Summary of incidence and epidemiology of E. coli serotype [6].
\\n\\n
More than half of the publishers listed alongside IntechOpen (18 out of 30) are Social Science and Humanities publishers. IntechOpen is an exception to this as a leader in not only Open Access content but Open Access content across all scientific disciplines, including Physical Sciences, Engineering and Technology, Health Sciences, Life Science, and Social Sciences and Humanities.
\\n\\nOur breakdown of titles published demonstrates this with 47% PET, 31% HS, 18% LS, and 4% SSH books published.
\\n\\n“Even though ItechOpen has shown the potential of sci-tech books using an OA approach,” other publishers “have shown little interest in OA books.”
\\n\\nAdditionally, each book published by IntechOpen contains original content and research findings.
\\n\\nWe are honored to be among such prestigious publishers and we hope to continue to spearhead that growth in our quest to promote Open Access as a true pioneer in OA book publishing.
\\n\\n\\n\\n
\\n"}]',published:!0,mainMedia:null},components:[{type:"htmlEditorComponent",content:'
Simba Information has released its Open Access Book Publishing 2020 - 2024 report and has again identified IntechOpen as the world’s largest Open Access book publisher by title count.
\n\nSimba Information is a leading provider for market intelligence and forecasts in the media and publishing industry. The report, published every year, provides an overview and financial outlook for the global professional e-book publishing market.
\n\nIntechOpen, De Gruyter, and Frontiers are the largest OA book publishers by title count, with IntechOpen coming in at first place with 5,101 OA books published, a good 1,782 titles ahead of the nearest competitor.
\n\nSince the first Open Access Book Publishing report published in 2016, IntechOpen has held the top stop each year.
\n\n\n\nMore than half of the publishers listed alongside IntechOpen (18 out of 30) are Social Science and Humanities publishers. IntechOpen is an exception to this as a leader in not only Open Access content but Open Access content across all scientific disciplines, including Physical Sciences, Engineering and Technology, Health Sciences, Life Science, and Social Sciences and Humanities.
\n\nOur breakdown of titles published demonstrates this with 47% PET, 31% HS, 18% LS, and 4% SSH books published.
\n\n“Even though ItechOpen has shown the potential of sci-tech books using an OA approach,” other publishers “have shown little interest in OA books.”
\n\nAdditionally, each book published by IntechOpen contains original content and research findings.
\n\nWe are honored to be among such prestigious publishers and we hope to continue to spearhead that growth in our quest to promote Open Access as a true pioneer in OA book publishing.
\n\n\n\n
\n'}],latestNews:[{slug:"stanford-university-identifies-top-2-scientists-over-1-000-are-intechopen-authors-and-editors-20210122",title:"Stanford University Identifies Top 2% Scientists, Over 1,000 are IntechOpen Authors and Editors"},{slug:"intechopen-authors-included-in-the-highly-cited-researchers-list-for-2020-20210121",title:"IntechOpen Authors Included in the Highly Cited Researchers List for 2020"},{slug:"intechopen-maintains-position-as-the-world-s-largest-oa-book-publisher-20201218",title:"IntechOpen Maintains Position as the World’s Largest OA Book Publisher"},{slug:"all-intechopen-books-available-on-perlego-20201215",title:"All IntechOpen Books Available on Perlego"},{slug:"oiv-awards-recognizes-intechopen-s-editors-20201127",title:"OIV Awards Recognizes IntechOpen's Editors"},{slug:"intechopen-joins-crossref-s-initiative-for-open-abstracts-i4oa-to-boost-the-discovery-of-research-20201005",title:"IntechOpen joins Crossref's Initiative for Open Abstracts (I4OA) to Boost the Discovery of Research"},{slug:"intechopen-hits-milestone-5-000-open-access-books-published-20200908",title:"IntechOpen hits milestone: 5,000 Open Access books published!"},{slug:"intechopen-books-hosted-on-the-mathworks-book-program-20200819",title:"IntechOpen Books Hosted on the MathWorks Book Program"}]},book:{item:{type:"book",id:"402",leadTitle:null,fullTitle:"Numerical Simulations - Applications, Examples and Theory",title:"Numerical Simulations",subtitle:"Applications, Examples and Theory",reviewType:"peer-reviewed",abstract:"This book will interest researchers, scientists, engineers and graduate students in many disciplines, who make use of mathematical modeling and computer simulation. Although it represents only a small sample of the research activity on numerical simulations, the book will certainly serve as a valuable tool for researchers interested in getting involved in this multidisciplinary field. It will be useful to encourage further experimental and theoretical researches in the above mentioned areas of numerical simulation.",isbn:null,printIsbn:"978-953-307-440-5",pdfIsbn:"978-953-51-5555-3",doi:"10.5772/901",price:159,priceEur:175,priceUsd:205,slug:"numerical-simulations-applications-examples-and-theory",numberOfPages:532,isOpenForSubmission:!1,isInWos:1,hash:null,bookSignature:"Lutz Angermann",publishedDate:"January 30th 2011",coverURL:"https://cdn.intechopen.com/books/images_new/402.jpg",numberOfDownloads:55560,numberOfWosCitations:43,numberOfCrossrefCitations:17,numberOfDimensionsCitations:31,hasAltmetrics:0,numberOfTotalCitations:91,isAvailableForWebshopOrdering:!0,dateEndFirstStepPublish:"March 30th 2010",dateEndSecondStepPublish:"April 27th 2010",dateEndThirdStepPublish:"September 1st 2010",dateEndFourthStepPublish:"October 1st 2010",dateEndFifthStepPublish:"November 30th 2010",currentStepOfPublishingProcess:5,indexedIn:"1,2,3,4,5,6,7",editedByType:"Edited by",kuFlag:!1,editors:[{id:"13342",title:"Prof.",name:"Lutz",middleName:null,surname:"Angermann",slug:"lutz-angermann",fullName:"Lutz Angermann",profilePictureURL:"https://mts.intechopen.com/storage/users/13342/images/1623_n.jpg",biography:"Lutz Angermann is Professor of Numerical Mathematics in the Mathematical Institute of the University of Technology at Clausthal (Germany) since 2001. His research is concerned with the mathematical analysis of numerical algorithms for partial differential equations with special interests in finite volume and finite element methods. \nAfter the study of Mathematics at the University of Kharkiv (Ukraine) he earned a Ph.D. from the University of Technology at Dresden in 1987. The University of Erlangen-Nürnberg awarded him a higher doctoral degree (habilitation) in 1995. From 1998 to 2001, he held the post of an Associate Professor of Numerical Mathematics at the University of Magdeburg. \nHe is the author of about 100 scientific papers, among them two co-authored books on numerical methods for partial differential equations.",institutionString:null,position:null,outsideEditionCount:0,totalCites:0,totalAuthoredChapters:"3",totalChapterViews:"0",totalEditedBooks:"2",institution:null}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,coeditorOne:null,coeditorTwo:null,coeditorThree:null,coeditorFour:null,coeditorFive:null,topics:[{id:"610",title:"Numerical Computing",slug:"numerical-computing"}],chapters:[{id:"12694",title:"Numerical Simulation of the Bump-on-Tail Instability",doi:"10.5772/12845",slug:"numerical-simulation-of-the-bump-on-tail-instability",totalDownloads:2134,totalCrossrefCites:0,totalDimensionsCites:2,signatures:"Magdi Shoucri",downloadPdfUrl:"/chapter/pdf-download/12694",previewPdfUrl:"/chapter/pdf-preview/12694",authors:[{id:"13289",title:"Dr.",name:"Magdi",surname:"Shoucri",slug:"magdi-shoucri",fullName:"Magdi Shoucri"}],corrections:null},{id:"12695",title:"Numerical Simulation of the Fast Processes in a Vacuum Electrical Discharge",doi:"10.5772/13273",slug:"numerical-simulation-of-the-fast-processes-in-a-vacuum-electrical-discharge",totalDownloads:2308,totalCrossrefCites:0,totalDimensionsCites:0,signatures:"Igor Uimanov",downloadPdfUrl:"/chapter/pdf-download/12695",previewPdfUrl:"/chapter/pdf-preview/12695",authors:[{id:"13296",title:"Dr.",name:"Igor",surname:"Uimanov",slug:"igor-uimanov",fullName:"Igor Uimanov"}],corrections:null},{id:"12696",title:"3-D Quantum Numerical Simulation of Transient Response in Multiple-Gate Nanowire MOSFETs Submitted to Heavy Ion Irradiation",doi:"10.5772/13231",slug:"3-d-quantum-numerical-simulation-of-transient-response-in-multiple-gate-nanowire-mosfets-submitted-t",totalDownloads:2505,totalCrossrefCites:0,totalDimensionsCites:0,signatures:"Daniela Munteanu and Jean-luc Autran",downloadPdfUrl:"/chapter/pdf-download/12696",previewPdfUrl:"/chapter/pdf-preview/12696",authors:[{id:"14152",title:"Prof.",name:"Jean-Luc",surname:"Autran",slug:"jean-luc-autran",fullName:"Jean-Luc Autran"},{id:"14602",title:"Dr.",name:"Daniela",surname:"Munteanu",slug:"daniela-munteanu",fullName:"Daniela Munteanu"}],corrections:null},{id:"12697",title:"Two-Fluxes and Reaction-Diffusion Computation of Initial and Transient Secondary Electron Emission Yield by a Finite Volume Method",doi:"10.5772/12858",slug:"two-fluxes-and-reaction-diffusion-computation-of-initial-and-transient-secondary-electron-emission-y",totalDownloads:1524,totalCrossrefCites:0,totalDimensionsCites:1,signatures:"Gilles Damamme and Asdin Aoufi",downloadPdfUrl:"/chapter/pdf-download/12697",previewPdfUrl:"/chapter/pdf-preview/12697",authors:[{id:"13333",title:"Dr.",name:"Asdin",surname:"Aoufi",slug:"asdin-aoufi",fullName:"Asdin Aoufi"},{id:"14136",title:"Dr.",name:"Gilles",surname:"Damamme",slug:"gilles-damamme",fullName:"Gilles Damamme"}],corrections:null},{id:"12698",title:"Control of Photon Storage Time in Photon Echoes using a Deshelving Process",doi:"10.5772/12888",slug:"control-of-photon-storage-time-in-photon-echoes-using-a-deshelving-process",totalDownloads:1720,totalCrossrefCites:0,totalDimensionsCites:0,signatures:"Byoung Ham",downloadPdfUrl:"/chapter/pdf-download/12698",previewPdfUrl:"/chapter/pdf-preview/12698",authors:[{id:"4870",title:"Dr.",name:"Byoung",surname:"Ham",slug:"byoung-ham",fullName:"Byoung Ham"}],corrections:null},{id:"12699",title:"Waveguide Arrays for Optical Pulse-Shaping, Mode-Locking and Beam Combining",doi:"10.5772/13092",slug:"waveguide-arrays-for-optical-pulse-shaping-mode-locking-and-beam-combining",totalDownloads:1870,totalCrossrefCites:0,totalDimensionsCites:0,signatures:"J. Nathan Kutz",downloadPdfUrl:"/chapter/pdf-download/12699",previewPdfUrl:"/chapter/pdf-preview/12699",authors:[{id:"13811",title:"Prof.",name:"J. Nathan",surname:"Kutz",slug:"j.-nathan-kutz",fullName:"J. Nathan Kutz"}],corrections:null},{id:"12700",title:"Monte Carlo Methods to Numerically Simulate Signals Reflecting the Microvascular Perfusion",doi:"10.5772/13253",slug:"monte-carlo-methods-to-numerically-simulate-signals-reflecting-the-microvascular-perfusion",totalDownloads:2482,totalCrossrefCites:0,totalDimensionsCites:2,signatures:"Edite Figueiras, Luis F. Requicha Ferreira, Frits F.m. De Mul and Anne Humeau",downloadPdfUrl:"/chapter/pdf-download/12700",previewPdfUrl:"/chapter/pdf-preview/12700",authors:[{id:"14210",title:"Dr.",name:"Anne",surname:"Humeau",slug:"anne-humeau",fullName:"Anne Humeau"},{id:"14211",title:"Prof.",name:"Edite",surname:"Figueiras",slug:"edite-figueiras",fullName:"Edite Figueiras"},{id:"14212",title:"Prof.",name:"Luis F.",surname:"Requicha Ferreira",slug:"luis-f.-requicha-ferreira",fullName:"Luis F. Requicha Ferreira"},{id:"14213",title:"Prof.",name:"Frits F.M.",surname:"De Mul",slug:"frits-f.m.-de-mul",fullName:"Frits F.M. De Mul"}],corrections:null},{id:"12701",title:"Generation and Resonance Scattering of Waves on Cubically Polarisable Layered Structures",doi:"10.5772/13226",slug:"generation-and-resonance-scattering-of-waves-on-cubically-polarisable-layered-structures",totalDownloads:1212,totalCrossrefCites:11,totalDimensionsCites:14,signatures:"Lutz Angermann and Vasyl Yatsyk",downloadPdfUrl:"/chapter/pdf-download/12701",previewPdfUrl:"/chapter/pdf-preview/12701",authors:[{id:"13342",title:"Prof.",name:"Lutz",surname:"Angermann",slug:"lutz-angermann",fullName:"Lutz Angermann"},{id:"14145",title:"Dr.",name:"Vasyl",surname:"Yatsyk",slug:"vasyl-yatsyk",fullName:"Vasyl Yatsyk"}],corrections:null},{id:"12702",title:"Numerical Modeling of Reflector Antennas",doi:"10.5772/13075",slug:"numerical-modeling-of-reflector-antennas",totalDownloads:3211,totalCrossrefCites:0,totalDimensionsCites:1,signatures:"Oleg Yurtcev and Yuri Bobkov",downloadPdfUrl:"/chapter/pdf-download/12702",previewPdfUrl:"/chapter/pdf-preview/12702",authors:[{id:"13776",title:"Prof.",name:"Oleg",surname:"Yurtcev",slug:"oleg-yurtcev",fullName:"Oleg Yurtcev"},{id:"14424",title:"Dr.",name:"Yuri",surname:"Bobkov",slug:"yuri-bobkov",fullName:"Yuri Bobkov"}],corrections:null},{id:"12703",title:"Modeling of Microwave Heating and Oil Filtration in Stratum",doi:"10.5772/12849",slug:"modeling-of-microwave-heating-and-oil-filtration-in-stratum",totalDownloads:1667,totalCrossrefCites:1,totalDimensionsCites:2,signatures:"Sergey Sysoev and Anatoli Kislitsyn",downloadPdfUrl:"/chapter/pdf-download/12703",previewPdfUrl:"/chapter/pdf-preview/12703",authors:[{id:"13297",title:"Dr.",name:"Sergey",surname:"Sysoev",slug:"sergey-sysoev",fullName:"Sergey Sysoev"}],corrections:null},{id:"12704",title:"Numerical Simulation of Elastic-Plastic Non-Conforming Contact",doi:"10.5772/13228",slug:"numerical-simulation-of-elastic-plastic-non-conforming-contact",totalDownloads:1908,totalCrossrefCites:1,totalDimensionsCites:1,signatures:"Sergiu Spinu, Gheorghe Frunza and Emanuel Diaconescu",downloadPdfUrl:"/chapter/pdf-download/12704",previewPdfUrl:"/chapter/pdf-preview/12704",authors:[{id:"14148",title:"Dr.",name:"Sergiu",surname:"Spinu",slug:"sergiu-spinu",fullName:"Sergiu Spinu"},{id:"14151",title:"Prof.",name:"Gheorghe",surname:"Frunza",slug:"gheorghe-frunza",fullName:"Gheorghe Frunza"},{id:"23858",title:"Prof.",name:"Emanuel",surname:"Diaconescu",slug:"emanuel-diaconescu",fullName:"Emanuel Diaconescu"}],corrections:null},{id:"12705",title:"Simulating the Response of Structures to Impulse Loadings",doi:"10.5772/12860",slug:"simulating-the-response-of-structures-to-impulse-loadings",totalDownloads:3825,totalCrossrefCites:0,totalDimensionsCites:0,signatures:"Francesco Caputo and Alessandro Soprano",downloadPdfUrl:"/chapter/pdf-download/12705",previewPdfUrl:"/chapter/pdf-preview/12705",authors:[{id:"9956",title:"Prof.",name:"Francesco",surname:"Caputo",slug:"francesco-caputo",fullName:"Francesco Caputo"},{id:"10618",title:"Dr.",name:"Alessandro",surname:"Soprano",slug:"alessandro-soprano",fullName:"Alessandro Soprano"}],corrections:null},{id:"12706",title:"Inverse Methods on Small Punch Tests",doi:"10.5772/12878",slug:"inverse-methods-on-small-punch-tests",totalDownloads:2512,totalCrossrefCites:1,totalDimensionsCites:5,signatures:"Ines Penuelas, Covadonga Betegon, Cristina Rodriguez and Javier Belzunce",downloadPdfUrl:"/chapter/pdf-download/12706",previewPdfUrl:"/chapter/pdf-preview/12706",authors:[{id:"13367",title:"Dr.",name:"Inés",surname:"Peñuelas",slug:"ines-penuelas",fullName:"Inés Peñuelas"}],corrections:null},{id:"12707",title:"Laser Shock Peening: Modeling, Simulations, and Applications",doi:"10.5772/13094",slug:"laser-shock-peening-modeling-simulations-and-applications",totalDownloads:5138,totalCrossrefCites:1,totalDimensionsCites:1,signatures:"Y.b. Guo",downloadPdfUrl:"/chapter/pdf-download/12707",previewPdfUrl:"/chapter/pdf-preview/12707",authors:[{id:"13814",title:"Dr.",name:"Y.B.",surname:"Guo",slug:"y.b.-guo",fullName:"Y.B. Guo"}],corrections:null},{id:"12708",title:"Numerical and Physical Simulation of Pulsed Arc Welding with Forced Short-Circuiting of the Arc Gap",doi:"10.5772/13250",slug:"numerical-and-physical-simulation-of-pulsed-arc-welding-with-forced-short-circuiting-of-the-arc-gap",totalDownloads:2855,totalCrossrefCites:0,totalDimensionsCites:0,signatures:"Oksana Shpigunova and Anatoly Glazunov",downloadPdfUrl:"/chapter/pdf-download/12708",previewPdfUrl:"/chapter/pdf-preview/12708",authors:[{id:"14204",title:"Dr.",name:"Oksana",surname:"Shpigunova",slug:"oksana-shpigunova",fullName:"Oksana Shpigunova"},{id:"14312",title:"Prof.",name:"Anatoly",surname:"Glazunov",slug:"anatoly-glazunov",fullName:"Anatoly Glazunov"}],corrections:null},{id:"12709",title:"Mathematical Modelling of Structure Formation of Discrete Materials",doi:"10.5772/13193",slug:"mathematical-modelling-of-structure-formation-of-discrete-materials",totalDownloads:1154,totalCrossrefCites:0,totalDimensionsCites:0,signatures:"Lyudmila Ryabicheva and Dmytro Usatyuk",downloadPdfUrl:"/chapter/pdf-download/12709",previewPdfUrl:"/chapter/pdf-preview/12709",authors:[{id:"14071",title:"Distinguished Prof.",name:"Lyudmila",surname:"Ryabicheva",slug:"lyudmila-ryabicheva",fullName:"Lyudmila Ryabicheva"},{id:"23941",title:"Dr.",name:"Dmytro",surname:"Usatyuk",slug:"dmytro-usatyuk",fullName:"Dmytro Usatyuk"}],corrections:null},{id:"12710",title:"Simulation Technology in the Sintering Process of Ceramics",doi:"10.5772/13082",slug:"simulation-technology-in-the-sintering-process-of-ceramics",totalDownloads:3353,totalCrossrefCites:1,totalDimensionsCites:1,signatures:"Bin Lin, Feng Liu, Xiaofeng Zhang, Liping Liu and Xueming Zhu",downloadPdfUrl:"/chapter/pdf-download/12710",previewPdfUrl:"/chapter/pdf-preview/12710",authors:[{id:"13791",title:"Prof.",name:"Bin",surname:"Lin",slug:"bin-lin",fullName:"Bin Lin"},{id:"14384",title:"Dr.",name:"Feng",surname:"Liu",slug:"feng-liu",fullName:"Feng Liu"},{id:"14385",title:"Dr.",name:"Xiaofeng",surname:"Zhang",slug:"xiaofeng-zhang",fullName:"Xiaofeng Zhang"},{id:"23956",title:"Dr.",name:"Liping",surname:"Liu",slug:"liping-liu",fullName:"Liping Liu"},{id:"23957",title:"Dr.",name:"Xueming",surname:"Zhu",slug:"xueming-zhu",fullName:"Xueming Zhu"}],corrections:null},{id:"12711",title:"Numerical and Experimental Investigation of Two-Phase Plasma Jet during Deposition of Coatings",doi:"10.5772/13381",slug:"numerical-and-experimental-investigation-of-two-phase-plasma-jet-during-deposition-of-coatings",totalDownloads:2070,totalCrossrefCites:0,totalDimensionsCites:0,signatures:"Viktorija Grigaitiene, Romas Kezelis and Vitas Valincius",downloadPdfUrl:"/chapter/pdf-download/12711",previewPdfUrl:"/chapter/pdf-preview/12711",authors:[{id:"14566",title:"Dr.",name:"Viktorija",surname:"Grigaitiene",slug:"viktorija-grigaitiene",fullName:"Viktorija