Open access peer-reviewed chapter

Malmquist Index with Time Series to Data Envelopment Analysis

Written By

Jhon Jairo Vargas Sánchez

Submitted: 22 December 2017 Reviewed: 29 January 2018 Published: 27 June 2018

DOI: 10.5772/intechopen.74571

From the Edited Volume

Multi-Criteria Methods and Techniques Applied to Supply Chain Management

Edited by Valerio A. P. Salomon

Chapter metrics overview

1,551 Chapter Downloads

View Full Metrics

Abstract

This chapter presents a new temporal data envelopment analysis (DEA) model that overcomes some weaknesses of the window analysis and Malmquist index. New model allows to work with time series. For each series the best of a set of ARIMA models is selected, and a forecast for two periods it is possible. Changes in efficiency of different decision making units (DMUs) are analyzed and the use of temporal series makes it easy to include Malmquist forecasts. The implementation of the new model in business administration or supply chain management can be useful because it considers more than two periods in contrast with classical Malmquist method, for that, control of efficiency over time is improved by changing deterministic univariate variables for time series. The last them have the structure of correlation and they get even more real modeling.

Keywords

  • data envelopment analysis
  • Malmquist index
  • DEA change over time
  • time series
  • forecast

1. Introduction

Data envelopment analysis (DEA) is a widely used methodology to evaluate the performance of different organizational systems. A good definition of DEA can be found in [1], it is a nonparametric technique used to evaluate the relative efficiencies of a set of DMUs (decision making units). Examples of DMUs can be a factories, countries, sections of factories, universities, supply chains and hospitals. For multiple applications, here are a few of the most notable, performance in healthcare sector [2], assessing the efficiency of wastewater treatment plants [3], environmental policy [4], oil refineries [5], finances institutions [6] and environmental performance [7, 8].

DEA was created by Charnes et al. [9] and the methodology consists in compares DMUs with a frontier of efficiency. The basic DEA model is the CCR (Charnes, Cooper and Rhodes). There are two CCR models, the primal form CCR and dual form CCR.

The dual form CCR is based on optimal weights (u*,v*). A linear programming obtain an optimal solution to maximize the ratio virtual-outputvirtual-input=u1y1o++usysov1x1o++vmxmo,

where s is the number of outputs, m is the number of inputs and uv are the weights (multipliers) assigned to different input and output, yjo is the jth output of DMU observed j=1s, xio is the ith input of DMU observed (i=1,,m), more details are given on [10].

The ratio above needs the constraints that the ratio of virtual output vs. virtual input should not exceed 1 for every DMU. So the complete CCR model is

θ=u1y1o++usysov1x1o++vmxmomaxu,vSubject tou1y1o++usysov1x1o++vmxmo1v1,v2,,vm0u1,u2,,um0E1

The primal form of CCR (development form) is based on distances from frontier efficiency. The following model is a primal CCR input oriented in its matrix form:

minλ,θθSubject toθxo0yoλ0λ=λ1λ2λnT,E2

where n is the number of DMUs, X and Y are the matrixes of input and output respectively, λ is a semipositive vector in Rn. In DEA theory, the construction of primal CCR needs a production possibility set (PPS). The PPS, denoted by P, has 4 properties. The 4th propertie says “Any semipositive linear combination of activities in P belongs to P”. In this property vector λ appears. But, if an intuitive explanation is wanted, vector λ helps building the frontier of efficiency. Details in [10].

In order to have a better understanding, Figure 1 shows a set of DMUs with 2 inputs and 1 output normalized to 1 (imagine it in the third dimension). Note that, in Figure 1, the frontier efficiency is formed by DMUs 3, 4, 5, 6 and 7 through λi, in this case, i=1,,7. DMUs 1 and 2 are less efficient because they need a contraction to get the frontier. DMU 1 is more efficient than DMU 2, because the distance between DMU 1 and the frontier is shorter than the distance between DMU 2 and frontier. Note the production possibility set and note that the contraction is equivalent to θ in model Eq. (2). Details in [10].

Figure 1.

DMUs, frontier efficiency and production possibility set.

