\r\n\t[2] J. V. Moloney, A. C. Newell. Nonlinear Optics. Westview Press, Oxford, 2004.
\r\n\t[3] M. Kauranen, A. V. Zayats. Nonlinear Plasmonics. Nature Photonics, vol. 6, 2012, pp. 737-748.
\r\n\t[4] P. Dombi, Z. Pápa, J. Vogelsang et al. Strong-field nano-optics. Reviews of Modern Physics, vol. 92, 2020, pp. 025003-1 – 025003-66.
\r\n\t[5] N. C. Panoiu, W. E. I. Sha, D.Y. Lei, G.-C. Li. Nonlinear optics in plasmonic nanostructures. Journal of Optics, 20, 2018, pp. 1-36.
\r\n\t[6] A. Krasnok, A. Alu. Active nanophotonics. Proceedings of IEEE, vol. 108, 2020, pp. 628-654.
\r\n\t[7] M. Lapine, I.V. Shadrivov, Yu. S. Kivshar. Colloquium: Nonlinear metamaterials. Reviews of Modern Physics, vol. 86, 2014, pp. 1093-1123.
\r\n\t[8] Iam Choon Khoo. Nonlinear optics, active plasmonics and metamaterials with liquid crystals. Progress in Quantum Electronics, vol. 38, 2014, pp. 77- 117.
\r\n\t
Cerebral venous thrombosis (CVT) is a less common cause of stroke that is often under recognized in clinical practice. CVT accounts for 0.5–1% of strokes that has a preponderance to occur in women [1, 2]. The goal of this chapter is to provide clinicians with the knowledge and ability to recognize and treat CVT early in its time course leading to the best clinical outcomes.
The cerebral venous system is a network of superficial sinuses and deeper cortical veins that drain the superficial surfaces of both cerebral hemispheres and the deeper brain structures ultimately returning blood back to the heart via the internal jugular veins. The cerebral venous system is divided into a superficial system (superior sagittal sinus, inferior sagittal sinus, cortical veins) and a deep system (transverse sinus, straight sinus, sigmoid sinus, deeper cortical veins). The flow patterns and anatomy can be seen in in Figures 1 and 2.
Cerebral venous anatomy.
Cerebral venous anatomy on magnetic resonance venogram (MRV).
The superficial cortical veins adhering to the arachnoid layer are thin walled and have no valves [3]. Typical cerebral venous flow starts with the superficial cortical veins draining into the superior/inferior sagittal sinus or straight sinus draining into the confluence of sinuses (also known as torcula or torcular herophili) to the transverse sinuses, sigmoid sinuses, and then internal jugular veins. The superior sagittal sinus drains the superior-lateral cerebral hemispheric surfaces bilaterally. The diploic, meningeal and emissary veins drain into the superior sagittal sinus. This is of clinical importance in scalp and CSF infections as prothrombotic venous drainage into the superior sagittal sinus can induce thrombus formation within that structure. The inferior sagittal sinus drains the bilateral medial cerebral hemispheres as well as the falx cerebri. The inferior sagittal sinus joins with the great vein of Galen to form the straight sinus. The great vein of Galen is formed by the internal cerebral vein (formed by thalamostriate vein, septal vein and choroid vein) and basal vein of Rosenthal (anterior/middle cerebral vein and striate vein) which drain the basal ganglia and deep white matter bilaterally. The lateral sinuses (transverse and sigmoid sinuses) receive drainage directly from the posterior cerebral hemisphere, brainstem and cerebellum bilaterally. Of clinical importance, the anatomical positioning of these lateral sinuses near the mastoid air cells increases their susceptibility to thrombosis formation in the setting of ear infections such as chronic otitis media and mastoiditis [4].
Two unique parts of the venous sinus drainage system are the anastomotic veins and the bilateral cavernous sinus. The superior anastomotic vein of Trolard connects the superior sagittal sinus and the superficial vein of Sylvius. The inferior anastomotic vein of Labbe connects the superficial middle cerebral vein and transverse sinus. The cavernous sinus receives drainage from the orbits, inferior frontal lobe, inferior parietal lobe and the face in the nasal region. Given that cranial nerves CNIII, CN IV, CN V-1, CN V-2 and CN VI pass through the cavernous sinus this becomes an important clinical localization point in the setting of facial and nasal infections.
Much of neurology involves pattern recognition in the setting of clinical findings and syndromes. Clinical syndromes of the venous system are less well stereotyped than the more commonly seen and appreciated arterial stroke syndromes. Cerebral cortical veins often have a common presentation of focal seizure activity correlating with the specific region of the cortex involved. Thrombosis involving the deep venous system leads to mental status changes and can progress to coma when the bilateral thalami are involved. Notably, thrombosis involving the deeper venous system generally results in a more rapid deterioration compared to the superficial system. Clinically, thrombosis in the superior sagittal sinus syndrome can present quite variably, but the classic syndrome includes bilateral motor deficits, neurobehavioral issues related to frontal lobe injury, and seizure activity related to hemispheric cortical involvement. Other findings can include scalp and/or face edema, and dilated scalp veins based on the lack of venous flow into the sagittal sinus [5]. Thrombosis in the transverse venous sinus typically results in parietal lobe deficits with patients presenting with either aphasia or neglect depending on hemispheric dominance. Accompanying symptoms often include headaches, ear and/or mastoid pain. The visual pathways can also be affected in a lateral sinus thrombosis syndrome thus resulting in hemianopia secondary to occipital lobe involvement. Cavernous sinus thrombosis typically presents with diplopia, proptosis, headache and orbital pain, or some combination of these, with the examiner eliciting cranial nerve palsies involving CN-III, CN-IV, CN-V1, CN-V2, CN VI.
CVT, in absolute terms, is an uncommon diagnosis occurring in 5 per 1 million adults every year [1]. In all, CVT accounts for 0.5–1% of all strokes [6]. In the International Study on Cerebral Vein and Dural Sinus Thrombosis (ISCVT) trial, which evaluated 624 patients in 24 countries, subjects had a median age of 37 years old (78% cases <50 years old) with 74% of enrollees being female, illustrating that CVT is generally a disease of young women [3]. The overall incidence of CVT is 1.32 per 100,000 person-years [7]. CVT occurs in women at a higher rate than men, with the women aged 31–50 years harboring the greatest risk with an incidence of 2.78 per 100,000 person-years [7, 8]. Among the young stroke population, CVT accounts for approximately 5% of cases [9].
The incidence of CVT in the Canadian Pediatric Ischemic Stroke Registry (CRISR) was 6.7 per 1 million [10]. A majority (54%) of the children were younger than 1 year old with 45% below the age of 1 month. This patient population will be further discussed in the following section.
The potential causes for CVT are numerous, but the underlying reason is the coagulation balance is tipped towards a pro-thrombotic state. There are numerous predisposing factors that contribute to the formation of CVT. Examples include medical problems such as thrombophilias, infections and inflammatory states (e.g., autoimmune diseases), transient physiological states including dehydration and pregnancy, medications especially oral contraceptives (OCPs), smoking, and head trauma [11, 12].
The main data on epidemiology of CVT comes from the International Study on Cerebral Vein and Dural Sinus Thrombosis (ISCVT). An ISCVT study demonstrated that more than 44% of the subjects were identified to have more than one cause to their CVT [13]. In that study the most common contributing factor was OCP use (54%) followed by thrombophilia (34.1%), puerperium (14%), infection (12%), malignancy (7.4%) and pregnancy (6%). These contributing factors give credence to the predilection for women in child bearing years. Specifically, OCP use, pregnancy and puerperium risks are exclusive to that subset of patients. An estimated 2% of strokes during pregnancy can be attributed to CVT [14]. The puerperium period is the first 6–8 weeks after childbirth, and it is in that period where the risk of all venous thromboembolic events is increased, with an overall frequency of CVT estimated to be 12 per 100,000 delivers [15, 16]. Although there is limited evidence, factors that have been associated with puerperium CVT include hyperhomocysteinemia, advanced maternal age, cesarean delivery, maternal hypertension, infections and excessive vomiting during pregnancy [17, 18]. In developing and underdeveloped countries, postpartum strokes are relatively common with contributing risk factors including poor antenatal and postpartum care, home deliveries, anemia, and dehydration. During pregnancy itself, the highest incidence worldwide is during the 3rd trimester [19].
The proposed mechanism for the observed young female preponderance is that hormonal factors create a prothrombotic state. The reason many authors cite this to be true is that the incidence of CVT among elderly and children is sex-independent [10, 20]. More evidence supporting hormonal contribution to the pathophysiology is the association between CVT and ovarian hyperstimulation syndrome [21]. The relative risk of CVT among OCP users was as high as 15.9 in one study [22]. A meta-analysis that examined 17 CVT studies calculated an OR 5.59 increased risk of CVT with OCP use [23]. The effect is synergistic when OCP use is combined with a hereditary prothrombotic factors including factor V Leiden or prothrombin G20210A mutation, with the latter demonstrating an OR of 149.3 in one study [24, 25]. Pregnancy and OCP use, absent genetic conditions, are thought to be transient and thus generally not thought to carry a higher risk of recurrence.
Numerous studies have been dedicated to exploring the association between genetic hypercoagulability and CVT risk. A meta-analysis that reviewed 26 case–control studies including 1183 CVT cases and 5189 controls, demonstrated the two gene mutations that most clearly associated with CVT risk were Factor V Leiden/G1691A (OR 2.40 [1.75–3.30; p-value 0.00001) and prothrombin gene mutation (OR 5.48 [3.88–7.74]; p-value 0.00001) [26]. In the same study, they performed an iterative analysis which showed a statistically significant association with methylene tetrahydrofolate reductase/C677T (OR 2.30 [1.20–4.42; p-value 0.02). Similar associations were described in systematic reviews that showed statistically significant increases in odds ratio (OR) for prothrombin gene mutation (9.27 [5.85–1467]), Factor V Leiden (3.38 [2.27–5.05]) and hyperhomocysteinemia (4.07 [2.54–6.52]) [27]. In ISCVT 22% of the patients had a genetic hypercoagulable state [13]. In decreasing order of frequency, the identified genes were G20210A prothrombin mutation, Factor V Leiden, anticardiolipin/antiphospholipid antibodies, protein C deficiency, protein S deficiency and antithrombin III deficiency [3, 15, 18, 24, 27, 28, 29, 30, 31].
Another acquired hypercoagulable state that is common in the setting of CVT is malignancy. The mechanism by which malignancy causes hypercoagulability is varied. Authors have suggested that potential mechanisms may include tumor invasion of venous sinuses, compression of dural venous sinuses, an imbalance in systemic inflammatory mediators, chemotherapy, and targeted hormone therapy (i.e., tamoxifen for breast cancer treatment) [32, 33, 34, 35]. The associated malignancies represented were primary CNS tumors (2.2%), metastases of solid tumors (3.2%) and hematologic malignancies (2.9%) [3].
Infections are another well-established cause of CVTs. Developed countries have shown a decline in infection related CVTs, but in developing countries at ~18% it remains a prevalent cause [36]. In ISCVT infection accounted for 8.2% of adults [37]. Locations of the parameningeal infections were in the ear, sinus, mouth, face and neck. Cavernous sinus thrombosis specifically is overwhelming caused by skin infections of the face and/or nasal sinuses, where the venous drainage flows directly into the cavernous sinus. Another syndrome, called Lemierre’s syndrome, results from oropharyngeal infection leading to thrombosis of the internal jugular vein which may back propagate causing extensive CVT. Further, the localized inflammation may also invade the internal carotid arteries (ICA) as they pass through the oropharynx, thereby leading to arterial strokes.
In children, infection was the most common cause of CVT. Among neonates, infection occurred in 84% of all patients [10]. In patients older than 1 month, the majority of case etiologies shifted towards chronic medical conditions, including connective tissue disorders (23%), hematologic diseases (20%) and cancers (13%) [10].
CVT is a diagnosis that is often delayed given its variable presentation. ISCVT patients were diagnosed a median of 7 days after symptom-onset, most of whom diagnosed were diagnosed between 48 hours and 30 days from symptom-onset (56%,). This time-period was followed by: acute <48 hours (37%), and chronically >30 days (7%). Across all time-periods, the median delay from symptom-onset until admission was 4 days [3, 38, 39]. Interestingly, delay in diagnosis was associated with increased risk of visual deficits [39]. Men and patients with isolated elevated ICP were diagnosed later. It is helpful to consider the two primary mechanisms that cause neurologic dysfunction: (1) increased intracranial pressure (ICP) and (2) hypoperfusion.
The increased intracranial pressure is due to poor venous outflow effectively leading to increased cerebral venous resistance and decreased CSF drainage, thus increasing ICP [40]. The increased ICP generally results in three manifestations: headache, diplopia and papilledema. In ISCVT, almost 90% of patients examined had headache as a presenting symptom. The headaches were generally described as diffuse progressing over days to weeks, with thunderclap headache being the rare presentation [3, 41]. The authors recommended a higher index of suspicion for high risk patients (women of childbearing age especially on OCPs in isolation or in combination with smoking) who have a new and/or atypical headache not responsive to over the counter analgesics [41]. Patients presenting with isolated headaches had a favorable prognosis in one study [42]. Patients not presenting with headache in the ISCVT cohort were older men and were more likely to have cancer [43]. The mortality was higher in that group, but there was no statistically significant difference when adjusting for confounders in the data [42].
In addition, the increased ICP may also lead to papilledema. The clinical symptoms can be transient visual obscurations, transient vision loss, peripheral vision loss and pulsatile tinnitus. Nausea and vomiting are also common. The diplopia is often caused by compression of one or both abducens nerves leading to horizontal diplopia. More directly, cavernous sinus thrombosis may lead to diplopia via localized involvement with the oculomotor and abducens nerves as they pass through the cavernous sinus. Class I, level C evidence in guidelines suggests cerebral venous imaging in patients with clinical symptoms of increased intracranial pressure [38].
