slug:null,bookSignature:"Dr. Luiza Rusu",coverURL:"https://cdn.intechopen.com/books/images_new/10213.jpg",editedByType:null,editors:[{id:"210679",title:"Dr.",name:"Luiza",surname:"Rusu",slug:"luiza-rusu",fullName:"Luiza Rusu"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10219",title:"Fundamentals of Glycosylation",subtitle:null,isOpenForSubmission:!0,hash:"f1f82214d3d5460d3b52c4d8e87e3858",slug:null,bookSignature:"Dr. Alok Raghav and Dr. Jamal Ahmad",coverURL:"https://cdn.intechopen.com/books/images_new/10219.jpg",editedByType:null,editors:[{id:"334465",title:"Dr.",name:"Alok",surname:"Raghav",slug:"alok-raghav",fullName:"Alok Raghav"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10235",title:"Tyrosine",subtitle:null,isOpenForSubmission:!0,hash:"4c53ce7a1ad1e17c15b608ca3f9ee911",slug:null,bookSignature:"Dr. Ken-Ichi Sato",coverURL:"https://cdn.intechopen.com/books/images_new/10235.jpg",editedByType:null,editors:[{id:"104122",title:"Dr.",name:"Ken-Ichi",surname:"Sato",slug:"ken-ichi-sato",fullName:"Ken-Ichi Sato"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}}],filtersByTopic:[{group:"topic",caption:"Agricultural and Biological Sciences",value:5,count:9},{group:"topic",caption:"Biochemistry, Genetics and Molecular Biology",value:6,count:18},{group:"topic",caption:"Business, Management and Economics",value:7,count:2},{group:"topic",caption:"Chemistry",value:8,count:7},{group:"topic",caption:"Computer and Information Science",value:9,count:10},{group:"topic",caption:"Earth and Planetary Sciences",value:10,count:5},{group:"topic",caption:"Engineering",value:11,count:14},{group:"topic",caption:"Environmental Sciences",value:12,count:2},{group:"topic",caption:"Immunology and Microbiology",value:13,count:5},{group:"topic",caption:"Materials Science",value:14,count:4},{group:"topic",caption:"Mathematics",value:15,count:1},{group:"topic",caption:"Medicine",value:16,count:60},{group:"topic",caption:"Nanotechnology and Nanomaterials",value:17,count:1},{group:"topic",caption:"Neuroscience",value:18,count:1},{group:"topic",caption:"Pharmacology, Toxicology and Pharmaceutical Science",value:19,count:6},{group:"topic",caption:"Physics",value:20,count:2},{group:"topic",caption:"Psychology",value:21,count:3},{group:"topic",caption:"Robotics",value:22,count:1},{group:"topic",caption:"Social Sciences",value:23,count:3},{group:"topic",caption:"Technology",value:24,count:1},{group:"topic",caption:"Veterinary Medicine and Science",value:25,count:2}],offset:12,limit:12,total:27},popularBooks:{featuredBooks:[{type:"book",id:"9208",title:"Welding",subtitle:"Modern Topics",isOpenForSubmission:!1,hash:"7d6be076ccf3a3f8bd2ca52d86d4506b",slug:"welding-modern-topics",bookSignature:"Sadek Crisóstomo Absi Alfaro, Wojciech Borek and Błażej Tomiczek",coverURL:"https://cdn.intechopen.com/books/images_new/9208.jpg",editors:[{id:"65292",title:"Prof.",name:"Sadek Crisostomo Absi",middleName:"C. Absi",surname:"Alfaro",slug:"sadek-crisostomo-absi-alfaro",fullName:"Sadek Crisostomo Absi Alfaro"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9139",title:"Topics in Primary Care Medicine",subtitle:null,isOpenForSubmission:!1,hash:"ea774a4d4c1179da92a782e0ae9cde92",slug:"topics-in-primary-care-medicine",bookSignature:"Thomas F. Heston",coverURL:"https://cdn.intechopen.com/books/images_new/9139.jpg",editors:[{id:"217926",title:"Dr.",name:"Thomas F.",middleName:null,surname:"Heston",slug:"thomas-f.-heston",fullName:"Thomas F. Heston"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"8697",title:"Virtual Reality and Its Application in Education",subtitle:null,isOpenForSubmission:!1,hash:"ee01b5e387ba0062c6b0d1e9227bda05",slug:"virtual-reality-and-its-application-in-education",bookSignature:"Dragan Cvetković",coverURL:"https://cdn.intechopen.com/books/images_new/8697.jpg",editors:[{id:"101330",title:"Dr.",name:"Dragan",middleName:"Mladen",surname:"Cvetković",slug:"dragan-cvetkovic",fullName:"Dragan Cvetković"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9785",title:"Endometriosis",subtitle:null,isOpenForSubmission:!1,hash:"f457ca61f29cf7e8bc191732c50bb0ce",slug:"endometriosis",bookSignature:"Courtney