\\n\\n
\\n"}]',published:!0,mainMedia:null},components:[{type:"htmlEditorComponent",content:'
Barely three months into the new year and we are happy to announce a monumental milestone reached - 150 million downloads.
\n\nThis achievement solidifies IntechOpen’s place as a pioneer in Open Access publishing and the home to some of the most relevant scientific research available through Open Access.
\n\nWe are so proud to have worked with so many bright minds throughout the years who have helped us spread knowledge through the power of Open Access and we look forward to continuing to support some of the greatest thinkers of our day.
\n\nThank you for making IntechOpen your place of learning, sharing, and discovery, and here’s to 150 million more!
\n\n\n\n\n'}],latestNews:[{slug:"intechopen-signs-new-contract-with-cepiec-china-for-distribution-of-open-access-books-20210319",title:"IntechOpen Signs New Contract with CEPIEC, China for Distribution of Open Access Books"},{slug:"150-million-downloads-and-counting-20210316",title:"150 Million Downloads and Counting"},{slug:"intechopen-secures-indefinite-content-preservation-with-clockss-20210309",title:"IntechOpen Secures Indefinite Content Preservation with CLOCKSS"},{slug:"intechopen-expands-to-all-global-amazon-channels-with-full-catalog-of-books-20210308",title:"IntechOpen Expands to All Global Amazon Channels with Full Catalog of Books"},{slug:"stanford-university-identifies-top-2-scientists-over-1-000-are-intechopen-authors-and-editors-20210122",title:"Stanford University Identifies Top 2% Scientists, Over 1,000 are IntechOpen Authors and Editors"},{slug:"intechopen-authors-included-in-the-highly-cited-researchers-list-for-2020-20210121",title:"IntechOpen Authors Included in the Highly Cited Researchers List for 2020"},{slug:"intechopen-maintains-position-as-the-world-s-largest-oa-book-publisher-20201218",title:"IntechOpen Maintains Position as the World’s Largest OA Book Publisher"},{slug:"all-intechopen-books-available-on-perlego-20201215",title:"All IntechOpen Books Available on Perlego"}]},book:{item:{type:"book",id:"3621",leadTitle:null,fullTitle:"Silver Nanoparticles",title:"Silver Nanoparticles",subtitle:null,reviewType:"peer-reviewed",abstract:"Nanotechnology will be soon required in most engineering and science curricula. It cannot be questioned that cutting-edge applications based on nanoscience are having a considerable impact in nearly all fields of research, from basic to more problem-solving scientific enterprises. In this sense, books like “Silver Nanoparticles” aim at filling the gaps for comprehensive information to help both newcomers and experts, in a particular fast-growing area of research. Besides, one of the key features of this book is that it could serve both academia and industry. “Silver nanoparticles” is a collection of eighteen chapters written by experts in their respective fields. These reviews are representative of the current research areas within silver nanoparticle nanoscience and nanotechnology.",isbn:null,printIsbn:"978-953-307-028-5",pdfIsbn:"978-953-51-4552-3",doi:"10.5772/186",price:139,priceEur:155,priceUsd:179,slug:"silver-nanoparticles",numberOfPages:344,isOpenForSubmission:!1,isInWos:1,hash:null,bookSignature:"David Pozo Perez",publishedDate:"March 1st 2010",coverURL:"https://cdn.intechopen.com/books/images_new/3621.jpg",numberOfDownloads:126194,numberOfWosCitations:305,numberOfCrossrefCitations:82,numberOfDimensionsCitations:222,hasAltmetrics:1,numberOfTotalCitations:609,isAvailableForWebshopOrdering:!0,dateEndFirstStepPublish:null,dateEndSecondStepPublish:null,dateEndThirdStepPublish:null,dateEndFourthStepPublish:null,dateEndFifthStepPublish:null,currentStepOfPublishingProcess:1,indexedIn:"1,2,3,4,5,6,7,8",editedByType:"Edited by",kuFlag:!1,editors:[{id:"6667",title:"Dr.",name:"David",middleName:null,surname:"Pozo",slug:"david-pozo",fullName:"David Pozo",profilePictureURL:"https://mts.intechopen.com/storage/users/6667/images/system/6667.jpg",biography:"Professor of Biochemistry and Molecular Biology, University of Seville Medical School, Seville, Spain.\r\n\r\nPrincipal Investigator at the Center for Molecular Biology and Regenerative Medicine (CABIMER), Seville, Spain.\r\n\r\nDr. Pozo Perez received his Ph.D (1998) from the University of Seville. He subsequently joined the Division of Immunology at Cambridge University (UK) as an EMBO postdoctoral fellow and Marie Curie Fellow from 2000-2003. He did a second post-doctoral stint at the Department of Immunology of Weizmann Institute of Science (2004) in Israel and short stages as visiting scientist at the Center for Neurologic Diseases, Brigham & Women Hospital, Harvard Medical School (2013, 2015). His research interests in immunology are in the area of neurodegenerative diseases. \r\n\r\nHe served as President of the Beit Rambam Jewish Community of Andalusia (2014).",institutionString:null,position:null,outsideEditionCount:0,totalCites:0,totalAuthoredChapters:"1",totalChapterViews:"0",totalEditedBooks:"1",institution:null}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,coeditorOne:null,coeditorTwo:null,coeditorThree:null,coeditorFour:null,coeditorFive:null,topics:[{id:"1169",title:"Condensed Matter Physics",slug:"nanotechnology-and-nanomaterials-material-science-condensed-matter-physics"}],chapters:[{id:"9729",title:"Thermodynamic Properties of Nano-Silver and Alloy Particles",doi:"10.5772/8512",slug:"thermodynamic-properties-of-nano-silver-and-alloy-particles",totalDownloads:7547,totalCrossrefCites:4,totalDimensionsCites:14,signatures:"Wangyu Hu, Shifang Xiao, Huiqiu Deng, Wenhua Luo and Lei Deng",downloadPdfUrl:"/chapter/pdf-download/9729",previewPdfUrl:"/chapter/pdf-preview/9729",authors:[null],corrections:null},{id:"9731",title:"Linear and Nonlinear Optical Properties of Aligned Elongated Silver Nanoparticles Embedded in Silica",doi:"10.5772/8514",slug:"linear-and-nonlinear-optical-properties-of-aligned-elongated-silver-nanoparticles-embedded-in-silica",totalDownloads:3071,totalCrossrefCites:1,totalDimensionsCites:6,signatures:"Raul Rangel-Rojo, J.A. Reyes-Esqueda, C. Torres-Torres, A. Oliver, L. Rodriguez-Fernandez, A. Crespo-Sosa, J.C. Cheang-Wong, J. McCarthy, H.T. Bookey and A.K. Kar",downloadPdfUrl:"/chapter/pdf-download/9731",previewPdfUrl:"/chapter/pdf-preview/9731",authors:[null],corrections:null},{id:"9724",title:"The Applicability of Global and Surface Sensitive Techniques to Characterization of Silver Nanoparticles for Ink-Jet Printing Technology",doi:"10.5772/8507",slug:"the-applicability-of-global-and-surface-sensitive-techniques-to-characterization-of-silver-nanoparti",totalDownloads:3539,totalCrossrefCites:6,totalDimensionsCites:8,signatures:"M. Puchalski, P.J. Kowalczyk, Z. Klusek and W. Olejniczak",downloadPdfUrl:"/chapter/pdf-download/9724",previewPdfUrl:"/chapter/pdf-preview/9724",authors:[null],corrections:null},{id:"9721",title:"In Situ Photochemically assisted Synthesis of Silver Nanoparticles in Polymer Matrixes",doi:"10.5772/8504",slug:"in-situ-photochemically-assisted-synthesis-of-silver-nanoparticles-in-polymer-matrixes",totalDownloads:5951,totalCrossrefCites:2,totalDimensionsCites:8,signatures:"Lavinia Balan, Jean-Pierre Malval and Daniel-Joseph Lougnot",downloadPdfUrl:"/chapter/pdf-download/9721",previewPdfUrl:"/chapter/pdf-preview/9721",authors:[null],corrections:null},{id:"9732",title:"Linear and Nonlinear Optical Properties of Silver Nanoparticles Synthesized in Dielectrics by Ion Implantation and Laser Annealing",doi:"10.5772/8515",slug:"linear-and-nonlinear-optical-properties-of-silver-nanoparticles-synthesized-in-dielectrics-by-ion-im",totalDownloads:4564,totalCrossrefCites:1,totalDimensionsCites:3,signatures:"Andrey L. Stepanov",downloadPdfUrl:"/chapter/pdf-download/9732",previewPdfUrl:"/chapter/pdf-preview/9732",authors:[null],corrections:null},{id:"9719",title:"Synthesis of Silver Nanoparticles with Laser Assistance",doi:"10.5772/8502",slug:"synthesis-of-silver-nanoparticles-with-laser-assistance",totalDownloads:4586,totalCrossrefCites:1,totalDimensionsCites:5,signatures:"A. Pyatenko",downloadPdfUrl:"/chapter/pdf-download/9719",previewPdfUrl:"/chapter/pdf-preview/9719",authors:[null],corrections:null},{id:"9735",title:"Synthesis of Ag Nanoparticles by Through Thin Film Ablation",doi:"10.5772/8518",slug:"synthesis-of-ag-nanoparticles-by-through-thin-film-ablation",totalDownloads:3074,totalCrossrefCites:0,totalDimensionsCites:2,signatures:"P. Terrence Murray and Eunsung Shin",downloadPdfUrl:"/chapter/pdf-download/9735",previewPdfUrl:"/chapter/pdf-preview/9735",authors:[null],corrections:null},{id:"9720",title:"O-Phenylenediamine Encapsulated Silver Nanoparticles and Their Applications for Organic Light-Emitting Devices",doi:"10.5772/8503",slug:"o-phenylenediamine-encapsulated-silver-nanoparticles-and-their-applications-for-organic-light-emitti",totalDownloads:3047,totalCrossrefCites:0,totalDimensionsCites:0,signatures:"Chang-Sik Ha, Jin-Woo Park and Habib Ullah",downloadPdfUrl:"/chapter/pdf-download/9720",previewPdfUrl:"/chapter/pdf-preview/9720",authors:[null],corrections:null},{id:"9722",title:"High Surface Clay-Supported Silver Nanohybrids",doi:"10.5772/8505",slug:"high-surface-clay-supported-silver-nanohybrids",totalDownloads:3268,totalCrossrefCites:1,totalDimensionsCites:0,signatures:"Jiang-Jen Lin, Rui-Xuan Dong and Wei-Cheng Tsai",downloadPdfUrl:"/chapter/pdf-download/9722",previewPdfUrl:"/chapter/pdf-preview/9722",authors:[null],corrections:null},{id:"9723",title:"Silver Nanoparticles in Oxide Glasses: Technologies and Properties",doi:"10.5772/8506",slug:"silver-nanoparticles-in-oxide-glasses-technologies-and-properties",totalDownloads:4412,totalCrossrefCites:5,totalDimensionsCites:21,signatures:"N.V. Nikonorov, Sidorov A.I. and Tsekhomskii V.A.",downloadPdfUrl:"/chapter/pdf-download/9723",previewPdfUrl:"/chapter/pdf-preview/9723",authors:[null],corrections:null},{id:"9730",title:"Silver Nanoparticles: Sensing and Imaging Applications",doi:"10.5772/8513",slug:"silver-nanoparticles-sensing-and-imaging-applications",totalDownloads:12967,totalCrossrefCites:18,totalDimensionsCites:40,signatures:"Carlos Caro, Paula M. Castillo, Rebecca Klippstein, David Pozo and Ana P. Zaderenko",downloadPdfUrl:"/chapter/pdf-download/9730",previewPdfUrl:"/chapter/pdf-preview/9730",authors:[null],corrections:null},{id:"9734",title:"Silver Nanoparticles as Optical Sensors",doi:"10.5772/8517",slug:"silver-nanoparticles-as-optical-sensors",totalDownloads:8513,totalCrossrefCites:5,totalDimensionsCites:10,signatures:"Chien Wang, Marta Luconi, Adriana Masi and Liliana Fernandez",downloadPdfUrl:"/chapter/pdf-download/9734",previewPdfUrl:"/chapter/pdf-preview/9734",authors:[null],corrections:null},{id:"9725",title:"Biosynthesis and Application of Silver and Gold Nanoparticles",doi:"10.5772/8508",slug:"biosynthesis-and-application-of-silver-and-gold-nanoparticles",totalDownloads:27640,totalCrossrefCites:18,totalDimensionsCites:47,signatures:"Zygmunt Sadowski",downloadPdfUrl:"/chapter/pdf-download/9725",previewPdfUrl:"/chapter/pdf-preview/9725",authors:[null],corrections:null},{id:"9733",title:"On-Paper Synthesis of Silver Nanoparticles for Antibacterial Applications",doi:"10.5772/8516",slug:"on-paper-synthesis-of-silver-nanoparticles-for-antibacterial-applications",totalDownloads:5771,totalCrossrefCites:3,totalDimensionsCites:6,signatures:"Hirotaka Koga and Takuya Kitaoka",downloadPdfUrl:"/chapter/pdf-download/9733",previewPdfUrl:"/chapter/pdf-preview/9733",authors:[null],corrections:null},{id:"9727",title:"The Silver Nanoparticle (Nano-Ag): a New Model for Antifungal Agents",doi:"10.5772/8510",slug:"the-silver-nanoparticle-nano-ag-a-new-model-for-antifungal-agents",totalDownloads:13296,totalCrossrefCites:8,totalDimensionsCites:20,signatures:"Juneyoung Lee, Keuk-Jun Kim, Woo Sang Sung, Jong Guk Kim and Dong Gun Lee",downloadPdfUrl:"/chapter/pdf-download/9727",previewPdfUrl:"/chapter/pdf-preview/9727",authors:[null],corrections:null},{id:"9728",title:"Silver Nanoparticles Interactions with the Immune System: Implications for Health and Disease",doi:"10.5772/8511",slug:"silver-nanoparticles-interactions-with-the-immune-system-implications-for-health-and-disease",totalDownloads:9459,totalCrossrefCites:3,totalDimensionsCites:18,signatures:"Rebecca Klippstein, Rafael Fernandez-Montesinos, Paula M. Castillo, Ana P. Zaderenko and David Pozo",downloadPdfUrl:"/chapter/pdf-download/9728",previewPdfUrl:"/chapter/pdf-preview/9728",authors:[null],corrections:null},{id:"9726",title:"Potential Use of Silver Nanoparticles as an Additive in Animal Feeding",doi:"10.5772/8509",slug:"potential-use-of-silver-nanoparticles-as-an-additive-in-animal-feeding",totalDownloads:5490,totalCrossrefCites:6,totalDimensionsCites:14,signatures:"Manuel Fondevila",downloadPdfUrl:"/chapter/pdf-download/9726",previewPdfUrl:"/chapter/pdf-preview/9726",authors:[null],corrections:null}],productType:{id:"1",title:"Edited Volume",chapterContentType:"chapter",authoredCaption:"Edited by"}},relatedBooks:[{type:"book",id:"397",title:"Nanofibers",subtitle:"Production, Properties and Functional Applications",isOpenForSubmission:!1,hash:"934fe33b73b2ecba961c67d5a90021ec",slug:"nanofibers-production-properties-and-functional-applications",bookSignature:"Tong Lin",coverURL:"https://cdn.intechopen.com/books/images_new/397.jpg",editedByType:"Edited by",editors:[{id:"49937",title:"Dr.",name:"Tong",surname:"Lin",slug:"tong-lin",fullName:"Tong Lin"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"1045",title:"Nanocomposites and Polymers with Analytical Methods",subtitle:null,isOpenForSubmission:!1,hash:"65d477e855685ea85913e5aba0c5217e",slug:"nanocomposites-and-polymers-with-analytical-methods",bookSignature:"John Cuppoletti",coverURL:"https://cdn.intechopen.com/books/images_new/1045.jpg",editedByType:"Edited by",editors:[{id:"49991",title:"Dr.",name:"John",surname:"Cuppoletti",slug:"john-cuppoletti",fullName:"John Cuppoletti"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"3200",title:"Nanofibers",subtitle:null,isOpenForSubmission:!1,hash:"97487143b896780afaf08cfd67cd1eec",slug:"nanofibers",bookSignature:"Ashok Kumar",coverURL:"https://cdn.intechopen.com/books/images_new/3200.jpg",editedByType:"Edited by",editors:[{id:"7718",title:"Professor",name:"Ashok",surname:"Kumar",slug:"ashok-kumar",fullName:"Ashok Kumar"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"191",title:"Advances in Nanocomposite Technology",subtitle:null,isOpenForSubmission:!1,hash:"4dc3407e602cdd348af663727baebe3d",slug:"advances-in-nanocomposite-technology",bookSignature:"Abbass Hashim",coverURL:"https://cdn.intechopen.com/books/images_new/191.jpg",editedByType:"Edited by",editors:[{id:"6700",title:"Dr.",name:"Abbass A.",surname:"Hashim",slug:"abbass-a.