The model Eq. (2) has a variation when it is output oriented. The following model is the CCR output oriented in its matrix form:

maxη,μθSubject toxo0ηyo0μ0μ=μ1μ2μnT,E3

There are many areas of research in DEA, but the most important have been classified in [11]:

  • Several model to measure efficiency. This category includes CCR input and output oriented. Several models also includes radial and non-radial models, constant return scale, variable return scale [12] and additive model [13] which combines both, input oriented and output oriented.

  • Methods with multiplier restrictions. This category includes absolute multiplier restrictions [14], cone ratio restrictions [15], assurance regions [16, 17].

  • Special considerations regarding the status of variables. The variables non-controllable and non-discretionary variables [18] are include here. It also treats ordinal variable data [19, 20, 21] and categorical variables [19].

  • Data variation. This category is divided in sensitivity analysis [23, 24, 25, 26], data uncertainty and probability-based models [27], and time series data. In the last subcategory are the Malmquist index and window analysis.

According to classification above, one of the categories in which efficiency models are classified is the named variation in the data. In this category there are two models, the based in probabilities and data in time series. The last one, also known as efficiency change over time.

In classical DEA literature, the Malmquist index (MI) and window analysis are the unique methods of DEA change over time. There is some evidence that no new temporal DEA methods have appeared, only MI and window analysis [20, 21]. In recent years, temporal Malmquist with multiple periods has studied in [22], Authors calculated MI in years 2000–2009 for environmental assessment in Europe, Asia and America. Nevertheless, in this investigation, there is no MI that gathers the historical performance in a single measure, nor does it consider time series techniques and it does not make combinations of all the possible temporary changes according to the number of periods, that is, years 2000–2001, 2000–2002, 2000-2003, …, 2000–2009, 2001–2002, 2001–2003, …, 2001–2009, …, 2008–2009. That would be an interesting revision and a new vision of a temporal DEA.

This chapter propose a new temporal MI. This chapter is organized as follows. In Section 2 general considerations of MI are presented, the effects in efficiency and definition. Section 3 shows a brief description of window analysis. Section 4 presents the historical and forecast Malmquist that is a new methodology in DEA change over time. This section presents an application and it gives an example. In Section 5 the conclusions.

Advertisement

2. Malmquist index

The first contribution to DEA change over time is the MI, see [23]. The first construction of this index based on DEA methodology is the radial Malmquist [24], however there were efforts to consider non-radial Malmquist based in slacks measures [25, 26]. MI evaluates the productivity change of a DMU between two periods and is an example in comparative statistics analysis [10]. It is defined as the product of “Catch-up” and “Frontier-shift” terms. The catch up (or recovery) is the term that is calculated to study the effect of growth or deterioration in a DMU. The frontier shift (or innovation) term is used to verify the change in the efficient frontiers between the two time periods. In the following subsection these concepts will be explained in more detail.

2.1. Catch-up and frontier-shift effects

The best and clearest way to describe frontier-shift term is to consider a case with a single input and output, see Figure 2. In this one, the points x0y01 and x0y02 symbolize the vector of input and output of the same DMU observed in periods 1 and 2 respectively. The catch-up effect from period 1 to 2 is defined as following expression:

Catchup=Efficiency ofx0y02with respect toperiod2frontierEfficiency ofx0y01with respect toperiod1frontier

Figure 2.

Vectors of inputs and outputs in different periods.

The catch-up effect in an input orientation can be expressed by:

Catchup=DE/Dx02AC/Ax01,E4

Where DE symbolizes, in Figure 2, the distance between D and E, Dx02 symbolizes the distance between D and abscissa of the point x0y02. Similarly AC is the distance between A and C, A x01 is the distance between A and abscissa of the point x0y01.

The change of x0y01 from frontier of period 1 to frontier of period 2 is called the frontier shift effect at x0y01 and it is evaluate by:

ϕ1=ACAB.E5

In Eq. (5), if numerator and denominator are divided by the distance between A and abscissa of point x0y01, then:

ϕ1=ACAx01ABAx01=Efficiency ofx0y01with respect toperiod1frontierEfficiency ofx0y01with respect toperiod2frontier.E6

Similarly, the change of x0y02 from frontier of period 1 to frontier of period 2 is called the frontier shift effect at x0y02 and it is evaluate by Eq. (7) or Eq. (8).

