\\n\\n
Released this past November, the list is based on data collected from the Web of Science and highlights some of the world’s most influential scientific minds by naming the researchers whose publications over the previous decade have included a high number of Highly Cited Papers placing them among the top 1% most-cited.
\\n\\nWe wish to congratulate all of the researchers named and especially our authors on this amazing accomplishment! We are happy and proud to share in their success!
\\n"}]',published:!0,mainMedia:null},components:[{type:"htmlEditorComponent",content:'IntechOpen is proud to announce that 179 of our authors have made the Clarivate™ Highly Cited Researchers List for 2020, ranking them among the top 1% most-cited.
\n\nThroughout the years, the list has named a total of 252 IntechOpen authors as Highly Cited. Of those researchers, 69 have been featured on the list multiple times.
\n\n\n\nReleased this past November, the list is based on data collected from the Web of Science and highlights some of the world’s most influential scientific minds by naming the researchers whose publications over the previous decade have included a high number of Highly Cited Papers placing them among the top 1% most-cited.
\n\nWe wish to congratulate all of the researchers named and especially our authors on this amazing accomplishment! We are happy and proud to share in their success!
\n'}],latestNews:[{slug:"intechopen-expands-to-all-global-amazon-channels-with-full-catalog-of-books-20210308",title:"IntechOpen Expands to All Global Amazon Channels with Full Catalog of Books"},{slug:"stanford-university-identifies-top-2-scientists-over-1-000-are-intechopen-authors-and-editors-20210122",title:"Stanford University Identifies Top 2% Scientists, Over 1,000 are IntechOpen Authors and Editors"},{slug:"intechopen-authors-included-in-the-highly-cited-researchers-list-for-2020-20210121",title:"IntechOpen Authors Included in the Highly Cited Researchers List for 2020"},{slug:"intechopen-maintains-position-as-the-world-s-largest-oa-book-publisher-20201218",title:"IntechOpen Maintains Position as the World’s Largest OA Book Publisher"},{slug:"all-intechopen-books-available-on-perlego-20201215",title:"All IntechOpen Books Available on Perlego"},{slug:"oiv-awards-recognizes-intechopen-s-editors-20201127",title:"OIV Awards Recognizes IntechOpen's Editors"},{slug:"intechopen-joins-crossref-s-initiative-for-open-abstracts-i4oa-to-boost-the-discovery-of-research-20201005",title:"IntechOpen joins Crossref's Initiative for Open Abstracts (I4OA) to Boost the Discovery of Research"},{slug:"intechopen-hits-milestone-5-000-open-access-books-published-20200908",title:"IntechOpen hits milestone: 5,000 Open Access books published!"}]},book:{item:{type:"book",id:"9354",leadTitle:null,fullTitle:"Microalgae - From Physiology to Application",title:"Microalgae",subtitle:"From Physiology to Application",reviewType:"peer-reviewed",abstract:"The term microalgae is often used in the algal research community to collectively describe microscopic algae and cyanobacteria. Research of microalgae has expanded enormously, namely because of their significant commercial potential. The thorough knowledge of the physiology of microalgae must precede any commercial exploitation. We have to understand the mechanisms underlying the physiological and biochemical processes in the algal cells. The book Microalgae - From Physiology to Application covers major aspects of microalgae physiology and the possible applications in the sphere of biotechnology. This book gives a comprehensive overview of what is known about microalgae growth and production, secondary metabolites, and development of new species and products for commercialization. This volume should allow readers at all levels an entry into the exciting world of algal research.",isbn:"978-1-83880-036-9",printIsbn:"978-1-83880-035-2",pdfIsbn:"978-1-83880-271-4",doi:"10.5772/intechopen.83737",price:119,priceEur:129,priceUsd:155,slug:"microalgae-from-physiology-to-application",numberOfPages:244,isOpenForSubmission:!1,isInWos:1,hash:"affa344272fbd8d5cd80cab53f814303",bookSignature:"Milada Vítová",publishedDate:"January 22nd 2020",coverURL:"https://cdn.intechopen.com/books/images_new/9354.jpg",numberOfDownloads:4633,numberOfWosCitations:6,numberOfCrossrefCitations:10,numberOfDimensionsCitations:19,hasAltmetrics:1,numberOfTotalCitations:35,isAvailableForWebshopOrdering:!0,dateEndFirstStepPublish:"March 20th 2019",dateEndSecondStepPublish:"May 14th 2019",dateEndThirdStepPublish:"July 13th 2019",dateEndFourthStepPublish:"October 1st 2019",dateEndFifthStepPublish:"November 30th 2019",currentStepOfPublishingProcess:5,indexedIn:"1,2,3,4,5,6",editedByType:"Edited by",kuFlag:!1,editors:[{id:"253951",title:"Dr.",name:"Milada",middleName:null,surname:"Vítová",slug:"milada-vitova",fullName:"Milada Vítová",profilePictureURL:"https://mts.intechopen.com/storage/users/253951/images/system/253951.jpeg",biography:"Prof. (FH) RNDr. Milada Vítová, PhD, works at the Laboratory of Cell Cycles of Algae, Centre Algatech, Institute of Microbiology of the Czech Academy of Sciences. She studied at Charles’ University and obtained her PhD in molecular and cell biology. She started her research career in SAC, UK and continued at the University of Vienna, Austria. She has 20 years of experience in the research of algal physiology and biotechnology. She leads the group involved in the research of metal metabolism in algae and its environmental aspects. Her scientific fields concern namely: a) metal transport and metabolism in algae, b) cell cycle regulation of algae by external factors, and c) bioremediation, biomining and recycling. She is a lecturer at the University of Applied Sciences, Krems, Austria.",institutionString:"Academy of Sciences of the Czech Republic",position:null,outsideEditionCount:0,totalCites:0,totalAuthoredChapters:"2",totalChapterViews:"0",totalEditedBooks:"1",institution:{name:"Academy of Sciences of the Czech Republic",institutionURL:null,country:{name:"Czech Republic"}}}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,coeditorOne:null,coeditorTwo:null,coeditorThree:null,coeditorFour:null,coeditorFive:null,topics:[{id:"424",title:"Phycology",slug:"phycology"}],chapters:[{id:"68643",title:"Self-Fluorescence of Photosynthetic System: A Powerful Tool for Investigation of Microalgal Biological Diversity",doi:"10.5772/intechopen.88785",slug:"self-fluorescence-of-photosynthetic-system-a-powerful-tool-for-investigation-of-microalgal-biologica",totalDownloads:381,totalCrossrefCites:2,totalDimensionsCites:3,signatures:"Natalia Grigoryeva",downloadPdfUrl:"/chapter/pdf-download/68643",previewPdfUrl:"/chapter/pdf-preview/68643",authors:[{id:"239430",title:"Dr.",name:"Natalia",surname:"Grigoryeva",slug:"natalia-grigoryeva",fullName:"Natalia Grigoryeva"}],corrections:null},{id:"69438",title:"Eutrophication and Phytoplankton: Some Generalities from Lakes and Reservoirs of the Americas",doi:"10.5772/intechopen.89010",slug:"eutrophication-and-phytoplankton-some-generalities-from-lakes-and-reservoirs-of-the-americas",totalDownloads:542,totalCrossrefCites:0,totalDimensionsCites:3,signatures:"Ernesto J. González and Gabriel Roldán",downloadPdfUrl:"/chapter/pdf-download/69438",previewPdfUrl:"/chapter/pdf-preview/69438",authors:[null],corrections:null},{id:"69695",title:"Isolation, Characterization, and Biotechnological Potential of Native Microalgae From the Peruvian Amazon",doi:"10.5772/intechopen.89515",slug:"isolation-characterization-and-biotechnological-potential-of-native-microalgae-from-the-peruvian-ama",totalDownloads:332,totalCrossrefCites:1,totalDimensionsCites:1,signatures:"Marianela Cobos, Juan C. Castro, Jae D. Paredes, Sheyla Pérez, J. Dylan Maddox, Segundo L. Estela, Hicler N. Rodríguez, Alvaro B. Tresierra, Juan R. Saldaña, Jorge L. Marapara, Pedro M. Adrianzén and Rosana Gonzales",downloadPdfUrl:"/chapter/pdf-download/69695",previewPdfUrl:"/chapter/pdf-preview/69695",authors:[null],corrections:null},{id:"69201",title:"Drying and Quality of Microalgal Powders for Human Alimentation",doi:"10.5772/intechopen.89324",slug:"drying-and-quality-of-microalgal-powders-for-human-alimentation",totalDownloads:548,totalCrossrefCites:2,totalDimensionsCites:3,signatures:"Fábio de Farias Neves, Mariana Demarco and Giustino Tribuzi",downloadPdfUrl:"/chapter/pdf-download/69201",previewPdfUrl:"/chapter/pdf-preview/69201",authors:[null],corrections:null},{id:"70090",title:"Microalgae and Its Use in Nutraceuticals and Food Supplements",doi:"10.5772/intechopen.90143",slug:"microalgae-and-its-use-in-nutraceuticals-and-food-supplements",totalDownloads:479,totalCrossrefCites:1,totalDimensionsCites:2,signatures:"Joshi Nilesh Hemantkumar and Mor Ilza Rahimbhai",downloadPdfUrl:"/chapter/pdf-download/70090",previewPdfUrl:"/chapter/pdf-preview/70090",authors:[null],corrections:null},{id:"69487",title:"The Red Microalga Galdieria as a Promising Organism for Applications in Biotechnology",doi:"10.5772/intechopen.89810",slug:"the-red-microalga-em-galdieria-em-as-a-promising-organism-for-applications-in-biotechnology",totalDownloads:379,totalCrossrefCites:3,totalDimensionsCites:4,signatures:"Mária Čížková, Milada Vítová and Vilém Zachleder",downloadPdfUrl:"/chapter/pdf-download/69487",previewPdfUrl:"/chapter/pdf-preview/69487",authors:[{id:"253951",title:"Dr.",name:"Milada",surname:"Vítová",slug:"milada-vitova",fullName:"Milada Vítová"},{id:"267098",title:"Dr.",name:"Mária",surname:"Čížková",slug:"maria-cizkova",fullName:"Mária Čížková"},{id:"267100",title:"Dr.",name:"Vilém",surname:"Zachleder",slug:"vilem-zachleder",fullName:"Vilém Zachleder"}],corrections:null},{id:"69185",title:"The Colonial Microalgae Botryococcus braunii as Biorefinery",doi:"10.5772/intechopen.88206",slug:"the-colonial-microalgae-em-botryococcus-braunii-em-as-biorefinery",totalDownloads:386,totalCrossrefCites:0,totalDimensionsCites:0,signatures:"Edmundo Lozoya-Gloria, Xochitl Morales-de la Cruz and Takehiro A. Ozawa-Uyeda",downloadPdfUrl:"/chapter/pdf-download/69185",previewPdfUrl:"/chapter/pdf-preview/69185",authors:[null],corrections:null},{id:"69710",title:"Bioconcentration of Marine Algae Using Lipase Enzyme",doi:"10.5772/intechopen.87026",slug:"bioconcentration-of-marine-algae-using-lipase-enzyme",totalDownloads:248,totalCrossrefCites:0,totalDimensionsCites:0,signatures:"Jithu Paul Jacob",downloadPdfUrl:"/chapter/pdf-download/69710",previewPdfUrl:"/chapter/pdf-preview/69710",authors:[null],corrections:null},{id:"69311",title:"Concepts and Trends for Extraction and Application of Microalgae Carbohydrates",doi:"10.5772/intechopen.89323",slug:"concepts-and-trends-for-extraction-and-application-of-microalgae-carbohydrates",totalDownloads:412,totalCrossrefCites:0,totalDimensionsCites:2,signatures:"Maiara Priscilla de Souza, Andrea Sanchez-Barrios, Tiele Medianeira Rizzetti, Lisianne Brittes Benitez, Michele Hoeltz, Rosana de Cassia de Souza Schneider and Fábio de Farias Neves",downloadPdfUrl:"/chapter/pdf-download/69311",previewPdfUrl:"/chapter/pdf-preview/69311",authors:[null],corrections:null},{id:"69001",title:"Changes in Photochemical Efficiency and Differential Induction of Superoxide Dismutase in Response to Combined Stresses of Chilling Temperature and Relatively High Irradiation in Two Chlorella Strains",doi:"10.5772/intechopen.89024",slug:"changes-in-photochemical-efficiency-and-differential-induction-of-superoxide-dismutase-in-response-t",totalDownloads:275,totalCrossrefCites:0,totalDimensionsCites:0,signatures:"Lee-Feng Chien and Wen-Hao Lin",downloadPdfUrl:"/chapter/pdf-download/69001",previewPdfUrl:"/chapter/pdf-preview/69001",authors:[null],corrections:null},{id:"68555",title:"Microalgae Cultivation for Secondary Metabolite Production",doi:"10.5772/intechopen.88531",slug:"microalgae-cultivation-for-secondary-metabolite-production",totalDownloads:384,totalCrossrefCites:0,totalDimensionsCites:0,signatures:"Facundo J. Márquez-Rocha, Diana Palma-Ramírez, Pedro García-Alamilla, Jenny F. López-Hernández, Ivonne S. Santiago-Morales and Abelardo I. Flores-Vela",downloadPdfUrl:"/chapter/pdf-download/68555",previewPdfUrl:"/chapter/pdf-preview/68555",authors:[null],corrections:null},{id:"70215",title:"Physiological Limitations and Solutions to Various Applications of Microalgae",doi:"10.5772/intechopen.90206",slug:"physiological-limitations-and-solutions-to-various-applications-of-microalgae",totalDownloads:272,totalCrossrefCites:1,totalDimensionsCites:1,signatures:"Manoj Kamalanathan and Antonietta Quigg",downloadPdfUrl:"/chapter/pdf-download/70215",previewPdfUrl:"/chapter/pdf-preview/70215",authors:[null],corrections:null}],productType:{id:"1",title:"Edited Volume",chapterContentType:"chapter",authoredCaption:"Edited by"}},relatedBooks:[{type:"book",id:"5128",title:"Algae",subtitle:"Organisms for Imminent Biotechnology",isOpenForSubmission:!1,hash:"01a35d1259dcce526d25cf3f23237696",slug:"algae-organisms-for-imminent-biotechnology",bookSignature:"Nooruddin Thajuddin and Dharumadurai Dhanasekaran",coverURL:"https://cdn.intechopen.com/books/images_new/5128.jpg",editedByType:"Edited by",editors:[{id:"89852",title:"Dr.",name:"Nooruddin",surname:"Thajuddin",slug:"nooruddin-thajuddin",fullName:"Nooruddin Thajuddin"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"6889",title:"Algae",subtitle:null,isOpenForSubmission:!1,hash:"13797d037dd9bd0c3f7a232fff1c759d",slug:"algae",bookSignature:"Yee Keung Wong",coverURL:"https://cdn.intechopen.com/books/images_new/6889.jpg",editedByType:"Edited by",editors:[{id:"227706",title:"Dr.",name:"Yee Keung",surname:"Wong",slug:"yee-keung-wong",fullName:"Yee Keung Wong"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"1591",title:"Infrared Spectroscopy",subtitle:"Materials Science, Engineering and Technology",isOpenForSubmission:!1,hash:"99b4b7b71a8caeb693ed762b40b017f4",slug:"infrared-spectroscopy-materials-science-engineering-and-technology",bookSignature:"Theophile Theophanides",coverURL:"https://cdn.intechopen.com/books/images_new/1591.jpg",editedByType:"Edited by",editors:[{id:"37194",title:"Dr.",name:"Theophanides",surname:"Theophile",slug:"theophanides-theophile",fullName:"Theophanides Theophile"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"3092",title:"Anopheles mosquitoes",subtitle:"New insights into malaria vectors",isOpenForSubmission:!1,hash:"c9e622485316d5e296288bf24d2b0d64",slug:"anopheles-mosquitoes-new-insights-into-malaria-vectors",bookSignature:"Sylvie Manguin",coverURL:"https://cdn.intechopen.com/books/images_new/3092.jpg",editedByType:"Edited by",editors:[{id:"50017",title:"Prof.",name:"Sylvie",surname:"Manguin",slug:"sylvie-manguin",fullName:"Sylvie Manguin"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"3161",title:"Frontiers in Guided Wave Optics and Optoelectronics",subtitle:null,isOpenForSubmission:!1,hash:"deb44e9c99f82bbce1083abea743146c",slug:"frontiers-in-guided-wave-optics-and-optoelectronics",bookSignature:"Bishnu Pal",coverURL:"https://cdn.intechopen.com/books/images_new/3161.jpg",editedByType:"Edited by",editors:[{id:"4782",title:"Prof.",name:"Bishnu",surname:"Pal",slug:"bishnu-pal",fullName:"Bishnu Pal"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"72",title:"Ionic Liquids",subtitle:"Theory, Properties, New Approaches",isOpenForSubmission:!1,hash:"d94ffa3cfa10505e3b1d676d46fcd3f5",slug:"ionic-liquids-theory-properties-new-approaches",bookSignature:"Alexander Kokorin",coverURL:"https://cdn.intechopen.com/books/images_new/72.jpg",editedByType:"Edited by",editors:[{id:"19816",title:"Prof.",name:"Alexander",surname:"Kokorin",slug:"alexander-kokorin",fullName:"Alexander Kokorin"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"1373",title:"Ionic Liquids",subtitle:"Applications and Perspectives",isOpenForSubmission:!1,hash:"5e9ae5ae9167cde4b344e499a792c41c",slug:"ionic-liquids-applications-and-perspectives",bookSignature:"Alexander Kokorin",coverURL:"https://cdn.intechopen.com/books/images_new/1373.jpg",editedByType:"Edited by",editors:[{id:"19816",title:"Prof.",name:"Alexander",surname:"Kokorin",slug:"alexander-kokorin",fullName:"Alexander Kokorin"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"57",title:"Physics and Applications of Graphene",subtitle:"Experiments",isOpenForSubmission:!1,hash:"0e6622a71cf4f02f45bfdd5691e1189a",slug:"physics-and-applications-of-graphene-experiments",bookSignature:"Sergey Mikhailov",coverURL:"https://cdn.intechopen.com/books/images_new/57.jpg",editedByType:"Edited by",editors:[{id:"16042",title:"Dr.",name:"Sergey",surname:"Mikhailov",slug:"sergey-mikhailov",fullName:"Sergey Mikhailov"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"371",title:"Abiotic Stress in Plants",subtitle:"Mechanisms and Adaptations",isOpenForSubmission:!1,hash:"588466f487e307619849d72389178a74",slug:"abiotic-stress-in-plants-mechanisms-and-adaptations",bookSignature:"Arun Shanker and B. Venkateswarlu",coverURL:"https://cdn.intechopen.com/books/images_new/371.jpg",editedByType:"Edited by",editors:[{id:"58592",title:"Dr.",name:"Arun",surname:"Shanker",slug:"arun-shanker",fullName:"Arun Shanker"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"878",title:"Phytochemicals",subtitle:"A Global Perspective of Their Role in Nutrition and Health",isOpenForSubmission:!1,hash:"ec77671f63975ef2d16192897deb6835",slug:"phytochemicals-a-global-perspective-of-their-role-in-nutrition-and-health",bookSignature:"Venketeshwer Rao",coverURL:"https://cdn.intechopen.com/books/images_new/878.jpg",editedByType:"Edited by",editors:[{id:"82663",title:"Dr.",name:"Venketeshwer",surname:"Rao",slug:"venketeshwer-rao",fullName:"Venketeshwer Rao"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}}],ofsBooks:[]},correction:{item:{id:"74118",slug:"corrigendum-to-congenital-anomalies-of-the-gastrointestinal-tract",title:"Corrigendum to: Congenital Anomalies of the Gastrointestinal Tract",doi:null,correctionPDFUrl:"https://cdn.intechopen.com/pdfs/74118.pdf",downloadPdfUrl:"/chapter/pdf-download/74118",previewPdfUrl:"/chapter/pdf-preview/74118",totalDownloads:null,totalCrossrefCites:null,bibtexUrl:"/chapter/bibtex/74118",risUrl:"/chapter/ris/74118",chapter:{id:"74014",slug:"congenital-anomalies-of-the-gastrointestinal-tract",signatures:"Richa Verma",dateSubmitted:"November 20th 2019",dateReviewed:"April 17th 2020",datePrePublished:"November 11th 2020",datePublished:null,book:{id:"9132",title:"Congenital Anomalies in Neonates - Clinical Perspectives",subtitle:null,fullTitle:"Congenital Anomalies in Neonates - Clinical Perspectives",slug:null,publishedDate:null,bookSignature:"Dr. Rita P Verma",coverURL:"https://cdn.intechopen.com/books/images_new/9132.jpg",licenceType:"CC BY 3.0",editedByType:null,editors:[{id:"278358",title:"Dr.",name:"Rita",middleName:"P",surname:"Verma",slug:"rita-verma",fullName:"Rita Verma"}],productType:{id:"1",title:"Edited Volume",chapterContentType:"chapter",authoredCaption:"Edited by"}},authors:null}},chapter:{id:"74014",slug:"congenital-anomalies-of-the-gastrointestinal-tract",signatures:"Richa Verma",dateSubmitted:"November 20th 2019",dateReviewed:"April 17th 2020",datePrePublished:"November 11th 2020",datePublished:null,book:{id:"9132",title:"Congenital Anomalies in Neonates - Clinical Perspectives",subtitle:null,fullTitle:"Congenital Anomalies in Neonates - Clinical Perspectives",slug:null,publishedDate:null,bookSignature:"Dr. Rita P Verma",coverURL:"https://cdn.intechopen.com/books/images_new/9132.jpg",licenceType:"CC BY 3.0",editedByType:null,editors:[{id:"278358",title:"Dr.",name:"Rita",middleName:"P",surname:"Verma",slug:"rita-verma",fullName:"Rita Verma"}],productType:{id:"1",title:"Edited Volume",chapterContentType:"chapter",authoredCaption:"Edited by"}},authors:null},book:{id:"9132",title:"Congenital Anomalies in Neonates - Clinical Perspectives",subtitle:null,fullTitle:"Congenital Anomalies in Neonates - Clinical Perspectives",slug:null,publishedDate:null,bookSignature:"Dr. Rita P Verma",coverURL:"https://cdn.intechopen.com/books/images_new/9132.jpg",licenceType:"CC BY 3.0",editedByType:null,editors:[{id:"278358",title:"Dr.",name:"Rita",middleName:"P",surname:"Verma",slug:"rita-verma",fullName:"Rita Verma"}],productType:{id:"1",title:"Edited Volume",chapterContentType:"chapter",authoredCaption:"Edited by"}}},ofsBook:{item:{type:"book",id:"5371",leadTitle:null,title:"X-ray Scattering",subtitle:null,reviewType:"peer-reviewed",abstract:"X-ray scattering techniques are a family of nondestructive analytical techniques. Using these techniques, scientists obtain information about the crystal structure and chemical and physical properties of materials. Nowadays, different techniques are based on observing the scattered intensity of an X-ray beam hitting a sample as a function of incident and scattered angle, polarization, and wavelength.