Grigaitiene"},{id:"14626",title:"Dr.",name:"Romualdas",surname:"Kezelis",slug:"romualdas-kezelis",fullName:"Romualdas Kezelis"},{id:"15530",title:"Dr.",name:"Vitas",surname:"Valincius",slug:"vitas-valincius",fullName:"Vitas Valincius"}],corrections:null},{id:"12712",title:"Numerical Simulation - a Design Tool for Electro Hydraulic Servo Systems",doi:"10.5772/13332",slug:"numerical-simulation-a-design-tool-for-electro-hydraulic-servo-systems",totalDownloads:4267,totalCrossrefCites:1,totalDimensionsCites:1,signatures:"Teodor Costinel Popescu, Daniela Vasiliu and Nicolae Vasiliu",downloadPdfUrl:"/chapter/pdf-download/12712",previewPdfUrl:"/chapter/pdf-preview/12712",authors:[{id:"13602",title:"Dr.",name:"Teodor Costinel",surname:"Popescu",slug:"teodor-costinel-popescu",fullName:"Teodor Costinel Popescu"},{id:"24012",title:"Prof.",name:"Daniela",surname:"Vasiliu",slug:"daniela-vasiliu",fullName:"Daniela Vasiliu"},{id:"24013",title:"Prof.",name:"Nicolae",surname:"Vasiliu",slug:"nicolae-vasiliu",fullName:"Nicolae Vasiliu"}],corrections:null},{id:"12713",title:"Applications of the Electrohydraulic Servomechanisms in Management of Water Resources",doi:"10.5772/12974",slug:"applications-of-the-electrohydraulic-servomechanisms-in-management-of-water-resources",totalDownloads:3001,totalCrossrefCites:0,totalDimensionsCites:0,signatures:"Teodor Costinel Popescu, Daniela Vasiliu, Nicolae Vasiliu and Constantin Calinoiu",downloadPdfUrl:"/chapter/pdf-download/12713",previewPdfUrl:"/chapter/pdf-preview/12713",authors:[{id:"13602",title:"Dr.",name:"Teodor Costinel",surname:"Popescu",slug:"teodor-costinel-popescu",fullName:"Teodor Costinel Popescu"},{id:"24012",title:"Prof.",name:"Daniela",surname:"Vasiliu",slug:"daniela-vasiliu",fullName:"Daniela Vasiliu"},{id:"24013",title:"Prof.",name:"Nicolae",surname:"Vasiliu",slug:"nicolae-vasiliu",fullName:"Nicolae Vasiliu"},{id:"24014",title:"Prof.",name:"Constantin",surname:"Calinoiu",slug:"constantin-calinoiu",fullName:"Constantin Calinoiu"}],corrections:null},{id:"12714",title:"A General Algorithm for Local Error Control in the RKrGLm Method",doi:"10.5772/16193",slug:"a-general-algorithm-for-local-error-control-in-the-rkrglm-method",totalDownloads:1620,totalCrossrefCites:0,totalDimensionsCites:0,signatures:"Justin Prentice",downloadPdfUrl:"/chapter/pdf-download/12714",previewPdfUrl:"/chapter/pdf-preview/12714",authors:[{id:"2548",title:"Dr.",name:"Justin",surname:"Prentice",slug:"justin-prentice",fullName:"Justin Prentice"}],corrections:null},{id:"12715",title:"Hybrid Type Method of Numerical Solution Integral Equations and its Applications",doi:"10.5772/10500",slug:"hybrid-type-method-of-numerical-solution-integral-equations-and-its-applications",totalDownloads:1306,totalCrossrefCites:0,totalDimensionsCites:0,signatures:"D.G. Arsenjev, V.M. Ivanov and N.A. Berkovskiy",downloadPdfUrl:"/chapter/pdf-download/12715",previewPdfUrl:"/chapter/pdf-preview/12715",authors:[null],corrections:null},{id:"12716",title:"Advanced Numerical Simulation for the Safety Demonstration of Nuclear Power Plants",doi:"10.5772/13175",slug:"advanced-numerical-simulation-for-the-safety-demonstration-of-nuclear-power-plants",totalDownloads:1919,totalCrossrefCites:0,totalDimensionsCites:0,signatures:"G.B. Bruna, J.-C. Micaelli, J. Couturier, F. Barre and J.P. Van Dorsselaere",downloadPdfUrl:"/chapter/pdf-download/12716",previewPdfUrl:"/chapter/pdf-preview/12716",authors:[{id:"14024",title:"Dr.",name:"Giovanni",surname:"Bruna",slug:"giovanni-bruna",fullName:"Giovanni Bruna"}],corrections:null}],productType:{id:"1",title:"Edited Volume",chapterContentType:"chapter",authoredCaption:"Edited by"}},relatedBooks:[{type:"book",id:"12",title:"Numerical Simulations",subtitle:"Examples and Applications in Computational Fluid Dynamics",isOpenForSubmission:!1,hash:null,slug:"numerical-simulations-examples-and-applications-in-computational-fluid-dynamics",bookSignature:"Lutz Angermann",coverURL:"https://cdn.intechopen.com/books/images_new/12.jpg",editedByType:"Edited by",editors:[{id:"13342",title:"Prof.",name:"Lutz",surname:"Angermann",slug:"lutz-angermann",fullName:"Lutz Angermann"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"1363",title:"Numerical Analysis",subtitle:"Theory and Application",isOpenForSubmission:!1,hash:"509ce23e2dae5d72c14be89bd9b75004",slug:"numerical-analysis-theory-and-application",bookSignature:"Jan Awrejcewicz",coverURL:"https://cdn.intechopen.com/books/images_new/1363.jpg",editedByType:"Edited by",editors:[{id:"68338",title:"Prof.",name:"Jan",surname:"Awrejcewicz",slug:"jan-awrejcewicz",fullName:"Jan Awrejcewicz"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"532",title:"Two Phase Flow, Phase Change and Numerical Modeling",subtitle:null,isOpenForSubmission:!1,hash:"331fe87b8edf0e8adf7e6086e4eea81c",slug:"two-phase-flow-phase-change-and-numerical-modeling",bookSignature:"Amimul Ahsan",coverURL:"https://cdn.intechopen.com/books/images_new/532.jpg",editedByType:"Edited by",editors:[{id:"36782",title:"Associate Prof.",name:"Amimul",surname:"Ahsan",slug:"amimul-ahsan",fullName:"Amimul Ahsan"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"3194",title:"Computational Fluid Dynamics",subtitle:null,isOpenForSubmission:!1,hash:"240e32819f5a408715331a202e7971b4",slug:"computational-fluid-dynamics",bookSignature:"Hyoung Woo Oh",coverURL:"https://cdn.intechopen.com/books/images_new/3194.jpg",editedByType:"Edited by",editors:[{id:"63199",title:"Prof.",name:"Hyoung Woo",surname:"Oh",slug:"hyoung-woo-oh",fullName:"Hyoung Woo Oh"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"2207",title:"Numerical Simulation",subtitle:"From Theory to Industry",isOpenForSubmission:!1,hash:"1a2002ed6e06f8cb36ad55b57aab57e5",slug:"numerical-simulation-from-theory-to-industry",bookSignature:"Mykhaylo Andriychuk",coverURL:"https://cdn.intechopen.com/books/images_new/2207.jpg",editedByType:"Edited by",editors:[{id:"57755",title:"Dr.",name:"Mykhaylo",surname:"Andriychuk",slug:"mykhaylo-andriychuk",fullName:"Mykhaylo Andriychuk"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"1989",title:"Fluid Dynamics, Computational Modeling and Applications",subtitle:null,isOpenForSubmission:!1,hash:"e7f43d55285a6a3447c62c066f072e8b",slug:"fluid-dynamics-computational-modeling-and-applications",bookSignature:"L. Hector Juarez",coverURL:"https://cdn.intechopen.com/books/images_new/1989.jpg",editedByType:"Edited by",editors:[{id:"65861",title:"Dr.",name:"L. Hector",surname:"Juarez",slug:"l.-hector-juarez",fullName:"L. Hector Juarez"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"161",title:"Computational Fluid Dynamics",subtitle:"Technologies and Applications",isOpenForSubmission:!1,hash:"d636946634ddf4e48b6e9bc6a0cd615a",slug:"computational-fluid-dynamics-technologies-and-applications",bookSignature:"Igor V. Minin and Oleg V. Minin",coverURL:"https://cdn.intechopen.com/books/images_new/161.jpg",editedByType:"Edited by",editors:[{id:"3712",title:"Prof.",name:"Oleg",surname:"Minin",slug:"oleg-minin",fullName:"Oleg Minin"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"2274",title:"Fuzzy Logic",subtitle:"Algorithms, Techniques and Implementations",isOpenForSubmission:!1,hash:"116c1be2754eb60e90b4ad3642546291",slug:"fuzzy-logic-algorithms-techniques-and-implementations",bookSignature:"Elmer P. Dadios",coverURL:"https://cdn.intechopen.com/books/images_new/2274.jpg",editedByType:"Edited by",editors:[{id:"111683",title:"Prof.",name:"Elmer",surname:"Dadios",slug:"elmer-dadios",fullName:"Elmer Dadios"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"3832",title:"Computational and Numerical Simulations",subtitle:null,isOpenForSubmission:!1,hash:"44c51ee67bb45c4a080ece19bd0f6a08",slug:"computational-and-numerical-simulations",bookSignature:"Jan Awrejcewicz",coverURL:"https://cdn.intechopen.com/books/images_new/3832.jpg",editedByType:"Edited by",editors:[{id:"68338",title:"Prof.",name:"Jan",surname:"Awrejcewicz",slug:"jan-awrejcewicz",fullName:"Jan Awrejcewicz"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"2141",title:"Finite Volume Method",subtitle:"Powerful Means of Engineering Design",isOpenForSubmission:!1,hash:"0664f831a342fdbcf1fe496e9885f161",slug:"finite-volume-method-powerful-means-of-engineering-design",bookSignature:"Radostina Petrova",coverURL:"https://cdn.intechopen.com/books/images_new/2141.jpg",editedByType:"Edited by",editors:[{id:"118470",title:"PhD.",name:"Radostina",surname:"Petrova",slug:"radostina-petrova",fullName:"Radostina Petrova"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}}],ofsBooks:[]},correction:{item:{id:"74026",slug:"corrigendum-to-calf-sex-influence-in-bovine-milk-production",title:"Corrigendum to: Calf-Sex Influence in Bovine Milk Production",doi:null,correctionPDFUrl:"https://cdn.intechopen.com/pdfs/74026.pdf",downloadPdfUrl:"/chapter/pdf-download/74026",previewPdfUrl:"/chapter/pdf-preview/74026",totalDownloads:null,totalCrossrefCites:null,bibtexUrl:"/chapter/bibtex/74026",risUrl:"/chapter/ris/74026",chapter:{id:"73504",slug:"calf-sex-influence-in-bovine-milk-production",signatures:"Miguel Quaresma and R. Payan-Carreira",dateSubmitted:"April 21st 2020",dateReviewed:"September 10th 2020",datePrePublished:"October 8th 2020",datePublished:"January 20th 2021",book:{id:"8545",title:"Animal Reproduction in Veterinary Medicine",subtitle:null,fullTitle:"Animal Reproduction in Veterinary Medicine",slug:"animal-reproduction-in-veterinary-medicine",publishedDate:"January 20th 2021",bookSignature:"Faruk Aral, Rita Payan-Carreira and Miguel Quaresma",coverURL:"https://cdn.intechopen.com/books/images_new/8545.jpg",licenceType:"CC BY 3.0",editedByType:"Edited by",editors:[{id:"25600",title:"Prof.",name:"Faruk",middleName:null,surname:"Aral",slug:"faruk-aral",fullName:"Faruk Aral"}],productType:{id:"1",title:"Edited Volume",chapterContentType:"chapter",authoredCaption:"Edited by"}},authors:[{id:"38652",title:"Dr.",name:"Rita",middleName:null,surname:"Payan-Carreira",fullName:"Rita Payan-Carreira",slug:"rita-payan-carreira",email:"rtpayan@gmail.com",position:null,institution:{name:"University of Évora",institutionURL:null,country:{name:"Portugal"}}},{id:"309250",title:"Dr.",name:"Miguel",middleName:null,surname:"Quaresma",fullName:"Miguel Quaresma",slug:"miguel-quaresma",email:"miguelq@utad.pt",position:null,institution:{name:"University of Trás-os-Montes and Alto Douro",institutionURL:null,country:{name:"Portugal"}}}]}},chapter:{id:"73504",slug:"calf-sex-influence-in-bovine-milk-production",signatures:"Miguel Quaresma and R. Payan-Carreira",dateSubmitted:"April 21st 2020",dateReviewed:"September 10th 2020",datePrePublished:"October 8th 2020",datePublished:"January 20th 2021",book:{id:"8545",title:"Animal Reproduction in Veterinary Medicine",subtitle:null,fullTitle:"Animal Reproduction in Veterinary Medicine",slug:"animal-reproduction-in-veterinary-medicine",publishedDate:"January 20th 2021",bookSignature:"Faruk Aral, Rita Payan-Carreira and Miguel Quaresma",coverURL:"https://cdn.intechopen.com/books/images_new/8545.jpg",licenceType:"CC BY 3.0",editedByType:"Edited by",editors:[{id:"25600",title:"Prof.",name:"Faruk",middleName:null,surname:"Aral",slug:"faruk-aral",fullName:"Faruk Aral"}],productType:{id:"1",title:"Edited Volume",chapterContentType:"chapter",authoredCaption:"Edited by"}},authors:[{id:"38652",title:"Dr.",name:"Rita",middleName:null,surname:"Payan-Carreira",fullName:"Rita Payan-Carreira",slug:"rita-payan-carreira",email:"rtpayan@gmail.com",position:null,institution:{name:"University of Évora",institutionURL:null,country:{name:"Portugal"}}},{id:"309250",title:"Dr.",name:"Miguel",middleName:null,surname:"Quaresma",fullName:"Miguel Quaresma",slug:"miguel-quaresma",email:"miguelq@utad.pt",position:null,institution:{name:"University of Trás-os-Montes and Alto Douro",institutionURL:null,country:{name:"Portugal"}}}]},book:{id:"8545",title:"Animal Reproduction in Veterinary Medicine",subtitle:null,fullTitle:"Animal Reproduction in Veterinary Medicine",slug:"animal-reproduction-in-veterinary-medicine",publishedDate:"January 20th 2021",bookSignature:"Faruk Aral, Rita Payan-Carreira and Miguel Quaresma",coverURL:"https://cdn.intechopen.com/books/images_new/8545.jpg",licenceType:"CC BY 3.0",editedByType:"Edited by",editors:[{id:"25600",title:"Prof.",name:"Faruk",middleName:null,surname:"Aral",slug:"faruk-aral",fullName:"Faruk Aral"}],productType:{id:"1",title:"Edited Volume",chapterContentType:"chapter",authoredCaption:"Edited by"}}},ofsBook:{item:{type:"book",id:"7389",leadTitle:null,title:"Redefining Standard Model Cosmology",subtitle:null,reviewType:"peer-reviewed",abstract:"The current standard model of cosmology is based primarily on two incompatible theoretical models: (1) the standard model of particle physics, which describes the physics of the very small in terms of quantum mechanics, and (2) the general theory of relativity, which describes the physics of the very large in terms of classical physics. Both these theoretical models are considered to be incomplete in the sense that they do not provide any understanding of several empirical observations, such as the Big Bang, dark matter, dark energy, gravity, and matter-antimatter asymmetry in the universe. The main aim of this book is to discuss these serious problems that threaten to undermine the current standard model of cosmology.",isbn:"978-1-83880-864-8",printIsbn:"978-1-83880-863-1",pdfIsbn:"978-1-83880-865-5",doi:"10.5772/intechopen.75275",price:119,priceEur:129,priceUsd:155,slug:"redefining-standard-model-cosmology",numberOfPages:122,isOpenForSubmission:!1,hash:"25572d83043224835eabdf8632fc64ed",bookSignature:"Brian Albert Robson",publishedDate:"June 12th 2019",coverURL:"https://cdn.intechopen.com/books/images_new/7389.jpg",keywords:null,numberOfDownloads:3257,numberOfWosCitations:1,numberOfCrossrefCitations:1,numberOfDimensionsCitations:1,numberOfTotalCitations:3,isAvailableForWebshopOrdering:!0,dateEndFirstStepPublish:"May 30th 2018",dateEndSecondStepPublish:"June 20th 2018",dateEndThirdStepPublish:"August 19th 2018",dateEndFourthStepPublish:"November 7th 2018",dateEndFifthStepPublish:"January 6th 2019",remainingDaysToSecondStep:"3 years",secondStepPassed:!0,currentStepOfPublishingProcess:5,editedByType:"Edited by",kuFlag:!1,biosketch:null,coeditorOneBiosketch:null,coeditorTwoBiosketch:null,coeditorThreeBiosketch:null,coeditorFourBiosketch:null,coeditorFiveBiosketch:null,editors:[{id:"102886",title:"Prof.",name:"Brian Albert",middleName:null,surname:"Robson",slug:"brian-albert-robson",fullName:"Brian Albert Robson",profilePictureURL:"https://mts.intechopen.com/storage/users/102886/images/system/102886.jpeg",biography:"Professor Brian Albert Robson obtained MSc, PhD and DSc degrees in Physics from the University of Melbourne, Australia. He is a Fellow of both the Australian Institute of Physics and the UK Institute of Physics. Currently he is an Honorary Professor in the Research School of Physics and Engineering, The Australian National University, Canberra. During his academic career, he served for four years as Officer-in-Charge of the Australian National University’s first computer, for nine years as Head of the Department of Theoretical Physics, and for two years as Associate Director of the Research School of Physics and Engineering. Professor Robson has published more than 150 scientific publications mainly in the areas of nuclear physics, particle physics, gravitation and cosmology.",institutionString:"The Australian National University",position:null,outsideEditionCount:0,totalCites:0,totalAuthoredChapters:"4",totalChapterViews:"0",totalEditedBooks:"1",institution:{name:"Australian National University",institutionURL:null,country:{name:"Australia"}}}],coeditorOne:null,coeditorTwo:null,coeditorThree:null,coeditorFour:null,coeditorFive:null,topics:[{id:"633",title:"Physical Cosmology",slug:"cosmology-physical-cosmology"}],chapters:[{id:"66783",title:"Introductory Chapter: Standard Model of Cosmology",slug:"introductory-chapter-standard-model-of-cosmology",totalDownloads:656,totalCrossrefCites:0,authors:[{id:"102886",title:"Prof.",name:"Brian Albert",surname:"Robson",slug:"brian-albert-robson",fullName:"Brian Albert Robson"}]},{id:"64538",title:"Tired Light Denies the Big Bang",slug:"tired-light-denies-the-big-bang",totalDownloads:716,totalCrossrefCites:0,authors:[null]},{id:"63285",title:"Model of an Evolving and Dynamic Universe: Creation without a Big Bang",slug:"model-of-an-evolving-and-dynamic-universe-creation-without-a-big-bang",totalDownloads:414,totalCrossrefCites:0,authors:[null]},{id:"64664",title:"Primordial Magnetic Fields and the CMB",slug:"primordial-magnetic-fields-and-the-cmb",totalDownloads:613,totalCrossrefCites:0,authors:[null]},{id:"64713",title:"Cosmological Solutions to Polynomial Affine Gravity in the Torsion-Free Sector",slug:"cosmological-solutions-to-polynomial-affine-gravity-in-the-torsion-free-sector",totalDownloads:491,totalCrossrefCites:1,authors:[null]},{id:"64285",title:"Cosmological Constant and Particle Masses in Conformal Quantum Gravity",slug:"cosmological-constant-and-particle-masses-in-conformal-quantum-gravity",totalDownloads:367,totalCrossrefCites:0,authors:[null]}],productType:{id:"1",title:"Edited Volume",chapterContentType:"chapter",authoredCaption:"Edited by"},personalPublishingAssistant:{id:"194667",firstName:"Marijana",lastName:"Francetic",middleName:null,title:"Ms.",imageUrl:"https://mts.intechopen.com/storage/users/194667/images/4752_n.jpg",email:"marijana@intechopen.com",biography:"As an Author Service Manager my responsibilities include monitoring and facilitating all publishing activities for authors and editors. From chapter submission and review, to approval and revision, copyediting and design, until final publication, I work closely with authors and editors to ensure a simple and easy publishing process. I maintain constant and effective communication with authors, editors and reviewers, which allows for a level of personal support that enables contributors to fully commit and concentrate on the chapters they are writing, editing, or reviewing. I assist authors in the preparation of their full chapter submissions and track important deadlines and ensure they are met. I help to coordinate internal processes such as linguistic review, and monitor the technical aspects of the process. As an ASM I am also involved in the acquisition of editors. Whether that be identifying an exceptional author and proposing an editorship collaboration, or contacting researchers who would like the opportunity to work with IntechOpen, I establish and help manage author and editor acquisition and contact."