The other primary mechanism is venous infarction as related to a combination of hypoperfusion, ischemia and/or hemorrhagic injury. In such instances, focal neurologic syndromes are encountered in the patterns previously described in the previous “Anatomy and Associated Clinical Syndromes” section. Should hemorrhagic and/or ischemic strokes develop, focal neurologic deficits such as aphasia or hemiparesis can be seen. Patients can present with acute psychosis, typically in combination with other signs and symptoms, but rarely as the sole manifestation. Seizures are also very common, as there is often a disturbed blood–brain barrier with edema development in the setting of viable cortical neurons and supporting cells. Seizures can be focal, unilateral or bilateral, and can also secondarily generalize. In ISCVT seizures were present in 40% of subjects [3].
After a thorough history and physical examination, the most useful diagnostic tool is imaging. As with most patients, the initial scan will be a non-contrast computed tomography (CT) of the head. The purpose of these initial screening images is to evaluate for signs of ischemia, hemorrhage, a “filled” or hyperdense delta sign and/or other evidence of hyperdense venous sinuses. These are the radiographically important CT imaging findings seen in the setting of CVT. The non-contrast CT is estimated to be abnormal in 30% of individuals with CVT [1, 23, 44, 45, 46, 47, 48]. ICH is the initial presentation in 30–40% of CVT patients [49, 50]. The filled delta sign is a triangular hyperdensity in the posterior portion of the superior sagittal sinus in the area of the confluence of the sinuses. A hyperdense dural sign, indicating CVT in a dural vein, is appreciated on approximately 1/3 CVT cases undergoing CT head [44, 45, 47]. Furthermore, the index of suspicion is raised higher if there is hemorrhage that is atypical in appearance, meaning that it is close to venous sinuses and/or crosses typical arterial vascular borders.
When patients present with focal neurologic deficits within an acute intervention window (up to 24 hours since last known well in certain circumstances), the recommendation of the authors is to perform an emergent CT angiogram (CTA) with delayed phase CT venogram (CTV) as part of the initial evaluation. These studies evaluate patients for large-vessel arterial occlusion, with the CTV performed primarily to evaluate for collateral flow in the setting of potential mechanical thrombectomy. However, an added benefit of the delayed phase CTV is that one is also able to evaluate for venous thrombus. Anecdotally, the authors have discovered CVT in the initial CT/CTA/CTV approach in patients with hemorrhagic strokes presenting acutely. A dedicated CTV evaluates the venous sinuses themselves, which would demonstrate thrombosis if present. Some suggest that CTV is more valuable in the subacute and chronic phases because it shows varying density of the thrombosis within the sinuses [38].
MRI is also helpful in the evaluation of CVT. In addition to ruling in or out other diagnoses on the differential, including brain tumors for example, it can provide helpful information for confirming CVT. Consistent with the non-contrast CT brain, the pattern and location of injury can be helpful if hemorrhage or ischemia is present. Parenchymal damage can manifest as ischemia (restricted diffusion), edema and hemorrhage. Edema without hemorrhage is more easily detected on MRI versus CT brain (25% versus 8%) respectively [10, 44, 46, 51, 52, 53, 54, 55, 56, 57]. Hemorrhage-specific MRI sequences are positive in up to 40% of CVT patients [44, 51, 53, 57, 58, 59, 60]. The pattern of parenchymal injury often provides clues to the venous structures involved. For example, simultaneous injury involving the frontal, parietal and occipital cortices would correspond to a superior sagittal sinus thrombosis. Transverse and sigmoid sinuses result in temporal lobe injury. Deep structures are injured in thrombosis of the straight sinus and/or vein of Galen. MRI T2 weighted sequences can provide insight into the venous sinuses themselves, with absent flow voids manifesting as T2 hypointensities. Such findings, can be suggestive of CVT especially with accompanying parenchymal changes discussed above. Although uncommon, hyperintense cortical veins on T2 sequences can be used to identify isolated cortical vein thrombosis [51, 61, 62, 63, 64, 65, 66, 67, 68].
If CVT is clinically suspected, dedicated venous imaging is required, even if the initial plain brain CT brain or brain MRI were negative. As discussed, CTV can be used, however MRV is another option. MRV reveals loss of flow signal in the venous sinuses [69]. This can be especially helpful when combined with above modalities. In our practice, we use susceptibility weighted imaging on MRI to help augment diagnostic accuracy in combination with MRV.
DSA is indicated in patients with parenchymal changes (edema and/or hemorrhage) without conclusive venography on CTV or MRV. A 4-vessel DSA will help evaluate for possible arterial etiologies to the observed parenchymal damage, however the late-phase contrast runoff can be used to examine the venous system. As another option, some authors suggest direct venography via micro-catherization of the internal jugular vein [70, 71]. Such a technique might be useful if an intervention is being considering.
From a serology standpoint, D-dimer has an excellent negative predictive value (99.6%), which is helpful in identifying patients with low probability of having CVT [72, 73]. In one prospective multicenter trial, D-dimer had a specificity of 91.2% and sensitivity of 97.1% [72]. There was a smaller study that found that the false negative rate was 10% in patients presenting with isolated headache [73]. Interestingly, there was a positive correlation with D-dimer level and extent of CVT, and negative correlation with duration of symptoms [72, 73, 74, 75, 76, 77].
After the diagnosis is established it is important to identify the etiology. Recommended lab tests as per evidence-based guidelines in the acute setting include: complete blood count (CBC), complete metabolic panel (CMP), prothrombin time (PT) and activated partial thromboplastin time (aPTT). Hypercoagulable testing for protein C, protein S, antithrombin, anticardiolipin and antiphospholipid antibodies, prothrombin G20210A mutation and factor V Leiden [38, 78, 79, 80, 81, 82] are also valuable and should be considered early. In the setting of anticoagulation use, only antibody and genetic tests are possible. If infection is considered, blood cultures should be attained. In certain populations, it is not unreasonable to perform a malignancy screen with CT chest, abdomen and pelvis ±testicular ultrasound.
Patients who are suspected of having CVT benefit from evaluation by a vascular neurologist and being admitted to a stroke unit [83, 84]. Once a CVT is confirmed, the goal of therapy is to initiate anticoagulation quickly with the goal of preventing thrombus propagation. The data for CVT is certainly not as robust as many other areas of stroke therapy with a total of 12 published studies to date [3, 40, 49, 55, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94], with only 2 randomized-prospective-controlled trials [40, 85].
The first study evaluating CVT treatment was published in Lancet [85]. This double-blind placebo-controlled trial aimed to shed light on the ongoing treatment controversies at that time in clinical practice [85]. The prevailing thought that anticoagulation frequently caused ICH. The study included 20 patients with aseptic CVT randomized to anticoagulation versus placebo. The anticoagulation arm consisted of a heparin bolus of 3000 international units (IU) followed by continuous infusion adjusted to goal PTT 2× the pretreatment value. The primary outcome measure was a CVT severity scale which considered headache, focal signs, seizures and level of consciousness. The secondary outcome was ICH. The study was powered to evaluated 60 patients; however, enrollment was stopped at 20 given the clear benefit of treatment with anticoagulation at the interval analysis. The heparin group showed statistically significant benefit (Mann-Whitney U test p < 0.05) comparing the primary outcome at day 3 and day 8 (p < 0.01). At 3 months 8 patients in the treatment arm had complete recovery and 2 had slight neurologic deficits. In the placebo group 1 patient had complete recovery, 6 with neurologic deficits, and 3 patients were deceased. Notably, none of the treatment group patients developed ICH.
The larger of the two RCTs enrolled patients in the United Kingdom and Netherlands between 7/1992 and 11/1996 [40]. The entire population included 59 patients who were confirmed to have CVT using MRI, MRV and/or angiography. These were adult patients (≥18 years old) with the major exclusion criteria including pregnancy, contraindications for heparin use, poor baseline prognosis, increased ICP requiring lumbar puncture (LP) or shunt. The two arms evaluated nadroparin (190 units/kg/24 hours) versus placebo. After 21 days the blinding was broken and patients in the treatment arm got 10 weeks of warfarin with an international normalized ration (INR) goal 2.5–3.5. The placebo group did not receive anticoagulation or have sham bloodwork. The primary outcome was the Barthel index (BI) at 21 days expressed as a percentage, with a poor outcome defined as BI >15. Notable baseline characteristics for enrolled patients included: a mean age of 36.9 years old (range 18–80), 85% female, delay to randomization 10.6 days, 95% with recent headache, 47% with seizures, 96.6% with a focal neurologic deficit and 49% with cerebral hemorrhage. After 3 weeks, the anticoagulation arm was shown to have poor outcome in 20% of patients versus 24% for placebo, which was not statistically significant. At 12 weeks a secondary evaluation of poor outcome was performed, defined as death or Oxford Handicap Score ≥ 3. Poor outcomes were shown in 13% of anticoagulation group versus 21% of placebo group (risk difference 27% [−26–12%]) which was also not statistically significant. The primary take home point per the study investigators was that there was no new hemorrhage, this, even in the treatment group. As such, anticoagulation was deemed safe despite the presence of cerebral hemorrhage at the time of CVT presentation. Although, the presence of cerebral hemorrhage at presentation was associated with mortality in the study. Notably, the lack of increased frequency of new ICH while receiving anticoagulation therapy is in agreement with other studies that demonstrating low hemorrhage rates after initiation of anticoagulation in the setting of CVT [85, 88].
In the setting of CVT, a non-randomized prospective cohort study compared the efficacy of unfractionated heparin (UFH) versus low molecular weight heparin (LMWH); 302 patients received UFH versus 119 patients received LMWH [95]. The primary endpoint was functional independence at 6 months defined as modified Rankin score < 3. More patients in the LMWH arm were functionally independent after 6 months (92% versus 84%). This was statistically significant in univariate (OR 2.1 [1.0–4.2], p 0.04) and multivariate adjusted analysis (OR 2.4 [1.0–5.7], p 0.04). There was no statistically significant difference in the main secondary endpoints, which included: complete recovery—measured as a modified Rankin Scale (mRS) 0–1, mortality, and new intracranial hemorrhage. Another study, performed in India, further substantiated the claim that LMWH has a benefit in hospital mortality as compared to UFH [96].
The most recent guideline recommendations are that patients with confirmed CVT should be given anticoagulation initially with either UFH or LMWH followed by warfarin offered as class IIa and level of evidence B [40, 85, 88, 92, 97, 98]. There are no large studies evaluating the efficacy of direct acting oral anticoagulants (DOACs) in CVT, as such, warfarin is generally preferred. However, there are occasions when the authors consider and do initiate DOACs/NOACs, including patient preference and in the setting of warfarin interactions with other medications [99, 100].
Endovascular intervention is considered when there is clinical deterioration despite anticoagulation [101, 102, 103, 104, 105, 106, 107, 108, 109, 110]. These patients often have clot propagation leading to further infarction or hemorrhagic injury, worsening ICP elevated due to poor venous outflow, or a combination of these factors. One of the approaches for so-called rescue therapy in CVT is delivery of intrasinus thrombolytics. At present, there are no randomized, double-blinded, placebo-controlled trials evaluating the efficacy of intrasinus thrombolysis. This procedure is rarely performed and would be best referred to a large academic center with robust interventional neuroradiologic experience [103].
A systematic review evaluated at total of 26 patients undergoing intrasinus thrombolysis including 80.8% with superior sagittal sinus thrombosis and 19.2% with deep sinus involvement [104]. Urokinases were used in 73.1% of the cases, followed by streptokinase (7.7%), with the remainder utilizing recombinant tissue plasminogen activator (rTPA). Radiographic success of recanalization was attained in 61.5% patients, with 88% attaining a mRS 0–2 at last available follow up. Complications included ICH in 11.5% of cases, extracranial hemorrhages in 19.2%, and 2 deaths (7.7%).
Another 29 patients were evaluated in a series conducted from 4/2013 to 4/2016 all of whom were treated with in-situ tPA with the tPA delivered directly into the venous sinus via microcatheter [105]. The radiographic success of recanalization was 100% in this series, of which 82.8% had favorable outcome (mRS 0–1), 10.3% mRS of 2, and 3.4% (1 patient) died.
Another prospective case series evaluated patients with CVT who underwent intrasinus thrombolysis among patients with altered mental status, coma, straight sinus thrombosis, or large space occupying lesions [106]. The population included 20 patients (80% women, mean age 32 years old) who received infused urokinase via internal jugular catheter. Clinically 60% of patients were comatose and 70% had hemorrhage prior to treatment. In 75% of patients the thrombolysis was coupled with mechanical thrombus disruption or removal. Post intervention the mortality rate was 30% (6 patients), 5 of whom had large hemispheric infarcts and edema prior to intervention. Ultimately an mRS of 0–2 was achieved in 60% of cases.
Another study evaluated 37 CVT patients between 1/2007 and 12/2009 who underwent intrasinus urokinase infusion thrombolysis using a microcatheter [107]. At 6-month follow up, radiographic canalization was obtained in 97% of patients, with functional outcome rates of mRS 0–1 (75.8%), mRS 2 (18.2%), mRS 4 (3.0%), and a 3.0% mortality rate (mRS 6).
Another rescue therapy utilized is mechanical thrombectomy. One systematic review evaluated patients from 42 studies treated between 1/1995 and 2/2014 undergoing mechanical thrombectomy with or without intrasinus thrombolysis [108]. The review included a total of 185 patients with CVT, 62% of whom had ICH prior to intervention. Clinically 47% were either stuporous or comatose. The most commonly used interventional device for mechanical thrombectomy was an AngioJet, used in 40% of the cases, although it was associated with a lower complete recanalization rate (OR 0.2 [0.09–0.4]) and lower chance of mRS 0–2 (OR 0.5 [0.2–1.0]) as compared with other therapies. A total 71% of these patients also underwent intrasinus thrombolysis. A mRS 0–2 was observed in 84% of patients and the mortality rate was 12%. At least partial recanalization was obtained in 95% of cases. The major complications included new or increased ICH in approximately 10% of the cases.