\nThis book is intended to give overviews of the relevant X-ray scattering techniques, particularly about inelastic X-ray scattering, elastic scattering, grazing-incidence small-angle X-ray scattering, small-angle X-ray scattering, and high-resolution X-ray diffraction, and, finally, applications of X-ray spectroscopy to study different biological systems.",isbn:"978-953-51-2888-5",printIsbn:"978-953-51-2887-8",pdfIsbn:"978-953-51-4120-4",doi:"10.5772/62609",price:119,priceEur:129,priceUsd:155,slug:"x-ray-scattering",numberOfPages:228,isOpenForSubmission:!1,hash:"af21d4ead14637fcfa5f919430ec45f5",bookSignature:"Alicia Esther Ares",publishedDate:"January 25th 2017",coverURL:"https://cdn.intechopen.com/books/images_new/5371.jpg",keywords:null,numberOfDownloads:15148,numberOfWosCitations:26,numberOfCrossrefCitations:14,numberOfDimensionsCitations:27,numberOfTotalCitations:67,isAvailableForWebshopOrdering:!0,dateEndFirstStepPublish:"March 9th 2016",dateEndSecondStepPublish:"March 30th 2016",dateEndThirdStepPublish:"July 4th 2016",dateEndFourthStepPublish:"October 2nd 2016",dateEndFifthStepPublish:"November 1st 2016",remainingDaysToSecondStep:"5 years",secondStepPassed:!0,currentStepOfPublishingProcess:5,editedByType:"Edited by",kuFlag:!1,biosketch:null,coeditorOneBiosketch:null,coeditorTwoBiosketch:null,coeditorThreeBiosketch:null,coeditorFourBiosketch:null,coeditorFiveBiosketch:null,editors:[{id:"91095",title:"Dr.",name:"Alicia Esther",middleName:null,surname:"Ares",slug:"alicia-esther-ares",fullName:"Alicia Esther Ares",profilePictureURL:"https://mts.intechopen.com/storage/users/91095/images/system/91095.jpg",biography:"Alicia Esther Ares is a professor of Materials Science at the Chemical Engineering Department, School of Sciences (FCEQyN), National University of Misiones (UNaM), Posadas, Misiones, Argentina, since December 2013. She is also an independent researcher at the National Scientific and Technical Research Council (CONICET), Argentina, since January 2015. Previously, she has been a research associate at CONICET (2008–2014) and an associate professor at UNaM (2007–2013). She has also been an assistant professor at UNaM (1989–2007). She graduated at the University of Misiones in 1992 and completed a PhD degree in Materials Science at the Institute of Technology 'Jorge Sabato,” UNSAM–CNEA, Buenos Aires, Argentina. Later, she made a postdoctoral stays at the following institutions: Faculdade de Engenharía Mecânica, Departamento de Engenharía de Materiais, Universidade Estadual de Campinas, Campinas, São Paulo, Brazil (2001 and 2005–2006); Department of Materials Science and Engineering, University of Florida, Gainesville, Florida, United States (2002–2003); and Faculty of Sciences, National University of Misiones, Posadas, Misiones, Argentina (2003–2004).\r\nShe has a 30-year teaching experience both at the undergraduate and at the graduate level. Her research interests lie in the following areas: Solidification thermal parameters, mechanical properties, and corrosion resistance of different alloys and composite materials; Solidification structures and properties of alloys for hard tissue replacement; Metallic materials selection for the management of biofuels; Synthesis and characterization of nanostructured coatings, membranes, and templates of aluminum and zinc oxides; Fabrication and characterization of nanostructured titanium and iron oxide coatings for water treatment systems based on advanced oxidative and reductive processes; and Natural products as corrosion inhibitors of metallic materials. Her articles are published in well-established international and Argentinean journals.",institutionString:"National University of Misiones",position:null,outsideEditionCount:0,totalCites:0,totalAuthoredChapters:"2",totalChapterViews:"0",totalEditedBooks:"3",institution:{name:"National University of Misiones",institutionURL:null,country:{name:"Argentina"}}}],coeditorOne:null,coeditorTwo:null,coeditorThree:null,coeditorFour:null,coeditorFive:null,topics:[{id:"1226",title:"Optoelectronics",slug:"optics-and-lasers-optoelectronics"}],chapters:[{id:"52983",title:"Inelastic X-Ray Scattering as a Probe of the Transition Between the Hydrodynamic and the Single Particle Regimes in Simple Fluids",slug:"inelastic-x-ray-scattering-as-a-probe-of-the-transition-between-the-hydrodynamic-and-the-single-part",totalDownloads:1159,totalCrossrefCites:0,authors:[{id:"176605",title:"Dr.",name:"Alessandro",surname:"Cunsolo",slug:"alessandro-cunsolo",fullName:"Alessandro Cunsolo"}]},{id:"52069",title:"Grazing Incidence Small Angle X-Ray Scattering as a Tool for In- Situ Time-Resolved Studies",slug:"grazing-incidence-small-angle-x-ray-scattering-as-a-tool-for-in-situ-time-resolved-studies",totalDownloads:1789,totalCrossrefCites:0,authors:[{id:"105908",title:"Ph.D.",name:"Shun",surname:"Yu",slug:"shun-yu",fullName:"Shun Yu"},{id:"186872",title:"Dr.",name:"Gonzalo",surname:"Santoro",slug:"gonzalo-santoro",fullName:"Gonzalo Santoro"}]},{id:"52323",title:"Grazing-Incidence Small Angle X-Ray Scattering in Polymer Thin Films Utilizing Low-Energy X-Rays",slug:"grazing-incidence-small-angle-x-ray-scattering-in-polymer-thin-films-utilizing-low-energy-x-rays",totalDownloads:1804,totalCrossrefCites:3,authors:[{id:"187032",title:"Prof.",name:"Katsuhiro",surname:"Yamamoto",slug:"katsuhiro-yamamoto",fullName:"Katsuhiro Yamamoto"}]},{id:"52772",title:"Microfluidics for Small-Angle X-ray Scattering",slug:"microfluidics-for-small-angle-x-ray-scattering",totalDownloads:1529,totalCrossrefCites:2,authors:[{id:"178312",title:"Dr.",name:"Renwick",surname:"Dobson",slug:"renwick-dobson",fullName:"Renwick Dobson"},{id:"195180",title:"Dr.",name:"F. Grant",surname:"Pearce",slug:"f.-grant-pearce",fullName:"F. Grant Pearce"},{id:"195181",title:"Ms.",name:"Serena A. J.",surname:"Watkin",slug:"serena-a.-j.-watkin",fullName:"Serena A. J. Watkin"},{id:"195182",title:"Dr.",name:"Volker",surname:"Nock",slug:"volker-nock",fullName:"Volker Nock"},{id:"195183",title:"Dr.",name:"Timothy M.",surname:"Ryan",slug:"timothy-m.-ryan",fullName:"Timothy M. Ryan"},{id:"195184",title:"Dr.",name:"Nigel",surname:"Kirby",slug:"nigel-kirby",fullName:"Nigel Kirby"},{id:"195185",title:"Dr.",name:"Antonia G.",surname:"Miller",slug:"antonia-g.-miller",fullName:"Antonia G. Miller"}]},{id:"53834",title:"SAXS Evaluation of Size Distribution for Nanoparticles",slug:"saxs-evaluation-of-size-distribution-for-nanoparticles",totalDownloads:1657,totalCrossrefCites:2,authors:[{id:"186430",title:"Dr.",name:"Shinichi",surname:"Sakurai",slug:"shinichi-sakurai",fullName:"Shinichi Sakurai"}]},{id:"52896",title:"X‐Ray Scattering Techniques Applied in the Development of Drug Delivery Systems",slug:"x-ray-scattering-techniques-applied-in-the-development-of-drug-delivery-systems",totalDownloads:1699,totalCrossrefCites:2,authors:[{id:"186337",title:"Dr.",name:"Margareth Kazuyo Kobayashi",surname:"Dias Franco",slug:"margareth-kazuyo-kobayashi-dias-franco",fullName:"Margareth Kazuyo Kobayashi Dias Franco"},{id:"194491",title:"Prof.",name:"Daniele",surname:"Ribeiro De Araújo",slug:"daniele-ribeiro-de-araujo",fullName:"Daniele Ribeiro De Araújo"},{id:"194492",title:"Prof.",name:"Eneida",surname:"De Paula",slug:"eneida-de-paula",fullName:"Eneida De Paula"},{id:"194493",title:"Dr.",name:"Leide",surname:"Cavalcanti",slug:"leide-cavalcanti",fullName:"Leide Cavalcanti"},{id:"194494",title:"Dr.",name:"Fabiano",surname:"Yokaichiya",slug:"fabiano-yokaichiya",fullName:"Fabiano Yokaichiya"}]},{id:"52813",title:"High‐Resolution X‐Ray Diffraction of III–V Semiconductor Thin Films",slug:"high-resolution-x-ray-diffraction-of-iii-v-semiconductor-thin-films",totalDownloads:1774,totalCrossrefCites:3,authors:[{id:"186374",title:"Prof.",name:"Ahmed",surname:"Rebey",slug:"ahmed-rebey",fullName:"Ahmed Rebey"},{id:"189151",title:"Prof.",name:"Hédi",surname:"Fitouri",slug:"hedi-fitouri",fullName:"Hédi Fitouri"},{id:"189152",title:"Prof.",name:"Mohamed Mourad",surname:"Habchi",slug:"mohamed-mourad-habchi",fullName:"Mohamed Mourad Habchi"}]},{id:"52151",title:"X‐Ray Spectroscopy on Biological Systems",slug:"x-ray-spectroscopy-on-biological-systems",totalDownloads:1252,totalCrossrefCites:0,authors:[{id:"176327",title:"Prof.",name:"Jacinto",surname:"Sa",slug:"jacinto-sa",fullName:"Jacinto Sa"},{id:"176328",title:"Dr.",name:"Jakub",surname:"Szlachetko",slug:"jakub-szlachetko",fullName:"Jakub Szlachetko"},{id:"186702",title:"Dr.",name:"Joanna",surname:"Czapla-Masztafiak",slug:"joanna-czapla-masztafiak",fullName:"Joanna Czapla-Masztafiak"}]},{id:"52125",title:"X-Ray Diffraction in Biology: How Can We See DNA and Proteins in Three Dimensions?",slug:"x-ray-diffraction-in-biology-how-can-we-see-dna-and-proteins-in-three-dimensions-",totalDownloads:2495,totalCrossrefCites:2,authors:[{id:"79417",title:"Prof.",name:"Claudine",surname:"Mayer",slug:"claudine-mayer",fullName:"Claudine Mayer"}]}],productType:{id:"1",title:"Edited Volume",chapterContentType:"chapter",authoredCaption:"Edited by"},personalPublishingAssistant:{id:"177731",firstName:"Dajana",lastName:"Pemac",middleName:null,title:"Ms.",imageUrl:"https://mts.intechopen.com/storage/users/177731/images/4726_n.jpg",email:"dajana@intechopen.com",biography:"As a Commissioning Editor at IntechOpen, I work closely with our collaborators in the selection of book topics for the yearly publishing plan and in preparing new book catalogues for each season. This requires extensive analysis of developing trends in scientific research in order to offer our readers relevant content. Creating the book catalogue is also based on keeping track of the most read, downloaded and highly cited chapters and books and relaunching similar topics. I am also responsible for consulting with our Scientific Advisors on which book topics to add to our catalogue and sending possible book proposal topics to them for evaluation. Once the catalogue is complete, I contact leading researchers in their respective fields and ask them to become possible Academic Editors for each book project. Once an editor is appointed, I prepare all necessary information required for them to begin their work, as well as guide them through the editorship process. I also assist editors in inviting suitable authors to contribute to a specific book project and each year, I identify and invite exceptional editors to join IntechOpen as Scientific Advisors. I am responsible for developing and maintaining strong relationships with all collaborators to ensure an effective and efficient publishing process and support other departments in developing and maintaining such relationships."}},relatedBooks:[{type:"book",id:"6188",title:"Solidification",subtitle:null,isOpenForSubmission:!1,hash:"0405c42586170a1def7a4b011c5f2b60",slug:"solidification",bookSignature:"Alicia Esther Ares",coverURL:"https://cdn.intechopen.com/books/images_new/6188.jpg",editedByType:"Edited by",editors:[{id:"91095",title:"Dr.",name:"Alicia Esther",surname:"Ares",slug:"alicia-esther-ares",fullName:"Alicia Esther Ares"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"7213",title:"Shape-Memory Materials",subtitle:null,isOpenForSubmission:!1,hash:"4e3e756cd4f8a8617dffdc36f8dce7c7",slug:"shape-memory-materials",bookSignature:"Alicia Esther Ares",coverURL:"https://cdn.intechopen.com/books/images_new/7213.jpg",editedByType:"Edited by",editors:[{id:"91095",title:"Dr.",name:"Alicia Esther",surname:"Ares",slug:"alicia-esther-ares",fullName:"Alicia Esther Ares"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"1505",title:"Scanning Electron Microscopy",subtitle:null,isOpenForSubmission:!1,hash:"3305b759b0efc22e8ed16e9048818817",slug:"scanning-electron-microscopy",bookSignature:"Viacheslav Kazmiruk",coverURL:"https://cdn.intechopen.com/books/images_new/1505.jpg",editedByType:"Edited by",editors:[{id:"100815",title:"Dr.",name:"Viacheslav",surname:"Kazmiruk",slug:"viacheslav-kazmiruk",fullName:"Viacheslav Kazmiruk"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"2397",title:"Advanced Aspects of Spectroscopy",subtitle:null,isOpenForSubmission:!1,hash:"bcc83fcd6b4bbfdaa677b37d94bdbdb6",slug:"advanced-aspects-of-spectroscopy",bookSignature:"Muhammad Akhyar Farrukh",coverURL:"https://cdn.intechopen.com/books/images_new/2397.jpg",editedByType:"Edited by",editors:[{id:"63182",title:"Dr.",name:"Muhammad Akhyar",surname:"Farrukh",slug:"muhammad-akhyar-farrukh",fullName:"Muhammad Akhyar Farrukh"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10",title:"Coherence and Ultrashort Pulse Laser Emission",subtitle:null,isOpenForSubmission:!1,hash:"e1bd25a76712d1cb8792820acf2ff001",slug:"coherence-and-ultrashort-pulse-laser-emission",bookSignature:"F. J. Duarte",coverURL:"https://cdn.intechopen.com/books/images_new/10.jpg",editedByType:"Edited by",editors:[{id:"13752",title:"Dr.",name:"F. J.",surname:"Duarte",slug:"f.-j.-duarte",fullName:"F. J. Duarte"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"2018",title:"Recent Progress in Optical Fiber Research",subtitle:null,isOpenForSubmission:!1,hash:"c9f4716122beee57c42cff13c357a2cb",slug:"recent-progress-in-optical-fiber-research",bookSignature:"Moh. Yasin, Sulaiman W. Harun and Hamzah Arof",coverURL:"https://cdn.intechopen.com/books/images_new/2018.jpg",editedByType:"Edited by",editors:[{id:"294347",title:"Dr.",name:"Moh",surname:"Yasin",slug:"moh-yasin",fullName:"Moh Yasin"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"3166",title:"Optoelectronics",subtitle:"Advanced Materials and Devices",isOpenForSubmission:!1,hash:"b7263978cf34e637a4b9592eb4975f3e",slug:"optoelectronics-advanced-materials-and-devices",bookSignature:"Sergei L. Pyshkin and John M. Ballato",coverURL:"https://cdn.intechopen.com/books/images_new/3166.jpg",editedByType:"Edited by",editors:[{id:"43016",title:"Prof.",name:"Sergei",surname:"Pyshkin",slug:"sergei-pyshkin",fullName:"Sergei Pyshkin"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"2245",title:"Plasmonics",subtitle:"Principles and Applications",isOpenForSubmission:!1,hash:"e74f79681a8c87bb027f48ad33a3e068",slug:"plasmonics-principles-and-applications",bookSignature:"Ki Young Kim",coverURL:"https://cdn.intechopen.com/books/images_new/2245.jpg",editedByType:"Edited by",editors:[{id:"12009",title:"Dr.",name:"Ki Young",surname:"Kim",slug:"ki-young-kim",fullName:"Ki Young Kim"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"3710",title:"Advances in Solid State Lasers",subtitle:"Development and Applications",isOpenForSubmission:!1,hash:null,slug:"advances-in-solid-state-lasers-development-and-applications",bookSignature:"Mikhail Grishin",coverURL:"https://cdn.intechopen.com/books/images_new/3710.jpg",editedByType:"Edited by",editors:[{id:"4862",title:"Mr.",name:"Mikhail",surname:"Grishin",slug:"mikhail-grishin",fullName:"Mikhail Grishin"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"256",title:"Optoelectronics",subtitle:"Materials and Techniques",isOpenForSubmission:!1,hash:"2c0d6a2a51ac114edd58f2c667297503",slug:"optoelectronics-materials-and-techniques",bookSignature:"Padmanabhan Predeep",coverURL:"https://cdn.intechopen.com/books/images_new/256.jpg",editedByType:"Edited by",editors:[{id:"36735",title:"Prof.",name:"P.",surname:"Predeep",slug:"p.-predeep",fullName:"P. Predeep"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}}]},chapter:{item:{type:"chapter",id:"8687",title:"Nanosphere Lithography for Nitride Semiconductors",doi:"10.5772/8196",slug:"nanosphere-lithography-for-nitride-semiconductors",body:'\n\t\tNanolithography has been widely studied in recent years, considering its wide-ranging applications in electronics and photonics. In the ideal case, lithography using short-wavelength electromagnetic wave through a pre-defined mask is probably the most desirable solution. However, as technology progresses further, traditional photolithography is becoming exceedingly complex and incurring higher cost associated with light source as the wavelength of light goes shorter. Therefore, other nanolithography methods become strong competitors excelling with lower equipment cost and simpler fabrication procedures. In particular, nanosphere lithography as a self-assembly bottom-up approach for producing periodic array of spherical particles is simple and inexpensive as compared to other lithographic methods.