Marsh",coverURL:"https://cdn.intechopen.com/books/images_new/9785.jpg",editors:[{id:"255491",title:"Dr.",name:"Courtney",middleName:null,surname:"Marsh",slug:"courtney-marsh",fullName:"Courtney Marsh"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9343",title:"Trace Metals in the Environment",subtitle:"New Approaches and Recent Advances",isOpenForSubmission:!1,hash:"ae07e345bc2ce1ebbda9f70c5cd12141",slug:"trace-metals-in-the-environment-new-approaches-and-recent-advances",bookSignature:"Mario Alfonso Murillo-Tovar, Hugo Saldarriaga-Noreña and Agnieszka Saeid",coverURL:"https://cdn.intechopen.com/books/images_new/9343.jpg",editors:[{id:"255959",title:"Dr.",name:"Mario Alfonso",middleName:null,surname:"Murillo-Tovar",slug:"mario-alfonso-murillo-tovar",fullName:"Mario Alfonso Murillo-Tovar"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"7831",title:"Sustainability in Urban Planning and Design",subtitle:null,isOpenForSubmission:!1,hash:"c924420492c8c2c9751e178d025f4066",slug:"sustainability-in-urban-planning-and-design",bookSignature:"Amjad Almusaed, Asaad Almssad and Linh Truong - Hong",coverURL:"https://cdn.intechopen.com/books/images_new/7831.jpg",editors:[{id:"110471",title:"Dr.",name:"Amjad",middleName:"Zaki",surname:"Almusaed",slug:"amjad-almusaed",fullName:"Amjad Almusaed"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"8468",title:"Sheep Farming",subtitle:"An Approach to Feed, Growth and Sanity",isOpenForSubmission:!1,hash:"838f08594850bc04aa14ec873ed1b96f",slug:"sheep-farming-an-approach-to-feed-growth-and-sanity",bookSignature:"António Monteiro",coverURL:"https://cdn.intechopen.com/books/images_new/8468.jpg",editors:[{id:"190314",title:"Prof.",name:"António",middleName:"Cardoso",surname:"Monteiro",slug:"antonio-monteiro",fullName:"António Monteiro"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"8816",title:"Financial Crises",subtitle:"A Selection of Readings",isOpenForSubmission:!1,hash:"6f2f49fb903656e4e54280c79fabd10c",slug:"financial-crises-a-selection-of-readings",bookSignature:"Stelios Markoulis",coverURL:"https://cdn.intechopen.com/books/images_new/8816.jpg",editors:[{id:"237863",title:"Dr.",name:"Stelios",middleName:null,surname:"Markoulis",slug:"stelios-markoulis",fullName:"Stelios Markoulis"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9376",title:"Contemporary Developments and Perspectives in International Health Security",subtitle:"Volume 1",isOpenForSubmission:!1,hash:"b9a00b84cd04aae458fb1d6c65795601",slug:"contemporary-developments-and-perspectives-in-international-health-security-volume-1",bookSignature:"Stanislaw P. Stawicki, Michael S. Firstenberg, Sagar C. Galwankar, Ricardo Izurieta and Thomas Papadimos",coverURL:"https://cdn.intechopen.com/books/images_new/9376.jpg",editors:[{id:"181694",title:"Dr.",name:"Stanislaw P.",middleName:null,surname:"Stawicki",slug:"stanislaw-p.-stawicki",fullName:"Stanislaw P. Stawicki"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"7769",title:"Medical Isotopes",subtitle:null,isOpenForSubmission:!1,hash:"f8d3c5a6c9a42398e56b4e82264753f7",slug:"medical-isotopes",bookSignature:"Syed Ali Raza Naqvi and Muhammad Babar Imrani",coverURL:"https://cdn.intechopen.com/books/images_new/7769.jpg",editors:[{id:"259190",title:"Dr.",name:"Syed Ali Raza",middleName:null,surname:"Naqvi",slug:"syed-ali-raza-naqvi",fullName:"Syed Ali Raza Naqvi"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9279",title:"Concepts, Applications and Emerging Opportunities in Industrial Engineering",subtitle:null,isOpenForSubmission:!1,hash:"9bfa87f9b627a5468b7c1e30b0eea07a",slug:"concepts-applications-and-emerging-opportunities-in-industrial-engineering",bookSignature:"Gary Moynihan",coverURL:"https://cdn.intechopen.com/books/images_new/9279.jpg",editors:[{id:"16974",title:"Dr.",name:"Gary",middleName:null,surname:"Moynihan",slug:"gary-moynihan",fullName:"Gary Moynihan"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"7807",title:"A Closer Look at Organizational Culture in Action",subtitle:null,isOpenForSubmission:!1,hash:"05c608b9271cc2bc711f4b28748b247b",slug:"a-closer-look-at-organizational-culture-in-action",bookSignature:"Süleyman Davut