Open access peer-reviewed chapter

Epidemiology of Systemic Lupus Erythematosus

Written By

Masakazu Washio, Chikako Kiyohara and Akiko Ohta

Submitted: 06 June 2018 Reviewed: 04 January 2019 Published: 13 February 2019

DOI: 10.5772/intechopen.84146

From the Edited Volume

Lupus - New Advances and Challenges

Edited by Sophia Lionaki

Chapter metrics overview

1,417 Chapter Downloads

View Full Metrics

Abstract

Epidemiology is the study of the frequency and distribution of diseases and factors related to the development of diseases. Systemic lupus erythematosus (SLE) is a rare, chronic inflammatory autoimmune disease that affects many tissues and organs, whose female-to-male incidence ratio is 6:10 for childbearing age. Its chronic intractable nature has a significant impact on medical care utilization, activities of daily living, and quality of life. However, the etiology of SLE has not yet been elucidated in detail, although genetic factors as well as environmental factors are thought to play a role in its development. In this chapter, we introduce the incidence and the prevalence of SLE as well as factors related to the development of SLE and discuss how to prevent the development of SLE.

Keywords

  • SLE
  • epidemiology
  • incidence
  • prevalence
  • risk factor

1. Introduction

Systemic lupus erythematosus (SLE) is a rare, serious, chronic inflammatory autoimmune disease that affects many tissues and organs [1, 2]. The Japanese Ministry of Health and Welfare designated SLE as an intractable disease because there is no established way to cure or prevent it [3, 4]. Under a nationwide registration system for patients with intractable diseases, 55,021 SLE patients were eligible for financial aid from the Japanese government in 2007 and the prevalence of SLE was estimated to be 44 per 100,000 persons in Japan [5]. Females are 8.2 times more likely to suffer from SLE than males in Japan [5]. Serdula and Rhoads [6] reported that the age-adjusted prevalence of SLE was greater in Japanese (18.2/100,000 persons) than White People (5.8/100,000 persons) in Hawaii, but they could find no reason for the high prevalence of SLE in Japanese ancestry. The etiology of SLE has not yet been elucidated in detail, although genetic factors as well as environmental factors are thought to play a role in its development [1]. The discrepancies of rates (i.e., higher rates in certain ethnic groups) are in part due to genetic factors as well as due to environmental factors such as smoking and dietary habits [7].

In this chapter, we would like to show the incidence and prevalence of systemic lupus erythematosus (SLE) and the findings from epidemiological studies on the risk/preventive factors for SLE.

Advertisement

2. Diagnosis criterion of SLE (case definition)

The established diagnosis criterion of SLE is needed to estimate the frequency and distribution of the patients with SLE. However, case definition is one of the important factors, which may influence the results of epidemiological studies. Currently, the American College of Rheumatology (ACR) 1982 revised criteria for the classification of SLE [8], as modified in 1972 (ACR-97) [9], are widely used for the diagnosis of SLE. The diagnosis of SLE requires the presence of four or more of the following 11 criteria, which are (1) malar rash, (2) discoid rash, (3) photosensitivity, (4) oral ulcer (usually painless, observed by a physician), (5) arthritis (nonerosive arthritis 2 or more peripheral joints), (6) serositis (a. pleuritis or b. pericarditis), (7) renal disorder (a. persistent proteinuria either 0.5 g/day or > 3+ if quantification not performed or b. cellular cast), (8) neurologic disorder (a. seizures or b. psychosis in the absence of offending drugs or metabolic disorders), (9) hematologic disorder (a. hemolytic anemia with reticulocytosis or b. leukopenia <4000/mm3 or c. lymphopenia <1500 mm3 or d. thrombocytopenia <100,000 mm3 in the absence of offending drugs), (10) immunologic disorder (a. antibody to native DNA in abnormal titer or b. presence of antibody to Sm nuclear antibody or c. positive finding of antiphospholipid antibody), and (11) positive antinuclear antibody test result. Although the presence of four or more ACR-97 criteria is required for SLE classification, all other reasonable diagnoses of diseases other than SLE (e.g., neurologic disorder due to uremia, acidosis, or electrolyte imbalance) must be excluded [7]. Among the 11 ACR criteria, positive antinuclear antibody test result, hematologic disorder, immunologic disorder, and arthritis are the four most common criteria seen in SLE patients at the time of diagnosis [10, 11, 12, 13] ( Table 1 ).

Voss et al. [10] Uramoto et al. [11] Lim et al. [12] Izmirly et al. [13]
Manifestation Denmark United States United States United States
n = 107 n = 69 n = 267 n = 232
1. Malar rash 52(49) 18(26.1) 55(20.6) 86(37.1)
2. Discoid rash 15(14) 14(20.3) 40(15.0) 32(13.8)
3. Photosensitivity 51(48) 26(37.7) 43(16.01) 74(31.9)
4. Oral ulcer 9(8) 4(5.8) 61(22.8) 81(34.9)
5. Arthritis 62(58) 37(53.6) 167(62.5) 159(68.5)
6. Serositis 47(44) 22(31.9) 91(34.1) 84(36.2)
7. Renal disorder 37(35) 31(44.9) 91(34.1) 81(34.9)
8. Neurologic disorder 14(13) 2(2.9) 24(9.0) 43(18.5)
9. Hematologic disorder 66(62) 55(79.7) 216(80.9) 188(81.0)
10. Immunologic disorder 99(93) 44(63.8) 187(70.0) 170(73.3)
11. Antinuclear antibody 107(100) 46(66.6) 244(90.4) 213(91.8)

Table 1.

Distribution of clinical manifestation and laboratory findings at the diagnosis of SLE.

Data are expressed as number (%).

When epidemiological studies are conducted based on the rheumatologist definition, biopsy-proven lupus nephritis patients may be considered to have SLE even though they satisfy fewer than four ACR-97 criteria. In these cases, the rates of SLE will be greater than the rates based on the ACR-97. Recently, the Systemic Lupus International Clinics (SLICC), which is an international group for the clinical research of SLE, presented a new criterion for the classification of SLE in 2012 (SLICC-12) [14]. They also validated the ACR-97 and the SLICC-12. The SLICC-12 resulted in fewer misclassification than the ACR-97 [14]. Compared with the ACR-97, the SLICC-12 had greater sensitivity but less specificity [14, 15]. The SLICC case definition of SLE yielded higher incidence and prevalence estimates than the ACR-97 case definition [15]. Thus, the incidence and prevalence of SLE are influenced by the diagnosis criterion of SLE. Therefore, interpretation of incidence and prevalence of SLE also take into account differences in the methodology used to determine these rates.