\n\t\t\tOriginally developed by Deckman et al. for defining a large area lithographic mask (Deckman & Dunsmuir, 1982), nanosphere lithography was further optimized by Hultenn et al. for applications involving surface-enhanced Raman spectroscopy (Haynes & Van Duyne, 2003; Hulteen & Vanduyne, 1995). Nanospheres that are used in lithography are commercially available in solution form, and through a simple coating procedure with optimized conditions, ordered hexagonal array of nanospheres can be naturally assembled as the nano-particles achieve equilibrium in an initially disordered system, i.e., a solution of nanospheres. Although only hexagonal array can be formed by this lithographic technique, the hexagonal pattern is useful for a range of applications, for instance, in nanophotonics where ordered hexagonal patterns can be used for the fabrication of photonic crystal (Han et al., 2005; Su et al., 2008) and also in plasmonics (Jensen et al., 2000; Malinsky et al., 2001; Stewart et al., 2006). With rivals like nanoimprint lithography (Byeon et al., 2007; Kim et al., 2007) and electron beam (e-beam) lithography (Berrier et al., 2004; David et al., 2006; Noda et al., 2007), the low cost and high through-put (albeit being less precise) nature of nanosphere lithography is especially suited for photonic applications.
\n\t\t\tGallium nitride (GaN) semiconductors and devices thus serve well as a platform for nanosphere lithography. In recent years, GaN has emerged as the most successful semiconductor material in optoelectronics, delivering a range of commercialized products which has since revolutionized our lives, including violet laser diodes for ultra-high capacity optical storage and white light LEDs for solid-state lighting (Humphreys, 2008; Schubert & Kim, 2005). While GaN technology is becoming mature, there is still plenty of room for further development. For instance, one major issue with GaN devices is the limited efficiency of light extraction. To tackle this problem, texturing of the surface in a regular manner has been adopted at the micrometer and nanometer scales (David et al., 2008; Han et al., 2006; Ng et al., 2008; Noda & Fujita, 2009).
\n\t\t\tTherefore in this chapter, we will demonstrate the potential applications of nanosphere lithography including photonic crystals and surface plasmons. Several topics will be outlined in this chapter, including the various techniques of coating nanosphere arrays, together with a detailed analysis of their structural, morphological and optical characteristics. The possibilities of applying nanosphere lithography into practical GaN devices and beyond will be discussed.
\n\t\tThere have been intense efforts targeted at the formation of nanosphere into regular patterns. Although lots of variants of the process have since been developed, including the vertical deposition method (Gil et al., 2007; Jiang et al., 1999; Ye et al., 2001; Zhou & Zhao, 2004), spin coating (Mihi et al., 2006; Ogi et al., 2007) and even merely dipping (Choi et al., 2009; Im et al., 2003), all these fundamentally rely on manipulation of the forces applied amongst nanospheres. Thus, most of these methods require precise control of ambient conditions such as temperature and pressure, together with the viscosity and evaporation rate of the fluid. These conditions could be varied in order to control the number of layers and degree of order of the assembled pattern, as well as the extent of coverage across the sample. It was found that the vertical deposition method yields a better quality of ordered nanosphere array (Wong et al., 2003) compared with others, therefore in this chapter we will concentrate on its discussion.
\n\t\t\tKnown for its good orderliness and simplicity, the vertical deposition method has been adopted in many research studies employing nanosphere lithography (Chiappini et al., 2007; Kuai et al., 2004). A common and general setup for vertical deposition consist of an apparatus for maintaining a constant ambient temperature such as a dry-bath, or a basic oven, that is capable of providing a stable stream of air or gas, and a vial for holding the nanosphere in solution form with the sample to be coated lying upon the sidewall of the vial. A schematic diagram of a typical setup is illustrated in Figure 1. The solution typically consist of nanospheres suspended, and a water-alcohol mixture that controls the evaporation rate (Shimmin et al., 2006). Surfactants are sometimes used together to reduce the viscosity. As the nanosphere solution dries up, the nanosphere will be self-assembled into hexagonal close-packed pattern, adhering to the sample. Unfortunately, cracks often exist in the resultant nanosphere coating, regardless of the degree of order. The reason for the persistent formation of cracks is identified to be caused by the movement of “water line” as the water level changes during evaporation of solution. Also, since the concentration increases as the solution dries up, the thickness of the nanosphere coating, or the number of nanosphere layers, will usually be thicker towards the lower end of the sample than that at the upper end.
\n\t\t\t\tThe problem of uneven layer distribution along the sample can be resolved by a modified vertical deposition method, namely the flow-controlled vertical deposition method. Instead of waiting for the solution to be evaporated, this modified method proactively scans the
\n\t\t\t\tSchematic diagram of the setup for vertical deposition.
water level along the entire sample by adjusting the relative position between sample and vial, while keeping the concentration changes to a minimum. This allows a much shorter processing time which also minimize possible sedimentation of nanospheres that will aggravate the unevenness during the deposition process. Thus, this method is ideal for maintaining a more even thickness of coating across the sample. For addressing the cracking problem, there have been attempts to use a chemical method in conjunction with vertical deposition method. L. Wang et al. have reported crack-free colloidal crystal by means of hydrolysis of a silica precursor during vertical deposition (Wang & Zhao, 2007). Silica species formed acts like a glue among nanospheres to avoid crack formation during evaporation. Other crack-free approach includes self-assembly at air/water/air interface which will form a free standing nanosphere films, although this is not an approach suitable for lithography.
\n\t\t\tAfter deposition, a hexagonal close-packed nanosphere pattern can be observed under scanning electron microscope (SEM), as shown in Figure 2, if the coating is successful. Unless using very specific approaches to eliminate cracks as suggested in the last section, different kinds of defects, including but not limited to cracks and point defects, will be formed. As mentioned in the previous section, cracks formed through vertical deposition are most likely due to the movement of “water line” across the sample. However, there are also many other causes that could lead to a defect. For example, the vast amount of nanosphere that a solution contains cannot possibly be of identical dimensions. A single apparently larger or smaller nanosphere amongst many in an array is enough to give rise to point defects. Apart from dimensional non-uniformity, irregular nanosphere may also exist, that is, some of the nanosphere may not be perfectly spherical. Point defects will also be resulted from the protruding portions of irregular nanospheres. Due to the limitations in nanosphere synthesis and deposition, defects among nanosphere arrays are inevitable. Nevertheless, with a low defect density, nanosphere lithography is adequate for many applications unless extremely high accuracy is required.
\n\t\t\t\tSEM image of a monolayer of nanospheres, with occasional defects caused by non-uniformity in dimension of nanospheres.
One distinct advantage of nanosphere lithography is that nanospheres that self-assemble into a hexagonal close-packed pattern can produce features of nano- or even sub-nano scales, provided that the required dimensions of nanosphere are available. The voids between nanospheres are at least one order of magnitude smaller than the diameter of nanosphere itself; that is, for a 10 nm-diameter nanosphere, the void can easily be smaller than 1 nm.
\n\t\t\t\tTransmission spectrum of hexagonal close-packed 192-nm-diameter nanosphere multi-layer array coated on a GaN wafer measured at 2 different angles with reference to an as-grown GaN sample. (with permission for reproduction from Institute of Physics Publishing).
The optical properties of a nanosphere coating are pretty obvious by observing it at different angles under broadband illumination – different colors of light are reflected at different angles, acting like a grating. In fact, the nanosphere coating is a 2-dimensional photonic crystal itself. In the frequency domain there is in fact a gap in the transmission spectrum, an example of which is illustrated in Figure 3. The existence of the gap indicates that certain wavelength of light is being reflected or scattered away. The spectral position of the gap varies according to the material’s refractive index, the size of nanosphere, orientation of coating and the number of layers. Typically the gap exists at a position at 2-3 times the diameter of nanosphere spectrally.
\n\t\t\tBesides using the nanospheres themselves directly, a patterned nanosphere layer can act as a good medium for further processing. Amongst different kinds of materials, silica-made nanosphere is especially suitable for etching process, since the good etch resistivity of silica renders the patterned monolayer of nanosphere a naturally good hard mask.
\n\t\t\t\tOne of the most popular ‘secondary’ nanostructures derived from nanosphere lithography is the nanopillar array (Cheung et al., 2006; Li et al., 2007; Ng et al., 2008). After coating a monolayer of nanospheres onto a sample, the circular hexagonal close-packed pattern can be easily transferred to the sample by a subsequent dry etch. Figure 4 shows an example of the resultant nanopillar structure. An array of nanopillar is an effective approach to improve light extraction when fabricated on a GaN LED. Due to the high refractive index of GaN, LEDs without any light extraction strategy adopted will suffer from low light extraction efficiency, as a large fraction of emitted light is trapped within the GaN epilayer, propagating as guiding modes and subsequently re-absorbed. A nanopillar array integrated into the surface of an LEDs will have a surface-texturing effect. In one way, the nanopillars increase the total surface area of LED, thus increasing the probability for light to escape, and thereby decreasing photon re-absorption in GaN. At the same time, they reduce the effective refractive index such that total internal reflection is suppressed to a certain extent.
\n\t\t\t\tSEM Image of a nanopillar array with diameter of 500 nm fabricated on GaN wafer.
In the research studies by W. N. Ng et al., a monolayer of silica nanospheres of 500 nm diameter, coated by spin coating method, served as a lithographic mask. Inductively coupled plasma (ICP) etching using a gas chemistry of Cl2 and BCl3 at flow rates of 20 sccm and 10 sccm respectively was carried out for a duration of 120 s. The silica nanosphere residual was removed by sonification to expose the nanopillar array beneath. The resulting nanopillar sample contributed to a two-fold enhancement of photoluminescence intensity in the normal direction. In their later studies, the authors successfully demonstrated light extraction enhancement from an electroluminescent LED with an integrated nano-pillar array. Significant improvement to the optical output was achieved compared to an unpatterned LED, as shown in the plot of L-I characteristics in Figure 5.
\n\t\t\t\t\n\t\t\t\t\t\t\tL-I characteristics of a nanopillar photonic crystal LED as compared with an un-patterned LED. (with permission for reproduction from Institute of Physics Publishing).
To further extend the applications of nanospheres to GaN materials, an isotropic etching model with a monolayer of nanosphere has been reported by W. Y. Fu et al. Hemiellipsoid structures were been fabricated, as illustrated in Figure 6, using nanosphere coating mask with a modified recipe from the study in the previous paragraph, using a gas chemistry comprising 12 sccm of Cl2 and 9 sccm for CHF3. Compared to the etch recipe adopted by W. N. Ng et al., this modified recipe makes use of CHF3 that is particularly suited for etching of silica; as a result the dimensions of silica nanosphere in the array will slowly shrink as etching progresses. The etch rates of GaN and SiO2 can be controlled independently, allowing more freedom in the control of desired shape of the resultant arrays. This is useful for the design of different photonic dispersion characteristics that can be exhibited by photonic crystal structures. For example, a photonic bandgap based on an array of hemiellipsoids can be designed for light extraction purposes. From the angular PL emission plot as shown in Figure 7 (Fu et al., 2009), an obvious overall enhancement to the PL intensity is observed. By comparing the integrated PL intensity between an as-grown with the hemiellipsoid array an enhancement factor of over 3 times can be deduced.
\n\t\t\t\tSEM image of a hemiellipsoid array fabricated by nanosphere lithography. (with permission for reproduction from American Institute of Physics).
Angular PL emission pattern from an LED fabricated with a self-assembled hemi-ellipsoid on top for superior light extraction. (with permission for reproduction from American Institute of Physics).
The white-light LED has become a widely available commercial product with numerous applications including solid state lighting, liquid crystal display (LCD) backlighting and signaling etc. There are two common approaches to achieve white light emission from an LED, either by spectral down conversion using YAG phosphor-coated blue LEDs (Pan et al., 2004; Schubert & Kim, 2005) or the mixing of discrete LEDs with the primary colors red, green and blue (Hui et al., 2009; Humphreys, 2008; Muthu et al., 2002; Steigerwald et al., 2002). Due to the technical difficulties of color mixing with three discrete LEDs without bulky optics, phosphor-coated white LED tends to be more widely adopted despite the large Stokes shift losses. Under this circumstance, fluorescent nanospheres coated white LED has been suggested as an alternative with some advantage over phosphor-coated white LED. A schematic diagram of such design of LED device is shown in Figure 8.
\n\t\t\t\tSchematic diagram of a fluorescent nanosphere coated LED device. (with permission for reproduction from Institute of Physics Publishing).
Nanospheres with fluorescent dyes incorporated internally have been demonstrated to act as an alternative to the conventional approach of coating phosphor on blue LED for white light emission. Commercially available in dimensions ranging from tens of nanometers to micrometers, polystyrene fluorescent-dyed nanospheres have been widely used in the chemical and biological areas (Bhalgat et al., 1998; Matsuya et al., 2003; Seo & Lee, 2004). The swelling and unswelling of the polymeric spheres during preparation ensures that the pores are able to entrap the fluorescent dyes physically, resulting in an enhanced dye photostability, with predicted lifetimes exceeding 36 months. Simply by adjusting the ratio between excited light emission from green- and red- colored nanospheres with respect to the blue light emission intensity from InGaN LED, white light emission can be achieved and the
\n\t\t\t\ta) PL spectrum of the green microspheres, (b) optical image of fluorescence emission from green microspheres (with blue and red light filtered off). (c) PL spectrum of the mixture of green and red microspheres, and (d) optical image of fluorescence emission from green, yellow and red microspheres (with blue light filtered off). (with permission for reproduction from Institute of Physics Publishing).
color temperature can be easily adjusted, although the color conversion is still subjected to Stokes shift loss. However, the hexagonal close-packed patterned and spherical-shaped nature of nanospheres contributes to imrpvoed mixing of color both spatially and angularly, with a slightly better advantage on excitation of emission of other colors compared with conventional phosphors.
\n\t\t\t\t\n\t\t\t\t\tFigure 9 shows PL spectra and optical images of fluorescent nanosphere on GaN LEDs with blue emission as in the studies by K.N. Hui et al. (Hui et al., 2008). With different colors of fluorescent nanospheres, including green, yellow and red, emission spectrum of LEDs can be tuned to different shades of white light.
\n\t\t\tInduced by electromagnetic wave, when collective oscillations of free electrons, i.e., plasmons, are confined to surfaces and couples strongly with light, they are known as surface plasmon. This usually occurs at the interface between a metal (of negative dielectric constant) and a dielectric material (of positive dielectric constant). These surface plasmons are conducive to an important phenomenon, the localized surface plasmon resonance, which occurs when metallic nanoparticle is excited by light when in contact with dielectric material. This phenomenon is exhibited by a strong peak in the extinction spectrum. With GaN devices, localized surface plasmon resonance has great potential for improving light extraction efficiency of LEDs since it can significantly enhance the electric field strength near the surface of nanoparticle (Ross & Lee, 2008; Sundaramurthy et al., 2005).
\n\t\t\t\tTypically, when light emitted from multi-quantum wells of LED interacts with a metallic layer, a surface plasmon mode will be formed. This surface plasmon mode increases the density of states and spontaneous emission rate (Gianordoli et al., 2000; Hecker et al., 1999; Vuckovic et al., 2000), and thus helps to improve coupling from the multi-quantum wells (Neogi et al., 2002). There have been reports that successfully demonstrated enhancement in InGaN quantum well emission by means of enhancement of Purcell factor with surface plasmons making use of a metal film on top of an LED (Okamoto et al., 2004). However, light coupled to surface plasmon modes is trapped at the metal/dielectric interface despite the enhancement of internal quantum efficiency. To deal with this problem, localized surface plasmon resonance had been investigated, whereby a periodic metallic array, or plasmonic crystal, is adopted instead of a flat metal film to assist with extracting light from the surface plasmon polaritons (Cesario et al., 2007).
\n\t\t\t\tSince the resonance wavelength depends strongly on the size and shape of metallic nanoparticles, and that resonance at visible range often requires a feature size of less than 100 nm, nanosphere lithography is an effective method for the patterning of metallic nanoparticles, particularly because the requirement on orderliness is lower. By controlling the dimensions of the nanospheres, the dimensions of the resultant metallic nanostructures can be adjusted, thereby affecting the spectral position of resonance. With monolayer of nanosphere serving as a mask, deposition of desired metal, typically Ag, Al or Au, can be carried out to form an inverted metallic circular array (Jensen, Malinsky, Haynes & Van Duyne, 2000; Malinsky, Kelly, Schatz & Van Duyne, 2001), providing the metal can penetrate the void regions of the nanosphere array. Figure 10 shows an SEM image illustrating the resultant metallic nanoparticles after removing the nanosphere residual. According to the PL spectra of InGaN/GaN MQWs coated with an array of metallic nanoparticles using this nanosphere lithography method as reported by G.Y. Mak et al., it was demonstrated that the metallic nanoparticles are indeed able to improve light extraction without changes of emission characteristics as demonstrated by Figure 11 (Mak et al., 2009).
\n\t\t\t\tSEM image showing Au nanoparticles formed by deposition through a nanosphere mask. (with permission for reproduction from WILEY-VCH Verlag GmbH & Co.).
PL spectra of LED with deposited nanoparticles of Au, Al and Ag. (with permission for reproduction from WILEY-VCH Verlag GmbH & Co.).
An inexpensive and simple approach as compared to other nanolithography methods, nanosphere lithography is able to play an important role in defining periodic-arrayed lithographic mask for photonic applications. Although more optimization works needs to be done on thickness control, the availability of crack-free deposition method made it feasible for mass production with high yield. A few photonic applications have been addressed in this chapter. Fluorescent nanospheres provide an alternative way to produce white LED for solid state lighting with improved color mixing. Nanopillars derived from a monolayer of hexagonal close-packed nanospheres helps to texturize the surface of an LED in order to improve light extraction efficiency. Last but not least, localized surface plasmon resonance not only can improve light extraction, but also has potential sub-wavelength applications including optical energy transport and near field scanning optical microscopy.
