Initial values of L and C for the two resonators.
\r\n\tLegionnaire’s disease is also an important public health topic as it involves environmental and public issues, as far as the spread and prevention is concerned. With the longevity and aging population, increasing number of transplants, increasing use of immunosuppressive medications, and compromised immunity due to multiorgan system disease, Legionnaire’s disease is emerging as an important disease.
\r\n\tMoreover, extensive research and advances have been conducted in the areas of prevention, diagnostic modalities and treatment.
In most reproducing animals, including Drosophila, seminal fluid is transferred along with sperm to females during mating. These seminal fluid components have important effects on female behavior and physiology and have been extensively studied in Drosophila melanogaster [1, 2]. Most of these seminal proteins are synthesized in the accessory glands (AGs) and therefore, named ACcessory gland Proteins (ACPs). One well-characterized ACP, ACP70A (also called SP, sex peptide), plays a major role in eliciting postmating response: it modifies the female behavior, resulting in the rejection of courting males [3, 4]. It has a crucial role on female reproduction: it increases oogenesis [5], egg production [6] and egg-laying [3, 4]. It also induces dramatic effects on female nutrition: it increases food uptake [7], modifies food preference by altering nutrient balancing [8] and alters gut water absorption and intestinal transit [9]. The other physiological modifications are the inhibition of sleep [10] and the regulation of sperm release from the storage organs [11]. All these effects are caused by the binding of the C-terminal part of the sex peptide to a neuronal sex peptide receptor (SPR) in the female [12, 13, 14]. The central part of sex peptide elicits the expression of immune response genes [15], and the N-terminal part activates the corpora allata (CA), inducing increased synthesis of juvenile hormone (JH) [16], which triggers oogenesis and vitellogenic oocyte progression [5] and also leads to decreased pheromone biosynthesis [17].
Whereas, there are numerous studies on the role of male sex peptide on female physiology, there are no such studies concerning male physiology. As we observed that there was a defect in courtship behavior of sex peptide mutant males, we wanted to elucidate the possible roles of ACP70A in male behavior and physiology. In this study, we report clear defects in male sex behavior and moderate defects in hydrocarbon and pheromone synthesis concerning mutant males. Using sex peptide knocked-down males, we confirmed the control of sex peptide on male sex behavior. Conversely, ubiquitous expression of Acp70A-RNAi resulted in a twofold increase in cuticular hydrocarbon (CHC) amounts. We could exclude the role of eight off-targets in this CHC augmentation and localize this RNAi effect in the accessory glands (responsible for a 35% increase) and in the testes (responsible for the rest of the effect). The presence of sperm in the testes does not affect CHC biosynthesis.
Three strains mutant for sex peptide were used:
the deficiency Δ130/TM3 (covering the Acp70A gene);
the point mutant sp0, produced by targeted mutagenesis by homologous recombination [4]. sp0 males were used balanced by TM3 (sp0/TM3: one copy of Acp70A is active) or homozygous (sp0/ sp0: no production of ACP70A), or crossed by Δ130/TM3 (sp0/Δ130: no production of ACP70A).
DTA-E [18], which are sperm-less and lack ACPs produced from the main cells (96% of the accessory glands).
The laboratory wild-type Canton-S strain was also used as a control.
The following Gal-lines from the Bloomington Drosophila Stock Centre were used: daughterless (da)-Gal4, a ubiquitous driver; elav-Gal4, a driver expressed in the nervous system [19], dopa decarboxylase (ddc)-Gal4, expressed in epidermis and nervous system [20], 1407-Gal4 and PromE-Gal4, both expressed in pupal and adult oenocytes [21, 22], c564-Gal4, expressed in fat body [23], Acp26A-Gal4, expressed in accessory glands [3], svp-Gal80, which specifically blocks Gal4 activity in the oenocytes [24]. Using a UAS-GFP line, we could show that 1407-Gal4 was also expressed in testes and built a line with the following genotype: 1407-Gal4; svp-Gal80 that drives the expression only in the testes. Images were visualized and photographed on a Nikon eclipse E800 microscope with a Cool Snap camera.
A UAS-Acp70A line was generated in our laboratory and noted UAS-Acp70A+ [17]. The following UAS-RNAi-lines were obtained from the VDRC Stock Center and directed against: Acp70A, SP (109,175 KK); lamp1, CG3305, (7309 GD); dco, CG4379 (101,524 KK); rgk1, CG44011 (108,710 KK); CG5961 (100,023 KK); CG15128 (100238KK); CG9413 (108,867 KK); CG8315 (105,654 KK); tinc, CG31247 (101,175 KK).
Drivers were maintained as heterozygous over a Balancer (Cyo or TM3). In all RNAi knock-down (or overexpression) experiments, balanced gal4-driver females were crossed to UAS males. Balanced progeny was taken as the control of RNAi knocked-down (or overexpression) progeny.
Flies were grown at 25°C with 12/12 light–dark (LD) cycles, on standard cornmeal medium. They were separated by sex at emergence and kept sex-separated in groups of 10 in fresh food vials until testing (4 days after emergence).
CHCs were removed from single 4-day-old flies by washing them for 5 min in 100 μL heptane containing 500 ng hexacosane (n-C26) as an internal standard. The fly was then removed from the vial and 5 μL of each sample was injected into a Perichrom Pr200 gas chromatograph, with hydrogen as the carrier, using a split injector (split ratio 40:1). The oven temperature started at 180°C, ramped at 3°C/min to 300°C, for a total run of 40 min. The data were automatically computed and recorded using Winilab III software (version 04.06, Perichrom) as previously described [17]. As we did not observe significant variation in the CHC profiles, we only represented the total amount of CHCs as means ± SEM (n = 10 for all tests).
Quantitative PCR was performed as described [25] using RNA TRIzol™ (Invitrogen) to extract RNAs from 10 adults for each sample. cDNAs were synthesized with SuperScript II, and PCR was perfumed with a LightCycler® 480 SYBR Green I Master (Roche Applied Science). Primers for Acp70A (5′-ATTCTTGGTTCTCGTTTGCG-3′ and 5′-TAACATCTTCCACCCCAGG-3′) were used. To normalize mRNA amounts, we tested six different genes and used one gene, which was shown to be very stable in all samples: CG7598 (5′-AACGGATGTGGTGTTCGATT-3′ and 5′-TAATGCCATCCTTGGTGTGA-3′). Samples were performed in independent triplicates (each consisting of two technical replicates).
A 4-day-old Canton-S female was introduced into the observation chamber, consisting of a watch glass (28-mm diameter and 5-mm internal height) placed on a glass plate and left for 2 min before the introduction of the male. The following parameters were recorded: lengths of courtship, first copulation attempt and copulation latency (time from introduction of the male into the observation chamber to courtship, first copulation attempt or copulation), percentages of courtship, first copulation attempt and copulation (percentages of males performing courtship, copulation attempt or copulation). The effects of genotypes were evaluated by Kruskal-Wallis tests (latencies) and χ2-tests (percentages of flies). N ≥ 50 for all tests.
Acp70A expression was not significantly different in controls (Canton-S and Acp26A) and in sp0 mutants that possess a point mutation in the signal sequence. In contrast, Acp70A expression was dramatically inhibited in Acp26A > Acp70A-RNAi males (−99%) and higher expression was observed in Acp26A > Acp70A males (+63%) (Figure 1).
Transcriptional expression of Acp70A in control, mutant, knocked-down or overexpressing male flies. Each bar represents mean ± SEM of three independent trials. *, ** and *** indicate significant differences (P = 0.05, 0.01 and 0.001, respectively).
Males mutant for Acp70A (sp0/+ and sp0/sp0), overexpressing Acp70A (Acp26A > Acp70A) or RNAi knocked-down (Acp26A > Acp70A-RNAi and da > Acp70A-RNAi) were tested in face of wild-type females (Figure 2).
Courtship and mating experiments in fly pairs composed of a wild-type (Canton-S) female and a male of a different genotype: percentages of males performing courtship (WB), copulation attempts (CA) and copulation (C) and time needed to initiate these tasks. Effect of the sp0 mutation and overexpression or RNAi knock-down of Acp70A in males (drivers Acp26A-Gal4 and da-Gal4). Each bar represents mean ± SEM of 50 trials. *, ** and *** indicate significant differences (P = 0.05, 0.01 and 0.001, respectively). N is indicated below each bar.
All the steps of courtship were affected in sp0 mutants: the number of heterozygous males that attempted or succeeded copulation decreased by 54 and 73%, respectively. The effect of the homozygous mutation was dramatic: sp0/sp0 males performing courtship (wing vibration) were 5 times fewer than heterozygous or control males, and out of the 50 homozygous males tested, only 3 attempted to copulate and 1 succeeded copulation. Time needed to perform these tasks was higher as well: homozygous sp0 males needed 5 times more than sp0/+ or wild-type males to initiate courtship and the time to attempt copulation was 1.7 and 2 times longer in heterozygous and homozygous mutants, compared to control males.
Overexpression of Acp70A in the accessory glands did not modify the proportion of males performing the different steps of courtship behavior. On the other hand, the time necessary to perform wing vibration was double.
Courtship of males knocked-down for Acp70A in accessory glands was also affected: the percentage of these males performing copulation attempts and copulation was, respectively, 30 and 41% lower when compared to control males. It took them 2 and 1.5 times longer to perform wing vibration and copulation attempts when compared to control males. When knock-down was induced ubiquitously (da > Acp70A-RNAi), the inhibition of courtship was more severe and similar to that observed in homozygous sp0 males.
These results show that there is a significant inhibition of courtship behavior in absence of sex peptide expression.