Göker",coverURL:"https://cdn.intechopen.com/books/images_new/7807.jpg",editors:[{id:"190035",title:"Associate Prof.",name:"Süleyman Davut",middleName:null,surname:"Göker",slug:"suleyman-davut-goker",fullName:"Süleyman Davut Göker"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}}],offset:12,limit:12,total:5131},hotBookTopics:{hotBooks:[],offset:0,limit:12,total:null},publish:{},publishingProposal:{success:null,errors:{}},books:{featuredBooks:[{type:"book",id:"9208",title:"Welding",subtitle:"Modern Topics",isOpenForSubmission:!1,hash:"7d6be076ccf3a3f8bd2ca52d86d4506b",slug:"welding-modern-topics",bookSignature:"Sadek Crisóstomo Absi Alfaro, Wojciech Borek and Błażej Tomiczek",coverURL:"https://cdn.intechopen.com/books/images_new/9208.jpg",editors:[{id:"65292",title:"Prof.",name:"Sadek Crisostomo Absi",middleName:"C. Absi",surname:"Alfaro",slug:"sadek-crisostomo-absi-alfaro",fullName:"Sadek Crisostomo Absi Alfaro"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9139",title:"Topics in Primary Care Medicine",subtitle:null,isOpenForSubmission:!1,hash:"ea774a4d4c1179da92a782e0ae9cde92",slug:"topics-in-primary-care-medicine",bookSignature:"Thomas F. Heston",coverURL:"https://cdn.intechopen.com/books/images_new/9139.jpg",editors:[{id:"217926",title:"Dr.",name:"Thomas F.",middleName:null,surname:"Heston",slug:"thomas-f.-heston",fullName:"Thomas F. Heston"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"8697",title:"Virtual Reality and Its Application in Education",subtitle:null,isOpenForSubmission:!1,hash:"ee01b5e387ba0062c6b0d1e9227bda05",slug:"virtual-reality-and-its-application-in-education",bookSignature:"Dragan Cvetković",coverURL:"https://cdn.intechopen.com/books/images_new/8697.jpg",editors:[{id:"101330",title:"Dr.",name:"Dragan",middleName:"Mladen",surname:"Cvetković",slug:"dragan-cvetkovic",fullName:"Dragan Cvetković"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9785",title:"Endometriosis",subtitle:null,isOpenForSubmission:!1,hash:"f457ca61f29cf7e8bc191732c50bb0ce",slug:"endometriosis",bookSignature:"Courtney Marsh",coverURL:"https://cdn.intechopen.com/books/images_new/9785.jpg",editors:[{id:"255491",title:"Dr.",name:"Courtney",middleName:null,surname:"Marsh",slug:"courtney-marsh",fullName:"Courtney Marsh"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9343",title:"Trace Metals in the Environment",subtitle:"New Approaches and Recent Advances",isOpenForSubmission:!1,hash:"ae07e345bc2ce1ebbda9f70c5cd12141",slug:"trace-metals-in-the-environment-new-approaches-and-recent-advances",bookSignature:"Mario Alfonso Murillo-Tovar, Hugo Saldarriaga-Noreña and Agnieszka Saeid",coverURL:"https://cdn.intechopen.com/books/images_new/9343.jpg",editors:[{id:"255959",title:"Dr.",name:"Mario Alfonso",middleName:null,surname:"Murillo-Tovar",slug:"mario-alfonso-murillo-tovar",fullName:"Mario Alfonso Murillo-Tovar"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"8468",title:"Sheep Farming",subtitle:"An Approach to Feed, Growth and Sanity",isOpenForSubmission:!1,hash:"838f08594850bc04aa14ec873ed1b96f",slug:"sheep-farming-an-approach-to-feed-growth-and-sanity",bookSignature:"António Monteiro",coverURL:"https://cdn.intechopen.com/books/images_new/8468.jpg",editors:[{id:"190314",title:"Prof.",name:"António",middleName:"Cardoso",surname:"Monteiro",slug:"antonio-monteiro",fullName:"António Monteiro"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"8816",title:"Financial Crises",subtitle:"A Selection of Readings",isOpenForSubmission:!1,hash:"6f2f49fb903656e4e54280c79fabd10c",slug:"financial-crises-a-selection-of-readings",bookSignature:"Stelios Markoulis",coverURL:"https://cdn.intechopen.com/books/images_new/8816.jpg",editors:[{id:"237863",title:"Dr.",name:"Stelios",middleName:null,surname:"Markoulis",slug:"stelios-markoulis",fullName:"Stelios Markoulis"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"7831",title:"Sustainability in Urban Planning and Design",subtitle:null,isOpenForSubmission:!1,hash:"c924420492c8c2c9751e178d025f4066",slug:"sustainability-in-urban-planning-and-design",bookSignature:"Amjad Almusaed, Asaad Almssad and Linh Truong - Hong",coverURL:"https://cdn.intechopen.com/books/images_new/7831.jpg",editors:[{id:"110471",title:"Dr.",name:"Amjad",middleName:"Zaki",surname:"Almusaed",slug:"amjad-almusaed",fullName:"Amjad