-hashim",fullName:"Abbass A. Hashim"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"3077",title:"Syntheses and Applications of Carbon Nanotubes and Their Composites",subtitle:null,isOpenForSubmission:!1,hash:"38dd4fb088a27b2552bf3d371e8c2872",slug:"syntheses-and-applications-of-carbon-nanotubes-and-their-composites",bookSignature:"Satoru Suzuki",coverURL:"https://cdn.intechopen.com/books/images_new/3077.jpg",editedByType:"Edited by",editors:[{id:"30519",title:"Dr.",name:"Satoru",surname:"Suzuki",slug:"satoru-suzuki",fullName:"Satoru Suzuki"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"3156",title:"Nanowires",subtitle:"Science and Technology",isOpenForSubmission:!1,hash:"1916d90306aa50f0cae870c88e7550fa",slug:"nanowires-science-and-technology",bookSignature:"Nicoleta Lupu",coverURL:"https://cdn.intechopen.com/books/images_new/3156.jpg",editedByType:"Edited by",editors:[{id:"6995",title:"Dr.",name:"Nicoleta",surname:"Lupu",slug:"nicoleta-lupu",fullName:"Nicoleta Lupu"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"3558",title:"Advances in Graphene Science",subtitle:null,isOpenForSubmission:!1,hash:"f3a2158260a79c0fc8a4298864aa7dcd",slug:"advances-in-graphene-science",bookSignature:"Mahmood Aliofkhazraei",coverURL:"https://cdn.intechopen.com/books/images_new/3558.jpg",editedByType:"Edited by",editors:[{id:"155413",title:"Dr.",name:"Mahmood",surname:"Aliofkhazraei",slug:"mahmood-aliofkhazraei",fullName:"Mahmood Aliofkhazraei"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"861",title:"Nanomaterials",subtitle:null,isOpenForSubmission:!1,hash:"f32b97a9aa541939cb212373d471d477",slug:"nanomaterials",bookSignature:"Mohammed Muzibur Rahman",coverURL:"https://cdn.intechopen.com/books/images_new/861.jpg",editedByType:"Edited by",editors:[{id:"24438",title:"Prof.",name:"Mohammed Muzibur",surname:"Rahman",slug:"mohammed-muzibur-rahman",fullName:"Mohammed Muzibur Rahman"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"514",title:"Nanowires",subtitle:"Implementations and Applications",isOpenForSubmission:!1,hash:"a72c02407edeef3d1a2ff8ddc07cad87",slug:"nanowires-implementations-and-applications",bookSignature:"Abbass Hashim",coverURL:"https://cdn.intechopen.com/books/images_new/514.jpg",editedByType:"Edited by",editors:[{id:"6700",title:"Dr.",name:"Abbass A.",surname:"Hashim",slug:"abbass-a.-hashim",fullName:"Abbass A. Hashim"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"468",title:"Electronic Properties of Carbon Nanotubes",subtitle:null,isOpenForSubmission:!1,hash:null,slug:"electronic-properties-of-carbon-nanotubes",bookSignature:"Jose Mauricio Marulanda",coverURL:"https://cdn.intechopen.com/books/images_new/468.jpg",editedByType:"Edited by",editors:[{id:"9142",title:"Prof.",name:"Jose Mauricio",surname:"Marulanda",slug:"jose-mauricio-marulanda",fullName:"Jose Mauricio Marulanda"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}}],ofsBooks:[]},correction:{item:{id:"66777",slug:"corrigendum-to-robust-optimal-power-distribution-for-hyperthermia-cancer-treatment",title:"Corrigendum to: Robust Optimal Power Distribution for Hyperthermia Cancer Treatment",doi:null,correctionPDFUrl:"https://cdn.intechopen.com/pdfs/66777.pdf",downloadPdfUrl:"/chapter/pdf-download/66777",previewPdfUrl:"/chapter/pdf-preview/66777",totalDownloads:null,totalCrossrefCites:null,bibtexUrl:"/chapter/bibtex/66777",risUrl:"/chapter/ris/66777",chapter:{id:"59062",slug:"robust-optimal-power-distribution-for-hyperthermia-cancer-treatment",signatures:"Nafiseh Shariati, Dave Zachariah, Johan Karlsson and Mats\nBengtsson",dateSubmitted:"November 11th 2017",dateReviewed:"December 19th 2017",datePrePublished:null,datePublished:"February 27th 2019",book:{id:"6655",title:"Medical Internet of Things (m-IoT)",subtitle:"Enabling Technologies and Emerging Applications",fullTitle:"Medical Internet of Things (m-IoT) - Enabling Technologies and Emerging Applications",slug:"medical-internet-of-things-m-iot-enabling-technologies-and-emerging-applications",publishedDate:"February 27th 2019",bookSignature:"Hamed Farhadi",coverURL:"https://cdn.intechopen.com/books/images_new/6655.jpg",licenceType:"CC BY 3.0",editedByType:"Edited by",editors:[{id:"171143",title:"Dr.",name:"Hamed",middleName:null,surname:"Farhadi",slug:"hamed-farhadi",fullName:"Hamed Farhadi"}],productType:{id:"1",title:"Edited Volume",chapterContentType:"chapter",authoredCaption:"Edited by"}},authors:[{id:"233776",title:"Dr.",name:"Nafiseh",middleName:null,surname:"Shariati",fullName:"Nafiseh Shariati",slug:"nafiseh-shariati",email:"nafiseh.shariati@ericsson.com",position:null,institution:null},{id:"233777",title:"Dr.",name:"Dave",middleName:null,surname:"Zachariah",fullName:"Dave Zachariah",slug:"dave-zachariah",email:"dave.zachariah@it.uu.se",position:null,institution:null},{id:"233778",title:"Dr.",name:"Johan",middleName:null,surname:"Karlsson",fullName:"Johan Karlsson",slug:"johan-karlsson",email:"johan.karlsson@math.kth.se",position:null,institution:null},{id:"233779",title:"Prof.",name:"Mats",middleName:null,surname:"Bengtsson",fullName:"Mats Bengtsson",slug:"mats-bengtsson",email:"mats.bengtsson@kth.se",position:null,institution:null}]}},chapter:{id:"59062",slug:"robust-optimal-power-distribution-for-hyperthermia-cancer-treatment",signatures:"Nafiseh Shariati, Dave Zachariah, Johan Karlsson and Mats\nBengtsson",dateSubmitted:"November 11th 2017",dateReviewed:"December 19th 2017",datePrePublished:null,datePublished:"February 27th 2019",book:{id:"6655",title:"Medical Internet of Things (m-IoT)",subtitle:"Enabling Technologies and Emerging Applications",fullTitle:"Medical Internet of Things (m-IoT) - Enabling Technologies and Emerging Applications",slug:"medical-internet-of-things-m-iot-enabling-technologies-and-emerging-applications",publishedDate:"February 27th 2019",bookSignature:"Hamed Farhadi",coverURL:"https://cdn.intechopen.com/books/images_new/6655.jpg",licenceType:"CC BY 3.0",editedByType:"Edited by",editors:[{id:"171143",title:"Dr.",name:"Hamed",middleName:null,surname:"Farhadi",slug:"hamed-farhadi",fullName:"Hamed Farhadi"}],productType:{id:"1",title:"Edited Volume",chapterContentType:"chapter",authoredCaption:"Edited by"}},authors:[{id:"233776",title:"Dr.",name:"Nafiseh",middleName:null,surname:"Shariati",fullName:"Nafiseh Shariati",slug:"nafiseh-shariati",email:"nafiseh.shariati@ericsson.com",position:null,institution:null},{id:"233777",title:"Dr.",name:"Dave",middleName:null,surname:"Zachariah",fullName:"Dave Zachariah",slug:"dave-zachariah",email:"dave.zachariah@it.uu.se",position:null,institution:null},{id:"233778",title:"Dr.",name:"Johan",middleName:null,surname:"Karlsson",fullName:"Johan Karlsson",slug:"johan-karlsson",email:"johan.karlsson@math.kth.se",position:null,institution:null},{id:"233779",title:"Prof.",name:"Mats",middleName:null,surname:"Bengtsson",fullName:"Mats Bengtsson",slug:"mats-bengtsson",email:"mats.bengtsson@kth.se",position:null,institution:null}]},book:{id:"6655",title:"Medical Internet of Things (m-IoT)",subtitle:"Enabling Technologies and Emerging Applications",fullTitle:"Medical Internet of Things (m-IoT) - Enabling Technologies and Emerging Applications",slug:"medical-internet-of-things-m-iot-enabling-technologies-and-emerging-applications",publishedDate:"February 27th 2019",bookSignature:"Hamed Farhadi",coverURL:"https://cdn.intechopen.com/books/images_new/6655.jpg",licenceType:"CC BY 3.0",editedByType:"Edited by",editors:[{id:"171143",title:"Dr.",name:"Hamed",middleName:null,surname:"Farhadi",slug:"hamed-farhadi",fullName:"Hamed Farhadi"}],productType:{id:"1",title:"Edited Volume",chapterContentType:"chapter",authoredCaption:"Edited by"}}},ofsBook:{item:{type:"book",id:"9327",leadTitle:null,title:"Discretization in Geometry and Dynamical Systems",subtitle:null,reviewType:"peer-reviewed",abstract:"
\r\n\tThe book entitled Discretization in Geometry and Dynamical Systems will present the state of the art of the discrete methods and techniques which appear in geometry and dynamics. Top level researchers will be invited to send their papers. With this aim in mind, the book should be structured on six main parts. At first the classical discrete Lagrangian and Hamiltonian dynamics will be described. Fractional discrete Euler-Lagrange equations and their applications will be presented. Following chapters should deal with smooth and discrete curvatures, differential operators on polyhedral surfaces, applications to computer graphics and computational mechanics. Finally, we should also cover an important topic, namely, the numerical methods for discrete dynamical systems.
\r\n\tThe book will be useful to students, postdocs and researchers interested in dealing with several interesting aspects of discrete behaviours in geometry and dynamics.
Recent advances in micro- and nanofabrication technologies have enabled the development of miniaturized accelerometers, gyroscopes, μTAS chips, etc. These microdevices are made of substrates having thicknesses relatively greater (~100μm) than the feature scale of the microfabricated components (1~10 μm, Fig.1a). Conversely, the microscale organelles or tissues of natural creatures are made of substrates, or membranes, that are relatively thin compared to their feature size. For example, a human blood capillary, which is 10~100 μm in diameter, has vessel walls with thicknesses of ~1 μm. To give another example, a cell with a diameter of ~10 μm is composed of lipid bilayer membranes with thicknesses of ~10 nm. This fundamental characteristic of the architecture of biological microstructures, which is totally different from that of artificial microdevices, makes life a highly adaptable system from both chemical and physical perspectives. The small thickness of the membrane enhances transport of heat and substances between the body and its surroundings, and it provides softness to the body, enabling passive and active morphological changes for adapting to the environment. These characteristics of biological microstructures should greatly encourage us to develop new types of MEMS and μTAS devices. However, in reality, little research has been conducted on the development of 3-D microdevices composed of thin membranes, which we call “3-D membrane microdevices” (Fig.1b).
\n\t\t\tSchematics of (a) conventional “bulk“ microdevice and (b) “3-D membrane microdevice“.
The purpose of this chapter is to introduce the concept of 3-D membrane microdevices and highlight some advances being made in our laboratory. The chapter starts with a section describing a novel microfabrication technique, namely, the membrane micro emboss (MeME) process, which was developed to realize 3-D membrane microstructures. In the following sections, several applications of 3-D membrane microdevices in μTAS and MEMS fields are presented. First, a microfluidic device composed of thin porous biodegradable membranes is described. This device was developed for tissue engineering purposes. Next, a novel micropneumatic actuator composed of folded 3-D membrane chambers is described. The actuator was intended for use as a microactive catheter for safer intravascular treatment. Finally, we conclude the chapter and present our perspectives on 3-D membrane microdevices.
\n\t\tVarious micro fabrication processes can be used to fabricate MEMS or μTAS devices. However, few processes are useful for the fabrication of 3-D membrane microstructure, especially for polymer materials. Among conventional microfabrication processes, the chemical vapor deposition (CVD) process using parylene and the microthermoforming process can be employed. Although the CVD process using parylene is used to fabricate 3-D membrane microstructures (Zhenga et al., 2007; Liua et al., 2008), the limitations caused by the unavailability of suitable materials and low production rates present significant problems. The microthermoforming process (Truckenmüller et al., 2002; Giselbrecht et al., 2006) can be applied to a wide variety of thermoplastic materials and is suitable for mass production; however, it cannot be applied to highly porous membranes because the pressurized fluid leaks through the pores.
\n\t\t\tFlowchart of the MeME process.
The MeME process (Fig.2) was developed to realize 3-D membrane microstructures from a wide variety of materials including porous materials (Ikeuchi & Ikuta, 2005; Ikeuchi & Ikuta, 2006, a). This process needs a master mold, a thermoplastic polymer membrane, and a deformable plastic support substrate. First, the polymer membrane is set between the master mold and the support substrate. Then, this assemblage is heated to temperatures around the glass transition point (Tg) of the polymer membrane. Next, the master mold is pressurized against the membrane
In the following two sections, several applications of the MeME process are described.
\n\t\t\tSEM images of the topside (upper) and backside (lower) of the deformed porous PLA membrane.
Throughout the history of biology, cell culture has been carried out on planar glass or in polymer dishes. The cells cultured on a planar substrate proliferate laterally to form a thin layer of cells. Biologists have studied cellular dynamics using these two-dimensional cellular constructs. In the natural environment, however, cells proliferate three-dimensionally, and thus, show behaviours and functions different from those of cells in 2-D
Recently, cell culture in 3-D conditions has attracted considerable attention for studying natural cell behaviours and, from a more practical perspective, for regenerating fully functional large tissues and organs for transplantation. Some biologists culture cells under 3-D conditions by using soft hydrogel materials (collagen, MatrigelTM, etc.) or stacking cell sheets (Liu & Bhatia, 2002; Bryant & Anseth, 2002; Sekiya et al., 2006.). There is a big difference, however, between artificial 3-D conditions and
To solve this problem, King et al. (2004.) attempted to construct microfluidic chips made of biodegradable polymers. They fabricated microchannels in biodegradable polymer substrates using μTAS or lab-on-chip technologies, and they cultured cells on the chip by supplying the culture medium through microchannels (Fig. 4a). They were unable to culture thick tissues, however, because the cells cultured on the chip tended to be distributed at a low density with poor homogeneity. These problems arise due to the thickness of the chip. Cells seeded on the thick microchannel chips proliferate on the surface of the chip rather than growing within the chip substrate.
\n\t\t\t\tIn this section, we describe the MeME process as applied to fabricate 3-D thin membrane microstructure, which solves the problems associated with conventional methods for tissue engineering.