}},relatedBooks:[{type:"book",id:"3211",title:"Open Questions in Cosmology",subtitle:null,isOpenForSubmission:!1,hash:"6e4e21582afb611a1552d8493d66f82c",slug:"open-questions-in-cosmology",bookSignature:"Gonzalo J. Olmo",coverURL:"https://cdn.intechopen.com/books/images_new/3211.jpg",editedByType:"Edited by",editors:[{id:"61779",title:"Dr.",name:"Gonzalo J.",surname:"Olmo",slug:"gonzalo-j.-olmo",fullName:"Gonzalo J. Olmo"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"1374",title:"Aspects of Today's Cosmology",subtitle:null,isOpenForSubmission:!1,hash:"6f152698fbe6139a2fe31a70ec8668d0",slug:"aspects-of-today-s-cosmology",bookSignature:"Antonio Alfonso-Faus",coverURL:"https://cdn.intechopen.com/books/images_new/1374.jpg",editedByType:"Edited by",editors:[{id:"62140",title:"Prof.",name:"Antonio",surname:"Alfonso-Faus",slug:"antonio-alfonso-faus",fullName:"Antonio Alfonso-Faus"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"1680",title:"Space Science",subtitle:null,isOpenForSubmission:!1,hash:"2429d8599f5c44daca7b0d12f3d70bb8",slug:"space-science",bookSignature:"Herman J. Mosquera Cuesta",coverURL:"https://cdn.intechopen.com/books/images_new/1680.jpg",editedByType:"Edited by",editors:[{id:"15074",title:"Dr.",name:"Herman J.",surname:"Mosquera Cuesta",slug:"herman-j.-mosquera-cuesta",fullName:"Herman J. Mosquera Cuesta"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"400",title:"Advances in Modern Cosmology",subtitle:null,isOpenForSubmission:!1,hash:"042beba0021ef61f561bf65a1fb2b115",slug:"advances-in-modern-cosmology",bookSignature:"Adnan Ghribi",coverURL:"https://cdn.intechopen.com/books/images_new/400.jpg",editedByType:"Edited by",editors:[{id:"58295",title:"Dr.",name:"Adnan",surname:"Ghribi",slug:"adnan-ghribi",fullName:"Adnan Ghribi"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"9982",title:"Cosmology 2020",subtitle:"The Current State",isOpenForSubmission:!1,hash:"35188e364272b0f50d145f33b01931fa",slug:"cosmology-2020-the-current-state",bookSignature:"Michael L. Smith",coverURL:"https://cdn.intechopen.com/books/images_new/9982.jpg",editedByType:"Edited by",editors:[{id:"59479",title:"Dr.",name:"Michael L.",surname:"Smith",slug:"michael-l.-smith",fullName:"Michael L. Smith"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"6693",title:"Essentials on Dark Matter",subtitle:null,isOpenForSubmission:!1,hash:"7b9819be21ab94f8d165da9b5531b6bc",slug:"essentials-on-dark-matter",bookSignature:"Abraão Jessé Capistrano de Souza",coverURL:"https://cdn.intechopen.com/books/images_new/6693.jpg",editedByType:"Edited by",editors:[{id:"52362",title:"Dr.",name:"Abraao",surname:"Capistrano",slug:"abraao-capistrano",fullName:"Abraao Capistrano"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"1591",title:"Infrared Spectroscopy",subtitle:"Materials Science, Engineering and Technology",isOpenForSubmission:!1,hash:"99b4b7b71a8caeb693ed762b40b017f4",slug:"infrared-spectroscopy-materials-science-engineering-and-technology",bookSignature:"Theophile Theophanides",coverURL:"https://cdn.intechopen.com/books/images_new/1591.jpg",editedByType:"Edited by",editors:[{id:"37194",title:"Dr.",name:"Theophanides",surname:"Theophile",slug:"theophanides-theophile",fullName:"Theophanides Theophile"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"3092",title:"Anopheles mosquitoes",subtitle:"New insights into malaria vectors",isOpenForSubmission:!1,hash:"c9e622485316d5e296288bf24d2b0d64",slug:"anopheles-mosquitoes-new-insights-into-malaria-vectors",bookSignature:"Sylvie Manguin",coverURL:"https://cdn.intechopen.com/books/images_new/3092.jpg",editedByType:"Edited by",editors:[{id:"50017",title:"Prof.",name:"Sylvie",surname:"Manguin",slug:"sylvie-manguin",fullName:"Sylvie Manguin"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"3161",title:"Frontiers in Guided Wave Optics and Optoelectronics",subtitle:null,isOpenForSubmission:!1,hash:"deb44e9c99f82bbce1083abea743146c",slug:"frontiers-in-guided-wave-optics-and-optoelectronics",bookSignature:"Bishnu Pal",coverURL:"https://cdn.intechopen.com/books/images_new/3161.jpg",editedByType:"Edited by",editors:[{id:"4782",title:"Prof.",name:"Bishnu",surname:"Pal",slug:"bishnu-pal",fullName:"Bishnu Pal"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"72",title:"Ionic Liquids",subtitle:"Theory, Properties, New Approaches",isOpenForSubmission:!1,hash:"d94ffa3cfa10505e3b1d676d46fcd3f5",slug:"ionic-liquids-theory-properties-new-approaches",bookSignature:"Alexander Kokorin",coverURL:"https://cdn.intechopen.com/books/images_new/72.jpg",editedByType:"Edited by",editors:[{id:"19816",title:"Prof.",name:"Alexander",surname:"Kokorin",slug:"alexander-kokorin",fullName:"Alexander Kokorin"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}}]},chapter:{item:{type:"chapter",id:"60601",title:"Performance Evaluation Criterion of Nanofluid",doi:"10.5772/intechopen.74610",slug:"performance-evaluation-criterion-of-nanofluid",body:'
Today, energy becomes very important in human life; it is used to help human beings activity every day. Without energy, humans will be paralyzed and cannot do anything. Energy savings are a challenging topic to be investigated by scientists. The heat exchanger is a device widely used in the chemical, automotive, electronic, and food industries and involves heat transfer processes that directly influence the economy of these industries. Enhancement of heat transfer is one of the ways used for energy saving. Various methods have been done for the use of energy savings; both are the passive and active methods [1, 2, 3]. Passive enhancement methods include a surface coating, rough and finned surfaces, insertion devices, curved geometry, and nanofluid. Active method enhancement needed external energy to maintain the enhancement of the mechanism. Active methods include surface vibration, fluid fibration, electrohydrodynamics (EHD), and the use of the magnetic field. Over the past few decades, the effect of high electric fields on the rate of heat transfer is widely known as electrohydrodynamics (EHD), [4] and the effect of the magnetic field on magnetic iron oxide particle (Fe3O4) numerically has been investigated using control volume finite element method (CVFEM) [5]. However, when the available space is limited by the process, it is interesting to use the device with the same size or smaller with better performance. It can be achieved by modifying the cooling with higher thermal conductivity to enhance the heat transfer coefficient when compared with that of conventional fluids for the same geometry.
The objective of this chapter is to how to decrease the size of the thermal system or to increase their transferred thermal power using nanofluid. Nanofluids are colloidal suspensions of nanoparticles which are engineered to have the thermal conductivity higher than that of the base fluid and which can be used for this purpose [6, 7]. However, together with thermal conductivity enhancement, the viscosity is increased, and the gain in transferred heat is paid regarding pumping power. There is a competition between heat transfer rate and pumper power.
The cooling process is the process of heat transfer from a heat source and removed to the environment (heat sink) at the lower temperature. In forced convection heat transfer occurs at high-temperature to low-temperature fluids, which are separated by pipe walls. Increased heat dissipation is done by increasing the convection surface area, i.e., using fins. This method has been abandoned because of the higher the dimensions, and the more massive the equipment consequently the price becomes expensive. The second way is to increase the fluid flow rate, but it will have an impact on the greater use of energy, which causes the system to be inefficient.
The new method to increase heat transfer is to improve thermal properties of fluids especially heat conductivity. This way is by adding solid particles with high thermal conductivity into the cooling fluid with low thermal conductivity as shown in Figure 1.
Comparison of thermal conductivity for different materials.
Started by Maxwell as the pioneer [8], adding solid particles of micro size into the fluid is expected to improve thermal properties of fluids, especially heat conductivity. Because the particle size is large enough, the particles quickly agglomerate and cause clogging the channel. Later, Choi [6] introduced the term nanofluid defined as colloids made of a base fluid and nanoparticle size (1–100 nm). The properties of the fluid increase especially the heat conductivity (k), viscosity (
Dimensionless physical properties of nanofluids in comparison to those of pure water.
At first, the researchers only investigated the effect of particle volume concentration on thermal conductivity enhancement. Three possible approaches have been pursuing the study of nanofluid: experimental, empirical, and numerical.
For producing high quality of nanofluids, some special conditions are prerequisites, e.g., stable suspension, permanent suspension, no particle agglomeration, and no chemical change of the fluids. Nanofluid preparation is a critical task with the use of nanoparticles for improving the thermal conductivity of base fluid. Fundamentally, there are two methods for producing nanofluids, i.e., (1) two-step method and (2) one-step method.
The two-step method is widely used in producing nanofluid synthesis considering the limitations of nanoparticle supplies commercially by some companies. In this means, nanoparticles are first created and then dispersed in the base fluids. Ultrasonic vibration is used to reduce the agglomeration of particles intensively. Making nanofluids utilizing the two-step processes is challenging because individual particles tend to quickly agglomerate. This agglomeration is due to attractive van der Waals forces between nanoparticles, and the agglomeration is a critical issue in all nanopowder technology, including nanofluid technology, and a crucial step to success in achieving high-performance heat transfer nanofluids [9]. The methods to prevent the agglomeration of particles, usually using a surfactant that regulates acidity (pH) of the base fluids.
This method simultaneously generates and disperses the nanoparticles into the fluid base, while the first method deploys previously manufactured nanoparticles into the base fluid. Both methods involve reduction reactions or ion exchange.
Ions and other reactions products are then dispersed in the base fluid together with the nanoparticles since they are almost impossible to separate from their surroundings. For nanofluids containing high thermal conductivity, a one-step method is preferred to prevent particle oxidation. The advantage of a one-step technique is that nanoparticle agglomeration is the minimum, while the disadvantage is that very little nanofluid is produced. The one-step method has produced nanofluids in small quantities for research purposes only, and it is challenging to produce nanofluids commercially by this method [9]. They will be difficult to do for two reasons: firstly, a process that requires a vacuum significantly and slows the production of nanofluid, thereby limiting the production rate, and, secondly, producing nanofluids by this methods is expensive [10].
While most nanofluid productions to date have used one of the above techniques, other techniques are available depending on the particular combination of nanoparticle material and fluids [11]. The early studies on nanofluids focused on the measurement of the thermal conductivity. Later, more experiment regarding the convective heat transfer of nanofluids has been developed continuously.
Thermophysical property, especially the thermal conductivity, is a vital issue in nanofluid heat transfer phenomena. Prediction of thermal conductivity has been a severe challenge until now because many parameters affect the thermal conductivity values. Temperature, type of the base fluid, nanoparticle material, shape, size, volumetric fraction, production, and mixing methods may significantly change the thermal conductivity. The literature research on thermal conductivity of nanofluids is a guide to understand how different parameters affect the value and what kind of thermal conductivity model is selected for the calculation heat transfer enhancement.
Secondly, the viscosity is also crucial in nanofluid heat transfer performance, as the usage of nanofluid viscosity also increases. Prediction of the viscosity of nanofluids is also a challenging topic because of its increase in the pumping power. The similar parameters that affect thermal conductivity affect viscosity value.
Researchers have widely studied nanofluid thermal conductivity. Investigation the increase of analytical thermal conductivity a solid-liquid mixture by adding solid particles of micro-size balls into a liquid known as the Maxwell model.
where φ is the volume fraction of the nanofluid,
Hamilton and Crosser [13] proposed a model for nonspherical particles by introducing a shape factor n given by n = 3/φ. The thermal conductivity is expressed as follows:
A modified Maxwell’s model was proposed by Xuan and Li [14] by considering the Brownian motion of the particles in the base fluid for the thermal conductivity enhancement given as
where
Figure 3 shows the variation of
Variation of knf/kb as a function of alumina nanoparticle volume fraction with and without CTAB and its best fit with an interfacial resistance.
Besides the thermal conductivity of the nanofluid, another important thermophysical property is viscosity. Viscosity describes the internal resistance of a fluid to flow, and it is an essential property for all thermal applications involving fluids [10]. In laminar flow, the pressure drop is directly proportional to viscosity. Furthermore, convective heat transfer coefficient is influenced by viscosity. Hence, viscosity is as essential as thermal conductivity in engineering systems involving fluid flow. There has been a lot of research done about nanofluids but mostly related to heat transfer [16]. The increase in viscosity doubled, and energy is required to move the fluid to fourfold so that fluid viscosity plays a significant role in the use of energy in the cooling system.
Most of the viscosity enhancement studies obtained with the dispersion of nanoparticles in the base fluid correlated with the effect of volume fraction, size, and temperature were available in the literature. The rheological behavior of nanofluid categorized into four groups [17, 18], nanofluids with volume concentration less than 0.1 vol.% whose viscosity fits with the Einstein equation, semi-dilute nanofluids with 0.1–5 vol.% with aggregation of nanoparticles, semi-concentrated nanofluids with 5–10 vol.% with aggregation of nanoparticles, and concentrated nanofluid with 10 vol.% concentration, is out of the usual nanofluids [19, 20, 21].
Theoretical investigations.
There are some existing theoretical formulas to estimate the viscosity of nanofluid. Among them, equation suggested by Einstein [22] is a pioneer in determining the viscosity equation. The assumptions based on the linear viscous fluid containing spherical particles and low particle volume fractions (φ < 0.02). The suggested formula is as follows:
where
In 1952, Brinkman [23] extended Einstein’s formula to be used with moderate particle concentrations, and this correlation has more acceptance among the researchers. For particle concentrations less than 4%, the expression is as follows:
Considering the effect due to the Brownian motion of particles on the bulk stress of an approximately isotropic suspension of rigid and spherical particles, Batchelor [24] proposed the following formula in 1977:
It is clear from the above two relations that, if the second or higher order of φ is ignored, then these formulas will be the same as Einstein’s equation has been validated for a particle volume fraction up to
Nguyen et al. [17] showed that both the Brinkman [23] and Batchelor [24] equations severely underestimate nanofluid viscosities, except at very low particle volume fractions (lower than 1%). They have proposed two correlations for nanofluids consisting 47 and 36 nm of
Both of these models determine the viscosity by only considering base fluid viscosity and the particle volume fraction. Furthermore, they proposed a correlation for computing CuO water viscosity as shown in Eq. (9) [16]:
Most of the equations have been developed to express viscosity as a function of volume fraction of nanoparticles. However, the temperature is an important factor in nanofluid viscosity, and, consequently, several equations have been created to investigate the temperature effect on viscosity. Some literature is available about the temperature effect over nanofluid viscosity [16]. Yang et al. [25] experimentally measured temperature effect of viscosity with four temperatures (35, 43, 50, and 70°C) for four nanofluid solutions taking graphite as nanoparticles. They experimentally showed that kinematic nanofluid viscosity decreases with the increase of temperature. Anoop et al. [26] studied the viscosity of CuO-ethylene glycol,
A correlation between viscosity and temperature for pure fluids was presented by Reid et al. [28]:
where A and B are the functions of concentrations and T is temperature that is written by Yaws [29] as
where A, B, C, and D are the fitting parameters.
Some correlations have also been suggested taking into account both temperature and volume fraction effects on viscosity [16]. In 2006, Kulkarni et al. [30] proposed correlations that relate viscosity of copper oxide nanoparticles suspended in water with a temperature range of 5–50°C:
here, A and B are functions of volume fraction φ. This correlation is mainly for aqueous solution and is not applicable to nanofluids in the subzero temperature range.