Heterozygous sp0 male CHCs were not significantly different from wild-type ones (Figure 3). Conversely, homozygous sp0 males as well as males bearing one sp0 over a deficiency covering the entire Acp70A gene showed a 25% decrease in the total CHC amount. This result confirms that sp0 is a null mutant. Inversely, a ubiquitous overexpression of Acp70A led to a small but significant increase in CHCs (+22%).
Cuticular hydrocarbon amounts in adult males either mutant for sp0 (left) or overexpressing Acp70A (right) under the Acp26A-gal4 driver. Each bar represents mean ± SEM (n = 10). * indicates significant differences (P = 0.05).
Acp70A ubiquitous knock-down (da > Acp70A-RNAi) was followed by a twofold increase in CHC amount (Figure 4). We thus wondered whether this increase could be due to off-target effect. The RNAi line was described as having no off-target sequence (no gene covering a 19-mers sequence of the RNAi sequence). We performed a Blast analysis with different 16-mers from the RNAi sequence and obtained eight putative off-target genes containing a stretch of coding sequence identical to at least 15-mers of Acp70A sequence (Figure 5). The RNAi of these genes was expressed ubiquitously to measure their effect on male CHCs. For five RNAi tested, we obtained no effect on CHCs and for three RNAi (directed against lamp1, rgk1 and tinc), there was a lower amount of CHCs (from −14 to 22%, depending on the RNAi) (Figure 6). In conclusion, the dramatic increase in CHC amount following ubiquitous Acp70A knock-down cannot be explained by an off-target effect due to these genes.
Cuticular hydrocarbon amounts in adult males that were RNAi knocked-down for Acp70A in different tissues: ubiquitously (da), in the accessory glands (Acp26A), in fat body (c564), in epidermis (ddc), in nervous system (elav), in oenocytes (Prome), in oenocytes and testes (1407) and in testis (1407; svpgal80). Each bar represents mean ± SEM (n = 10). ** and *** indicate significant differences (P = 0.01 and 0.001, respectively).
Putative off-target genes containing a stretch of coding sequence identical to at least 15-mers of Acp70A sequence.
Cuticular hydrocarbon amounts in adult males knocked-down for putative off-target genes. Each bar represents mean ± SEM (n = 10). * and ** indicate significant differences (P = 0.05 and 0.01, respectively).
In males, Acp70A is expressed at a very high level in accessory glands and at a moderate level in testis and carcass (8631, 100 and 95 arbitrary units, respectively; FlyAtlas).
We then wanted to determine the tissue responsible for this effect by targeting Acp70A-RNAi to various tissues. We confirmed the locations of expression of the different Gal4 lines used in this study and showed that 1407-Gal4 was additionally expressed in the testes (Figure 7).
Photomicrographs showing GFP expression in male reproductive apparatus from 1407-Gal4; svp-Gal80. Fluorescence could be detected only in the testes. Scale bar: 0.5 mm.
No significant effect on CHCs was obtained when Acp70A RNAi was expressed in fat body (c564 > Acp70A RNAi), in epidermis (ddc > Acp70A RNAi) and in oenocytes (PromE > Acp70A RNAi). On the other hand, Acp70A knock-down in accessory glands led to a moderate (+35%) increase in CHC amount. CHC amount was multiplied by a factor of 2 in elav > Acp70A RNAi (nervous system) and a factor of 3 in 1407 > Acp70A RNAi (oenocytes + testes) and 1407; svp-Gal80 > Acp70A -RNAi (testes). This last result shows an essential role of the testes on CHC production (Figure 4).
The DTA-E line is characterized by the absence of accessory glands and some defects in testes, among them, a lack of sperm. DTA-E males were found to produce 1.4-fold more CHCs. We wanted to evaluate the effect of the absence of sperm on CHCs. Four elongase genes are essential to spermatozoid development and the lack of expression in testes leads to sterile males without sperm [26, 27, 28]. We knocked-down these genes in the testes, using the 1407-Gal4 line. We verified the absence of sperm in the RNAi males. None of these genes had any effect on male CHC production (Figure 8).
Cuticular hydrocarbon amounts in adult males that do not produce sperm: either DTA-E or knocked-down for CG6821, CG17821, CG31141 and CG3971. Each bar represents mean ± SEM (n = 10). ** indicates significant difference (P = 0.01).
Ubiquitous overexpression of sex peptide had no significant effect on male sex behavior: the percentage of males performing the different steps of courtship (wing vibration, copulation attempts and copulation) was unchanged and only the time to begin courtship was lengthened. Conversely, sp0 males showed difficulties to court and the effect was dependent on the dose of the mutant allele: heterozygous sp0 males courted wild-type females the same way as wild-type males did but only a half of them attempted copulation and one-eighth succeeded to mate. The inhibition was more drastic in homozygous sp0 males, as less than one-fifth courted the females and only 2% succeeded to mate.
We tested the males that were RNAi knocked-down for sex peptide in the accessory glands. To target the expression in the accessory glands, we used the driver Acp26A-Gal4. Acp26A gene is almost exclusively expressed in the accessory glands (3589 and 97 units in the accessory glands and the testes, respectively; FlyAtlas). Courtship behavior of Acp26A > Acp70A RNAi males was affected, but less than that of sp0 males: they courted wild-type females the same way as wild-type males did, two-third knocked-down males attempted copulation and less than a half copulated. This result raised the question: does sp0 affect tissues other than accessory glands? When we ubiquitously expressed sex peptide RNAi, we obtained courtship results similar to those with sp0. Taken together, the results suggest a positive control of sex peptide on male courtship behavior. They also pose the problem of the reason of the absence of mating in sp0 and da > Acp70A RNAi males since Q-PCR results clearly show that the expression of Acp70A RNAi in accessory glands via Acp26A-Gal4 reduces Acp70A expression to only 1%.
In the female, the transfer of ACP70A during mating induces a decrease in cuticular hydrocarbon amount. This decrease occurs 3 and 4 days after mating and might be due to the overproduction of juvenile hormone following mating, caused by the action of Acp70A on the corpora allata [17]. We therefore wondered whether Acp70A could regulate the production of hydrocarbons in the male. The sp0 mutation as well as Acp70A ubiquitous overexpression led to moderate effects on male CHC production: whereas, wild-type and sp0 heterozygous males had similar CHC amounts, there was a 25% decrease and a 10–22% increase in homozygous sp0 that do not produce ACP70A and da > Acp70A (overproduction of ACP70A) males, respectively. This result seems to be in favor of a positive regulation of sex peptide on CHC production.
The results concerning the effect of Acp70A RNAi on cuticular hydrocarbons were unexpected: a 35% increase occurred when Acp70A expression was inhibited in the accessory glands, using Acp26A-Gal4. Acp26A gene is mainly, but not exclusively, expressed in the accessory glands (3589 and 97 units in the accessory glands and the testes, respectively; FlyAtlas). Acp26A expression in the testes represents 2.7% of the expression in the accessory glands, similar to Acp70A (1.1%). Moreover, a ubiquitous Acp70A knock-down led to a twofold increase in CHC amount; we firstly ascribed this dramatic effect to the presence of possible off-targets of the RNAi.
ACP70A is a small peptide (55 amino acids, including the signal sequence). The nucleic sequence of Acp70A RNAi covers almost the totality of the coding sequence, and also includes the small intron. We found eight putative off-target genes, containing a stretch of coding sequence identical to at least 15-mers of Acp70A RNAi sequence. However, none of these putative off-target genes could be accountable for the dramatic CHC increase resulting in Acp70A RNAi expression.
We knocked-down sex peptide in different tissues and could demonstrate that neither the fat body, nor the oenocytes or the epidermis could be responsible for the large rising level of CHCs. On the other hand, sex peptide expression in the testes or in the nervous system led to a CHC increase similar to ubiquitous overexpression.
Sex peptide Acp70A is mainly expressed in the accessory glands, but some expression is also observed in the testes and the carcass (FlyAtlas). Inside the accessory glands, it is exclusively produced by the main cells (96% of the accessory glands) [29]. When we used the DTA-E line in which accessory gland main cell function was genetically disrupted [18], we obtained as well a large-fold increase in CHCs. DTA-E line was obtained after the introduction of diphtheria toxin subunit A (DTA) into the accessory glands via the promoter of Acp95EF [18]. ACP95EF is also a sex peptide produced in the accessory glands and transmitted to the female after mating. It has the same place of production as ACP70A; in the accessory glands, it is exclusively produced in the main cells [29]. Within the fly, it is mainly expressed in the accessory glands and marginally in the testes (787 and 62 arbitrary units, respectively; FlyAtlas). DTA-E males lack ACPs produced from the main cells but have normal secondary cells as well as ejaculatory bulb and duct [30]. DTA-E males are sterile and the block of spermatogenesis occurs at the primary spermatocyte stage [18]. The occurrence of a faint expression of this gene in the testes (FlyAtlas) could explain the lack of sperm. However, the lack of sperm is not directly responsible for the large increase in CHC amounts since flies that did not produce sperm after RNAi knock-down for different elongases involved in sperm production did not increase their CHC production.
The question is: why does DTA-E line show a similar male CHC phenotype to da > Acp70A-RNAi? In the former line, no off-target can be involved. An explanation could be that a “leakage” of the Acp95EF promoter has resulted in a lack of sperm and probably other defects [18]. In males that have been RNAi knocked-down ubiquitously, one may suppose the effect of unknown “off-target” genes that are essential to testis function. This might suggest a role (yet unknown) of the testes in the control of male hydrocarbons.
This study demonstrates a role of sex peptide on male courtship behavior. Moreover, the data with DTA-E and RNAi knocked-down flies show the importance of the integrity of the testes (not the sperm) in the control of CHCs.