\n\t\tSince J.C. Skou’s discovery in 1957 [1], the energy-transducing Na/K-ATPase has been extensively studied for its ion-pumping function and, later on, its signaling function. While the signaling function was first demonstrated in cardiac myocyte primary culture, the phenomenon has been confirmed in different cell types and animal models. The roles of Na/K-ATPase signaling in renal proximal tubule (RPT) sodium handling and oxidative modification of the Na/K-ATPase α1 subunit in Na/K-ATPase signaling were explored both in vitro and in vivo. The findings may explain certain mechanism(s) related to the Na/K-ATPase signaling-ROS amplification loop and subsequent regulation of salt sensitivity.
The RPT mediates over 60% of the filtered Na+ reabsorption [2, 3]. There are two Na+ reabsorption pathways in RPTs. One is through the transcellular pathway, mainly through the apical Na+ entry mainly via NHE3 (and other apical Na+-coupled transporters like Na+-glucose cotransporters 1 and 2, to a lesser extent) and basolateral Na+ extrusion through the Na/K-ATPase [2, 3]. A coordinated and coupled regulation of sodium/hydrogen exchanger isoform 3 (NHE3, SLC9A3) and the Na/K-ATPase is critical in maintaining intracellular Na+ homeostasis and extracellular fluid volume. The other one is the paracellular Na+ reabsorption pathway through a tight junction (TJ), which depends on the transepithelial electrochemical force and tight junction permeability. Claudin-2 forms paracellular channels with other protein that are selective for small cations like Na+ and K+, small anion like Cl−, as well as water [4, 5, 6]. Interestingly, the Na/K-ATPase signaling function is able to regulate the apical/basolateral polarity of the Na/K-ATPase as well as the tight junctions’ components like claudins in distal tubule MDCK cells [7, 8].
The Na/K-ATPase belongs to the P-type ATPase family and consists of two non-covalently linked α- and β-subunits. Several α- and β-isoforms, expressed in a tissue-specific manner, have been identified and functionally characterized [9, 10, 11, 12]. In RPTs, the γ-subunit (γa and γb, also known as FXYD2, one of the small type I single-span membrane FXYD protein families) also interacts with the α1 subunit to regulate the Na/K-ATPase activity [13, 14, 15]. There is also a fifth member of the β-subunit family, named βm coded by an ATP1B4 gene, that is predominantly expressed in skeletal muscle. Interestingly, the βm is not associated with the α1 subunit like other β-subunits, but accumulated in the nuclear membrane and associated with transcriptional coregulator Ski-interacting protein, which led to the regulation of TGF-β-responsive reporter Smad7 [16]. The α1 subunit contains multiple structural motifs that interact with soluble, membrane, and structural proteins. Binding to these proteins not only regulates the ion-pumping function of the enzyme, but it also conveys signal-transducing functions to the Na/K-ATPase [17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32]. NHE3 belongs to a family of electroneutral mammalian Na+/H+ exchangers [33, 34, 35]. In RPT, NHE3 resides in the apical membrane of S1 and S2 segments, mediating transcellular reabsorption of Na+ and HCO3− and fluid reabsorption [36, 37]. In the kidney, more than 85% of the filtered NaHCO3 is reabsorbed in the RPTs, and NHE3 contributes up to ∼60% of the total reabsorption of this segment [38]. RPT NHE3 secrets the largest portion of net H+ to the lumen and interacts with HCO3− to form H2O and CO2 which can freely translocate into RPT cytosol. In cytosol, H2O and CO2 form H+ and HCO3− through carbonic anhydrase catalyzation. Finally, the newly formed cytosolic H+ will be secreted to the lumen, and HCO3− will be moved to the blood through the basolateral-resided Na+/HCO3− cotransporter (NBCe1-A, SLC4A4). This cycling carbonic anhydrase-controlled CO2-HCO3− system links the NHE3-mediated H+ secretion to HCO3− reabsorption, to achieve an acid-base equilibrium [39, 40]. Moreover, vesicular NHE3 activity also regulates endosomal pH and consequently affects receptor-mediated endocytosis as well as endocytic vesicle fusion [41, 42]. Under normal conditions, the Na/K-ATPase resides at the basolateral surface, providing the driving force for the vectorial transport of Na+ from the tubular lumen to the vascular compartment, while the NHE3 resides at the apical surface providing a rate-limiting Na+ entry into cells.
CTS (also known as endogenous digitalis-like substances) are specific ligands and inhibitors of the Na/K-ATPase, which include plant-derived glycosides such as digoxin and ouabain and vertebrate-derived aglycones such as bufalin and marinobufagenin (MBG). Although the production and secretion of endogenous CTS are not completely understood, both ouabain and MBG have been identified as endogenous steroid hormones whose production and secretion can be regulated by multiple stimuli including angiotensin II and adrenocorticotropic hormone (ACTH) [30, 43, 44, 45, 46, 47, 48]. Endogenous CTS are present in measurable amounts under normal physiological conditions and are markedly increased under a number of pathological conditions such as sodium imbalance, chronic renal failure, hyperaldosteronism, hypertension, congestive heart failure, acute plasma volume expansion, and preeclampsia [46, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59].
Even though digitalis-like drugs have been used to treat heart failure patients for over 200 years, studies have also revealed many extra-cardiac actions of these compounds, such as in response to salt loading in both animal models and human hypertensive patients [29, 57, 60, 61, 62]. In addition, low doses of CTS not only induced hypertension in rats but also caused a significant cardiovascular remodeling independent of their effect on blood pressure (BP) [63, 64, 65, 66].
Bricker was the first to propose the existence of “the third factor” (named after the glomerular filtration rate as the first factor and the aldosterone as the second factor), and Dahl proposed the existence of a hormonal natriuretic factor that might cause a sustained increase in BP in salt-sensitive hypertensive rats [67, 68]. Subsequently, Bricker, de Wardener, and others proposed that this hormonal natriuretic factor inhibits the Na/K-ATPase, and Blaustein described how an increase in endogenous Na/K-ATPase inhibitors might cause a vascular contractility change and then a rise in BP [67, 69, 70, 71, 72]. In 1980, de Wardener and MacGregor summarized the state of research at the time and proposed an insightful scheme explaining how the Na/K-ATPase inhibitor works as a natriuretic hormone [73]. In essence, it was contended that the Na/K-ATPase inhibitor (endogenous CTS) will rise in response to either a defect in renal Na+ excretion or high salt intake. This increase, while returning Na+ balance toward normal by increasing renal Na+ excretion, also causes hypertension through acting on the vascular Na/K-ATPase. With the advances in the field over the decades, much has been learned. The first unequivocal demonstration of ouabain-like substance in the human plasma was reported decades ago [46]. Blaustein and Hamlyn’s laboratory has demonstrated how increases in endogenous CTS change vascular contractility and its effect on BP [74]. However, the pathophysiological significance of endogenous CTS (e.g., as a natriuretic hormone) has been a subject of debate since it was first proposed until Lingrel’s laboratory reported their gene replacement in vivo studies, which unequivocally demonstrated that endogenous CTS play an important role in the regulation of renal Na+ excretion and BP through the Na/K-ATPase [75, 76, 77]. Specifically, Lingrel’s group generated several lines of mice in which the mouse endogenous ouabain-insensitive α1 subunit is replaced by a mutant that alters the ouabain sensitivity of the Na/K-ATPase. For example, they generated a line of “humanized” α1S/S mice where the endogenous ouabain-insensitive α1 is replaced by an ouabain-sensitive (human like) α1-mutant and used these mice to explore the role of endogenous CTS in the regulation of renal function and BP. Should endogenous CTS be important for these regulations, an increased CTS sensitivity in α1S/S mice would make these mice more sensitive to conditions that raise circulating CTS. Indeed, when ACTH was administered to raise endogenous CTS, it caused much severe hypertension in α1S/S mice than their control littermates. Moreover, expression of the ouabain-sensitive α1-mutant significantly increased renal Na+ excretion, confirming the natriuretic function of endogenous CTS as proposed by the pioneers of the field [67, 68, 70, 71, 72, 73]. More evidences indicate that increases in endogenous CTS regulate both renal Na+ excretion and BP through the Na/K-ATPase [74, 75, 76, 78, 79].
Ouabain-stimulated protein-protein interaction and subsequent Na/K-ATPase signaling function were first demonstrated in rat neonatal myocytes, which were further confirmed and developed in porcine LLC-PK1 cells (an immobilized RPT cell line) and other cell types. CTS-stimulated Na/K-ATPase signaling has been reviewed everywhere [22, 31, 32, 47, 80, 81, 82, 83].
In LLC-PK1 cells, ouabain-stimulated Na/K-ATPase signaling increases ROS generation. Other than ouabain, exogenous H2O2 and glucose oxidase-induced H2O2 also activate Na/K-ATPase signaling pathways including phosphorylation of c-Src and ERK1/2, as well as protein carbonylation modification of Na/K-ATPase (direct carbonylation of two amino acid residues, Pro222 and Thr224, in the actuator domain of the α1 subunit) [84, 85, 86, 87]. Pretreatment with antioxidant N-acetyl-
Endocytosis is involved in many important cellular functions. Ouabain-induced endocytosis of the Na/K-ATPase was first observed by the laboratories of Cook and Lamb, which demonstrated that [3H]-ouabain (bound to the Na/K-ATPase) was translocated from the plasmalemmal membrane surface to intracellular compartments (lysosomes) in HeLa cells, chick embryo heart cells, and Girardi heart cells [88, 89, 90, 91, 92].
One of the best-studied paradigms of hormonal natriuresis is the renal dopamine system [93, 94, 95, 96]. Renal dopamine release increases in response to high salt intake or volume expansion. The activation of D1-like dopamine receptors stimulates PLC-γ and cAMP-PKA pathways and increases intracellular Ca2+. These pathways work in concert and produce the coordinated downregulation of NHE3 and the Na/K-ATPase and consequently natriuresis [93, 94, 95, 97, 98]. While Aperia’s laboratory first revealed the pathways involved in dopamine-induced regulation of Na/K-ATPase activity [99, 100, 101] that is related to endocytosis of the Na/K-ATPase [102], Moe and others have mapped the pathways of NHE3 phosphorylation and trafficking [103, 104, 105]. In RPT, dopamine alters sodium handling by inducing Na/K-ATPase and NHE3 endocytosis. In RPT primary culture of Sprague-Dawley rats, dopamine-induced clathrin-dependent endocytosis of the rat Na/K-ATPase α1 subunit is triggered by activation of PI3K and subsequently phosphorylation of Ser-18 of rat α1 subunit [24, 106, 107, 108, 109]. The activation of PI3K also stimulated phosphorylation of the Tyr537 of the α1 subunit that facilitates its binding with adaptor protein-2 (AP-2), providing the inclusion of the Na/K-ATPase into clathrin-coated pits (CCP) [24, 108]. However, Ser-18 is found only in rat α1 subunit and is not present in pig and dog α1 subunits [110]. Depending on the type of renal tubular epithelium, dopamine-induced endocytosis of the Na/K-ATPase may be mediated through PKC- or PKA-dependent mechanisms [108, 111, 112, 113]. Parathyroid hormone (PTH)-induced inhibition and endocytosis of the Na/K-ATPase were also demonstrated in opossum kidney (OK) cells, which is clathrin-mediated and requires ERK-dependent phosphorylation of Ser-11 of the α1 subunit [114].
In LLC-PK1 cells, at the doses used, ouabain has no discernable effects on cell morphology, viability, transepithelial electrical resistance, tight junction integrity, and intracellular [Na+] [115]. However, ouabain causes decreases in membrane-bound Na/K-ATPase without significantly affecting intracellular [Na+] [116, 117]. As a specific ligand, nontoxic ouabain (~1/10th–1/20th of acute IC50) caused a dose- and time-dependent decrease in Na/K-ATPase ion-pumping activity (ouabain-sensitive 86Rb uptake), which is attributed to ouabain-stimulated clathrin-dependent endocytosis of the α1/β1-subunits, demonstrated by a decrease in cell surface biotinylated α1 subunit and a concomitant accumulation of α1/β1-subunit and c-Src in early endosome (EE)/late endosome (LE) fractions. This leads to a net decrease in abundance of Na/K-ATPase in the plasma membrane and total ion-pumping activity of Na/K-ATPase and transcellular 22Na+ transport. This phenomenon was only observed when ouabain was applied to the basolateral, but not apical, aspect of Costar Transwell with membrane support for 12 hours, which indicates that this ouabain-induced endocytosis of the Na/K-ATPase is initiated by activating the receptor Na/K-ATPase/Src complex involving phosphorylation of c-Src and PI3K. The endocytosed [3H]-ouabain/Na/K-ATPase/c-Src/EGFR complex can be detected in both EE and LE fractions.
To understand the molecular mechanism(s) involved in this process, studies were performed with LLC-PK1 as well as SYF and SYF + c-Src cells. SYF cells are triple Src kinase (c-Src, Yes, Fyn)-null mouse fibroblast cells, and SYF + c-Src are c-Src-rescued SYF cells. This pair of cells was used to determine the role of c-Src activation in ouabain-induced Na/K-ATPase signaling and endocytosis. While ouabain accumulates Na/K-ATPase α1 subunit content in clathrin-coated pits and EE/LE fractions, it also causes a translocation of the α1 subunit to nuclear fraction. Interestingly, the effects of ouabain are fully reversible in terms of ion-pumping activity, transepithelial 22Na+ flux, and cell surface Na/K-ATPase within 24 hours following the removal of ouabain with a fresh culture medium, suggesting a reversible process. Immunofluorescence showed that the Na/K-ATPase α1 subunit co-localized with clathrin both before and after ouabain treatment, and immunoprecipitation experiments indicated that ouabain stimulated interactions among the α1 subunit, AP-2, and clathrin heavy chain (CHC). Disruption and/or arresting of clathrin-coated pit formation (by potassium depletion with hypotonic shock [118] and chlorpromazine treatment [119]) significantly attenuated this ouabain-induced endocytosis, suggesting the involvement of a clathrin-coated pit. Inhibition of the ouabain-activated signaling with PP2 (a specific c-Src kinase inhibitor) or wortmannin (a specific PI3K inhibitor) also significantly attenuated ouabain-induced endocytosis. Experiments performed in SYF cells and SYF + c-Src demonstrated that ouabain induces the endocytosis of the Na/K-ATPase in SYF + c-Src cells, but not in the SYF, indicating that ouabain-induced endocytosis of the Na/K-ATPase is c-Src-dependent.
Ouabain-stimulated Na/K-ATPase signaling also requires caveolin-1 (Cav-1) (a structural protein of caveolae, a subset of membrane lipid rafts) that functions as an anchoring protein for attracting the Na/K-ATPase α1 subunit into caveolae [120]. Accordingly, depletion of cholesterol (by methyl-β-cyclodextrin (Mβ-CD)) or caveolin-1 (by siRNA) blocked ouabain-induced endocytosis of the Na/K-ATPase, compartmentalization of signaling molecules in clathrin-coated pits, and early endosome. In addition, depletion of caveolin-1 also significantly reduced the protein-protein interactions among α1 subunit, AP-2, PI3K, and clathrin heavy chain, suggesting that caveolin-1 is involved in both ouabain-induced endocytosis of Na/K-ATPase and signal transduction [117].
These data demonstrate that ouabain stimulates a clathrin- and caveolin-1-dependent endocytosis of the Na/K-ATPase, a phenomenon requiring ouabain-induced Na/K-ATPase signaling function. Taken together, it is most likely that clathrin- and/or caveola-/lipid raft-mediated endocytosis of the Na/K-ATPase is a common phenomenon, but the mechanism and the relationship between the endocytosis of the Na/K-ATPase and signal transduction are still not fully understood. This is the first time to demonstrate that ligand-modulated endocytosis of the Na/K-ATPase is a mechanism by which RPT sodium transport is altered in a physiologically meaningful manner (Figure 1).
Illustration of activation of the Na/K-ATPase signaling-mediated endocytosis of the Na/K-ATPase. Both CTS and ROS can activate Na/K-ATPase signaling, which leads to translocation of cell surface Na/K-ATPase (α1- and β1-subunits), along with EGFR, c-Src, and ERK1/2, into clathrin-coated pits and early and late endosomes. This process is independent of change in intracellular Na+ and Ca2+, but is dependent on activation of c-Src and PI3K, and the presence of caveolin-1. The activation of the Na/K-ATPase signaling also stimulates ROS generation which further activates the signaling. In LLC-PK1 cells, ouabain has no significant effect on recycling of endocytosed α1 subunit. AP-2, adaptor protein-2; Cav-1, caveolin-1; CCP, clathrin-coated pits; CHC, clathrin heavy chain; CTS, cardiotonic steroids; EE, early endosome; LE, late endosome; Na+/X, Na+-dependent antitransporter; Na+/Y, Na+-dependent cotransporter; NKA, Na/K-ATPase; TJ, tight junction.
In RPT, NHE3 resides in the apical membrane of S1 and S2 segments, mediating transcellular reabsorption of Na+ and HCO3− and fluid reabsorption [36, 37]. Moreover, vesicular NHE3 activity regulates endosomal pH and consequently affects receptor-mediated endocytosis as well as endocytic vesicle fusion [41, 42]. Consistent with its cellular function, upregulation of NHE3 activity and expression is associated with the development of hypertension [121, 122, 123, 124]. Conversely, the reduction of NHE3 surface expression or NHE3 activity occurs during pressure natriuresis in rats [125, 126, 127, 128]. As expected, NHE3-deficient mice are hypotensive [129, 130, 131] because of reduced Na+ reabsorption and increased Na+ excretion. Interestingly, NHE3-deficient mice also develop acidosis since the blunted H+ secretion through NHE3, which links to greatly reduced RPT HCO3− reabsorption (please see Introduction for the linkage of NHE3 H+ secretion and HCO3− reabsorption), could not be compensated by H+-ATPase and AE1 (anion exchanger-1, SLC4A1) Cl−/HCO3− exchanger, compared with wild-type mice [131, 132]. These observations put renal Na+ reabsorption through NHE3 in a central position in the development and control of salt loading- and volume expansion-mediated hypertension. Structurally, NHE3 has a predicted N-terminal hydrophobic ion-translocating domain and a variable C-terminal hydrophilic domain which contains regulatory sequences [133].
The NHE3 activity is regulated at various levels through different mechanisms, mainly via phosphorylation, trafficking, and transcriptional regulation [34, 35, 103]. The surface expression of NHE3 is mainly regulated by changes in endocytosis/exocytosis and is the primary regulatory mechanism of NHE3 activity. NHE3 has been found to traffic between the plasma membrane and EE/LE fractions via a clathrin- and PI3K-dependent pathway [41, 134, 135, 136, 137, 138, 139, 140, 141]. The NHE3 activity can be stimulated by exocytosis [141, 142, 143] or inhibited by endocytosis [105, 125, 144]. The activation of c-Src, PKA, and PKC and increase in intracellular Ca2+ are involved in the regulation of NHE3 trafficking.
NHE3 has been shown to be redistributed under a hypertensive state, accompanying reversible downregulation of the Na/K-ATPase activity in the renal cortex [125, 127, 145]. This raised the possibility that the basolateral-localized Na/K-ATPase and apically localized NHE3 work in concert to regulate renal sodium handling in response to the Na/K-ATPase signaling. The coordinated regulation of NHE3 and the Na/K-ATPase is critical in maintaining intracellular Na+ homeostasis and extracellular fluid volume. It is believed that the apical Na+ entry through NHE3 is the rate-limiting step because the functional reserve of the Na/K-ATPase in the nephron is more than sufficient even under some pathological conditions.