Another systematic review in BMJ evaluated 17 studies totaling 235 patients [109]. Intrasinus thrombolysis was used in 87.6% of patients. Radiographically complete revascularization was achieved in 69% of patients, with a mortality rate of 14.3%, 1.2% recurrent CVT rate, and a new or worsening ICH rate of 8.7%.
Another review evaluated CVT patients undergoing mechanical thrombectomy between 1990 and 2012 [110]. A total of 64 patients underwent mechanical thrombectomy with different techniques including AngioJet (46.9%), Penumbra (4.7%), Fogarty catheter (1.6%), microsnare (3.1%), balloon venoplasty without stenting (18.7%), balloon venoplasty with stenting (4.7%), and a combination approach (18.7%). The mortality rate in this review was 16.1%. The morbidity data showed mRS 0–2 (62.5%), mRS 3–5 (10.9%) and 12.5% were unreported.
Patients with CVT are at risk of herniation syndromes due to multiple factors as related to mass effect. Herniation is a major cause of death in CVT, thus decompressive surgery is an important option in the treatment armamentarium. Herniation is generally due to large ischemic regions and/or large hematomas. One study evaluated the safety and efficacy of decompressive surgery in a retrospective fashion by evaluating a registry of acute CVT patients [111]. A total of 69 patients were included in the study, 45 underwent decompressive craniectomy, 7 underwent hematoma evacuation, and 17 received both therapies. The primary outcome was mRS at last follow-up analyzed in dichotomously (favorable mRS 0–2 versus unfavorable mRS 5–6). In median 12-month follow-up 17.4% had an unfavorable outcome. This also resulted in favorable functional outcomes in the secondary analysis demonstrating 37.7% with near complete recovery (mRS 0–1), 56.5% (mRS 0–2), 5.8% (mRS 4–5), and a 15.9% mortality rate. As consistent with decompressive surgery in arterial ischemic stroke, it is important to treat early, before patients decline into a comatose state. As demonstrated in the just described study, patients who were comatose were less likely to be independent mRS <2 than non-comatose patients (45% versus 84%, p-value 0.003).
Seizures are very common at presentation among patients with CVT. One prospective observational study found seizures in 39.3% of CVT patients and 6.9% of patients had early seizures (within 2 weeks) [112]. Factors associated with seizures at presentation were supratentorial lesions, cortical vein thrombosis, sagittal sinus thrombosis, and puerperal CVT. Beyond seizures at presentation, supratentorial lesions were also a predicator of early seizures. Patients who suffer a seizure at presentation, or in the early phase of CVT, should be treated with antiepileptics for prevention of further seizures, this, whether a parenchymal lesion is seen on imaging or not. Currently, it is not recommended to treat prophylactically in the absence of a seizure. However, patients with acute and florid CVT are quite prone to seizures, with the occurrence of even a single seizure potentially negatively impacting outcome. Hence, in such situations, initiating a short course of antiepileptic drugs is highly reasonable and should be considered. As a general guideline, the authors treat for 14 days when there is one isolated seizure at presentation or early in the course. If there is more than one seizure the authors will treat for 3–6 months and discontinue therapy if no additional seizures occurred outside the acute phase. One observational study provides some evidence supporting prophylactic AED treatment in the setting of supratentorial lesions in the absence of seizures reporting 1 seizures in 148 patients treated with AEDs versus 25 in 47 patients without AEDs (OR 0.006 [0.001–0.05]) [112].
Obstruction of the venous sinuses will increase the intracranial pressure (ICP). Common symptoms include headache and papilledema. Patients who experience papilledema and visual disturbances need to be monitored closely for further decompensation of visual fields. In the event symptoms, acetazolamide can be initiated with similar dosing to idiopathic intracranial hypertension (IIH). The authors generally initiate therapy at 500 mg twice a day and up-titrate as needed for therapeutic efficacy. If additional supplementation is needed, or for prophylaxis, the authors generally use topiramate titrated to efficacy with maximum daily dose being 200 mg total in 2 equally-divided doses. Abortive headache management approaches start conservatively with acetaminophen followed by ibuprofen or other NSAIDs (i.e., ketorolac), then tramadol, opioids and lastly migraine cocktails.
The treatment of emergency vision loss requires rapid, but careful consideration. Possible etiologies include elevated ICP or retinal ischemia. Treatment options for elevated ICP in a correlated disease, idiopathic intracranial hypertension (IIH), include optic nerve sheath fenestration and ventriculoperitoneal shunt procedures. The issue unique to CVT is the fact that the underlying visual loss etiology is due to venous obstruction and/or congestion. Thus, there are circumstances where it would be beneficial to evaluate if the venous outflow is completely obstructed, thereby leading to retinal flow stasis and subsequent retinal ischemia. In that case, the authors would advocate serious consideration of interventional clot extraction to restore venous flow and thus decrease ICP. This is based on opinion. Guidelines do cite LP, optic nerve decompression, and shunts as possible treatment options but do not delineate timing of these procedures in relation to rescue revascularization therapy. Deep venous system or cavernous sinus thromboses progressing to occlude retinal outflow tracts are particularly worrisome. These etiologies can cause permanent blindness and should be considered in the setting of acute vision loss. An urgent ophthalmological evaluation in such situations is highly warranted.
Lumbar punctures (LP) are not required in the diagnostic evaluation of CVT. However, if ICP measurement is necessary, it is safe to do an LP even in the acute phase [113]. The expected CSF chemistry profile is a pleocytosis (50%) and an elevated protein (35%) [3], but these CSF abnormalities are not specific to a CVT diagnosis. LP is generally used to measure ICP and/or to evaluate for other underlying etiologies (e.g., infection).
The ISCVT cohort evaluated 119 women for a median follow up time of 14 months with a total of 82 pregnancies occurring among 47 women [114]. Recurrent venous thrombotic event (VTE) occurred only in 3 of the 82 pregnancies (1 of which was recurrent CVT). A majority, 83%, of the total cohort received prophylactic DVT treatment during at least one trimester, including 2 of the 3 patients that had a VTE event. The outcomes of the pregnancies were as follows: 51 full-term newborns, 9 preterm births, 2 stillbirths, and 20 abortions (14 spontaneous). CVT patients who are pregnant or become pregnant are recommended to continue anticoagulation. Warfarin is not recommended because of its teratogenic effects. In these cases, the authors recommend using enoxaparin throughout the duration of pregnancy. LMWH is preferred over UFH. Guidelines also suggest continuation with either LMWH or warfarin 6 weeks postpartum [38]. If this becomes problematic, then the authors would consider the use of DOACs with the preference being apixaban in patients with normal renal function.
In women of childbearing age, especially those who had a CVT due to OCP use, it is recommended that the women use contraceptive methods without hormonal components. Generally, this is intrauterine device (IUD) therapy. Sometimes emergency contraception is indicated [115]. CVT does not preclude one from getting pregnant in the future but should be monitored closely in a high-risk pregnancy clinic as dictated by an obstetrician. Collaboration between the neurologist and obstetrician is recommended. The decision for prophylactic therapy during subsequent pregnancies should be done on an individual patient basis. However, the authors generally recommend daily prophylaxis with enoxaparin especially in the third trimester.
Analysis of the ISCVT cohort revealed that new ICH was more frequent in patients with infection as the etiology of their CVT [116]. The study compared infected versus noninfected patients, with infected patients representing 9.4% of the cohort. New ICH occurred in 12.3% versus 5.3% (p-value 0.04) within similar rates of heparin use in each group. Notably, there was no difference in death or dependency between the two groups.
A subset (24%) of patients in ISCVT received steroids in the acute CVT phase. Steroid use in the acute phase is not clinically beneficial. Hence, steroids are not used in the setting of CVT.
The approach to children with CVT is similar to adults. However, because children often have an infectious component to their CVT, much of the diagnostic evaluation should also include evaluations for infection [117, 118, 119]. Patients beyond 28 days old are recommended for acute therapy with LMWH and they should continue anticoagulation for 3–6 months (warfarin) [38]. Neonates should be considered for anticoagulation on a case by case basis. In pediatric patients, one should have a lower threshold to evaluate with EEG.
Many studies demonstrate a CVT recurrence rate between 2 and 5% [3, 7, 120, 121, 122]. Other VTE was demonstrated in 4.3–8% of patients in those studies. The ISCVT recurrence rate for CVT was 1.5 per 100 person-years, or 2.2% [123]. In the ISCVT study, mortality was 8.3% at 16 months [3]. A majority of patients (79%) had complete recovery defined as mRS 0–1, 10.4% with mRS 2–3, 2.2% with mRS 4–5. Bilateral lesions were associated with unfavorable outcomes (50% versus 11%, p 0.004) and death (42% versus 11%, p 0.025) [111]. A previous VTE was a predictor of recurrence but not secondary or unprovoked CVTs [122]. Recurrence tended to occur within a year of the first CVT [3]. CVT has lower mortality and morbidity in comparison to other stroke types [1, 2]. Factors associated with poor outcome were older age, malignancy, CNS infection, and ICH [1]. Gender was not associated with poor outcomes after adjustment [8]. Independent predictors of death in the ISCVT were reported to include coma, mentational disturbances, deep CVT, right hemispheric ICH, and posterior fossa lesions. Causes of death were either transtentorial herniation or diffuse edema [13]. In a national database from 2000 to 2007 the mortality rate was 4.39%. The mortality predictors in this study were older age, ICH, hematologic disorders, systemic malignancy and CNS infection [124].
Prognostic information was evaluated in the ISCVT patient cohort. With a median follow-up of 16 months, 57.1% had a mRS of 0, signifying no symptoms, while 8.3% died. The multivariate analysis identified statistically significant predictors of death and disability to include age > 37 years (hazard ratio (HR) 2.0), male sex (HR 1.6), coma (HR 2.7), GCS <9 (HR 2.65) hemorrhage on admission CT scan (HR 1.9), thrombosis of the deep cerebral venous system (HR 2.9), central nervous system infection (HR 3.3), and cancer (HR 2.9) [125]. Another study looked at the predictors of CVT outcome in patients with ICH, this in the ISCVT cohort [49]. Early ICH was defined as ICH present at time of CVT diagnosis. A logistic regression analysis was performed using mRS 3–6 as dependent variable. The patients with early CVT represented 39% of the CVT population at month 6. The independent predictors of death or dependency at 6 months with early ICH in CVT included: older age (adjusted OR for 1-year increase in age, 1.05 [1.02–1.08], male gender (adjusted OR 3.25 [1.29–8.16]), deep CVT (adjusted OR 5.43 [1.67–17.61], right lateral sinus CVT (adjusted OR 2.56 [1.03–6.40] and motor deficit (adjusted OR 2.94 [1.21–7.10] [49].
CVT is a less common, but highly treatable, cause of stroke accounting for 0.5–1% of all strokes with a preponderance to occur in women. Our goal was to provide clinicians with the knowledge to rapidly diagnose CVT with an emphasis on etiologies and treatments in an effort to produce optimal clinical outcomes. Clinicians must possess a working knowledge of the relevant anatomy and associated clinical syndromes, and be aware of the relevant clinical trials as described herein. Clinicians must consider CVT when evaluating patients suffering with acute neurological changes, particularly those with predisposing risk factors such as OCP use, smoking, and a postpartum state, among others.
Lipedema is a chronic underrecognized adipose tissue (AT) disorder distinguished by the symmetrical accumulation of painful fat in the lower body, predominantly in the thighs. The clinical presentation of lipedema resembles that of obesity, lymphedema, and other AT disorders, so it is often misdiagnosed and mistreated [1, 2, 3, 4]. Lipedema is diagnosed by a thorough physical examination in conjunction with the patient’s family and medical histories. Healthcare providers identify lipedema through the following criteria: bilateral and symmetrical distribution of subcutaneous fat predominantly in the legs that excludes the hands or feet, minimal pitting edema and a negative Stemmer’s sign which can indicate edema followed by a set of detailed criteria that characterize regionalization of fat accumulation and pain, time of change in fat distribution, and diet resistance to discern the type and stage of the patient.
There are five different types of lipedema, which are based upon the regions of prominent fat deposition. Type 1: the fat builds up in the buttocks and hip; Type 2: the fat spreads from the buttocks to the knees with fat folds around the inside of the knee; Type 3: the fat extends to the hips and ankles, the feet are not affected; Type 4: the fat is increased in the upper arms sparing the wrist and Type 5: the fat accumulates in the lower legs only [2, 5, 6]. Patients may present with more than one type depending on the progression of the disorder. Additionally, patients present at three different stages, depending on the severity of fat accumulation and the onset of other symptoms [2, 5, 6, 7]. Stage 1: the skin is smooth with small fat lobules; Stage 2: the skin has indentations with pearl-sized fat nodules and Stage 3: the skin has large extrusions with overhanging fat causing tissue deformities. Lymphedema may also develop collaterally at any stage of the disorder but does not alone qualify a case of lipedema [2]. Unlike many AT disorders, lipedema is largely irresponsive to lifestyle interventions such as diet and exercise, but liposuction and decongestive therapy are effective treatment options [1]. While neither are curative, liposuction is widely accepted as the better treatment option for its ability to provide long-term improvement to appearances, functionality, mobility and bruising while reducing edema, spontaneous pain, sensitivity to pressure. Combined decongestive therapy (CDT) such as pre- or post-operative lymphatic drainage or use of compression garments in recovery weeks may be conducted in support of the procedure [2, 4].