We want to thank Dr. Jacques Montagne for helpful suggestions on the manuscript. Funding was provided by the French Ministry of Research and Education.
Wireless power transmission (WPT) can be categorized into three different categories as depicted in Figure 1: near-field inductive or resonant coupling, far-field directive powering, and far-field ambient wireless energy harvesting. For the first category, it usually takes place between two coils, one is the primary and the other is the secondary. The main goal is to transfer the power from the primary coil to the secondary coil for several of centimeter as a separation distance between them [1, 2, 3]. Many defected ground structure (DGS)-based designs are proposed for this type of the wireless power transfer [4, 5, 6] to give a high efficiency coupled system.
\nWPT categories (a) near-field inductive or resonant coupling, (b) far-field directive powering and (c) far-field ambient wireless energy harvesting.
The second category of WPT is far-field directive powering that is used with directive power transmission which means the transmission occurs in the far-field zone but with well-defined direction of the source. This sort of WPT is useful for solar power satellites (SPS) applications [7, 8, 9] or with intentional powering such as using a dedicating source with well-known direction to power a network of wireless sensors, each sensor has built-in rectenna which is used as a renewable power source to power the connected sensor. The third type is far-field energy harvesting. The receiver does not know the direction of the received power. So, one of the main goals in this type is how to increase the probability of reception by designing antennas with wide beam-width and multiple or wideband resonance frequencies.
\nNear-field WPT offers a solution to short range powering for electronic devices, it becomes widely commercialized for several wireless applications [10, 11, 12]. Near-field transmission can also be useful with wireless implantable devices [13, 14, 15]. Nevertheless, near-field WPT suffers from severe issue with regard to the transmitting distance, it covers only very short range distances (few centimeters); therefore this limits its applications. On the other hand, the powering scheme of far-field dedicated source or free ambient powering technique can overcome this problem because of the long-distance charging capability. Several studies are introduced in wireless energy harvesting [16, 17, 18, 19, 20, 21, 22, 23, 24, 25]. Although, the great focusing on the wireless energy harvesting, there are many obstacles in the way of free source energy harvesting. One of the main issues is that low input power levels of the ambient energy. Consequently, there are many research papers introduced for rectennas at low input power levels. However, single band rectennas have a simple structures, many research studies [26, 27, 28, 29, 30, 31] have investigated the multi-band rectennas as a trial for increasing the scavenging received power with the same rectenna device; various single and multi-band rectennas are presented. Also, there are big challenges with respect to working the rectenna with fixed conversion efficiency values over a wide range of the received signal. Thus, Section 2 introduces a literature survey about single and multiband frequency operation of different rectennas; also, various rectennas’ designs working at low input power and over wide input power range are discussed. Finally, in Section 3, dual-band rectenna using voltage doubler rectifier and four-section matching network is discussed as an example for a dual-band operation to illustrate the different stages of the whole rectenna system elaborately. The dual-band antenna, firstly, is designed, fabricated and measured separately to check the antenna performance. Then, the rectifier and the matching network between the antenna and the rectifying circuit are also designed and tested independently. After that the integration between the antenna and rectifier is done on the same PCB substrate.
\nIn [32], a compact dual-band rectenna is proposed as depicted in Figure 2. The rectenna has a conversion efficiency of 37 and 30% at 915 MHz and at 2.45 GHz, respectively, at input power of −9 dBm with resistive load of 2.2 kΩ. A dual-band rectenna using Yagi antenna for low input power applications shown in Figure 3 is introduced in [33]. The rectenna offers an acceptable values for the conversion efficiencies, it reaches up to 34% at 1.84 GHz and 30% at 2.14 GHz for input power level of −20 dBm. A combination between the solar energy and RF energy harvesting is discussed in [34]. This solar rectenna, displayed in Figure 4, achieves RF-DC conversion efficiency of 15% with input power of −20 dBm at 850 MHz and 2.45 GHz. In [35], a 130 nm CMOS rectifier is proposed for ultra-low input power. Figure 5 shows the rectenna structure. It consists of 10 stages to give the maximum efficiency of 42.8% at −16 dBm input power and output DC voltage of 2.32 V at resistive load of 0.5 MΩ. A compact co-planar waveguide-fed rectenna using single stage Cockcroft Walton rectifier and L-shaped impedance matching network, shown in Figure 6, is presented in [16]. The RF-DC conversion efficiency is 68% with a received input signal power of 5 dBm at 2.45 GHz. This rectenna also gives conversion efficiencies around 48 and 19% at −10 and −20 dBm, respectively.
\nRectenna design: (a) design of the top and side view and (b) fabricated rectenna prototype [32].
Layout of the quasi-Yagi subarray. (a) Top view. (b) Side view [33].
Hybrid solar/EM rectenna [34].
(a) Proposed RF rectenna equivalent circuit, (b) self-compensated rectifier [35].
(a) Complete prototype of the rectenna, (b) measurement set-up for rectenna system [16].
The simplest way in energy harvesting is to harvest from single frequency band; this in turn makes the design of matching circuit, which is used for maximum power transmission between the receiving antenna part and the rectifying circuit, is a little bit easier. In [36], a pentagonal antenna is used with series connection single diode to produce a single band rectenna at 5 GHz. The rectenna has maximum conversion efficiency of 46% at resistive load of 2 kΩ. In [37], a 3 × 2 rectangular patch array with a gain of 10.3 dBi is used with three-stage Dickson charge pump circuit for energy harvesting. The rectenna works at 915 MHz. Figure 7 shows the antenna array as well as the rectifying circuit. The maximum rectifier efficiency is 41% at input power of 10 dBm. A semicircular slot antenna was presented for X-band planar rectenna (at 9.3 GHz) as depicted in Figure 8 [38]. The rectenna gives RF-to-DC conversion efficiency of about 21% at an input power density of 245 μW/cm2. 35 GHz rectenna using 4 × 4 patch antenna array, displayed in Figure 9, is proposed in [39]. The maximum RF-to-dc conversion efficiency is 67% with input RF received power of 7 mW.
\nSix elements antenna array (a) fabricated patch antenna array, (b) fabricated rectifier [37].
Geometry of the X-band rectenna [38].
Fabricated rectenna [39].
Due to the variety in transmission bands for different wireless systems, there is a large ambient wasted energy at different frequencies. Consequently, the demand for harvesting from different bands increases. In [40], triple-band implanted rectenna is discussed. It works at 402 MHz, 433 MHz and 2.45 GHz with antenna has a stacked and spiral structure. Figure 10 shows the antenna structure in addition to the rectifier design. It gives a conversion efficiency of 86% at input power of 11 dBm with 5 kΩ load resistor. A compact reconfigurable rectifying antenna has been presented in [41] for dual-band rectification at 5.2 and 5.8 GHz. The measured maximum conversion efficiencies of the proposed rectenna are 65.2 and 64.8% at 4.9 and 5.9 GHz, respectively, with 15 dBm input power. The rectenna fabricated prototype is shown in Figure 11. A dual frequency band rectenna has been developed in [42]. A planar inverted F-antenna is used with a voltage doubler circuit to configure a dual band rectenna.
\n(a) Triple band antenna, (b) rectifier design and a photo of a fabricated rectifier [40].
Fabricated reconfigurable rectenna [41].
With increasing the number of frequencies at which rectenna can harvest, the complexity of the matching circuit and the size of the rectenna increase. Therefore, dual-band is the best choice in the designing of rectenna systems because it combines between the simplicity and the scavenging from more than one frequency band.
\nThere are several studies that are proposed to guarantee stable fixed RF-DC conversion efficiency over a wide band of the input power. In [43], dual-band rectifier with extended input power range is proposed. The rectifier schematic circuit and the fabricated design is displayed in Figure 12. The rectifier offers above 30% conversion efficiency with input power range from −15 to 20 dBm and the maximum value is 60% from 5 to 15 dBm. Impedance compression network (ICN) techniques is discussed in [44] to fix RF-dc conversion efficiency over a wide band of input power by maintaining the value of input impedance for the rectifier fixed regardless the value of the input power. Figure 13 shows the rectifier configuration. The rectifier has a maximum conversion efficiency of 56% at 31.8 dBm and the input power range for efficiency over than 50% is 6.7 dBm.
\nSchematic diagram and fabricated circuit [43].
Layout of the rectifier [44].
This section introduces a dual-band rectenna with maximum measured conversion efficiency of 63 and 69% at f1 = 1.95 and f2 = 2.5 GHz, respectively, over wide band of the input power, 14 and 15.5 dBm for conversion efficiency above 50% at f1 and f2, respectively. The section arrangements are as follows: in Section 3.1, the antenna design is introduced. Then, the equivalent circuit of the antenna is discussed in Section 3.2. Antenna results (reflection coefficient as well as radiation characteristics) is discussed in Section 3.3. The rectifier-antenna matching network for the dual band is described in Section 3.4. The rectifier structure with the geometrical parameters is illustrated in Section 3.5. The rectenna experiment setup is revealed in Section 3.6. While, the rectenna performance including RF-DC conversion efficiency in addition to the DC output voltage at the two frequency bands is discussed in Section 3.7.
\nIn this section, the enhanced-gain antenna design [45] is introduced to be used to configure the rectenna system. Figure 14 shows the layout of the proposed antenna. As shown in the figure, the antenna includes two substrate layers (substrates 1 and 2). The two layers have the same substrate material with relative dielectric constant
3D geometry, perspective view and side view of the proposed disc antenna [45].