Almusaed"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9376",title:"Contemporary Developments and Perspectives in International Health Security",subtitle:"Volume 1",isOpenForSubmission:!1,hash:"b9a00b84cd04aae458fb1d6c65795601",slug:"contemporary-developments-and-perspectives-in-international-health-security-volume-1",bookSignature:"Stanislaw P. Stawicki, Michael S. Firstenberg, Sagar C. Galwankar, Ricardo Izurieta and Thomas Papadimos",coverURL:"https://cdn.intechopen.com/books/images_new/9376.jpg",editors:[{id:"181694",title:"Dr.",name:"Stanislaw P.",middleName:null,surname:"Stawicki",slug:"stanislaw-p.-stawicki",fullName:"Stanislaw P. Stawicki"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"7769",title:"Medical Isotopes",subtitle:null,isOpenForSubmission:!1,hash:"f8d3c5a6c9a42398e56b4e82264753f7",slug:"medical-isotopes",bookSignature:"Syed Ali Raza Naqvi and Muhammad Babar Imrani",coverURL:"https://cdn.intechopen.com/books/images_new/7769.jpg",editors:[{id:"259190",title:"Dr.",name:"Syed Ali Raza",middleName:null,surname:"Naqvi",slug:"syed-ali-raza-naqvi",fullName:"Syed Ali Raza Naqvi"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}}],latestBooks:[{type:"book",id:"7434",title:"Molecular Biotechnology",subtitle:null,isOpenForSubmission:!1,hash:"eceede809920e1ec7ecadd4691ede2ec",slug:"molecular-biotechnology",bookSignature:"Sergey Sedykh",coverURL:"https://cdn.intechopen.com/books/images_new/7434.jpg",editedByType:"Edited by",editors:[{id:"178316",title:"Ph.D.",name:"Sergey",middleName:null,surname:"Sedykh",slug:"sergey-sedykh",fullName:"Sergey Sedykh"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"8545",title:"Animal Reproduction in Veterinary Medicine",subtitle:null,isOpenForSubmission:!1,hash:"13aaddf5fdbbc78387e77a7da2388bf6",slug:"animal-reproduction-in-veterinary-medicine",bookSignature:"Faruk Aral, Rita Payan-Carreira and Miguel Quaresma",coverURL:"https://cdn.intechopen.com/books/images_new/8545.jpg",editedByType:"Edited by",editors:[{id:"25600",title:"Prof.",name:"Faruk",middleName:null,surname:"Aral",slug:"faruk-aral",fullName:"Faruk Aral"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"9569",title:"Methods in Molecular Medicine",subtitle:null,isOpenForSubmission:!1,hash:"691d3f3c4ac25a8093414e9b270d2843",slug:"methods-in-molecular-medicine",bookSignature:"Yusuf Tutar",coverURL:"https://cdn.intechopen.com/books/images_new/9569.jpg",editedByType:"Edited by",editors:[{id:"158492",title:"Prof.",name:"Yusuf",middleName:null,surname:"Tutar",slug:"yusuf-tutar",fullName:"Yusuf Tutar"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"9839",title:"Outdoor Recreation",subtitle:"Physiological and Psychological Effects on Health",isOpenForSubmission:!1,hash:"5f5a0d64267e32567daffa5b0c6a6972",slug:"outdoor-recreation-physiological-and-psychological-effects-on-health",bookSignature:"Hilde G. Nielsen",coverURL:"https://cdn.intechopen.com/books/images_new/9839.jpg",editedByType:"Edited by",editors:[{id:"158692",title:"Ph.D.",name:"Hilde G.",middleName:null,surname:"Nielsen",slug:"hilde-g.-nielsen",fullName:"Hilde G. Nielsen"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"7802",title:"Modern Slavery and Human Trafficking",subtitle:null,isOpenForSubmission:!1,hash:"587a0b7fb765f31cc98de33c6c07c2e0",slug:"modern-slavery-and-human-trafficking",bookSignature:"Jane Reeves",coverURL:"https://cdn.intechopen.com/books/images_new/7802.jpg",editedByType:"Edited by",editors:[{id:"211328",title:"Prof.",name:"Jane",middleName:null,surname:"Reeves",slug:"jane-reeves",fullName:"Jane Reeves"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"8063",title:"Food Security in Africa",subtitle:null,isOpenForSubmission:!1,hash:"8cbf3d662b104d19db2efc9d59249efc",slug:"food-security-in-africa",bookSignature:"Barakat Mahmoud",coverURL:"https://cdn.intechopen.com/books/images_new/8063.jpg",editedByType:"Edited by",editors:[{id:"92016",title:"Dr.",name:"Barakat",middleName:null,surname:"Mahmoud",slug:"barakat-mahmoud",fullName:"Barakat Mahmoud"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10118",title:"Plant