The application for nanofluid with low viscosity (high temperature) and high thermal conductivity (small volume fraction) is promising for the future.
Enhancement of heat transfer is a favorite and an important topic that is highly relevant to current and future energy systems and renewable energy systems as well as for energy conservation and environmental protection. The increase in heat transfer statement is usually expressed by increasing the heat transfer coefficient of a system. The purposes of improving the heat transfer rate are to reduce the size and simultaneously increase the capacity of the thermal system.
The thermal system is expressed by thermal performance, which is the increase of heat transfer coefficient (h) and hydraulic performance, that is, the amount of energy required to circulate fluid within the system. The thermohydraulic performance is used as the performance indicator of heat exchange tool. The heat exchanger performance test means comparing the characteristics of the heat transfer coefficient and pressure loss (pressure drop) on a device of the same dimension.
Heat transfer enhancement is the process of increasing the effectiveness of heat exchanger. It can be achieved when the heat transfer power of a given device increased or when the pressure losses generated by the device are reduced.
The main advantage of the nanofluid is it has a high thermal conductivity, which is used for improving the efficiency of the thermal system. Adding small particles to the base fluid liquid increases the viscosity of nanofluid [31], which also increases the pressure drop on the systems. Due to the increased pressure drop, the operational costs of a system will be high due to the increase in pumping power. Hence, the viscosity of nanofluid is a significant parameter for determining the feasibility of nanofluid for heat transfer applications, depending on the significant increase in both thermophysical-properties of thermal conductivity and increased viscosity [19].
As heat transfer and pressure drop are the most critical factors, they can be compared to several approaches. It is defined as the ratio of heat transferred to the required pumping power in the test section. To evaluate the benefits provided by the enhanced properties of the nanofluids studied, an energetic performance evaluation criterion (PEC) is defined as heat transfer and hydrodynamics are the most critical factors. They can be compared to a global energy approach using the PEC defined as the ratio of heat flow rate transferred to the required pumping power in the system [32]:
Additionally, the heat transfer rate of nanofluids increased due to increased thermal conductivity, and the pressure drop also increased due to the increase in the nanofluid viscosity.
The pressure drop (
The pressure drop due to viscous effects represents an irreversible pressure loss, and it is called pressure loss
But mass flow rate is
Performance evaluation criteria by Lee [33] obtained a boundary line for laminar flow using thermal conductivity and viscosity of nanofluids to compared than base fluid. The method has been used to analyze the performance of nanofluid in a microchannel heat sink. A microchannel heat sink as a passive method can be a cooling device by dissipating heat into the surrounding air. The microchannel heat sink consists of N number of circular channels, each with diameter d, as shown in Figure 4. The total channel width W is constant (
A schematic of a microchannel heat sink.
Assume a constant heat flux boundary condition for all channel, and the flow is hydrodynamically and thermally fully developed. The heat transfer flow rate for convection heat transfer as Newton’s law of cooling is
The difference in temperature between the surface wall temperature and the local bulk fluid temperature is
The pressure drop for a channel with length L as follows:
For laminar flow,
The above equation can be written to d as follows:
Therefore, at a fixed volume flow rate, fixed pumping power, and a given channel length, the following correlation can be obtained for laminar flow with constant a Nusselt number:
If the nanofluid is more efficient than their base fluids, the difference between the wall and bulk fluid temperature should be smaller than the temperature using base fluids:
and
Eq. (24) shows that nanofluids are effective as long as the thermal conductivity enhancement is more than the one-third power of the viscosity enhancement for laminar flow regime. The boundary line for the performance of nanofluids in laminar flow regime is shown in Figure 5a. The thermal conductivity and viscosity ratios of
The boundary line for the performance of nanofluid at fixed volume flow rate and fixed pumping power: (a) laminar flow regime and (b) turbulent flow regime. The alumina and MWCNT nanofluids measured in Wu et al. correlation [32].
If a ratio nanofluid viscosity to the base fluid
Figure 6 shows the optimization of the preparation of nanofluid, starting with the measurement of the stability of nanofluid, if it fast agglomerates necessary additional treatment, for high stability by adding surfactant or surface modifier.
Optimization fabrication of nanofluid.
Viscosity measurements were performed to determine the viscosity value of nanofluid, for high viscosity nanofluid required special treatment to decrease viscosity, i.e., nanofluid used at the temperature above room temperature. Following the above discussion with an increasing temperature, the viscosity of nanofluid decreases.
When the viscosity of the nanofluid is low, and the thermal conductivity of the nanofluid is high, nanofluids can be used in practical applications.
The above discussion can be concluded that the application for nanofluid with low viscosity (high temperature) and high thermal conductivity (small volume fraction) is promising for the future.
Nanofluid can be used as a fluid that has a high-performance increase of heat transfer suitable only for the cooling process, as hot fluids with low particle volume fraction.
Microorganism of varying types and numbers can be found on food of animal and plant origin. The types and number of microorganism on food can be changed due to food processing, inappropriate purchasing, storing, preparing, cooking or serving. Increase in the number of these microorganisms due to the abovementioned changes may lead to spoiling of the food, causing a pathogenic effect on humans. The most important of foodborne pathogenic bacteria is Escherichia coli. It is transmitted through fecal or oral route and it should, under no circumstances, be present in any food. The most prominent symptom caused by this microorganism is its diarrheagenic effect. Moreover, it is known to cause sepsis, meningitis and many enteric diseases. Inability to ensure food safety is one of the biggest food-related problems. Food safety means ensuring necessary hygienic conditions and taking protective safety precautions for a healthy and safe food production throughout all processes from obtaining raw materials to production, transportation, storage, distribution and consumption of food. This section will focus on the pathogenic characteristics of food contaminated with E. coli, food contamination cases, current food safety approaches and methods of prevention/protection.
\nEscherichia coli, one of the 30 members of the bacterial family of Enterobacteriaceae, is a coliform bacterium and is one of the 6 types of Escherichia species (E. adecaroxylate, E. blattae, E. fergusonii, E. hermannii and E. vulneris). It is a gram-negative, non-spore-forming, facultative, anaerobic, rod shaped, mesophilic bacterium that grows in 7–45°C. The group of coliform bacteria consists of Citrobacter, Enterobacter, Klebsiella and Escherichia. While there are bacteria of fecal origin among coliform bacteria, there are also bacteria of plant origin such as Enterobacter aerogenes, Citrobacter freundii, and Klebsiella pneumoniae. Presence of coliform group in food is indicative of fecal contamination, poor hygienic conditions or existence of enteric pathogens. For instance, the presence of coliform bacteria in raw milk is an indication of poor hygiene in milking or storage conditions. The presence of coliform bacteria in raw or frozen fruits and vegetables is not important as Enterobacter, Citrobacter and Klebsiella are naturally present in the microbiota of plants. However, E. coli presence in fruits and vegetables is very important in terms of inadequate hygiene. E. coli is an important pathogen as it is an indicator of fecal contamination in foods and drinking water. Due to this characteristic, it is considered as an indicator bacterium in food safety and hygiene [1, 2, 3].
\nBeing the prominent bacterium in the facultative anaerobic microbiota of the intestines, E. coli is widespread in stool and the environment. Some of its pathogenic strains both cause intoxication by creating toxins and cause gastroenteritis, pathologic kidney and brain damage by causing infection-type food poisoning through cellular increase. Some enterotoxin producing E. coli strains are divided into two groups as heat-stable and heat-labile. The heat-stable toxin is known as stable toxin (ST) and the heat-labile toxin is known as labile toxin (LT). Both toxins can be found together or separately. Moreover, pathogenic strains are also known to cause serious diseases such as diarrhea, peritonitis, mastitis, septicemia, pneumonia and neonatal meningitis. Among gram-negative bacilli, E. coli is the most widespread pathogen that causes meningitis especially in neonatal period. It has serious morbidity and mortality rates worldwide. The mortality rates in neonatal meningitis cases are reported to vary between 15–40% and 50% of the survivors are reported to continue their lives with neurological damage [2, 4]. Intestinal pathogenic E. coli are classified as shown in Figure 1 at least six subgroups/pathotypes as enterotoxigenic E. coli (ETEC), enteropathogenic E. coli (EPEC), enteroaggregative E. coli (EAEC), diffusely-adherent E. coli (DAEC), enteroinvasive E. coli (EIEC) and enterohemorrhagic E. coli (EHEC). EHEC is also known as Shiga toxin (stx) producing E. coli (STEC) and verotoxin producing E. coli (VTEC) [5, 6].
\nMechanism of intestinal pathogenic E. coli strains [6].
People living in developing countries have often been reported to have this pathotype in their feces and shown to have developed immunity against this microorganism. Being a cause of mortality in children under 5, the most frequently observed microorganism in childhood diarrhea is ETEC and it is also responsible for 30–60% of travelers’ diarrhea. Infection is characterized by watery diarrhea and, depending on the person, its course may range from a normal course to cholera-like defecation with the addition of symptoms such as vomiting and high fever [2, 4, 7]. Diarrhea is the most common causes of mortality in society and among young children, especially those living in Asia and sub-Saharan Africa with inadequate healthcare systems and limited access to clean drinking water. Recent systematic studies have reported that each year an estimated 600,000 children under the age of 5 lose their lives. Diarrhea occurs due to the consumption of food or water contaminated with viral, bacterial or parasitic pathogens. Among these potential pathogens, the most common cause of diarrhea in children under five is the ETEC (heat-stable – ST and/or heat-labile – LT type toxin) producing E. coli strains. Through the production of fimbrial or non-fimbrial adhesins, ETEC strains cause hypersecretion of fluids by producing enterotoxins that disrupts fluid and electrolyte homeostasis in the epithelial cells of small intestines, leading to watery diarrhea. Without rehydration, moderate or severe diarrhea could lead to dehydration and acute mortality [7].
\nIt is known to be the oldest E. coli serotype causing diarrhea and its most important characteristic is adherence. In EPEC infections, vomiting and low body temperature are observed in addition to watery diarrhea [5]. It is known to cause diarrhea in infants and outbreaks can occur in neonatal care units. Humans, pigs and bovines may be infected with this microorganism. EPEC is transmitted from person to person, however; rarely, it is also known to spread through contaminated food and water [4, 6].
\nThe ability to produce attaching and effacing (A/E) lesions is a distinctive phenotype for EPEC. Bacteria cause extensive deterioration on microvilli by strongly adhering to the host cell membrane. This adherence to the cell is mediated by an outer membrane protein called intimin. Moreover, depending on the presence of E. coli adherence factor – EAF), EPEC is classified as typical EPEC (tEPEC) and atypical (aEPEC) strains. In addition, as a distinctive factor, all EPEC strains lack the Shiga toxin (stx) producing genes. Among single-pathogen infections, EPEC has the second highest severity score after rotavirus, followed by ETEC. Diarrheagenic E. coli, especially EPEC, ETEC and EAEC are found out to be the main pathogens related to chronic diarrhea and its complications that lasts more than 14 days in developing countries. Moreover, among children with chronic diarrhea in developing countries, aEPEC was the most common pathogen isolated and it is the most common clinical case. These findings show that aEPEC may have a tendency to be naturally more chronic than other diarrheagenic E. coli [8, 9].
\nThis pathotype is a foodborne enteropathogen observed in acute and persistent diarrhea cases in children, patients with suppressed immune systems in developing countries and people traveling to endemic regions. Growth disorders and cognitive disorders in children living in developing countries, stem from EAEC infections. In the pathogenesis of EAEC, the first step is the strong adherence to the intestinal mucosa. The second step is leading to the development of enterotoxins and cytotoxins and the third step is known to be characterized with the ability to induce mucosal inflammation. Many different virulence factors regarding these three steps have been defined, however; none of them are present in all strains. Three adherence models related to EAEC have been defined. In addition to the localized adherence (LA) model that was defined first, there is also a diffuse adherence (DA) model and aggregative adherence (AA) model. The strains corresponding to the AA pattern were later defined as “Enteroadherent-aggregative E. coli”. However, this term was then replaced with the current name “Enteroaggregative E. coli”. AA phenotype has to be present in order for an E. coli strain of EAEC pathotype to be classified [10].
\nIt is commonly found in foods in Mexico, including desserts and salsa sauces, and the visitors of the country are known to be more sensitive to EAEC infections during their stay rather than ETEC, which they are the most susceptible to. The reason behind this is the EAEC’s ability to suppress the immune system and cause chronic infection. EAEC is also more resistant to antibiotics compared to the other diarrheagenic pathogens. Persistent infection and chronic disruption in intestinal functions cause malnutrition and decline in physical and mental development, especially in children. Malnutrition, which is observed due to micronutrient deficiency, induces infection. Development of infection induces malnutrition. This whole cycle increases the burden of acute diarrhea [11].
\nHep-2 or HeLa cell cultures are called DAEC due to their diffuse adherence characteristics. DAEC serotypes are known to cause chronic diarrhea in children between the ages of 1 and 5. They cause degradation in the intestinal epithelium by binding to proteins that accelerate degradation. Mild diarrhea void of fecal leukocytes is the indication of infection. In France, DAEC strains were found out to be widespread in diarrhea cases observed in inpatients from a hospital with no other enteropathogen. This situation indicates that DAEC strains may be an important diarrheagenic pathogen in developed countries. Recent studies show that some DAEC strains contain virulence factors present in uropathogenic E. coli (UPEC) strains [5, 12].
\nEIEC strains causing inflammatory damage in intestinal mucosa and submucosa are very similar to those produced by Shigella. These microorganisms have the same spreading and reproducing abilities inside epithelial cells. However, clinically, EIEC-related watery diarrhea is much more commonly observed than dysentery caused by Shigella. O antigens of EIEC can cross-react with O antigens of Shigella. The disease starts with severe abdominal cramping, weakness, watery stool, difficulty urinating and fever. It could rarely aggravate and turn into watery stool containing blood or mucus. The fecal leukocytes observed in shigellosis may also be observed in the mucus smear of a person infected with EIEC. EIEC infections are endemic to less developed countries and are reported to be rarely observed infections in developed countries. The incubation period is observed as 10–18 hours. There is evidence showing that EIEC is transmitted through contaminated foods. Just like in shigellosis, cases of diarrhea with enteroinvasive strains can be treated by using antimicrobials effective against Shigella isolates [13]. In a study conducted to investigate the effects of antibiotic usage, stool samples were analyzed to find out whether it affected pathogen findings. Four and fifty-six tourists from Finland were all informed about antibiotic usage during travel and stool samples were collected from them both before and after the travel. There were differences between the travelers that visited various countries before and the ones that did not use any antibiotics in terms of Enterobacteriaceae findings, as well as some health problems during the travel and pathogenic findings in stools [14].
\nEHEC are also named Shiga toxin producing E. coli (STEC) and also verotoxin producing E. coli (VTEC). All strains of EHEC produce Shiga toxins that destroys vero cells similarly to Shiga toxins produced by Shigella. E. coli O157: H7, first defined after the outbreak associated with the consumption of rare cooked minced meat in 1982, is the primary cause of EHEC infection in industrialized countries including the USA, Canada and England. O26, O103, O111 and O145 can be listed among the other EHEC serogroups responsible for foodborne diseases. Even though the O157 strains are the ones that draw the most attention, the strains of other EHEC serogroups, especially O111, are gradually getting reported more and more around the world. Based on the severity of the disease, EHEC is regarded as the most serious E. coli strain among foodborne pathogens. E. coli O157:H7, differ from the other E. coli serotypes because of some of its characteristics, which are: not being able to grow in or above 42°C, not being able to ferment sorbitol, not having β-glucuronidase enzymes and producing enterohemolysins. Shiga-like toxin produced by E. coli O157:H7 is cytotoxic for human colon and duodenum. This toxin causes accumulation of fluid in intestines and lesions in colon through destruction of crypt epithelia. Intimin makes adhesion to the intestinal canal easier [5, 15].
\nEHEC has a wide spectrum including watery or bloody diarrhea and hemolytic uremic syndrome (HUS), which is an important factor in acute renal failure in children. The biggest EHEC O104:H4 outbreak was in Germany in 2011 with 855 HUS cases in 3842 people and 53 mortalities. This incidence, which raised concern all around the world, shows the importance of EHEC in terms of human health. Bovines are the main reservoir for these microorganisms to live on asymptomatically for years. Other smaller reservoirs for these microorganisms include sheep, goats, dogs, pigs and poultry. Other places where EHEC could stay alive for months include; bovine feces, soil and water. Butchering or processing of animals or contamination of plants through contaminated water or manure are the main routes for EHEC to spread to the food chain [16]. Following 3–12 days of incubation period after infection with E. coli O157:H7, watery diarrhea is observed as well as abdominal cramps and pain. In some cases, hemorrhagic colitis (HC) which is also known as bloody diarrhea, thrombotic thrombocytopenic purpura (TTP), fever and vomiting are included in the important clinical findings to be observed. Most patients recover within 10 days, however; depending on the serotype of the EHEC strain and stx subtype, HUS may develop 1 week after the start of diarrhea, that may lead to mortality especially in children and elderly people. HUS is characterized with acute renal failure, hemolytic anemia and thrombocytopenia. Coma, stroke, colon perforation, pancreatitis and hypertension are included among the other complications of HUS. It is estimated to lead to the early development of chronic renal failure in 15% of cases. Dialysis is necessary for HUS patients and mortality rate is 35%. Moreover, it is more commonly observed in women (70%) and during pregnancy (13%).Good treatment for this infection is still lacking, however; some new treatment strategies such as the usage of anti-vero toxin (anti-Shigatoxin) antibodies have been suggested. TTP, on the other hand, is clinically similar to HUS and fever, abdominal pain, gastrointestinal hemorrhage and central nervous system disorders are listed among complications that may develop. Frequently, it forms blood clots in the brain and result in mortality [2, 15, 16, 17, 18, 19, 20].
\nThe incidence and epidemiology of the important serotypes of E. coli are given in Table 1.
\nPathogenic E. coli | \nSite of infection | \nAssociated disease | \nIncidence | \nTarget population | \nSignificant transmission route | \n
---|---|---|---|---|---|
ETEC | \nSmall intestine | \nTraveler’s diarrhea, chronic childhood diarrhea (in developing countries) | \n16 U.S. outbreaks (1996–2003); prevalence 1.4% in patients with diarrhea; 79,420 cases of travelers’ diarrhea each year (in the USA) | \nInternational travelers and children in developing countries | \nFood (raw produce, street vendors) and water | \n
EPEC | \nSmall intestine | \nInfant diarrhea | \nHundreds of thousands of deaths world wide | \nChildren in developing countries | \nWater, infant formula | \n
EHEC | \nLarge intestine | \nHemorrhagic colitis (HC), hemolytic uremic syndrome (HUS) | \n110,000 cases and 61 deaths annually in the USA | \nAll ages | \nFood (beef produce), person-to-person, water, animals | \n
EIEC | \nLarge intestine | \nDysentery | \nLow in developed countries | \nChildren in developing countries | \nWater (rare), person-to-person | \n
EAEC | \nIntestine | \nWatery diarrhea with or without blood in the stool, acute and chronic | \nDeveloped and developing countries | \nChildren and adults, travelers | \nFood, water, person-to-person | \n
Summary of incidence and epidemiology of E. coli serotype [6].