ϕ2=DFDE.E7
ϕ2=DFDx02DEDx02=Efficiency ofx0y02with respect toperiod1frontierEfficiency ofx0y02with respect toperiod2frontier.E8

Using ϕ1 and ϕ2, in [10] define the frontier-shift effect by the geometric mean of them, that is:

Frontiershift=ϕ=ϕ1ϕ2.E9

2.2. Definition of MI

The MI is computed as the product of Catch-up and Frontier shift terms, that is:

MI=Catchup×Frontier shift.E10

According to Eqs. (4)(10), MI can be calculated by:

MI=Ax01Dx02DFDEACAB,

where the first term represents the relative change in performance and the second represents the relative change in frontier used to evaluate these performance, see [10].

The Eq. (4) can be expressed by other, using another notation for efficiency score of DMU as follows:

Catchup=δ2x0y02δ1x0y01,E11

where δ2x0y02 denotes the efficiency of DMU observed in period 2 measures by the frontier technology 2 and δ1x0y02 denotes the efficiency of DMU observed in period 2 measures by the frontier technology 1. In Eq. (11), δ1 refers frontier efficiency of period 1 and δ2 refers frontier efficiency of period 2. According to Eqs. (6), (8) and (9), the frontier-shift effect can be expressed by

Frontiershift=δ1x0y01δ2x0y01×δ1x0y02δ2x0y0212.E12

With Eqs. (11) and (12) the following formula is obtained to calculate the MI:

MI=δ1x0y02δ1x0y01×δ2x0y02δ2x0y011/2.E13

Using the Eq. (13); the facts that s=1,2 and t=1,2; and the notation of a DEA model; the input-oriented radial MI is obtained by the scores of θ given the following 4 linear programs (making s = 1, 2 and t = 1, 2):

δsx0y0t=minθ,λθsubjectθx0tXsλy0tYsλLUλ0,E14

where the vector λ=λ1λ2λN’; variables λi help build the envelopment frontier of efficiency; the vector e=111 size 1×N; X is the input matrix and Y is the output matrix. The matrixes X and Y are arranged such the number of rows are the number of inputs and outputs respectively, and the number of columns are the number of DMUs. For each pair of values (s,t), the model Eq. (14) is calculated N times, where N is the number of DMUs.

In Eq. (14), if LU=11 then it is a BCC model (Banker Charnes and Cooper), it means that efficiencies are calculated with variable return scale (VRS), see [27], which makes model Eq. (14) suitable to compare DMUs with different sizes. If LU=0 then Eq. (14) is a CCR (Charnes, Cooper and Rhodes), it means that efficiencies are calculated with constant return scale (CRS), which makes it suitable to compare DMUs with similar sizes.

The output oriented MI is shown in the following model:

x0y0t=minθ,λθsubjectx0tXsλ1θy0tYsλLUλ0,E15
Advertisement

3. Window analysis

The second contribution of temporal DEA is the window analysis (WA) created by G. Klopp in his doctoral thesis in 1985, see [10]. WA treats each DMU as if it were different in each period of time. Having N time periods, n DMUs and w windows for each DMU, the total of efficiencies to calculate would be n×N×w, but in WA, a “length of window” p is selected and n×p×w efficiencies are calculated instead of total of them. Then, the statistical measures are calculated like mean and variance. In this way, it is possible to verify if a DMU shows stability, deterioration or improvement. In Table 1, just to illustrate, there are 2 DMUs of n of them. Each DMU is analyzed in 8 periods, length of window is 5 and there are 4 windows. Note that it is not necessary to evaluate the whole of efficiencies because the window keeps sliding and it is possible to calculate descriptive measures like mean, variance and Range.

DMUP1P2P3P4P5P6P7P8MeanVarRange
11.000.900.930.80.98
0.990.901.001.001.000.9560.00320.2
0.851.001.001.000.93
0.980.921.001.000.95
20.780.970.880.921.00
0.890.920.980.990.930.9410.00340.22
1.001.000.850.920.93
1.001.001.000.920.95

Table 1.

Window analysis for two of n DMUs.

According with Table 1, it is easy to observe that window analysis does not consider the correlation structure of efficiencies and it does not use statistical technique to estimate efficiencies. Window analysis is a DEA change over time, but there are not time series in input and output variables.