Stress Physiology",subtitle:null,isOpenForSubmission:!1,hash:"c68b09d2d2634fc719ae3b9a64a27839",slug:"plant-stress-physiology",bookSignature:"Akbar Hossain",coverURL:"https://cdn.intechopen.com/books/images_new/10118.jpg",editedByType:"Edited by",editors:[{id:"280755",title:"Dr.",name:"Akbar",middleName:null,surname:"Hossain",slug:"akbar-hossain",fullName:"Akbar Hossain"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"9157",title:"Neurodegenerative Diseases",subtitle:"Molecular Mechanisms and Current Therapeutic Approaches",isOpenForSubmission:!1,hash:"bc8be577966ef88735677d7e1e92ed28",slug:"neurodegenerative-diseases-molecular-mechanisms-and-current-therapeutic-approaches",bookSignature:"Nagehan Ersoy Tunalı",coverURL:"https://cdn.intechopen.com/books/images_new/9157.jpg",editedByType:"Edited by",editors:[{id:"82778",title:"Ph.D.",name:"Nagehan",middleName:null,surname:"Ersoy Tunalı",slug:"nagehan-ersoy-tunali",fullName:"Nagehan Ersoy Tunalı"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"9961",title:"Data Mining",subtitle:"Methods, Applications and Systems",isOpenForSubmission:!1,hash:"ed79fb6364f2caf464079f94a0387146",slug:"data-mining-methods-applications-and-systems",bookSignature:"Derya Birant",coverURL:"https://cdn.intechopen.com/books/images_new/9961.jpg",editedByType:"Edited by",editors:[{id:"15609",title:"Dr.",name:"Derya",middleName:null,surname:"Birant",slug:"derya-birant",fullName:"Derya Birant"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"8686",title:"Direct Torque Control Strategies of Electrical Machines",subtitle:null,isOpenForSubmission:!1,hash:"b6ad22b14db2b8450228545d3d4f6b1a",slug:"direct-torque-control-strategies-of-electrical-machines",bookSignature:"Fatma Ben Salem",coverURL:"https://cdn.intechopen.com/books/images_new/8686.jpg",editedByType:"Edited by",editors:[{id:"295623",title:"Associate Prof.",name:"Fatma",middleName:null,surname:"Ben Salem",slug:"fatma-ben-salem",fullName:"Fatma Ben Salem"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}}]},subject:{topic:{id:"814",title:"Fluid Dynamics",slug:"mechanical-engineering-fluid-dynamics",parent:{title:"Mechanical Engineering",slug:"mechanical-engineering"},numberOfBooks:8,numberOfAuthorsAndEditors:255,numberOfWosCitations:211,numberOfCrossrefCitations:95,numberOfDimensionsCitations:244,videoUrl:null,fallbackUrl:null,description:null},booksByTopicFilter:{topicSlug:"mechanical-engineering-fluid-dynamics",sort:"-publishedDate",limit:12,offset:0},booksByTopicCollection:[{type:"book",id:"4690",title:"Mass Transfer",subtitle:"Advancement in Process Modelling",isOpenForSubmission:!1,hash:"6a48c13966c5b7c9ecf0af315f87048b",slug:"mass-transfer-advancement-in-process-modelling",bookSignature:"Marek Solecki",coverURL:"https://cdn.intechopen.com/books/images_new/4690.jpg",editedByType:"Edited by",editors:[{id:"43535",title:"Dr.",name:"Marek",middleName:null,surname:"Solecki",slug:"marek-solecki",fullName:"Marek Solecki"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"1659",title:"The Particle Image Velocimetry",subtitle:"Characteristics, Limits and Possible Applications",isOpenForSubmission:!1,hash:"64321309762b4a1b34529238e32ac638",slug:"the-particle-image-velocimetry-characteristics-limits-and-possible-applications",bookSignature:"Giovanna Cavazzini",coverURL:"https://cdn.intechopen.com/books/images_new/1659.jpg",editedByType:"Edited by",editors:[{id:"111606",title:"PhD.",name:"Giovanna",middleName:null,surname:"Cavazzini",slug:"giovanna-cavazzini",fullName:"Giovanna Cavazzini"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"615",title:"Advanced Methods for Practical Applications in Fluid Mechanics",subtitle:null,isOpenForSubmission:!1,hash:"779d768a546af1ba3f0aa171d0c5a9ee",slug:"advanced-methods-for-practical-applications-in-fluid-mechanics",bookSignature:"Steven A. Jones",coverURL:"https://cdn.intechopen.com/books/images_new/615.jpg",editedByType:"Edited by",editors:[{id:"64477",title:"Dr.",name:"Steven",middleName:"A.",surname:"Jones",slug:"steven-jones",fullName:"Steven Jones"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"1955",title:"Hydrodynamics",subtitle:"Advanced