Food safety means ensuring consumer safety and protecting products from biological, physical and chemical hazards throughout the whole process starting from the field to processing, storing, distributing, preparing and cooking [21]. In many countries around the world, people started to have a more conscious perspective on food and environment. Consumers tend to prefer food that is more natural, less processed, environment-friendly, healthy and produced safely. This tendency makes up the basis of the “preventive/protective” (pro-active) approach for measurements to be taken towards food safety both nationally and globally. This approach based on risk analysis is the most appropriate and effective method for controlling foodborne hazards. It also necessitates the application of proper control systems in the production chain [22]. Foodborne diseases are a global subject. A common approach by all countries and related international organizations is a prerequisite for the detection and control of foodborne problems threatening human health and international trade. Despite their complicated biology, epidemiology and analyses, most foodborne diseases are preventable. Public health institutions, food industry and consumers must be devoted to prevent foods from getting contaminated at farms, restaurants and homes. In outbreaks of foodborne diseases, continuous monitoring is vital for revealing the disease tendencies in foods, regions and associated pathogens. Genotype and subtype information obtained from contaminated strains are required for tracing the source of contamination, characterizing and comparing the strains [23].
\nThe food safety management systems with a classical basis that were once accepted for safe production and consumption of foods has proven to be inefficient and researchers/organizations proposed the “risk-based food safety” approach. Risk-based food safety approach is significantly different than the classical hazard-based approach. In this regard, a food safety management system aims at estimating the risks to human health as well as defining, choosing and implementing strategies to control and decrease these risks. According to Codex Alimentarius, risk analysis is a process consisting of three components: risk assessment, risk management and risk communication. Today, the new approach is considered as an approach enabling food safety issues to be diagnosed more accurately and define strategies required to decrease these issues more effectively [23, 24, 25]. The principles of risk-based food safety are defined with a four-step framework. The first step includes a series of initial risk managements such as defining the food safety issues, developing a risk profile, setting risk management goals, deciding on the need for a risk assessment, forming a risk assessment policy, creating a risk assessment and/or risk ranking commission and analysis of the results following the assessment. In the second step, different risk management options are defined and the options are chosen after the assessment. The third step includes the implementation of risk management precautions. Lastly, in the last step, observations are carried out in appropriate areas within the food chain and this step is utilized in reviewing the effectiveness of the risk management precautions. This step usually includes public health monitoring in order to collect data on changes. In summary, this approach aims at improving the food safety in high-risk food/hazard combinations, decrease the burden of foodborne diseases and increase the consumer safety [25].
\nBillions of people in the world are under unsafe food risk. Each year, hundreds of thousands of people become sick or lose their lives due to consumption of unhygienic, high-risk foods. This is why safe food saves lives. In addition to improving the health of individuals and the public, safe food also boosts the economic growth in the regions where it is improved. Food safety covers four main areas, as shown in Table 2 microbiological safety, chemical safety, personal hygiene and environmental hygiene [26].
\nMicrobiological safety: the potential sources of foodborne diseases are bacterial agents. Diseases can range from mild gastroenteritis to neurological, hepatic or renal syndromes. Foodborne bacterial agents are primary cause of severe and fatal foodborne diseases. More than 90% of food poisoning diseases are caused by Staphylococcus, Salmonella, Clostridium, Campylobacter, Listeria, Vibrio, Bacillus and E. coli types. | \n
Chemical safety: foods may contain some non-food chemical additives such as coloring agents or preservatives and contaminants such as pesticide residues. Heavy metals such as lead, cadmium, mercury and copper can be found in some food products possibly because of kitchen appliances or inadequate food hygiene. | \n
Personal hygiene: inadequate personal hygiene in food processors or preparers can pose a great risk to public health. Simple activities such as hand washing and adequate washing facilities can prevent many foodborne diseases. | \n
Environmental hygiene: inadequate or wrong recycling and lack of equipment for disposing of wastes lead to accumulation of spoiled and contaminated food. This situation than leads to the increase in the insect and bug populations contributing more to the risk of contamination and spoiling. For this reason, the hygienic conditions of the areas where food is processed and prepared are very important. | \n
Four main areas of food safety [26].
Controlling the entry of contaminants into the food chain can be difficult. In addition to poor hygiene, unfavorable transfer and storage conditions for foods or contaminated raw material usage also play a part in contamination. Low quality or contaminated foods may cause shipments to be canceled on an international level. This poses an obstacle for the trade between countries [27]. Food safety objectives are based on preventive actions such as safe raw material usage, good production practices and procedures with critical control points for hazard analysis. It is possible for the success of these preventive actions to reflect on the incidence of foodborne diseases. WHO and Center for Control of Foodborne Infections and Intoxications in Europe stated that one of the most important factors contributing to foodborne outbreaks were markers required for improving general hygiene and most of these were under the control of producers/consumers and listed these markers as following:
Poor general hygiene
Consuming raw products
Using contaminated materials
Contamination through infected people
Cross-contamination
Using contaminated tools
Mistakes in processing
Too early preparation
Inadequate heating
Inadequate warm-keeping
Inadequate cooling
Too long storage time
Contamination during the last preparation phase
Inadequate heating before reusing [28].
Attention should be paid to purchasing, preservation, preparation, cooking and serving processes for ensuring food hygiene and safety. While purchasing foodstuffs, attention should be paid to the shipment conditions, packaging and keeping the cold chain in potentially high-risk foods such as fish, meat, chicken and milk. Storage rules should be followed during storing. First in first out (FIFO) rule should be followed in storages. Temperature in storage units should be checked regularly and cooked meals should be left to cool down in room temperature before being stored in fridges. Shelves should be made of rustproof material and foods should be kept at least 15 cm away from the floor and walls. There should be different sections for each food group (meat group, dairy group, fruit and vegetable group) so that cross-contamination is prevented. There is a risk of microorganism contamination from personnel, tools, environment or foods (cross-contamination) during the preparation phase. Color code system could be implemented in cutting areas to be able to prevent this from happening. Potentially high-risk foods should be processed without waiting. Cooked meals should be served in maximum 2 hours. Frozen foods should be thawed in 4–7°C. Internal temperature of poultry should be at least 75°C while cooking. Temperature of foods such as meat, fish and eggs should be increased to at least 63°C and they should be processed at this temperature for at least 2 minutes. Internal temperature of hot meals should be kept at 65°C in bain-marie with a closed lid. While serving food, clean containers should be used to transfer or hold the food. Cold foods should be kept under 4.5°C in a closed container. Preservation time is as important as preserving conditions when it comes to development, growing and spreading of microorganisms. Preservation times for some foods are listed in Table 3 [22, 29].
\nFood | \nPreservation time (day) | \n
---|---|
Big piece of meat | \n3–5 | \n
Chicken | \n2–3 | \n
Minced meat | \n1–2 | \n
Sausage | \n2–3 | \n
Cooked meat | \n2–3 | \n
Raw fish | \n1–2 | \n
Shellfish | \n1 | \n
Cooked fish | \n2–3 | \n
Milk and cream | \n3–4 | \n
Eggs | \n14 | \n
Fruits | \n1–14 | \n
Vegetables | \n2–7 | \n
Preservation time for some foods [22].
If we take a general look at the incidence and epidemiology of disease-causing E. coli pathotypes, we see many cases and outbreaks. For example; annual incidences of 31 primary pathogens were estimated in a study conducted in the USA in 2011. It is estimated that these 31 pathogens caused 6.6–12.7 million diseases; 39,500–75,700 hospitalizations and around 700–2300 mortalities. In another study conducted in the USA between 2003 and 2012, it was reported that foodborne outbreaks caused 4928 diseases, 1272 hospitalizations, 299 cases of HUS diagnosed by a physician and 33 deaths. The primary contamination sources were listed as 55% foodborne, 10% animal contact, 10% human-to-human transmission, 4% waterborne and 11% unknown reasons [28, 30]. In another study conducted in Argentina, O157:H7 STEC was detected 25.5% and non-O157 STEC was detected in 52.2% of the raw meats analyzed in terms of STEC. Argentina is one of the countries with the highest HUS incidence rates [31].
\nIn meat products, non-O157 STEC prevalence varies between 2.4 and 30.0% for minced meat, 17.0 and 49.2% for sausage and 8.6 and 49.6 in meat put up for sale. When STEC contamination reports verifying that the STEC O157 prevalence had ranged between 0.2 and 27.8% for the last 30 years were assessed in terms of STEC O157 and non-O157 presence in bovine meat, non-O157 STEC rates were observed to be ranging between 2.1 and 70.1% [32]. Besides, EHEC serotypes were reported to stay alive for 9 months in −80°C and that they were not affected by the storage conditions of pieces of meat frozen in −20°C. E. coli is reported to be directly associated with consumption of undercooked meat. It is known that, especially meat and milk are very suitable environments for verotoxigenic E. coli and this microorganism produces significant amounts of verotoxins in contaminated meat kept in 37°C [33]. In studies, it was reported that the foods that are generally responsible for foodborne outbreaks were: meat and meat products, fish and seafood, chicken products, liver, ice cream, raw milk, rice meals, pasta and pasta salad, peanut, flour, cold sandwiches, fruit juices and raw fruits and vegetables [23]. In another study, it was stated that undercooked or uncooked hamburger, non-pasteurized fruit juices, raw vegetables contaminated with cow manure and infected cows are important sources of E. coli. For example; there were at least four deaths and over 500 laboratory approved infections were observed in an E. coli outbreak in 1993, related to hamburgers bought from a fast-food chain [6, 23]. The outbreak in the west of USA between 1992 and 1993 caused by E. coli O157:H7 that affected over 700 people and the outbreak in Japan in 1996 that affected over 8000 people and killed two people can be listed among the outbreaks caused by E. coli O157:H7. Foodborne outbreaks caused by E. coli O157:H7, O111:NM (non-motile) and STEC serotypes were reported in many countries such as Australia, Canada, Japan, USA, many European countries and North Africa [34].
\nIn a study conducted on children’s nursery in Japan between 2010 and 2013, it was detected that 68 of 1035 outbreaks were of EHEC origin. It is known that 30 of the 68 outbreaks (46%) were foodborne [35]. It is also known that there were two EIEC outbreaks reported in England in June of 2014. These cases are rare in England. However, it is emphasized that EIEC has a capacity to cause large and potentially serious gastrointestinal outbreaks in Europe and that it should be considered as a potential pathogen in foodborne outbreaks [36]. In 2011 (between May 1st and July 4th) 2971 STEC related gastroenteritis cases including 18 deaths and 845 HUS cases including 36 deaths were reported along with laboratory approval, among 3816 cases reported to the public health officials in Germany. Moreover, the number of HUS cases during outbreaks was reported to be approximately 70 times the figures that corresponds to the same period of previous years [37]. In another report from Germany, a case-control study was conducted with 26 patients with HUS and 81 control cases. The incidence of the disease was associated with kale consumption in the univariate analysis and with kale and cucumber consumption in the multivariate analysis. Twenty-five percent of the cases reported eating kale and 88% reported eating a salad [38]. In another case in Scotland in 1994, 71 cases were reported including 1 death and 11 HUS cases due to non-pasteurization of milk. In an E. coli O111 outbreak in Australia, 200 cases were reported including 23 HUS cases and 1 death due to a kind of sausage made from minced meat. The failure in chlorination of Municipality waters also caused outbreaks. In an outbreak in 2000 among campers in Aberdeenshire, 20 cases were reported due to the environmental exposure to the camp area contaminated by sheep manure. Among this group of campers, the number of people that the number of cases who had not washed their hands before meals was almost 9 times bigger than the number of people who became ill. It is a well-known fact that all E. coli outbreaks cause high costs for countries in addition to the severity of the infection and the damage it leaves on people [39].
\nAlong the food chain, controllability and traceability are of great importance for ensuring the consumer safety and for foods to be protected from biological, physical and chemical hazards starting from the field to the moment of consumption. Consumers constitute the last ring of the food safety. The purchasing power and consciousness of consumers help ensure food safety and are the most important factors for protection and prevention against risks. Prevention of E. coli infections require not only developing new vaccines but also providing uncontaminated water and food. Food production companies should pay close attention to the cleanliness of their application areas and the disinfection of the running water. People who work in food facilities and services, should be given frequent trainings on hygiene so as to prevent E. coli contaminations. During travels from developed countries to developing countries, unsafe foods and foods that are sold out in the open should be avoided; packaged and labeled drinking water and beverages should be consumed [2, 40]. Cooking food at the right temperatures can ensure inactivation of E. coli as the factor is sensitive to high temperatures. While the meat is cut into pieces, the microorganisms on the surface of the meat reach the inner sections and can stay alive if a sufficient heat treatment is not applied, turning it into a risk factor for public health. Similarly, there are some potential risks in raw milk. It poses a risk if not pasteurized. E. coli can be inactivated with pasteurization [15, 41, 42].
\nBiological protection precautions are also very important. It is claimed that 8.0 log10 cfu/g lactic acid bacteria causes a 1.6 log10 cfu/g decrease in E. coli O157:H7; EHEC O157 multiplies by growing in the damaged Fuji apple, yet Candida oleophila may be effective in controlling this pathogen in these damaged apples. Decreasing this risk of contamination caused by farms, slaughterhouses, food producers and consumers is very important for protection from the pathogen E. coli O157:H7 strain, which can also be transmitted through food and water. Under the Food and Drug Administration (FDA), Meat Inspection Act and other regulations the food industry is responsible for producing safe foods that meet national standards, identify critical control points from production to consumption, and have good production practices. Hazard analysis and critical control points (HACCP) is a management system in which food safety is addressed through the analysis and control of biological, chemical and physical hazards for raw material production, procurement and packaging, distribution and consumption [2, 17, 40, 43].
\nUnder the HACCP, the term hazard refers to any substance or condition that has the potential to cause adverse health effects and that is unacceptable. These hazards can be caused by the biological, chemical or physical contamination in the raw material, semi-processed or finished food product. Hazard analysis is defined as the assessment of the severity of the hazard and the likelihood of it happening. HACCP is a system managed based on seven principles to identify, assess and control possible hazards for food [17, 44];
Conduct hazard analysis
Identify critical control points (CCP)
Establish critical limits
Establish monitoring procedures
Establish corrective actions
Establish verification procedures
Establish documentation and record procedures [17].
These principles are accepted by state institutions, trade associations and the food industry. Today, food safety systems based on HACCP principles are successfully implemented in food processing facilities, retail food stores and global food service operations. Following HACCP rules in production facilities is vital. In a slaughterhouse in Mexico it was emphasized that HACCP should be applied in addition to antimicrobial treatment to reduce the presence of potential pathogens such as E. coli O157: H7 and non-O157 STEC in cattle carcasses. In the USA, it was stated that the most stringent measure for the prevention and control of EHEC is to determine the critical control points that lead to contamination of meat. Good manufacturing practices (GMP) and standard sanitation operating procedures (SSOPs) are accepted as the first steps in developing the HACCP system in the food industry. Successful implementation of GMPs and SSOPs is of great importance for the HACCP, because these systems are the building blocks of food safety during the processing phase [45]. These guidelines act as a guarantee for production, test, quality and assurance to help reduce the risk of foodborne diseases and ensure production and distribution of safe food for human consumption. Many countries follow GMP procedures and established their own GMP rules in accordance with their own legislations. The purpose of GMP is also help reduce the uncontrollable risks such as contamination and cross-contamination by testing the product. The main requirements for GMP are listed below [43, 45, 46];
Comprehensible written instructions and procedures
Trained employees
Records of actions, mistakes and reviews
Records of production and distribution
Proper storage and distribution
Complaint and recall systems [46].
In conclusion; it should not be forgotten that as a foodborne pathogen E. coli can spread in food, even in small numbers, and has the potential to cause infections, food poisoning and even death. Preventive measures include protecting the food from direct or indirect contamination, applying personal hygiene practices, preserving the processed food in appropriate places and temperatures, checking proper packaging and proper storage, cooking in proper temperatures, allowing proper cooling and keeping the cooked food away from raw food. There are many simple measures for consumers to take in order to prevent bacterial growth and ensure food safety. Consumers can develop their own safety methods at home by following the abovementioned measures. It is very important for food producers to comply with the safety method principles such as HACCP and GMP in terms of public health so as to prevent many diseases and outbreaks.
\nGeneral requirements for Open Access to Horizon 2020 research project outputs are found within Guidelines on Open Access to Scientific Publication and Research Data in Horizon 2020. The guidelines, in their simplest form, state that if you are a Horizon 2020 recipient, you must ensure open access to your scientific publications by enabling them to be downloaded, printed and read online. Additionally, said publications must be peer reviewed.
',metaTitle:"Horizon 2020 Compliance",metaDescription:"General requirements for Open Access to Horizon 2020 research project outputs are found within Guidelines on Open Access to Scientific Publication and Research Data in Horizon 2020. The guidelines, in their simplest form, state that if you are a Horizon 2020 recipient, you must ensure open access to your scientific publications by enabling them to be downloaded, printed and read online. Additionally, said publications must be peer reviewed. ",metaKeywords:null,canonicalURL:null,contentRaw:'[{"type":"htmlEditorComponent","content":"Publishing with IntechOpen means that your scientific publications already meet these basic requirements. It also means that through our utilization of open licensing, our publications are also able to be copied, shared, searched, linked, crawled, and mined for text and data, optimizing our authors' compliance as suggested by the European Commission.
\\n\\nMetadata for all publications is also automatically deposited in IntechOpen's OAI repository, making them available through the Open Access Infrastructure for Research in Europe's (OpenAIRE) search interface further establishing our compliance.
\\n\\nIn other words, publishing with IntechOpen guarantees compliance.
\\n\\nRead more about Open Access in Horizon 2020 here.
\\n\\nWhich scientific publication to choose?
\\n\\nWhen choosing a publication, Horizon 2020 grant recipients are encouraged to provide open access to various types of scientific publications including monographs, edited books and conference proceedings.
\\n\\nIntechOpen publishes all of the aforementioned formats in compliance with the requirements and criteria established by the European Commission for the Horizon 2020 Program.
\\n\\nAuthors requiring additional information are welcome to send their inquiries to funders@intechopen.com
\\n"}]'},components:[{type:"htmlEditorComponent",content:'Publishing with IntechOpen means that your scientific publications already meet these basic requirements. It also means that through our utilization of open licensing, our publications are also able to be copied, shared, searched, linked, crawled, and mined for text and data, optimizing our authors' compliance as suggested by the European Commission.
\n\nMetadata for all publications is also automatically deposited in IntechOpen's OAI repository, making them available through the Open Access Infrastructure for Research in Europe's (OpenAIRE) search interface further establishing our compliance.
\n\nIn other words, publishing with IntechOpen guarantees compliance.
\n\nRead more about Open Access in Horizon 2020 here.
\n\nWhich scientific publication to choose?
\n\nWhen choosing a publication, Horizon 2020 grant recipients are encouraged to provide open access to various types of scientific publications including monographs, edited books and conference proceedings.
\n\nIntechOpen publishes all of the aforementioned formats in compliance with the requirements and criteria established by the European Commission for the Horizon 2020 Program.