\n\t\t\tTo realize both the nutrients supply and homogeneous cell distribution in 3-D constructs, we propose the artificial capillary network chip as a novel 3-D cell culture device (Fig. 4b). This chip has a microchannel network made of a thin biocompatible polymer membrane with penetrating micropores.
\n\t\t\t\tCells seeded on this chip with soft hydrogel materials, or cells stacked on this chip as cell sheets, can maintain a thick 3-D construct because of nutrients supplied from the porous microchannel network. Unlike the thick conventional microchannel chip, the membrane composing the microchannel wall is thin enough for cells to distribute homogeneously in the 3-D constructs. Biodegradable polymers can be used, instead of conventional polymers, as the membrane material to regenerate tissues for transplantation. Larger tissues can be fabricated by stacking these chips (Fig. 4c).
\n\t\t\t\tA prototype of the chip with highly branched microchannels was fabricated from a porous PLA membrane. The porous PLA membrane was formed by spin-coating following phase separation technique (Ikeuchi & Ikuta, 2006, b). The diameter and density of the pores can be controlled independently by adjusting the water content and PLA content of the coating solution, respectively. Here, the pore diameter was adjusted to ϕ ~ 1 μm to prevent the cells (ϕ ~ 5 μm) from entering the microchannel, and the thickness was adjusted to 5 μm.
\n\t\t\t\tThe master mold was made by microstereolithography developed in our laboratory (Ikuta & Hirowatari, 1993).
\n\t\t\t\ta) Schematic cross-section of the conventional microchannel chip for cell culture. (b) Schematic cross-section of artificial capillary network chip. (c) Conceptual scheme of
The surface of the mold was coated with a fluorocarbon polymer for easy removal of the mold. The master mold was pressurized onto the membrane at 0.5 μm/s for 500 s. at 55ºC
To check the size-selective permeability of the microchannel wall of the chip, a suspension of microbeads with diameters varying from ϕ100 nm to ϕ15 μm was poured on the chip (Fig. 6a). Beads smaller than ϕ1 μm penetrated the wall but larger beads were trapped on the wall (Fig. 6b). This result means that nutrients and gases flowing through the microchannels can diffuse out into the cellular constructs on the chip, while at the same time, the microchannel walls support the thick 3-D cellular constructs.
\n\t\t\t\tThe biocompatibility of the chip was also tested by culturing human endothelial cells (HUVEC) using another prototype chip. Fig. 7a shows a fluorescent image of the cells on the chip after culturing for 120 h. The cells spread as usual and showed no damage. The time course of the cell density on the chip was also equivalent to that for conventional tissue culture polystyrene flasks (Fig. 7b). These results prove that the chip was biocompatible with HUVEC. The success of HUVEC culture on the microchannel offers interesting possibilities for co-culture with other parenchyma cells to fabricate functional tissues.
\n\t\t\t\tA prototype chip made of a porous PLA membrane. (a) Optical microscopy image. (b, c) SEM images of the topside and the backside of the chip, respectively.
a) Fluorescent microscopy image of the chip after pouring a microbead suspension (b) Magnified view of the white-rectangle area in (a).
HUVEC culture on the chip. (a) Fluorescent view of the cell on the chip after 120 h. (b) Transition of cell population density with culture time.
In this section, the artificial capillary network chip with a 3-D membrane microstructure was proposed and its development from the viewpoint of realizing thick 3-D tissue culture
Recently, catheterization has been widely applied in intravascular surgery as an alternative to conventional surgical techniques, which are highly invasive. In catheterization, a thin flexible tube called a catheter is inserted into a blood vessel from the leg or arm. The catheter can be advanced into the patient’s heart or brain for treatment or inspection. The operation leaves just a tiny puncture on the arm or leg where the catheter has been inserted, and therefore, causes less damage and fewer scars on the patient than conventional open surgery.
\n\t\t\t\tA major problem with catheterization, however, is the difficulty of manipulation in narrow and branched blood vessels. Since conventional catheters have no active bending capability at the tip, the doctor can control the direction of the tip only by pushing and rotating the catheter at the inlet which is far away from the tip. Thus, catheterization in narrow and complicated blood vessels is extremely difficult.
\n\t\t\t\tTo solve this problem, several types of active catheters have been proposed (Mineta et al., 2002; Ikuta et al., 2003; Fang et al., 2007). They are classified into two types depending on the bending mechanism. The first type consists of electrically driven active catheters. These catheters have actuators that use shape memory alloys or polymer gels at the tip and can be bent from outside the body by applying a current to the actuators. Even though electrical actuators are suitable for miniaturization, the use of electricity inside the heart or brain poses the risk of fatal damage due to microshock or heat in the case of an accident (Manecke et al., 2002; Bunch et al., 2005).
\n\t\t\t\tThe second type consists of a pressure-driven active catheter, as proposed by Ikuta et al. (2003). It has a hollow bellows made of soft silicone rubber at the tip, and the tip can be bent by supplying saline water into the bellows through a tube connected to the bellows. Since no electricity is necessary for actuation, it is superior in safety compared to electrically driven active catheters. In addition, it can be applied to MRI monitoring, which is a fundamental tool in catheterization, because no metal parts are used in this catheter. In spite of its superiority, the minimum size of this type of catheter that can be attained with conventional injection molding processes using a pair of a male and a female mold is ϕ ~ 1 mm, whereas the catheter must be smaller than ϕ ~ 300 μm for complex intravascular surgery. This limitation arises due to the difficulties involved in 3-D fabrication of a pair of male and female molds with micrometer accuracy.
\n\t\t\t\tAlthough a pressure-driven balloon-type microactuator made from a polydimethylsiloxane (PDMS) molding technique was reported for use in MEMS applications (Konishi et al., 2006), it cannot be applied to catheterization due to the risk of damage to blood vessels caused by large expansion of the actuator during bending. In short, there is no process available to fabricate microscale pressure-driven active catheters.
\n\t\t\t\tIn this section, we describe how the MeME process can be combined with an excimer laser ablation technique to realize a pressure-driven microactive catheter with a 3-D thin membrane microstructure.
\n\t\t\tWe designed a pressure-driven microactive catheter composed of hollow bellows; the catheter was made of a biocompatible polymer membrane (thickness, 5 μm), a motorized syringe, and a Teflon microtube (Fig. 8a). A pressure gauge was attached to the microtube at the base to monitor the pressure and provide the pressure value as feedback to the motorized syringe. The diameter of the catheter was set at ϕ 300 μm, because that is the minimum size used in clinical practice.
\n\t\t\t\tThe bellows are composed of a series of folded microchambers and microchannels connecting the chambers. Since the bottom of each folded chamber is fixed to another membrane, only the upper part of the chamber can be expanded by increasing the inner pressure of the chamber (Fig. 8b). Thus, the bellows in their entirety can be bent in one direction by supplying saline water from the syringe through the microtube, because only one side of the bellows extends. Furthermore, the alternating arrangement of microchannels and microchambers prevents the bellows from expanding in diameter during bending, since the microchannels work as rigid frames to connect the topside and backside membranes of the bellows.
\n\t\t\t\tThe catheter was fabricated using the membrane micro emboss following excimer laser ablation (MeME-X) process (Fig. 9) (Ikeuchi & Ikuta, 2008). In the MeME-X process, at first, the hollow microbellows were formed from PLA membranes (thickness, 5 μm) using the MeME process. By using excimer laser ablation (ArF, 193 nm), the outline of the bellows was cut out from the sealed membranes, and an opening was made at one end. After the bellows were connected to a microtube by an adhesive under an optical microscope, the support substrate was selectively dissolved by immersion in hexane.
\n\t\t\t\ta) Schematic of the pressure-driven microactive catheter system with bendable bellows made of a thin membrane at the tip (b) Bending of the bellows through expansion of each folded microchamber.
Flowchart of the MeME-X process.
Finally, the catheter was successfully fabricated (Fig. 10a). The entire process was completed in 10–15min. To show the cross-section of the hollow bellows, the bellows were cut in the middle using the excimer laser. The bellows composed of a series of folded microchambers and microchannels were precisely fabricated on both the outside and the inside, and the thin membrane was uniformly deformed to yield a hollow microstructure (Fig. 10b).
\n\t\t\t\ta) Completed pressure-driven micro active catheter ϕ 300 μm. (b) SEM image of the bellows cut at the middle to show the cross-section and the inner structure.
The bellows were bent at an arbitrary angle between 0 and 180 through water pressure applied by a motorized syringe (Fig. 11a). The range of the bending angle is sufficient for intravascular operation, and it can be extended by increasing the folding angle of each microchamber of the bellows or by increasing the number of microchambers, if necessary.
\n\t\t\t\ta) Bending demonstration of the pressure-driven micro active catheter from 0 to 180 degrees. (b) Relation between applied pressure (P) and bending angle (θ) of the tip.
The hysteresis of the P-θ curve is apparently caused by the buckling behavior of the folded chambers and air trapped in the microtube (Fig. 11b). The buckling behavior can be improved by modifying the folding angle and pattern of the chambers, and the trapping of air in the system can be prevented by assembling the catheter
For
Video frames showing insertion of the catheter into a 3-D vascular model.
In this section, the pressure-driven microactive catheter was proposed and its development by the MeME-X process was described. The pressure-driven microactive catheter, with its extremely small size and high safety, should promote the application of catheterization in complex intravascular surgery, which is at present not possible with conventional surgical tools. For further improvements, microchannels for drug delivery and/or blood sampling could be attached to the bellows. This can be achieved by simply adding microchannel templates on the master mold of the bellows. Furthermore, the nonelectrical actuation mechanism of this catheter, which has a 3-D membrane microstructure, can be widely extended to safe medical tools and microactuators in the microrobotics field.
\n\t\t\tIn this chapter, the concept of 3-D membrane microdevices was introduced and the development of the MeME process was described. To utilize its characteristics, the concept was applied to actual devices in two different fields. First, focusing on the efficient transfer of substances and heat in 3-D membrane microchannels, an artificial capillary network chip was developed for tissue engineering purposes. Second, utilizing the high elastic deformability of 3-D membrane microstructures, hollow bellows composed of folded microchambers and microchannels were developed to realize a pressure-driven microactive catheter.
\n\t\t\tBiological organisms are fundamentally characterized by a 3-D membrane microstructure. From intracellular organelles to vascular networks, from plant leaves to insect wings, the exquisite architectures prevalent in nature greatly inspires us to develop novel micro/nanodevices. The study of 3-D membrane microdevices has just emerged out of the proof-of-concept stage. To further expand the scope of applications of 3-D membrane microdevices, our laboratory is actively engaged in the exploration of a variety of materials applicable to the MeME process and improvement of the resolutions of the MeME process toward the nanometer scale. With its unique advantages, the 3-D membrane microdevice technology should contribute to drug delivery, tissue engineering, electric power generation, smart skin development and many other fields in the near future.
\n\t\tDimensional classification is one of the methods for classifying nanomaterials: the same chemical compounds can exhibit extraordinary different properties when they are configured in a zero (0D)-, one (1D)-, two (2D)-, and three (3D)-dimensional crystal structure [1]. In spite of the fact that there have been plenty of scientific reports on 0D [2], 1D [3, 4, 5] and, of course, 3D [6, 7], however, a limited number of researches on 2D nanomaterials are published.
2D nanomaterials are considered to be the thinnest nanomaterials due to their thickness and dimensions on macroscale/nanoscale. These nanomaterials have a layered structure with strong in-plane bonds and weak van der Waals (vdW) between layers. These ultrathin nanomaterials can be produced from laminated precursors described in the following sections. Although the ideal state is a single layer, but often these nanosheets are composed of few layers (less than ten layers). In recent years, 2D nanomaterials such as graphene, hexagonal boron nitride (hBN), and metal dichalcogenides (MX2) have attracted a lot of attention due to their satisfactory properties and widespread uses in the electronics, optoelectronics, catalysts, energy storage facilities, sensors, solar cells, lithium batteries, composites, etc.
The schematic structure of graphene, boron nitride nanosheets, and tungsten diselenide (WSe2) as a dichalcogenide has been illustrated in Figure 1. As shown, these compounds are configured in honeycomb structure, but the arrangement of the neighboring atoms in the upper and lower layers of 2D nanomaterials is different. In graphene, each carbon atom is next to another carbon atom in its upper and lower layers, while in the structure of BNNSs, each atom is located in the center of the benzene ring on the upper and lower layers. In the structure of dichalcogenides, each atomic layer of metal is sandwiched between two atomic layers of X.
The structure of (a) single layer of graphene with a lattice of carbon atoms, (b) boron nitride nanosheets with B in blue and N in pink, and (c) tungsten diselenide (WSe2) with W in blue and Se in yellow [
In this chapter, the recent developments in the synthesis, properties of 2D nanomaterials especially graphene, and boron nitride nanosheets (BNNSs) are discussed. A comprehensive understanding of the properties and physics of these materials can be very effective in finding their application in the industry that is discussed in this chapter. The reported virtues and novelties of these nanomaterials are highlighted, and the current problems in their developing process are clarified.
There are some well-known nanosheet materials with strong bonding on surface and poor bonding between layers such as graphene, BNNSs, and MX2. Due to their specific structures, researchers have made great efforts to produce 2D nanosheets by exfoliating these layered compounds into distinct layers. A transmission electron microscopy image of crumpled monolayer of graphene is shown in Figure 2.
The transmission electron microscope image of a crumpled graphene [
Graphene is the most famous of 2D nanosheets that is composed of carbon atoms in a hexagonal (honeycomb) configuration with sp2-hybridized atoms [10, 11]. Graphene is also the most important member of the multidimensional carbon material family that is formed by putting together carbon atoms and which included fullerene as the zero-dimensional nanomaterial (0D), carbon nanotubes as a one-dimensional nanomaterial (1D), and graphite as a three-dimensional nanomaterial (3D) (Figure 3) [12].
Different forms of graphitic carbon [
Graphene has a very weak absorption coefficient of 2.3% of white light, and so it’s seen as a white powder. The surface area of graphene is 2630 m2/gr, which is twice as much as carbon nanotubes with a surface area of 1315 m2/gr. The legendary discovery of this compound in 2004 attracted a lot of attention and led to the discovery of great electronic properties, electron transfer capabilities, unprecedented impermeability, and high mechanical strength, excellent thermal, and electrical conduction.
Single-layer graphene is a substructure for the construction of carbon structures, which if placed on each other, produce 3D graphite. The attractive force between layers is van der Waals (vdW) force with a gap of 0.335 nm [14]. If single-layer graphene is rotated around the axis of the tube, the 1D carbon nanotube, and if they are wrapped spherically, it forms the 0D fullerene.
The numerous chemical and physical methods have been proposed for the production of different types of graphene (from single layer to few layer) based on top-down and bottom-up approaches. Chemical vapor deposition (CVD) and epitaxial growth [15, 16], plasma-enhanced chemical vapor deposition (PECVD) [15], mechanical cleavage [14, 17], Scotch® tape technique [17], chemical synthesis [18], liquid exfoliation [19, 20], etc. have been widely used to produce graphene.
Considering the attention of scientists to graphene and the hope for its various applications in the near future, many research efforts have been devoted to understanding the structure and properties of graphene. Graphene is expected to consist of only single layer, but there is a significant attractive force to bind layers and to form two-layer or few-layer graphene. Two- and few-layer graphene consist of two and three to ten layers of these 2D nanosheets, respectively. The graphene structure, which contains more than ten of these 2D sheets, is considered to be “thick graphene” and is less of a concern for scientists. The status of graphene has changed from an unknown to a superstar in various fields of science and technology [21]. This is due to graphene’s exceptional characteristics including high current density, ballistic transport, chemical inertness, high thermal conductivity, optical transmittance, and superficial hydrophobicity on a nanometer scale [14].