Advertisement

4. Historical and forecast Malmquist

Some weaknesses can be highlighted in temporal DEA with its MI and WA techniques. Those techniques are designed for short periods of time, they do not consider random error in the variables and they do not use the dependence structure to estimate the efficiencies. For example, MI works with two periods and forecast is not possible.

There is not a methodology in DEA literature that calculates efficiency taking into account the history of input and output variables, although it could be argued that WA makes it, the history of efficiency is considered in this technique, but not the history of variables neither its correlation structure. There is no MI that gathers, in a single measure, all the possible changes of efficiency period to period.

Given the weaknesses above, a historical and forecast Malmquist is presented. The advantage of this approach is the consideration of stationary and non-stationary time series. These can be large time series and using the possibility to make forecast.

The historical Malmquist is defined in [28] as:

Mh=M1,2M1,3M1,nM2,3M2,4M2,nMn2,n1Mn1,nc,E16

where Mi,j is the classical Malmquist index calculated in periods i and j, i=1,2,,n1; j=1,2,,n; c is the number of combinations of periods given by n2. The principal assumption is that all time series (input and output) have the same number of periods. In the new Mh, the different Mi,j are obtained, specifically n2 of them, and each one is calculated by model Eq. (14) or Eq. (15) depending on orientation, but now, t=1,2,,n and s=1,2,,n. To calculate Mh in Eq. (16) the geometric mean is chosen because it is appropriate to average indexes.

4.1. Application in a context

To illustrate the application of historical Malmquist, the five largest industrial centers of Colombia were chosen. They are Antioquia, Atlántico, Bogotá, Cundinamarca (without Bogotá) and Valle. The information was obtained from “Departamento Administrativo Nacional de Estadística de Colombia (DANE)” which translates “National Administrative Department of Statistics of Colombia” from yearly manufacturing survey conducted from 1992 to 2010.

For each industrial center, input and output variables are selected, each of them, with values in time. Each of DMU (Antioquia, Atlántico, Bogotá, Cundinamarca and Valle) has three output variables and five input variables. The following input variables are defined (i) electric energy consumption in Kilowatts-hour, (ii) total assets, (iii) intermediate consumption, (iv) social benefits and (v) salaries. The following output variables are defined (i) permanent remunerated staff (PRS), (ii) gross production (GP) and (iii) value added (VA). For details of meaning of variables see [29]. It is important to know that each input or output variable is a time series, then, there are 40 time series (5 DMUs × 8 variables).

The Figure 3 shows 5 of 40 time series analyzed, these 5 series correspond to consumption of electric energy in millions of Kilowatts-Hour in 5 industrial center (5 DMUs).

Figure 3.

Time series of consumption in KWH of 5 industrial centers.

4.2. Using time series for application of historical Malmquist

To simplify calculations, all values of variables are divided by 1,000,000, except PRS that was divided by 1000. All the Mi,j were calculated suing model Eq. (15) obtaining Mh with n=19 periods. Also Mh is calculated with n=21 periods, in other words including no observed periods 20 and 21, for that, forecasts were established from the following set ARIMA models: ARIMA(1,1,0), ARIMA(2,1,0), ARIMA(1,2,0), ARIMA(2,2,0), ARIMA(0,0,1), ARIMA(0,1,1), ARIMA(0,1,2), ARIMA(0,2,1) and ARIMA(0,2,2).

Each of the 40 time series was modeled through all the above ARIMA and for forecast, in each series, the model with less mean square error (MSE) was chosen.

Table 2 shows the estimations of ARIMA models for time series of Antioquia in PRS variable. This table also shows that ARIMA(0,1,2) model is the best, with less (MSE) and less Bayesian information criterion (BIC). The same procedure for the others two output variables and five input variables was applied, as well as the others industrial centers, for a total of 40 tables like Table 2.

MSECoefficientsp valueBIC
ARIMA(1,1,0)17.928AR 10.6510.0053.024
Constant−0.2930.777
ARIMA(2,1,0)17.159AR 10.4100.1143.071
AR 20.4030.113
Constant0.0450.968
ARIMA(1,2,0)17.770AR 1−0.4960.0412.951
Constant−0.1600.878
ARIMA(2,2,0)15.778AR 1−0.3390.192.918
AR 20.4330.095
Constant−0.0400.967
ARIMA(0,0,1)134.09MA 1−0.9470.0005.097
Constant98.0700.000
ARIMA(0,1,1)22.830MA 1−0.3330.1753.266
Constant−1.7610.257
ARIMA(0,1,2)11.475MA 1−0.80002.669
MA 2−0.9720
Constant−2.1770.252
ARIMA(0,2,1)20.322MA 10.2870.2653.085
Constant−0.1500.85
ARIMA(0,2,2)18.723MA 10.3080.2473.089
MA 2−0.3370.208
Constant−0.1700.878

Table 2.