Advertisement

3. Incidence and prevalence of SLE

In the United Kingdom, Rees et al. [16] found that the incidence and prevalence of SLE in White People (6.73/100,000 person-years and 134.5/100,000 persons) were smaller than those in other ethnic groups such as Black African (13.78/100,000 person-years and 179.8/100,000 persons), Black Caribbean (31.46/100,000 person-years and 517.5/100,000 persons), and Indian (9.9/100,000 person-years and 193.1/100,000 persons) ( Table 2 ). In addition to the United Kingdom, American epidemiologists also reported that the incidence and prevalence of SLE in White People were smaller than those in other ethnic groups in the United States [6, 12, 17, 18] ( Table 2 ). The disease burden of SLE is highest in Black People [17, 18], followed by Asian/Pacific islanders [17] and White People in the United States [17, 18], which may be related to genetic and environmental factors.

First author (year) Country Year Definition of SLE Characteristics of study group Incidence (per 100,000 person-years) Prevalence (per 100, 000 persons)
Rees (2016) [16] United Kingdom 1999–2012 Clinical Practice Research Datalink (CPRD) White People 6.73 134.5
Black African 13.78 179.8
Black Caribbean 31.46 517.5
Indian 9.9 193.1
Serdula (1979) [6] United States (Hawaii) 1970–1975 American Rheumatism Association (ARA)—preliminary criteria White People NA 5.8
Chinese NA 24.1
Filipino NA 19.9
Hawaiian NA 20.4
Japanese NA 18.2
Lim (2014) [12] United States (Georgia) 2002–2004 ACR-97 criteria White People 2.7 32.7
Black People 8.7 118.5
Somers (2014) [17] United States (Michigan) 2002–2004 ACR-97 criteria White People 3.7 47.5
Black People 7.9 111.6
Asian/Pacific Islanders NA 24.9
Dall’Ella (2017) [18] United States (California) 2007–2009 ACR-97 criteria White People 2.8 NA
Black People 15.5 NA
Asian/Pacific Islanders 4.1 NA

Table 2.

Incidence and prevalence of SLE by ethnic group in the United Kingdom/the United States.

NA, not available.

As shown in Table 3 , the incidence and prevalence of SLE are greater in females than in males in all studies regardless of ethnic group or countries [11, 12, 13, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27]. Age-adjusted incidence of SLE in females was 8.8–14.5 times greater than in males in California, the United States (i.e., 12.3-fold female excess in all population, 8.8-fold female excess in White People, 14.5-fold female excess in Black People, and 12.0-fold female excess in Asian/Pacific islanders) [18], while the age-adjusted incidence of SLE in females was 7.8–14.8 times greater than that in males in East Asia (i.e., 7.8-fold female excess in Taiwan [23], 8.5-fold female excess in South Korea [24], and 14.8-fold female excess in Japan [27]).

First author (year) Country Year Definition of SLE Characteristics of study group Incidence (per 100,000 person-years) Prevalence (per 100, 000 persons)
Uramoto (1999) [11] United States (Minnesota) 1950–1979 ACR-82 criteria Overall 1.51 NA
Females 2.47 NA
Males 0.50 NA
United States (Minnesota) 1980–1992 ACR-82 criteria Overall 5.56 NA
Females 9.40 NA
Males 1.54 NA
Lim (2014) [12] United States (Georgia) 2002–2004 ACR-97 criteria All population 5.6 73.0
Females 9.2 127.6
Males 1.8 14.7
White People 2.7 32.7
Females 4.7 59.0
Males 0.7 7.5
Black People 8.7 118.5
Females 13.4 196.2
Males 3.2 23.7
Somers (2014) [17] United States (Michigan) 2002–2004 ACR-97 criteria All population 5.5 72.8
Female population 9.3 128.7
Male population 1.5 12.8
Dall’Ella (2017) [18] United States (California) 2007–2009 ACR-97 criteria All population 4.6 NA
Females 8.6 NA
Males 0.7 NA
White People 2.8 NA
Females 5.3 NA
Males 0.6 NA
Black People 15.5 NA
Females 30.5 NA
Males 2.1 NA
Asian /Pacific Americans 4.1 NA
Females 7.2 NA
Males 0.6 NA
Izmirly (2017) [13] United States (New York) 2007–2009 ACR-97 criteria Overall 4.6 62.2
Females 7.9 107.4
Males 1.0 12.5
United States (New York) 2007–2009 SLICC Overall 6.2 73.8
Females 10.3 128.3
Males 1.7 13.8
Barnabe (2012) [19] Canada 1994–2007 Diagnosed in clinical setting (ICD-9, ICD-10) Females NA 27.3
Males NA 3.2
First Nations females NA 32.2
First Nations males NA 3.2
non-First Nations females NA 27.1
non-First Nations males NA 3.2
Somers (2007) [20] United Kingdom 1990–1999 Clinical Practice Research Datalink (CPRD) All population 4.87 NA
Females 8.01 NA
Males 1.60 NA
Rees (2016) [16] United Kingdom 1999–2012 Clinical Practice Research Datalink (CPRD) All population 4.91 64.6–97.0
Female population 8.34 NA
Male population 1.44 NA
Arnaud (2014) [21] France 2010 Diagnosed in clinical setting (ICD10) All population 3.32 47.0
Females 5.51 79.1
Males 0.92 11.8
Zou (2014) [22] China 2009–2010 Diagnosed by rheumatologists (ACR-97 criteria) All population NA 37.6
Females NA 70.3
Males NA 6.4
Yu (2013) [23] Taiwan 2000–2008 Diagnosed in clinical setting (ICD9) All population 8.4 37.0
Females 15.0 66.6
Males 1.9 8.5
Shim (2014) [24] South Korea 2009 Diagnosed (ACR-criteria) (ICD10) All population 2.8 24.9
Females 5.1 42.9
Males 0.6 7.0
Yamamoto (1986) [25] Japan 1972–1983 Diagnosed by a rheumatologist (ACR criteria) All population 2.0 NA
Females 3.7 NA
Males 0.25 NA
Ohno (1992) [26] Japan 1992 Diagnosed in clinical setting (ACR-82 criteria) All population NA 29.1
Females NA 52.3
Males NA 5.0
Iseki (1994) [27] Japan 1972–1991 ACR-82 criteria All population 3.0 NA
1972–1991 Females 1.6–4.7 6.6–68.4
1973–1991 Males 0.4–0.8 0.8–7.0

Table 3.

Incidence and prevalence of SLE in females and males in selected countries.

NA, not available.