Lipedema predominantly affects females and often manifests during time of hormone fluctuations, during puberty, childbirth, or menopause [7, 8], indicating that estrogen and estrogen signaling play a role in the pathogenesis of lipedema via direct impacts on adipocytes and immune cells, and/or secondary effects on the brain control centers [9, 10]. However, the exact mechanism(s) of action remain unclear [11, 12]. Although lipedema is a common disease (11% of women worldwide), no data are yet available to demonstrate the prevalence of lipedema in pre- and post-menopausal or pregnant women. In addition, cases of lipedema in males are very rare; however, men who develop lipedema tend to have high levels of estrogen but low testosterone levels [2, 5, 6]. Understanding the mechanisms of the life-long transitions of estrogen levels and interactions with AT will define the pathogenesis of lipedema more thoroughly while identifying novel diagnostic and treatment options.
This review will describe the potential role of estrogen in the development of lipedema. The effect(s) of estrogens on the immune system will be described, the association of estrogen signaling on tissue adipogenesis and inflammation will be explored and the application of estrogen as a potential therapy in preventing the progression of this disease will be discussed.
Estrogens are hormones that regulate adipose tissue metabolism by controlling food intake, energy expenditure and body distribution. Estrogens have widespread effects on several organs around the body and therefore play a role in a variety of physiological functions and disorders. Estrogens can act on receptors in both the cytoplasm and the plasma membrane to mediate protein expression involving cell proliferation and metabolism [12]. Estrogens are present in three forms: estrone (E1), estradiol (E2), and estriol (E3). Estradiol is the most extensively studied, as it plays key roles in reproductive phase functioning and a large variety of chronic disorders. There are three receptors that have distinct presences and functions around the body. Alterations in estrogen activity or the absence of estrogen receptors (ER) results in the accumulation of subcutaneous adipose tissue (SAT), a phenomenon observed in lipedema patients [5, 9, 13, 14]. Szél et al. hypothesized that alteration in ERs is involved in the regulation of appetite and weight gain which might explain why lipedema patients accumulate fat and have difficulty losing it with diet and exercise [10]. Furthermore, Yi et al. showed that estrogen regulates the expression of leptin, a hormone that controls hunger and body weight, in adipocytes via ERs [15] supporting the hypothesis that lipedema is a hormonal disease.
Estrogen exerts its function through the estrogen receptor alpha (ERα) and beta (ERβ). Both ERα and ERβ receptors appear in significantly high concentrations in SAT of premenopausal women, as signaling from estrogens mediates adipose deposition throughout the body [9, 16]. However, ERα expression is reduced in the SAT of clinically obese females and postmenopausal women treated with estradiol compared to their normal-weight counterparts [14, 17, 18]. Interestingly, Erβ, which serves an antagonistic role on ERα-mediated gene expression, is highly expressed in postmenopausal women in comparison to premenopausal women [19]. Such findings raise the question of whether a correlation of the concentrations of estrogen receptors in adipose tissue could elucidate a similar relationship between estrogen receptor concentrations in lipedema AT. Additionally, a study conducted by Gavin et al. discovered described that the concentration of ERα is decreased and ERβ concentration is increased in the lower extremities of overweight patients, associating the variable concentrations to sexual dimorphisms in regionalized fat deposition for individuals [20]. As discussed earlier, fat accumulates in the lower extremities of lipedema patients, implying a potential role of ER in its pathogenesis. Furthermore, Dieudonné and colleagues evaluated the expression of ERs in preadipocytes and adipocytes in a cohort of lean subjects and determined that males and females statistically share similar levels of both ERα and ERβ within intraabdominal AT (IAT) and SAT [14]. Females have slightly higher concentrations of ERα and ERβ globally than males. However, when induced with estradiol, expression of ERα in the SAT in females increased significantly more than in IAT. In these same conditions, the SAT in females have a significantly increased expression of ERβ while all other levels of ERβ (IAT in females, SAT and IAT in males) remained the same. Cases of increased regionalized lipid accumulation are closely correlated to estrogen deficiency [21, 22, 23, 24]. In contrast, in an estrogen-sufficient state, excess fat is stored in the gluteal-femoral region, rather than the abdominal region. One mechanism has been postulated as a factor in this association is the acute administration of estrogens to postmenopausal women which reduced basal lipolysis in SAT, particularly in the femoral region, further supporting a role for estrogens in regional fat deposition in lipedema patients [25].
The third estrogen receptor, G protein-coupled estrogen receptor (GPER) is expressed on the membrane at lower concentrations in adipose tissue but nonetheless, with several important effects. GPER has been widely studied in regulation of body weight, inflammation, insulin sensitivity, and metabolic dysfunction [26, 27, 28, 29]. Several studies demonstrated that mice lacking GPER demonstrate an increase in adiposity (mass and adipocyte size) and decrease in energy expenditure compared to their wild type mice [29, 30, 31]. Studies have also shown that the lack of GPER or ERα expression in mice show similar characteristic of metabolic syndrome such as inflammation, obesity, glucose intolerance and insulin resistance [26, 31, 32, 33, 34]. Although the actions of estrogens on GPER have not yet been fully elucidated, examining the crosstalk between ERs and estrogen will help understand their function in the development of lipedema.
Estrogens have been shown to play a role in gender and regional adiposity. Several studies revealed that women have ~10% more early stage preadipocytes in abdominal SAT and ~35% more in femoral SAT [35, 36]. However, only ERα is expressed in preadipocytes, suggesting a role for estrogen in adipogenesis that is not mediated by the antagonistic mechanisms of ERα and ERβ [16]. Lacasa et al. found the mechanisms involved by which estrogen stimulates preadipocyte proliferation, supporting a role of estrogen in adipogenesis [13, 37]. However, Eaton et al. postulated that local adipocyte-produced estrogen may play a role in preventing preadipocyte differentiation based on data from two studies where treatment of preadipocytes with estrogen, both in vitro and in vivo, inhibited adipogenesis and lipogenic gene expression [13, 38]. The distribution of preadipocytes and adipocytes along with the expression of estrogen receptors on differentiated adipocytes could play a role in the pathogenesis of lipedema, as regionalized and sexually distinct adipocyte hypertrophy is one of the central defining characteristics of the disorder.
Activation of ERα, ERβ, and GPER on adipocytes elicit an intranuclear response, causing up or down-regulation in the expression and activity of proteins such as leptin and lipoprotein lipase (LPL), which are involved in lipid regulation in the body [39, 40]. Through this regulation of protein expression, estrogen partially mediates weight control and lipogenesis-lipolysis mechanisms. Moreover, several studies have shown that estrogen treatment altered the expression of several genes involved in lipogenesis. A study conducted by Homma et al. revealed a negatively controlled estrogen response element in the LPL gene, indicating that estrogen decreases activity of LPL, a protein that regulates lipid uptake by adipocytes and leads to lipogenesis, which inhibits adipose deposition [41]. Another study has shown that estrogen stimulates the expression of leptin in human breast tissue [42]; thus, estrogen might play an important in the regulation of adipose tissue. We have shown that leptin gene expression is increased in adipocytes differentiated in vitro from adipose-derived stem cells obtained from obese lipedema patients compared to the same cells from healthy controls [43]; however, the effect of estrogen on the expression of leptin in lipedema has yet to be determined. Additionally, ERβ has been shown to be a negative regulator of peroxisome proliferator-activated receptor γ (PPARγ), a key transcription factor highly expressed in AT and controls the expression of LPL, glucose transporter type 4 (Glut 4) and leptin; thus, a decrease in ERβ expression increases adipogenesis which is detected in lipedema SAT [43]. However, further studies will be needed to study the correlation between the loss of ERs expression and the increase adiposity in AT disorders.
Estrogen exerts regulatory effects on the immune system through ER-dependent and independent pathways [44], which can be both positive and negative depending on a wide array of factors such as the level of estrogen, expression of ERs, cell types and the environment [45]. Lipedema AT is characterized by hypertrophic adipocytes and activated immune cells such as macrophages and mast cells [46, 47, 48]; thus, direct, and indirect cellular interaction through auto- and paracrine secretions of inflammatory cytokines via the ER signal transduction pathway have an immense impact on the tissue function [7, 19, 35]. Several studies have shown that a decrease in estrogen levels results in increased expression of pro-inflammatory cytokines, including interleukins (IL)-6, IL1-β and Tumor Necrosis Factor-alpha (TNF-α) as is the case with women undergoing menopause or oophorectomy [49]. On the other hand, in the case of pregnant women or in women taking ectopic estrogens, suppressed immune responses are observed [48]. Hence, as estrogen levels fluctuate in lipedema patients during their lifetime, the inflammatory signals in the tissue may as well. This correlation between estrogen levels and onset of inflammation could provide insight into the pathophysiology of lipedema-associated inflammation.
Estrogen is widely known as a central regulator of fat metabolism and regional deposition. In premenopausal women, estrogen is synthesized in the ovaries during menstruation [19]; however, it is depleted as they age. In adipose tissue, androgens are aromatized into estrogens to restore hormonal levels and prevent the progression of hormonal-related diseases [17, 19, 50]. One study found increased aromatase activity in a group of obese individuals, supporting a correlation between this shift of hormone production and metabolic disease [51]. However, estrogen deficiency or depletion, such as in the case of ovariectomy, polycystic ovary syndrome (PCOS), or the lack of a functional aromatase gene, causes weight gain which is associated with comorbidity, cardiovascular disease, and other diseases; thus, hormone replacement therapy (HRT) was shown to be an effective treatment [52, 53, 54, 55, 56, 57]. In the context of AT, administration of exogenous estradiol to premenopausal women decreases LPL activity in AT of the lower extremities, which are primarily affected in lipedema [58]. However, another study conducted by Lindberg et al. found that the treatment of postmenopausal women with oral ethinyl estradiol (50 μg/day) for three weeks increased adipose tissue LPL activity in femoral adipocytes [59]. Other studies expand on this, finding that estrogen treatment of adipocytes decreased the expression of genes related to adipogenesis and lipogenesis such as PPAR-γ and LPL [19, 38, 58]. Furthermore, administering estrogen resulted in a significant decrease in LPL activity in adipose tissue [52]. Similarly, Pederson et al. discovered that estrogen treatment almost doubled insulin binding affinity in rat adipocytes. Control rats had 11% weight gain in 7 days whereas estrogen treated rats gained only 4% in the same period. Adipocytes were significantly larger in control rats compared to adipocytes from estrogen substituted rats. Interactions of estrogens with androgens to mediate these processes were also discovered, with two studies observing the effects of HRT that further substantiate an association between androgens and weight gain [54, 60]. Davis et al. reported that administering androgens with estrogens in hormone replacement therapy seemed to antagonize or reduce the effects of estrogens on fat deposition and weight loss. Likewise, Gamberini et al. reported administration of antiandrogens with the typical estrogen dosage results in more efficient weight loss. While the effects of androgens in lipedema cases have been underdefined in this literature review, the pathophysiological effect of androgen therapy implies a treatment option for cases of lipedema. Clinical research has also found that women receiving estrogen HRT have relatively increased protection from metabolic syndrome and decreased AT deposition in the intra-abdominal region [13, 61, 62, 63, 64]. Additionally, as mentioned above, post-menopausal clinical subjects developed high levels of inflammatory cytokines had associated decreases in such levels following estrogen treatments [13]. All these data confirm that the physiological impact of estrogen is altered as females passes through reproductive benchmarks, and thus estrogen may be a potential treatment of Lipedema patients.
Furthermore, it has been proposed that activation of ERα can induce the browning of white adipocytes, referred to as beiging, through induction of lipolysis mediated by adipose tissue triglyceride lipase [65]. It is known that premenopausal women have more brown adipose tissue (BAT) and are more sensitive to brown adipose tissue activation than men or postmenopausal women. Selective activation of ERα by pyrazole triol (selective ERα agonist) increased markers of beiging in vitro [65]. The results of this study indicated that selective activation of ERα in adipocytes can induce beiging through the induction of adenosine monophosphate-activated protein kinase (AMPK) mediated lipolysis providing free fatty acids as an energy source to activate Uncoupling protein (UCP)-1 [66]. Another study conducted Yepuru et al. demonstrated that activation of ERβ increases mitochondrial function and energy expenditure; thus, ERβ ligands have anti-obesity and antimetabolic disease effects [67] and might be more beneficial than estradiol treatment which unselectively activates both ERs. In vitro and in vivo studies have suggested that selective ERβ ligand reduces the expression of genes associated with white adipose tissue and promote the expression of genes associated with brown adipose tissue. This ligand additionally increases the mitochondrial oxygen consumption without an increase in physical activity [68]. Additional research is needed to gain insight into whether selectively activating of one estrogen receptor over another confers more benefits than activating both unselectively. Given these results on the selective activation of estrogen receptors, there is an increased effort to characterize specific molecular pathways to induce white adipose tissue browning; thus, presenting another potential treatment for lipedema patients.
Lipedema is a severe chronic adipose tissue disorder that affects women worldwide. Although the pathophysiology of the disease has not been fully elucidated, several lines of evidence have suggested estrogen dysfunction may be central to the development of lipedema. The loss of estrogen can additionally induce cardiovascular disease and create an insulin resistant dyslipidemia state that can have long term implications on the metabolic profile of a patient. Thus, studying the role played by estrogen in the processes are involved in the pathogenesis, AT inflammation, fibrosis, and angiogenesis, will provide researchers insights into the mechanism involved in the development of the disease and will help direct future study on hormonal therapy as a form of treatment for lipedema. Through these efforts, the correlation revealed between hormones and adipogenesis in AT will lead to evaluate lipedema as a hormonal disease.
This work was funded by a grant from the Lipedema Foundation.
The authors declare no conflict of interest.