Single-layer graphene, as previously discussed in this chapter, is defined as a 2D nanosheet of carbon atoms that are arranged in a hexagonal network. Each sp2-hybridized carbon atom is bonded to three another atoms with strong covalent bond (σ) that are configured in the hexagonal structure and also has a π orbital perpendicular to the sheet that forms π bond out of plane. These bonds can control the interaction between different layers of graphene in few-layer graphene [21].
Graphene is a semimetal or a semiconductor with a bandgap of zero and also has very high electron mobility at room temperature. Single-layer graphene has an unexpected high degree of transparency so that it absorbs πα ≈ 2.3% the incident white light, in which α is a substructure factor [7]. Single-layer graphene is also considered as one of the strongest materials. Given these mechanical properties, more applications in nanocomposite and coating industries are expected to be opened [21].
Graphene nanosheets are demonstrated to exhibit high transparency in UV-Vis and IR radiation and could be used to produce transparent electrode in solar cells [22]. Graphene has a good ability to functionalize with different functional groups in the form of covalent and noncovalent which leads to its solubility in different solvents. On the other hand, the high surface area of graphene provides a lot of area for loading of functional groups, which leads to reach a higher-level loading of targeting group in the surface, so graphene is considered as a suitable agent for drug delivery. In addition, the high surface area of graphene allow for development of targeted drug delivery systems [23].
Different types of graphene, single-layer and few-layer, have potential applications in various fields. As stated above, graphene is the hardest and thinnest substance ever produced by human beings. Despite the fact that it has a dense structure, due to its very thin thickness, which is equal to the thickness of a carbon atom, it allows light to pass through and is highly transparent; it is also conductive, even more conductive than copper. Its ability to pass through heat and electricity makes it a new option for using on optical screens and computers.
It is 200–300 times stronger than steel and is even harder than diamond; however, it is very light and flexible. In addition, one of its properties is the great ability to move charge carriers. Electrons move relatively freely throughout graphene. With these features, graphene could be called supermassive, and it is expected that this material will create a revolution in the electronic, transistor, composite, coating, and sensor industries. Some examples of graphene applications can be:
As reinforcement in composites instead of carbon fiber, this results in the creation of lighter and stronger aerocrafts and satellites.
Used instead of semiconductor silicones in transistors due to superb conductivity properties. In this case, electrons can move 100 times faster than the electrons present in silicon, which is why potentially graphene have many applications in the electronics industry. This material is currently the main competitor of silicon [24].
Embedding graphene in plastics to enable them to conduct electricity [25, 26].
To increase the durability of batteries using graphene dust [27].
Used in optical electronics [28].
Make harder, stronger, and lighter plastics [29].
As conductive transparent coating for solar cells and screens [30].
Producing stronger implants (medical) [31].
Create supercapacitors [32].
Application in flexible touch screens and displays [33].
Application in liquid crystal display (LCD) [34].
Applications in light-emitting diodes (LEDs) and organic light-emitting diodes (OLEDs) [35].
Making conductive inks for coating [36].
hBN is structurally similar to graphite and has hardness comparable to graphite. Since hBN is the isoelectric analog of graphite structure and shares very similar structural characteristics and many physical properties, is so-called white graphite. It is not present in nature and is synthesized.
Due to its unique properties, including high resistance to oxidation, high thermal conductivity, good thermal insulation, chemical inertness, excellent lubrication, non-toxicity, and environmental friendliness, hBN has diverse industrial applications in surface coatings, composites, lubricants, and insulators. Due to the impressive properties of nanoscale materials and the development of the application of nanomaterials in the industry, ongoing research is carried to develop new methods for synthesis of nanomaterials. However, until now, there is no ensured large-scale and high yield method to achieve a significant amount of boron nitride nanosheets (BNNSs).
Although researches on 2D nanomaterials have been began several decades ago, the wave of interest and attention to these materials get started in 2004 when Novoselov discovered single-layer graphene with superb electronic properties [1]. Many efforts have been made to achieve 2D materials including graphene, boron nitride, and several dichalcogenides. Boron nitride (BN) is one of the most promising systems ever to be the lightest compound of the three and four groups in the periodic table. BN is composed of equal numbers of N and B atoms, which are configured in hexagonal arrange, similar to carbon atoms in graphene. For naming, the term “single-layer BN” is used for monolayer of BN, and in the case of multilayers, is called BNNSs.
As shown in Figure 4, single-layer BN has honeycomb structure consisting of isoelectric borazine rings and benzene structures. B▬N bonds have a covalent nature, but due to the electronegativity difference, these bonds have ionic properties with a length of 1.45 Å. The distance between the two centers of the borazine rings is 2.54 Å (compared with 2.46 Å for graphene). The edges of the plates could be zigzagged (boron or nitrogen on the edges) or armchair (nitrogen-boron on the edge) [37].
Structural view of 2D BNNSs [
The lateral dimension of BNNSs is in range from several hundred nanometers to several 10 micrometers [39, 40]. The dimensions of the nanosheets are different depending on the synthesis method. Figure 5 shows a transmission electron microscopy (TEM) micrograph possessing boron nitride plates, with a lateral dimension of 600 nm.
The transmission electron microscope image of two relatively large BNNSs, which have been overlapped in the middle [
The single layers of BN can be placed on each other to form few-layer BNNSs. The vdW interaction between layers holds BN layers together, so that the distance between these sheets is 0.333 nm, while the layer’s distance in carbon structures is about 0.337 nm [37].
The inorganic analog of graphene, sometimes assigned white graphene, is isoelectronic similar to graphene. However, due to electronegativity differences between the boron and the nitrogen atoms, π electrons are shifted into nitrogen atomic centers, forming the insulating materials [42, 43].
The arrangement of atomic layers in BN and its nanosheets differs with graphite and graphene. The arrangement in the graphene is called AB stacking mode, so that each carbon atom is located at the top of the center of the neighboring layer benzene ring. While in the layers of BN, the stacking mode is AA, and each atom at the upper and lower layers has nitrogen atoms due to polar-polar or electrostatic interactions [6]. Although the AA stacking mode is always observed in nanosheets obtained from the top-down approaches, this order is not always seen in bottom-up synthetic techniques [39, 40]. In addition, the calculations show that the B–N layers have relative displacement from AA to AB stacking mode, along the favorable energy [44].
Duo to the difference in electronegativity, B▬N bonds have ionic characteristic which is compared to covalent C▬C bonds in graphene. This can lead to lip-lip interactions between the layers, i.e., chemical interactions as bridges or spot-welds. This phenomenon helps to reduce energy and then stabilize the formation of few-layered BNNSs by reducing the number of dangling bonds at the edges, as well as reduction of frustration effect (forming B▬B and N▬N bonds instead of favorable B▬N bonds) [45, 46]. Interestingly, such a strong interaction has only a negligible effect on the distance between the BN layers compared to graphene [6].
2D nanosheets can be synthesized with two bottom-up and top-down approaches that relate to the synthesis of sheets from boron and nitrogen precursor [47, 48] and also the separation of layers. Chemical reaction [49] and CVD [39, 40, 50] are based on the former and micromechanical cleavage [51, 52], high-energy electron beam [53, 54], ball milling [55], and chemical [49, 56, 57]/liquid exfoliation [58, 59, 60, 61] are based on the later approach.
Each technique has unique advantages for a specific application; however, there are always disadvantages in any way. In synthesis processes, a great amount of effort was put into preventing the formation of a strong chemical bond between the substrate and nanosheets. The crystallization process time, the nucleation on the substrate and the low density of critical nuclei are the important factors in synthetic methods. On the other hand, in the top-down view, exfoliation of layers is used. Nanosheets obtained from exfoliation usually have a higher crystallinity, but their lateral dimensions are limited by the material used. Also, due to lip-lip interactions between sheets, exfoliation of layers to isolate them is difficult. Therefore, the production of single layer is associated with a lot of problems. But in the bottom-up approach, there is a lot of control over the supply of thin nanosheets with high lateral dimensions. However, the crystallinity of obtained nanosheets is less than the exfoliation process.
hBN has attracted many attentions due to its low density, high thermal conductivity, electrical insulation, high resistance to oxidation, low chemical efficiency, and low refractive index. BNNSs also inherit these properties, and in addition, they also have special properties due to high surface area.
BNNSs have not any absorption in the visible region but have absorption spectroscopy in the ultraviolet region [62]. Its commercial powders are white and its single crystal is transparent. Thin films obtained from chemical exfoliation or CVD also have high transparency [39, 40]. BNNS dispersion is often transparent at low concentrations and shows the Tyndall effect (the path of visible light inside the dispersion with laser light); at higher concentrations, the laser light is diffracted; and the dispersion is seen milky because of the lateral dimensions of nanosheets that are larger than the wavelength of laser light. Due to diffraction, there is any peak in the visible area. The measured extinction coefficient for absorption and diffraction of nanosheets is much smaller than that of graphene. The smaller lateral dimensions and more defects often influence on the optical bandgap, which is attributed to the absorption of the small distribution bandgap at the fermi surfaces and is produced due to the presence of defects [57]. However, hBN has two peaks in the 4 and 5.7 eVs: the first one related to the bandgap energy of BN, as a direct-gap semiconductor, and the latter is related to impurities and vacancy defects [63]. The lateral dimensions and number of layers affect the bandgap energy of nanosheets. For example, Rafiei-Sarmazdeh et al. [58] reported the absorption spectra of as-obtained BNNSs (2-nm-thick layer) at 204 nm (6.08 eV) that are related to the intrinsic excitement of BN structure and which is consistent with the reported results in other previous literatures [64, 65] and is also close to the bandgap energy predicted by theoretical calculus (6.0 eV) [66].
The thermal conductivity for BNNSs is in range 300–2000 W/mK, which is comparable to graphene (1500–2500 W/mK). The difference in the conductivity may be due to the soft phonon modes of carbon sheets and the mass difference between boron and nitrogen [67]. Single BN layers have higher conductivity than multilayers, as the number of layer decreases and the phonon diffraction between layers reduces. As the number of layers increases, the conductivity decreases and converges to the conductivity of hBN. Although hBN has high conductivity and thermal capacity, recent studies have shown that its strong phonon diffraction leads to lower thermal conductivity than graphite. Therefore, the reduction of diffraction in BNNS leads to a significant increase in the conductivity (at room temperature > 600 W/mK) [68].
The hardness for BNNS and graphene is 267 and 335 TPa, respectively [69]. Hence, BNNSs can be used as reinforcement for polymer composites. It has been shown that modulus and tensile strength for nanosheets (thickness of 1–2 nm) are in the range of 220–510 and 8–16 TPa [39]. For multilayer, it is expected that the main values are somewhat less than these values.
Another interesting case with BN materials is frictional properties. hBN and graphite are used as lubricants for many years. The lubricating properties result from the application of the external shear force on the weak forces between the layers and sliding. At the level of atomic layers, friction force microscopy (FFM) studies show that the friction properties of these nanosheets depend on their thickness. Thin nanosheets show more friction due to increased out-of-plane deformation. More studies have shown that reversible dynamic wrinkling on the top surface of most layers is created by frictional force [70]. Then, BNNSs and graphene could be used as lubricating additive.
Boron is introduced as one of the most important neutron absorbers due to its high neutron absorption cross section. The compounds containing of boron are good neutron absorber. In the middle, hBN and, of course, BNNSs are better absorbers due to layer structure and larger surface area that is exposed to neutron beam than other BN structures (such as nanotube, nanoparticle, etc.). They are used in nuclear shielding [71] and boron neutron therapy [72].
In recent years, metal dichalcogenides (MX2) have attracted a lot of attention, like other 2D materials where M is transition metals and Xs are S, Se, and Te such as WSe2, molybdenum disulfide (MoS2), tellurium disulfide (TeS2), etc. MX2 can be a semiconductor or metal depending on the oxidation state of their metal atoms. As graphene-like compounds, they have similarities to graphene, resulting in new opportunities for detecting and building sensors, lithium batteries, optoelectronics, and energy storage. Many researchers have shown that the exfoliated layers of MX2 have large energy of bandgap and are semiconductors. In addition, they have the properties of fluorescence and photoluminescence [73].
There are currently only a limited number of reports on single-layer and few-layer group IV–VI and III–VI layered compounds. Therefore, the 2D properties of these materials are largely unknown. However, MX2 shows a variety of electrical and optical properties that are suitable for catalysts, nanotribology, optoelectronics, and lithium-ion batteries. These materials are expected to exhibit extraordinary properties after reaching a thickness to single layer or multilayer [74].
The synthesis routes to MX2 are similar to other 2D nanomaterials that are based on two top-down and bottom-up approaches. Methods such as chemical synthesis, CVD, mechanical cleavage, and liquid exfoliation are performed to produce of these nanomaterials [75].
These layered compounds, like other 2D nanomaterials, have interesting optical, electrical, photovoltaic, and catalytic properties. These compounds are considered as the next generation of flexible and ultrathin photoelectric devices. Also, MX2 has a suitable photovoltaic response to laser excitation and also used as catalyst in the hydrogen evolution reactions (HER).
One of the major problems with 2D nanostructures is to achieve a large-scale synthesis method for producing high quality, large surface area, high crystallinity, and free from any impurity nanosheets. Different methods have been reported to synthesize these nanosheets so far, which generally suffer from problems such as impurities, low crystallinity, low lateral dimension, and little yield, which limit the use of these 2D nanosheets in the industry. At present, many studies focus on improving the synthesis methods of these nanosheets.
This chapter is an attempt to better realize 2D nanostructures, especially graphene and boron nitride, and getting to know the synthesis methods and the application of these materials in various fields. Recently, there have been advances in the production and application of 2D nanostructures, especially graphene and boron nitride.
In general, the properties and applications of nanostructures are determined by their structure and morphology. The large surface area, high aspect ratio, and much number of atoms on the surface provide the special properties to these 2D nanomaterials, such as thermal and electric conductivity, lubricating, mechanical characteristic, etc. These impressive properties allow them to be used in fields such as coatings, electrical and optoelectronic devices, composites, etc. However, the low efficiency of the synthesis methods, especially boron nitride, which has an ionic nature, creates some of the limitations that researchers are trying to overcome.
The authors declare that they have no conflict of interest.
License
\n\nBook Chapters published in edited volumes are distributed under the Creative Commons Attribution 3.0 Unported License (CC BY 3.0). IntechOpen maintains a very flexible Copyright Policy that ensures that there is no copyright transfer to the publisher. Therefore, Authors retain exclusive copyright to their work. All Monographs are distributed under the Creative Commons Attribution-NonCommercial 4.0 International (CC BY-NC 4.0).
\n\n',metaTitle:"Open Access Statement",metaDescription:"Book chapters published in edited volumes are distributed under the Creative Commons Attribution 3.0 Unported License (CC BY 3.0)",metaKeywords:null,canonicalURL:"/page/open-access-statement/",contentRaw:'[{"type":"htmlEditorComponent","content":"Formats
\\n\\nBased on your preferences and the stage of your scientific projects, you have multiple options for publishing your scientific research with IntechOpen:
\\n\\nPeer Review Policies
\\n\\nAll scientific Works are subject to Peer Review prior to publishing.
\\n\\n\\n\\nCosts
\\n\\nThe Open Access publishing model followed by IntechOpen eliminates subscription charges and pay-per-view fees, thus enabling readers to access research at no cost to themselves. In order to sustain these operations, and keep our publications freely accessible, we levy an Open Access Publishing Fee on all manuscripts accepted for publication to help cover the costs of editorial work and the production of books.
\\n\\n\\n\\nDigital Archiving Policy
\\n\\nIntechOpen is dedicated to ensuring the long-term preservation and availability of the scholarly research it publishes.
\\n"}]'},components:[{type:"htmlEditorComponent",content:'Formats
\n\nBased on your preferences and the stage of your scientific projects, you have multiple options for publishing your scientific research with IntechOpen:
\n\nPeer Review Policies
\n\nAll scientific Works are subject to Peer Review prior to publishing.