SLE is more common in women than men across all age groups, and this female predominance is especially noteworthy in the 15- to 64-year age group, wherein the male-to-female ratios of age-group incidence show a 6- to 10-fold female excess [28], which suggests that female sex hormones may play an important role in the development of SLE [28]. The Nurses’ Health Study [29] revealed that oral conceptive use increased the risk of SLE in the United States, whereas Bernier et al. [30] reported that it was not past use but current use of oral contraceptive pills that increased the risk of SLE in the United Kingdom. These studies [29, 30] also suggest that female sex hormones such as estrogen may play an important role in the development of SLE. In addition to sex hormones, both X-linked and autosomal immune genes are also regulated epigenetically and likely contribute to the sex difference in the incidence of SLE [31].

Advertisement

4. Factors related to the development of SLE

Although genetic factors are suggested to play an important role in the development of SLE, nongenetic factors are also suggested to play a role in the development of SLE [1, 7]. In addition to genetic susceptibility, hormonal and reproductive exposures (e.g., endogenous estrogens, estrogen replacement therapy), occupational and environmental exposures (e.g., silica, ultraviolet light), and infectious exposures (e.g., Epstein-Barr virus) are suggested to influence the risk of SLE [1, 7]. Complex interactions between genetic and environmental factors are thought to play a role in the development and progression of SLE [7].

4.1 Sex hormones and reproductive issues in females

The incidence of SLE is greater in females than in males in all studies regardless of ethnic group or countries [11, 12, 13, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27]. Although SLE occurs predominantly in females, the incidence of SLE is low before puberty and after menopause (i.e., outside the reproductive ages) [32]. Sex difference in susceptibility is largest during the reproductive ages [33], which suggests that high endogenous estrogen concentrations may increase the risk for the development of SLE. Estrogens enhance B cell activation (e.g., immunoglobulin production including anti-ds-DNA), while they suppress T cell activity (e.g., proliferative response to mitogens and antigens, interleukin 2 production) [32].

Costenbader et al. [29] reported that menarche at a younger age (10 years old or younger vs. 12 years old: RR 2.1, 95% CI = 1.4–3.2) increased the risk for the development of SLE in the NHS 1976–2002 and the NHSII 1989–2003. In addition, they also reported that age at menarche was inversely associated with a risk for the development of SLE (vs. 12 years old: RR = 2.1 for 10 years or younger, RR = 1.2 for 11 years old, RR = 1.0 for 12 years old, 1.1 for 13 years old, and RR = 1.1 for 14 years old, and RR = 1.0 for 14 years old or older, p for trend = 0.02) [29]. These findings suggest that the exposure to high concentrations of endogenous estrogen at early age may increase the risk for the development of SLE.

On the other hand, Bernier et al. [30] reported that current use of combined oral contraceptives increased the risk of SLE (RR 1.54, 95% CI = 1.15–2.07), but past use of combined oral contraceptives did not increase the risk (RR 1.06, 95% CI = 0.85–1.33). In addition, they also reported that the risk of SLE increased with the dose of ethinyl estradiol (vs. nonusers: RR 1.42 for 30 μg or less, RR 1.63 for 31–49 μg, and RR 2.92 for 50 μg), while Costenbader et al. [29] reported that use of oral conceptive (vs. never: RR 1.5, 95% CI = 1.1–2.1) and use of postmenopausal hormones (vs. never: RR 1.9, 95 % CI = 1.2–3.1) increased the risk for development of SLE in the Nurses’ Health Study. These findings suggest that use of exogenous estrogens may increase the risk for the development of SLE.

Costenbader et al. [29] also reported that postmenopausal women primary after surgical menopause (vs. premenopausal: RR 2.3, 95% CI = 1.2–4.5) and early age of menopause (younger than 47 years old vs. 53 years old and older: RR 2.2, 95% CI = 0.9–5.4) showed an increased risk for the development of SLE. In their study, most of females who developed SLE after menopause were those with surgical menopause (i.e., bilateral oophorectomy) and were more likely to have taken postmenopausal hormones [29]. The increased risk of developing SLE among postmenopausal females in their study may be partly explained by the use of postmenopausal hormones (RR 1.9, 95% CI = 1.2–3.1) [29] and the surgery (vs. no surgery: surgery without blood transfusion: OR 1.54, 95% CI = 1.05–2.26; surgery with blood transfusion: OR 4.46, 95% CI = 1.99–10.00) [34].

Ulff-Møller et al. [35] reported that live birth showed a decreased risk of SLE among Danish females (RR 0.74, 95% CI = 0.64–0.86), while Washio et al. [34] reported that live birth (OR 0.23, 95% CI = 0.09–0.59) decreased the risk of SLE and found a positive association between the risk of SLE and the number of living children delivered among Japanese females (vs. 0; OR 0.27 for one to two children, and OR 0.14 for three or more children, p for trend <0.01). On the other hand, Cooper et al. [36] could not find any meaningful association between the risk of SLE and number of live births. However, they found that breast-feeding was associated with a decreased risk of SLE (OR 0.6, 95% CI = 0.4–0.9) among females in the United States [36]. These findings suggest that lactation may play an important role in reducing the risk of SLE among women with live-born children because serum estrogen levels are usually at or below the lower range for the early follicular phase of the normal menstrual cycle during the lactation [37].

4.2 Tobacco smoking and alcohol drinking

Several researchers suggested that smoking increased the risk of SLE [38, 39, 40, 41, 42]. Ghaussy et al. [39] reported a significantly increased risk of SLE in both current and former smokers compared with never smokers (current smokers: OR 6.69, 95% CI = 2.59–17.28, former smokers: OR 3.62, 95% CI = 1.22–10.70) in the United States. On the other hand, others reported no association with smoking history (i.e., current, former, or never-smoker) and the risk of SLE in the United States [43, 44]. A meta-analysis by Costenbader et al. [45] revealed an increased risk of SLE among current smokers compared with nonsmokers (summary OR 1.50, 95% CI = 1.09–2.08).

The Kyushu Sapporo SLE study (i.e., the KYSS Study) was a hospital-based case-control study to evaluate nongenetic and genetic risk factors for the development of SLE among Japanese females [42]. All SLE patients fulfilled the American College of Rheumatology 1982 revised criteria for SLE [8]. In the KYSS study, Kiyohara et al. [46] reported that (1) compared with nonsmokers, smokers showed an increased risk of SLE (vs. nonsmokers: OR 2.49 for former smokers, and OR 3.06 for current smokers, p for trend <0.01). In addition, the risk of SLE increased with number of cigarettes smoked/day during peak smoking period (vs. 0/day: OR 2.77 for 1–19/day, and OR 3.29 for 20+/day, p for trend<0.01) [46]. Since hydrazine, a drug containing aromatic amines, is a known inducer of SLE [47], aromatic amines in cigarette smoke may partly explain the association between smoking and the risk of SLE.