ARIMA models for Antioquia time series, variable PRS.

Table 3 shows the forecast for Antioquia time series and PRS variable, in addition, it shows the 95% confidence intervals. The same procedure for the others two output variables and five input variables was applied, as well as the others industrial centers, for a total of 40 tables like Table 3. Each of these forecasts were used in Eq. (13), model Eqs. (15) and (16), and their results allow to calculate the historical Malmquist with forecast, so, the observed periods and no observed periods (20 and 21) were taken into account.

PeriodForecastLower limitUpper limit
2088.56681.92595.206
2188.12374.447101.800

Table 3.

Forecast for Antioquia time series, variable PRS.

Table 4 shows the estimations of parameters of ARIMA models selected with less mean square error, they correspond to Antioquia department with three output and five input variables. With models and parameters given in Table 4, a forecast is estimated like Table 3. The same procedure for the others industrial centers was applied. With these estimations, a good quality forecasts are available for each of temporal input and output variable in each industrial center. Using these forecasts in Eq. (13), model Eqs. (15) and (16), can also be applied to answer the following questions: What can be the historical performances of the DU taking into account the observed and predicted periods?, What the change of efficiency of all DMUs will be in the following two periods, although they do not yet observed? What the instant efficiencies will be in the following two periods, although they do not yet observed? These answers facilitate the business and operational decision making processes because they would allow flagging of possible problems or failures in output or input levels.

VariableModelcoefficientp-valueConstantp-value
Output variablePRSARIMA(0,1,2)MA 1−0.8000.000−2.1770.252
MA 2−0.9720.000
GPARIMA(0,2,1)MA 10.8930.00661.6500.276
VAARIMA(1,2,0)AR 1−0.5140.035−2.5000.980
Input variableConsumption KWHARIMA(0,2,1)MA 10. 9490.0040.7100.874
Total assetsARIMA(0,1,1)MA 10.8920.000857.6600.000
Intermediate consumptionARIMA(0,2,1)MA 10.8910.00552.0500.222
Social benefitsARIMA(0,2,1)MA 11.1200.000−0.8940.193
SalariesARIMA(0,2,1)MA 10.95690.0000.8120.538

Table 4.

Estimation of parameters in ARIMA model for Antioquia with 5 variables.

4.3. Using historical Malmquist

Figure 4 shows the levels of Malmquist Mi,j, with i=1,,18 and j=1,,19; where i=1 corresponds to year 1992 and j=19 corresponds to year 2010. In total, in this figure there are c=192=171 indexes, in other words, the Malmquist calculated with all the possible combinations of periods (1–2, 1–3, …, 1–19, 2–3, …, 2–19, …, 10–11, …, 10–19, …, 18–19). In Figure 4, the horizontal axis indicates the position of combinations taken in pairs of periods. The following code helps building this figure.

Figure 4.

Malmquist indexes for all the combinations of periods.

For DMU =1 to 5 # for DMUs Antioquia, Atlántico, Bogotá, Cundinamarca and Valle

       For i=1 to 18

           For j=2 to 19

               If (j > i) then

                         Run model Eq. (15) and obtain θ=Mi,j

                  Else

                  End

            End

      End

End

In order to facilitate understanding of Figure 4, Table 5 shows the equivalences between position of combinations and the pairs of periods involved.

Position1218192035365152
Periods involved1–21–31–192–32–42–193–43–194–5
Position666780819394105106
Periods involved4–195–65–196–76–197–87–198–9
Position116117126127135136143144
Periods involved8–199–109–1910–1110–1911–1211–1912–13
Position150151156157158161162165
Periods involved12–1913–1413–1914–1514–1614–1915–1615–19
Position166167168169170171
Periods involved16–1716–1816–1917–1817–1918–19

Table 5.

Equivalences between position of combinations and two periods involved.