This is a brief overview of the main steps involved in publishing with IntechOpen Compacts, Monographs and Edited Books. Once you submit your proposal you will be appointed a Author Service Manager who will be your single point of contact and lead you through all the described steps below.
",metaTitle:"Publishing Process Steps and Descriptions",metaDescription:"This is a brief overview of the main steps involved in publishing with InTechOpen Compacts, Monographs and Edited Books. Once you submit your proposal you will be appointed a Publishing Process Manager who will be your single point of contact and lead you through all the described steps below.",metaKeywords:null,canonicalURL:"page/publishing-process-steps",contentRaw:'[{"type":"htmlEditorComponent","content":"1. SEND YOUR PROPOSAL
\\n\\nPlease complete the publishing proposal form. The completed form should serve as an overview of your future Compacts, Monograph or Edited Book. Once submitted, your publishing proposal will be sent for evaluation, and a notice of acceptance or rejection will be sent within 10 to 30 working days from the date of submission.
\\n\\n2. SUBMIT YOUR MANUSCRIPT
\\n\\nAfter approval, you will proceed in submitting your full-length manuscript. 50-130 pages for compacts, 130-500 for Monographs & Edited Books.Your full-length manuscript must follow IntechOpen's Author Guidelines and comply with our publishing rules. Once the manuscript is submitted, but before it is forwarded for peer review, it will be screened for plagiarism.
\\n\\n3. PEER REVIEW RESULTS
\\n\\nExternal reviewers will evaluate your manuscript and provide you with their feedback. You may be asked to revise your draft, or parts of your draft, provide additional information and make any other necessary changes according to their comments and suggestions.
\\n\\n4. ACCEPTANCE AND PRICE QUOTE
\\n\\nIf the manuscript is formally accepted after peer review you will receive a formal Notice of Acceptance, and a price quote.
\\n\\nThe Open Access Publishing Fee of your IntechOpen Compacts, Monograph or Edited Book depends on the volume of the publication and includes: project management, editorial and peer review services, technical editing, language copyediting, cover design and book layout, book promotion and ISBN assignment.
\\n\\nWe will send you your price quote and after it has been accepted (by both the author and the publisher), both parties will sign a Statement of Work binding them to adhere to the agreed upon terms.
\\n\\nAt this step you will also be asked to accept the Copyright Agreement.
\\n\\n5. LANGUAGE COPYEDITING, TECHNICAL EDITING AND TYPESET PROOF
\\n\\nYour manuscript will be sent to SPi Global, a leader in content solution services, for language copyediting. You will then receive a typeset proof formatted in XML and available online in HTML and PDF to proofread and check for completeness. The first typeset proof of your manuscript is usually available 10 days after its original submission.
\\n\\nAfter we receive your proof corrections and a final typeset of the manuscript is approved, your manuscript is sent to our in house DTP department for technical formatting and online publication preparation.
\\n\\nAdditionally, you will be asked to provide a profile picture (face or chest-up portrait photograph) and a short summary of the book which is required for the book cover design.
\\n\\n6. INVOICE PAYMENT
\\n\\nThe invoice is generally paid by the author, the author’s institution or funder. The payment can be made by credit card from your Author Panel (one will be assigned to you at the beginning of the project), or via bank transfer as indicated on the invoice. We currently accept the following payment options:
\\n\\nIntechOpen will help you complete your payment safely and securely, keeping your personal, professional and financial information safe.
\\n\\n7. ONLINE PUBLICATION, PRINT AND DELIVERY OF THE BOOK
\\n\\nIntechOpen authors can choose whether to publish their book online only or opt for online and print editions. IntechOpen Compacts, Monographs and Edited Books will be published on www.intechopen.com. If ordered, print copies are delivered by DHL within 12 to 15 working days.
\\n\\nIf you feel that IntechOpen Compacts, Monographs or Edited Books are the right publishing format for your work, please fill out the publishing proposal form. For any specific queries related to the publishing process, or IntechOpen Compacts, Monographs & Edited Books in general, please contact us at book.department@intechopen.com
\\n"}]'},components:[{type:"htmlEditorComponent",content:'1. SEND YOUR PROPOSAL
\n\nPlease complete the publishing proposal form. The completed form should serve as an overview of your future Compacts, Monograph or Edited Book. Once submitted, your publishing proposal will be sent for evaluation, and a notice of acceptance or rejection will be sent within 10 to 30 working days from the date of submission.
\n\n2. SUBMIT YOUR MANUSCRIPT
\n\nAfter approval, you will proceed in submitting your full-length manuscript. 50-130 pages for compacts, 130-500 for Monographs & Edited Books.Your full-length manuscript must follow IntechOpen's Author Guidelines and comply with our publishing rules. Once the manuscript is submitted, but before it is forwarded for peer review, it will be screened for plagiarism.
\n\n3. PEER REVIEW RESULTS
\n\nExternal reviewers will evaluate your manuscript and provide you with their feedback. You may be asked to revise your draft, or parts of your draft, provide additional information and make any other necessary changes according to their comments and suggestions.
\n\n4. ACCEPTANCE AND PRICE QUOTE
\n\nIf the manuscript is formally accepted after peer review you will receive a formal Notice of Acceptance, and a price quote.
\n\nThe Open Access Publishing Fee of your IntechOpen Compacts, Monograph or Edited Book depends on the volume of the publication and includes: project management, editorial and peer review services, technical editing, language copyediting, cover design and book layout, book promotion and ISBN assignment.
\n\nWe will send you your price quote and after it has been accepted (by both the author and the publisher), both parties will sign a Statement of Work binding them to adhere to the agreed upon terms.
\n\nAt this step you will also be asked to accept the Copyright Agreement.
\n\n5. LANGUAGE COPYEDITING, TECHNICAL EDITING AND TYPESET PROOF
\n\nYour manuscript will be sent to SPi Global, a leader in content solution services, for language copyediting. You will then receive a typeset proof formatted in XML and available online in HTML and PDF to proofread and check for completeness. The first typeset proof of your manuscript is usually available 10 days after its original submission.
\n\nAfter we receive your proof corrections and a final typeset of the manuscript is approved, your manuscript is sent to our in house DTP department for technical formatting and online publication preparation.
\n\nAdditionally, you will be asked to provide a profile picture (face or chest-up portrait photograph) and a short summary of the book which is required for the book cover design.
\n\n6. INVOICE PAYMENT
\n\nThe invoice is generally paid by the author, the author’s institution or funder. The payment can be made by credit card from your Author Panel (one will be assigned to you at the beginning of the project), or via bank transfer as indicated on the invoice. We currently accept the following payment options:
\n\nIntechOpen will help you complete your payment safely and securely, keeping your personal, professional and financial information safe.
\n\n7. ONLINE PUBLICATION, PRINT AND DELIVERY OF THE BOOK
\n\nIntechOpen authors can choose whether to publish their book online only or opt for online and print editions. IntechOpen Compacts, Monographs and Edited Books will be published on www.intechopen.com. If ordered, print copies are delivered by DHL within 12 to 15 working days.
\n\nIf you feel that IntechOpen Compacts, Monographs or Edited Books are the right publishing format for your work, please fill out the publishing proposal form. For any specific queries related to the publishing process, or IntechOpen Compacts, Monographs & Edited Books in general, please contact us at book.department@intechopen.com
\n'}]},successStories:{items:[]},authorsAndEditors:{filterParams:{sort:"featured,name"},profiles:[{id:"6700",title:"Dr.",name:"Abbass A.",middleName:null,surname:"Hashim",slug:"abbass-a.-hashim",fullName:"Abbass A. Hashim",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/6700/images/1864_n.jpg",biography:"Currently I am carrying out research in several areas of interest, mainly covering work on chemical and bio-sensors, semiconductor thin film device fabrication and characterisation.\nAt the moment I have very strong interest in radiation environmental pollution and bacteriology treatment. The teams of researchers are working very hard to bring novel results in this field. I am also a member of the team in charge for the supervision of Ph.D. students in the fields of development of silicon based planar waveguide sensor devices, study of inelastic electron tunnelling in planar tunnelling nanostructures for sensing applications and development of organotellurium(IV) compounds for semiconductor applications. I am a specialist in data analysis techniques and nanosurface structure. I have served as the editor for many books, been a member of the editorial board in science journals, have published many papers and hold many patents.",institutionString:null,institution:{name:"Sheffield Hallam University",country:{name:"United Kingdom"}}},{id:"54525",title:"Prof.",name:"Abdul Latif",middleName:null,surname:"Ahmad",slug:"abdul-latif-ahmad",fullName:"Abdul Latif Ahmad",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:null},{id:"20567",title:"Prof.",name:"Ado",middleName:null,surname:"Jorio",slug:"ado-jorio",fullName:"Ado Jorio",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"Universidade Federal de Minas Gerais",country:{name:"Brazil"}}},{id:"47940",title:"Dr.",name:"Alberto",middleName:null,surname:"Mantovani",slug:"alberto-mantovani",fullName:"Alberto Mantovani",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:null},{id:"12392",title:"Mr.",name:"Alex",middleName:null,surname:"Lazinica",slug:"alex-lazinica",fullName:"Alex Lazinica",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/12392/images/7282_n.png",biography:"Alex Lazinica is the founder and CEO of IntechOpen. After obtaining a Master's degree in Mechanical Engineering, he continued his PhD studies in Robotics at the Vienna University of Technology. Here he worked as a robotic researcher with the university's Intelligent Manufacturing Systems Group as well as a guest researcher at various European universities, including the Swiss Federal Institute of Technology Lausanne (EPFL). During this time he published more than 20 scientific papers, gave presentations, served as a reviewer for major robotic journals and conferences and most importantly he co-founded and built the International Journal of Advanced Robotic Systems- world's first Open Access journal in the field of robotics. Starting this journal was a pivotal point in his career, since it was a pathway to founding IntechOpen - Open Access publisher focused on addressing academic researchers needs. Alex is a personification of IntechOpen key values being trusted, open and entrepreneurial. Today his focus is on defining the growth and development strategy for the company.",institutionString:null,institution:{name:"TU Wien",country:{name:"Austria"}}},{id:"19816",title:"Prof.",name:"Alexander",middleName:null,surname:"Kokorin",slug:"alexander-kokorin",fullName:"Alexander Kokorin",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/19816/images/1607_n.jpg",biography:"Alexander I. Kokorin: born: 1947, Moscow; DSc., PhD; Principal Research Fellow (Research Professor) of Department of Kinetics and Catalysis, N. Semenov Institute of Chemical Physics, Russian Academy of Sciences, Moscow.