Some studies suggested that alcohol consumption may decrease the risk of SLE [38, 40, 41]. Hardy et al. [38] reported a dose-response negative association between alcohol drinking and SLE risk (vs. 0 unit of alcohol: OR 0.73 for 1–2 units, OR 0.41 for 3–5 units, OR 0.47 for 6–10 units, and OR 0.30 for more than 10 units, p for trend <0.01). On the other hand, other studies failed to show an inverse association between alcohol drinking and SLE risk [37, 40]. A meta-analysis by Wang et al. [48] demonstrated that moderate alcohol drinking might have a protective effect on the development of SLE (vs. none: summary OR 0.73, 95% CI = 0.547–0.954). In the KYSS study, Kiyohara et al. [46] found a U-shape relationship between alcohol consumption and SLE risk among Japanese females (vs. 0 ml/week: OR 0.52, 95% CI = 0.31–0.86 for 1–70 ml/week, OR 0.38, 95% CI = 0.19–0.76 for 71–210 ml/week, and OR 0.67, 0.31–1.46 for 211 ml/week or more). These findings suggest that light to moderate alcohol consumption may decrease the risk of SLE.

Although there are potential biases associated with retrospective assessment of exposures and selection of cases and controls in a case-control study [49], Kiyohara et al. [46] reported that ever-smokers with drinking alcohol (OR 3.44, 95% CI = 2.03–5.82), nonsmokers without drinking alcohol (OR 2.56, 95% CI = 1.57–4.17), and ever-smokers without drinking alcohol (OR 6.98, 95% CI = 2.87–17.0) showed a greater risk of SLE than nonsmokers with drinking alcohol in Japanese women.

4.3 Occupational exposures and chemicals

Crystalline silica exposure is known to increase the risk of SLE [50, 51]. Finckh et al. [52] reported that exposure to silica for more than 1 year increased the risk of SLE (OR 4.3, 95% CI = 1.7–11.2). They also reported that the risk of SLE was associated with the duration of exposure to silica (vs. less than 1 year: OR 4.0 for 1–5 years, and OR 4.9 for more than 5 years, p for trend = 0.01) [52]. Parks et al. [53] reported a positive relationship between a history of silica exposure and SLE risk (vs. none: OR 1.6 for low, and OR 3.1 for medium or high, p for trend = 0.003).

On the other hand, Cooper et al. [54] reported that occupational silica exposure increased the risk of SLE among never-smokers (vs. no-silica exposure: OR 2.6, 95% CI = 1.2–5.7) but not among ever-smokers (vs. no-silica exposure: OR 0.99, 95% CI = 0.46–2.1), which suggests that smoking may play a more important role in the development of SLE than silica exposure.

Cooper et al. [43] reported that any use of permanent dyes increased the risk of SLE (OR 1.5, 95% CI = 1.0–2.2) in the United States. On the other hand, Sanchez-Guerrero et al. [44] failed to find a positive association between use of permanent hair dye and SLE risk (ever-users vs. never-users: OR 0.96, 95% CI = 0.63–1.47) in the Unites States.

4.4 Ultraviolet radiation exposure

Washio et al. [42] reported that walking increased the risk of SLE in Kyushu, southern Japan with a temperate climate (30 min/day or more vs. less than 30 min/day: OR 2.07, 95% CI = 1.14–3.76) but failed to increase the risk of SLE in Hokkaido, northern Japan with a subarctic climate (30 min/day or more vs. less than 30 min/day: OR 1.13, 95% CI = 0.46–2.79). In this study, walking may be a surrogate of staying outdoors with exposure to strong sunlight [42]. On the other hand, Cooper et al. [54] reported that outdoor work in the 12 months preceding diagnosis (OR 2.0, 95% CI = 1.0–3.8) increased the risk of SLE. In their study, a larger variation in the association between outdoor work and SLE risk was seen when examined within categories of sun reaction to midday sun (vs. none; OR 0.75 for tan or darken without burning, OR 2.7 for sunburn, and OR 7.9 for sunburn with blistering or rash) [54]. However, it is controversial whether ultraviolet (UV) radiation exposure itself plays a role in the development of SLE although UV radiation exposure may exacerbate preexisting SLE [50].

4.5 Family history

Family history of SLE [40, 55] as well as family history of connective tissue diseases/autoimmune diseases [40, 41, 55] is reported to increase the risk of SLE. Alarcón-Segovia et al. [56] reported that there was familial aggregation of SLE and of RA in SLE patients. These findings suggest that predisposing genes of autoimmune diseases as well as environmental risk factors sharing in family members may play a role in the development of autoimmune diseases including SLE.