\n\nAuthors requiring additional information are welcome to send their inquiries to funders@intechopen.com
\n'}]},successStories:{items:[]},authorsAndEditors:{filterParams:{sort:"featured,name"},profiles:[{id:"6700",title:"Dr.",name:"Abbass A.",middleName:null,surname:"Hashim",slug:"abbass-a.-hashim",fullName:"Abbass A. Hashim",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/6700/images/1864_n.jpg",biography:"Currently I am carrying out research in several areas of interest, mainly covering work on chemical and bio-sensors, semiconductor thin film device fabrication and characterisation.\nAt the moment I have very strong interest in radiation environmental pollution and bacteriology treatment. The teams of researchers are working very hard to bring novel results in this field. I am also a member of the team in charge for the supervision of Ph.D. students in the fields of development of silicon based planar waveguide sensor devices, study of inelastic electron tunnelling in planar tunnelling nanostructures for sensing applications and development of organotellurium(IV) compounds for semiconductor applications. I am a specialist in data analysis techniques and nanosurface structure. I have served as the editor for many books, been a member of the editorial board in science journals, have published many papers and hold many patents.",institutionString:null,institution:{name:"Sheffield Hallam University",country:{name:"United Kingdom"}}},{id:"54525",title:"Prof.",name:"Abdul Latif",middleName:null,surname:"Ahmad",slug:"abdul-latif-ahmad",fullName:"Abdul Latif Ahmad",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:null},{id:"20567",title:"Prof.",name:"Ado",middleName:null,surname:"Jorio",slug:"ado-jorio",fullName:"Ado Jorio",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"Universidade Federal de Minas Gerais",country:{name:"Brazil"}}},{id:"47940",title:"Dr.",name:"Alberto",middleName:null,surname:"Mantovani",slug:"alberto-mantovani",fullName:"Alberto Mantovani",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:null},{id:"12392",title:"Mr.",name:"Alex",middleName:null,surname:"Lazinica",slug:"alex-lazinica",fullName:"Alex Lazinica",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/12392/images/7282_n.png",biography:"Alex Lazinica is the founder and CEO of IntechOpen. After obtaining a Master's degree in Mechanical Engineering, he continued his PhD studies in Robotics at the Vienna University of Technology. Here he worked as a robotic researcher with the university's Intelligent Manufacturing Systems Group as well as a guest researcher at various European universities, including the Swiss Federal Institute of Technology Lausanne (EPFL). During this time he published more than 20 scientific papers, gave presentations, served as a reviewer for major robotic journals and conferences and most importantly he co-founded and built the International Journal of Advanced Robotic Systems- world's first Open Access journal in the field of robotics. Starting this journal was a pivotal point in his career, since it was a pathway to founding IntechOpen - Open Access publisher focused on addressing academic researchers needs. Alex is a personification of IntechOpen key values being trusted, open and entrepreneurial. Today his focus is on defining the growth and development strategy for the company.",institutionString:null,institution:{name:"TU Wien",country:{name:"Austria"}}},{id:"19816",title:"Prof.",name:"Alexander",middleName:null,surname:"Kokorin",slug:"alexander-kokorin",fullName:"Alexander Kokorin",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/19816/images/1607_n.jpg",biography:"Alexander I. Kokorin: born: 1947, Moscow; DSc., PhD; Principal Research Fellow (Research Professor) of Department of Kinetics and Catalysis, N. Semenov Institute of Chemical Physics, Russian Academy of Sciences, Moscow.\r\nArea of research interests: physical chemistry of complex-organized molecular and nanosized systems, including polymer-metal complexes; the surface of doped oxide semiconductors. He is an expert in structural, absorptive, catalytic and photocatalytic properties, in structural organization and dynamic features of ionic liquids, in magnetic interactions between paramagnetic centers. The author or co-author of 3 books, over 200 articles and reviews in scientific journals and books. He is an actual member of the International EPR/ESR Society, European Society on Quantum Solar Energy Conversion, Moscow House of Scientists, of the Board of Moscow Physical Society.",institutionString:null,institution:{name:"Semenov Institute of Chemical Physics",country:{name:"Russia"}}},{id:"62389",title:"PhD.",name:"Ali Demir",middleName:null,surname:"Sezer",slug:"ali-demir-sezer",fullName:"Ali Demir Sezer",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/62389/images/3413_n.jpg",biography:"Dr. Ali Demir Sezer has a Ph.D. from Pharmaceutical Biotechnology at the Faculty of Pharmacy, University of Marmara (Turkey). He is the member of many Pharmaceutical Associations and acts as a reviewer of scientific journals and European projects under different research areas such as: drug delivery systems, nanotechnology and pharmaceutical biotechnology. Dr. Sezer is the author of many scientific publications in peer-reviewed journals and poster communications. Focus of his research activity is drug delivery, physico-chemical characterization and biological evaluation of biopolymers micro and nanoparticles as modified drug delivery system, and colloidal drug carriers (liposomes, nanoparticles etc.).",institutionString:null,institution:{name:"Marmara University",country:{name:"Turkey"}}},{id:"61051",title:"Prof.",name:"Andrea",middleName:null,surname:"Natale",slug:"andrea-natale",fullName:"Andrea Natale",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:null},{id:"100762",title:"Prof.",name:"Andrea",middleName:null,surname:"Natale",slug:"andrea-natale",fullName:"Andrea Natale",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"St David's Medical Center",country:{name:"United States of America"}}},{id:"107416",title:"Dr.",name:"Andrea",middleName:null,surname:"Natale",slug:"andrea-natale",fullName:"Andrea Natale",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"Texas Cardiac Arrhythmia",country:{name:"United States of America"}}},{id:"64434",title:"Dr.",name:"Angkoon",middleName:null,surname:"Phinyomark",slug:"angkoon-phinyomark",fullName:"Angkoon Phinyomark",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/64434/images/2619_n.jpg",biography:"My name is Angkoon Phinyomark. I received a B.Eng. degree in Computer Engineering with First Class Honors in 2008 from Prince of Songkla University, Songkhla, Thailand, where I received a Ph.D. degree in Electrical Engineering. My research interests are primarily in the area of biomedical signal processing and classification notably EMG (electromyography signal), EOG (electrooculography signal), and EEG (electroencephalography signal), image analysis notably breast cancer analysis and optical coherence tomography, and rehabilitation engineering. I became a student member of IEEE in 2008. During October 2011-March 2012, I had worked at School of Computer Science and Electronic Engineering, University of Essex, Colchester, Essex, United Kingdom. In addition, during a B.Eng. I had been a visiting research student at Faculty of Computer Science, University of Murcia, Murcia, Spain for three months.\n\nI have published over 40 papers during 5 years in refereed journals, books, and conference proceedings in the areas of electro-physiological signals processing and classification, notably EMG and EOG signals, fractal analysis, wavelet analysis, texture analysis, feature extraction and machine learning algorithms, and assistive and rehabilitative devices. I have several computer programming language certificates, i.e. Sun Certified Programmer for the Java 2 Platform 1.4 (SCJP), Microsoft Certified Professional Developer, Web Developer (MCPD), Microsoft Certified Technology Specialist, .NET Framework 2.0 Web (MCTS). I am a Reviewer for several refereed journals and international conferences, such as IEEE Transactions on Biomedical Engineering, IEEE Transactions on Industrial Electronics, Optic Letters, Measurement Science Review, and also a member of the International Advisory Committee for 2012 IEEE Business Engineering and Industrial Applications and 2012 IEEE Symposium on Business, Engineering and Industrial Applications.",institutionString:null,institution:{name:"Joseph Fourier University",country:{name:"France"}}},{id:"55578",title:"Dr.",name:"Antonio",middleName:null,surname:"Jurado-Navas",slug:"antonio-jurado-navas",fullName:"Antonio Jurado-Navas",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/55578/images/4574_n.png",biography:"Antonio Jurado-Navas received the M.S. degree (2002) and the Ph.D. degree (2009) in Telecommunication Engineering, both from the University of Málaga (Spain). He first worked as a consultant at Vodafone-Spain. From 2004 to 2011, he was a Research Assistant with the Communications Engineering Department at the University of Málaga. In 2011, he became an Assistant Professor in the same department. From 2012 to 2015, he was with Ericsson Spain, where he was working on geo-location\ntools for third generation mobile networks. Since 2015, he is a Marie-Curie fellow at the Denmark Technical University. His current research interests include the areas of mobile communication systems and channel modeling in addition to atmospheric optical communications, adaptive optics and statistics",institutionString:null,institution:{name:"University of Malaga",country:{name:"Spain"}}}],filtersByRegion:[{group:"region",caption:"North America",value:1,count:5766},{group:"region",caption:"Middle and South America",value:2,count:5228},{group:"region",caption:"Africa",value:3,count:1717},{group:"region",caption:"Asia",value:4,count:10370},{group:"region",caption:"Australia and Oceania",value:5,count:897},{group:"region",caption:"Europe",value:6,count:15791}],offset:12,limit:12,total:118192},chapterEmbeded:{data:{}},editorApplication:{success:null,errors:{}},ofsBooks:{filterParams:{hasNoEditors:"0",sort:"ebgfFaeGuveeFgfcChcyvfu"},books:[],filtersByTopic:[{group:"topic",caption:"Agricultural and Biological Sciences",value:5,count:16},{group:"topic",caption:"Biochemistry, Genetics and Molecular Biology",value:6,count:4},{group:"topic",caption:"Business, Management and Economics",value:7,count:2},{group:"topic",caption:"Chemistry",value:8,count:8},{group:"topic",caption:"Computer and Information Science",value:9,count:6},{group:"topic",caption:"Earth and Planetary Sciences",value:10,count:7},{group:"topic",caption:"Engineering",value:11,count:19},{group:"topic",caption:"Environmental Sciences",value:12,count:2},{group:"topic",caption:"Immunology and Microbiology",value:13,count:3},{group:"topic",caption:"Materials Science",value:14,count:5},{group:"topic",caption:"Mathematics",value:15,count:1},{group:"topic",caption:"Medicine",value:16,count:24},{group:"topic",caption:"Neuroscience",value:18,count:2},{group:"topic",caption:"Pharmacology, Toxicology and Pharmaceutical Science",value:19,count:3},{group:"topic",caption:"Physics",value:20,count:3},{group:"topic",caption:"Psychology",value:21,count:4},{group:"topic",caption:"Robotics",value:22,count:1},{group:"topic",caption:"Social Sciences",value:23,count:3},{group:"topic",caption:"Technology",value:24,count:1},{group:"topic",caption:"Veterinary Medicine and Science",value:25,count:1}],offset:0,limit:12,total:null},popularBooks:{featuredBooks:[{type:"book",id:"9385",title:"Renewable Energy",subtitle:"Technologies and Applications",isOpenForSubmission:!1,hash:"a6b446d19166f17f313008e6c056f3d8",slug:"renewable-energy-technologies-and-applications",bookSignature:"Tolga Taner, Archana Tiwari and Taha Selim Ustun",coverURL:"https://cdn.intechopen.com/books/images_new/9385.jpg",editors:[{id:"197240",title:"Associate Prof.",name:"Tolga",middleName:null,surname:"Taner",slug:"tolga-taner",fullName:"Tolga Taner"}],equalEditorOne:{id:"186791",title:"Dr.",name:"Archana",middleName:null,surname:"Tiwari",slug:"archana-tiwari",fullName:"Archana Tiwari",profilePictureURL:"https://mts.intechopen.com/storage/users/186791/images/system/186791.jpg",biography:"Dr. Archana Tiwari is Associate Professor at Amity University, India. Her research interests include renewable sources of energy from microalgae and further utilizing the residual biomass for the generation of value-added products, bioremediation through microalgae and microbial consortium, antioxidative enzymes and stress, and nutraceuticals from microalgae. She has been working on algal biotechnology for the last two decades. She has published her research in many international journals and has authored many books and chapters with renowned publishing houses. She has also delivered talks as an invited speaker at many national and international conferences. Dr. Tiwari is the recipient of several awards including Researcher of the Year and Distinguished Scientist.",institutionString:"Amity University",position:null,outsideEditionCount:0,totalCites:0,totalAuthoredChapters:"3",totalChapterViews:"0",totalEditedBooks:"1",institution:{name:"Amity University",institutionURL:null,country:{name:"India"}}},equalEditorTwo:{id:"197609",title:"Prof.",name:"Taha Selim",middleName:null,surname:"Ustun",slug:"taha-selim-ustun",fullName:"Taha Selim Ustun",profilePictureURL:"https://mts.intechopen.com/storage/users/197609/images/system/197609.jpeg",biography:"Dr. Taha Selim Ustun received a Ph.D. in Electrical Engineering from Victoria University, Melbourne, Australia. He is a researcher with the Fukushima Renewable Energy Institute, AIST (FREA), where he leads the Smart Grid Cybersecurity Laboratory. Prior to that, he was a faculty member with the School of Electrical and Computer Engineering, Carnegie Mellon University, Pittsburgh, PA, USA. His current research interests include power systems protection, communication in power networks, distributed generation, microgrids, electric vehicle integration, and cybersecurity in smart grids. He serves on the editorial boards of IEEE Access, IEEE Transactions on Industrial Informatics, Energies, Electronics, Electricity, World Electric Vehicle and Information journals. Dr. Ustun is a member of the IEEE 2004 and 2800, IEC Renewable Energy Management WG 8, and IEC TC 57 WG17. He has been invited to run specialist courses in Africa, India, and China. He has delivered talks for the Qatar Foundation, the World Energy Council, the Waterloo Global Science Initiative, and the European Union Energy Initiative (EUEI). His research has attracted funding from prestigious programs in Japan, Australia, the European Union, and North America.",institutionString:"Fukushima Renewable Energy Institute, AIST (FREA)",position:null,outsideEditionCount:0,totalCites:0,totalAuthoredChapters:"1",totalChapterViews:"0",totalEditedBooks:"0",institution:{name:"National Institute of Advanced Industrial Science and Technology",institutionURL:null,country:{name:"Japan"}}},equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10065",title:"Wavelet Theory",subtitle:null,isOpenForSubmission:!1,hash:"d8868e332169597ba2182d9b004d60de",slug:"wavelet-theory",bookSignature:"Somayeh Mohammady",coverURL:"https://cdn.intechopen.com/books/images_new/10065.jpg",editors:[{id:"109280",title:"Dr.",name:"Somayeh",middleName:null,surname:"Mohammady",slug:"somayeh-mohammady",fullName:"Somayeh Mohammady"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9644",title:"Glaciers and the Polar Environment",subtitle:null,isOpenForSubmission:!1,hash:"e8cfdc161794e3753ced54e6ff30873b",slug:"glaciers-and-the-polar-environment",bookSignature:"Masaki Kanao, Danilo Godone and Niccolò Dematteis",coverURL:"https://cdn.intechopen.com/books/images_new/9644.jpg",editors:[{id:"51959",title:"Dr.",name:"Masaki",middleName:null,surname:"Kanao",slug:"masaki-kanao",fullName:"Masaki Kanao"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"8985",title:"Natural Resources Management and Biological Sciences",subtitle:null,isOpenForSubmission:!1,hash:"5c2e219a6c021a40b5a20c041dea88c4",slug:"natural-resources-management-and-biological-sciences",bookSignature:"Edward R. Rhodes and Humood Naser",coverURL:"https://cdn.intechopen.com/books/images_new/8985.jpg",editors:[{id:"280886",title:"Prof.",name:"Edward R",middleName:null,surname:"Rhodes",slug:"edward-r-rhodes",fullName:"Edward R Rhodes"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9671",title:"Macrophages",subtitle:null,isOpenForSubmission:!1,hash:"03b00fdc5f24b71d1ecdfd75076bfde6",slug:"macrophages",bookSignature:"Hridayesh Prakash",coverURL:"https://cdn.intechopen.com/books/images_new/9671.jpg",editors:[{id:"287184",title:"Dr.",name:"Hridayesh",middleName:null,surname:"Prakash",slug:"hridayesh-prakash",fullName:"Hridayesh Prakash"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9313",title:"Clay Science and Technology",subtitle:null,isOpenForSubmission:!1,hash:"6fa7e70396ff10620e032bb6cfa6fb72",slug:"clay-science-and-technology",bookSignature:"Gustavo Morari Do Nascimento",coverURL:"https://cdn.intechopen.com/books/images_new/9313.jpg",editors:[{id:"7153",title:"Prof.",name:"Gustavo",middleName:null,surname:"Morari Do Nascimento",slug:"gustavo-morari-do-nascimento",fullName:"Gustavo Morari Do Nascimento"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9888",title:"Nuclear Power Plants",subtitle:"The Processes from the Cradle to the Grave",isOpenForSubmission:!1,hash:"c2c8773e586f62155ab8221ebb72a849",slug:"nuclear-power-plants-the-processes-from-the-cradle-to-the-grave",bookSignature:"Nasser Awwad",coverURL:"https://cdn.intechopen.com/books/images_new/9888.jpg",editors:[{id:"145209",title:"Prof.",name:"Nasser",middleName:"S",surname:"Awwad",slug:"nasser-awwad",fullName:"Nasser Awwad"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9027",title:"Human Blood Group Systems and Haemoglobinopathies",subtitle:null,isOpenForSubmission:!1,hash:"d00d8e40b11cfb2547d1122866531c7e",slug:"human-blood-group-systems-and-haemoglobinopathies",bookSignature:"Osaro Erhabor and