Note the importance to consider a historical Malmquist over classical Malmquist. For example, in Figure 4, if time period 1–11 is considered (position 10 for this combination in horizontal axis according with Table 5) it is clear that Atlántico shows higher change of efficiency (M1,11) than Cundinamarca and Antioquia. However, this figure shows that if the Malmquist index were calculated with periods 7–8 (position 94 for this combination in horizontal axis according with Table 5) or with periods 2–19 (position 35), Atlántico would begin to show less MI than Antioquia. While position for the combination increases, the MI of Atlántico decreases. For example, note that MI of Antioquia is better than the others with periods 6–19 (position 93) or periods 8–19 (position 116), in fact, after position 40 Antioquia achieves important levels of Malmquist.

The discussion above illustrates the disadvantage of considering MI only with 2 periods when DMUs have historical data and when historical efficiency is required. So, if historical efficiency is needed, MI is too weak, because It treats only two periods and there is not exist a measure that shows the changes of efficiency more than two periods and does not take account all possible changes between periods. For example, MI would be an unfair measure for DMU Antioquia if only periods 1–10 were considered (position 9), when it is evident that in Figure 4 Antioquia is much stronger than the others. For that, historical Malmquist presented in this chapter possesses more information that explains all the history of DMUs.

4.4. Forecast Malmquist

There are two advantages of historical Malmquist over classical Malmquist. First, historical Malmquist is capable of calculating, in a single measure, the change of efficiency taking into account all the possible combinations of periods. Second, historical Malmquist is capable of calculating forecasts in changes of efficiencies, because it works with time series in its input and output variables.

In Table 6 the historical Malmquist are calculated with Eq. (16) and they are ranked from high to low. This table also shows the Mh with forecasts in periods 20 and 21.

DMUMhMh with forecast including periods 20 and 21
Antioquia1.5001.473
Bogotá1.3601.338
Valle1.3401.336
Atlántico1.2681.270
Cundinamarca1.2031.209

Table 6.

Mh indexes for 5 industrial centers.

Table 6 shows temporal efficiencies obtained by forecast, it can be very useful in empresarial organizations. Note that the DMUs Antioquia and Bogotá present the best temporal index. Table 7 shows what the expected MI can be for the change of periods 20 and 21, although they do not yet observed. Right of table the ranking of forecast Malmquist is presented, so the ranking of DMUs. In this forecast it is notable that Valle could increase in its participation while Bogotá could decrease in its participation. This analysis would be very important for performance in empresarial organizations, because it allows, through the techniques presented, to anticipate the results according the historical trend of data time series in input and output variables of DMUs. The difference between results in Tables 6 and 7 is that in Table 6 all possible combinations of periods have been used, while in Table 7, only two periods have been used, 20 and 21.

DMUForecast Malmquist 20–21DMU rankingForecast Malmquist 20–21 ranking
Antioquia1.007Antioquia1.007
Atlántico1.006Atlántico1.006
Bogotá0.914Valle1.005
Cundinamarca0.997Cundinamarca0.997
Valle1.005Bogotá0.914

Table 7.

Expected Malmquist according forecast of periods 20 and 21.

Forecast in Malmquist also helps to establish the instant efficiency, for example, in Table 8 the efficiencies of periods 20 and 21 can be observed under deterministic output oriented CCR DEA with constant return to scale (CCR-CRS output oriented), see [10]. It can be expected a good participation in ranking of efficiency of Valle in instant periods 20 and 21, although they do not yet observed. So a good recommendation to Valle is that if It wish to obtain the first position in DEA ranking, It must ensure the increase in the output levels and decrease in the input levels. Because otherwise, plus the fact unexpected increases in the input levels and decrease in the output levels are presented, Valle would have not a good classification in specific periods 20 and 21.

DMUForecast efficiencies for period 20Forecast efficiencies for period 21
Antioquia11
Atlántico11
Bogotá11
Cundinamarca11
Valle1.0541.052

Table 8.

Forecast efficiencies for periods 20 and 21.

4.5. Analysis of catch-up and frontier effects in historical Malmquist

A great advantage that MI offers is that frontier shift and catch-up effects can be separated. In this analysis these effects have been separated for all the possible combinations of periods. In Figure 5 the frontier effect is shown and Figure 6 shows the catch-up effect. Note that frontier effect in Figure 5 has a great similarity with MI in Figure 4 with minor differences. The following code helps building the Figure 5.