\n\n\n\nCosts
\n\nThe Open Access publishing model followed by IntechOpen eliminates subscription charges and pay-per-view fees, thus enabling readers to access research at no cost to themselves. In order to sustain these operations, and keep our publications freely accessible, we levy an Open Access Publishing Fee on all manuscripts accepted for publication to help cover the costs of editorial work and the production of books.
\n\n\n\nDigital Archiving Policy
\n\nIntechOpen is dedicated to ensuring the long-term preservation and availability of the scholarly research it publishes.
\n'}]},successStories:{items:[]},authorsAndEditors:{filterParams:{sort:"featured,name"},profiles:[{id:"6700",title:"Dr.",name:"Abbass A.",middleName:null,surname:"Hashim",slug:"abbass-a.-hashim",fullName:"Abbass A. Hashim",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/6700/images/1864_n.jpg",biography:"Currently I am carrying out research in several areas of interest, mainly covering work on chemical and bio-sensors, semiconductor thin film device fabrication and characterisation.\nAt the moment I have very strong interest in radiation environmental pollution and bacteriology treatment. The teams of researchers are working very hard to bring novel results in this field. I am also a member of the team in charge for the supervision of Ph.D. students in the fields of development of silicon based planar waveguide sensor devices, study of inelastic electron tunnelling in planar tunnelling nanostructures for sensing applications and development of organotellurium(IV) compounds for semiconductor applications. I am a specialist in data analysis techniques and nanosurface structure. I have served as the editor for many books, been a member of the editorial board in science journals, have published many papers and hold many patents.",institutionString:null,institution:{name:"Sheffield Hallam University",country:{name:"United Kingdom"}}},{id:"54525",title:"Prof.",name:"Abdul Latif",middleName:null,surname:"Ahmad",slug:"abdul-latif-ahmad",fullName:"Abdul Latif Ahmad",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:null},{id:"20567",title:"Prof.",name:"Ado",middleName:null,surname:"Jorio",slug:"ado-jorio",fullName:"Ado Jorio",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"Universidade Federal de Minas Gerais",country:{name:"Brazil"}}},{id:"47940",title:"Dr.",name:"Alberto",middleName:null,surname:"Mantovani",slug:"alberto-mantovani",fullName:"Alberto Mantovani",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:null},{id:"12392",title:"Mr.",name:"Alex",middleName:null,surname:"Lazinica",slug:"alex-lazinica",fullName:"Alex Lazinica",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/12392/images/7282_n.png",biography:"Alex Lazinica is the founder and CEO of IntechOpen. After obtaining a Master's degree in Mechanical Engineering, he continued his PhD studies in Robotics at the Vienna University of Technology. Here he worked as a robotic researcher with the university's Intelligent Manufacturing Systems Group as well as a guest researcher at various European universities, including the Swiss Federal Institute of Technology Lausanne (EPFL). During this time he published more than 20 scientific papers, gave presentations, served as a reviewer for major robotic journals and conferences and most importantly he co-founded and built the International Journal of Advanced Robotic Systems- world's first Open Access journal in the field of robotics. Starting this journal was a pivotal point in his career, since it was a pathway to founding IntechOpen - Open Access publisher focused on addressing academic researchers needs. Alex is a personification of IntechOpen key values being trusted, open and entrepreneurial. Today his focus is on defining the growth and development strategy for the company.",institutionString:null,institution:{name:"TU Wien",country:{name:"Austria"}}},{id:"19816",title:"Prof.",name:"Alexander",middleName:null,surname:"Kokorin",slug:"alexander-kokorin",fullName:"Alexander Kokorin",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/19816/images/1607_n.jpg",biography:"Alexander I. Kokorin: born: 1947, Moscow; DSc., PhD; Principal Research Fellow (Research Professor) of Department of Kinetics and Catalysis, N. Semenov Institute of Chemical Physics, Russian Academy of Sciences, Moscow.\r\nArea of research interests: physical chemistry of complex-organized molecular and nanosized systems, including polymer-metal complexes; the surface of doped oxide semiconductors. He is an expert in structural, absorptive, catalytic and photocatalytic properties, in structural organization and dynamic features of ionic liquids, in magnetic interactions between paramagnetic centers. The author or co-author of 3 books, over 200 articles and reviews in scientific journals and books. He is an actual member of the International EPR/ESR Society, European Society on Quantum Solar Energy Conversion, Moscow House of Scientists, of the Board of Moscow Physical Society.",institutionString:null,institution:{name:"Semenov Institute of Chemical Physics",country:{name:"Russia"}}},{id:"62389",title:"PhD.",name:"Ali Demir",middleName:null,surname:"Sezer",slug:"ali-demir-sezer",fullName:"Ali Demir Sezer",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/62389/images/3413_n.jpg",biography:"Dr. Ali Demir Sezer has a Ph.D. from Pharmaceutical Biotechnology at the Faculty of Pharmacy, University of Marmara (Turkey). He is the member of many Pharmaceutical Associations and acts as a reviewer of scientific journals and European projects under different research areas such as: drug delivery systems, nanotechnology and pharmaceutical biotechnology. Dr. Sezer is the author of many scientific publications in peer-reviewed journals and poster communications. Focus of his research activity is drug delivery, physico-chemical characterization and biological evaluation of biopolymers micro and nanoparticles as modified drug delivery system, and colloidal drug carriers (liposomes, nanoparticles etc.).",institutionString:null,institution:{name:"Marmara University",country:{name:"Turkey"}}},{id:"61051",title:"Prof.",name:"Andrea",middleName:null,surname:"Natale",slug:"andrea-natale",fullName:"Andrea Natale",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:null},{id:"100762",title:"Prof.",name:"Andrea",middleName:null,surname:"Natale",slug:"andrea-natale",fullName:"Andrea Natale",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"St David's Medical Center",country:{name:"United States of America"}}},{id:"107416",title:"Dr.",name:"Andrea",middleName:null,surname:"Natale",slug:"andrea-natale",fullName:"Andrea Natale",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"Texas Cardiac Arrhythmia",country:{name:"United States of America"}}},{id:"64434",title:"Dr.",name:"Angkoon",middleName:null,surname:"Phinyomark",slug:"angkoon-phinyomark",fullName:"Angkoon Phinyomark",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/64434/images/2619_n.jpg",biography:"My name is Angkoon Phinyomark. I received a B.Eng. degree in Computer Engineering with First Class Honors in 2008 from Prince of Songkla University, Songkhla, Thailand, where I received a Ph.D. degree in Electrical Engineering. My research interests are primarily in the area of biomedical signal processing and classification notably EMG (electromyography signal), EOG (electrooculography signal), and EEG (electroencephalography signal), image analysis notably breast cancer analysis and optical coherence tomography, and rehabilitation engineering. I became a student member of IEEE in 2008. During October 2011-March 2012, I had worked at School of Computer Science and Electronic Engineering, University of Essex, Colchester, Essex, United Kingdom. In addition, during a B.Eng. I had been a visiting research student at Faculty of Computer Science, University of Murcia, Murcia, Spain for three months.\n\nI have published over 40 papers during 5 years in refereed journals, books, and conference proceedings in the areas of electro-physiological signals processing and classification, notably EMG and EOG signals, fractal analysis, wavelet analysis, texture analysis, feature extraction and machine learning algorithms, and assistive and rehabilitative devices. I have several computer programming language certificates, i.e. Sun Certified Programmer for the Java 2 Platform 1.4 (SCJP), Microsoft Certified Professional Developer, Web Developer (MCPD), Microsoft Certified Technology Specialist, .NET Framework 2.0 Web (MCTS). I am a Reviewer for several refereed journals and international conferences, such as IEEE Transactions on Biomedical Engineering, IEEE Transactions on Industrial Electronics, Optic Letters, Measurement Science Review, and also a member of the International Advisory Committee for 2012 IEEE Business Engineering and Industrial Applications and 2012 IEEE Symposium on Business, Engineering and Industrial Applications.",institutionString:null,institution:{name:"Joseph Fourier University",country:{name:"France"}}},{id:"55578",title:"Dr.",name:"Antonio",middleName:null,surname:"Jurado-Navas",slug:"antonio-jurado-navas",fullName:"Antonio Jurado-Navas",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/55578/images/4574_n.png",biography:"Antonio Jurado-Navas received the M.S. degree (2002) and the Ph.D. degree (2009) in Telecommunication Engineering, both from the University of Málaga (Spain). He first worked as a consultant at Vodafone-Spain. From 2004 to 2011, he was a Research Assistant with the Communications Engineering Department at the University of Málaga. In 2011, he became an Assistant Professor in the same department. From 2012 to 2015, he was with Ericsson Spain, where he was working on geo-location\ntools for third generation mobile networks. Since 2015, he is a Marie-Curie fellow at the Denmark Technical University. His current research interests include the areas of mobile communication systems and channel modeling in addition to atmospheric optical communications, adaptive optics and statistics",institutionString:null,institution:{name:"University of Malaga",country:{name:"Spain"}}}],filtersByRegion:[{group:"region",caption:"North America",value:1,count:5817},{group:"region",caption:"Middle and South America",value:2,count:5282},{group:"region",caption:"Africa",value:3,count:1755},{group:"region",caption:"Asia",value:4,count:10511},{group:"region",caption:"Australia and Oceania",value:5,count:906},{group:"region",caption:"Europe",value:6,count:15915}],offset:12,limit:12,total:119159},chapterEmbeded:{data:{}},editorApplication:{success:null,errors:{}},ofsBooks:{filterParams:{},books:[{type:"book",id:"8969",title:"Deserts and Desertification",subtitle:null,isOpenForSubmission:!0,hash:"4df95c7f295de7f6003e635d9a309fe9",slug:null,bookSignature:"Dr. Yajuan Zhu, Dr. Qinghong Luo and Dr. Yuguo Liu",coverURL:"https://cdn.intechopen.com/books/images_new/8969.jpg",editedByType:null,editors:[{id:"180427",title:"Dr.",name:"Yajuan",surname:"Zhu",slug:"yajuan-zhu",fullName:"Yajuan Zhu"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"8977",title:"Protein Kinase - New Opportunities, Challenges and Future Perspectives",subtitle:null,isOpenForSubmission:!0,hash:"6d200cc031706a565b554fdb1c478901",slug:null,bookSignature:"Dr. Rajesh Kumar Singh",coverURL:"https://cdn.intechopen.com/books/images_new/8977.jpg",editedByType:null,editors:[{id:"329385",title:"Dr.",name:"Rajesh",surname:"Singh",slug:"rajesh-singh",fullName:"Rajesh Singh"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"9667",title:"Neuroimmunology",subtitle:null,isOpenForSubmission:!0,hash:"9cf0e8203ce088c0b84add014fd8d382",slug:null,bookSignature:"Prof. Robert Weissert",coverURL:"https://cdn.intechopen.com/books/images_new/9667.jpg",editedByType:null,editors:[{id:"79343",title:"Prof.",name:"Robert",surname:"Weissert",slug:"robert-weissert",fullName:"Robert Weissert"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"9816",title:"Idiopathic Pulmonary Fibrosis",subtitle:null,isOpenForSubmission:!0,hash:"365bb9762ba33db2d07e677690af1772",slug:null,bookSignature:"Dr. Salim Surani and Dr. Venkat Rajasurya",coverURL:"https://cdn.intechopen.com/books/images_new/9816.jpg",editedByType:null,editors:[{id:"15654",title:"Dr.",name:"Salim",surname:"Surani",slug:"salim-surani",fullName:"Salim Surani"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10176",title:"Microgrids and Local Energy Systems",subtitle:null,isOpenForSubmission:!0,hash:"c32b4a5351a88f263074b0d0ca813a9c",slug:null,bookSignature:"Prof. Nick Jenkins",coverURL:"https://cdn.intechopen.com/books/images_new/10176.jpg",editedByType:null,editors:[{id:"55219",title:"Prof.",name:"Nick",surname:"Jenkins",slug:"nick-jenkins",fullName:"Nick Jenkins"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10213",title:"Secretomics",subtitle:null,isOpenForSubmission:!0,hash:"8f787d92ba862a2c43867b2e62d15c31",slug:null,bookSignature:"Dr. Luiza Rusu",coverURL:"https://cdn.intechopen.com/books/images_new/10213.jpg",editedByType:null,editors:[{id:"210679",title:"Dr.",name:"Luiza",surname:"Rusu",slug:"luiza-rusu",fullName:"Luiza Rusu"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10218",title:"Flagellar Motility in Cells",subtitle:null,isOpenForSubmission:!0,hash:"5fcc15570365a82d9f2c4816f4e0ee2e",slug:null,bookSignature:"Prof. Yusuf Bozkurt",coverURL:"https://cdn.intechopen.com/books/images_new/10218.jpg",editedByType:null,editors:[{id:"90846",title:"Prof.",name:"Yusuf",surname:"Bozkurt",slug:"yusuf-bozkurt",fullName:"Yusuf Bozkurt"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10223",title:"Obesity and Health",subtitle:null,isOpenForSubmission:!0,hash:"c202a2b74cd9a2c44b1c385f103ac65d",slug:null,bookSignature:"Dr. Venketeshwer Rao and Dr. Leticia Rao",coverURL:"https://cdn.intechopen.com/books/images_new/10223.jpg",editedByType:null,editors:[{id:"82663",title:"Dr.",name:"Venketeshwer",surname:"Rao",slug:"venketeshwer-rao",fullName:"Venketeshwer Rao"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10231",title:"Proton Therapy",subtitle:null,isOpenForSubmission:!0,hash:"f4a9009287953c8d1d89f0fa9b7597b0",slug:null,bookSignature:"",coverURL:"https://cdn.intechopen.com/books/images_new/10231.jpg",editedByType:null,editors:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10343",title:"Ocular Hypertension",subtitle:null,isOpenForSubmission:!0,hash:"0ff71cc7e0d9f394f41162c0c825588a",slug:null,bookSignature:"Prof. Michele