The first challenge of designing the equivalent circuit was to find an accurate model of the proposed antenna at f1 and f2. Figure 15 shows the equivalent circuit used to model the electrical behavior of the antenna in response to an incoming RF input signal. It is useful to implement this model using basic components R1, L1, and C1, which represent the influence of the first resonant frequency (f1), whereas R2, L2, and C2 represent the second resonant frequency (f2). Elements L3 and C3 are included in the equivalent circuit model to represent the electrical length of the feed line and slot coupling, respectively. The resistance R1 and R2 correspond to radiating losses.
\nEquivalent lumped-elements circuit for antenna in ADS.
Each radiator (the disc and the slot) is represented by a resonator. Each resonator consists of parallel RLC circuit, the resonance frequency of each one can be determined from Eq. (3):
\nFirstly, each resonator is studied separately. S-parameters are calculated from Agilent ADS simulator. Then the resonant and cutoff frequencies (f0 and fc in GHz, respectively) are determined. The initial values of L and C for each one can be calculated from Eqs. (4) and (5) [47, 48].
\nwhere
f0 and fc | C→ ( | L → ( |
Resonator 1 (f0 = 2.45 GHz & fc = 2.25 GHz) | At fc = 2.25 GHz and f0 = 2.45 GHz, then: Cp = 3.8 pF | At f0 = 2.45 GHz and Cp = 3.8 pF, then: Lp = 1.11 nH |
Resonator 2 (f0 = 1.95 GHz & fc = 1.65 GHz) | At fc = 1.65 GHz and f0 = 1.95 GHz, then: Cp = 2.4 pF | At f0 = 1.95 GHz and Cp = 2.4 pF, then: Lp = 2.8 nH |
Initial values of L and C for the two resonators.
The losses resistance can be determined from the quality factor (Q)-frequency bandwidth relationship (BW) as:
\nwhere the half power frequency bandwidth is evaluated from Eq. (7).
\nThen, the loss resistance (R) for each resonator can be determined as:
\nAfter combining the two resonators, taking into account the effect of losses resistances (R1 and R2) in addition to making optimization, the final equivalent circuit can be obtained. The corresponding values of the equivalent circuit elements are depicted in Table 2.
\nParameter | R1(Ω) | L1(nH) | C1(pF) | R2(Ω) | L2(nH) | C2(pF) | L3(nH) | C3(pF) |
---|---|---|---|---|---|---|---|---|
Value | 750 | 10 | 1.7 | 500 | 1.39 | 4.15 | 10 | 0.2 |
Elements values of the equivalent circuit model for the dual band antenna.
Figure 16 shows the reflection coefficient response of the antenna obtained from CST simulation compared with the calculated response of the equivalent circuit model by using Agilent ADS software in addition to the measured reflection coefficient. Good agreement was between the results of simulated, measured and ADS model. The antenna resonates at two bands 1.95 GHz (f1) and 2.45 GHz (f2). The circular patch is designed to radiate at 2.45 GHz by the direct feed with the transmission line placed behind substrate 2. Whereas, 1.95 GHz resonance frequency is designed to radiate due to the capacitive coupling between the circular patch on the top of substrate 1 and the circular slot located on the ground plane, where in 1.95 GHz case the disc antenna is considered as a feeder for the circular slot. The performance of the proposed antenna was simulated and optimized by commercial EM software CST Microwave Studio. A prototype of the proposed antenna was fabricated and tested. The reflection coefficient of the antenna was measured by R&S ZVA 67 Network Analyzer. It is noted that the simulated and measured results of the input impedances of the antenna are in good agreement. Only, a small shift in the measured S-parameters was observed due to the connector soldering, fabrication tolerance, the adhesive between the two layers of the antenna and the layers alignment in fabrication process.
\nReflection coefficient of the proposed antenna.
The simulated and measured results of E-plane and H-plane for the high gain antenna at f1 and f2 are shown in Figure 17(a) and (b), respectively. The measured values of gain, radiation efficiency, F/B ratio, cross polarization level, 3 dB angular beamwidth at the first resonance frequency (f1) are 8.3 dBi, 90%, 12, −22.3 dB, 73.5°, respectively. While at the second resonance frequency, these values can be summarized as 7.8 dBi, 91.6%, 26, −21.6 dB, 79.5°, respectively. The gain and radiation pattern of the antenna were measured by the Anechoic Chamber shown in Figure 18. There is a good agreement between the simulated and measured results of the radiation characteristics.
\n2D measured and simulated results of radiation pattern for the antenna: (a) at 1.95 GHz and (b) at 2.45 GHz.
Antenna radiation pattern measurement set-up.
In this design, a scheme used in [49] is employed to achieve a dual-band impedance transformation at the two frequency bands (f1 and f2). This scheme is used to match between a complex and frequency-dependent rectifier input impedance (ZRec) and a real impedance of the antenna (ZAnt) by using four different sections (Section 1–4) as shown in Figure 19. The matching technique can be summarized in the following steps:
\nDual-band matching circuit.
Step 1: Achieve the conjugate matching between the load values at both resonant frequencies, that is, moving the two impedance values of the load (rectifier) on the Smith chart to be located on the same real circle with the imaginary parts are equal on both sides of the Smith chart as shown in Figure 20.
\nMatching steps indicated on smith chart.
Step 2: Cancel the imaginary part of the impedances at f1 and f2.
\nStep 3: Real to real impedance transformation.
\nEach section is characterized by two values Z and
where n is an arbitrary integer and m = f2/f1. Section 2 is used to cancel the imaginary parts of the admittance Y1 at the two frequencies f1 and f2. Section 2 parameters can be determined as [49]:
\nwhere p is an integer. Sections 3 and 4 are used for real to real impedance transformation, and their parameters can be calculated from Eqs. (13)–(17) [49, 51]
\nwhere q and s are integers.
\nSeveral rectifiers’ topologies are used for energy harvesting, for instance, diodes in parallel connection, diodes in series connection, voltage doubler circuits, multi-stage voltage multiplier and so forth. Voltage multipliers generate high voltages from a low voltage power source. However, in this design a half-wave voltage doubler circuit, which is a special case of voltage multipliers, is used for the rectification to get high voltage with conservation of the design simplicity. The rectifier design as well as the matching network is depicted in Figure 21 [52]. The voltage doubler circuit comprises two Avago HSMS2850 Schottky diodes and two SMD capacitors (Cs = Cp = 100 pF). The Schottky diode has a built-in voltage (Vb) of 0.150 V and a breakdown voltage (Vbr) of 3.8 V. Due to the small values of the series resistance and the barrier capacitance (Rs of 25Ω and Cb of 0.18 pF) for the above-mentioned diodes category, so these diodes have a high cutoff frequency and high conversion efficiency. The capacitor Cs is used to store the energy in one half cycle to double the charging voltage for Cp at the other half cycle, Cs also acts as bandpass filter to block the DC voltage generated from the nonlinear diodes. Cp has two functions, it is used for bypassing the higher order modes, generated from the nonlinear diode to the ground and getting a smooth DC output voltage as well. Also the shunt connection between Cp and the load impedance RL acts as a low pass filter.
\nRectifier layout; L1 = 4.5 mm, W1 = 1.54 mm, L2 = 4 mm, W2 = 0.33 mm, L3 = 5 mm, W3 = 1.96 mm, L4 = 3.52 mm, W4 = 2 mm, L5 = 4 mm, W5 = 0.36 mm, L6 = 4.98 mm, W6 = 0.31 mm, L7 = 5 mm, W7 = 0.29 mm, L8 = 5.1 mm, W8 = 0.43 mm, L9 = 4.8 mm, W9 = 0.3 mm, L10 = 4.88 mm, W10 = 0.33 mm, L11 = 1.81 mm, W11 = 0.84 mm.
The rectifier is designed on Rogers Duroid RO3003 with a relative permittivity (
The rectifying circuit including the matching network is simulated using Keysight advanced design system (ADS), while the antenna was designed using ANSYS high-frequency structure simulator (HFSS). The enhanced-gain antenna described in [45] is used as a receiving antenna in the proposed rectenna to increase the rectifier sensitivity. Hence, increasing rectenna capability to harvest from low input power levels. The receiving antenna and the rectifier are integrated on the same substrate, fabricated and measured in the measurement setup shown in Figure 22. An Agilent Technologies E8257D Analog signal generator is used to send a microwave signal which is connected to a horn antenna with 9 dBi gain at the two frequencies. On the other hand, the rectenna under test (RUT) is connected with a voltmeter to measure the DC output voltage. To take the antenna radiation characteristics into account, the antenna effective area is considered. Hence, the RF-DC conversion efficiency of the proposed rectenna (
Rectenna measurement setup.
where VDC is the measured DC output voltage, Pin is the received RF input power and RL is the resistive load. Pin is defined in Eq. (19)
\nwhere PD is the RF power density and Aeff is the antenna effective area. PD and Aeff are calculated using Eqs. (20) and (21), respectively.
\nPt is the transmitting power, Gt is the horn antenna gain and r is the distance between the transmitter and the rectenna all are known. Therefore, the RF-to-DC conversion efficiency can be measured. For far-field measurements, r is chosen of 40 cm. Figure 23 shows the photo of the rectenna measurement setup.
\nPhoto of the measurement setup.
The entire system (antenna, matching circuit and rectifier) is tested over different input power levels with different resistive load values at two frequencies (f1 and f2); Figure 24(a) and (b) show the comparison between the measured and simulated results of RF-to-DC conversion efficiency and the DC output voltage versus the input power at f1 and f2, respectively. The maximum measured conversion efficiency is 63% with input power range of 14 dBm (from −3.5 to 10.5 dBm) at f1, while the measured efficiency at f2 is 69% with input power from −4.5 to 11 dBm (15.5 dBm). There is a slight shift between the simulation and measurement results, where the maximum simulated RF-DC conversion efficiency are 66 and 73% at the same two frequencies, respectively. Due to the limitations in the experiments, the received input power is limited only up to 11 dBm.