In LLC-PK1 cells, chronic, low-concentration ouabain (50 and 100 nM, 24 hours) treatment in the basolateral aspect, but not in apical aspect, did not change intracellular [Na+] but decreased apical NHE3-mediated Na+ absorption, NHE3 promoter activity, and NHE3 protein and mRNA abundance. Pretreatment with specific inhibitors against c-Src and PI3K attenuates ouabain-induced downregulation of NHE3 activity and NHE3 mRNA [146]. In caveolin-1 knockdown LLC-PK1 cells, ouabain failed to reduce NHE3 mRNA and NHE3 promoter activity, in which ouabain-induced Na/K-ATPase signaling reduced Sp1 and TR DNA binding activity and consequently decreased NHE3 expression and activity [146]. These effects are abolished by inhibition of either c-Src or PI3K. Promoter mapping identified that ouabain-response elements reside in a region between −450 and −1194 nt and that ouabain reduces the binding of transcriptional factor Sp1 to its cognate cis-element.
Acute application of ouabain (1 hour) in the basolateral, but not apical, aspect significantly reduced NHE3 activity (22Na+ uptake) and active transepithelial 22Na+ transport. This is accompanied by a reduced NHE3 content on cell surface and an increased NHE3 content in EE/LE fractions, as seen in the case of the Na/K-ATPase α1 subunit. These changes are independent of change in the integrity of tight junctions and the intracellular Na+ concentration [115]. Ouabain-induced NHE3 trafficking was abolished by either PI3K or c-Src inhibition. Disruption of caveolae/lipid rafts by cholesterol depletion prevented ouabain-induced accumulation of NHE3 and Na/K-ATPase α1 in early endosomes, and cholesterol repletion restored the ouabain-induced endosomal accumulation of NHE3 and Na/K-ATPase α1. Moreover, pretreatment of cells with the intracellular Ca2+ chelator BAPTA-AM attenuated ouabain-induced NHE3 trafficking, suggesting Ca2+ might link the Na/K-ATPase signaling to NHE3 regulation which is in agreement with observations that intracellular Ca2+ can regulate NHE3 activity and trafficking [147, 148]. These changes indicate that ouabain acutely stimulates NHE3 trafficking, like Na/K-ATPase, by activating the basolateral Na/K-ATPase signaling complex [115]. In RPT cell lines (human HK-2, porcine LLC-PK1, and AAC-19 originated from LLC-PK1 in which the pig α1 was replaced by ouabain-resistant rat α1), results further indicate that ouabain-induced inhibition of transcellular 22Na+ transport as well as trafficking of the α1 subunit and NHE3 is not a species-specific phenomenon. Furthermore, in LLC-PK1 cells, ouabain inhibited the endocytic recycling of internalized NHE3, but has no significant effect on recycling of endocytosed α1 subunit [149].
Taken together, by activating the basolateral receptor Na/K-ATPase/c-Src complex, ouabain can simultaneously and coordinately regulate trafficking of basolateral Na/K-ATPase and apical NHE3, leading to inhibition of transepithelial Na+ transport. This mechanism may be important to RPT Na+ handling during conditions associated with increases in circulating endogenous CTS. However, it remains to be established whether ouabain-induced regulation of NHE3 trafficking comes from the endocytosed Na/K-ATPase/c-Src complex or directly from the plasma membrane, since ouabain still binds to endocytosed Na/K-ATPase (Figure 2).
Illustration of activation of the Na/K-ATPase signaling-mediated endocytosis of NHE3. Activation of the Na/K-ATPase signaling leads to intracellular Na+-independent NHE3 endocytosis. However, like Na/K-ATPase signaling-mediated Na/K-ATPase endocytosis, the NHE3 endocytosis is dependent on intracellular Ca2+, activation of c-Src and PI3K, and caveolin-1. In LLC-PK1 cells, ouabain inhibits the endocytic recycling of endocytosed NHE3. Since the Na/K-ATPase and NHE3 reside on basolateral and apical membrane in monolayer, respectively, it is still unclear how the basolateral Na/K-ATPase signaling is transmitted to NHE3 regulation. There are several possible pathways as illustrated, as proposed in the text (please see Figure 1 for abbreviations).
High concentrations of ouabain are known to increase intracellular [Na+], depolarize the proximal tubule, and affect the tight junction of epithelial cells. In LLC-PK1 cells, ouabain (up to 100 nM) has no acute effect on intracellular [Na+], transepithelial electrical resistance, and tight junction integrity, suggesting that in the concentration, ouabain is not likely to increase passive Na+ transport by depolarizing LLC-PK1 monolayers [115]. To further define whether the effects of ouabain on the Na/K-ATPase and NHE3 are independent of intracellular [Na+], the change in intracellular transporters after the equilibrium of intracellular [Na+] with extracellular [Na+] was achieved by using conventional “Na+-clamping” methods [150]. LLC-PK1 cells (both control and ouabain-treated) are pretreated either with 20 μM monensin or with 10 μM monensin plus 5 μM gramicidin for 30 min. Both “clamping” methods raise basal levels of α1 and NHE3 in EE/LE fractions (monensin is known to accumulate proteins in intracellular compartments). However, ouabain is still able to further accumulate more α1 and NHE3 in EE/LE. These observations indicate that ouabain-induced trafficking of α1 and NHE3 can be independent of intracellular [Na+] change [115].
Although the mechanisms are still being elucidated, accumulating evidence supports the notion that the expression and activity of the basolateral Na/K-ATPase and apical NHE3 are coordinated and coupled under certain circumstances. For example, McDonough’s laboratory has shown that, during pressure natriuresis and salt loading, the surface expression and activity of both NHE3 and the Na/K-ATPase are simultaneously downregulated to remove Na+ from the body [125, 127, 145, 151]. During the development of hypertension in spontaneous hypertensive rat (SHR), the expression and activity of both the Na/K-ATPase and NHE3 are elevated in comparison with the normotensive control rats [121, 152, 153, 154, 155].
Activation of Na/K-ATPase signaling, by either ouabain or a high-salt diet, is also capable of stimulating a coordinated and coupled downregulation of apical NHE3 and basolateral Na/K-ATPase to inhibit active transepithelial Na+ transport in cultured or isolated RPTs [79, 115, 116, 117, 149]. This coordinated regulation depends on activation of the Na/K-ATPase signaling function, but not on acute inhibition of the Na/K-ATPase activity since it requires the activation of Src and PI3K and increase in intracellular Ca2+. Moreover, MBG infusion also induced endocytosis of RPT Na/K-ATPase in rats, which could be prevented by an antibody-mediated neutralization of infused MBG [156].
A high salt intake or volume expansion increases both dopamine and CTS. It has been shown that dopamine-induced regulation of RPT Na/K-ATPase of Dahl S rats was defective because of an apparent decoupling between the binding of dopamine to its D1 receptor and activation of GPCRs [157, 158, 159, 160, 161]. In response to salt loading, Dahl S rats have a similar diuretic, but much less CTS-related natriuretic response than that seen in Dahl R rats [162]. Both dopamine and CTS can regulate the activity and trafficking of RPT Na/K-ATPase and NHE3. Even though the initiating steps and signaling pathways might be different, they share some signaling steps such as the activation of PLC/PKC and calcium signaling. It will be of interest to further assess whether there is a crosstalk between CTS- and dopamine-activated signaling pathways in the regulation of renal Na+ handling.
In vivo studies suggest the essential role of CTS in modulating renal sodium excretion and BP with different approaches. First, the administration of some (e.g., ouabain) but not all CTS induces natriuresis [163, 164]. Second, in transgenic mice expressing ouabain-sensitive Na/K-ATPase α1 subunit, both acute salt load and ouabain infusion augment natriuretic responses, which were prevented by administration of an anti-digoxin antibody fragment [75, 76]. Third, immune neutralization of endogenous CTS prevents CTS-mediated natriuretic and vasoconstrictor effects [55, 59, 78, 80]. Fourth, the administration of the ouabain antagonist, rostafuroxin (also known as PST 2238), prevents not only ouabain-induced Na/K-ATPase signaling but also ouabain-induced increase in BP [64]. Finally, in humans, a high salt intake increases circulating endogenous CTS [57, 80, 165]. An increased CTS excretion is directly linked to an enhanced RPT-mediated fractional Na+ excretion, but inversely related to age and to age-dependent increase in salt sensitivity [165].
Although the historical focus has largely been on the direct inhibition of CTS on the Na/K-ATPase ion-pumping activity and sodium reabsorption in RPT as well as vascular tone/contractility, decreases in basolateral Na/K-ATPase activity alone do not appear to be sufficient to reduce net RPT sodium reabsorption since the apical NHE3, but not the Na/K-ATPase, is the rate-limiting step.
In contrast, the newly appreciated signaling function of Na/K-ATPase has been widely confirmed and provides a realistic, mechanistic framework that the renal Na/K-ATPase and its signaling play a key role in regulating renal sodium handling. In porcine RPT LLC-PK1 cells, ouabain activates the Na/K-ATPase signaling pathways and consequently redistributes the basolateral Na/K-ATPase and the apical NHE3 in a coordinated manner; this leads to a symmetrical reduction of cell surface Na/K-ATPase and NHE3 content and ultimately decreased net transcellular sodium transport [86, 87, 115, 116, 117]. No significant acute change in intracellular Na+ concentration was observed [115], further suggesting the coordination of the downregulation of both apical and basolateral sodium transporters. This Na/K-ATPase signaling-mediated regulation of renal tubular epithelial ion transporters was further confirmed in in vivo studies [79, 156]. It has been shown that endocytosis of signaling molecules could be a way to terminate or propagate the signaling and could further regulate endocytosis itself [166, 167, 168, 169, 170, 171]. In this regard, it is possible that ouabain- and ROS-induced endocytosis could be an effective way to terminate Na/K-ATPase signaling-mediated oxidant amplification loop by the degradation of carbonylated Na/K-ATPase, to maintain a certain basal level of ROS and carbonylated protein [172].
The clathrin-dependent endocytosis is the main endocytosis pathway for many membrane proteins in mammalian cells [166, 167, 173, 174, 175]. Apart from its endocytic function, the clathrin-coated pits also represent a specialized microdomain, where proteins are assembled into active signaling complexes before internalization of some or all of their components [176]. Some molecules involved in transmembrane signaling, such as β-arrestin, RGS-GAIP (a GTPase-activating protein for Gαi heterotrimeric G proteins) [177], GIPC (a PDZ domain-containing protein) [178], and Src family kinases [179], have been localized to clathrin-coated pits, suggesting that the interaction with the components of the pit machinery may facilitate some signaling functions of transmembrane receptors.
Caveolae/lipid rafts play a central role in transcytosis and endocytosis [180, 181, 182, 183, 184]. Many signaling molecules and membrane receptors are dynamically associated with caveolae, such as the Src family kinases, Ras, PKC, ERK, insulin receptor, platelet-derived growth factor receptor (PDGFR), EGFR, and some entire signaling modules like PDGFR-Ras-ERK, mainly through their interactions with caveolins [182, 185, 186]. Caveolins stabilize caveolae and modulate signal transduction by attracting signaling molecules to caveolae and regulating their activities [186]. There is also evidence that caveolins modulate endocytosis through their interactions with clathrin [187, 188, 189, 190]. Interestingly, both caveolin and clathrin heavy chain are substrates of Src kinase [169, 184].
The Na/K-ATPase α-subunit, c-Src, and caveolin are present in caveolae isolated by a detergent-free method, in adult rat cardiac myocytes, human embryonic kidney (HEK)-293 cells, and LLC-PK1 cells. In adult rat cardiac myocytes, ouabain not only recruits α-subunit and c-Src to caveolae but also activates caveolar ERK1/2 [191]. Furthermore, some signaling molecules, such as EGFR and c-Src, are also concentrated in clathrin-coated pits and endosomes in response to ouabain [116], suggesting that both clathrin-coated pits and caveolae are involved in ouabain-mediated Na/K-ATPase signal transduction and endocytosis.
The receptor-mediated endocytosis has been shown not only to attenuate ligand-activated signaling but also to continue the signaling on the endocytic pathway, especially from endosomes [166, 167, 192, 193, 194]. While endocytosis is important in the activation and propagation of signaling pathways [168, 195, 196], signal transduction can also regulate endocytosis [169, 197]. Endocytic receptor tyrosine kinase (RTK) receptors could control the magnitude of the original signaling responses (generated at the cell surface) or initiate distinct signaling cascades (qualitatively different from that generated at the cell surface) [170]. In polarized epithelial cells, the distribution of RTK substrates could affect cellular responses [118]. The endosomal signaling appears to be dependent on both the receptor and cell type.
In LLC-PK1 cells, ouabain not only induced compartmentalization of Na/K-ATPase, c-Src, EGF receptor, and ERK in early endosomes but also bound to Na/K-ATPase along the endocytic route [116]. Interestingly, caveolin-1 is also present in early or late endosomes. These facts make it possible that endosomal ouabain-Na/K-ATPase/c-Src might be able to propagate its original signaling or to initiate distinct signaling cascades. This is supported by the findings that ouabain-induced NHE3 regulation is mediated by the activation of the receptor function of Na/K-ATPase. Furthermore, endocytosis is required for ouabain to remove basolateral Na/K-ATPase, which induces a significant inhibition of the pumping activity. Moreover, blockade of Na/K-ATPase signaling/endocytosis appears to be sufficient to abolish ouabain-induced trafficking and transcriptional regulation of NHE3.
Although the mechanisms that involved ouabain-initiated endocytosis of the Na/K-ATPase and NHE3 (and expression) are not fully understood, endocytosis of the Na/K-ATPase may play an important role in renal sodium handling. This is because if ouabain induces a significant depletion of plasmalemmal Na/K-ATPase in proximal tubule type cells (rat proximal tubule primary culture, LLC-PK1) but not in distal tubule type cells (rat distal tubule primary culture, MDCK), it will make physiological “sense” in terms of allowing bulk sodium transport (primarily in the proximal tubule) to be altered and leaving fine-tuning (distal tubule) sodium handling intact.
It is well established that both oxidative stress and high BP are a cause and consequence of each other. The increase in oxidative stress occurs in many forms of experimental models of hypertension, including Dahl salt-sensitive hypertension [198, 199, 200, 201, 202, 203, 204]. Increases in ROS can regulate physiological processes including renal tubular ion transport, fluid reabsorption, and sodium excretion [79, 205, 206, 207, 208, 209, 210]. In particular, increases in ROS regulate the activity and cellular distribution of the basolateral Na/K-ATPase as well as the apical NHE3 and sodium/glucose cotransporter, at least under normal circumstances [79, 151, 208, 211, 212, 213, 214, 215, 216]. Oxidative modification can affect the Na/K-ATPase activity through different mechanisms. For example, S-glutathionylation cysteine residue(s) of the Na/K-ATPase α-subunit can block the intracellular ATP-binding site [217], and S-glutathionylation of cysteine of the Na/K-ATPase β1-subunit can affect the Na/K-ATPase conformational poise [218, 219]. Oxidant and oxidative modification of the Na/K-ATPase can lead to degradation, functional changes, and formation of Na/K-ATPase oligomeric structure [74, 84, 85, 86, 87, 217, 219, 220, 221, 222, 223, 224, 225, 226, 227, 228, 229, 230]. In LLC-PK1 cells, increase in ROS generation, induced by either ouabain or glucose oxidase, is critical in the activation of Na/K-ATPase signaling which mediates trafficking of the Na/K-ATPase and NHE3 and transcellular Na+ transport [86, 87]. Pretreatment with higher doses, but not a low dose, of NAC attenuated the effect of ouabain on c-Src activation and transcellular 22Na+ flux, suggesting a role of basal physiological redox status in the initiation of ouabain-induced Na/K-ATPase signaling. While CTS stimulates ROS generation and Na/K-ATPase signaling in different in vitro and in vivo models [63, 85, 231, 232, 233], an increase in ROS alone (without the presence of ouabain) by extracellularly added glucose oxidase is also able to activate Na/K-ATPase signaling, indicating that activation of Na/K-ATPase signaling can be achieved by general stimuli like ROS, other than its specific ligands. Glucose oxidase-induced H2O2 alone also stimulates Na/K-ATPase endocytosis and inhibits active transcellular 22Na+ transport [85, 86]. The phenomenon of redox sensitivity of the Na/K-ATPase has been demonstrated in different cell types, tissues, and animal species.
In LLC-PK1 cells, both ouabain and glucose oxidase-induced H2O2 stimulate Na/K-ATPase signaling as well as direct protein carbonylation of Pro222 and Thr224 residues of the Na/K-ATPase α1 subunit (α1-carbonylation) [86]. The Pro222 and Thr224 are located in peptide 211VDNSSLTGESEPQTR225 [UniProtKB/Swiss-Prot No P05024 (AT1A1_PIG)]. While the α1 subunit is highly conserved among humans, pigs, rats, and mice (the homology is over 98.5%), the identified peptide is 100% identical among these four species. This peptide is located in the actuator (A) domain of α1 subunit, and Pro222/Thr224 are highly exposed and facing the nucleotide binding (N) domain of the α1 subunit. Upon ouabain binding, Na/K-ATPase undergoes conformational changes, in which the A domain is rotated to the N domain favoring an E2-P conformation. The structure-function analysis indicates that these conformational changes may affect binding of the α1 subunit to signaling molecules such as c-Src and PI3K [234]. In addition, the peptide also contains the TGES motif that is the anchor of A domain rotation [234].
Biologically, ROS can oxidize various types of biological molecules including proteins, leading to their functional changes. Through Fenton’s reaction, H2O2 is reduced to HO• by coupling oxidation of reduced ferrous ion (Fe2+) to ferric ion (Fe3+). This metal-catalyzed oxidation (MCO) process oxidizes proteins by introducing carbonyl groups (such as aldehydes, ketones, or lactams) into the side chains of certain amino acids (such as proline, arginine, lysine, and threonine) that named direct (primary) carbonylation that have been implied in various conditions like chronic renal failure [235, 236, 237, 238, 239, 240]. Since Fenton’s reaction involves the conversion of H2O2 to HO•, any specie of ROS with H2O2 as an intermediate and/or end product may stimulate the reaction.
Protein carbonylation is reversible (decarbonylation) and may function as a regulatory mechanism of cell signaling [241, 242, 243, 244]. We also observed an undefined decarbonylation mechanism, which apparently reverses the carbonylation of the Na/K-ATPase α1 subunit induced by ouabain [86]. The removal of ouabain from the culture medium reverses ouabain-mediated carbonylation, as seen in the reversed Na/K-ATPase ion-pumping activity [116]. Moreover, inhibition of de novo protein synthesis as well as degradation pathway through lysosome and proteasome does not affect this decarbonylation, which is still poorly understood. It is possible that carbonylation modification might stabilize the Na/K-ATPase in a certain conformational status favoring ouabain binding to the Na/K-ATPase α1 subunit and ouabain-Na/K-ATPase signaling. Nevertheless, the underlying mechanism might be physiologically significant since the carbonylation/decarbonylation process could be an important regulator of the RPT Na/K-ATPase signaling and sodium handling.