4.6 Genetic susceptibility

It is widely accepted that SLE development requires environmental factors acting on a genetically predisposed individual. Studies of twin concordance are commonly used in epidemiology to estimate the role of genetics and the influence of environmental factors on disease susceptibility. Disease concordance is much higher in monozygotic twins (24–57%) than in dizygotic twins (2–5%), suggesting that a genetic factor may play a role in the development of SLE [57, 58]. The genetic basis of SLE is very complex; it has been estimated that over 100 genes may be involved in SLE susceptibility [59], but it is difficult to predict how many genes contribute to SLE susceptibility. Exposure to reactive oxygen species (ROS) via cigarette smoking is thought to contribute to the development of SLE. ROS is considered to promote the autoimmune response [60]. The cytochrome P450 (CYP)1A1 and glutathione S-transferase (GST) M1 enzymes are critical for the functionalization of genotoxic substances in cigarette smoke. The CYP1A1 enzyme contributes to the phase I metabolic activation and formation of ROS, whereas the GSTM1 enzyme plays a critical role for phase II detoxification of activated carcinogens or ROS [61, 62]. Extensive studies have been performed on the possible associations between polymorphisms of CYP1A1 and GSTM1 and cancer susceptibility [63, 64, 65]. Similarly, the N-acetyltransferase (NAT) enzyme is involved in the metabolism and detoxification of cytotoxic and carcinogenic compounds as well as ROS [66]. It has been suggested that N-acetylation of polycyclic aromatic hydrocarbons (PAHs) by the NAT2 enzyme may be associated with ROS production [67]. ROS increase immunogenicity of DNA, LDL, and IgG, generating ligands for which autoantibodies show higher avidity [60]. Tumor necrosis factor r superfamily member 1B (TNFRSF1B) is a receptor for TNF-α and is considered to mediate various biological effects including generation of ROS and the subsequent intracellular proinflammatory signaling events [68]. Furthermore, cigarette smoking has been suggested to influence TNFRSF1B production [69, 70]. Representative functional polymorphisms of the CYP1A1, GSTM1, NAT2, and TNFRSF1B genes are CYP1A1 rs464903, GSTM1 deletion, NAT2 genotypes determined by NAT2*4, *5B, *6A, or *7B allele and TNFRSF1B rs1061622. Considering that exposure to ROS via cigarette smoking may be contributed to the development of SLE, it is important to study the association between SLE and the polymorphisms involved in metabolism of tobacco smoke and ROS production. We conducted candidate gene association studies (hypothesis-driven approach) of SLE in female Japanese subjects with special reference to the interaction between the polymorphisms involved in ROS production and cigarette smoking [71, 72, 73, 74]. CYP1A1 rs4646903 (OR of the CC genotype = 2.47, 95% CI = 1.28–4.78) [71] and NAT2 genotypes (OR of the intermediate acetylator and slow acetylator genotypes combined = 2.34, 95% CI = 1.36–4.02) were significantly associated with SLE risk [72]. TNFRSF1B rs1061622 was marginally associated with an increased risk of SLE (OR of the G allele possession = 1.56, 95% CI = 0.99–2.47) [71]. There were significant additive interactions between smoking and any one of the following: CYP1A1 rs4646903, NAT2, or TNFRSF1B rs1061622 [72, 73, 74]. Replication of findings is very important before any causal inference can be drawn. Testing replication in different populations is an important step. Future studies involving larger control and case populations, precisely and uniformly defined clinical classification of SLE and better exposure histories, will undoubtedly lead to a more thorough understanding of the role of the genetic polymorphisms involved in ROS production in SLE development.

Advertisement

5. Applications of findings in the epidemiological studies

Descriptive epidemiologic studies of SLE have been conducted not only in the Western countries (e.g., the United Kingdom, France, the United States, Canada) but also in Asian countries (e.g., China, South Korea, Japan). The prevalence of SLE provides useful information for the needs of health services for SLE patients. Information of the age- and sex-specific incidence and prevalence of SLE can be used to estimate the number of newly diagnosed SLE patients and the total number of SLE patients in a community whose age and sex structure is known. On the other hand, the discrepancies of rates between different groups (e.g., different ethnic groups in the same country, different countries), which may be partly due to genetic factors as well as due to environmental factors [6], may give epidemiologists clues to plan epidemiological studies to determine a risk factor for SLE.

Observational studies such as case-control studies and cohort studies have been conducted to determine factors related to the development of SLE (i.e., risk factors, preventive factors) [49, 75]. After determining risk factors, preventive action will be started to control the level of exposure to a risk factor for SLE (i.e., reducing the risk of SLE) as well as to undergo a medical examination for the early detection of SLE for persons who are at special risk (e.g., silica [50, 51, 52, 53, 54]) (i.e., high risk strategy [76]). The size of relative risk/odds ratio indicates the strength of association between an exposure and a risk of SLE. For a public health perspective, however, the attributable risk of SLE is more important than the relative risk. The attributable risk is the difference in the risk of SLE between the exposed and the unexposed persons [49, 75]. The population attributable risk is the incidence of SLE in a population that is associated with an exposure to a risk factor, which is useful for determining the relative importance of exposures for the entire population [49, 75]. When the proportion of exposed persons is large, the population attribute risk is high even if the relative risk is small. More cases of SLE may develop in a large number of persons who are at a small risk than in the small number who are at high risk.

Smoking is an avoidable risk factor for SLE [38, 39, 40, 41, 42, 45] as well as for cancer [77] and cardiovascular diseases [78]. Therefore, antismoking education for both smokers and nonsmokers throughout lifetime (i.e., population strategy [76]) is important to reduce the incidence of SLE as well as the incidence of cancer and cardiovascular diseases in the general population.

Advertisement

6. Summary

The incidence and prevalence of SLE vary with sex, age, ethnicity, and the way how to detect SLE patients (e.g., case definition). SLE is more common in women than men across all age groups, and this female predominance is especially noteworthy during the reproductive ages [28], which suggests that female sex hormones may play an important role in the development of SLE.

A lower incidence and prevalence of SLE has been constantly observed in White People than in Black People [12, 17, 18] as well as Asian/Pacific Islanders [6, 17, 18] in the United States, while the incidence and prevalence of SLE is lower in White People than in Black African, Black Caribbean, and Indian [16]. The discrepancies of rates between ethnic groups are in part due to genetic factors as well as due to environmental factors such as smoking and dietary habits [7].

There are worldwide differences in the incidence and prevalence of SLE [79]. In addition to genetic factors and environmental factors, the way to detect SLE patients (e.g., case definition) is an important factor, which influences the incidence and prevalence of SLE. Ighe et al. [15] reported that the SLICC case definition of SLE yielded higher incidence and prevalence estimates than the ACR-97 case definition.

In this chapter, we introduce factors related to the development of SLE as well as incidence and prevalence of SLE. Among the reproductive issues, menarche at a younger age [29], use of contraceptive [29, 30], and use of postmenopausal hormones [29] increase the risk of SLE, while breast-feeding is associated with a decreased risk of SLE. Among environmental factors, tobacco smoking increases the risk of SLE [38, 39, 40, 41, 42, 46], while light to moderate alcohol drinking decreases the risk of SLE [46]. On the other hand, the exposure to crystalline silica [50, 51], silica [52, 53], strong sunlight [42, 54], and ultraviolet radiation [50] increase the risk of SLE. Among genetic factors, CYP1A1 rs4646903 and NAT2 genotypes are associated with an increased risk of SLE, while TNFRSF1B rs1061622 is suggested to increase the risk of SLE [71, 72, 73, 74]. In order to reduce the risk of SLE, we should reduce the exposure to avoidable risk factors such as smoking, contraceptives, crystalline silica, silica, strong sunlight, or ultraviolet radiation.