Anjana Munshi",coverURL:"https://cdn.intechopen.com/books/images_new/9027.jpg",editors:[{id:"35140",title:null,name:"Osaro",middleName:null,surname:"Erhabor",slug:"osaro-erhabor",fullName:"Osaro Erhabor"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"7841",title:"New Insights Into Metabolic Syndrome",subtitle:null,isOpenForSubmission:!1,hash:"ef5accfac9772b9e2c9eff884f085510",slug:"new-insights-into-metabolic-syndrome",bookSignature:"Akikazu Takada",coverURL:"https://cdn.intechopen.com/books/images_new/7841.jpg",editors:[{id:"248459",title:"Dr.",name:"Akikazu",middleName:null,surname:"Takada",slug:"akikazu-takada",fullName:"Akikazu Takada"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"8558",title:"Aerodynamics",subtitle:null,isOpenForSubmission:!1,hash:"db7263fc198dfb539073ba0260a7f1aa",slug:"aerodynamics",bookSignature:"Mofid Gorji-Bandpy and Aly-Mousaad Aly",coverURL:"https://cdn.intechopen.com/books/images_new/8558.jpg",editors:[{id:"35542",title:"Prof.",name:"Mofid",middleName:null,surname:"Gorji-Bandpy",slug:"mofid-gorji-bandpy",fullName:"Mofid Gorji-Bandpy"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"7847",title:"Medical Toxicology",subtitle:null,isOpenForSubmission:!1,hash:"db9b65bea093de17a0855a1b27046247",slug:"medical-toxicology",bookSignature:"Pınar Erkekoglu and Tomohisa Ogawa",coverURL:"https://cdn.intechopen.com/books/images_new/7847.jpg",editors:[{id:"109978",title:"Prof.",name:"Pınar",middleName:null,surname:"Erkekoglu",slug:"pinar-erkekoglu",fullName:"Pınar Erkekoglu"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10432",title:"Casting Processes and Modelling of Metallic Materials",subtitle:null,isOpenForSubmission:!1,hash:"2c5c9df938666bf5d1797727db203a6d",slug:"casting-processes-and-modelling-of-metallic-materials",bookSignature:"Zakaria Abdallah and Nada Aldoumani",coverURL:"https://cdn.intechopen.com/books/images_new/10432.jpg",editors:[{id:"201670",title:"Dr.",name:"Zak",middleName:null,surname:"Abdallah",slug:"zak-abdallah",fullName:"Zak Abdallah"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}}],offset:12,limit:12,total:5240},hotBookTopics:{hotBooks:[],offset:0,limit:12,total:null},publish:{},publishingProposal:{success:null,errors:{}},books:{featuredBooks:[{type:"book",id:"10065",title:"Wavelet Theory",subtitle:null,isOpenForSubmission:!1,hash:"d8868e332169597ba2182d9b004d60de",slug:"wavelet-theory",bookSignature:"Somayeh Mohammady",coverURL:"https://cdn.intechopen.com/books/images_new/10065.jpg",editors:[{id:"109280",title:"Dr.",name:"Somayeh",middleName:null,surname:"Mohammady",slug:"somayeh-mohammady",fullName:"Somayeh Mohammady"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9644",title:"Glaciers and the Polar Environment",subtitle:null,isOpenForSubmission:!1,hash:"e8cfdc161794e3753ced54e6ff30873b",slug:"glaciers-and-the-polar-environment",bookSignature:"Masaki Kanao, Danilo Godone and Niccolò Dematteis",coverURL:"https://cdn.intechopen.com/books/images_new/9644.jpg",editors:[{id:"51959",title:"Dr.",name:"Masaki",middleName:null,surname:"Kanao",slug:"masaki-kanao",fullName:"Masaki Kanao"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9385",title:"Renewable Energy",subtitle:"Technologies and Applications",isOpenForSubmission:!1,hash:"a6b446d19166f17f313008e6c056f3d8",slug:"renewable-energy-technologies-and-applications",bookSignature:"Tolga Taner, Archana Tiwari and Taha Selim Ustun",coverURL:"https://cdn.intechopen.com/books/images_new/9385.jpg",editors:[{id:"197240",title:"Associate Prof.",name:"Tolga",middleName:null,surname:"Taner",slug:"tolga-taner",fullName:"Tolga Taner"}],equalEditorOne:{id:"186791",title:"Dr.",name:"Archana",middleName:null,surname:"Tiwari",slug:"archana-tiwari",fullName:"Archana Tiwari",profilePictureURL:"https://mts.intechopen.com/storage/users/186791/images/system/186791.jpg",biography:"Dr. Archana Tiwari is Associate Professor at Amity University, India. Her research interests include renewable sources of energy from microalgae and further utilizing the residual biomass for the generation of value-added products, bioremediation through microalgae and microbial consortium, antioxidative enzymes and stress, and nutraceuticals from microalgae. She has been working on algal biotechnology for the last two decades. She has published her research in many international journals and has authored many books and chapters with renowned publishing houses. She has also delivered talks as an invited speaker at many national and international conferences. Dr. Tiwari is the recipient of several awards including Researcher of the Year and Distinguished Scientist.",institutionString:"Amity University",position:null,outsideEditionCount:0,totalCites:0,totalAuthoredChapters:"3",totalChapterViews:"0",totalEditedBooks:"1",institution:{name:"Amity University",institutionURL:null,country:{name:"India"}}},equalEditorTwo:{id:"197609",title:"Prof.",name:"Taha Selim",middleName:null,surname:"Ustun",slug:"taha-selim-ustun",fullName:"Taha Selim Ustun",profilePictureURL:"https://mts.intechopen.com/storage/users/197609/images/system/197609.jpeg",biography:"Dr. Taha Selim Ustun received a Ph.D. in Electrical Engineering from Victoria University, Melbourne, Australia. He is a researcher with the Fukushima Renewable Energy Institute, AIST (FREA), where he leads the Smart Grid Cybersecurity Laboratory. Prior to that, he was a faculty member with the School of Electrical and Computer Engineering, Carnegie Mellon University, Pittsburgh, PA, USA. His current research interests include power systems protection, communication in power networks, distributed generation, microgrids, electric vehicle integration, and cybersecurity in smart grids. He serves on the editorial boards of IEEE Access, IEEE Transactions on Industrial Informatics, Energies, Electronics, Electricity, World Electric Vehicle and Information journals. Dr. Ustun is a member of the IEEE 2004 and 2800, IEC Renewable Energy Management WG 8, and IEC TC 57 WG17. He has been invited to run specialist courses in Africa, India, and China. He has delivered talks for the Qatar Foundation, the World Energy Council, the Waterloo Global Science Initiative, and the European Union Energy Initiative (EUEI). His research has attracted funding from prestigious programs in Japan, Australia, the European Union, and North America.",institutionString:"Fukushima Renewable Energy Institute, AIST (FREA)",position:null,outsideEditionCount:0,totalCites:0,totalAuthoredChapters:"1",totalChapterViews:"0",totalEditedBooks:"0",institution:{name:"National Institute of Advanced Industrial Science and Technology",institutionURL:null,country:{name:"Japan"}}},equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"8985",title:"Natural Resources Management and Biological Sciences",subtitle:null,isOpenForSubmission:!1,hash:"5c2e219a6c021a40b5a20c041dea88c4",slug:"natural-resources-management-and-biological-sciences",bookSignature:"Edward R. Rhodes and Humood Naser",coverURL:"https://cdn.intechopen.com/books/images_new/8985.jpg",editors:[{id:"280886",title:"Prof.",name:"Edward R",middleName:null,surname:"Rhodes",slug:"edward-r-rhodes",fullName:"Edward R Rhodes"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9671",title:"Macrophages",subtitle:null,isOpenForSubmission:!1,hash:"03b00fdc5f24b71d1ecdfd75076bfde6",slug:"macrophages",bookSignature:"Hridayesh Prakash",coverURL:"https://cdn.intechopen.com/books/images_new/9671.jpg",editors:[{id:"287184",title:"Dr.",name:"Hridayesh",middleName:null,surname:"Prakash",slug:"hridayesh-prakash",fullName:"Hridayesh Prakash"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9313",title:"Clay Science and Technology",subtitle:null,isOpenForSubmission:!1,hash:"6fa7e70396ff10620e032bb6cfa6fb72",slug:"clay-science-and-technology",bookSignature:"Gustavo Morari Do Nascimento",coverURL:"https://cdn.intechopen.com/books/images_new/9313.jpg",editors:[{id:"7153",title:"Prof.",name:"Gustavo",middleName:null,surname:"Morari Do Nascimento",slug:"gustavo-morari-do-nascimento",fullName:"Gustavo Morari Do Nascimento"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9888",title:"Nuclear Power Plants",subtitle:"The Processes from the Cradle to the Grave",isOpenForSubmission:!1,hash:"c2c8773e586f62155ab8221ebb72a849",slug:"nuclear-power-plants-the-processes-from-the-cradle-to-the-grave",bookSignature:"Nasser Awwad",coverURL:"https://cdn.intechopen.com/books/images_new/9888.jpg",editors:[{id:"145209",title:"Prof.",name:"Nasser",middleName:"S",surname:"Awwad",slug:"nasser-awwad",fullName:"Nasser Awwad"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9027",title:"Human Blood Group Systems and Haemoglobinopathies",subtitle:null,isOpenForSubmission:!1,hash:"d00d8e40b11cfb2547d1122866531c7e",slug:"human-blood-group-systems-and-haemoglobinopathies",bookSignature:"Osaro Erhabor and Anjana Munshi",coverURL:"https://cdn.intechopen.com/books/images_new/9027.jpg",editors:[{id:"35140",title:null,name:"Osaro",middleName:null,surname:"Erhabor",slug:"osaro-erhabor",fullName:"Osaro Erhabor"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10432",title:"Casting Processes and Modelling of Metallic Materials",subtitle:null,isOpenForSubmission:!1,hash:"2c5c9df938666bf5d1797727db203a6d",slug:"casting-processes-and-modelling-of-metallic-materials",bookSignature:"Zakaria Abdallah and Nada Aldoumani",coverURL:"https://cdn.intechopen.com/books/images_new/10432.jpg",editors:[{id:"201670",title:"Dr.",name:"Zak",middleName:null,surname:"Abdallah",slug:"zak-abdallah",fullName:"Zak Abdallah"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"7841",title:"New Insights Into Metabolic Syndrome",subtitle:null,isOpenForSubmission:!1,hash:"ef5accfac9772b9e2c9eff884f085510",slug:"new-insights-into-metabolic-syndrome",bookSignature:"Akikazu Takada",coverURL:"https://cdn.intechopen.com/books/images_new/7841.jpg",editors:[{id:"248459",title:"Dr.",name:"Akikazu",middleName:null,surname:"Takada",slug:"akikazu-takada",fullName:"Akikazu Takada"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}}],latestBooks:[{type:"book",id:"9243",title:"Coastal Environments",subtitle:null,isOpenForSubmission:!1,hash:"8e05e5f631e935eef366980f2e28295d",slug:"coastal-environments",bookSignature:"Yuanzhi Zhang and X. San Liang",coverURL:"https://cdn.intechopen.com/books/images_new/9243.jpg",editedByType:"Edited by",editors:[{id:"77597",title:"Prof.",name:"Yuanzhi",middleName:null,surname:"Zhang",slug:"yuanzhi-zhang",fullName:"Yuanzhi Zhang"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10020",title:"Operations Management",subtitle:"Emerging Trend in the Digital Era",isOpenForSubmission:!1,hash:"526f0dbdc7e4d85b82ce8383ab894b4c",slug:"operations-management-emerging-trend-in-the-digital-era",bookSignature:"Antonella Petrillo, Fabio De Felice, Germano Lambert-Torres and Erik Bonaldi",coverURL:"https://cdn.intechopen.com/books/images_new/10020.jpg",editedByType:"Edited by",editors:[{id:"181603",title:"Dr.",name:"Antonella",middleName:null,surname:"Petrillo",slug:"antonella-petrillo",fullName:"Antonella Petrillo"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"9521",title:"Antimicrobial Resistance",subtitle:"A One Health Perspective",isOpenForSubmission:!1,hash:"30949e78832e1afba5606634b52056ab",slug:"antimicrobial-resistance-a-one-health-perspective",bookSignature:"Mihai Mareș, Swee Hua Erin Lim, Kok-Song Lai and Romeo-Teodor Cristina",coverURL:"https://cdn.intechopen.com/books/images_new/9521.jpg",editedByType:"Edited by",editors:[{id:"88785",title:"Prof.",name:"Mihai",middleName:null,surname:"Mares",slug:"mihai-mares",fullName:"Mihai Mares"}],equalEditorOne:{id:"190224",title:"Dr.",name:"Swee Hua Erin",middleName:null,surname:"Lim",slug:"swee-hua-erin-lim",fullName:"Swee Hua Erin Lim",profilePictureURL:"https://mts.intechopen.com/storage/users/190224/images/system/190224.png",biography:"Dr. Erin Lim is presently working as an Assistant Professor in the Division of Health Sciences, Abu Dhabi Women\\'s College, Higher Colleges of Technology in Abu Dhabi, United Arab Emirates and is affiliated as an Associate Professor to Perdana University-Royal College of Surgeons in Ireland, Selangor, Malaysia. She obtained her Ph.D. from Universiti Putra Malaysia in 2010 with a National Science Fellowship awarded from the Ministry of Science, Technology and Innovation Malaysia and has been actively involved in research ever since. Her main research interests include analysis of carriage and transmission of multidrug resistant bacteria in non-conventional settings, besides an interest in natural products for antimicrobial testing. She is heavily involved in the elucidation of mechanisms of reversal of resistance in bacteria in addition to investigating the immunological analyses of diseases, development of vaccination and treatment models in animals. She hopes her work will support the discovery of therapeutics in the clinical setting and assist in the combat against the burden of antibiotic resistance.",institutionString:"Abu Dhabi Women’s College",position:null,outsideEditionCount:0,totalCites:0,totalAuthoredChapters:"3",totalChapterViews:"0",totalEditedBooks:"0",institution:{name:"Perdana University",institutionURL:null,country:{name:"Malaysia"}}},equalEditorTwo:{id:"221544",title:"Dr.",name:"Kok-Song",middleName:null,surname:"Lai",slug:"kok-song-lai",fullName:"Kok-Song Lai",profilePictureURL:"https://mts.intechopen.com/storage/users/221544/images/system/221544.jpeg",biography:"Dr. Lai Kok Song is an Assistant Professor in the Division of Health Sciences, Abu Dhabi Women\\'s College, Higher Colleges of Technology in Abu Dhabi, United Arab Emirates. He obtained his Ph.D. in Biological Sciences from Nara Institute of Science and Technology, Japan in 2012. Prior to his academic appointment, Dr. Lai worked as a Senior Scientist at the Ministry of Science, Technology and Innovation, Malaysia. His current research areas include antimicrobial resistance and plant-pathogen interaction. His particular interest lies in the study of the antimicrobial mechanism via membrane disruption of essential oils against multi-drug resistance bacteria through various biochemical, molecular and proteomic approaches. Ultimately, he hopes to uncover and determine novel biomarkers related to antibiotic resistance that can be developed into new therapeutic strategies.",institutionString:"Higher Colleges of Technology",position:null,outsideEditionCount:0,totalCites:0,totalAuthoredChapters:"8",totalChapterViews:"0",totalEditedBooks:"0",institution:{name:"Higher Colleges of Technology",institutionURL:null,country:{name:"United Arab Emirates"}}},equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"9560",title:"Creativity",subtitle:"A Force to Innovation",isOpenForSubmission:!1,hash:"58f740bc17807d5d88d647c525857b11",slug:"creativity-a-force-to-innovation",bookSignature:"Pooja Jain",coverURL:"https://cdn.intechopen.com/books/images_new/9560.jpg",editedByType:"Edited by",editors:[{id:"316765",title:"Dr.",name:"Pooja",middleName:null,surname:"Jain",slug:"pooja-jain",fullName:"Pooja Jain"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"9669",title:"Recent Advances in Rice Research",subtitle:null,isOpenForSubmission:!1,hash:"12b06cc73e89af1e104399321cc16a75",slug:"recent-advances-in-rice-research",bookSignature:"Mahmood-ur- Rahman Ansari",coverURL:"https://cdn.intechopen.com/books/images_new/9669.jpg",editedByType:"Edited by",editors:[{id:"185476",title:"Dr.",name:"Mahmood-Ur-",middleName:null,surname:"Rahman Ansari",slug:"mahmood-ur-rahman-ansari",fullName:"Mahmood-Ur- Rahman Ansari"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10192",title:"Background and Management of Muscular Atrophy",subtitle:null,isOpenForSubmission:!1,hash:"eca24028d89912b5efea56e179dff089",slug:"background-and-management-of-muscular-atrophy",bookSignature:"Julianna Cseri",coverURL:"https://cdn.intechopen.com/books/images_new/10192.jpg",editedByType:"Edited by",editors:[{id:"135579",title:"Dr.",name:"Julianna",middleName:null,surname:"Cseri",slug:"julianna-cseri",fullName:"Julianna Cseri"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"9550",title:"Entrepreneurship",subtitle:"Contemporary Issues",isOpenForSubmission:!1,hash:"9b4ac1ee5b743abf6f88495452b1e5e7",slug:"entrepreneurship-contemporary-issues",bookSignature:"Mladen Turuk",coverURL:"https://cdn.intechopen.com/books/images_new/9550.jpg",editedByType:"Edited by",editors:[{id:"319755",title:"Prof.",name:"Mladen",middleName:null,surname:"Turuk",slug:"mladen-turuk",fullName:"Mladen Turuk"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10065",title:"Wavelet Theory",subtitle:null,isOpenForSubmission:!1,hash:"d8868e332169597ba2182d9b004d60de",slug:"wavelet-theory",bookSignature:"Somayeh Mohammady",coverURL:"https://cdn.intechopen.com/books/images_new/10065.jpg",editedByType:"Edited by",editors:[{id:"109280",title:"Dr.",name:"Somayeh",middleName:null,surname:"Mohammady",slug:"somayeh-mohammady",fullName:"Somayeh Mohammady"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"9313",title:"Clay Science and Technology",subtitle:null,isOpenForSubmission:!1,hash:"6fa7e70396ff10620e032bb6cfa6fb72",slug:"clay-science-and-technology",bookSignature:"Gustavo Morari Do Nascimento",coverURL:"https://cdn.intechopen.com/books/images_new/9313.jpg",editedByType:"Edited by",editors:[{id:"7153",title:"Prof.",name:"Gustavo",middleName:null,surname:"Morari Do Nascimento",slug:"gustavo-morari-do-nascimento",fullName:"Gustavo Morari Do Nascimento"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"9888",title:"Nuclear Power Plants",subtitle:"The Processes from the Cradle to the Grave",isOpenForSubmission:!1,hash:"c2c8773e586f62155ab8221ebb72a849",slug:"nuclear-power-plants-the-processes-from-the-cradle-to-the-grave",bookSignature:"Nasser Awwad",coverURL:"https://cdn.intechopen.com/books/images_new/9888.jpg",editedByType:"Edited by",editors:[{id:"145209",title:"Prof.",name:"Nasser",middleName:"S",surname:"Awwad",slug:"nasser-awwad",fullName:"Nasser Awwad"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}}]},subject:{topic:{id:"168",title:"Biomedical