\nSimulated and measured conversion efficiency in addition to the DC output voltage versus input power (a) at f1 (b) at f2.
This chapter presents a study of rectenna systems for RF energy harvesting and wireless power transfer. A survey about employing rectennas in WPT, low input received power rectennas, single and multi-band rectennas, wide input received power rectennas are introduced. Finally, dual-band rectenna using voltage doubler rectifier and four-section matching network is discussed. The first part of the rectenna design is the dual-band disc antenna with enhanced gain in order to collect a highest amount of RF energy. It radiates at 1.95 and 2.45 GHz. The measured results showed the gain of 8.3 and 7.8 dBi at 1.95 and 2.45 GHz, respectively. The disc antenna is integrated with a dual-band rectifier with four-section matching network to introduce a dual-frequency rectenna with higher conversion efficiency over wide band of the input power for multiband RF energy harvesting. The rectenna gives maximum RF-DC measured conversion efficiency of 63% and 69% at 1.95 GHz and 2.5 GHz, respectively. it also operates over a wide range of the input power; it covers the range of 14 and 15.5 dBm at f1 and f2, respectively for a conversion efficiency higher than 50% with load resistance (RL) = 1K. The rectenna is simulated, fabricated and measured. The simulated and measured results show good agreement.
\nIntechOpen's Authorship Policy is based on ICMJE criteria for authorship. An Author, one must:
',metaTitle:"Authorship Policy",metaDescription:"IN TECH's Authorship Policy is based on ICMJE criteria for authorship. In order to be identified as an Author, one must:",metaKeywords:null,canonicalURL:"/page/authorship-policy",contentRaw:'[{"type":"htmlEditorComponent","content":"All contributors who meet these criteria are listed as Authors. Their exact contributions should be described in the manuscript at the time of submission.
\\n\\nConversely, all contributors who do not meet these criteria should be listed in the Acknowledgments section of the manuscript, along with a short description of their specific contributions.
\\n\\nCHANGES IN AUTHORSHIP
\\n\\nIf it is felt necessary to make changes to the list of Authors after a manuscript has been submitted or published, it is the responsibility of the Author concerned to provide a valid reason to amend the published list. Additionally, all listed Authors must verify and approve the proposed changes in order for any amendments to be made.
\\n\\nAFFILIATION
\\n\\nAuthors are responsible for ensuring all addresses and emails provided are correct. Under affiliation(s) all Authors should indicate where the research was conducted. Please note that no changes to the affiliation(s) can be made after the chapter has been published.
\\n\\nPolicy last updated: 2017-05-29
\\n"}]'},components:[{type:"htmlEditorComponent",content:"All contributors who meet these criteria are listed as Authors. Their exact contributions should be described in the manuscript at the time of submission.
\n\nConversely, all contributors who do not meet these criteria should be listed in the Acknowledgments section of the manuscript, along with a short description of their specific contributions.
\n\nCHANGES IN AUTHORSHIP
\n\nIf it is felt necessary to make changes to the list of Authors after a manuscript has been submitted or published, it is the responsibility of the Author concerned to provide a valid reason to amend the published list. Additionally, all listed Authors must verify and approve the proposed changes in order for any amendments to be made.
\n\nAFFILIATION
\n\nAuthors are responsible for ensuring all addresses and emails provided are correct. Under affiliation(s) all Authors should indicate where the research was conducted. Please note that no changes to the affiliation(s) can be made after the chapter has been published.
\n\nPolicy last updated: 2017-05-29
\n"}]},successStories:{items:[]},authorsAndEditors:{filterParams:{sort:"featured,name"},profiles:[{id:"6700",title:"Dr.",name:"Abbass A.",middleName:null,surname:"Hashim",slug:"abbass-a.-hashim",fullName:"Abbass A. Hashim",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/6700/images/1864_n.jpg",biography:"Currently I am carrying out research in several areas of interest, mainly covering work on chemical and bio-sensors, semiconductor thin film device fabrication and characterisation.\nAt the moment I have very strong interest in radiation environmental pollution and bacteriology treatment. The teams of researchers are working very hard to bring novel results in this field. I am also a member of the team in charge for the supervision of Ph.D. students in the fields of development of silicon based planar waveguide sensor devices, study of inelastic electron tunnelling in planar tunnelling nanostructures for sensing applications and development of organotellurium(IV) compounds for semiconductor applications. I am a specialist in data analysis techniques and nanosurface structure. I have served as the editor for many books, been a member of the editorial board in science journals, have published many papers and hold many patents.",institutionString:null,institution:{name:"Sheffield Hallam University",country:{name:"United Kingdom"}}},{id:"54525",title:"Prof.",name:"Abdul Latif",middleName:null,surname:"Ahmad",slug:"abdul-latif-ahmad",fullName:"Abdul Latif Ahmad",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:null},{id:"20567",title:"Prof.",name:"Ado",middleName:null,surname:"Jorio",slug:"ado-jorio",fullName:"Ado Jorio",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"Universidade Federal de Minas Gerais",country:{name:"Brazil"}}},{id:"47940",title:"Dr.",name:"Alberto",middleName:null,surname:"Mantovani",slug:"alberto-mantovani",fullName:"Alberto Mantovani",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:null},{id:"12392",title:"Mr.",name:"Alex",middleName:null,surname:"Lazinica",slug:"alex-lazinica",fullName:"Alex Lazinica",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/12392/images/7282_n.png",biography:"Alex Lazinica is the founder and CEO of IntechOpen. After obtaining a Master's degree in Mechanical Engineering, he continued his PhD studies in Robotics at the Vienna University of Technology. Here he worked as a robotic researcher with the university's Intelligent Manufacturing Systems Group as well as a guest researcher at various European universities, including the Swiss Federal Institute of Technology Lausanne (EPFL). During this time he published more than 20 scientific papers, gave presentations, served as a reviewer for major robotic journals and conferences and most importantly he co-founded and built the International Journal of Advanced Robotic Systems- world's first Open Access journal in the field of robotics. Starting this journal was a pivotal point in his career, since it was a pathway to founding IntechOpen - Open Access publisher focused on addressing academic researchers needs. Alex is a personification of IntechOpen key values being trusted, open and entrepreneurial. Today his focus is on defining the growth and development strategy for the company.",institutionString:null,institution:{name:"TU Wien",country:{name:"Austria"}}},{id:"19816",title:"Prof.",name:"Alexander",middleName:null,surname:"Kokorin",slug:"alexander-kokorin",fullName:"Alexander Kokorin",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/19816/images/1607_n.jpg",biography:"Alexander I. Kokorin: born: 1947, Moscow; DSc., PhD; Principal Research Fellow (Research Professor) of Department of Kinetics and Catalysis, N. Semenov Institute of Chemical Physics, Russian Academy of Sciences, Moscow.\nArea of research interests: physical chemistry of complex-organized molecular and nanosized systems, including polymer-metal complexes; the surface of doped oxide semiconductors. He is an expert in structural, absorptive, catalytic and photocatalytic properties, in structural organization and dynamic features of ionic liquids, in magnetic interactions between paramagnetic centers. The author or co-author of 3 books, over 200 articles and reviews in scientific journals and books. He is an actual member of the International EPR/ESR Society, European Society on Quantum Solar Energy Conversion, Moscow House of Scientists, of the Board of Moscow Physical Society.",institutionString:null,institution:null},{id:"62389",title:"PhD.",name:"Ali Demir",middleName:null,surname:"Sezer",slug:"ali-demir-sezer",fullName:"Ali Demir Sezer",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/62389/images/3413_n.jpg",biography:"Dr. Ali Demir Sezer has a Ph.D. from Pharmaceutical Biotechnology at the Faculty of Pharmacy, University of Marmara (Turkey). He is the member of many Pharmaceutical Associations and acts as a reviewer of scientific journals and European projects under different research areas such as: drug delivery systems, nanotechnology and pharmaceutical biotechnology. Dr. Sezer is the author of many scientific publications in peer-reviewed journals and poster communications. Focus of his research activity is drug delivery, physico-chemical characterization and biological evaluation