\r\nArea of research interests: physical chemistry of complex-organized molecular and nanosized systems, including polymer-metal complexes; the surface of doped oxide semiconductors. He is an expert in structural, absorptive, catalytic and photocatalytic properties, in structural organization and dynamic features of ionic liquids, in magnetic interactions between paramagnetic centers. The author or co-author of 3 books, over 200 articles and reviews in scientific journals and books. He is an actual member of the International EPR/ESR Society, European Society on Quantum Solar Energy Conversion, Moscow House of Scientists, of the Board of Moscow Physical Society.",institutionString:null,institution:{name:"Semenov Institute of Chemical Physics",country:{name:"Russia"}}},{id:"62389",title:"PhD.",name:"Ali Demir",middleName:null,surname:"Sezer",slug:"ali-demir-sezer",fullName:"Ali Demir Sezer",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/62389/images/3413_n.jpg",biography:"Dr. Ali Demir Sezer has a Ph.D. from Pharmaceutical Biotechnology at the Faculty of Pharmacy, University of Marmara (Turkey). He is the member of many Pharmaceutical Associations and acts as a reviewer of scientific journals and European projects under different research areas such as: drug delivery systems, nanotechnology and pharmaceutical biotechnology. Dr. Sezer is the author of many scientific publications in peer-reviewed journals and poster communications. Focus of his research activity is drug delivery, physico-chemical characterization and biological evaluation of biopolymers micro and nanoparticles as modified drug delivery system, and colloidal drug carriers (liposomes, nanoparticles etc.).",institutionString:null,institution:{name:"Marmara University",country:{name:"Turkey"}}},{id:"61051",title:"Prof.",name:"Andrea",middleName:null,surname:"Natale",slug:"andrea-natale",fullName:"Andrea Natale",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:null},{id:"100762",title:"Prof.",name:"Andrea",middleName:null,surname:"Natale",slug:"andrea-natale",fullName:"Andrea Natale",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"St David's Medical Center",country:{name:"United States of America"}}},{id:"107416",title:"Dr.",name:"Andrea",middleName:null,surname:"Natale",slug:"andrea-natale",fullName:"Andrea Natale",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"Texas Cardiac Arrhythmia",country:{name:"United States of America"}}},{id:"64434",title:"Dr.",name:"Angkoon",middleName:null,surname:"Phinyomark",slug:"angkoon-phinyomark",fullName:"Angkoon Phinyomark",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/64434/images/2619_n.jpg",biography:"My name is Angkoon Phinyomark. I received a B.Eng. degree in Computer Engineering with First Class Honors in 2008 from Prince of Songkla University, Songkhla, Thailand, where I received a Ph.D. degree in Electrical Engineering. My research interests are primarily in the area of biomedical signal processing and classification notably EMG (electromyography signal), EOG (electrooculography signal), and EEG (electroencephalography signal), image analysis notably breast cancer analysis and optical coherence tomography, and rehabilitation engineering. I became a student member of IEEE in 2008. During October 2011-March 2012, I had worked at School of Computer Science and Electronic Engineering, University of Essex, Colchester, Essex, United Kingdom. In addition, during a B.Eng. I had been a visiting research student at Faculty of Computer Science, University of Murcia, Murcia, Spain for three months.\n\nI have published over 40 papers during 5 years in refereed journals, books, and conference proceedings in the areas of electro-physiological signals processing and classification, notably EMG and EOG signals, fractal analysis, wavelet analysis, texture analysis, feature extraction and machine learning algorithms, and assistive and rehabilitative devices. I have several computer programming language certificates, i.e. Sun Certified Programmer for the Java 2 Platform 1.4 (SCJP), Microsoft Certified Professional Developer, Web Developer (MCPD), Microsoft Certified Technology Specialist, .NET Framework 2.0 Web (MCTS). I am a Reviewer for several refereed journals and international conferences, such as IEEE Transactions on Biomedical Engineering, IEEE Transactions on Industrial Electronics, Optic Letters, Measurement Science Review, and also a member of the International Advisory Committee for 2012 IEEE Business Engineering and Industrial Applications and 2012 IEEE Symposium on Business, Engineering and Industrial Applications.",institutionString:null,institution:{name:"Joseph Fourier University",country:{name:"France"}}},{id:"55578",title:"Dr.",name:"Antonio",middleName:null,surname:"Jurado-Navas",slug:"antonio-jurado-navas",fullName:"Antonio Jurado-Navas",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/55578/images/4574_n.png",biography:"Antonio Jurado-Navas received the M.S. degree (2002) and the Ph.D. degree (2009) in Telecommunication Engineering, both from the University of Málaga (Spain). He first worked as a consultant at Vodafone-Spain. From 2004 to 2011, he was a Research Assistant with the Communications Engineering Department at the University of Málaga. In 2011, he became an Assistant Professor in the same department. From 2012 to 2015, he was with Ericsson Spain, where he was working on geo-location\ntools for third generation mobile networks. Since 2015, he is a Marie-Curie fellow at the Denmark Technical University. His current research interests include the areas of mobile communication systems and channel modeling in addition to atmospheric optical communications, adaptive optics and statistics",institutionString:null,institution:{name:"University of Malaga",country:{name:"Spain"}}}],filtersByRegion:[{group:"region",caption:"North America",value:1,count:5766},{group:"region",caption:"Middle and South America",value:2,count:5227},{group:"region",caption:"Africa",value:3,count:1717},{group:"region",caption:"Asia",value:4,count:10367},{group:"region",caption:"Australia and Oceania",value:5,count:897},{group:"region",caption:"Europe",value:6,count:15789}],offset:12,limit:12,total:118188},chapterEmbeded:{data:{}},editorApplication:{success:null,errors:{}},ofsBooks:{filterParams:{hasNoEditors:"0",sort:"dateEndThirdStepPublish"},books:[{type:"book",id:"10270",title:"Fog Computing",subtitle:null,isOpenForSubmission:!0,hash:"54853b3034f0348a6157b5591f8d95f3",slug:null,bookSignature:"Dr. Isiaka Ajewale Alimi, Dr. Nelson Muga, Dr. Qin Xin and Dr. Paulo P. Monteiro",coverURL:"https://cdn.intechopen.com/books/images_new/10270.jpg",editedByType:null,editors:[{id:"208236",title:"Dr.",name:"Isiaka",surname:"Alimi",slug:"isiaka-alimi",fullName:"Isiaka Alimi"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"9662",title:"Vegetation Index and Dynamics",subtitle:null,isOpenForSubmission:!0,hash:"0abf2a59ee63fc1ba4fb64d77c9b1be7",slug:null,bookSignature:"Dr. Eusebio Cano Carmona, Dr. Ricardo Quinto Canas, Dr. Ana Cano Ortiz and Dr. Carmelo Maria Musarella",coverURL:"https://cdn.intechopen.com/books/images_new/9662.jpg",editedByType:null,editors:[{id:"87846",title:"Dr.",name:"Eusebio",surname:"Cano Carmona",slug:"eusebio-cano-carmona",fullName:"Eusebio Cano Carmona"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10543",title:"Psychology and Patho-physiological Outcomes of Eating",subtitle:null,isOpenForSubmission:!0,hash:"2464b5fb6a39df380e935096743410a0",slug:null,bookSignature:"Dr. Akikazu Takada and Dr. Hubertus Himmerich",coverURL:"https://cdn.intechopen.com/books/images_new/10543.jpg",editedByType:null,editors:[{id:"248459",title:"Dr.",name:"Akikazu",surname:"Takada",slug:"akikazu-takada",fullName:"Akikazu Takada"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"9659",title:"Fibroblasts - Advances in Cancer, Autoimmunity and Inflammation",subtitle:null,isOpenForSubmission:!0,hash:"926fa6446f6befbd363fc74971a56de2",slug:null,bookSignature:"Ph.D. Mojca Frank Bertoncelj and Ms. Katja Lakota",coverURL:"https://cdn.intechopen.com/books/images_new/9659.jpg",editedByType:null,editors:[{id:"328755",title:"Ph.D.",name:"Mojca",surname:"Frank Bertoncelj",slug:"mojca-frank-bertoncelj",fullName:"Mojca Frank Bertoncelj"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10654",title:"Brain-Computer Interface",subtitle:null,isOpenForSubmission:!0,hash:"a5308884068cc53ed31c6baba756857f",slug:null,bookSignature:"Dr. Vahid Asadpour",coverURL:"https://cdn.intechopen.com/books/images_new/10654.jpg",editedByType:null,editors:[{id:"165328",title:"Dr.",name:"Vahid",surname:"Asadpour",slug:"vahid-asadpour",fullName:"Vahid Asadpour"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10536",title:"Campylobacter",subtitle:null,isOpenForSubmission:!0,hash:"c4b132b741dd0a2ed539b824ab63965f",slug:null,bookSignature:"Dr. Guillermo Téllez and Associate Prof. Saeed El-Ashram",coverURL:"https://cdn.intechopen.com/books/images_new/10536.jpg",editedByType:null,editors:[{id:"73465",title:"Dr.",name:"Guillermo",surname:"Téllez",slug:"guillermo-tellez",fullName:"Guillermo Téllez"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10765",title:"Environmental Management",subtitle:null,isOpenForSubmission:!0,hash:"e5ba02fedd7c87f0ab66414f3b07de0c",slug:null,bookSignature:"Dr. John P. Tiefenbacher",coverURL:"https://cdn.intechopen.com/books/images_new/10765.jpg",editedByType:null,editors:[{id:"73876",title:"Dr.",name:"John P.",surname:"Tiefenbacher",slug:"john-p.-tiefenbacher",fullName:"John P. Tiefenbacher"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10567",title:"Uncertainty Management in Engineering - Topics in Pollution Prevention and Controls",subtitle:null,isOpenForSubmission:!0,hash:"4990db602d31f1848c590dbfe97b6409",slug:null,bookSignature:"Prof. Rehab O. Abdel Rahman and Dr. Yung-Tse Hung",coverURL:"https://cdn.intechopen.com/books/images_new/10567.jpg",editedByType:null,editors:[{id:"92718",title:"Prof.",name:"Rehab",surname:"Abdel Rahman",slug:"rehab-abdel-rahman",fullName:"Rehab Abdel Rahman"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"8977",title:"Protein Kinase - New Opportunities, Challenges and Future Perspectives",subtitle:null,isOpenForSubmission:!0,hash:"6d200cc031706a565b554fdb1c478901",slug:null,bookSignature:"Dr. Rajesh Kumar Singh",coverURL:"https://cdn.intechopen.com/books/images_new/8977.jpg",editedByType:null,editors:[{id:"329385",title:"Dr.",name:"Rajesh",surname:"Singh",slug:"rajesh-singh",fullName:"Rajesh Singh"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10582",title:"Chemical Vapor Deposition",subtitle:null,isOpenForSubmission:!0,hash:"f9177ff0e61198735fb86a81303259d0",slug:null,bookSignature:"Dr. Sadia Ameen, Dr. M. Shaheer Akhtar and Prof. Hyung-Shik Shin",coverURL:"https://cdn.intechopen.com/books/images_new/10582.jpg",editedByType:null,editors:[{id:"52613",title:"Dr.",name:"Sadia",surname:"Ameen",slug:"sadia-ameen",fullName:"Sadia Ameen"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10814",title:"Anxiety, Uncertainty, and Resilience During the Pandemic Period - Anthropological and Psychological Perspectives",subtitle:null,isOpenForSubmission:!0,hash:"2db4d2a6638d2c66f7a5741d0f8fe4ae",slug:null,bookSignature:"Prof. Fabio Gabrielli and Dr. Floriana Irtelli",coverURL:"https://cdn.intechopen.com/books/images_new/10814.jpg",editedByType:null,editors:[{id:"259407",title:"Prof.",name:"Fabio",surname:"Gabrielli",slug:"fabio-gabrielli",fullName:"Fabio Gabrielli"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10519",title:"Middleware Architecture",subtitle:null,isOpenForSubmission:!0,hash:"c326d436ae0f4c508849d2336dbdfb48",slug:null,bookSignature:"Dr. Mehdia Ajana El Khaddar",coverURL:"https://cdn.intechopen.com/books/images_new/10519.jpg",editedByType:null,editors:[{id:"26677",title:"Dr.",name:"Mehdia",surname:"Ajana El Khaddar",slug:"mehdia-ajana-el-khaddar",fullName:"Mehdia Ajana El Khaddar"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}}],filtersByTopic:[{group:"topic",caption:"Agricultural and Biological Sciences",value:5,count:14},{group:"topic",caption:"Biochemistry, Genetics and Molecular Biology",value:6,count:3},{group:"topic",caption:"Business, Management and Economics",value:7,count:1},{group:"topic",caption:"Chemistry",value:8,count:7},{group:"topic",caption:"Computer and Information Science",value:9,count:6},{group:"topic",caption:"Earth and Planetary Sciences",value:10,count:7},{group:"topic",caption:"Engineering",value:11,count:15},{group:"topic",caption:"Environmental Sciences",value:12,count:2},{group:"topic",caption:"Immunology and Microbiology",value:13,count:3},{group:"topic",caption:"Materials Science",value:14,count:5},{group:"topic",caption:"Mathematics",value:15,count:1},{group:"topic",caption:"Medicine",value:16,count:24},{group:"topic",caption:"Neuroscience",value:18,count:1},{group:"topic",caption:"Pharmacology, Toxicology and Pharmaceutical Science",value:19,count:2},{group:"topic",caption:"Physics",value:20,count:2},{group:"topic",caption:"Psychology",value:21,count:4},{group:"topic",caption:"Social Sciences",value:23,count:2},{group:"topic",caption:"Technology",value:24,count:1},{group:"topic",caption:"Veterinary Medicine and Science",value:25,count:1}],offset:12,limit:12,total:101},popularBooks:{featuredBooks:[],offset:0,limit:12,total:null},hotBookTopics:{hotBooks:[],offset:0,limit:12,total:null},publish:{},publishingProposal:{success:null,errors:{}},books:{featuredBooks:[{type:"book",id:"10065",title:"Wavelet Theory",subtitle:null,isOpenForSubmission:!1,hash:"d8868e332169597ba2182d9b004d60de",slug:"wavelet-theory",bookSignature:"Somayeh Mohammady",coverURL:"https://cdn.intechopen.com/books/images_new/10065.jpg",editors:[{id:"109280",title:"Dr.",name:"Somayeh",middleName:null,surname:"Mohammady",slug:"somayeh-mohammady",fullName:"Somayeh