Lanza",coverURL:"https://cdn.intechopen.com/books/images_new/10343.jpg",editedByType:null,editors:[{id:"240088",title:"Prof.",name:"Michele",surname:"Lanza",slug:"michele-lanza",fullName:"Michele Lanza"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10370",title:"Advances in Fundamental and Applied Research on Spatial Audio",subtitle:null,isOpenForSubmission:!0,hash:"f16232a481c08a05cc191ac64cf2c69e",slug:null,bookSignature:"Dr. Brian FG Katz and Dr. Piotr Majdak",coverURL:"https://cdn.intechopen.com/books/images_new/10370.jpg",editedByType:null,editors:[{id:"278731",title:"Dr.",name:"Brian FG",surname:"Katz",slug:"brian-fg-katz",fullName:"Brian FG Katz"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10504",title:"Crystallization",subtitle:null,isOpenForSubmission:!0,hash:"3478d05926950f475f4ad2825d340963",slug:null,bookSignature:"Dr. Youssef Ben Smida and Dr. Riadh Marzouki",coverURL:"https://cdn.intechopen.com/books/images_new/10504.jpg",editedByType:null,editors:[{id:"311698",title:"Dr.",name:"Youssef",surname:"Ben Smida",slug:"youssef-ben-smida",fullName:"Youssef Ben Smida"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}}],filtersByTopic:[{group:"topic",caption:"Agricultural and Biological Sciences",value:5,count:27},{group:"topic",caption:"Biochemistry, Genetics and Molecular Biology",value:6,count:9},{group:"topic",caption:"Business, Management and Economics",value:7,count:3},{group:"topic",caption:"Chemistry",value:8,count:11},{group:"topic",caption:"Computer and Information Science",value:9,count:9},{group:"topic",caption:"Earth and Planetary Sciences",value:10,count:9},{group:"topic",caption:"Engineering",value:11,count:24},{group:"topic",caption:"Environmental Sciences",value:12,count:2},{group:"topic",caption:"Immunology and Microbiology",value:13,count:4},{group:"topic",caption:"Materials Science",value:14,count:7},{group:"topic",caption:"Mathematics",value:15,count:2},{group:"topic",caption:"Medicine",value:16,count:46},{group:"topic",caption:"Neuroscience",value:18,count:3},{group:"topic",caption:"Pharmacology, Toxicology and Pharmaceutical Science",value:19,count:3},{group:"topic",caption:"Physics",value:20,count:4},{group:"topic",caption:"Psychology",value:21,count:4},{group:"topic",caption:"Robotics",value:22,count:2},{group:"topic",caption:"Social Sciences",value:23,count:3},{group:"topic",caption:"Technology",value:24,count:1},{group:"topic",caption:"Veterinary Medicine and Science",value:25,count:2}],offset:12,limit:12,total:217},popularBooks:{featuredBooks:[{type:"book",id:"8472",title:"Bioactive Compounds in Nutraceutical and Functional Food for Good Human Health",subtitle:null,isOpenForSubmission:!1,hash:"8855452919b8495810ef8e88641feb20",slug:"bioactive-compounds-in-nutraceutical-and-functional-food-for-good-human-health",bookSignature:"Kavita Sharma, Kanchan Mishra, Kula Kamal Senapati and Corina Danciu",coverURL:"https://cdn.intechopen.com/books/images_new/8472.jpg",editors:[{id:"197731",title:"Dr.",name:"Kavita",middleName:null,surname:"Sharma",slug:"kavita-sharma",fullName:"Kavita Sharma"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9685",title:"Agroecosystems",subtitle:"Very Complex Environmental Systems",isOpenForSubmission:!1,hash:"c44f7b43a9f9610c243dc32300d37df6",slug:"agroecosystems-very-complex-environmental-systems",bookSignature:"Marcelo L. Larramendy and Sonia Soloneski",coverURL:"https://cdn.intechopen.com/books/images_new/9685.jpg",editors:[{id:"14764",title:"Dr.",name:"Marcelo L.",middleName:null,surname:"Larramendy",slug:"marcelo-l.-larramendy",fullName:"Marcelo L. Larramendy"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"8564",title:"Cell Interaction",subtitle:"Molecular and Immunological Basis for Disease Management",isOpenForSubmission:!1,hash:"98d7f080d80524285f091e72a8e92a6d",slug:"cell-interaction-molecular-and-immunological-basis-for-disease-management",bookSignature:"Bhawana Singh",coverURL:"https://cdn.intechopen.com/books/images_new/8564.jpg",editors:[{id:"315192",title:"Dr.",name:"Bhawana",middleName:null,surname:"Singh",slug:"bhawana-singh",fullName:"Bhawana Singh"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9629",title:"Electroencephalography",subtitle:"From Basic Research to Clinical Applications",isOpenForSubmission:!1,hash:"8147834b6c6deeeec40f407c71ad60b4",slug:"electroencephalography-from-basic-research-to-clinical-applications",bookSignature:"Hideki Nakano",coverURL:"https://cdn.intechopen.com/books/images_new/9629.jpg",editors:[{id:"196461",title:"Prof.",name:"Hideki",middleName:null,surname:"Nakano",slug:"hideki-nakano",fullName:"Hideki Nakano"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"8760",title:"Structure Topology and Symplectic Geometry",subtitle:null,isOpenForSubmission:!1,hash:"8974840985ec3652492c83e20233bf02",slug:"structure-topology-and-symplectic-geometry",bookSignature:"Kamal Shah and Min Lei",coverURL:"https://cdn.intechopen.com/books/images_new/8760.jpg",editors:[{id:"231748",title:"Dr.",name:"Kamal",middleName:null,surname:"Shah",slug:"kamal-shah",fullName:"Kamal Shah"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9161",title:"Frailty in the Elderly",subtitle:"Understanding and Managing Complexity",isOpenForSubmission:!1,hash:"a4f0f2fade8fb8ba35c405f5ad31a823",slug:"frailty-in-the-elderly-understanding-and-managing-complexity",bookSignature:"Sara Palermo",coverURL:"https://cdn.intechopen.com/books/images_new/9161.jpg",editors:[{id:"233998",title:"Ph.D.",name:"Sara",middleName:null,surname:"Palermo",slug:"sara-palermo",fullName:"Sara Palermo"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"8445",title:"Dam Engineering",subtitle:"Recent Advances in Design and Analysis",isOpenForSubmission:!1,hash:"a7e4d2ecbc65d78fa7582e0d2e143906",slug:"dam-engineering-recent-advances-in-design-and-analysis",bookSignature:"Zhongzhi Fu and Erich Bauer",coverURL:"https://cdn.intechopen.com/books/images_new/8445.jpg",editors:[{id:"249577",title:"Dr.",name:"Zhongzhi",middleName:null,surname:"Fu",slug:"zhongzhi-fu",fullName:"Zhongzhi Fu"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9385",title:"Renewable Energy",subtitle:"Technologies and Applications",isOpenForSubmission:!1,hash:"a6b446d19166f17f313008e6c056f3d8",slug:"renewable-energy-technologies-and-applications",bookSignature:"Tolga Taner, Archana Tiwari and Taha Selim Ustun",coverURL:"https://cdn.intechopen.com/books/images_new/9385.jpg",editors:[{id:"197240",title:"Associate Prof.",name:"Tolga",middleName:null,surname:"Taner",slug:"tolga-taner",fullName:"Tolga Taner"}],equalEditorOne:{id:"186791",title:"Dr.",name:"Archana",middleName:null,surname:"Tiwari",slug:"archana-tiwari",fullName:"Archana Tiwari",profilePictureURL:"https://mts.intechopen.com/storage/users/186791/images/system/186791.jpg",biography:"Dr. Archana Tiwari is Associate Professor at Amity University, India. Her research interests include renewable sources of energy from microalgae and further utilizing the residual biomass for the generation of value-added products, bioremediation through microalgae and microbial consortium, antioxidative enzymes and stress, and nutraceuticals from microalgae. She has been working on algal biotechnology for the last two decades. She has published her research in many international journals and has authored many books and chapters with renowned publishing houses. She has also delivered talks as an invited speaker at many national and international conferences. Dr. Tiwari is the recipient of several awards including Researcher of the Year and Distinguished Scientist.",institutionString:"Amity University",position:null,outsideEditionCount:0,totalCites:0,totalAuthoredChapters:"3",totalChapterViews:"0",totalEditedBooks:"1",institution:{name:"Amity University",institutionURL:null,country:{name:"India"}}},equalEditorTwo:{id:"197609",title:"Prof.",name:"Taha Selim",middleName:null,surname:"Ustun",slug:"taha-selim-ustun",fullName:"Taha Selim Ustun",profilePictureURL:"https://mts.intechopen.com/storage/users/197609/images/system/197609.jpeg",biography:"Dr. Taha Selim Ustun received a Ph.D. in Electrical Engineering from Victoria University, Melbourne, Australia. He is a researcher with the Fukushima Renewable Energy Institute, AIST (FREA), where he leads the Smart Grid Cybersecurity Laboratory. Prior to that, he was a faculty member with the School of Electrical and Computer Engineering, Carnegie Mellon University, Pittsburgh, PA, USA. His current research interests include power systems protection, communication in power networks, distributed generation, microgrids, electric vehicle integration, and cybersecurity in smart grids. He serves on the editorial boards of IEEE Access, IEEE Transactions on Industrial Informatics, Energies, Electronics, Electricity, World Electric Vehicle and Information journals. Dr. Ustun is a member of the IEEE 2004 and 2800, IEC Renewable Energy Management WG 8, and IEC TC 57 WG17. He has been invited to run specialist courses in Africa, India, and China. He has delivered talks for the Qatar Foundation, the World Energy Council, the Waterloo Global Science Initiative, and the European Union Energy Initiative (EUEI). His research has attracted funding from prestigious programs in Japan, Australia, the European Union, and North America.",institutionString:"Fukushima Renewable Energy Institute, AIST (FREA)",position:null,outsideEditionCount:0,totalCites:0,totalAuthoredChapters:"1",totalChapterViews:"0",totalEditedBooks:"0",institution:{name:"National Institute of Advanced Industrial Science and Technology",institutionURL:null,country:{name:"Japan"}}},equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"8937",title:"Soil Moisture Importance",subtitle:null,isOpenForSubmission:!1,hash:"3951728ace7f135451d66b72e9908b47",slug:"soil-moisture-importance",bookSignature:"Ram Swaroop Meena and Rahul Datta",coverURL:"https://cdn.intechopen.com/books/images_new/8937.jpg",editors:[{id:"313528",title:"Associate Prof.",name:"Ram Swaroop",middleName:null,surname:"Meena",slug:"ram-swaroop-meena",fullName:"Ram Swaroop Meena"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"7031",title:"Liver Pathology",subtitle:null,isOpenForSubmission:!1,hash:"631321b0565459ed0175917f1c8c727f",slug:"liver-pathology",bookSignature:"Vijay Gayam and Omer Engin",coverURL:"https://cdn.intechopen.com/books/images_new/7031.jpg",editors:[{id:"273100",title:"Dr.",name:"Vijay",middleName:null,surname:"Gayam",slug:"vijay-gayam",fullName:"Vijay Gayam"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"8158",title:"Veganism",subtitle:"a Fashion Trend or Food as a Medicine",isOpenForSubmission:!1,hash:"d8e51fc25a379e5b92a270addbb4351d",slug:"veganism-a-fashion-trend-or-food-as-a-medicine",bookSignature:"Miljana Z. Jovandaric",coverURL:"https://cdn.intechopen.com/books/images_new/8158.jpg",editors:[{id:"268043",title:"Dr.",name:"Miljana Z.",middleName:"Z",surname:"Jovandaric",slug:"miljana-z.-jovandaric",fullName:"Miljana Z. Jovandaric"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"2160",title:"MATLAB",subtitle:"A Fundamental Tool for Scientific Computing and Engineering Applications - Volume 1",isOpenForSubmission:!1,hash:"dd9c658341fbd264ed4f8d9e6aa8ca29",slug:"matlab-a-fundamental-tool-for-scientific-computing-and-engineering-applications-volume-1",bookSignature:"Vasilios N. Katsikis",coverURL:"https://cdn.intechopen.com/books/images_new/2160.jpg",editors:[{id:"12289",title:"Prof.",name:"Vasilios",middleName:"N.",surname:"Katsikis",slug:"vasilios-katsikis",fullName:"Vasilios Katsikis"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}}],offset:12,limit:12,total:5315},hotBookTopics:{hotBooks:[],offset:0,limit:12,total:null},publish:{},publishingProposal:{success:null,errors:{}},books:{featuredBooks:[{type:"book",id:"8472",title:"Bioactive Compounds in Nutraceutical and Functional Food for Good Human Health",subtitle:null,isOpenForSubmission:!1,hash:"8855452919b8495810ef8e88641feb20",slug:"bioactive-compounds-in-nutraceutical-and-functional-food-for-good-human-health",bookSignature:"Kavita Sharma, Kanchan Mishra, Kula Kamal Senapati and Corina Danciu",coverURL:"https://cdn.intechopen.com/books/images_new/8472.jpg",editors:[{id:"197731",title:"Dr.",name:"Kavita",middleName:null,surname:"Sharma",slug:"kavita-sharma",fullName:"Kavita Sharma"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9685",title:"Agroecosystems",subtitle:"Very Complex Environmental Systems",isOpenForSubmission:!1,hash:"c44f7b43a9f9610c243dc32300d37df6",slug:"agroecosystems-very-complex-environmental-systems",bookSignature:"Marcelo L. Larramendy and Sonia Soloneski",coverURL:"https://cdn.intechopen.com/books/images_new/9685.jpg",editors:[{id:"14764",title:"Dr.",name:"Marcelo L.",middleName:null,surname:"Larramendy",slug:"marcelo-l.