References

  1. 1. Cooper GS, Dooley MA, Treadwell EL, St Clair EW, Parks CG, Gilkeson GS. Hormonal, environmental, and infectious risk factors for developing systemic lupus erythematosus. Arthritis and Rheumatism. 1998;41:1714-1724
  2. 2. Wallace DJ. The clinical presentation of systemic lupus erythematosus. In: Wallace DJ, Hahn BH, editors. Dubois’ Lupus Erythematosus. 6th ed. Philadelphia: Lippincott Williams and Wilkins; 2002. pp. 621-628
  3. 3. Nakatani H. The advance and features of intractable diseases control as the health policy of the Japanese Ministry of Health and Welfare. In: Ohno Y, Tanaka H, Nakatani H, Kurokawa K, Saito H, editors. The Latest Information about Intractable Diseases, Including Epidemiology, Clinical Medicine and Care for Patients. Tokyo: Nanzando; 2000. pp. 3-27. (In Japanese)
  4. 4. Washio M, Inaba Y. Introduction of epidemiological studies of “Nanbyo”, current topics in environmental health and preventive medicine. In: Washio M, Kobashi G, editors. Epidemiological Studies of Specific Rare and Intractable Disease. Singapore: Springer Nature Singapore Pte Ltd; 2019. pp. 1-13. ISBN: 978-981-13-1095-9
  5. 5. Ohta A, Nagai M, Nishina M, Tomimitsu H, Kohsaka H. Age at onset and gender distribution of systemic lupus erythematosus, polymyositis/dermatomyositis, and systemic sclerosis in Japan. Modern Rheumatology. 2013;23:759-764
  6. 6. Serdula MK, Rhoads GG. Frequency of systemic lupus erythematosus in different ethnic groups in Hawaii. Arthritis and Rheumatism. 1979;22:328-333
  7. 7. Lim SS, Drenkard C. The epidemiology of lupus. In: Wallace DJ, Hahn BH, editors. Dubois’ Lupus Erythematosus and Related Syndrome. 8th ed. Philadelphia: Elsevier, Saunders; 2013. pp. 8-24
  8. 8. Tan EM, Cohen AS, Fries JF, Masi AT, McShane DJ, Rothfield NF, et al. The 1982 revised criteria for the classification of systemic lupus erythematosus. Arthritis and Rheumatism. 1982;25:1271-1277
  9. 9. Hochberg MC. Updating the American College of Rheumatology revised criteria for the classification of systemic lupus erythematosus [letter]. Arthritis and Rheumatism. 1997;40:1725
  10. 10. Voss A, Green A, Junker P. Systemic lupus erythematosus in Denmark: Clinical and epidemiological characterization of a county-based cohort. Scandinavian Journal of Rheumatology. 1998;27(2):98-105
  11. 11. Uramoto KM, Michet CJ Jr, Thumboo J, Sunku J, O’Fallon WM, Gabriel SE. Trends in the incidence and mortality of systemic lupus erythematosus, 1950-1992. Arthritis and Rheumatism. 1999;42(1):46-50
  12. 12. Lim SS, Bayakly AR, Helmick CG, Gordon C, Easley KA, Drenkard C. The incidence and prevalence of systemic lupus erythematosus, 2002-2004: The Georgia lupus registry. Arthritis & Rhematology. 2014;66(2):357-368
  13. 13. Izmirly PM, Wan I, Shal S, Buyon JP, Belmont HM, Salmon JE, et al. The incidence and prevalence of systemic lupus erythematosus in New York County (Manhattan), New York: The Manhattan Lupus Surveillance Program. Arthritis & Rhematology. 2017;69(10):2006-2017
  14. 14. Petri M, Orbai AM, Alarcón GS, Gordon C, Merrill JT, Fortin PR, et al. Derivation and validation of the systemic. Lupus international collaborating clinics classification criteria for systemic lupus erythematosus. Arthritis and Rheumatism. 2012;64(8):2677-2686
  15. 15. Ighe A, Dahlström Ö, Skogh T, Sjöwall C. Application of the 2012 systemic lupus international collaborating clinics classification criteria to patients in a regional Swedish systemic lupus erythematosus register. Arthritis Research & Therapy. 2015;17:3. DOI: 10.1186/s13075-015-0521-9
  16. 16. Rees F, Doherty M, Grainge M, Davenport G, Lanyon P, Zhang W. The incidence and prevalence of systemic lupus erythematosus in the UK, 1999-2012. Annals of the Rheumatic Diseases. 2016;75:136-141
  17. 17. Somers EC, Marder W, Cagnoli P, Lewis EE, DeGuire P, Gordon C, et al. Population-based incidence and prevalence of systemic lupus erythematosus: The Michigan lupus epidemiology and surveillance program. Arthritis & Rhematology. 2014;66(2):369-378
  18. 18. Dall’Era M, Cisternas MG, Snipes K, Herrinton LJ, Gordon C, Helmick CG. The incidence and prevalence of systemic lupus erythematosus in San Francisco County, California, the California lupus surveillance project. Arthritis & Rhematology. 2017;69(10):1996-2005
  19. 19. Barnabe C, Joseph L, Belisle P, Labrecque J, Edworthy S, Barr SG, et al. Prevalence of systemic lupus erythematosus and systemic sclerosis in the first nations population of Alberta, Canada. Arthritis Care and Research (Hoboken). 2012;64(1):138-143
  20. 20. Somer EC, Thomas SL, Smeeth L, Schoonen WM, Hall AJ. Incidence of systemic lupus erythematosus in the United Kingdom, 1990-1999. Arthritis and Rheumatism. 2007;57(4):612-618
  21. 21. Arnaud L, Fagot JP, Mathian A, Paita M, Fagot-Campagna A, Amoura Z. Prevalence and incidence of systemic lupus erythematosus in France: A 2010 nation-wide population-based study. Autoimmunity Reviews. 2014;13(11):1082-1089
  22. 22. Zou YF, Feng CC, Zhu JM, Tao JH, Chen GM, Ye QL, et al. Prevalence of systemic lupus erythematosus and risk factors in rural areas of Anhui Province. Rheumatology International. 2014;34(3):347-356
  23. 23. Yu K-H, See L-C, Kuo C-F, Chou I-J, Chou M-J. Prevalence and incidence in patients with autoimmune rheumatic diseases: A nationwide population-based study in Taiwan. Arthritis Care and Research. 2013;65(2):244-250
  24. 24. Shim J-S, Sung Y-K, Joo YB, Lee H-S, Bae S-C. Prevalence and incidence of systemic lupus erythematosus in South Korea. Rheumatology International. 2014;34(7):909-917