Topics",isOpenForSubmission:!1,hash:"a2f5fb60944543c693da3c7aa4f07dae",slug:"hydrodynamics-advanced-topics",bookSignature:"Harry Edmar Schulz, André Luiz Andrade Simões and Raquel Jahara Lobosco",coverURL:"https://cdn.intechopen.com/books/images_new/1955.jpg",editedByType:"Edited by",editors:[{id:"20241",title:"Prof.",name:"Harry",middleName:"Edmar",surname:"Schulz",slug:"harry-schulz",fullName:"Harry Schulz"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"1954",title:"Hydrodynamics",subtitle:"Optimizing Methods and Tools",isOpenForSubmission:!1,hash:"502818cd3f53e68a788a01c693a29e5d",slug:"hydrodynamics-optimizing-methods-and-tools",bookSignature:"Harry Edmar Schulz, André Luiz Andrade Simões and Raquel Jahara Lobosco",coverURL:"https://cdn.intechopen.com/books/images_new/1954.jpg",editedByType:"Edited by",editors:[{id:"20241",title:"Prof.",name:"Harry",middleName:"Edmar",surname:"Schulz",slug:"harry-schulz",fullName:"Harry Schulz"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"530",title:"Convection and Conduction Heat Transfer",subtitle:null,isOpenForSubmission:!1,hash:"d7473a9763ff4ee9a4f8bb5a1ba9cd5e",slug:"convection-and-conduction-heat-transfer",bookSignature:"Amimul Ahsan",coverURL:"https://cdn.intechopen.com/books/images_new/530.jpg",editedByType:"Edited by",editors:[{id:"36782",title:"Associate Prof.",name:"Amimul",middleName:null,surname:"Ahsan",slug:"amimul-ahsan",fullName:"Amimul Ahsan"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"924",title:"Heat and Mass Transfer",subtitle:"Modeling and Simulation",isOpenForSubmission:!1,hash:"671686ebedf504b399b01e0a9f8ecfd3",slug:"heat-and-mass-transfer-modeling-and-simulation",bookSignature:"Monwar Hossain",coverURL:"https://cdn.intechopen.com/books/images_new/924.jpg",editedByType:"Edited by",editors:[{id:"18207",title:"Prof.",name:"Md Monwar",middleName:null,surname:"Hossain",slug:"md-monwar-hossain",fullName:"Md Monwar Hossain"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"228",title:"Waves in Fluids and Solids",subtitle:null,isOpenForSubmission:!1,hash:"91a31715c4cb38a9c947a519163c45fc",slug:"waves-in-fluids-and-solids",bookSignature:"Ruben Pico Vila",coverURL:"https://cdn.intechopen.com/books/images_new/228.jpg",editedByType:"Edited by",editors:[{id:"49934",title:"Prof.",name:"Ruben",middleName:null,surname:"Pico Vila",slug:"ruben-pico-vila",fullName:"Ruben Pico Vila"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}}],booksByTopicTotal:8,mostCitedChapters:[{id:"22262",doi:"10.5772/19836",title:"Modelling of Heat Transfer and Phase Transformations in the Rapid Manufacturing of Titanium Components",slug:"modelling-of-heat-transfer-and-phase-transformations-in-the-rapid-manufacturing-of-titanium-componen",totalDownloads:2717,totalCrossrefCites:5,totalDimensionsCites:16,book:{slug:"convection-and-conduction-heat-transfer",title:"Convection and Conduction Heat Transfer",fullTitle:"Convection and Conduction Heat Transfer"},signatures:"António Crespo",authors:[{id:"36414",title:"Dr.",name:"Antonio",middleName:null,surname:"Crespo",slug:"antonio-crespo",fullName:"Antonio Crespo"}]},{id:"20087",doi:"10.5772/21503",title:"Soliton-Like Lamb Waves in Layered Media",slug:"soliton-like-lamb-waves-in-layered-media",totalDownloads:1890,totalCrossrefCites:5,totalDimensionsCites:14,book:{slug:"waves-in-fluids-and-solids",title:"Waves in Fluids and Solids",fullTitle:"Waves in Fluids and Solids"},signatures:"I. Djeran-Maigre and S. V. Kuznetsov",authors:[{id:"43397",title:"Dr.",name:"Irini",middleName:null,surname:"Djeran-Maigre",slug:"irini-djeran-maigre",fullName:"Irini Djeran-Maigre"},{id:"43398",title:"Prof.",name:"Sergey",middleName:null,surname:"Kuznetsov",slug:"sergey-kuznetsov",fullName:"Sergey Kuznetsov"}]},{id:"20412",doi:"10.5772/21230",title:"Nonequilibrium Fluctuations in Micro-MHD Effects on Electrodeposition",slug:"nonequilibrium-fluctuations-in-micro-mhd-effects-on-electrodeposition",totalDownloads:1293,totalCrossrefCites:4,totalDimensionsCites:13,book:{slug:"heat-and-mass-transfer-modeling-and-simulation",title:"Heat and Mass Transfer",fullTitle:"Heat and Mass Transfer - Modeling and Simulation"},signatures:"Ryoichi Aogaki and Ryoichi