-larramendy",fullName:"Marcelo L. Larramendy"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"8564",title:"Cell Interaction",subtitle:"Molecular and Immunological Basis for Disease Management",isOpenForSubmission:!1,hash:"98d7f080d80524285f091e72a8e92a6d",slug:"cell-interaction-molecular-and-immunological-basis-for-disease-management",bookSignature:"Bhawana Singh",coverURL:"https://cdn.intechopen.com/books/images_new/8564.jpg",editors:[{id:"315192",title:"Dr.",name:"Bhawana",middleName:null,surname:"Singh",slug:"bhawana-singh",fullName:"Bhawana Singh"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9629",title:"Electroencephalography",subtitle:"From Basic Research to Clinical Applications",isOpenForSubmission:!1,hash:"8147834b6c6deeeec40f407c71ad60b4",slug:"electroencephalography-from-basic-research-to-clinical-applications",bookSignature:"Hideki Nakano",coverURL:"https://cdn.intechopen.com/books/images_new/9629.jpg",editors:[{id:"196461",title:"Prof.",name:"Hideki",middleName:null,surname:"Nakano",slug:"hideki-nakano",fullName:"Hideki Nakano"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"8760",title:"Structure Topology and Symplectic Geometry",subtitle:null,isOpenForSubmission:!1,hash:"8974840985ec3652492c83e20233bf02",slug:"structure-topology-and-symplectic-geometry",bookSignature:"Kamal Shah and Min Lei",coverURL:"https://cdn.intechopen.com/books/images_new/8760.jpg",editors:[{id:"231748",title:"Dr.",name:"Kamal",middleName:null,surname:"Shah",slug:"kamal-shah",fullName:"Kamal Shah"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9161",title:"Frailty in the Elderly",subtitle:"Understanding and Managing Complexity",isOpenForSubmission:!1,hash:"a4f0f2fade8fb8ba35c405f5ad31a823",slug:"frailty-in-the-elderly-understanding-and-managing-complexity",bookSignature:"Sara Palermo",coverURL:"https://cdn.intechopen.com/books/images_new/9161.jpg",editors:[{id:"233998",title:"Ph.D.",name:"Sara",middleName:null,surname:"Palermo",slug:"sara-palermo",fullName:"Sara Palermo"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"8445",title:"Dam Engineering",subtitle:"Recent Advances in Design and Analysis",isOpenForSubmission:!1,hash:"a7e4d2ecbc65d78fa7582e0d2e143906",slug:"dam-engineering-recent-advances-in-design-and-analysis",bookSignature:"Zhongzhi Fu and Erich Bauer",coverURL:"https://cdn.intechopen.com/books/images_new/8445.jpg",editors:[{id:"249577",title:"Dr.",name:"Zhongzhi",middleName:null,surname:"Fu",slug:"zhongzhi-fu",fullName:"Zhongzhi Fu"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9385",title:"Renewable Energy",subtitle:"Technologies and Applications",isOpenForSubmission:!1,hash:"a6b446d19166f17f313008e6c056f3d8",slug:"renewable-energy-technologies-and-applications",bookSignature:"Tolga Taner, Archana Tiwari and Taha Selim Ustun",coverURL:"https://cdn.intechopen.com/books/images_new/9385.jpg",editors:[{id:"197240",title:"Associate Prof.",name:"Tolga",middleName:null,surname:"Taner",slug:"tolga-taner",fullName:"Tolga Taner"}],equalEditorOne:{id:"186791",title:"Dr.",name:"Archana",middleName:null,surname:"Tiwari",slug:"archana-tiwari",fullName:"Archana Tiwari",profilePictureURL:"https://mts.intechopen.com/storage/users/186791/images/system/186791.jpg",biography:"Dr. Archana Tiwari is Associate Professor at Amity University, India. Her research interests include renewable sources of energy from microalgae and further utilizing the residual biomass for the generation of value-added products, bioremediation through microalgae and microbial consortium, antioxidative enzymes and stress, and nutraceuticals from microalgae. She has been working on algal biotechnology for the last two decades. She has published her research in many international journals and has authored many books and chapters with renowned publishing houses. She has also delivered talks as an invited speaker at many national and international conferences. Dr. Tiwari is the recipient of several awards including Researcher of the Year and Distinguished Scientist.",institutionString:"Amity University",position:null,outsideEditionCount:0,totalCites:0,totalAuthoredChapters:"3",totalChapterViews:"0",totalEditedBooks:"1",institution:{name:"Amity University",institutionURL:null,country:{name:"India"}}},equalEditorTwo:{id:"197609",title:"Prof.",name:"Taha Selim",middleName:null,surname:"Ustun",slug:"taha-selim-ustun",fullName:"Taha Selim Ustun",profilePictureURL:"https://mts.intechopen.com/storage/users/197609/images/system/197609.jpeg",biography:"Dr. Taha Selim Ustun received a Ph.D. in Electrical Engineering from Victoria University, Melbourne, Australia. He is a researcher with the Fukushima Renewable Energy Institute, AIST (FREA), where he leads the Smart Grid Cybersecurity Laboratory. Prior to that, he was a faculty member with the School of Electrical and Computer Engineering, Carnegie Mellon University, Pittsburgh, PA, USA. His current research interests include power systems protection, communication in power networks, distributed generation, microgrids, electric vehicle integration, and cybersecurity in smart grids. He serves on the editorial boards of IEEE Access, IEEE Transactions on Industrial Informatics, Energies, Electronics, Electricity, World Electric Vehicle and Information journals. Dr. Ustun is a member of the IEEE 2004 and 2800, IEC Renewable Energy Management WG 8, and IEC TC 57 WG17. He has been invited to run specialist courses in Africa, India, and China. He has delivered talks for the Qatar Foundation, the World Energy Council, the Waterloo Global Science Initiative, and the European Union Energy Initiative (EUEI). His research has attracted funding from prestigious programs in Japan, Australia, the European Union, and North America.",institutionString:"Fukushima Renewable Energy Institute, AIST (FREA)",position:null,outsideEditionCount:0,totalCites:0,totalAuthoredChapters:"1",totalChapterViews:"0",totalEditedBooks:"0",institution:{name:"National Institute of Advanced Industrial Science and Technology",institutionURL:null,country:{name:"Japan"}}},equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"8937",title:"Soil Moisture Importance",subtitle:null,isOpenForSubmission:!1,hash:"3951728ace7f135451d66b72e9908b47",slug:"soil-moisture-importance",bookSignature:"Ram Swaroop Meena and Rahul Datta",coverURL:"https://cdn.intechopen.com/books/images_new/8937.jpg",editors:[{id:"313528",title:"Associate Prof.",name:"Ram Swaroop",middleName:null,surname:"Meena",slug:"ram-swaroop-meena",fullName:"Ram Swaroop Meena"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"7031",title:"Liver Pathology",subtitle:null,isOpenForSubmission:!1,hash:"631321b0565459ed0175917f1c8c727f",slug:"liver-pathology",bookSignature:"Vijay Gayam and Omer Engin",coverURL:"https://cdn.intechopen.com/books/images_new/7031.jpg",editors:[{id:"273100",title:"Dr.",name:"Vijay",middleName:null,surname:"Gayam",slug:"vijay-gayam",fullName:"Vijay Gayam"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}}],latestBooks:[{type:"book",id:"8472",title:"Bioactive Compounds in Nutraceutical and Functional Food for Good Human Health",subtitle:null,isOpenForSubmission:!1,hash:"8855452919b8495810ef8e88641feb20",slug:"bioactive-compounds-in-nutraceutical-and-functional-food-for-good-human-health",bookSignature:"Kavita Sharma, Kanchan Mishra, Kula Kamal Senapati and Corina Danciu",coverURL:"https://cdn.intechopen.com/books/images_new/8472.jpg",editedByType:"Edited by",editors:[{id:"197731",title:"Dr.",name:"Kavita",middleName:null,surname:"Sharma",slug:"kavita-sharma",fullName:"Kavita Sharma"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"8760",title:"Structure Topology and Symplectic Geometry",subtitle:null,isOpenForSubmission:!1,hash:"8974840985ec3652492c83e20233bf02",slug:"structure-topology-and-symplectic-geometry",bookSignature:"Kamal Shah and Min Lei",coverURL:"https://cdn.intechopen.com/books/images_new/8760.jpg",editedByType:"Edited by",editors:[{id:"231748",title:"Dr.",name:"Kamal",middleName:null,surname:"Shah",slug:"kamal-shah",fullName:"Kamal Shah"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"9536",title:"Education at the Intersection of Globalization and Technology",subtitle:null,isOpenForSubmission:!1,hash:"0cf6891060eb438d975d250e8b127ed6",slug:"education-at-the-intersection-of-globalization-and-technology",bookSignature:"Sharon Waller, Lee Waller, Vongai Mpofu and Mercy Kurebwa",coverURL:"https://cdn.intechopen.com/books/images_new/9536.jpg",editedByType:"Edited by",editors:[{id:"263302",title:"Dr.",name:"Sharon",middleName:null,surname:"Waller",slug:"sharon-waller",fullName:"Sharon Waller"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"8564",title:"Cell Interaction",subtitle:"Molecular and Immunological Basis for Disease Management",isOpenForSubmission:!1,hash:"98d7f080d80524285f091e72a8e92a6d",slug:"cell-interaction-molecular-and-immunological-basis-for-disease-management",bookSignature:"Bhawana Singh",coverURL:"https://cdn.intechopen.com/books/images_new/8564.jpg",editedByType:"Edited by",editors:[{id:"315192",title:"Dr.",name:"Bhawana",middleName:null,surname:"Singh",slug:"bhawana-singh",fullName:"Bhawana Singh"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"9629",title:"Electroencephalography",subtitle:"From Basic Research to Clinical Applications",isOpenForSubmission:!1,hash:"8147834b6c6deeeec40f407c71ad60b4",slug:"electroencephalography-from-basic-research-to-clinical-applications",bookSignature:"Hideki Nakano",coverURL:"https://cdn.intechopen.com/books/images_new/9629.jpg",editedByType:"Edited by",editors:[{id:"196461",title:"Prof.",name:"Hideki",middleName:null,surname:"Nakano",slug:"hideki-nakano",fullName:"Hideki Nakano"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"9685",title:"Agroecosystems",subtitle:"Very Complex Environmental Systems",isOpenForSubmission:!1,hash:"c44f7b43a9f9610c243dc32300d37df6",slug:"agroecosystems-very-complex-environmental-systems",bookSignature:"Marcelo L. Larramendy and Sonia Soloneski",coverURL:"https://cdn.intechopen.com/books/images_new/9685.jpg",editedByType:"Edited by",editors:[{id:"14764",title:"Dr.",name:"Marcelo L.",middleName:null,surname:"Larramendy",slug:"marcelo-l.-larramendy",fullName:"Marcelo L. Larramendy"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"9524",title:"Organ Donation and Transplantation",subtitle:null,isOpenForSubmission:!1,hash:"6ef47e03cd4e6476946fc28ca51de825",slug:"organ-donation-and-transplantation",bookSignature:"Vassil Mihaylov",coverURL:"https://cdn.intechopen.com/books/images_new/9524.jpg",editedByType:"Edited by",editors:[{id:"313113",title:"Associate Prof.",name:"Vassil",middleName:null,surname:"Mihaylov",slug:"vassil-mihaylov",fullName:"Vassil Mihaylov"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"9280",title:"Underwater Work",subtitle:null,isOpenForSubmission:!1,hash:"647b4270d937deae4a82f5702d1959ec",slug:"underwater-work",bookSignature:"Sérgio António Neves Lousada",coverURL:"https://cdn.intechopen.com/books/images_new/9280.jpg",editedByType:"Edited by",editors:[{id:"248645",title:"Dr.",name:"Sérgio António",middleName:null,surname:"Neves Lousada",slug:"sergio-antonio-neves-lousada",fullName:"Sérgio António Neves Lousada"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"9161",title:"Frailty in the Elderly",subtitle:"Understanding and Managing Complexity",isOpenForSubmission:!1,hash:"a4f0f2fade8fb8ba35c405f5ad31a823",slug:"frailty-in-the-elderly-understanding-and-managing-complexity",bookSignature:"Sara Palermo",coverURL:"https://cdn.intechopen.com/books/images_new/9161.jpg",editedByType:"Edited by",editors:[{id:"233998",title:"Ph.D.",name:"Sara",middleName:null,surname:"Palermo",slug:"sara-palermo",fullName:"Sara Palermo"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"8158",title:"Veganism",subtitle:"a Fashion Trend or Food as a Medicine",isOpenForSubmission:!1,hash:"d8e51fc25a379e5b92a270addbb4351d",slug:"veganism-a-fashion-trend-or-food-as-a-medicine",bookSignature:"Miljana Z. Jovandaric",coverURL:"https://cdn.intechopen.com/books/images_new/8158.jpg",editedByType:"Edited by",editors:[{id:"268043",title:"Dr.",name:"Miljana Z.",middleName:"Z",surname:"Jovandaric",slug:"miljana-z.-jovandaric",fullName:"Miljana Z. Jovandaric"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}}]},subject:{topic:{id:"18",title:"Neuroscience",slug:"life-sciences-neuroscience",parent:{title:"Life Sciences",slug:"life-sciences"},numberOfBooks:61,numberOfAuthorsAndEditors:1555,numberOfWosCitations:820,numberOfCrossrefCitations:465,numberOfDimensionsCitations:1181,videoUrl:null,fallbackUrl:null,description:null},booksByTopicFilter:{topicSlug:"life-sciences-neuroscience",sort:"-publishedDate",limit:12,offset:0},booksByTopicCollection:[{type:"book",id:"9629",title:"Electroencephalography",subtitle:"From Basic Research to Clinical Applications",isOpenForSubmission:!1,hash:"8147834b6c6deeeec40f407c71ad60b4",slug:"electroencephalography-from-basic-research-to-clinical-applications",bookSignature:"Hideki Nakano",coverURL:"https://cdn.intechopen.com/books/images_new/9629.jpg",editedByType:"Edited by",editors:[{id:"196461",title:"Prof.",name:"Hideki",middleName:null,surname:"Nakano",slug:"hideki-nakano",fullName:"Hideki Nakano"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10475",title:"Smart Biofeedback",subtitle:"Perspectives and Applications",isOpenForSubmission:!1,hash:"8d2bd9997707c905959eaa41e55ba8f1",slug:"smart-biofeedback-perspectives-and-applications",bookSignature:"Edward Da-Yin Liao",coverURL:"https://cdn.intechopen.com/books/images_new/10475.jpg",editedByType:"Edited by",editors:[{id:"3875",title:"Dr.",name:"Edward Da-Yin",middleName:null,surname:"Liao",slug:"edward-da-yin-liao",fullName:"Edward Da-Yin Liao"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"8059",title:"Neurostimulation and Neuromodulation in Contemporary Therapeutic Practice",subtitle:null,isOpenForSubmission:!1,hash:"8cc2c649900edf37ff3374fdc96a1586",slug:"neurostimulation-and-neuromodulation-in-contemporary-therapeutic-practice",bookSignature:"Denis Larrivee and Seyed Mansoor Rayegani",coverURL:"https://cdn.intechopen.com/books/images_new/8059.jpg",editedByType:"Edited by",editors:[{id:"206412",title:"Prof.",name:"Denis",middleName:null,surname:"Larrivee",slug:"denis-larrivee",fullName:"Denis Larrivee"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"8851",title:"Advances in Neural Signal Processing",subtitle:null,isOpenForSubmission:!1,hash:"a44ac118b233b29a3d5b57d61680ec38",slug:"advances-in-neural-signal-processing",bookSignature:"Ramana Vinjamuri",coverURL:"https://cdn.intechopen.com/books/images_new/8851.jpg",editedByType:"Edited by",editors:[{id:"196746",title:"Dr.",name:"Ramana",middleName:null,surname:"Vinjamuri",slug:"ramana-vinjamuri",fullName:"Ramana Vinjamuri"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"8751",title:"Somatosensory and Motor Research",subtitle:null,isOpenForSubmission:!1,hash:"86191c18f06e524e0f97a5534fdb2b4c",slug:"somatosensory-and-motor-research",bookSignature:"Toshiaki Suzuki",coverURL:"https://cdn.intechopen.com/books/images_new/8751.jpg",editedByType:"Edited by",editors:[{id:"70872",title:"Prof.",name:"Toshiaki",middleName:null,surname:"Suzuki",slug:"toshiaki-suzuki",fullName:"Toshiaki Suzuki"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"9347",title:"Neuroimaging",subtitle:"Neurobiology, Multimodal and Network Applications",isOpenForSubmission:!1,hash:"a3479e76c6ac538aac76409c9efb7e41",slug:"neuroimaging-neurobiology-multimodal-and-network-applications",bookSignature:"Yongxia Zhou",coverURL:"https://cdn.intechopen.com/books/images_new/9347.jpg",editedByType:"Edited by",editors:[{id:"259308",title:"Dr.",name:"Yongxia",middleName:null,surname:"Zhou",slug:"yongxia-zhou",fullName:"Yongxia Zhou"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"8938",title:"Inhibitory Control Training",subtitle:"A Multidisciplinary Approach",isOpenForSubmission:!1,hash:"bd82354f3bba4af5421337cd42052f86",slug:"inhibitory-control-training-a-multidisciplinary-approach",bookSignature:"Sara Palermo and Massimo Bartoli",coverURL:"https://cdn.intechopen.com/books/images_new/8938.jpg",editedByType:"Edited by",editors:[{id:"233998",title:"Ph.D.",name:"Sara",middleName:null,surname:"Palermo",slug:"sara-palermo",fullName:"Sara Palermo"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"6998",title:"Synucleins",subtitle:"Biochemistry and Role in