Figure 5.

Frontier shift effect after it has been separated from MI.

Figure 6.

Catch-up effect after it has been separated from MI.

For DMU =1 to 5 # for DMUs Antioquia, Atlántico, Bogotá, Cundinamarca and Valle

            For i=1 to 18

                  For j=2 to 19

                        If (j > i) then

                               Run model Eq. (12) and obtain frontier-shift

                        Else

                  End

            End

      End

End

The following code helps building the Figure 6.

For DMU =1 to 5 # for DMUs Antioquia, Atlántico, Bogotá, Cundinamarca and Valle

          For i=1 to 18

                          For j=2 to 19

                                If (j > i) then

                                    Run model Eq. (11) and obtain Catch-up effect

                                Else

                                End

                          End

                    End

          End

In Malmquist theory, if catch-up effect 1, it will indicate progress in relative efficiency from period 1 to 2, if catch-up effect 1 and catch-up effect 1 respectively indicate no change and regress in efficiency. If frontier shift effect is bigger than 1, it will indicate progress in the frontier technology around DMU observed from period 1 to 2. Note, in Figure 6, that Atlántico and Valle present regress in efficiency after position 110 and 118 respectively, in Atlántico the regress in efficiency is after combinations of periods 8-12, 8–13, …, 12–13. Antioquia also presents regress in efficiency in higher positions.

Applications of historical Malmquist can be presented in industry, economy and supply chain. In general, when there are time series and it is necessary to monitor and to control the changes of efficiency using historical periods.

Advertisement

5. Conclusions

A new model of efficiency change over time has been presented in this chapter based in [28]. That idea arise from explorations of temporal DEA in literature and it was established that there is no new techniques and methodologies, with the exception of Malmquist index and window analysis. The new temporal DEA has been presented like historical Malmquist and its primary advantage is that it accepts time series in input and output variables. Hence, it inherits the advantage of time series technique like use them to make forecast.

A great advantage of new temporal DEA is that it offers an historical information in terms of time, that is a disadvantage of classical Malmquist index that evaluates change of efficiency only in two periods. In this chapter it has been shown that the use of two periods of time to calculate the change of efficiency it is unfair in terms of history of DMUs.

With historical Malmquist it is possible to separate the catch-up and frontier shift effects for all the possible combinations of periods including the next no observed periods, through forecast. This allows to know the trend to progress in relative efficiency, regress in efficiency, progress in the frontier technology and trend to regress in the frontier technology. This will also allow that operational decisions can be taken before efficiency decreases.

Historical Malmquist allows to work both stochastic input and stochastic output variables, because it accepts time series in both cases, in contrast with classical MI that allows deterministic values and it is not common that a DEA model allows to work with probability functions in both input and output.

Advertisement

Acknowledgments

The author wish to thank University of Magdalena for his support in this investigation through the provision of financial resources.