Morimoto",authors:[{id:"42360",title:"Prof.",name:"Ryoichi",middleName:null,surname:"Aogaki",slug:"ryoichi-aogaki",fullName:"Ryoichi Aogaki"},{id:"54508",title:"Mr",name:"Ryoichi",middleName:null,surname:"Morimoto",slug:"ryoichi-morimoto",fullName:"Ryoichi Morimoto"}]}],mostDownloadedChaptersLast30Days:[{id:"25446",title:"Flow Instabilities in Mechanically Agitated Stirred Vessels",slug:"flow-instabilities-in-mechanically-agitated-stirred-vessels",totalDownloads:3148,totalCrossrefCites:1,totalDimensionsCites:1,book:{slug:"hydrodynamics-advanced-topics",title:"Hydrodynamics",fullTitle:"Hydrodynamics - Advanced Topics"},signatures:"Chiara Galletti and Elisabetta Brunazzi",authors:[{id:"75453",title:"Dr.",name:"Chiara",middleName:null,surname:"Galletti",slug:"chiara-galletti",fullName:"Chiara Galletti"},{id:"75834",title:"Prof.",name:"Elisabetta",middleName:null,surname:"Brunazzi",slug:"elisabetta-brunazzi",fullName:"Elisabetta Brunazzi"}]},{id:"48887",title:"Mass Transfer in Multiphase Systems",slug:"mass-transfer-in-multiphase-systems",totalDownloads:9565,totalCrossrefCites:5,totalDimensionsCites:5,book:{slug:"mass-transfer-advancement-in-process-modelling",title:"Mass Transfer",fullTitle:"Mass Transfer - Advancement in Process Modelling"},signatures:"Badie I. Morsi and Omar M. Basha",authors:[{id:"174420",title:"Prof.",name:"Badie I.",middleName:null,surname:"Morsi",slug:"badie-i.-morsi",fullName:"Badie I. Morsi"},{id:"174770",title:"Dr.",name:"Omar M.",middleName:null,surname:"Basha",slug:"omar-m.-basha",fullName:"Omar M. Basha"}]},{id:"25437",title:"One Dimensional Turbulent Transfer Using Random Square Waves – Scalar/Velocity and Velocity/Velocity Interactions",slug:"one-dimensional-turbulent-transfer-using-random-square-waves-scalar-velocity-and-velocity-velocity-i",totalDownloads:1558,totalCrossrefCites:0,totalDimensionsCites:0,book:{slug:"hydrodynamics-advanced-topics",title:"Hydrodynamics",fullTitle:"Hydrodynamics - Advanced Topics"},signatures:"H. E. Schulz, G. B. Lopes Júnior, A. L. A. Simões and R. J. Lobosco",authors:[{id:"20241",title:"Prof.",name:"Harry",middleName:"Edmar",surname:"Schulz",slug:"harry-schulz",fullName:"Harry Schulz"}]},{id:"37156",title:"Characterization of the Bidirectional Vortex Using Particle Image Velocimetry",slug:"characterization-of-the-bidirectional-vortex-using-particle-image-velocimetry",totalDownloads:2144,totalCrossrefCites:0,totalDimensionsCites:2,book:{slug:"the-particle-image-velocimetry-characteristics-limits-and-possible-applications",title:"The Particle Image Velocimetry",fullTitle:"The Particle Image Velocimetry - Characteristics, Limits and Possible Applications"},signatures:"Brian A. Maicke and Joseph Majdalani",authors:[{id:"64718",title:"Prof.",name:"Joe",middleName:null,surname:"Majdalani",slug:"joe-majdalani",fullName:"Joe Majdalani"},{id:"111632",title:"Dr.",name:"Brian",middleName:null,surname:"Maicke",slug:"brian-maicke",fullName:"Brian Maicke"}]},{id:"25453",title:"Flow Evolution Mechanisms of Lid-Driven Cavities",slug:"flow-evolution-mechanisms-of-lid-driven-cavities",totalDownloads:2807,totalCrossrefCites:0,totalDimensionsCites:0,book:{slug:"hydrodynamics-advanced-topics",title:"Hydrodynamics",fullTitle:"Hydrodynamics - Advanced Topics"},signatures:"José Rafael Toro and Sergio Pedraza R.",authors:[{id:"75766",title:"BSc.",name:"Sergio",middleName:null,surname:"Pedraza",slug:"sergio-pedraza",fullName:"Sergio Pedraza"},{id:"81379",title:"MSc.",name:"José Rafael",middleName:null,surname:"Toro",slug:"jose-rafael-toro",fullName:"José Rafael Toro"}]},{id:"37152",title:"Limits in Planar PIV Due to Individual Variations of Particle Image Intensities",slug:"limits-in-planar-piv-due-to-individual-variations-of-particle-image-intensities",totalDownloads:1841,totalCrossrefCites:0,totalDimensionsCites:0,book:{slug:"the-particle-image-velocimetry-characteristics-limits-and-possible-applications",title:"The Particle Image Velocimetry",fullTitle:"The Particle Image Velocimetry - Characteristics, Limits and Possible Applications"},signatures:"Holger Nobach",authors:[{id:"101177",title:"Dr.",name:"Holger",middleName:null,surname:"Nobach",slug:"holger-nobach",fullName:"Holger Nobach"}]},{id:"22261",title:"Heat