Diseases",isOpenForSubmission:!1,hash:"2b4b802fec508928ce8ab9deebd1375f",slug:"synucleins-biochemistry-and-role-in-diseases",bookSignature:"Andrei Surguchov",coverURL:"https://cdn.intechopen.com/books/images_new/6998.jpg",editedByType:"Edited by",editors:[{id:"266540",title:"Dr.",name:"Andrei",middleName:null,surname:"Surguchov",slug:"andrei-surguchov",fullName:"Andrei Surguchov"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"8821",title:"New Frontiers in Brain",subtitle:"Computer Interfaces",isOpenForSubmission:!1,hash:"58effd86e005fc9a6416c380f19e5f42",slug:"new-frontiers-in-brain-computer-interfaces",bookSignature:"Nawaz Mohamudally, Manish Putteeraj and Seyyed Abed Hosseini",coverURL:"https://cdn.intechopen.com/books/images_new/8821.jpg",editedByType:"Edited by",editors:[{id:"119486",title:"Dr.",name:"Nawaz",middleName:null,surname:"Mohamudally",slug:"nawaz-mohamudally",fullName:"Nawaz Mohamudally"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"6899",title:"Chronobiology",subtitle:"The Science of Biological Time Structure",isOpenForSubmission:!1,hash:"521dfb38a216470da6f8f7d02469832c",slug:"chronobiology-the-science-of-biological-time-structure",bookSignature:"Pavol Svorc",coverURL:"https://cdn.intechopen.com/books/images_new/6899.jpg",editedByType:"Edited by",editors:[{id:"169212",title:"Dr.",name:"Pavol",middleName:null,surname:"Svorc",slug:"pavol-svorc",fullName:"Pavol Svorc"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"6989",title:"Biogenic Amines in Neurotransmission and Human Disease",subtitle:null,isOpenForSubmission:!1,hash:"4c7e866a847bc30d77f37feccdf72dbf",slug:"biogenic-amines-in-neurotransmission-and-human-disease",bookSignature:"Ahmet Uçar",coverURL:"https://cdn.intechopen.com/books/images_new/6989.jpg",editedByType:"Edited by",editors:[{id:"205106",title:"Associate Prof.",name:"Ahmet",middleName:null,surname:"Uçar",slug:"ahmet-ucar",fullName:"Ahmet Uçar"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"6907",title:"Feed Your Mind",subtitle:"How Does Nutrition Modulate Brain Function throughout Life?",isOpenForSubmission:!1,hash:"91a663d09b6d6e80db3a69fca11e5b68",slug:"feed-your-mind-how-does-nutrition-modulate-brain-function-throughout-life-",bookSignature:"Clémentine Bosch-Bouju, Sophie Layé and Véronique Pallet",coverURL:"https://cdn.intechopen.com/books/images_new/6907.jpg",editedByType:"Edited by",editors:[{id:"265901",title:"Dr.",name:"Clémentine",middleName:null,surname:"Bosch-Bouju",slug:"clementine-bosch-bouju",fullName:"Clémentine Bosch-Bouju"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}}],booksByTopicTotal:61,mostCitedChapters:[{id:"41589",doi:"10.5772/50323",title:"The Role of the Amygdala in Anxiety Disorders",slug:"the-role-of-the-amygdala-in-anxiety-disorders",totalDownloads:9013,totalCrossrefCites:3,totalDimensionsCites:25,book:{slug:"the-amygdala-a-discrete-multitasking-manager",title:"The Amygdala",fullTitle:"The Amygdala - A Discrete Multitasking Manager"},signatures:"Gina L. Forster, Andrew M. Novick, Jamie L. Scholl and Michael J. Watt",authors:[{id:"145620",title:"Dr.",name:"Gina",middleName:null,surname:"Forster",slug:"gina-forster",fullName:"Gina Forster"},{id:"146553",title:"BSc.",name:"Andrew",middleName:null,surname:"Novick",slug:"andrew-novick",fullName:"Andrew Novick"},{id:"146554",title:"MSc.",name:"Jamie",middleName:null,surname:"Scholl",slug:"jamie-scholl",fullName:"Jamie Scholl"},{id:"146555",title:"Dr.",name:"Michael",middleName:null,surname:"Watt",slug:"michael-watt",fullName:"Michael Watt"}]},{id:"46296",doi:"10.5772/57398",title:"Physiological Role of Amyloid Beta in Neural Cells: The Cellular Trophic Activity",slug:"physiological-role-of-amyloid-beta-in-neural-cells-the-cellular-trophic-activity",totalDownloads:5258,totalCrossrefCites:16,totalDimensionsCites:23,book:{slug:"neurochemistry",title:"Neurochemistry",fullTitle:"Neurochemistry"},signatures:"M. del C. Cárdenas-Aguayo, M. del C. Silva-Lucero, M. Cortes-Ortiz,\nB. Jiménez-Ramos, L. Gómez-Virgilio, G. Ramírez-Rodríguez, E. Vera-\nArroyo, R. Fiorentino-Pérez, U. García, J. Luna-Muñoz and M.A.\nMeraz-Ríos",authors:[{id:"42225",title:"Dr.",name:"Jose",middleName:null,surname:"Luna-Muñoz",slug:"jose-luna-munoz",fullName:"Jose Luna-Muñoz"},{id:"114746",title:"Dr.",name:"Marco",middleName:null,surname:"Meraz-Ríos",slug:"marco-meraz-rios",fullName:"Marco Meraz-Ríos"},{id:"169616",title:"Dr.",name:"Maria del Carmen",middleName:null,surname:"Cardenas-Aguayo",slug:"maria-del-carmen-cardenas-aguayo",fullName:"Maria del Carmen Cardenas-Aguayo"},{id:"169857",title:"Dr.",name:"Maria del Carmen",middleName:null,surname:"Silva-Lucero",slug:"maria-del-carmen-silva-lucero",fullName:"Maria del Carmen Silva-Lucero"},{id:"169858",title:"Dr.",name:"Maribel",middleName:null,surname:"Cortes-Ortiz",slug:"maribel-cortes-ortiz",fullName:"Maribel Cortes-Ortiz"},{id:"169859",title:"Dr.",name:"Berenice",middleName:null,surname:"Jimenez-Ramos",slug:"berenice-jimenez-ramos",fullName:"Berenice Jimenez-Ramos"},{id:"169860",title:"Dr.",name:"Laura",middleName:null,surname:"Gomez-Virgilio",slug:"laura-gomez-virgilio",fullName:"Laura Gomez-Virgilio"},{id:"169861",title:"Dr.",name:"Gerardo",middleName:null,surname:"Ramirez-Rodriguez",slug:"gerardo-ramirez-rodriguez",fullName:"Gerardo Ramirez-Rodriguez"},{id:"169862",title:"Dr.",name:"Eduardo",middleName:null,surname:"Vera-Arroyo",slug:"eduardo-vera-arroyo",fullName:"Eduardo Vera-Arroyo"},{id:"169863",title:"Dr.",name:"Rosana Sofia",middleName:null,surname:"Fiorentino-Perez",slug:"rosana-sofia-fiorentino-perez",fullName:"Rosana Sofia Fiorentino-Perez"},{id:"169864",title:"Dr.",name:"Ubaldo",middleName:null,surname:"Garcia",slug:"ubaldo-garcia",fullName:"Ubaldo Garcia"}]},{id:"26258",doi:"10.5772/28300",title:"Excitotoxicity and Oxidative Stress in Acute Ischemic Stroke",slug:"excitotoxicity-and-oxidative-stress-in-acute-ischemic-stroke",totalDownloads:6811,totalCrossrefCites:5,totalDimensionsCites:21,book:{slug:"acute-ischemic-stroke",title:"Acute Ischemic Stroke",fullTitle:"Acute Ischemic Stroke"},signatures:"Ramón Rama Bretón and Julio César García Rodríguez",authors:[{id:"73430",title:"Prof.",name:"Ramon",middleName:null,surname:"Rama",slug:"ramon-rama",fullName:"Ramon Rama"},{id:"124643",title:"Prof.",name:"Julio Cesar",middleName:null,surname:"García",slug:"julio-cesar-garcia",fullName:"Julio Cesar García"}]}],mostDownloadedChaptersLast30Days:[{id:"29764",title:"Underlying Causes of Paresthesia",slug:"underlying-causes-of-paresthesia",totalDownloads:189299,totalCrossrefCites:2,totalDimensionsCites:6,book:{slug:"paresthesia",title:"Paresthesia",fullTitle:"Paresthesia"},signatures:"Mahdi Sharif-Alhoseini, Vafa Rahimi-Movaghar and Alexander R. Vaccaro",authors:[{id:"91165",title:"Prof.",name:"Vafa",middleName:null,surname:"Rahimi-Movaghar",slug:"vafa-rahimi-movaghar",fullName:"Vafa Rahimi-Movaghar"}]},{id:"63258",title:"Anatomy and Function of the Hypothalamus",slug:"anatomy-and-function-of-the-hypothalamus",totalDownloads:2831,totalCrossrefCites:5,totalDimensionsCites:6,book:{slug:"hypothalamus-in-health-and-diseases",title:"Hypothalamus in Health and Diseases",fullTitle:"Hypothalamus in Health and Diseases"},signatures:"Miana Gabriela Pop, Carmen Crivii and Iulian Opincariu",authors:null},{id:"57103",title:"GABA and Glutamate: Their Transmitter Role in the CNS and Pancreatic Islets",slug:"gaba-and-glutamate-their-transmitter-role-in-the-cns-and-pancreatic-islets",totalDownloads:2405,totalCrossrefCites:1,totalDimensionsCites:3,book:{slug:"gaba-and-glutamate-new-developments-in-neurotransmission-research",title:"GABA And Glutamate",fullTitle:"GABA And Glutamate - New Developments In Neurotransmission Research"},signatures:"Christiane S. Hampe, Hiroshi Mitoma and Mario Manto",authors:[{id:"210220",title:"Prof.",name:"Christiane",middleName:null,surname:"Hampe",slug:"christiane-hampe",fullName:"Christiane Hampe"},{id:"210485",title:"Prof.",name:"Mario",middleName:null,surname:"Manto",slug:"mario-manto",fullName:"Mario Manto"},{id:"210486",title:"Prof.",name:"Hiroshi",middleName:null,surname:"Mitoma",slug:"hiroshi-mitoma",fullName:"Hiroshi Mitoma"}]},{id:"63179",title:"Development Period of Prefrontal Cortex",slug:"development-period-of-prefrontal-cortex",totalDownloads:2703,totalCrossrefCites:6,totalDimensionsCites:8,book:{slug:"prefrontal-cortex",title:"Prefrontal Cortex",fullTitle:"Prefrontal Cortex"},signatures:"Merve Cikili Uytun",authors:[{id:"163607",title:"Ms.",name:"Merve",middleName:null,surname:"Cikili",slug:"merve-cikili",fullName:"Merve Cikili"}]},{id:"37150",title:"Cognitive Features of Vascular Dementia",slug:"cognitive-features-of-vascular-dementia",totalDownloads:5312,totalCrossrefCites:0,totalDimensionsCites:0,book:{slug:"neuroscience",title:"Neuroscience",fullTitle:"Neuroscience"},signatures:"Oh Dae Kwon",authors:[{id:"65531",title:"Prof.",name:"Oh Dae",middleName:null,surname:"Kwon",slug:"oh-dae-kwon",fullName:"Oh Dae Kwon"}]},{id:"62850",title:"Anatomy of the Human Optic Nerve: Structure and Function",slug:"anatomy-of-the-human-optic-nerve-structure-and-function",totalDownloads:2013,totalCrossrefCites:0,totalDimensionsCites:3,book:{slug:"optic-nerve",title:"Optic Nerve",fullTitle:"Optic Nerve"},signatures:"Juan J. Salazar, Ana I. Ramírez, Rosa De Hoz, Elena Salobrar-Garcia,\nPilar Rojas, José A. Fernández-Albarral, Inés López-Cuenca, Blanca\nRojas, Alberto Triviño and José M. Ramírez",authors:null},{id:"51676",title:"Neuroinflammation and Neurodegeneration",slug:"neuroinflammation-and-neurodegeneration",totalDownloads:2773,totalCrossrefCites:4,totalDimensionsCites:7,book:{slug:"update-on-dementia",title:"Update on Dementia",fullTitle:"Update on Dementia"},signatures:"Inelia Morales, Gonzalo A. Farías, Nicole Cortes and Ricardo B.\nMaccioni",authors:[{id:"137002",title:"Dr.",name:"Gonzalo",middleName:null,surname:"Farias",slug:"gonzalo-farias",fullName:"Gonzalo Farias"},{id:"183194",title:"Dr.",name:"Ricardo",middleName:"Benjamín",surname:"Maccioni",slug:"ricardo-maccioni",fullName:"Ricardo Maccioni"},{id:"183196",title:"MSc.",name:"Inelia",middleName:null,surname:"Morales",slug:"inelia-morales",fullName:"Inelia Morales"},{id:"183197",title:"MSc.",name:"Nicole",middleName:null,surname:"Cortes",slug:"nicole-cortes",fullName:"Nicole Cortes"}]},{id:"70637",title:"Vestibular System: Anatomy, Physiology, and Clinical Evaluation",slug:"vestibular-system-anatomy-physiology-and-clinical-evaluation",totalDownloads:478,totalCrossrefCites:0,totalDimensionsCites:0,book:{slug:"somatosensory-and-motor-research",title:"Somatosensory and Motor Research",fullTitle:"Somatosensory and Motor Research"},signatures:"Dmytro Illich Zabolotnyi and Nina Serhiivna Mishchanchuk",authors:[{id:"306642",title:"Dr.",name:"Nina Serhiivna",middleName:null,surname:"Mishchanchuk",slug:"nina-serhiivna-mishchanchuk",fullName:"Nina Serhiivna Mishchanchuk"},{id:"322443",title:"Dr.",name:"Dmytro Illich",middleName:null,surname:"Zabolotny",slug:"dmytro-illich-zabolotny",fullName:"Dmytro Illich Zabolotny"}]},{id:"68776",title:"Introductory Chapter: The Chemical Basis of Neural Function and Dysfunction",slug:"introductory-chapter-the-chemical-basis-of-neural-function-and-dysfunction",totalDownloads:430,totalCrossrefCites:0,totalDimensionsCites:0,book:{slug:"neurochemical-basis-of-brain-function-and-dysfunction",title:"Neurochemical Basis of Brain Function and Dysfunction",fullTitle:"Neurochemical Basis of Brain Function and Dysfunction"},signatures:"Thomas Heinbockel and Antonei B. Csoka",authors:[{id:"70569",title:"Dr.",name:"Thomas",middleName:null,surname:"Heinbockel",slug:"thomas-heinbockel",fullName:"Thomas Heinbockel"},{id:"245650",title:"Dr.",name:"Antonei B.",middleName:null,surname:"Csoka",slug:"antonei-b.-csoka",fullName:"Antonei B. Csoka"}]},{id:"64031",title:"Trends of Protein Aggregation in Neurodegenerative Diseases",slug:"trends-of-protein-aggregation-in-neurodegenerative-diseases",totalDownloads:1021,totalCrossrefCites:5,totalDimensionsCites:8,book:{slug:"neurochemical-basis-of-brain-function-and-dysfunction",title:"Neurochemical Basis of Brain Function and Dysfunction",fullTitle:"Neurochemical Basis of Brain Function and Dysfunction"},signatures:"Abdulbaki Agbas",authors:[{id:"250609",title:"Prof.",name:"Abdulbaki",middleName:null,surname:"Agbas",slug:"abdulbaki-agbas",fullName:"Abdulbaki Agbas"}]}],onlineFirstChaptersFilter:{topicSlug:"life-sciences-neuroscience",limit:3,offset:0},onlineFirstChaptersCollection:[{id:"74235",title:"Lipid Rafts and Development of Alzheimer’s Disease",slug:"lipid-rafts-and-development-of-alzheimer-s-disease",totalDownloads:23,totalDimensionsCites:0,doi:"10.5772/intechopen.94608",book:{title:"Cerebral and Cerebellar Cortex – Interaction and Dynamics in Health and Disease"},signatures:"Mario Díaz and Raquel Marin"},{id:"75834",title:"Nomophobia Kids and Proprioception",slug:"nomophobia-kids-and-proprioception",totalDownloads:28,totalDimensionsCites:0,doi:"10.5772/intechopen.96236",book:{title:"Proprioception"},signatures:"Giridharan Vaishnavi"},{id:"75762",title:"Structural and Biological Basis for Proprioception",slug:"structural-and-biological-basis-for-proprioception",totalDownloads:45,totalDimensionsCites:0,doi:"10.5772/intechopen.96787",book:{title:"Proprioception"},signatures:"José A. Vega and Juan Cobo"}],onlineFirstChaptersTotal:19},preDownload:{success:null,errors:{}},aboutIntechopen:{},privacyPolicy:{},peerReviewing:{},howOpenAccessPublishingWithIntechopenWorks:{},sponsorshipBooks:{sponsorshipBooks:[{type:"book",id:"10176",title:"Microgrids and Local Energy Systems",subtitle:null,isOpenForSubmission:!0,hash:"c32b4a5351a88f263074b0d0ca813a9c",slug:null,bookSignature:"Prof. Nick Jenkins",coverURL:"https://cdn.intechopen.com/books/images_new/10176.jpg",editedByType:null,editors:[{id:"55219",title:"Prof.",name:"Nick",middleName:null,surname:"Jenkins",slug:"nick-jenkins",fullName:"Nick Jenkins"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}}],offset:8,limit:8,total:1},route:{name:"chapter.detail",path:"/books/micro-electronic-and-mechanical-systems/membrane-micro-emboss-meme-process-for-3-d-membrane-microdevice",hash:"",query:{},params:{book:"micro-electronic-and-mechanical-systems",chapter:"membrane-micro-emboss-meme-process-for-3-d-membrane-microdevice"},fullPath:"/books/micro-electronic-and-mechanical-systems/membrane-micro-emboss-meme-process-for-3-d-membrane-microdevice",meta:{},from:{name:null,path:"/",hash:"",query:{},params:{},fullPath:"/",meta:{}}}},function(){var e;(e=document.currentScript||document.scripts[document.scripts.length-1]).parentNode.removeChild(e)}()