of biopolymers micro and nanoparticles as modified drug delivery system, and colloidal drug carriers (liposomes, nanoparticles etc.).",institutionString:null,institution:{name:"Marmara University",country:{name:"Turkey"}}},{id:"61051",title:"Prof.",name:"Andrea",middleName:null,surname:"Natale",slug:"andrea-natale",fullName:"Andrea Natale",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:null},{id:"100762",title:"Prof.",name:"Andrea",middleName:null,surname:"Natale",slug:"andrea-natale",fullName:"Andrea Natale",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"St David's Medical Center",country:{name:"United States of America"}}},{id:"107416",title:"Dr.",name:"Andrea",middleName:null,surname:"Natale",slug:"andrea-natale",fullName:"Andrea Natale",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"Texas Cardiac Arrhythmia",country:{name:"United States of America"}}},{id:"64434",title:"Dr.",name:"Angkoon",middleName:null,surname:"Phinyomark",slug:"angkoon-phinyomark",fullName:"Angkoon Phinyomark",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/64434/images/2619_n.jpg",biography:"My name is Angkoon Phinyomark. I received a B.Eng. degree in Computer Engineering with First Class Honors in 2008 from Prince of Songkla University, Songkhla, Thailand, where I received a Ph.D. degree in Electrical Engineering. My research interests are primarily in the area of biomedical signal processing and classification notably EMG (electromyography signal), EOG (electrooculography signal), and EEG (electroencephalography signal), image analysis notably breast cancer analysis and optical coherence tomography, and rehabilitation engineering. I became a student member of IEEE in 2008. During October 2011-March 2012, I had worked at School of Computer Science and Electronic Engineering, University of Essex, Colchester, Essex, United Kingdom. In addition, during a B.Eng. I had been a visiting research student at Faculty of Computer Science, University of Murcia, Murcia, Spain for three months.\n\nI have published over 40 papers during 5 years in refereed journals, books, and conference proceedings in the areas of electro-physiological signals processing and classification, notably EMG and EOG signals, fractal analysis, wavelet analysis, texture analysis, feature extraction and machine learning algorithms, and assistive and rehabilitative devices. I have several computer programming language certificates, i.e. Sun Certified Programmer for the Java 2 Platform 1.4 (SCJP), Microsoft Certified Professional Developer, Web Developer (MCPD), Microsoft Certified Technology Specialist, .NET Framework 2.0 Web (MCTS). I am a Reviewer for several refereed journals and international conferences, such as IEEE Transactions on Biomedical Engineering, IEEE Transactions on Industrial Electronics, Optic Letters, Measurement Science Review, and also a member of the International Advisory Committee for 2012 IEEE Business Engineering and Industrial Applications and 2012 IEEE Symposium on Business, Engineering and Industrial Applications.",institutionString:null,institution:{name:"Joseph Fourier University",country:{name:"France"}}},{id:"55578",title:"Dr.",name:"Antonio",middleName:null,surname:"Jurado-Navas",slug:"antonio-jurado-navas",fullName:"Antonio Jurado-Navas",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/55578/images/4574_n.png",biography:"Antonio Jurado-Navas received the M.S. degree (2002) and the Ph.D. degree (2009) in Telecommunication Engineering, both from the University of Málaga (Spain). He first worked as a consultant at Vodafone-Spain. From 2004 to 2011, he was a Research Assistant with the Communications Engineering Department at the University of Málaga. In 2011, he became an Assistant Professor in the same department. From 2012 to 2015, he was with Ericsson Spain, where he was working on geo-location\ntools for third generation mobile networks. Since 2015, he is a Marie-Curie fellow at the Denmark Technical University. His current research interests include the areas of mobile communication systems and channel modeling in addition to atmospheric optical communications, adaptive optics and statistics",institutionString:null,institution:{name:"University of Malaga",country:{name:"Spain"}}}],filtersByRegion:[{group:"region",caption:"North America",value:1,count:5318},{group:"region",caption:"Middle and South America",value:2,count:4830},{group:"region",caption:"Africa",value:3,count:1469},{group:"region",caption:"Asia",value:4,count:9372},{group:"region",caption:"Australia and Oceania",value:5,count:837},{group:"region",caption:"Europe",value:6,count:14789}],offset:12,limit:12,total:108346},chapterEmbeded:{data:{}},editorApplication:{success:null,errors:{}},ofsBooks:{filterParams:{hasNoEditors:"1",sort:"title"},books:[{type:"book",id:"8196",title:"ABC Transporters",subtitle:null,isOpenForSubmission:!0,hash:"bfec00d7a6a9666fe01c230f7b133297",slug:null,bookSignature:"",coverURL:"https://cdn.intechopen.com/books/images_new/8196.jpg",editedByType:null,editors:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"9767",title:"Acidophiles",subtitle:null,isOpenForSubmission:!0,hash:"ba894fe1cac18ff05e8a1301c23d1c68",slug:null,bookSignature:"",coverURL:"https://cdn.intechopen.com/books/images_new/9767.jpg",editedByType:null,editors:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"7982",title:"ACTH",subtitle:null,isOpenForSubmission:!0,hash:"03a7769d9449c11ba409f019d7de7e6e",slug:null,bookSignature:"",coverURL:"https://cdn.intechopen.com/books/images_new/7982.jpg",editedByType:null,editors:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"9558",title:"Active Learning",subtitle:null,isOpenForSubmission:!0,hash:"69b76b220dea608f0dfe2831938d79ba",slug:null,bookSignature:"",coverURL:"https://cdn.intechopen.com/books/images_new/9558.jpg",editedByType:null,editors:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"9124",title:"Acute Lung Injury - Causes and Treatment",subtitle:null,isOpenForSubmission:!0,hash:"4aa2141498ee8501402786b878da9399",slug:null,bookSignature:"",coverURL:"https://cdn.intechopen.com/books/images_new/9124.jpg",editedByType:null,editors:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"8046",title:"Adrenaline, Noradrenaline and Dopamine",subtitle:null,isOpenForSubmission:!0,hash:"6a6e8cf9e87acaad24d72b6fd94aa9f2",slug:null,bookSignature:"",coverURL:"https://cdn.intechopen.com/books/images_new/8046.jpg",editedByType:null,editors:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10097",title:"Aerospace Engineering",subtitle:null,isOpenForSubmission:!0,hash:"9d1ee7f8f6fd3edf19dfd4341c712599",slug:null,bookSignature:"",coverURL:"https://cdn.intechopen.com/books/images_new/10097.jpg",editedByType:null,editors:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"8135",title:"Agricultural Development in China",subtitle:null,isOpenForSubmission:!0,hash:"c59830927f0af98db4e1913f6f88e09e",slug:null,bookSignature:"",coverURL:"https://cdn.intechopen.com/books/images_new/8135.jpg",editedByType:null,editors:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"9761",title:"Albumin",subtitle:null,isOpenForSubmission:!0,hash:"6d97c7d47ac94afecc0878a5cef62d86",slug:null,bookSignature:"",coverURL:"https://cdn.intechopen.com/books/images_new/9761.jpg",editedByType:null,editors:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"9006",title:"Aloe Vera",subtitle:null,isOpenForSubmission:!0,hash:"dac00be5a0c64ef5238c22d2155cfb75",slug:null,bookSignature:"",coverURL:"https://cdn.intechopen.com/books/images_new/9006.jpg",editedByType:null,editors:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10090",title:"Altimetry",subtitle:null,isOpenForSubmission:!0,hash:"fe0278e410b32fe87c33e6e930c70c3c",slug:null,bookSignature:"",coverURL:"https://cdn.intechopen.com/books/images_new/10090.jpg",editedByType:null,editors:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"9046",title:"Amyloidosis",subtitle:null,isOpenForSubmission:!0,hash:"3cc7a63d7caadabd3533149c4d5f9833",slug:null,bookSignature:"",coverURL:"https://cdn.intechopen.com/books/images_new/9046.jpg",editedByType:null,editors:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}}],filtersByTopic:[{group:"topic",caption:"Agricultural and Biological Sciences",value:5,count:58},{group:"topic",caption:"Biochemistry, Genetics and Molecular Biology",value:6,count:50},{group:"topic",caption:"Business, Management and Economics",value:7,count:8},{group:"topic",caption:"Chemistry",value:8,count:16},{group:"topic",caption:"Computer and Information Science",value:9,count:18},{group:"topic",caption:"Earth and Planetary Sciences",value:10,count:23},{group:"topic",caption:"Engineering",value:11,count:20},{group:"topic",caption:"Environmental Sciences",value:12,count:6},{group:"topic",caption:"Immunology and Microbiology",value:13,count:13},{group:"topic",caption:"Materials Science",value:14,count:7},{group:"topic",caption:"Mathematics",value:15,count:6},{group:"topic",caption:"Medicine",value:16,count:107},{group:"topic",caption:"Neuroscience",value:18,count:8},{group:"topic",caption:"Pharmacology, Toxicology and Pharmaceutical Science",value:19,count:10},{group:"topic",caption:"Physics",value:20,count:6},{group:"topic",caption:"Psychology",value:21,count:3},{group:"topic",caption:"Robotics",value:22,count:1},{group:"topic",caption:"Social Sciences",value:23,count:10},{group:"topic",caption:"Technology",value:24,count:5},{group:"topic",caption:"Veterinary Medicine and Science",value:25,count:1}],offset:12,limit:12,total:377},popularBooks:{featuredBooks:[{type:"book",id:"7640",title:"Perspective of Carbon Nanotubes",subtitle:null,isOpenForSubmission:!1,hash:"8b85a9957fad5206369eadf0c1ffa27d",slug:"perspective-of-carbon-nanotubes",bookSignature:"Hosam El-Din Saleh and Said Moawad Mohamed El-Sheikh",coverURL:"https://cdn.intechopen.com/books/images_new/7640.jpg",editors:[{id:"144691",title:"Prof.",name:"Hosam El-Din",middleName:"M.",surname:"Saleh",slug:"hosam-el-din-saleh",fullName:"Hosam El-Din Saleh"}],productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"7583",title:"Advanced Computational Fluid Dynamics for Emerging Engineering Processes",subtitle:"Eulerian vs. Lagrangian",isOpenForSubmission:!1,hash:"896509fa2e7e659811bffd0f9779ca9d",slug:"advanced-computational-fluid-dynamics-for-emerging-engineering-processes-eulerian-vs-lagrangian",bookSignature:"Albert S. Kim",coverURL:"https://cdn.intechopen.com/books/images_new/7583.jpg",editors:[{id:"21045",title:"Prof.",name:"Albert S.",middleName:null,surname:"Kim",slug:"albert-s.