References

  1. 1. Bruni M, Conforti D, Beraldi P, Tundis E. Probabilistically constrained models for efficiency and dominance in DEA. International Journal Production Economics. 2009;117:219-228
  2. 2. Varabyova Y, Schreyogg J. International comparisons of the technical efficiency of the hospital sector. Panel data analysis of OECD countries using parametric and nonparametric approaches. Health Policy. 2013;112:70-79
  3. 3. Sala-Garrido R, Hernández F, Molinosm M. Assessing the efficiency of wastewater treatment plants in an uncertain context: A DEA with tolerances approach. Research Article Environmental Science and Policy. 2012;18:34-44
  4. 4. Macpherson AJ, Principe P, Shao Y. Controlling for exogenous environmental variables when using data envelopment analysis for regional environmental assessments. Journal of Environmental Management. 2013;119:220-229
  5. 5. Al-Najjar SM, Al-Jaybajy MA. Application of data envelopment analysis to measure the technical efficiency of oil refineries: A case study. International Journal of Business Administration. 2012;3(5):64-77
  6. 6. Mahinda W, Meoli M. Productivity chance of microfinance institutions in Kenya: A bootstrap Malmquist approach. Journal of Retailing and Consumer Service. 2015;25:115-121
  7. 7. Meng F, Fan L, Zhou P, Zhou D. Measuring environmental performance in China's industrial sectors with non-radial DEA. Mathematical and Computer Modelling. 2013;58:1047-1056
  8. 8. Chang Y, Chang N, Danao D, Zhang N. Environmental efficiency analysis of transportation system in China: A non-radial DEA approach. Energy Policy. 2013;1(58):277-283
  9. 9. Charnes A, Cooper WW, Rhodes E. Measuring the efficiency of decision making units. European Journal of Operational Research. 1978;2:429-444
  10. 10. Cooper W, Seiford L, Tone K. Data Envelopment Analysis: A Comprensive Text with Models, Apllications, References an DEA Solver Software. 2nd ed. New York: Springer; 2007
  11. 11. Cook W, Seiford L. Data envelopment analysis: Thirty years on. European Journal of Operational Research. 2009;192:1-17
  12. 12. Banker RD. Estimating most productive scale size usiing data envelopment analysis. European Journal of Operational Research. 1984;17:35-44
  13. 13. Charnes A, Cooper W, Golany B, Seiford LM, Stutz J. Foundations of data envelopment analysis and Pareto-Koopman empirical production functions. Journal of Economics. 1985;30:91-107
  14. 14. Roll Y, Cool W, Golany B. Controlling factor weights in data envelopment analysis. IIE Transactions. 1991;23:2-9
  15. 15. Charnes A, Cooper WW, Huang ZM, Sun DB. Polyhedral cone-ratio DEA models with an illustrative application to large commercial banks. Journal of Econometrics. 1990;46:73-91
  16. 16. Thmpson RG, Singleton JR, Thrall RM, Smith BA. Comparative site evaluations for locating a high-energy physics lab in Texas. Interfaces. 1986;16:35-49
  17. 17. Thompson RG, Langemeir LN, Lee C, Lee E, Thrall RM. The role of multiplier bounds in efficiency analysis with application to Kansas farming. Journal of Econometrics. 1990;46:93-108
  18. 18. Banker RD, Morey R. Efficiency analysis for exogenously fixed inputs and outputs. Operations Research. 1986;34(4):513-521
  19. 19. Banker RD, Morey EC. The use of categorical variables in data envelopment analysis. Management Science. 1986;32(12):1613-1627
  20. 20. Sueyoshi T, Goto M. DEA environmental assessment in time horizon: Radial approach for Malmquist index measurement on petroleum companies. Energy Economics. 2015;51:329-345
  21. 21. Sueyoshi T, Goto M. DEA environmental assessment in time horizon: Malmquist index on fuel mix electricity and CO2 industrial nations. Energy Economics. 2013;40:370-382
  22. 22. Toshiyuki S, Mika G, Manabu S. DEA window analysis for environmental assessment in a dynamic time shit: Performance assessment of U.S. coal-fired power plants. Energy Economics. 2013;40:845-857
  23. 23. Lin B, Fei R. Regional differences of CO2 emissions performance in China's agricultural sector: A Malmquist index approach. European Journal Agronomy. 2015;70:33-40
  24. 24. Färe R, Grosskopf S. Malmquist indexes and Fisher ideal indexes. The Economic Journal. 1992;102:158-160
  25. 25. Zhu J. Data envelopment analysis with preference structure. The Journal of the Operational Research Society. 1996;47:136-150
  26. 26. Tone K. A slacks-based measure of super efficiency in data envelopment analysis. European Journal of Operatinal Research. 2002;143:32-41
  27. 27. Zhu J. Quantitative Models for Performance Evaluation and Benchmarking Data Envelopment Analysis with Spreadsheet. 3nd ed. Massacusetts: Springer; 2014
  28. 28. Vargas JJ, Olivar G, Cepeda-Cuervo E. Malmquist histórico y de pronóstico con series de tiempo como modelo temporal de análisis envolvente de datos. Información Tecnológica. 2016;27(6):141-150
  29. 29. Maldonano H, Sepúlveda C, Vargas A, Freire E, Guerrero B, Gutiérrez J, Araque N, Vega V, Gutiérrez C. Metodología encuesta anual de manufactura Departamento Nacional de Estadística DANE. DANE Bogotá; 2009

Written By

Jhon Jairo Vargas Sánchez

Submitted: 22 December 2017 Reviewed: 29 January 2018 Published: 27 June 2018