Transfer Analysis of Reinforced Concrete Beams Reinforced with GFRP Bars",slug:"heat-transfer-analysis-of-reinforced-concrete-beams-reinforced-with-gfrp-bars",totalDownloads:5694,totalCrossrefCites:1,totalDimensionsCites:1,book:{slug:"convection-and-conduction-heat-transfer",title:"Convection and Conduction Heat Transfer",fullTitle:"Convection and Conduction Heat Transfer"},signatures:"Rami A. Hawileh",authors:[{id:"46905",title:"Dr.",name:"Rami",middleName:null,surname:"Hawileh",slug:"rami-hawileh",fullName:"Rami Hawileh"}]},{id:"25439",title:"Nonautonomous Solitons: Applications from Nonlinear Optics to BEC and Hydrodynamics",slug:"nonautonomous-solitons-applications-from-nonlinear-optics-to-bec-and-hydrodynamics",totalDownloads:1522,totalCrossrefCites:1,totalDimensionsCites:11,book:{slug:"hydrodynamics-advanced-topics",title:"Hydrodynamics",fullTitle:"Hydrodynamics - Advanced Topics"},signatures:"T. L. Belyaeva and V. N. Serkin",authors:[{id:"66736",title:"Prof.",name:"Vladimir",middleName:null,surname:"Serkin",slug:"vladimir-serkin",fullName:"Vladimir Serkin"},{id:"66765",title:"Prof.",name:"Tatyana",middleName:"Leonidovna",surname:"Belyaeva",slug:"tatyana-belyaeva",fullName:"Tatyana Belyaeva"}]},{id:"25450",title:"Hydrodynamics on Charged Superparamagnetic Microparticles in Water Suspension: Effects of Low-Confinement Conditions and Electrostatics Interactions",slug:"hydrodynamics-on-charged-superparamagnetic-microparticles-in-water-suspension-effects-of-low-confine",totalDownloads:1845,totalCrossrefCites:1,totalDimensionsCites:1,book:{slug:"hydrodynamics-advanced-topics",title:"Hydrodynamics",fullTitle:"Hydrodynamics - Advanced Topics"},signatures:"P. Domínguez-García and M.A. Rubio",authors:[{id:"68119",title:"Dr.",name:"Pablo",middleName:null,surname:"Domínguez-García",slug:"pablo-dominguez-garcia",fullName:"Pablo Domínguez-García"},{id:"75303",title:"Dr.",name:"Miguel Ángel",middleName:null,surname:"Rubio",slug:"miguel-angel-rubio",fullName:"Miguel Ángel Rubio"}]},{id:"25438",title:"Generalized Variational Principle for Dissipative Hydrodynamics: Shear Viscosity from Angular Momentum Relaxation in the Hydrodynamical Description of Continuum Mechanics",slug:"generalized-variational-principle-for-dissipative-hydrodynamics-shear-viscosity-from-angular-momentu",totalDownloads:1792,totalCrossrefCites:0,totalDimensionsCites:1,book:{slug:"hydrodynamics-advanced-topics",title:"Hydrodynamics",fullTitle:"Hydrodynamics - Advanced Topics"},signatures:"German A. Maximov",authors:[{id:"73783",title:"Dr.",name:"German",middleName:null,surname:"Maximov",slug:"german-maximov",fullName:"German Maximov"}]}],onlineFirstChaptersFilter:{topicSlug:"mechanical-engineering-fluid-dynamics",limit:3,offset:0},onlineFirstChaptersCollection:[],onlineFirstChaptersTotal:0},preDownload:{success:null,errors:{}},aboutIntechopen:{},privacyPolicy:{},peerReviewing:{},howOpenAccessPublishingWithIntechopenWorks:{},sponsorshipBooks:{sponsorshipBooks:[{type:"book",id:"10176",title:"Microgrids and Local Energy Systems",subtitle:null,isOpenForSubmission:!0,hash:"c32b4a5351a88f263074b0d0ca813a9c",slug:null,bookSignature:"Prof. Nick Jenkins",coverURL:"https://cdn.intechopen.com/books/images_new/10176.jpg",editedByType:null,editors:[{id:"55219",title:"Prof.",name:"Nick",middleName:null,surname:"Jenkins",slug:"nick-jenkins",fullName:"Nick Jenkins"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}}],offset:8,limit:8,total:1},route:{name:"chapter.detail",path:"/books/nutraceuticals-past-present-and-future/rooibos-em-aspalathus-linearis-em-and-honeybush-em-cyclopia-em-spp-from-bush-teas-to-potential-thera",hash:"",query:{},params:{book:"nutraceuticals-past-present-and-future",chapter:"rooibos-em-aspalathus-linearis-em-and-honeybush-em-cyclopia-em-spp-from-bush-teas-to-potential-thera"},fullPath:"/books/nutraceuticals-past-present-and-future/rooibos-em-aspalathus-linearis-em-and-honeybush-em-cyclopia-em-spp-from-bush-teas-to-potential-thera",meta:{},from:{name:null,path:"/",hash:"",query:{},params:{},fullPath:"/",meta:{}}}},function(){var e;(e=document.currentScript||document.scripts[document.scripts.length-1]).parentNode.removeChild(e)}()