Mohammady"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9644",title:"Glaciers and the Polar Environment",subtitle:null,isOpenForSubmission:!1,hash:"e8cfdc161794e3753ced54e6ff30873b",slug:"glaciers-and-the-polar-environment",bookSignature:"Masaki Kanao, Danilo Godone and Niccolò Dematteis",coverURL:"https://cdn.intechopen.com/books/images_new/9644.jpg",editors:[{id:"51959",title:"Dr.",name:"Masaki",middleName:null,surname:"Kanao",slug:"masaki-kanao",fullName:"Masaki Kanao"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9385",title:"Renewable Energy",subtitle:"Technologies and Applications",isOpenForSubmission:!1,hash:"a6b446d19166f17f313008e6c056f3d8",slug:"renewable-energy-technologies-and-applications",bookSignature:"Tolga Taner, Archana Tiwari and Taha Selim Ustun",coverURL:"https://cdn.intechopen.com/books/images_new/9385.jpg",editors:[{id:"197240",title:"Associate Prof.",name:"Tolga",middleName:null,surname:"Taner",slug:"tolga-taner",fullName:"Tolga Taner"}],equalEditorOne:{id:"186791",title:"Dr.",name:"Archana",middleName:null,surname:"Tiwari",slug:"archana-tiwari",fullName:"Archana Tiwari",profilePictureURL:"https://mts.intechopen.com/storage/users/186791/images/system/186791.jpg",biography:"Dr. Archana Tiwari is Associate Professor at Amity University, India. Her research interests include renewable sources of energy from microalgae and further utilizing the residual biomass for the generation of value-added products, bioremediation through microalgae and microbial consortium, antioxidative enzymes and stress, and nutraceuticals from microalgae. She has been working on algal biotechnology for the last two decades. She has published her research in many international journals and has authored many books and chapters with renowned publishing houses. She has also delivered talks as an invited speaker at many national and international conferences. Dr. Tiwari is the recipient of several awards including Researcher of the Year and Distinguished Scientist.",institutionString:"Amity University",position:null,outsideEditionCount:0,totalCites:0,totalAuthoredChapters:"3",totalChapterViews:"0",totalEditedBooks:"1",institution:{name:"Amity University",institutionURL:null,country:{name:"India"}}},equalEditorTwo:{id:"197609",title:"Prof.",name:"Taha Selim",middleName:null,surname:"Ustun",slug:"taha-selim-ustun",fullName:"Taha Selim Ustun",profilePictureURL:"https://mts.intechopen.com/storage/users/197609/images/system/197609.jpeg",biography:"Dr. Taha Selim Ustun received a Ph.D. in Electrical Engineering from Victoria University, Melbourne, Australia. He is a researcher with the Fukushima Renewable Energy Institute, AIST (FREA), where he leads the Smart Grid Cybersecurity Laboratory. Prior to that, he was a faculty member with the School of Electrical and Computer Engineering, Carnegie Mellon University, Pittsburgh, PA, USA. His current research interests include power systems protection, communication in power networks, distributed generation, microgrids, electric vehicle integration, and cybersecurity in smart grids. He serves on the editorial boards of IEEE Access, IEEE Transactions on Industrial Informatics, Energies, Electronics, Electricity, World Electric Vehicle and Information journals. Dr. Ustun is a member of the IEEE 2004 and 2800, IEC Renewable Energy Management WG 8, and IEC TC 57 WG17. He has been invited to run specialist courses in Africa, India, and China. He has delivered talks for the Qatar Foundation, the World Energy Council, the Waterloo Global Science Initiative, and the European Union Energy Initiative (EUEI). His research has attracted funding from prestigious programs in Japan, Australia, the European Union, and North America.",institutionString:"Fukushima Renewable Energy Institute, AIST (FREA)",position:null,outsideEditionCount:0,totalCites:0,totalAuthoredChapters:"1",totalChapterViews:"0",totalEditedBooks:"0",institution:{name:"National Institute of Advanced Industrial Science and Technology",institutionURL:null,country:{name:"Japan"}}},equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"8985",title:"Natural Resources Management and Biological Sciences",subtitle:null,isOpenForSubmission:!1,hash:"5c2e219a6c021a40b5a20c041dea88c4",slug:"natural-resources-management-and-biological-sciences",bookSignature:"Edward R. Rhodes and Humood Naser",coverURL:"https://cdn.intechopen.com/books/images_new/8985.jpg",editors:[{id:"280886",title:"Prof.",name:"Edward R",middleName:null,surname:"Rhodes",slug:"edward-r-rhodes",fullName:"Edward R Rhodes"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9671",title:"Macrophages",subtitle:null,isOpenForSubmission:!1,hash:"03b00fdc5f24b71d1ecdfd75076bfde6",slug:"macrophages",bookSignature:"Hridayesh Prakash",coverURL:"https://cdn.intechopen.com/books/images_new/9671.jpg",editors:[{id:"287184",title:"Dr.",name:"Hridayesh",middleName:null,surname:"Prakash",slug:"hridayesh-prakash",fullName:"Hridayesh Prakash"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9313",title:"Clay Science and Technology",subtitle:null,isOpenForSubmission:!1,hash:"6fa7e70396ff10620e032bb6cfa6fb72",slug:"clay-science-and-technology",bookSignature:"Gustavo Morari Do Nascimento",coverURL:"https://cdn.intechopen.com/books/images_new/9313.jpg",editors:[{id:"7153",title:"Prof.",name:"Gustavo",middleName:null,surname:"Morari Do Nascimento",slug:"gustavo-morari-do-nascimento",fullName:"Gustavo Morari Do Nascimento"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9888",title:"Nuclear Power Plants",subtitle:"The Processes from the Cradle to the Grave",isOpenForSubmission:!1,hash:"c2c8773e586f62155ab8221ebb72a849",slug:"nuclear-power-plants-the-processes-from-the-cradle-to-the-grave",bookSignature:"Nasser Awwad",coverURL:"https://cdn.intechopen.com/books/images_new/9888.jpg",editors:[{id:"145209",title:"Prof.",name:"Nasser",middleName:"S",surname:"Awwad",slug:"nasser-awwad",fullName:"Nasser Awwad"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9027",title:"Human Blood Group Systems and Haemoglobinopathies",subtitle:null,isOpenForSubmission:!1,hash:"d00d8e40b11cfb2547d1122866531c7e",slug:"human-blood-group-systems-and-haemoglobinopathies",bookSignature:"Osaro Erhabor and Anjana Munshi",coverURL:"https://cdn.intechopen.com/books/images_new/9027.jpg",editors:[{id:"35140",title:null,name:"Osaro",middleName:null,surname:"Erhabor",slug:"osaro-erhabor",fullName:"Osaro Erhabor"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10432",title:"Casting Processes and Modelling of Metallic Materials",subtitle:null,isOpenForSubmission:!1,hash:"2c5c9df938666bf5d1797727db203a6d",slug:"casting-processes-and-modelling-of-metallic-materials",bookSignature:"Zakaria Abdallah and Nada Aldoumani",coverURL:"https://cdn.intechopen.com/books/images_new/10432.jpg",editors:[{id:"201670",title:"Dr.",name:"Zak",middleName:null,surname:"Abdallah",slug:"zak-abdallah",fullName:"Zak Abdallah"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"7841",title:"New Insights Into Metabolic Syndrome",subtitle:null,isOpenForSubmission:!1,hash:"ef5accfac9772b9e2c9eff884f085510",slug:"new-insights-into-metabolic-syndrome",bookSignature:"Akikazu Takada",coverURL:"https://cdn.intechopen.com/books/images_new/7841.jpg",editors:[{id:"248459",title:"Dr.",name:"Akikazu",middleName:null,surname:"Takada",slug:"akikazu-takada",fullName:"Akikazu Takada"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}}],latestBooks:[{type:"book",id:"9550",title:"Entrepreneurship",subtitle:"Contemporary Issues",isOpenForSubmission:!1,hash:"9b4ac1ee5b743abf6f88495452b1e5e7",slug:"entrepreneurship-contemporary-issues",bookSignature:"Mladen Turuk",coverURL:"https://cdn.intechopen.com/books/images_new/9550.jpg",editedByType:"Edited by",editors:[{id:"319755",title:"Prof.",name:"Mladen",middleName:null,surname:"Turuk",slug:"mladen-turuk",fullName:"Mladen Turuk"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10065",title:"Wavelet Theory",subtitle:null,isOpenForSubmission:!1,hash:"d8868e332169597ba2182d9b004d60de",slug:"wavelet-theory",bookSignature:"Somayeh Mohammady",coverURL:"https://cdn.intechopen.com/books/images_new/10065.jpg",editedByType:"Edited by",editors:[{id:"109280",title:"Dr.",name:"Somayeh",middleName:null,surname:"Mohammady",slug:"somayeh-mohammady",fullName:"Somayeh Mohammady"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"9313",title:"Clay Science and Technology",subtitle:null,isOpenForSubmission:!1,hash:"6fa7e70396ff10620e032bb6cfa6fb72",slug:"clay-science-and-technology",bookSignature:"Gustavo Morari Do Nascimento",coverURL:"https://cdn.intechopen.com/books/images_new/9313.jpg",editedByType:"Edited by",editors:[{id:"7153",title:"Prof.",name:"Gustavo",middleName:null,surname:"Morari Do Nascimento",slug:"gustavo-morari-do-nascimento",fullName:"Gustavo Morari Do Nascimento"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"9888",title:"Nuclear Power Plants",subtitle:"The Processes from the Cradle to the Grave",isOpenForSubmission:!1,hash:"c2c8773e586f62155ab8221ebb72a849",slug:"nuclear-power-plants-the-processes-from-the-cradle-to-the-grave",bookSignature:"Nasser Awwad",coverURL:"https://cdn.intechopen.com/books/images_new/9888.jpg",editedByType:"Edited by",editors:[{id:"145209",title:"Prof.",name:"Nasser",middleName:"S",surname:"Awwad",slug:"nasser-awwad",fullName:"Nasser Awwad"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"8098",title:"Resources of Water",subtitle:null,isOpenForSubmission:!1,hash:"d251652996624d932ef7b8ed62cf7cfc",slug:"resources-of-water",bookSignature:"Prathna Thanjavur Chandrasekaran, Muhammad Salik Javaid, Aftab Sadiq",coverURL:"https://cdn.intechopen.com/books/images_new/8098.jpg",editedByType:"Edited by",editors:[{id:"167917",title:"Dr.",name:"Prathna",middleName:null,surname:"Thanjavur Chandrasekaran",slug:"prathna-thanjavur-chandrasekaran",fullName:"Prathna Thanjavur Chandrasekaran"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"9644",title:"Glaciers and the Polar Environment",subtitle:null,isOpenForSubmission:!1,hash:"e8cfdc161794e3753ced54e6ff30873b",slug:"glaciers-and-the-polar-environment",bookSignature:"Masaki Kanao, Danilo Godone and Niccolò Dematteis",coverURL:"https://cdn.intechopen.com/books/images_new/9644.jpg",editedByType:"Edited by",editors:[{id:"51959",title:"Dr.",name:"Masaki",middleName:null,surname:"Kanao",slug:"masaki-kanao",fullName:"Masaki Kanao"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10432",title:"Casting Processes and Modelling of Metallic Materials",subtitle:null,isOpenForSubmission:!1,hash:"2c5c9df938666bf5d1797727db203a6d",slug:"casting-processes-and-modelling-of-metallic-materials",bookSignature:"Zakaria Abdallah and Nada Aldoumani",coverURL:"https://cdn.intechopen.com/books/images_new/10432.jpg",editedByType:"Edited by",editors:[{id:"201670",title:"Dr.",name:"Zak",middleName:null,surname:"Abdallah",slug:"zak-abdallah",fullName:"Zak Abdallah"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"9671",title:"Macrophages",subtitle:null,isOpenForSubmission:!1,hash:"03b00fdc5f24b71d1ecdfd75076bfde6",slug:"macrophages",bookSignature:"Hridayesh Prakash",coverURL:"https://cdn.intechopen.com/books/images_new/9671.jpg",editedByType:"Edited by",editors:[{id:"287184",title:"Dr.",name:"Hridayesh",middleName:null,surname:"Prakash",slug:"hridayesh-prakash",fullName:"Hridayesh Prakash"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"8415",title:"Extremophilic Microbes and Metabolites",subtitle:"Diversity, Bioprospecting and Biotechnological Applications",isOpenForSubmission:!1,hash:"93e0321bc93b89ff73730157738f8f97",slug:"extremophilic-microbes-and-metabolites-diversity-bioprospecting-and-biotechnological-applications",bookSignature:"Afef Najjari, Ameur Cherif, Haïtham Sghaier and Hadda Imene Ouzari",coverURL:"https://cdn.intechopen.com/books/images_new/8415.jpg",editedByType:"Edited by",editors:[{id:"196823",title:"Dr.",name:"Afef",middleName:null,surname:"Najjari",slug:"afef-najjari",fullName:"Afef Najjari"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"9731",title:"Oxidoreductase",subtitle:null,isOpenForSubmission:!1,hash:"852e6f862c85fc3adecdbaf822e64e6e",slug:"oxidoreductase",bookSignature:"Mahmoud Ahmed Mansour",coverURL:"https://cdn.intechopen.com/books/images_new/9731.jpg",editedByType:"Edited by",editors:[{id:"224662",title:"Prof.",name:"Mahmoud Ahmed",middleName:null,surname:"Mansour",slug:"mahmoud-ahmed-mansour",fullName:"Mahmoud Ahmed Mansour"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}}]},subject:{topic:{id:"1208",title:"Medical Toxicology",slug:"medical-toxicology",parent:{title:"Toxicology",slug:"pharmacology-toxicology-and-pharmaceutical-science-toxicology"},numberOfBooks:5,numberOfAuthorsAndEditors:129,numberOfWosCitations:176,numberOfCrossrefCitations:119,numberOfDimensionsCitations:277,videoUrl:null,fallbackUrl:null,description:null},booksByTopicFilter:{topicSlug:"medical-toxicology",sort:"-publishedDate",limit:12,offset:0},booksByTopicCollection:[{type:"book",id:"7847",title:"Medical