It is reasonable to propose that carbonylation modification of RPT Na/K-ATPase α1 subunit has biphasic effects. On one hand, physiological and controllable α1-carbonylation stimulates Na/K-ATPase signaling and sodium excretion, rendering salt resistance, whereas on the other hand, prolonged exposure to oxidant stress leads to overstimulated α1-carbonylation and desensitized Na/K-ATPase signaling, increasing salt sensitivity. First, Dahl S rats show considerably higher basal levels of oxidative stress than R rats, and high-salt diets increase renal oxidative stresses that contribute to salt-sensitive hypertension [202, 203, 204]. Second, while high-salt diets increase circulating CTS, a high-salt diet (HS, 2% NaCl for 7 days) stimulates the Na/K-ATPase signaling in isolated RPT from Dahl salt-resistant (R) but not salt-sensitive (S) rats (i.e., impaired Na/K-ATPase signaling in S rats) [79]. Third, CTS- and H2O2-mediated redox-sensitive Na/K-ATPase signaling and α1-carbonylation are involved in this signaling process, in a feed-forward mechanism [86]. Fourth, high but not low concentration of NAC is able to prevent α1-carbonylation and Na/K-ATPase signaling [86]. Even though it is still not clear of the carbonylation/decarbonylation process, this could be another new regulatory mechanism of Na/K-ATPase signaling. It is reasonable to postulate that prolonged excessive α1-carbonylation (by CTS and/or other factors) might overcome the decarbonylation capacity, leading to the desensitization or termination of the Na/K-ATPase signaling function. This is reminiscent of the observations in clinical trials using antioxidant supplements. The beneficial effect of antioxidant supplements is controversial and not seen in most clinical trials with administration of antioxidant supplements [200, 245]. Low doses of antioxidant supplementation may be ineffective, but high doses may be even dangerous since excess antioxidants might become prooxidants if they cannot promptly be reduced in the antioxidant chain [246]. It appears that the balance of the redox status, within a physiological range, may be critical in order to maintain beneficial ROS signaling.
In male Sprague-Dawley rats, compared to a normal salt (0.4% NaCl, 7 days) diet, a high-salt (4% NaCl, 7 days) diet increased urinary sodium and MBG excretion. In isolated proximal tubules, a high-salt diet inhibits the Na/K-ATPase ion-exchange activity and enzymatic activity, which is accompanied by a decreased Na/K-ATPase α1 content in heavy membrane fraction and an increased Na/K-ATPase α1 content in both early and late endosomes. These high-salt diet-mediated changes were ameliorated by administration of an antibody against MBG [156]. Results indicate that a high-salt diet increased MBG production, activated RPT Na/K-ATPase signaling, and induced endocytosis of Na/K-ATPase.
The Dahl R and S rat strains were developed from Sprague-Dawley rats by selective breeding, depending on the resistance or susceptibility to the hypertensive effects of high dietary sodium [247]. In these two strains, the RPT sodium handling is an essential determinant of their different BP responses [248, 249, 250, 251]. At the cost of elevated systolic BP, Dahl S rats get rid of excess sodium primarily via pressure natriuresis. In contrast, Dahl R rats get rid of excess sodium primarily via a significant reduction of renal sodium reabsorption without increasing the BP. In vivo study indicates that impaired RPT Na/K-ATPase signaling appears to be causative of experimental Dahl salt sensitivity [79]. In vivo studies with Dahl R and S rats (Jr strains) demonstrated that impairment of RPT Na/K-ATPase signaling is a causative factor of experimental Dahl salt sensitivity [79]. In Dahl R but not S rats, a high-salt (2% NaCl, 1 week) diet activated RPT Na/K-ATPase signaling and stimulated coordinated redistribution of the Na/K-ATPase and NHE3, leading to increased total and fractional urinary sodium excretion as well as normal BP. However, there are still questions about the underlying mechanism(s) that need to be further investigated, such as the difference of Na/K-ATPase signaling function between Dahl R and S rats, as well as the translation of Na/K-ATPase signaling to NHE3 regulation. Furthermore, low concentration of ouabain causes hypertrophic response both in the heart and kidney, by concentrating the Na/K-ATPase, Src, EGFR, and MAPKs within rat caveolae, and activates the Na/K-ATPase/Src/MAPK signaling pathway [64]. However, there is no simple explanation for this occurrence. First, the α1 subunit is essentially the only α isoform expressed in RPT, and genes coding α1 subunit and NHE3 (in rat chromosomes 1 and 2, respectively) are not located in identified and/or proposed BP quantitative trait loci [252]. Second, there is no difference in α1 gene (Atp1a1) coding [251], α1 ouabain sensitivity [253], and α1 expression [79] between these two strains. Third, acute salt loading increases circulating CTS (ouabain and MBG) in both S and R rats [162]. These observations suggest that there must be resistance to CTS signaling in the Dahl S rat, a phenomenon that we only partially understand. As discussed above, the carbonylation/decarbonylation process could be another new regulatory mechanism of Na/K-ATPase signaling. It is reasonable to postulate that prolonged excessive α1-carbonylation in Dahl salt-sensitive rats might overcome the decarbonylation capacity, leading to desensitization or termination of the Na/K-ATPase signaling function.
As pointed out by Guyton many years ago [254], the kidney is the most important organ in the regulation of Na+ handling and BP. Dietary salt intake vs. renal sodium handling is a key determinant of long-term BP regulation and plays an important role in the pathogenesis of hypertension, with more pronounced effects seen in salt-sensitive patients. Consequently, modest restriction of dietary salt and diuretic therapy are often recommended for the treatment of resistant hypertension, particularly with the salt-sensitive subgroup [254, 255, 256, 257, 258].
Although the relationships among CTS, renal Na+ handling, and hypertension were proposed many years ago, there has been an explosion of reports supporting this idea. As discussed, reports from Lingrel’s laboratory clearly demonstrated a specific role of the isoforms of the Na/K-ATPase and its interaction with endogenous CTS in the regulation of Na+ excretion and BP in intact animals [75, 76, 77]. From the ligand perspective, studies have demonstrated that CTS are present in measurable amounts under normal physiological conditions and that several disease states are associated with elevations in the circulating levels of CTS. The new concept that the Na/K-ATPase has an ion-pumping-independent receptor function (induced by both CTS and ROS) that can confer the agonist-like effects of CTS on intracellular signal transduction is a new mechanism for RPT sodium handling. Moreover, this newly discovered signaling mechanism operates in intact animals in response to CTS stimulation. The Na/K-ATPase has recently emerged as a therapeutic target [259, 260]. A clearer understanding of the mechanisms, in which a CTS-ROS-Na/K-ATPase signaling axis counterbalancing salt retention, would not only have major pathophysiological and therapeutic implications, but also further explain the progressive impairment of renal sodium handling under excessive oxidative stresses such as hypertension, aging, obesity, and diabetes.
This work was supported by NIH R15 1R15DK106666 (to J. Liu) and NIH RO1 HL071556 (to J.I. Shapiro).
BP | blood pressure |
CTS | cardiotonic steroids |
NHE3 | sodium/hydrogen exchanger isoform 3 |
ROS | reactive oxygen species |
RPT | renal proximal tubule |
IntechOpen books are available online by accessing all published content on a chapter level.
",metaTitle:"Access policy",metaDescription:"IntechOpen books are available online by accessing all published content on a chapter level",metaKeywords:null,canonicalURL:null,contentRaw:'[{"type":"htmlEditorComponent","content":"All IntechOpen published chapters are available OPEN ACCESS can be read without the requirement for registration of any kind, immediately upon publication, without any barrier.
\\n\\nThe HTML version, as well as the PDF version of publications dated before 2012 that are accessible through a reader, are available to readers with no restriction.
\\n\\nThe full content of chapters can be read, copied and printed from the link location of the chapter and these actions are not limited or restricted in any way.
\\n\\nRegistration is requested only to download the PDF of the chapter. There are no subscription fees and there is no charge to user groups.
\\n\\nIntechOpen chapters are distributed under CC BY 3.0 licences allowing users to “copy, use, distribute, transmit and display the work publicly and to make and distribute derivative works, in any digital medium for any responsible purpose, subject to proper attribution of authorship...” and there is no non-commercial restriction.
\\n\\nAuthors may post published works to any repository or website with no delay, and Authors and Editors of IntechOpen books have direct access to the PDF of the full book.
\\n\\nAll published content can be crawled for indexing. Full text and metadata may be accessed with instructions publicly posted.
\\n\\nAll IntechOpen books are indexed in CLOCKSS and preservation of access to published content is clearly indicated.
\\n\\nPolicy last updated: 2021-02-26
\\n"}]'},components:[{type:"htmlEditorComponent",content:"All IntechOpen published chapters are available OPEN ACCESS can be read without the requirement for registration of any kind, immediately upon publication, without any barrier.
\n\nThe HTML version, as well as the PDF version of publications dated before 2012 that are accessible through a reader, are available to readers with no restriction.
\n\nThe full content of chapters can be read, copied and printed from the link location of the chapter and these actions are not limited or restricted in any way.
\n\nRegistration is requested only to download the PDF of the chapter. There are no subscription fees and there is no charge to user groups.
\n\nIntechOpen chapters are distributed under CC BY 3.0 licences allowing users to “copy, use, distribute, transmit and display the work publicly and to make and distribute derivative works, in any digital medium for any responsible purpose, subject to proper attribution of authorship...” and there is no non-commercial restriction.
\n\nAuthors may post published works to any repository or website with no delay, and Authors and Editors of IntechOpen books have direct access to the PDF of the full book.
\n\nAll published content can be crawled for indexing. Full text and metadata may be accessed with instructions publicly posted.
\n\nAll IntechOpen books are indexed in CLOCKSS and preservation of access to published content is clearly indicated.
\n\nPolicy last updated: 2021-02-26
\n"}]},successStories:{items:[]},authorsAndEditors:{filterParams:{sort:"featured,name"},profiles:[{id:"6700",title:"Dr.",name:"Abbass A.",middleName:null,surname:"Hashim",slug:"abbass-a.-hashim",fullName:"Abbass A. Hashim",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/6700/images/1864_n.jpg",biography:"Currently I am carrying out research in several areas of interest, mainly covering work on chemical and bio-sensors, semiconductor thin film device fabrication and characterisation.\nAt the moment I have very strong interest in radiation environmental pollution and bacteriology treatment. The teams of researchers are working very hard to bring novel results in this field. I am also a member of the team in charge for the supervision of Ph.D. students in the fields of development of silicon based planar waveguide sensor devices, study of inelastic electron tunnelling in planar tunnelling nanostructures for sensing applications and development of organotellurium(IV) compounds for semiconductor applications. I am a specialist in data analysis techniques and nanosurface structure. I have served as the editor for many books, been a member of the editorial board in science journals, have published many papers and hold many patents.",institutionString:null,institution:{name:"Sheffield Hallam University",country:{name:"United Kingdom"}}},{id:"54525",title:"Prof.",name:"Abdul Latif",middleName:null,surname:"Ahmad",slug:"abdul-latif-ahmad",fullName:"Abdul Latif Ahmad",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:null},{id:"20567",title:"Prof.",name:"Ado",middleName:null,surname:"Jorio",slug:"ado-jorio",fullName:"Ado Jorio",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"Universidade Federal de Minas Gerais",country:{name:"Brazil"}}},{id:"47940",title:"Dr.",name:"Alberto",middleName:null,surname:"Mantovani",slug:"alberto-mantovani",fullName:"Alberto Mantovani",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:null},{id:"12392",title:"Mr.",name:"Alex",middleName:null,surname:"Lazinica",slug:"alex-lazinica",fullName:"Alex Lazinica",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/12392/images/7282_n.png",biography:"Alex Lazinica is the founder and CEO of IntechOpen. After obtaining a Master's degree in Mechanical Engineering, he continued his PhD studies in Robotics at the Vienna University of Technology. Here he worked as a robotic researcher with the university's Intelligent Manufacturing Systems Group as well as a guest researcher at various European universities, including the Swiss Federal Institute of Technology Lausanne (EPFL). During this time he published more than 20 scientific papers, gave presentations, served as a reviewer for major robotic journals and conferences and most importantly he co-founded and built the International Journal of Advanced Robotic Systems- world's first Open Access journal in the field of robotics. Starting this journal was a pivotal point in his career, since it was a pathway to founding IntechOpen - Open Access publisher focused on addressing academic researchers needs. Alex is a personification of IntechOpen key values being trusted, open and entrepreneurial. Today his focus is on defining the growth and development strategy for the company.",institutionString:null,institution:{name:"TU Wien",country:{name:"Austria"}}},{id:"19816",title:"Prof.",name:"Alexander",middleName:null,surname:"Kokorin",slug:"alexander-kokorin",fullName:"Alexander Kokorin",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/19816/images/1607_n.jpg",biography:"Alexander I. Kokorin: born: 1947, Moscow; DSc., PhD; Principal Research Fellow (Research Professor) of Department of Kinetics and Catalysis, N. Semenov Institute of Chemical Physics, Russian Academy of Sciences, Moscow.\r\nArea of research interests: physical chemistry of complex-organized molecular and nanosized systems, including polymer-metal complexes; the surface of doped oxide semiconductors. He is an expert in structural, absorptive, catalytic and photocatalytic properties, in structural organization and dynamic features of ionic liquids, in magnetic interactions between paramagnetic centers. The author or co-author of 3 books, over 200 articles and reviews in scientific journals and books. He is an actual member of the International EPR/ESR Society, European Society on Quantum Solar Energy Conversion, Moscow House of Scientists, of the Board of Moscow Physical Society.",institutionString:null,institution:{name:"Semenov Institute of Chemical Physics",country:{name:"Russia"}}},{id:"62389",title:"PhD.",name:"Ali Demir",middleName:null,surname:"Sezer",slug:"ali-demir-sezer",fullName:"Ali Demir Sezer",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/62389/images/3413_n.jpg",biography:"Dr. Ali Demir Sezer has a Ph.D. from Pharmaceutical Biotechnology at the Faculty of Pharmacy, University of Marmara (Turkey). He is the member of many Pharmaceutical Associations and acts as a reviewer of scientific journals and European projects under different research areas such as: drug delivery systems, nanotechnology and pharmaceutical biotechnology. Dr. Sezer is the author of many scientific publications in peer-reviewed journals and poster communications. Focus of his research activity is drug delivery, physico-chemical characterization and biological evaluation of biopolymers micro and nanoparticles as modified drug delivery system, and colloidal drug carriers (liposomes, nanoparticles etc.).",institutionString:null,institution:{name:"Marmara University",country:{name:"Turkey"}}},{id:"61051",title:"Prof.",name:"Andrea",middleName:null,surname:"Natale",slug:"andrea-natale",fullName:"Andrea Natale",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:null},{id:"100762",title:"Prof.",name:"Andrea",middleName:null,surname:"Natale",slug:"andrea-natale",fullName:"Andrea Natale",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"St David's Medical Center",country:{name:"United States of America"}}},{id:"107416",title:"Dr.",name:"Andrea",middleName:null,surname:"Natale",slug:"andrea-natale",fullName:"Andrea Natale",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"Texas Cardiac Arrhythmia",country:{name:"United States of America"}}},{id:"64434",title:"Dr.",name:"Angkoon",middleName:null,surname:"Phinyomark",slug:"angkoon-phinyomark",fullName:"Angkoon Phinyomark",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/64434/images/2619_n.jpg",biography:"My name is Angkoon Phinyomark. I received a B.Eng. degree in Computer Engineering with First Class Honors in 2008 from Prince of Songkla University, Songkhla, Thailand, where I received a Ph.D. degree in Electrical Engineering. My research interests are primarily in the area of biomedical signal processing and classification notably EMG (electromyography signal), EOG (electrooculography signal), and EEG (electroencephalography signal), image analysis notably breast cancer analysis and optical coherence tomography, and rehabilitation engineering. I became a student member of IEEE in 2008. During October 2011-March 2012, I had worked at School of Computer Science and Electronic Engineering, University of Essex, Colchester, Essex, United Kingdom. In addition, during a B.Eng. I had been a visiting research student at Faculty of Computer Science, University of Murcia, Murcia, Spain for three months.