  25. 25. Yamamoto R, Nishigoori T, Shimizu H, Hisamichi S, Fukao A, Komatsu M. Estimated incidence of intractable diseases. Japanese Journal of Public Health. 1986;33(2):87-90. (In Japanese)
  26. 26. Ohno Y, Kawamura T, Tamakoshi A, Wakai K, Aoki R, Kojima M, et al. Epidemiology of intractable diseases in Japan. Journal of Epidemiology. 1996;6(4):S99-S109
  27. 27. Iseki K, Miyasato F, Oura T, Uehara H, Nishime K, Fukiyama K. An epidemiologic analysis of end-stage lupus nephritis. American Journal of Kidney Diseases. 1994;23(4):547-554
  28. 28. Rus V, Hochberg MC. The epidemiology of systemic lupus erythematosus. In: Wallace DJ, Hahn BH, editors. Dubois’ Lupus Erythematosus. 6th ed. Philadelphia: Lippincott Williams and Wilkins; 2002. pp. 65-83
  29. 29. Costenbader KH, Fekanich D, Stampfer MJ, Karlson EW. Reproductive and menopausal factors and risk of systemic lupus erythematosus in women. Arthritis and Rheumatism. 2007;56:1251-1262
  30. 30. Bernier MO, Mikaeloff Y, Hudson M, Suissa S. Combined oral contraceptive use and the risk of systemic lupus erythematosus. Arthritis and Rheumatism. 2009;61:476-481
  31. 31. Lu L-J, Wallace DJ, Ishimori ML, Scofield RH, Weisman MH. Male systemic lupus erythematosus: A review of sex disparities in this disease. Lupus. 2010;19:119-129
  32. 32. Mok CC, Lau CS. Pathogenesis of systemic lupus erythematosus. Journal of Clinical Pathology. 2003;56:481-490
  33. 33. Chakravarty EF. Reproductive and hormonal issues in women with autoimmune diseases. In: Wallace DJ, Hahn BH, editors. Dubois’ Lupus Erythematosus and Related Syndrome. 8th ed. Philadelphia: Elsevier Saunders; 2013. pp. 473-483
  34. 34. Washio M, Takahashi H, Kobashi G, Kiyohara C, Tada Y, Asami T, et al. Risk factors for development of systemic lupus erythematosus among Japanese females: Medical history and reproductive factors. International Journal of Rheumatic Diseases. 2017;20(1):76-83
  35. 35. Ulff-Møller CJ, Jørgensen KT, Pedersen BV, Nielsen NM, Frisch M. Reproductive factors and risk of systemic lupus erythematosus: Nationwide cohort study in Denmark. The Journal of Rheumatology. 2009;36(9):1903-1909
  36. 36. Cooper GS, Dooley MA, Treadwell EL, St Clair EW, Gilkeson GS. Hormonal and reproductive risk factors for development of systemic lupus erythematosus: Results of a population-based, case-control study. Arthritis and Rheumatism. 2002;46(7):1830-1839
  37. 37. Said S, Johansson ED, Gemzell C. Serum estrogens and progesterone after normal delivery. The Journal of Obstetrics and Gynaecology of the British Commonwealth. 1973;80(6):542-525
  38. 38. Hardy CJ, Palmer BP, Muir KR, Sutton AJ, Powell RJ. Smoking history, alcohol consumption, and systemic lupus erythematosus: A case-control study. Annals of the Rheumatic Diseases. 1998;57:451-455
  39. 39. Ghaussy NO, Sibbitt WL Jr, Qualls CR. Cigarette smoking, alcohol consumption, and the risk of systemic lupus erythematosus: A case-control study. The Journal of Rheumatology. 2001;28:2449-2453
  40. 40. Bengtsson AA, Rylander L, Hangmar L, Nived O, Sturfelt G. Risk factors for developing systemic lupus erythematosus : A case-control study in southern Sweden. Rheumatology. 2002;41:563-571
  41. 41. Nagata C, Fujita S, Hirotoshi I, Kurosawa Y, Kobayashi M, Motegi K, et al. Systemic lupus erythematosus: A case-control epidemiologic study in Japan. International Journal of Dermatology. 1995;34:333-337
  42. 42. Washio M, Horiuchi T, Kiyohara C, Kodama H, Tada Y, Asami T, et al. Smoking, drinking, sleeping habits, and other lifestyle factors and the risk of systemic lupus erythematosus in Japanese females: Findings from the KYSS study. Modern Rheumatology. 2006;16(3):143-150. DOI: 10.1007/s10165-006-0474-6
  43. 43. Cooper GS, Dooley MA, Treadwell EL, St Clair EW, Gilkeson GS. Smoking and use of hair treatments in relation to risk of developing systemic lupus erythematosus. The Journal of Rheumatology. 2001;28:2653-2656
  44. 44. Sanchez-Guerrero J, Karlson EW, Colditz GA, Hunter DJ, Speizer FE, Liang MH. Hair dye use and the risk of developing systemic lupus erythematosus: A cohort study. Arthritis and Rheumatism. 1996;39:657-662
  45. 45. Costenbader KH, Kim DJ, Peerzada J, Lockman S, Nobles-Knight D, Petri M, et al. Cigarette smoking and the risk of systemic lupus erythematosus: A meta-analysis. Arthritis and Rheumatism. 2004;50(3):849-857
  46. 46. Kiyohara C, Washio M, Horiuchi T, Asami T, Ide S, Atsumi T, et al. Cigarette smoking, alcohol consumption, and risk of systemic lupus erythematosus: A case-control study in a Japanese population. The Journal of Rheumatology. 2012;39(7):1363-1370
  47. 47. Reidenberg MM, Durant PJ, Harris RA, De Boccardo G, Lahita R, Stenzel KH. Lupus erythematosus-like disease due to hydrazine. The American Journal of Medicine. 1983;75:365-370
  48. 48. Wang J, Pan HF, Ye DQ, Su H, Li XP. Moderate alcohol drinking might be protective for systemic lupus erythematosus: A systematic review and meta-analysis. Clinical Rheumatology. 2008;27(12):1557-1563
  49. 49. Beaglehole R, Bonita R, Kjellström T. Basic Epidemiology. Genova: World Health Organization; 1993
  50. 50. Barbhaiya M, Costenbader KH. Environmental exposures and the development of systemic lupus erythematosus. Current Opinion in Rheumatology. 2016;28(5):497-505
  51. 51. Parks CG, De Roos AJ. Pesticides, chemical and industrial exposures in relation to systemic lupus erythematosus. Lupus. 2014;23(6):527-536
  52. 52. Finckh A, Cooper GS, Chibnik LB, Costenbader KH, Watts J, Pankey H, et al. Occupational silica and solvent exposures and risk of systemic lupus erythematosus in urban women. Arthritis and Rheumatism. 2006;54(11):3648-3654