Toxicology",subtitle:null,isOpenForSubmission:!1,hash:"db9b65bea093de17a0855a1b27046247",slug:"medical-toxicology",bookSignature:"Pınar Erkekoglu and Tomohisa Ogawa",coverURL:"https://cdn.intechopen.com/books/images_new/7847.jpg",editedByType:"Edited by",editors:[{id:"109978",title:"Prof.",name:"Pınar",middleName:null,surname:"Erkekoglu",slug:"pinar-erkekoglu",fullName:"Pınar Erkekoglu"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"8068",title:"Cytotoxicity",subtitle:"Definition, Identification, and Cytotoxic Compounds",isOpenForSubmission:!1,hash:"20a09223d92829b5478b5f241f6a03ce",slug:"cytotoxicity-definition-identification-and-cytotoxic-compounds",bookSignature:"Erman Salih Istifli and Hasan Basri Ila",coverURL:"https://cdn.intechopen.com/books/images_new/8068.jpg",editedByType:"Edited by",editors:[{id:"179007",title:"Dr.",name:"Erman Salih",middleName:null,surname:"Istifli",slug:"erman-salih-istifli",fullName:"Erman Salih Istifli"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"7111",title:"Poisoning in the Modern World",subtitle:"New Tricks for an Old Dog?",isOpenForSubmission:!1,hash:"08164f9300bc6bf4900c9166d960278b",slug:"poisoning-in-the-modern-world-new-tricks-for-an-old-dog-",bookSignature:"Ozgur Karcioglu and Banu Arslan",coverURL:"https://cdn.intechopen.com/books/images_new/7111.jpg",editedByType:"Edited by",editors:[{id:"221195",title:"Dr.",name:"Ozgur",middleName:null,surname:"Karcioglu",slug:"ozgur-karcioglu",fullName:"Ozgur Karcioglu"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"6380",title:"Cytotoxicity",subtitle:null,isOpenForSubmission:!1,hash:"60d61573c9a66207b8bc54613cac5716",slug:"cytotoxicity",bookSignature:"Tülay Aşkin Çelik",coverURL:"https://cdn.intechopen.com/books/images_new/6380.jpg",editedByType:"Edited by",editors:[{id:"74041",title:"Dr.",name:"Tulay",middleName:null,surname:"Askin Celik",slug:"tulay-askin-celik",fullName:"Tulay Askin Celik"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"3408",title:"New Insights into Toxicity and Drug Testing",subtitle:null,isOpenForSubmission:!1,hash:"71cbc4a6caf1e19add9556925b6d2974",slug:"new-insights-into-toxicity-and-drug-testing",bookSignature:"Sivakumar Gowder",coverURL:"https://cdn.intechopen.com/books/images_new/3408.jpg",editedByType:"Edited by",editors:[{id:"118572",title:"Dr.",name:"Sivakumar Joghi",middleName:null,surname:"Thatha Gowder",slug:"sivakumar-joghi-thatha-gowder",fullName:"Sivakumar Joghi Thatha Gowder"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}}],booksByTopicTotal:5,mostCitedChapters:[{id:"42016",doi:"10.5772/55187",title:"Why are Early Life Stages of Aquatic Organisms more Sensitive to Toxicants than Adults?",slug:"why-are-early-life-stages-of-aquatic-organisms-more-sensitive-to-toxicants-than-adults-",totalDownloads:3044,totalCrossrefCites:22,totalDimensionsCites:64,book:{slug:"new-insights-into-toxicity-and-drug-testing",title:"New Insights into Toxicity and Drug Testing",fullTitle:"New Insights into Toxicity and Drug Testing"},signatures:"Azad Mohammed",authors:[{id:"147061",title:"Dr.",name:"Azad",middleName:null,surname:"Mohammed",slug:"azad-mohammed",fullName:"Azad Mohammed"}]},{id:"64762",doi:"10.5772/intechopen.82511",title:"Mechanism and Health Effects of Heavy Metal Toxicity in Humans",slug:"mechanism-and-health-effects-of-heavy-metal-toxicity-in-humans",totalDownloads:6253,totalCrossrefCites:32,totalDimensionsCites:62,book:{slug:"poisoning-in-the-modern-world-new-tricks-for-an-old-dog-",title:"Poisoning in the Modern World",fullTitle:"Poisoning in the Modern World - New Tricks for an Old Dog?"},signatures:"Godwill Azeh Engwa, Paschaline Udoka Ferdinand, Friday Nweke Nwalo and Marian N. Unachukwu",authors:[{id:"241837",title:"Mr.",name:"Godwill Azeh",middleName:null,surname:"Engwa",slug:"godwill-azeh-engwa",fullName:"Godwill Azeh Engwa"},{id:"274194",title:"BSc.",name:"Paschaline Ferdinand",middleName:null,surname:"Okeke",slug:"paschaline-ferdinand-okeke",fullName:"Paschaline Ferdinand Okeke"},{id:"286975",title:"Dr.",name:"Friday",middleName:null,surname:"Nweke Nwalo",slug:"friday-nweke-nwalo",fullName:"Friday Nweke Nwalo"},{id:"286976",title:"Dr.",name:"Marian",middleName:null,surname:"Unachukwu",slug:"marian-unachukwu",fullName:"Marian Unachukwu"}]},{id:"42020",doi:"10.5772/54493",title:"Screening of Herbal Medicines for Potential Toxicities",slug:"screening-of-herbal-medicines-for-potential-toxicities",totalDownloads:7053,totalCrossrefCites:22,totalDimensionsCites:58,book:{slug:"new-insights-into-toxicity-and-drug-testing",title:"New Insights into Toxicity and Drug Testing",fullTitle:"New Insights into Toxicity and Drug Testing"},signatures:"Obidike Ifeoma and Salawu Oluwakanyinsola",authors:[{id:"142730",title:"Dr.",name:"Ifeoma",middleName:null,surname:"Ezenyi",slug:"ifeoma-ezenyi",fullName:"Ifeoma Ezenyi"}]}],mostDownloadedChaptersLast30Days:[{id:"64762",title:"Mechanism and Health Effects of Heavy Metal Toxicity in Humans",slug:"mechanism-and-health-effects-of-heavy-metal-toxicity-in-humans",totalDownloads:6244,totalCrossrefCites:31,totalDimensionsCites:62,book:{slug:"poisoning-in-the-modern-world-new-tricks-for-an-old-dog-",title:"Poisoning in the Modern World",fullTitle:"Poisoning in the Modern World - New Tricks for an Old Dog?"},signatures:"Godwill Azeh Engwa, Paschaline Udoka Ferdinand, Friday Nweke Nwalo and Marian N. Unachukwu",authors:[{id:"241837",title:"Mr.",name:"Godwill Azeh",middleName:null,surname:"Engwa",slug:"godwill-azeh-engwa",fullName:"Godwill Azeh Engwa"},{id:"274194",title:"BSc.",name:"Paschaline Ferdinand",middleName:null,surname:"Okeke",slug:"paschaline-ferdinand-okeke",fullName:"Paschaline Ferdinand Okeke"},{id:"286975",title:"Dr.",name:"Friday",middleName:null,surname:"Nweke Nwalo",slug:"friday-nweke-nwalo",fullName:"Friday Nweke Nwalo"},{id:"286976",title:"Dr.",name:"Marian",middleName:null,surname:"Unachukwu",slug:"marian-unachukwu",fullName:"Marian Unachukwu"}]},{id:"71771",title:"The Clinical Importance of Herb-Drug Interactions and Toxicological Risks of Plants and Herbal Products",slug:"the-clinical-importance-of-herb-drug-interactions-and-toxicological-risks-of-plants-and-herbal-produ",totalDownloads:460,totalCrossrefCites:0,totalDimensionsCites:1,book:{slug:"medical-toxicology",title:"Medical Toxicology",fullTitle:"Medical Toxicology"},signatures:"Cigdem Kahraman, Zekiye Ceren Arituluk and Iffet Irem Tatli Cankaya",authors:[{id:"319337",title:"Dr.",name:"Irem Tatli",middleName:null,surname:"Cankaya",slug:"irem-tatli-cankaya",fullName:"Irem Tatli Cankaya"},{id:"319339",title:"Dr.",name:"Zekiye Ceren",middleName:null,surname:"Arituluk",slug:"zekiye-ceren-arituluk",fullName:"Zekiye Ceren Arituluk"},{id:"319340",title:"Dr.",name:"Cigdem",middleName:null,surname:"Kahraman",slug:"cigdem-kahraman",fullName:"Cigdem Kahraman"}]},{id:"42020",title:"Screening of Herbal Medicines for Potential Toxicities",slug:"screening-of-herbal-medicines-for-potential-toxicities",totalDownloads:7052,totalCrossrefCites:22,totalDimensionsCites:58,book:{slug:"new-insights-into-toxicity-and-drug-testing",title:"New Insights into Toxicity and Drug Testing",fullTitle:"New Insights into Toxicity and Drug Testing"},signatures:"Obidike Ifeoma and Salawu Oluwakanyinsola",authors:[{id:"142730",title:"Dr.",name:"Ifeoma",middleName:null,surname:"Ezenyi",slug:"ifeoma-ezenyi",fullName:"Ifeoma Ezenyi"}]},{id:"66310",title:"General Approach to Poisoned Patient",slug:"general-approach-to-poisoned-patient",totalDownloads:1115,totalCrossrefCites:0,totalDimensionsCites:0,book:{slug:"poisoning-in-the-modern-world-new-tricks-for-an-old-dog-",title:"Poisoning in the Modern World",fullTitle:"Poisoning in the Modern World - New Tricks for an Old Dog?"},signatures:"Ehab Said Aki and Jalal Alessai",authors:[{id:"230047",title:"Dr.",name:"Ehab",middleName:null,surname:"Aki",slug:"ehab-aki",fullName:"Ehab Aki"}]},{id:"61438",title:"Introductory Chapter: Cytotoxicity",slug:"introductory-chapter-cytotoxicity",totalDownloads:738,totalCrossrefCites:0,totalDimensionsCites:0,book:{slug:"cytotoxicity",title:"Cytotoxicity",fullTitle:"Cytotoxicity"},signatures:"Tülay Aşkin Çelik",authors:[{id:"74041",title:"Dr.",name:"Tulay",middleName:null,surname:"Askin Celik",slug:"tulay-askin-celik",fullName:"Tulay Askin Celik"}]},{id:"68419",title:"Cell Division, Cytotoxicity, and the Assays Used in the Detection of Cytotoxicity",slug:"cell-division-cytotoxicity-and-the-assays-used-in-the-detection-of-cytotoxicity",totalDownloads:795,totalCrossrefCites:1,totalDimensionsCites:1,book:{slug:"cytotoxicity-definition-identification-and-cytotoxic-compounds",title:"Cytotoxicity",fullTitle:"Cytotoxicity - Definition, Identification, and Cytotoxic Compounds"},signatures:"Erman Salih Istifli, Mehmet Tahir Hüsunet and Hasan Basri Ila",authors:[{id:"179007",title:"Dr.",name:"Erman Salih",middleName:null,surname:"Istifli",slug:"erman-salih-istifli",fullName:"Erman Salih Istifli"}]},{id:"65686",title:"Review of Health Hazards and Toxicological Effects of Constituents of Cosmetics",slug:"review-of-health-hazards-and-toxicological-effects-of-constituents-of-cosmetics",totalDownloads:815,totalCrossrefCites:0,totalDimensionsCites:2,book:{slug:"poisoning-in-the-modern-world-new-tricks-for-an-old-dog-",title:"Poisoning in the Modern World",fullTitle:"Poisoning in the Modern World - New Tricks for an Old Dog?"},signatures:"John Kanayochukwu Nduka, Henrietta Ijeoma Kelle and Isaac Omoche Odiba",authors:[{id:"107866",title:"Dr.",name:"John Kanayochukwu",middleName:null,surname:"Nduka",slug:"john-kanayochukwu-nduka",fullName:"John Kanayochukwu Nduka"}]},{id:"65005",title:"Forensic Toxicology",slug:"forensic-toxicology",totalDownloads:769,totalCrossrefCites:0,totalDimensionsCites:0,book:{slug:"poisoning-in-the-modern-world-new-tricks-for-an-old-dog-",title:"Poisoning in the Modern World",fullTitle:"Poisoning in the Modern World - New Tricks for an Old Dog?"},signatures:"Sahar Y. Issa",authors:[{id:"268527",title:"Dr.",name:"Sahar",middleName:null,surname:"Issa",slug:"sahar-issa",fullName:"Sahar Issa"}]},{id:"66173",title:"In Vitro Cytotoxicity Screening as a Criterion for the Rational Selection of Tear Substitutes",slug:"in-vitro-cytotoxicity-screening-as-a-criterion-for-the-rational-selection-of-tear-substitutes",totalDownloads:451,totalCrossrefCites:0,totalDimensionsCites:0,book:{slug:"cytotoxicity-definition-identification-and-cytotoxic-compounds",title:"Cytotoxicity",fullTitle:"Cytotoxicity - Definition, Identification, and Cytotoxic Compounds"},signatures:"Olga I. Aleksandrova, Igor N. Okolov, Julia I. Khorolskaya, Natalia A. Mikhailova, Diana M. Darvish and Miralda I. Blinova",authors:null},{id:"41968",title:"The Kidney Vero-E6 Cell Line: A Suitable Model to Study the Toxicity of Microcystins",slug:"the-kidney-vero-e6-cell-line-a-suitable-model-to-study-the-toxicity-of-microcystins",totalDownloads:3039,totalCrossrefCites:4,totalDimensionsCites:13,book:{slug:"new-insights-into-toxicity-and-drug-testing",title:"New Insights into Toxicity and Drug Testing",fullTitle:"New Insights into Toxicity and Drug Testing"},signatures:"Carina Menezes, Elisabete Valério and Elsa Dias",authors:[{id:"86640",title:"Dr",name:"Elsa",middleName:null,surname:"Dias",slug:"elsa-dias",fullName:"Elsa Dias"},{id:"160227",title:"MSc.",name:"Carina",middleName:null,surname:"Menezes",slug:"carina-menezes",fullName:"Carina Menezes"},{id:"160228",title:"Dr.",name:"Elisabete",middleName:null,surname:"Valério",slug:"elisabete-valerio",fullName:"Elisabete Valério"}]}],onlineFirstChaptersFilter:{topicSlug:"medical-toxicology",limit:3,offset:0},onlineFirstChaptersCollection:[],onlineFirstChaptersTotal:0},preDownload:{success:null,errors:{}},aboutIntechopen:{},privacyPolicy:{},peerReviewing:{},howOpenAccessPublishingWithIntechopenWorks:{},sponsorshipBooks:{sponsorshipBooks:[{type:"book",id:"10176",title:"Microgrids and Local Energy Systems",subtitle:null,isOpenForSubmission:!0,hash:"c32b4a5351a88f263074b0d0ca813a9c",slug:null,bookSignature:"Prof. Nick Jenkins",coverURL:"https://cdn.intechopen.com/books/images_new/10176.jpg",editedByType:null,editors:[{id:"55219",title:"Prof.",name:"Nick",middleName:null,surname:"Jenkins",slug:"nick-jenkins",fullName:"Nick Jenkins"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}}],offset:8,limit:8,total:1},route:{name:"chapter.detail",path:"/books/ischemic-stroke-of-brain/cerebral-venous-thrombosis-a-clinical-overview",hash:"",query:{},params:{book:"ischemic-stroke-of-brain",chapter:"cerebral-venous-thrombosis-a-clinical-overview"},fullPath:"/books/ischemic-stroke-of-brain/cerebral-venous-thrombosis-a-clinical-overview",meta:{},from:{name:null,path:"/",hash:"",query:{},params:{},fullPath:"/",meta:{}}}},function(){var e;(e=document.currentScript||document.scripts[document.scripts.length-1]).parentNode.removeChild(e)}()