-kim",fullName:"Albert S. Kim"}],productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"7839",title:"Malaria",subtitle:null,isOpenForSubmission:!1,hash:"91cde4582ead884cb0f355a19b67cd56",slug:"malaria",bookSignature:"Fyson H. Kasenga",coverURL:"https://cdn.intechopen.com/books/images_new/7839.jpg",editors:[{id:"86725",title:"Dr.",name:"Fyson",middleName:"Hanania",surname:"Kasenga",slug:"fyson-kasenga",fullName:"Fyson Kasenga"}],productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"7698",title:"Educational Psychology",subtitle:"Between Certitudes and Uncertainties",isOpenForSubmission:!1,hash:"740943e2d029253e777150e98ebe2f0d",slug:"educational-psychology-between-certitudes-and-uncertainties",bookSignature:"Victori?a Trif",coverURL:"https://cdn.intechopen.com/books/images_new/7698.jpg",editors:[{id:"201656",title:"Ph.D.",name:"Victorița",middleName:null,surname:"Trif",slug:"victorita-trif",fullName:"Victorița Trif"}],productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"7000",title:"Legume Crops",subtitle:"Characterization and Breeding for Improved Food Security",isOpenForSubmission:!1,hash:"4d0f73bf883bbb984cc2feef1259a9a7",slug:"legume-crops-characterization-and-breeding-for-improved-food-security",bookSignature:"Mohamed Ahmed El-Esawi",coverURL:"https://cdn.intechopen.com/books/images_new/7000.jpg",editors:[{id:"191770",title:"Dr.",name:"Mohamed A.",middleName:null,surname:"El-Esawi",slug:"mohamed-a.-el-esawi",fullName:"Mohamed A. El-Esawi"}],productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"7093",title:"Pneumothorax",subtitle:null,isOpenForSubmission:!1,hash:"0b1fdb8bb0448f48c2f234753898f3f8",slug:"pneumothorax",bookSignature:"Khalid Amer",coverURL:"https://cdn.intechopen.com/books/images_new/7093.jpg",editors:[{id:"63412",title:"Dr.",name:"Khalid",middleName:null,surname:"Amer",slug:"khalid-amer",fullName:"Khalid Amer"}],productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"7612",title:"Electrospinning and Electrospraying",subtitle:"Techniques and Applications",isOpenForSubmission:!1,hash:"77e9708250507395a4bea2c17d012982",slug:"electrospinning-and-electrospraying-techniques-and-applications",bookSignature:"Sajjad Haider and Adnan Haider",coverURL:"https://cdn.intechopen.com/books/images_new/7612.jpg",editors:[{id:"110708",title:"Dr.",name:"Sajjad",middleName:null,surname:"Haider",slug:"sajjad-haider",fullName:"Sajjad Haider"}],productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"8323",title:"Traditional and Complementary Medicine",subtitle:null,isOpenForSubmission:!1,hash:"60eadb1783d9bba245687adf284d4871",slug:"traditional-and-complementary-medicine",bookSignature:"Cengiz Mordeniz",coverURL:"https://cdn.intechopen.com/books/images_new/8323.jpg",editors:[{id:"214664",title:"Associate Prof.",name:"Cengiz",middleName:null,surname:"Mordeniz",slug:"cengiz-mordeniz",fullName:"Cengiz Mordeniz"}],productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"7646",title:"Scientometrics Recent Advances",subtitle:null,isOpenForSubmission:!1,hash:"86bbdd04d7e80be14283d44969d1cc32",slug:"scientometrics-recent-advances",bookSignature:"Suad Kunosic and Enver Zerem",coverURL:"https://cdn.intechopen.com/books/images_new/7646.jpg",editors:[{id:"88678",title:"Prof.",name:"Suad",middleName:null,surname:"Kunosic",slug:"suad-kunosic",fullName:"Suad Kunosic"}],productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"8516",title:"Metacognition in Learning",subtitle:null,isOpenForSubmission:!1,hash:"5fa6eaad7b509b8b7ec5124d79e5f605",slug:"metacognition-in-learning",bookSignature:"Nosisi Feza",coverURL:"https://cdn.intechopen.com/books/images_new/8516.jpg",editors:[{id:"261665",title:"Prof.",name:"Nosisi",middleName:"N.",surname:"Feza",slug:"nosisi-feza",fullName:"Nosisi Feza"}],productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"7404",title:"Hysteresis of Composites",subtitle:null,isOpenForSubmission:!1,hash:"8540fa2378dbb92e50411cfebfb853a6",slug:"hysteresis-of-composites",bookSignature:"Li Longbiao",coverURL:"https://cdn.intechopen.com/books/images_new/7404.jpg",editors:[{id:"260011",title:"Dr.",name:"Li",middleName:null,surname:"Longbiao",slug:"li-longbiao",fullName:"Li Longbiao"}],productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"7878",title:"Advances in Extracorporeal Membrane Oxygenation",subtitle:"Volume 3",isOpenForSubmission:!1,hash:"f95bf990273d08098a00f9a1c2403cbe",slug:"advances-in-extracorporeal-membrane-oxygenation-volume-3",bookSignature:"Michael S. Firstenberg",coverURL:"https://cdn.intechopen.com/books/images_new/7878.jpg",editors:[{id:"64343",title:null,name:"Michael S.",middleName:"S",surname:"Firstenberg",slug:"michael-s.-firstenberg",fullName:"Michael S. Firstenberg"}],productType:{id:"1",chapterContentType:"chapter"}}],offset:12,limit:12,total:4406},hotBookTopics:{hotBooks:[],offset:0,limit:12,total:null},publish:{},publishingProposal:{success:null,errors:{}},books:{featuredBooks:[{type:"book",id:"7640",title:"Perspective of Carbon Nanotubes",subtitle:null,isOpenForSubmission:!1,hash:"8b85a9957fad5206369eadf0c1ffa27d",slug:"perspective-of-carbon-nanotubes",bookSignature:"Hosam El-Din Saleh and Said Moawad Mohamed El-Sheikh",coverURL:"https://cdn.intechopen.com/books/images_new/7640.jpg",editors:[{id:"144691",title:"Prof.",name:"Hosam El-Din",middleName:"M.",surname:"Saleh",slug:"hosam-el-din-saleh",fullName:"Hosam El-Din Saleh"}],productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"7583",title:"Advanced Computational Fluid Dynamics for Emerging Engineering Processes",subtitle:"Eulerian vs. Lagrangian",isOpenForSubmission:!1,hash:"896509fa2e7e659811bffd0f9779ca9d",slug:"advanced-computational-fluid-dynamics-for-emerging-engineering-processes-eulerian-vs-lagrangian",bookSignature:"Albert S. Kim",coverURL:"https://cdn.intechopen.com/books/images_new/7583.jpg",editors:[{id:"21045",title:"Prof.",name:"Albert S.",middleName:null,surname:"Kim",slug:"albert-s.-kim",fullName:"Albert S. Kim"}],productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"7839",title:"Malaria",subtitle:null,isOpenForSubmission:!1,hash:"91cde4582ead884cb0f355a19b67cd56",slug:"malaria",bookSignature:"Fyson H. Kasenga",coverURL:"https://cdn.intechopen.com/books/images_new/7839.jpg",editors:[{id:"86725",title:"Dr.",name:"Fyson",middleName:"Hanania",surname:"Kasenga",slug:"fyson-kasenga",fullName:"Fyson Kasenga"}],productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"7698",title:"Educational Psychology",subtitle:"Between Certitudes and Uncertainties",isOpenForSubmission:!1,hash:"740943e2d029253e777150e98ebe2f0d",slug:"educational-psychology-between-certitudes-and-uncertainties",bookSignature:"Victori?a Trif",coverURL:"https://cdn.intechopen.com/books/images_new/7698.jpg",editors:[{id:"201656",title:"Ph.D.",name:"Victorița",middleName:null,surname:"Trif",slug:"victorita-trif",fullName:"Victorița Trif"}],productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"7000",title:"Legume Crops",subtitle:"Characterization and Breeding for Improved Food Security",isOpenForSubmission:!1,hash:"4d0f73bf883bbb984cc2feef1259a9a7",slug:"legume-crops-characterization-and-breeding-for-improved-food-security",bookSignature:"Mohamed Ahmed El-Esawi",coverURL:"https://cdn.intechopen.com/books/images_new/7000.jpg",editors:[{id:"191770",title:"Dr.",name:"Mohamed A.",middleName:null,surname:"El-Esawi",slug:"mohamed-a.