\n\nI have published over 40 papers during 5 years in refereed journals, books, and conference proceedings in the areas of electro-physiological signals processing and classification, notably EMG and EOG signals, fractal analysis, wavelet analysis, texture analysis, feature extraction and machine learning algorithms, and assistive and rehabilitative devices. I have several computer programming language certificates, i.e. Sun Certified Programmer for the Java 2 Platform 1.4 (SCJP), Microsoft Certified Professional Developer, Web Developer (MCPD), Microsoft Certified Technology Specialist, .NET Framework 2.0 Web (MCTS). I am a Reviewer for several refereed journals and international conferences, such as IEEE Transactions on Biomedical Engineering, IEEE Transactions on Industrial Electronics, Optic Letters, Measurement Science Review, and also a member of the International Advisory Committee for 2012 IEEE Business Engineering and Industrial Applications and 2012 IEEE Symposium on Business, Engineering and Industrial Applications.",institutionString:null,institution:{name:"Joseph Fourier University",country:{name:"France"}}},{id:"55578",title:"Dr.",name:"Antonio",middleName:null,surname:"Jurado-Navas",slug:"antonio-jurado-navas",fullName:"Antonio Jurado-Navas",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/55578/images/4574_n.png",biography:"Antonio Jurado-Navas received the M.S. degree (2002) and the Ph.D. degree (2009) in Telecommunication Engineering, both from the University of Málaga (Spain). He first worked as a consultant at Vodafone-Spain. From 2004 to 2011, he was a Research Assistant with the Communications Engineering Department at the University of Málaga. In 2011, he became an Assistant Professor in the same department. From 2012 to 2015, he was with Ericsson Spain, where he was working on geo-location\ntools for third generation mobile networks. Since 2015, he is a Marie-Curie fellow at the Denmark Technical University. His current research interests include the areas of mobile communication systems and channel modeling in addition to atmospheric optical communications, adaptive optics and statistics",institutionString:null,institution:{name:"University of Malaga",country:{name:"Spain"}}}],filtersByRegion:[{group:"region",caption:"North America",value:1,count:5774},{group:"region",caption:"Middle and South America",value:2,count:5240},{group:"region",caption:"Africa",value:3,count:1721},{group:"region",caption:"Asia",value:4,count:10411},{group:"region",caption:"Australia and Oceania",value:5,count:897},{group:"region",caption:"Europe",value:6,count:15812}],offset:12,limit:12,total:118381},chapterEmbeded:{data:{}},editorApplication:{success:null,errors:{}},ofsBooks:{filterParams:{sort:"dateEndThirdStepPublish"},books:[{type:"book",id:"10231",title:"Proton Therapy",subtitle:null,isOpenForSubmission:!0,hash:"f4a9009287953c8d1d89f0fa9b7597b0",slug:null,bookSignature:"",coverURL:"https://cdn.intechopen.com/books/images_new/10231.jpg",editedByType:null,editors:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10652",title:"Visual Object Tracking",subtitle:null,isOpenForSubmission:!0,hash:"96f3ee634a7ba49fa195e50475412af4",slug:null,bookSignature:"",coverURL:"https://cdn.intechopen.com/books/images_new/10652.jpg",editedByType:null,editors:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10655",title:"Motion Planning",subtitle:null,isOpenForSubmission:!0,hash:"809b5e290cf2dade9e7e0a5ae0ef3df0",slug:null,bookSignature:"",coverURL:"https://cdn.intechopen.com/books/images_new/10655.jpg",editedByType:null,editors:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10657",title:"Service Robots",subtitle:null,isOpenForSubmission:!0,hash:"5f81b9eea6eb3f9af984031b7af35588",slug:null,bookSignature:"",coverURL:"https://cdn.intechopen.com/books/images_new/10657.jpg",editedByType:null,editors:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10662",title:"Pedagogy",subtitle:null,isOpenForSubmission:!0,hash:"c858e1c6fb878d3b895acbacec624576",slug:null,bookSignature:"",coverURL:"https://cdn.intechopen.com/books/images_new/10662.jpg",editedByType:null,editors:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10673",title:"The Psychology of Trust",subtitle:null,isOpenForSubmission:!0,hash:"1f6cac41fd145f718ac0866264499cc8",slug:null,bookSignature:"",coverURL:"https://cdn.intechopen.com/books/images_new/10673.jpg",editedByType:null,editors:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10675",title:"Hydrostatics",subtitle:null,isOpenForSubmission:!0,hash:"c86c2fa9f835d4ad5e7efd8b01921866",slug:null,bookSignature:"",coverURL:"https://cdn.intechopen.com/books/images_new/10675.jpg",editedByType:null,editors:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10677",title:"Topology",subtitle:null,isOpenForSubmission:!0,hash:"85eac84b173d785f989522397616124e",slug:null,bookSignature:"",coverURL:"https://cdn.intechopen.com/books/images_new/10677.jpg",editedByType:null,editors:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10678",title:"Biostatistics",subtitle:null,isOpenForSubmission:!0,hash:"f63db439474a574454a66894db8b394c",slug:null,bookSignature:"",coverURL:"https://cdn.intechopen.com/books/images_new/10678.jpg",editedByType:null,editors:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10679",title:"Mass Production",subtitle:null,isOpenForSubmission:!0,hash:"2dae91102099b1a07be1a36a68852829",slug:null,bookSignature:"",coverURL:"https://cdn.intechopen.com/books/images_new/10679.jpg",editedByType:null,editors:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10689",title:"Risk Management in Construction",subtitle:null,isOpenForSubmission:!0,hash:"e3805b3d2fceb9d33e1fa805687cd296",slug:null,bookSignature:"",coverURL:"https://cdn.intechopen.com/books/images_new/10689.jpg",editedByType:null,editors:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10693",title:"Open Data",subtitle:null,isOpenForSubmission:!0,hash:"9fcbb8e096da084fb29d8f16aaecb061",slug:null,bookSignature:"",coverURL:"https://cdn.intechopen.com/books/images_new/10693.jpg",editedByType:null,editors:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}}],filtersByTopic:[{group:"topic",caption:"Agricultural and Biological Sciences",value:5,count:19},{group:"topic",caption:"Biochemistry, Genetics and Molecular Biology",value:6,count:5},{group:"topic",caption:"Business, Management and Economics",value:7,count:2},{group:"topic",caption:"Chemistry",value:8,count:8},{group:"topic",caption:"Computer and Information Science",value:9,count:6},{group:"topic",caption:"Earth and Planetary Sciences",value:10,count:7},{group:"topic",caption:"Engineering",value:11,count:21},{group:"topic",caption:"Environmental Sciences",value:12,count:2},{group:"topic",caption:"Immunology and Microbiology",value:13,count:4},{group:"topic",caption:"Materials Science",value:14,count:6},{group:"topic",caption:"Mathematics",value:15,count:1},{group:"topic",caption:"Medicine",value:16,count:25},{group:"topic",caption:"Neuroscience",value:18,count:2},{group:"topic",caption:"Pharmacology, Toxicology and Pharmaceutical Science",value:19,count:3},{group:"topic",caption:"Physics",value:20,count:3},{group:"topic",caption:"Psychology",value:21,count:4},{group:"topic",caption:"Robotics",value:22,count:1},{group:"topic",caption:"Social Sciences",value:23,count:3},{group:"topic",caption:"Technology",value:24,count:1},{group:"topic",caption:"Veterinary Medicine and Science",value:25,count:1}],offset:12,limit:12,total:202},popularBooks:{featuredBooks:[],offset:0,limit:12,total:null},hotBookTopics:{hotBooks:[],offset:0,limit:12,total:null},publish:{},publishingProposal:{success:null,errors:{}},books:{featuredBooks:[{type:"book",id:"9521",title:"Antimicrobial Resistance",subtitle:"A One Health Perspective",isOpenForSubmission:!1,hash:"30949e78832e1afba5606634b52056ab",slug:"antimicrobial-resistance-a-one-health-perspective",bookSignature:"Mihai Mareș, Swee Hua Erin Lim, Kok-Song Lai and Romeo-Teodor Cristina",coverURL:"https://cdn.intechopen.com/books/images_new/9521.jpg",editors:[{id:"88785",title:"Prof.",name:"Mihai",middleName:null,surname:"Mares",slug:"mihai-mares",fullName:"Mihai Mares"}],equalEditorOne:{id:"190224",title:"Dr.",name:"Swee Hua Erin",middleName:null,surname:"Lim",slug:"swee-hua-erin-lim",fullName:"Swee Hua Erin Lim",profilePictureURL:"https://mts.intechopen.com/storage/users/190224/images/system/190224.png",biography:"Dr. Erin Lim is presently working as an Assistant Professor in the Division of Health Sciences, Abu Dhabi Women\\'s College, Higher Colleges of Technology in Abu Dhabi, United Arab Emirates and is affiliated as an Associate Professor to Perdana University-Royal College of Surgeons in Ireland, Selangor, Malaysia. She obtained her Ph.D. from Universiti Putra Malaysia in 2010 with a National Science Fellowship awarded from the Ministry of Science, Technology and Innovation Malaysia and has been actively involved in research ever since. Her main research interests include analysis of carriage and transmission of multidrug resistant bacteria in non-conventional settings, besides an interest in natural products for antimicrobial testing. She is heavily involved in the elucidation of mechanisms of reversal of resistance in bacteria in addition to investigating the immunological analyses of diseases, development of vaccination and treatment models in animals. She hopes her work will support the discovery of therapeutics in the clinical setting and assist in the combat against the burden of antibiotic resistance.",institutionString:"Abu Dhabi Women’s College",position:null,outsideEditionCount:0,totalCites:0,totalAuthoredChapters:"3",totalChapterViews:"0",totalEditedBooks:"0",institution:{name:"Perdana University",institutionURL:null,country:{name:"Malaysia"}}},equalEditorTwo:{id:"221544",title:"Dr.",name:"Kok-Song",middleName:null,surname:"Lai",slug:"kok-song-lai",fullName:"Kok-Song Lai",profilePictureURL:"https://mts.intechopen.com/storage/users/221544/images/system/221544.jpeg",biography:"Dr. Lai Kok Song is an Assistant Professor in the Division of Health Sciences, Abu Dhabi Women\\'s College, Higher Colleges of Technology in Abu Dhabi, United Arab Emirates. He obtained his Ph.D. in Biological Sciences from Nara Institute of Science and Technology, Japan in 2012. Prior to his academic appointment, Dr. Lai worked as a Senior Scientist at the Ministry of Science, Technology and Innovation, Malaysia. His current research areas include antimicrobial resistance and plant-pathogen interaction. His particular interest lies in the study of the antimicrobial mechanism via membrane disruption of essential oils against multi-drug resistance bacteria through various biochemical, molecular and proteomic approaches. Ultimately, he hopes to uncover and determine novel biomarkers related to antibiotic resistance that can be developed into new therapeutic strategies.",institutionString:"Higher Colleges of Technology",position:null,outsideEditionCount:0,totalCites:0,totalAuthoredChapters:"8",totalChapterViews:"0",totalEditedBooks:"0",institution:{name:"Higher Colleges of Technology",institutionURL:null,country:{name:"United Arab Emirates"}}},equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10020",title:"Operations Management",subtitle:"Emerging Trend in the Digital Era",isOpenForSubmission:!1,hash:"526f0dbdc7e4d85b82ce8383ab894b4c",slug:"operations-management-emerging-trend-in-the-digital-era",bookSignature:"Antonella Petrillo, Fabio De Felice, Germano Lambert-Torres and Erik Bonaldi",coverURL:"https://cdn.intechopen.com/books/images_new/10020.jpg",editors:[{id:"181603",title:"Dr.",name:"Antonella",middleName:null,surname:"Petrillo",slug:"antonella-petrillo",fullName:"Antonella Petrillo"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9560",title:"Creativity",subtitle:"A Force to Innovation",isOpenForSubmission:!1,hash:"58f740bc17807d5d88d647c525857b11",slug:"creativity-a-force-to-innovation",bookSignature:"Pooja Jain",coverURL:"https://cdn.intechopen.com/books/images_new/9560.jpg",editors:[{id:"316765",title:"Dr.",name:"Pooja",middleName:null,surname:"Jain",slug:"pooja-jain",fullName:"Pooja Jain"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9385",title:"Renewable Energy",subtitle:"Technologies and Applications",isOpenForSubmission:!1,hash:"a6b446d19166f17f313008e6c056f3d8",slug:"renewable-energy-technologies-and-applications",bookSignature:"Tolga Taner, Archana Tiwari and Taha Selim Ustun",coverURL:"https://cdn.intechopen.com/books/images_new/9385.jpg",editors:[{id:"197240",title:"Associate Prof.",name:"Tolga",middleName:null,surname:"Taner",slug:"tolga-taner",fullName:"Tolga Taner"}],equalEditorOne:{id:"186791",title:"Dr.",name:"Archana",middleName:null,surname:"Tiwari",slug:"archana-tiwari",fullName:"Archana Tiwari",profilePictureURL:"https://mts.intechopen.com/storage/users/186791/images/system/186791.jpg",biography:"Dr. Archana Tiwari is Associate Professor at Amity University, India. Her research interests include renewable sources of energy from microalgae and further utilizing the residual biomass for the generation of value-added products, bioremediation through microalgae and microbial consortium, antioxidative enzymes and stress, and nutraceuticals from microalgae. She has been working on algal biotechnology for the last two decades. She has published her research in many international journals and has authored many books and chapters with renowned publishing houses. She has also delivered talks as an invited speaker at many national and international conferences. Dr. Tiwari is the recipient of several awards including Researcher of the Year and Distinguished Scientist.",institutionString:"Amity University",position:null,outsideEditionCount:0,totalCites:0,totalAuthoredChapters:"3",totalChapterViews:"0",totalEditedBooks:"1",institution:{name:"Amity University",institutionURL:null,country:{name:"India"}}},equalEditorTwo:{id:"197609",title:"Prof.",name:"Taha Selim",middleName:null,surname:"Ustun",slug:"taha-selim-ustun",fullName:"Taha Selim Ustun",profilePictureURL:"https://mts.intechopen.com/storage/users/197609/images/system/197609.jpeg",biography:"Dr. Taha Selim Ustun received a Ph.D. in Electrical Engineering from Victoria University, Melbourne, Australia. He is a researcher with the Fukushima Renewable Energy Institute, AIST (FREA), where he leads the Smart Grid Cybersecurity Laboratory. Prior to that, he was a faculty member with the School of Electrical and Computer Engineering, Carnegie Mellon University, Pittsburgh, PA, USA. His current research interests include power systems protection, communication in power networks, distributed generation, microgrids, electric vehicle integration, and cybersecurity in smart grids. He serves on the editorial boards of IEEE Access, IEEE Transactions on Industrial Informatics, Energies, Electronics, Electricity, World Electric Vehicle and Information journals. Dr. Ustun is a member of the IEEE 2004 and 2800, IEC Renewable Energy Management WG 8, and IEC TC 57 WG17. He has been invited to run specialist courses in Africa, India, and China. He has delivered talks for the Qatar Foundation, the World Energy Council, the Waterloo Global Science Initiative, and the European Union Energy Initiative (EUEI). His research has attracted funding from prestigious programs in Japan, Australia, the European Union, and North America.",institutionString:"Fukushima Renewable Energy Institute, AIST (FREA)",position:null,outsideEditionCount:0,totalCites:0,totalAuthoredChapters:"1",totalChapterViews:"0",totalEditedBooks:"0",institution:{name:"National Institute of Advanced Industrial Science and Technology",institutionURL:null,country:{name:"Japan"}}},equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"8985",title:"Natural Resources Management and Biological Sciences",subtitle:null,isOpenForSubmission:!1,hash:"5c2e219a6c021a40b5a20c041dea88c4",slug:"natural-resources-management-and-biological-sciences",bookSignature:"Edward R. Rhodes and Humood Naser",coverURL:"https://cdn.intechopen.com/books/images_new/8985.jpg",editors:[{id:"280886",title:"Prof.",name:"Edward R",middleName:null,surname:"Rhodes",slug:"edward-r-rhodes",fullName:"Edward R Rhodes"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10192",title:"Background and Management of Muscular Atrophy",subtitle:null,isOpenForSubmission:!1,hash:"eca24028d89912b5efea56e179dff089",slug:"background-and-management-of-muscular-atrophy",bookSignature:"Julianna Cseri",coverURL:"https://cdn.intechopen.com/books/images_new/10192.jpg",editors:[{id:"135579",title:"Dr.",name:"Julianna",middleName:null,surname:"Cseri",slug:"julianna-cseri",fullName:"Julianna Cseri"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10065",title:"Wavelet Theory",subtitle:null,isOpenForSubmission:!1,hash:"d8868e332169597ba2182d9b004d60de",slug:"wavelet-theory",bookSignature:"Somayeh Mohammady",coverURL:"https://cdn.intechopen.com/books/images_new/10065.jpg",editors:[{id:"109280",title:"Dr.",name:"Somayeh",middleName:null,surname:"Mohammady",slug:"somayeh-mohammady",fullName:"Somayeh Mohammady"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9243",title:"Coastal Environments",subtitle:null,isOpenForSubmission:!1,hash:"8e05e5f631e935eef366980f2e28295d",slug:"coastal-environments",bookSignature:"Yuanzhi Zhang and X. San Liang",coverURL:"https://cdn.intechopen.com/books/images_new/9243.jpg",editors:[{id:"77597",title:"Prof.",name:"Yuanzhi",middleName:null,surname:"Zhang",slug:"yuanzhi-zhang",fullName:"Yuanzhi Zhang"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9644",title:"Glaciers and the Polar Environment",subtitle:null,isOpenForSubmission:!1,hash:"e8cfdc161794e3753ced54e6ff30873b",slug:"glaciers-and-the-polar-environment",bookSignature:"Masaki Kanao, Danilo Godone and Niccolò Dematteis",coverURL:"https://cdn.intechopen.com/books/images_new/9644.jpg",editors:[{id:"51959",title:"Dr.",name:"Masaki",middleName:null,surname:"Kanao",slug:"masaki-kanao",fullName:"Masaki Kanao"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"7847",title:"Medical Toxicology",subtitle:null,isOpenForSubmission:!1,hash:"db9b65bea093de17a0855a1b27046247",slug:"medical-toxicology",bookSignature:"Pınar Erkekoglu and Tomohisa Ogawa",coverURL:"https://cdn.intechopen.com/books/images_new/7847.jpg",editors:[{id:"109978",title:"Prof.",name:"Pınar",middleName:null,surname:"Erkekoglu",slug:"pinar-erkekoglu",fullName:"Pınar Erkekoglu"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}}],latestBooks:[{type:"book",id:"9243",title:"Coastal Environments",subtitle:null,isOpenForSubmission:!1,hash:"8e05e5f631e935eef366980f2e28295d",slug:"coastal-environments",bookSignature:"Yuanzhi Zhang and X. San Liang",coverURL:"https://cdn.intechopen.com/books/images_new/9243.jpg",editedByType:"Edited by",editors:[{id:"77597",title:"Prof.",name:"Yuanzhi",middleName:null,surname:"Zhang",slug:"yuanzhi-zhang",fullName:"Yuanzhi Zhang"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10020",title:"Operations Management",subtitle:"Emerging Trend in the Digital Era",isOpenForSubmission:!1,hash:"526f0dbdc7e4d85b82ce8383ab894b4c",slug:"operations-management-emerging-trend-in-the-digital-era",bookSignature:"Antonella Petrillo, Fabio De Felice, Germano Lambert-Torres and Erik Bonaldi",coverURL:"https://cdn.intechopen.com/books/images_new/10020.jpg",editedByType:"Edited by",editors:[{id:"181603",title:"Dr.",name:"Antonella",middleName:null,surname:"Petrillo",slug:"antonella-petrillo",fullName:"Antonella Petrillo"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"9521",title:"Antimicrobial Resistance",subtitle:"A One Health Perspective",isOpenForSubmission:!1,hash:"30949e78832e1afba5606634b52056ab",slug:"antimicrobial-resistance-a-one-health-perspective",bookSignature:"Mihai Mareș, Swee Hua Erin Lim, Kok-Song Lai and Romeo-Teodor Cristina",coverURL:"https://cdn.intechopen.com/books/images_new/9521.jpg",editedByType:"Edited by",editors:[{id:"88785",title:"Prof.",name:"Mihai",middleName:null,surname:"Mares",slug:"mihai-mares",fullName:"Mihai Mares"}],equalEditorOne:{id:"190224",title:"Dr.",name:"Swee Hua Erin",middleName:null,surname:"Lim",slug:"swee-hua-erin-lim",fullName:"Swee Hua Erin Lim",profilePictureURL:"https://mts.intechopen.com/storage/users/190224/images/system/190224.png",biography:"Dr. Erin Lim is presently working as an Assistant Professor in the Division of Health Sciences, Abu Dhabi Women\\'s