Engineering",slug:"medicine-biomedical-engineering",parent:{title:"Medicine",slug:"medicine"},numberOfBooks:23,numberOfAuthorsAndEditors:789,numberOfWosCitations:1214,numberOfCrossrefCitations:521,numberOfDimensionsCitations:1306,videoUrl:null,fallbackUrl:null,description:null},booksByTopicFilter:{topicSlug:"medicine-biomedical-engineering",sort:"-publishedDate",limit:12,offset:0},booksByTopicCollection:[{type:"book",id:"9406",title:"Clinical Implementation of Bone Regeneration and Maintenance",subtitle:null,isOpenForSubmission:!1,hash:"875a140c01518fa7a9bceebd688b0147",slug:"clinical-implementation-of-bone-regeneration-and-maintenance",bookSignature:"Mike Barbeck, Nahum Rosenberg, Patrick Rider, Željka Perić Kačarević and Ole Jung",coverURL:"https://cdn.intechopen.com/books/images_new/9406.jpg",editedByType:"Edited by",editors:[{id:"204918",title:"Dr.",name:"Mike",middleName:null,surname:"Barbeck",slug:"mike-barbeck",fullName:"Mike Barbeck"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"9477",title:"Muscular Dystrophy",subtitle:"Research Updates and Therapeutic Strategies",isOpenForSubmission:!1,hash:"dd601de843019d51e1769a26cf7e1acc",slug:"muscular-dystrophy-research-updates-and-therapeutic-strategies",bookSignature:"Gisela Gaina",coverURL:"https://cdn.intechopen.com/books/images_new/9477.jpg",editedByType:"Edited by",editors:[{id:"242747",title:"Dr.",name:"Gisela",middleName:null,surname:"Gaina",slug:"gisela-gaina",fullName:"Gisela Gaina"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"8134",title:"Regenerative Medicine",subtitle:null,isOpenForSubmission:!1,hash:"2189275afd996cab432c0f5f7c5869f3",slug:"regenerative-medicine",bookSignature:"Mahmood S Choudhery",coverURL:"https://cdn.intechopen.com/books/images_new/8134.jpg",editedByType:"Edited by",editors:[{id:"187822",title:"Dr.",name:"Mahmood S",middleName:null,surname:"Choudhery",slug:"mahmood-s-choudhery",fullName:"Mahmood S Choudhery"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"8093",title:"Xenotransplantation",subtitle:"Comprehensive Study",isOpenForSubmission:!1,hash:"16d2b84272592afd80dd2575eff0546b",slug:"xenotransplantation-comprehensive-study",bookSignature:"Shuji Miyagawa",coverURL:"https://cdn.intechopen.com/books/images_new/8093.jpg",editedByType:"Edited by",editors:[{id:"73965",title:"Prof.",name:"Shuji",middleName:null,surname:"Miyagawa",slug:"shuji-miyagawa",fullName:"Shuji Miyagawa"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"7898",title:"Cartilage Tissue Engineering and Regeneration Techniques",subtitle:null,isOpenForSubmission:!1,hash:"cb87bdbe93f1269aae5c6c678c598ce7",slug:"cartilage-tissue-engineering-and-regeneration-techniques",bookSignature:"Dimitrios D. Nikolopoulos, George K. Safos and Kalpaxis Dimitrios",coverURL:"https://cdn.intechopen.com/books/images_new/7898.jpg",editedByType:"Edited by",editors:[{id:"228477",title:"Dr.",name:"Dimitrios D.",middleName:null,surname:"Nikolopoulos",slug:"dimitrios-d.-nikolopoulos",fullName:"Dimitrios D. Nikolopoulos"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"7926",title:"Biomaterial-supported Tissue Reconstruction or Regeneration",subtitle:null,isOpenForSubmission:!1,hash:"8a84bfdf7cd30b440b339fc046b155f3",slug:"biomaterial-supported-tissue-reconstruction-or-regeneration",bookSignature:"Mike Barbeck, Ole Jung, Ralf Smeets and Tadas Koržinskas",coverURL:"https://cdn.intechopen.com/books/images_new/7926.jpg",editedByType:"Edited by",editors:[{id:"204918",title:"Dr.",name:"Mike",middleName:null,surname:"Barbeck",slug:"mike-barbeck",fullName:"Mike Barbeck"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"6609",title:"Muscle Cell and Tissue",subtitle:"Current Status of Research Field",isOpenForSubmission:!1,hash:"522e700080f9e908b6b330587f0f381d",slug:"muscle-cell-and-tissue-current-status-of-research-field",bookSignature:"Kunihiro Sakuma",coverURL:"https://cdn.intechopen.com/books/images_new/6609.jpg",editedByType:"Edited by",editors:[{id:"195829",title:"Prof.",name:"Kunihiro",middleName:null,surname:"Sakuma",slug:"kunihiro-sakuma",fullName:"Kunihiro Sakuma"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"6475",title:"Tissue Regeneration",subtitle:null,isOpenForSubmission:!1,hash:"d5ed06a80f0205146aa90d158facefd1",slug:"tissue-regeneration",bookSignature:"Hussein Abdel hay El-Sayed Kaoud",coverURL:"https://cdn.intechopen.com/books/images_new/6475.jpg",editedByType:"Edited by",editors:[{id:"265070",title:"Dr.",name:"Hussein Abdelhay",middleName:null,surname:"Essayed Kaoud",slug:"hussein-abdelhay-essayed-kaoud",fullName:"Hussein Abdelhay Essayed Kaoud"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"6052",title:"Cartilage Repair and Regeneration",subtitle:null,isOpenForSubmission:!1,hash:"e4881b3685ffd70f3f4d3d2c49b1d7f6",slug:"cartilage-repair-and-regeneration",bookSignature:"Alessandro R. Zorzi and Joao Batista de Miranda",coverURL:"https://cdn.intechopen.com/books/images_new/6052.jpg",editedByType:"Edited by",editors:[{id:"80871",title:"M.D.",name:"Alessandro Rozim",middleName:null,surname:"Zorzi",slug:"alessandro-rozim-zorzi",fullName:"Alessandro Rozim Zorzi"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"5952",title:"Xenotransplantation",subtitle:"New Insights",isOpenForSubmission:!1,hash:"903df77921b8704466248d0ff5cbcdd9",slug:"xenotransplantation-new-insights",bookSignature:"Shuji Miyagawa",coverURL:"https://cdn.intechopen.com/books/images_new/5952.jpg",editedByType:"Edited by",editors:[{id:"73965",title:"Prof.",name:"Shuji",middleName:null,surname:"Miyagawa",slug:"shuji-miyagawa",fullName:"Shuji Miyagawa"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"4610",title:"Muscle Cell and Tissue",subtitle:null,isOpenForSubmission:!1,hash:"f2719cb06d2a1327298528772eacec55",slug:"muscle-cell-and-tissue",bookSignature:"Kunihiro Sakuma",coverURL:"https://cdn.intechopen.com/books/images_new/4610.jpg",editedByType:"Edited by",editors:[{id:"173502",title:"Dr.",name:"Kunihiro",middleName:null,surname:"Sakuma",slug:"kunihiro-sakuma",fullName:"Kunihiro Sakuma"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"4486",title:"Cells and Biomaterials in Regenerative Medicine",subtitle:null,isOpenForSubmission:!1,hash:"1c333e655d47208db36f2a886b49c160",slug:"cells-and-biomaterials-in-regenerative-medicine",bookSignature:"Daniel Eberli",coverURL:"https://cdn.intechopen.com/books/images_new/4486.jpg",editedByType:"Edited by",editors:[{id:"6495",title:"Dr.",name:"Daniel",middleName:null,surname:"Eberli",slug:"daniel-eberli",fullName:"Daniel Eberli"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}}],booksByTopicTotal:23,mostCitedChapters:[{id:"19013",doi:"10.5772/21983",title:"Cell Responses to Surface and Architecture of Tissue Engineering Scaffolds",slug:"cell-responses-to-surface-and-architecture-of-tissue-engineering-scaffolds",totalDownloads:9689,totalCrossrefCites:107,totalDimensionsCites:227,book:{slug:"regenerative-medicine-and-tissue-engineering-cells-and-biomaterials",title:"Regenerative Medicine and Tissue Engineering",fullTitle:"Regenerative Medicine and Tissue Engineering - Cells and Biomaterials"},signatures:"Hsin-I Chang and Yiwei Wang",authors:[{id:"45747",title:"Dr.",name:"Hsin-I",middleName:null,surname:"Chang",slug:"hsin-i-chang",fullName:"Hsin-I Chang"},{id:"53659",title:"Ms.",name:"Yiwei",middleName:null,surname:"Wang",slug:"yiwei-wang",fullName:"Yiwei Wang"}]},{id:"9798",doi:"10.5772/8581",title:"Biomaterial Scaffold Fabrication Techniques for Potential Tissue Engineering Applications",slug:"biomaterial-scaffold-fabrication-techniques-for-potential-tissue-engineering-applications",totalDownloads:14402,totalCrossrefCites:48,totalDimensionsCites:113,book:{slug:"tissue-engineering",title:"Tissue Engineering",fullTitle:"Tissue Engineering"},signatures:"B. Subia, J. Kundu and S. C. Kundu",authors:null},{id:"23660",doi:"10.5772/25476",title:"Scaffolds for Tissue Engineering Via Thermally Induced Phase Separation",slug:"scaffolds-for-tissue-engineering-via-thermally-induced-phase-separation",totalDownloads:6195,totalCrossrefCites:6,totalDimensionsCites:32,book:{slug:"advances-in-regenerative-medicine",title:"Advances in Regenerative Medicine",fullTitle:"Advances in Regenerative Medicine"},signatures:"Carlos A. Martínez-Pérez, Imelda Olivas-Armendariz, Javier S. Castro-Carmona and Perla E. García-Casillas",authors:[{id:"63450",title:"Dr.",name:"Carlos Alberto",middleName:null,surname:"Martínez-Pérez",slug:"carlos-alberto-martinez-perez",fullName:"Carlos Alberto Martínez-Pérez"},{id:"104636",title:"Dr.",name:"Perla E.",middleName:null,surname:"García Casillas",slug:"perla-e.-garcia-casillas",fullName:"Perla E. García Casillas"},{id:"138316",title:"Dr.",name:"Imelda",middleName:null,surname:"Olivas-Armendariz",slug:"imelda-olivas-armendariz",fullName:"Imelda Olivas-Armendariz"},{id:"138317",title:"Dr.",name:"Javier S.",middleName:null,surname:"Castro-Carmona",slug:"javier-s.-castro-carmona",fullName:"Javier S. Castro-Carmona"}]}],mostDownloadedChaptersLast30Days:[{id:"60312",title:"The Role of Extracellular Matrix in Tissue Regeneration",slug:"the-role-of-extracellular-matrix-in-tissue-regeneration",totalDownloads:2209,totalCrossrefCites:5,totalDimensionsCites:15,book:{slug:"tissue-regeneration",title:"Tissue Regeneration",fullTitle:"Tissue Regeneration"},signatures:"Dwi Liliek Kusindarta and Hevi Wihadmadyatami",authors:null},{id:"19013",title:"Cell Responses to Surface and Architecture of Tissue Engineering Scaffolds",slug:"cell-responses-to-surface-and-architecture-of-tissue-engineering-scaffolds",totalDownloads:9692,totalCrossrefCites:109,totalDimensionsCites:227,book:{slug:"regenerative-medicine-and-tissue-engineering-cells-and-biomaterials",title:"Regenerative Medicine and Tissue Engineering",fullTitle:"Regenerative Medicine and Tissue Engineering - Cells and Biomaterials"},signatures:"Hsin-I Chang and Yiwei Wang",authors:[{id:"45747",title:"Dr.",name:"Hsin-I",middleName:null,surname:"Chang",slug:"hsin-i-chang",fullName:"Hsin-I Chang"},{id:"53659",title:"Ms.",name:"Yiwei",middleName:null,surname:"Wang",slug:"yiwei-wang",fullName:"Yiwei Wang"}]},{id:"47782",title:"Mass Production of Mesenchymal Stem Cells — Impact of Bioreactor Design and Flow Conditions on Proliferation and Differentiation",slug:"mass-production-of-mesenchymal-stem-cells-impact-of-bioreactor-design-and-flow-conditions-on-prolife",totalDownloads:4515,totalCrossrefCites:8,totalDimensionsCites:15,book:{slug:"cells-and-biomaterials-in-regenerative-medicine",title:"Cells and Biomaterials in Regenerative Medicine",fullTitle:"Cells and Biomaterials in Regenerative Medicine"},signatures:"Valentin Jossen, Ralf Pörtner, Stephan C. Kaiser, Matthias Kraume,\nDieter Eibl and Regine Eibl",authors:[{id:"52441",title:"Prof.",name:"Dieter",middleName:null,surname:"Eibl",slug:"dieter-eibl",fullName:"Dieter Eibl"},{id:"171203",title:"Prof.",name:"Ralf",middleName:null,surname:"Pörtner",slug:"ralf-portner",fullName:"Ralf Pörtner"},{id:"171347",title:"Prof.",name:"Regine",middleName:null,surname:"Eibl",slug:"regine-eibl",fullName:"Regine Eibl"},{id:"171348",title:"M.Sc.",name:"Valentin",middleName:null,surname:"Jossen",slug:"valentin-jossen",fullName:"Valentin Jossen"}]},{id:"34830",title:"Augmentation and Preservation of the Alveolar Process and Alveolar Ridge of Bone",slug:"augmentation-and-preservation-of-the-alveolar-process-and-alveolar-ridge-of-bone",totalDownloads:7854,totalCrossrefCites:3,totalDimensionsCites:6,book:{slug:"bone-regeneration",title:"Bone Regeneration",fullTitle:"Bone Regeneration"},signatures:"Haim Tal, Zvi Artzi, Roni Kolerman, Ilan Beitlitum and Gal Goshen",authors:[{id:"97351",title:"Prof.",name:"Haim",middleName:null,surname:"Tal",slug:"haim-tal",fullName:"Haim Tal"},{id:"128141",title:"Prof.",name:"Zvi",middleName:null,surname:"Artzi",slug:"zvi-artzi",fullName:"Zvi Artzi"},{id:"129173",title:"Dr.",name:"Roni",middleName:null,surname:"Kolerman",slug:"roni-kolerman",fullName:"Roni Kolerman"},{id:"129175",title:"Dr.",name:"Ilan",middleName:null,surname:"Beitelthum",slug:"ilan-beitelthum",fullName:"Ilan Beitelthum"},{id:"129176",title:"Dr.",name:"Gal",middleName:null,surname:"Goshen",slug:"gal-goshen",fullName:"Gal Goshen"}]},{id:"9794",title:"High Resolution X-Ray Tomography - 3D Imaging for Tissue Engineering Applications",slug:"high-resolution-x-ray-tomography-3d-imaging-for-tissue-engineering-applications",totalDownloads:3678,totalCrossrefCites:2,totalDimensionsCites:2,book:{slug:"tissue-engineering",title:"Tissue Engineering",fullTitle:"Tissue Engineering"},signatures:"Zehbe Rolf, Haibel Astrid, Schmidt Franziska, Riesemeier Heinrich, Kirkpatrick C. James, Schubert Helmut and Brochhausen Christoph",authors:null},{id:"44652",title:"Tissue Engineered Animal Sparing Models for the Study of Joint and Muscle Diseases",slug:"tissue-engineered-animal-sparing-models-for-the-study-of-joint-and-muscle-diseases",totalDownloads:1931,totalCrossrefCites:1,totalDimensionsCites:1,book:{slug:"regenerative-medicine-and-tissue-engineering",title:"Regenerative Medicine and Tissue Engineering",fullTitle:"Regenerative Medicine and Tissue Engineering"},signatures:"Ali Mobasheri and Mark Lewis",authors:[{id:"53525",title:"Prof.",name:"Ali",middleName:null,surname:"Mobasheri",slug:"ali-mobasheri",fullName:"Ali Mobasheri"},{id:"163371",title:"Prof.",name:"Mark",middleName:null,surname:"Lewis",slug:"mark-lewis",fullName:"Mark Lewis"}]},{id:"65590",title:"Current Tissue Engineering Approaches for Cartilage Regeneration",slug:"current-tissue-engineering-approaches-for-cartilage-regeneration",totalDownloads:1239,totalCrossrefCites:6,totalDimensionsCites:9,book:{slug:"cartilage-tissue-engineering-and-regeneration-techniques",title:"Cartilage Tissue Engineering and Regeneration Techniques",fullTitle:"Cartilage Tissue Engineering and Regeneration Techniques"},signatures:"He Huang, Hongyao Xu and Jianying Zhang",authors:[{id:"274274",title:"Associate Prof.",name:"Jianying",middleName:null,surname:"Zhang",slug:"jianying-zhang",fullName:"Jianying Zhang"},{id:"290437",title:"Dr.",name:"He",middleName:null,surname:"Huang",slug:"he-huang",fullName:"He Huang"},{id:"290447",title:"Dr.",name:"Hongyao",middleName:null,surname:"Xu",slug:"hongyao-xu",fullName:"Hongyao Xu"}]},{id:"65513",title:"Innovative Biomaterials for Tissue Engineering",slug:"innovative-biomaterials-for-tissue-engineering",totalDownloads:942,totalCrossrefCites:1,totalDimensionsCites:6,book:{slug:"biomaterial-supported-tissue-reconstruction-or-regeneration",title:"Biomaterial-supported Tissue Reconstruction or Regeneration",fullTitle:"Biomaterial-supported Tissue Reconstruction or Regeneration"},signatures:"Anna Dolcimascolo, Giovanna Calabrese, Sabrina Conoci and Rosalba Parenti",authors:[{id:"272544",title:"Prof.",name:"Rosalba",middleName:null,surname:"Parenti",slug:"rosalba-parenti",fullName:"Rosalba Parenti"},{id:"273282",title:"Dr.",name:"Anna",middleName:null,surname:"Dolcimascolo",slug:"anna-dolcimascolo",fullName:"Anna Dolcimascolo"},{id:"273283",title:"Dr.",name:"Giovanna",middleName:null,surname:"Calabrese",slug:"giovanna-calabrese",fullName:"Giovanna Calabrese"},{id:"283275",title:"Dr.",name:"Sabrina",middleName:null,surname:"Conoci",slug:"sabrina-conoci",fullName:"Sabrina Conoci"}]},{id:"66180",title:"Application of Bone Substitutes and Its Future Prospective in Regenerative Medicine",slug:"application-of-bone-substitutes-and-its-future-prospective-in-regenerative-medicine",totalDownloads:898,totalCrossrefCites:1,totalDimensionsCites:3,book:{slug:"biomaterial-supported-tissue-reconstruction-or-regeneration",title:"Biomaterial-supported Tissue Reconstruction or Regeneration",fullTitle:"Biomaterial-supported Tissue Reconstruction or Regeneration"},signatures:"Ujjwal Ranjan Dahiya, Sarita Mishra and Subia Bano",authors:[{id:"126760",title:"Prof.",name:"Bano",middleName:null,surname:"Subia",slug:"bano-subia",fullName:"Bano Subia"},{id:"272470",title:"Dr.",name:"Ujjwal",middleName:null,surname:"Dahiya",slug:"ujjwal-dahiya",fullName:"Ujjwal Dahiya"},{id:"272471",title:"Dr.",name:"Sarita",middleName:null,surname:"Mishra",slug:"sarita-mishra",fullName:"Sarita Mishra"}]},{id:"44120",title:"Naturally Derived Biomaterials: Preparation and Application",slug:"naturally-derived-biomaterials-preparation-and-application",totalDownloads:5584,totalCrossrefCites:10,totalDimensionsCites:15,book:{slug:"regenerative-medicine-and-tissue-engineering",title:"Regenerative Medicine and Tissue Engineering",fullTitle:"Regenerative Medicine and Tissue Engineering"},signatures:"Tran Le Bao Ha, To Minh Quan, Doan Nguyen Vu and Do Minh Si",authors:[{id:"159197",title:"Ph.D.",name:"Tran",middleName:null,surname:"Le Bao Ha",slug:"tran-le-bao-ha",fullName:"Tran Le Bao Ha"},{id:"166753",title:"MSc.",name:"To Minh",middleName:null,surname:"Quan",slug:"to-minh-quan",fullName:"To Minh Quan"},{id:"166757",title:"BSc.",name:"Doan",middleName:null,surname:"Nguyen Vu",slug:"doan-nguyen-vu",fullName:"Doan Nguyen Vu"},{id:"166760",title:"Dr.",name:"Do",middleName:null,surname:"Minh Si",slug:"do-minh-si",fullName:"Do Minh Si"}]}],onlineFirstChaptersFilter:{topicSlug:"medicine-biomedical-engineering",limit:3,offset:0},onlineFirstChaptersCollection:[],onlineFirstChaptersTotal:0},preDownload:{success:null,errors:{}},aboutIntechopen:{},privacyPolicy:{},peerReviewing:{},howOpenAccessPublishingWithIntechopenWorks:{},sponsorshipBooks:{sponsorshipBooks:[{type:"book",id:"10176",title:"Microgrids and Local Energy Systems",subtitle:null,isOpenForSubmission:!0,hash:"c32b4a5351a88f263074b0d0ca813a9c",slug:null,bookSignature:"Prof. Nick Jenkins",coverURL:"https://cdn.intechopen.com/books/images_new/10176.jpg",editedByType:null,editors:[{id:"55219",title:"Prof.",name:"Nick",middleName:null,surname:"Jenkins",slug:"nick-jenkins",fullName:"Nick Jenkins"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}}],offset:8,limit:8,total:1},route:{name:"book.detail",path:"/books/numerical-simulations-applications-examples-and-theory",hash:"",query:{},params:{book:"numerical-simulations-applications-examples-and-theory"},fullPath:"/books/numerical-simulations-applications-examples-and-theory",meta:{},from:{name:null,path:"/",hash:"",query:{},params:{},fullPath:"/",meta:{}}}},function(){var e;(e=document.currentScript||document.scripts[document.scripts.length-1]).parentNode.removeChild(e)}()