  53. 53. Parks CG, Cooper GS, Nylander-French LA, Sanderson WT, Dement JM, Cohen PL, et al. Occupational exposure to crystalline silica and risk of systemic lupus erythematosus: A population-based, case–control study in the southeastern United States. Arthritis and Rheumatism. 2002;46(7):1840-1850
  54. 54. Cooper GS, Wither J, Bernatsky S, Claudio JO, Clarke A, Rioux JD, et al. Occupational and environmental exposures and risk of systemic lupus erythematosus: Silica, sunlight, solvents. Rheumatology. 2010;49:2172-2180
  55. 55. Tada Y, Washio M, Horiuchi T, Kiyohara C, Takahashi H, Kobashi G, et al. Influence of medical history in parents or siblings on the development of systemic lupus erythematosus among Japanese females. International Medical Journal. 2016;23(5):466-469. ISSN: 1341-2051
  56. 56. Alarcón-Segovia D, Alarcón-Riquelme ME, Cardiel MH, Caeiro F, Massardo L, Villa AR, et al. Familial aggregation of systemic lupus erythematosus, rheumatoid arthritis, and other autoimmune diseases in 1,177 lupus patients from the GLADEL cohort. Arthritis and Rheumatism. 2005;52:1138-1147
  57. 57. Jarvinen P, Aho K. Twin studies in rheumatic diseases. Seminars in Arthritis and Rheumatism. 1994;24(1):19-28
  58. 58. Deapen D, Escalante A, Weinrib L, Horwitz D, Bachman B, Roy-Burman P, et al. A revised estimate of twin concordance in systemic lupus erythematosus. Arthritis and Rheumatism. 1992;35(3):311-318
  59. 59. Tsao BP. Update on human systemic lupus erythematosus genetics. Current Opinion in Rheumatology. 2004;16(5):513-521
  60. 60. Griffiths HR. Is the generation of neo-antigenic determinants by free radicals central to the development of autoimmune rheumatoid disease? Autoimmune Reviews. 2008;7(7):544-549
  61. 61. Nebert DW, Dalton TP. The role of cytochrome P450 enzymes in endogenous signalling pathways and environmental carcinogenesis. Nature Reviews. Cancer. 2006;6:947-960
  62. 62. Hayes JD, Flanagan JU, Jowsey IR. Glutathione transferases. Annual Review of Pharmacology and Toxicology. 2005;45:51-88
  63. 63. Masson LF, Sharp L, Cotton SC, Little J. Cytochrome P-450 1A1 gene polymorphisms and risk of breast cancer: A HuGE review. American Journal of Epidemiology. 2005;161:901-915
  64. 64. Castelao JE, Yuan JM, Skipper PL, Tannenbaum SR, Gago-Dominguez M, Crowder JS, et al. Gender- and smoking-related bladder cancer risk. Journal of the National Cancer Institute. 2001;93:538-545
  65. 65. Parl FF. Glutathione S-transferase genotypes and cancer risk. Cancer Letters. 2005;221:123-129
  66. 66. Unal M, Tamer L, Dogruer ZN, Yildirim H, Vayisoglu Y, Camdeviren H. N-acetyltransferase 2 gene polymorphism and presbycusis. Laryngoscope. 2005;115:2238-2241
  67. 67. Kim WJ, Lee HL, Lee SC, Kim YT, Kim H. Polymorphisms of N-acetyltransferase 2, glutathione S-transferase mu and theta genes as risk factors of bladder cancer in relation to asthma and tuberculosis. The Journal of Urology. 2000;164:209-213
  68. 68. Garg AK, Aggarwal BB. Reactive oxygen intermediates in TNF signaling. Molecular Immunology. 2002;39:509-517
  69. 69. Fernandez-Real JM, Broch M, Vendrell J, Ricart W. Smoking, fat mass and activation of the tumor necrosis factor-alpha pathway. International Journal of Obesity and Related Metabolic Disorders. 2003;27:1552-1556
  70. 70. D’Hulst AI, Bracke KR, Maes T, De Bleecker JL, Pauwels RA, Joos GF, et al. Role of tumour necrosis factor-alpha receptor p75 in cigarette smoke-induced pulmonary inflammation and emphysema. The European Respiratory Journal. 2006;28:102-112
  71. 71. Horiuchi T, Washio M, Kiyohara C, Tsukamoto H, Tada Y, Asami T, et al. Combination of TNF-RII, CYP1A1 and GSTM1 polymorphisms and the risk of Japanese SLE: Findings from the KYSS study. Rheumatology (Oxford). 2009;48:1045-1049
  72. 72. Kiyohara C, Washio M, Horiuchi T, Tada Y, Asami T, Ide S, et al. Cigarette smoking, N-acetyltransferase 2 polymorphisms and systemic lupus erythematosus in a Japanese population. Lupus. 2009;18:630-638
  73. 73. Kiyohara C, Washio M, Horiuchi T, Tada Y, Asami T, Ide S, et al. Cigarette smoking, STAT4 and TNFRSF1B polymorphisms, and systemic lupus erythematosus in a Japanese population. The Journal of Rheumatology. 2009 Oct;36(10):2195-2203
  74. 74. Kiyohara C, Washio M, Horiuchi T, Asami T, Ide S, Atsumi T, et al. Risk modification by CYP1A1 and GSTM1 polymorphisms in the association of cigarette smoking and systemic lupus erythematosus in a Japanese population. Scandinavian Journal of Rheumatology. 2012;41(2):103-109
  75. 75. Porta M, Greenland S, Last JM. A Dictionary of Epidemiology. 5th ed. Oxford: Oxford University Press; 2008
  76. 76. Geoffrey R. The Strategy of Preventive Medicine. Oxford: Oxford University Press; 1992. ISBN: 0-19-262486-5
  77. 77. Gajalakshmi CK, Jha P, Ranson K, Nguyen S. In: Jha P, Chalouplca F, editors. Global Patterns of Smoking and Smoking-Attributable Mortality, Tobacco Control in Developing Countries. New York: Oxford University Press; 2000. pp. 11-39
  78. 78. Jamrozik K. Tobacco and cardiovascular disease. In: Boyle P, Gray N, Henningfield J, Seffrin J, Zatonski W, editors. Tobacco and Public Health: Science and Policy. New York: Oxford University Press; 2004. pp. 549-576. ISBN: 0-19-852687-3
  79. 79. Rees F, Doherty M, Grainge M, Lanyon P, Zhang W. The worldwide incidence and prevalence of systemic lupus erythematosus: A review of epidemiological studies. Rheumatology. 2017;56:1945-1961

Written By

Masakazu Washio, Chikako Kiyohara and Akiko Ohta

Submitted: 06 June 2018 Reviewed: 04 January 2019 Published: 13 February 2019