College, Higher Colleges of Technology in Abu Dhabi, United Arab Emirates and is affiliated as an Associate Professor to Perdana University-Royal College of Surgeons in Ireland, Selangor, Malaysia. She obtained her Ph.D. from Universiti Putra Malaysia in 2010 with a National Science Fellowship awarded from the Ministry of Science, Technology and Innovation Malaysia and has been actively involved in research ever since. Her main research interests include analysis of carriage and transmission of multidrug resistant bacteria in non-conventional settings, besides an interest in natural products for antimicrobial testing. She is heavily involved in the elucidation of mechanisms of reversal of resistance in bacteria in addition to investigating the immunological analyses of diseases, development of vaccination and treatment models in animals. She hopes her work will support the discovery of therapeutics in the clinical setting and assist in the combat against the burden of antibiotic resistance.",institutionString:"Abu Dhabi Women’s College",position:null,outsideEditionCount:0,totalCites:0,totalAuthoredChapters:"3",totalChapterViews:"0",totalEditedBooks:"0",institution:{name:"Perdana University",institutionURL:null,country:{name:"Malaysia"}}},equalEditorTwo:{id:"221544",title:"Dr.",name:"Kok-Song",middleName:null,surname:"Lai",slug:"kok-song-lai",fullName:"Kok-Song Lai",profilePictureURL:"https://mts.intechopen.com/storage/users/221544/images/system/221544.jpeg",biography:"Dr. Lai Kok Song is an Assistant Professor in the Division of Health Sciences, Abu Dhabi Women\\'s College, Higher Colleges of Technology in Abu Dhabi, United Arab Emirates. He obtained his Ph.D. in Biological Sciences from Nara Institute of Science and Technology, Japan in 2012. Prior to his academic appointment, Dr. Lai worked as a Senior Scientist at the Ministry of Science, Technology and Innovation, Malaysia. His current research areas include antimicrobial resistance and plant-pathogen interaction. His particular interest lies in the study of the antimicrobial mechanism via membrane disruption of essential oils against multi-drug resistance bacteria through various biochemical, molecular and proteomic approaches. Ultimately, he hopes to uncover and determine novel biomarkers related to antibiotic resistance that can be developed into new therapeutic strategies.",institutionString:"Higher Colleges of Technology",position:null,outsideEditionCount:0,totalCites:0,totalAuthoredChapters:"8",totalChapterViews:"0",totalEditedBooks:"0",institution:{name:"Higher Colleges of Technology",institutionURL:null,country:{name:"United Arab Emirates"}}},equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"9560",title:"Creativity",subtitle:"A Force to Innovation",isOpenForSubmission:!1,hash:"58f740bc17807d5d88d647c525857b11",slug:"creativity-a-force-to-innovation",bookSignature:"Pooja Jain",coverURL:"https://cdn.intechopen.com/books/images_new/9560.jpg",editedByType:"Edited by",editors:[{id:"316765",title:"Dr.",name:"Pooja",middleName:null,surname:"Jain",slug:"pooja-jain",fullName:"Pooja Jain"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"9669",title:"Recent Advances in Rice Research",subtitle:null,isOpenForSubmission:!1,hash:"12b06cc73e89af1e104399321cc16a75",slug:"recent-advances-in-rice-research",bookSignature:"Mahmood-ur- Rahman Ansari",coverURL:"https://cdn.intechopen.com/books/images_new/9669.jpg",editedByType:"Edited by",editors:[{id:"185476",title:"Dr.",name:"Mahmood-Ur-",middleName:null,surname:"Rahman Ansari",slug:"mahmood-ur-rahman-ansari",fullName:"Mahmood-Ur- Rahman Ansari"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10192",title:"Background and Management of Muscular Atrophy",subtitle:null,isOpenForSubmission:!1,hash:"eca24028d89912b5efea56e179dff089",slug:"background-and-management-of-muscular-atrophy",bookSignature:"Julianna Cseri",coverURL:"https://cdn.intechopen.com/books/images_new/10192.jpg",editedByType:"Edited by",editors:[{id:"135579",title:"Dr.",name:"Julianna",middleName:null,surname:"Cseri",slug:"julianna-cseri",fullName:"Julianna Cseri"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"9550",title:"Entrepreneurship",subtitle:"Contemporary Issues",isOpenForSubmission:!1,hash:"9b4ac1ee5b743abf6f88495452b1e5e7",slug:"entrepreneurship-contemporary-issues",bookSignature:"Mladen Turuk",coverURL:"https://cdn.intechopen.com/books/images_new/9550.jpg",editedByType:"Edited by",editors:[{id:"319755",title:"Prof.",name:"Mladen",middleName:null,surname:"Turuk",slug:"mladen-turuk",fullName:"Mladen Turuk"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10065",title:"Wavelet Theory",subtitle:null,isOpenForSubmission:!1,hash:"d8868e332169597ba2182d9b004d60de",slug:"wavelet-theory",bookSignature:"Somayeh Mohammady",coverURL:"https://cdn.intechopen.com/books/images_new/10065.jpg",editedByType:"Edited by",editors:[{id:"109280",title:"Dr.",name:"Somayeh",middleName:null,surname:"Mohammady",slug:"somayeh-mohammady",fullName:"Somayeh Mohammady"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"9313",title:"Clay Science and Technology",subtitle:null,isOpenForSubmission:!1,hash:"6fa7e70396ff10620e032bb6cfa6fb72",slug:"clay-science-and-technology",bookSignature:"Gustavo Morari Do Nascimento",coverURL:"https://cdn.intechopen.com/books/images_new/9313.jpg",editedByType:"Edited by",editors:[{id:"7153",title:"Prof.",name:"Gustavo",middleName:null,surname:"Morari Do Nascimento",slug:"gustavo-morari-do-nascimento",fullName:"Gustavo Morari Do Nascimento"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"9888",title:"Nuclear Power Plants",subtitle:"The Processes from the Cradle to the Grave",isOpenForSubmission:!1,hash:"c2c8773e586f62155ab8221ebb72a849",slug:"nuclear-power-plants-the-processes-from-the-cradle-to-the-grave",bookSignature:"Nasser Awwad",coverURL:"https://cdn.intechopen.com/books/images_new/9888.jpg",editedByType:"Edited by",editors:[{id:"145209",title:"Prof.",name:"Nasser",middleName:"S",surname:"Awwad",slug:"nasser-awwad",fullName:"Nasser Awwad"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}}]},subject:{topic:{id:"601",title:"Digital Image Processing",slug:"numerical-analysis-and-scientific-computing-digital-image-processing",parent:{title:"Numerical Analysis and Scientific Computing",slug:"numerical-analysis-and-scientific-computing"},numberOfBooks:2,numberOfAuthorsAndEditors:85,numberOfWosCitations:40,numberOfCrossrefCitations:47,numberOfDimensionsCitations:73,videoUrl:null,fallbackUrl:null,description:null},booksByTopicFilter:{topicSlug:"numerical-analysis-and-scientific-computing-digital-image-processing",sort:"-publishedDate",limit:12,offset:0},booksByTopicCollection:[{type:"book",id:"9239",title:"Digital Imaging",subtitle:null,isOpenForSubmission:!1,hash:"656ebe9652b39a1f5dc33d004170a1c4",slug:"digital-imaging",bookSignature:"Muhammad Sarfraz",coverURL:"https://cdn.intechopen.com/books/images_new/9239.jpg",editedByType:"Edited by",editors:[{id:"215610",title:"Prof.",name:"Muhammad",middleName:null,surname:"Sarfraz",slug:"muhammad-sarfraz",fullName:"Muhammad Sarfraz"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"3845",title:"MATLAB",subtitle:"Applications for the Practical Engineer",isOpenForSubmission:!1,hash:"1079f9d5879db7c7c13257713a2e9710",slug:"matlab-applications-for-the-practical-engineer",bookSignature:"Kelly Bennett",coverURL:"https://cdn.intechopen.com/books/images_new/3845.jpg",editedByType:"Edited by",editors:[{id:"169605",title:"Dr.",name:"Kelly",middleName:null,surname:"Bennett",slug:"kelly-bennett",fullName:"Kelly Bennett"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}}],booksByTopicTotal:2,mostCitedChapters:[{id:"46873",doi:"10.5772/58371",title:"Analysis of Robotic System Motion in SimMechanics and MATLAB GUI Environment",slug:"analysis-of-robotic-system-motion-in-simmechanics-and-matlab-gui-environment",totalDownloads:6474,totalCrossrefCites:7,totalDimensionsCites:15,book:{slug:"matlab-applications-for-the-practical-engineer",title:"MATLAB",fullTitle:"MATLAB Applications for the Practical Engineer"},signatures:"Viliam Fedák, František Ďurovský and Róbert Üveges",authors:[{id:"85462",title:"Associate Prof.",name:"Viliam",middleName:null,surname:"Fedak",slug:"viliam-fedak",fullName:"Viliam Fedak"},{id:"86711",title:"Prof.",name:"František",middleName:null,surname:"Ďurovský",slug:"frantisek-durovsky",fullName:"František Ďurovský"},{id:"169850",title:"Dr.",name:"Robert",middleName:null,surname:"Uveges",slug:"robert-uveges",fullName:"Robert Uveges"}]},{id:"46868",doi:"10.5772/58392",title:"Obstacle Avoidance Task for a Wheeled Mobile Robot – A Matlab-Simulink-Based Didactic Application",slug:"obstacle-avoidance-task-for-a-wheeled-mobile-robot-a-matlab-simulink-based-didactic-application",totalDownloads:3534,totalCrossrefCites:7,totalDimensionsCites:12,book:{slug:"matlab-applications-for-the-practical-engineer",title:"MATLAB",fullTitle:"MATLAB Applications for the Practical Engineer"},signatures:"R. Silva-Ortigoza, C. Márquez-Sánchez, F. Carrizosa-Corral, V. M.\nHernández-Guzmán, J. R. García-Sánchez, H. Taud, M. Marciano-\nMelchor and J. A. Álvarez-Cedillo",authors:[{id:"50395",title:"Dr.",name:"Ramón",middleName:null,surname:"Silva-Ortigoza",slug:"ramon-silva-ortigoza",fullName:"Ramón Silva-Ortigoza"},{id:"62587",title:"Dr.",name:"Magdalena",middleName:null,surname:"Marciano-Melchor",slug:"magdalena-marciano-melchor",fullName:"Magdalena Marciano-Melchor"},{id:"111290",title:"Dr.",name:"Hind",middleName:null,surname:"Taud",slug:"hind-taud",fullName:"Hind Taud"},{id:"169827",title:"Dr.",name:"Celso",middleName:null,surname:"Márquez-Sánchez",slug:"celso-marquez-sanchez",fullName:"Celso Márquez-Sánchez"},{id:"169828",title:"Dr.",name:"Victor Manuel",middleName:null,surname:"Hernández-Guzmán",slug:"victor-manuel-hernandez-guzman",fullName:"Victor Manuel Hernández-Guzmán"},{id:"169830",title:"Dr.",name:"Fernando",middleName:null,surname:"Carrizosa-Corral",slug:"fernando-carrizosa-corral",fullName:"Fernando Carrizosa-Corral"},{id:"170703",title:"MSc.",name:"Jesús Antonio",middleName:null,surname:"Álvarez-Cedillo",slug:"jesus-antonio-alvarez-cedillo",fullName:"Jesús Antonio Álvarez-Cedillo"},{id:"170704",title:"MSc.",name:"José Rafael",middleName:null,surname:"García-Sánchez",slug:"jose-rafael-garcia-sanchez",fullName:"José Rafael García-Sánchez"}]},{id:"46131",doi:"10.5772/57384",title:"Vibration Analysis of Laminated Composite Variable Thickness Plate Using Finite Strip Transition Matrix Technique and MATLAB Verifications",slug:"vibration-analysis-of-laminated-composite-variable-thickness-plate-using-finite-strip-transition-mat",totalDownloads:3774,totalCrossrefCites:4,totalDimensionsCites:8,book:{slug:"matlab-applications-for-the-practical-engineer",title:"MATLAB",fullTitle:"MATLAB Applications for the Practical Engineer"},signatures:"Wael A. Al-Tabey",authors:[{id:"146693",title:"Dr.",name:"Weal",middleName:"A.",surname:"Altabey",slug:"weal-altabey",fullName:"Weal Altabey"}]}],mostDownloadedChaptersLast30Days:[{id:"46862",title:"Analysis of Balancing of Unbalanced Rotors and Long Shafts using GUI MATLAB",slug:"analysis-of-balancing-of-unbalanced-rotors-and-long-shafts-using-gui-matlab",totalDownloads:7178,totalCrossrefCites:1,totalDimensionsCites:2,book:{slug:"matlab-applications-for-the-practical-engineer",title:"MATLAB",fullTitle:"MATLAB Applications for the Practical Engineer"},signatures:"Viliam Fedák, Pavel Záskalický and Zoltán Gelvanič",authors:[{id:"85462",title:"Associate Prof.",name:"Viliam",middleName:null,surname:"Fedak",slug:"viliam-fedak",fullName:"Viliam Fedak"},{id:"154498",title:"Prof.",name:"Pavel",middleName:null,surname:"Záskalický",slug:"pavel-zaskalicky",fullName:"Pavel Záskalický"},{id:"169849",title:"Dr.",name:"Zoltan",middleName:null,surname:"Gelvanič",slug:"zoltan-gelvanic",fullName:"Zoltan Gelvanič"}]},{id:"47435",title:"Integration of MATLAB and ANSYS for Advanced Analysis of Vehicle Structures",slug:"integration-of-matlab-and-ansys-for-advanced-analysis-of-vehicle-structures",totalDownloads:5983,totalCrossrefCites:2,totalDimensionsCites:6,book:{slug:"matlab-applications-for-the-practical-engineer",title:"MATLAB",fullTitle:"MATLAB Applications for the Practical Engineer"},signatures:"A. Gauchía, B.L. Boada, M.J.L. Boada and V. Díaz",authors:[{id:"34670",title:"Dr.",name:"Antonio",middleName:null,surname:"Gauchía",slug:"antonio-gauchia",fullName:"Antonio Gauchía"},{id:"169811",title:"Dr.",name:"Beatriz",middleName:null,surname:"Lopez Boada",slug:"beatriz-lopez-boada",fullName:"Beatriz Lopez Boada"},{id:"169812",title:"Dr.",name:"Maria",middleName:null,surname:"Jesus Boada",slug:"maria-jesus-boada",fullName:"Maria Jesus Boada"},{id:"169813",title:"Dr.",name:"Vicente",middleName:null,surname:"Diaz Lopez",slug:"vicente-diaz-lopez",fullName:"Vicente Diaz Lopez"}]},{id:"46816",title:"Image Processing with MATLAB and GPU",slug:"image-processing-with-matlab-and-gpu",totalDownloads:6646,totalCrossrefCites:4,totalDimensionsCites:5,book:{slug:"matlab-applications-for-the-practical-engineer",title:"MATLAB",fullTitle:"MATLAB Applications for the Practical Engineer"},signatures:"Antonios Georgantzoglou, Joakim da Silva and Rajesh Jena",authors:[{id:"55073",title:"Dr.",name:"Antonis",middleName:null,surname:"Georgantzoglou",slug:"antonis-georgantzoglou",fullName:"Antonis Georgantzoglou"},{id:"169840",title:"Mr.",name:"Joakim",middleName:null,surname:"Da Silva",slug:"joakim-da-silva",fullName:"Joakim Da Silva"},{id:"169841",title:"Dr.",name:"Rajesh",middleName:null,surname:"Jena",slug:"rajesh-jena",fullName:"Rajesh Jena"}]},{id:"45966",title:"Design of Fractionation Columns",slug:"design-of-fractionation-columns",totalDownloads:10452,totalCrossrefCites:2,totalDimensionsCites:2,book:{slug:"matlab-applications-for-the-practical-engineer",title:"MATLAB",fullTitle:"MATLAB Applications for the Practical Engineer"},signatures:"Hassan Al-Haj Ibrahim",authors:[{id:"12400",title:"Prof.",name:"Hassan Al- Haj",middleName:null,surname:"Ibrahim",slug:"hassan-al-haj-ibrahim",fullName:"Hassan Al- Haj Ibrahim"}]},{id:"46802",title:"Dual Heuristic Neural Programming Controller for Synchronous Generator",slug:"dual-heuristic-neural-programming-controller-for-synchronous-generator",totalDownloads:2143,totalCrossrefCites:0,totalDimensionsCites:0,book:{slug:"matlab-applications-for-the-practical-engineer",title:"MATLAB",fullTitle:"MATLAB Applications for the Practical Engineer"},signatures:"Mato Miskovic, Ivan Miskovic and Marija Mirosevic",authors:[{id:"53832",title:"Dr.",name:"Marina",middleName:null,surname:"Mirošević",slug:"marina-mirosevic",fullName:"Marina Mirošević"},{id:"53833",title:"Dr.",name:"Mato",middleName:null,surname:"Miskovic",slug:"mato-miskovic",fullName:"Mato Miskovic"},{id:"169843",title:"M.Sc.",name:"Ivan",middleName:null,surname:"Miskovic",slug:"ivan-miskovic",fullName:"Ivan Miskovic"}]},{id:"47347",title:"Knowledge Discovery and Information Extraction on the Open Internet Using MATLAB and Amazon Web Services (AWS)",slug:"knowledge-discovery-and-information-extraction-on-the-open-internet-using-matlab-and-amazon-web-serv",totalDownloads:3544,totalCrossrefCites:0,totalDimensionsCites:0,book:{slug:"matlab-applications-for-the-practical-engineer",title:"MATLAB",fullTitle:"MATLAB Applications for the Practical Engineer"},signatures:"Kelly Bennett and James Robertson",authors:[{id:"53578",title:"Dr.",name:"James",middleName:null,surname:"Robertson",slug:"james-robertson",fullName:"James Robertson"},{id:"169605",title:"Dr.",name:"Kelly",middleName:null,surname:"Bennett",slug:"kelly-bennett",fullName:"Kelly Bennett"}]},{id:"46131",title:"Vibration Analysis of Laminated Composite Variable Thickness Plate Using Finite Strip Transition Matrix Technique and MATLAB Verifications",slug:"vibration-analysis-of-laminated-composite-variable-thickness-plate-using-finite-strip-transition-mat",totalDownloads:3771,totalCrossrefCites:4,totalDimensionsCites:8,book:{slug:"matlab-applications-for-the-practical-engineer",title:"MATLAB",fullTitle:"MATLAB Applications for the Practical Engineer"},signatures:"Wael A. Al-Tabey",authors:[{id:"146693",title:"Dr.",name:"Weal",middleName:"A.",surname:"Altabey",slug:"weal-altabey",fullName:"Weal Altabey"}]},{id:"47066",title:"A MATLAB-based Microscope",slug:"a-matlab-based-microscope",totalDownloads:2843,totalCrossrefCites:0,totalDimensionsCites:0,book:{slug:"matlab-applications-for-the-practical-engineer",title:"MATLAB",fullTitle:"MATLAB Applications for the Practical Engineer"},signatures:"Milton P. Macedo",authors:[{id:"169601",title:"Dr.",name:"Milton",middleName:null,surname:"Macedo",slug:"milton-macedo",fullName:"Milton Macedo"}]},{id:"46873",title:"Analysis of Robotic System Motion in SimMechanics and MATLAB GUI Environment",slug:"analysis-of-robotic-system-motion-in-simmechanics-and-matlab-gui-environment",totalDownloads:6468,totalCrossrefCites:7,totalDimensionsCites:15,book:{slug:"matlab-applications-for-the-practical-engineer",title:"MATLAB",fullTitle:"MATLAB Applications for the Practical Engineer"},signatures:"Viliam Fedák, František Ďurovský and Róbert Üveges",authors:[{id:"85462",title:"Associate Prof.",name:"Viliam",middleName:null,surname:"Fedak",slug:"viliam-fedak",fullName:"Viliam Fedak"},{id:"86711",title:"Prof.",name:"František",middleName:null,surname:"Ďurovský",slug:"frantisek-durovsky",fullName:"František Ďurovský"},{id:"169850",title:"Dr.",name:"Robert",middleName:null,surname:"Uveges",slug:"robert-uveges",fullName:"Robert Uveges"}]},{id:"46875",title:"Eigenvalue Analysis in Mode Domain Considering a Three- Phase System with two Ground Wires",slug:"eigenvalue-analysis-in-mode-domain-considering-a-three-phase-system-with-two-ground-wires",totalDownloads:2025,totalCrossrefCites:0,totalDimensionsCites:0,book:{slug:"matlab-applications-for-the-practical-engineer",title:"MATLAB",fullTitle:"MATLAB Applications for the Practical Engineer"},signatures:"R. C. Monzani, A. J. Prado, L.S. Lessa and L. F. Bovolato",authors:[{id:"145100",title:"Dr.",name:"Rafael",middleName:null,surname:"Cuerda Monzani",slug:"rafael-cuerda-monzani",fullName:"Rafael Cuerda Monzani"},{id:"148612",title:"Dr.",name:"Afonso",middleName:"José Do",surname:"Prado",slug:"afonso-prado",fullName:"Afonso Prado"},{id:"149221",title:"Prof.",name:"Luiz",middleName:null,surname:"Fernando Bovolato",slug:"luiz-fernando-bovolato",fullName:"Luiz Fernando Bovolato"},{id:"169848",title:"Dr.",name:"Leonardo",middleName:null,surname:"Lessa",slug:"leonardo-lessa",fullName:"Leonardo Lessa"}]}],onlineFirstChaptersFilter:{topicSlug:"numerical-analysis-and-scientific-computing-digital-image-processing",limit:3,offset:0},onlineFirstChaptersCollection:[],onlineFirstChaptersTotal:0},preDownload:{success:null,errors:{}},aboutIntechopen:{},privacyPolicy:{},peerReviewing:{},howOpenAccessPublishingWithIntechopenWorks:{},sponsorshipBooks:{sponsorshipBooks:[],offset:0,limit:8,total:null},route:{name:"chapter.detail",path:"/books/lithography/nanosphere-lithography-for-nitride-semiconductors",hash:"",query:{},params:{book:"lithography",chapter:"nanosphere-lithography-for-nitride-semiconductors"},fullPath:"/books/lithography/nanosphere-lithography-for-nitride-semiconductors",meta:{},from:{name:null,path:"/",hash:"",query:{},params:{},fullPath:"/",meta:{}}}},function(){var e;(e=document.currentScript||document.scripts[document.scripts.length-1]).parentNode.removeChild(e)}()