-el-esawi",fullName:"Mohamed A. El-Esawi"}],productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"7093",title:"Pneumothorax",subtitle:null,isOpenForSubmission:!1,hash:"0b1fdb8bb0448f48c2f234753898f3f8",slug:"pneumothorax",bookSignature:"Khalid Amer",coverURL:"https://cdn.intechopen.com/books/images_new/7093.jpg",editors:[{id:"63412",title:"Dr.",name:"Khalid",middleName:null,surname:"Amer",slug:"khalid-amer",fullName:"Khalid Amer"}],productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"7612",title:"Electrospinning and Electrospraying",subtitle:"Techniques and Applications",isOpenForSubmission:!1,hash:"77e9708250507395a4bea2c17d012982",slug:"electrospinning-and-electrospraying-techniques-and-applications",bookSignature:"Sajjad Haider and Adnan Haider",coverURL:"https://cdn.intechopen.com/books/images_new/7612.jpg",editors:[{id:"110708",title:"Dr.",name:"Sajjad",middleName:null,surname:"Haider",slug:"sajjad-haider",fullName:"Sajjad Haider"}],productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"8323",title:"Traditional and Complementary Medicine",subtitle:null,isOpenForSubmission:!1,hash:"60eadb1783d9bba245687adf284d4871",slug:"traditional-and-complementary-medicine",bookSignature:"Cengiz Mordeniz",coverURL:"https://cdn.intechopen.com/books/images_new/8323.jpg",editors:[{id:"214664",title:"Associate Prof.",name:"Cengiz",middleName:null,surname:"Mordeniz",slug:"cengiz-mordeniz",fullName:"Cengiz Mordeniz"}],productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"7646",title:"Scientometrics Recent Advances",subtitle:null,isOpenForSubmission:!1,hash:"86bbdd04d7e80be14283d44969d1cc32",slug:"scientometrics-recent-advances",bookSignature:"Suad Kunosic and Enver Zerem",coverURL:"https://cdn.intechopen.com/books/images_new/7646.jpg",editors:[{id:"88678",title:"Prof.",name:"Suad",middleName:null,surname:"Kunosic",slug:"suad-kunosic",fullName:"Suad Kunosic"}],productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"8516",title:"Metacognition in Learning",subtitle:null,isOpenForSubmission:!1,hash:"5fa6eaad7b509b8b7ec5124d79e5f605",slug:"metacognition-in-learning",bookSignature:"Nosisi Feza",coverURL:"https://cdn.intechopen.com/books/images_new/8516.jpg",editors:[{id:"261665",title:"Prof.",name:"Nosisi",middleName:"N.",surname:"Feza",slug:"nosisi-feza",fullName:"Nosisi Feza"}],productType:{id:"1",chapterContentType:"chapter"}}],latestBooks:[{type:"book",id:"7698",title:"Educational Psychology",subtitle:"Between Certitudes and Uncertainties",isOpenForSubmission:!1,hash:"740943e2d029253e777150e98ebe2f0d",slug:"educational-psychology-between-certitudes-and-uncertainties",bookSignature:"Victori?a Trif",coverURL:"https://cdn.intechopen.com/books/images_new/7698.jpg",editedByType:"Edited by",editors:[{id:"201656",title:"Ph.D.",name:"Victorița",middleName:null,surname:"Trif",slug:"victorita-trif",fullName:"Victorița Trif"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"8747",title:"Asphalt and Asphalt Mixtures",subtitle:null,isOpenForSubmission:!1,hash:"6083f7c9881029f1e033a1e512af7e20",slug:"asphalt-and-asphalt-mixtures",bookSignature:"Haitao Zhang",coverURL:"https://cdn.intechopen.com/books/images_new/8747.jpg",editedByType:"Edited by",editors:[{id:"260604",title:"Prof.",name:"Haitao",middleName:null,surname:"Zhang",slug:"haitao-zhang",fullName:"Haitao Zhang"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"8516",title:"Metacognition in Learning",subtitle:null,isOpenForSubmission:!1,hash:"5fa6eaad7b509b8b7ec5124d79e5f605",slug:"metacognition-in-learning",bookSignature:"Nosisi Feza",coverURL:"https://cdn.intechopen.com/books/images_new/8516.jpg",editedByType:"Edited by",editors:[{id:"261665",title:"Prof.",name:"Nosisi",middleName:"N.",surname:"Feza",slug:"nosisi-feza",fullName:"Nosisi Feza"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"7000",title:"Legume Crops",subtitle:"Characterization and Breeding for Improved Food Security",isOpenForSubmission:!1,hash:"4d0f73bf883bbb984cc2feef1259a9a7",slug:"legume-crops-characterization-and-breeding-for-improved-food-security",bookSignature:"Mohamed Ahmed El-Esawi",coverURL:"https://cdn.intechopen.com/books/images_new/7000.jpg",editedByType:"Edited by",editors:[{id:"191770",title:"Dr.",name:"Mohamed A.",middleName:null,surname:"El-Esawi",slug:"mohamed-a.-el-esawi",fullName:"Mohamed A. El-Esawi"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"8292",title:"Oral Health by Using Probiotic Products",subtitle:null,isOpenForSubmission:!1,hash:"327e750e83634800ace02fe62607c21e",slug:"oral-health-by-using-probiotic-products",bookSignature:"Razzagh Mahmoudi",coverURL:"https://cdn.intechopen.com/books/images_new/8292.jpg",editedByType:"Edited by",editors:[{id:"245925",title:"Dr.",name:"Razzagh",middleName:null,surname:"Mahmoudi",slug:"razzagh-mahmoudi",fullName:"Razzagh Mahmoudi"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"8323",title:"Traditional and Complementary Medicine",subtitle:null,isOpenForSubmission:!1,hash:"60eadb1783d9bba245687adf284d4871",slug:"traditional-and-complementary-medicine",bookSignature:"Cengiz Mordeniz",coverURL:"https://cdn.intechopen.com/books/images_new/8323.jpg",editedByType:"Edited by",editors:[{id:"214664",title:"Associate Prof.",name:"Cengiz",middleName:null,surname:"Mordeniz",slug:"cengiz-mordeniz",fullName:"Cengiz Mordeniz"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"8347",title:"Computer Architecture in Industrial, Biomechanical and Biomedical Engineering",subtitle:null,isOpenForSubmission:!1,hash:"3d7024a8d7d8afed093c9c79ec31f15a",slug:"computer-architecture-in-industrial-biomechanical-and-biomedical-engineering",bookSignature:"Lulu Wang and Liandong Yu",coverURL:"https://cdn.intechopen.com/books/images_new/8347.jpg",editedByType:"Edited by",editors:[{id:"257388",title:"Dr.",name:"Lulu",middleName:null,surname:"Wang",slug:"lulu-wang",fullName:"Lulu Wang"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"7583",title:"Advanced Computational Fluid Dynamics for Emerging Engineering Processes",subtitle:"Eulerian vs. Lagrangian",isOpenForSubmission:!1,hash:"896509fa2e7e659811bffd0f9779ca9d",slug:"advanced-computational-fluid-dynamics-for-emerging-engineering-processes-eulerian-vs-lagrangian",bookSignature:"Albert S. Kim",coverURL:"https://cdn.intechopen.com/books/images_new/7583.jpg",editedByType:"Edited by",editors:[{id:"21045",title:"Prof.",name:"Albert S.",middleName:null,surname:"Kim",slug:"albert-s.-kim",fullName:"Albert S. Kim"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"7839",title:"Malaria",subtitle:null,isOpenForSubmission:!1,hash:"91cde4582ead884cb0f355a19b67cd56",slug:"malaria",bookSignature:"Fyson H. Kasenga",coverURL:"https://cdn.intechopen.com/books/images_new/7839.jpg",editedByType:"Edited by",editors:[{id:"86725",title:"Dr.",name:"Fyson",middleName:"Hanania",surname:"Kasenga",slug:"fyson-kasenga",fullName:"Fyson Kasenga"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"7093",title:"Pneumothorax",subtitle:null,isOpenForSubmission:!1,hash:"0b1fdb8bb0448f48c2f234753898f3f8",slug:"pneumothorax",bookSignature:"Khalid Amer",coverURL:"https://cdn.intechopen.com/books/images_new/7093.jpg",editedByType:"Edited by",editors:[{id:"63412",title:"Dr.",name:"Khalid",middleName:null,surname:"Amer",slug:"khalid-amer",fullName:"Khalid Amer"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}}]},subject:{topic:{id:"1181",title:"Cancer Biology",slug:"drug-discovery-cancer-biology",parent:{title:"Drug Discovery",slug:"drug-discovery"},numberOfBooks:1,numberOfAuthorsAndEditors:18,numberOfWosCitations:0,numberOfCrossrefCitations:0,numberOfDimensionsCitations:0,videoUrl:null,fallbackUrl:null,description:null},booksByTopicFilter:{topicSlug:"drug-discovery-cancer-biology",sort:"-publishedDate",limit:12,offset:0},booksByTopicCollection:[{type:"book",id:"8660",title:"Tyrosine Kinases as Druggable Targets in Cancer",subtitle:null,isOpenForSubmission:!1,hash:"689f19fdd857c3a92227d533ac531196",slug:"tyrosine-kinases-as-druggable-targets-in-cancer",bookSignature:"Huan Ren",coverURL:"https://cdn.intechopen.com/books/images_new/8660.jpg",editedByType:"Edited by",editors:[{id:"237472",title:"Prof.",name:"Huan",middleName:null,surname:"Ren",slug:"huan-ren",fullName:"Huan Ren"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}}],booksByTopicTotal:1,mostCitedChapters:[{id:"65229",doi:"10.5772/intechopen.82513",title:"Cancer Management by Tyrosine Kinase Inhibitors: Efficacy, Limitation, and Future Strategies",slug:"cancer-management-by-tyrosine-kinase-inhibitors-efficacy-limitation-and-future-strategies",totalDownloads:517,totalCrossrefCites:0,totalDimensionsCites:0,book:{slug:"tyrosine-kinases-as-druggable-targets-in-cancer",title:"Tyrosine Kinases as Druggable Targets in Cancer",fullTitle:"Tyrosine Kinases as Druggable Targets in Cancer"},signatures:"Venice Wing Tung Ho, Hor Yue Tan, Ning Wang and Yibin Feng",authors:[{id:"14428",title:"Prof.",name:"Yibin",middleName:null,surname:"Feng",slug:"yibin-feng",fullName:"Yibin Feng"},{id:"175059",title:"Dr.",name:"Ning",middleName:null,surname:"Wang",slug:"ning-wang",fullName:"Ning Wang"},{id:"281068",title:"Ms.",name:"Wing Tung Venice",middleName:null,surname:"Ho",slug:"wing-tung-venice-ho",fullName:"Wing Tung Venice Ho"},{id:"281069",title:"Dr.",name:"Hor Yue",middleName:null,surname:"Tan",slug:"hor-yue-tan",fullName:"Hor Yue Tan"}]},{id:"65694",doi:"10.5772/intechopen.84177",title:"JAK, an Oncokinase in Hematological Cancer",slug:"jak-an-oncokinase-in-hematological-cancer",totalDownloads:219,totalCrossrefCites:0,totalDimensionsCites:0,book:{slug:"tyrosine-kinases-as-druggable-targets-in-cancer",title:"Tyrosine Kinases as Druggable Targets in Cancer",fullTitle:"Tyrosine Kinases as Druggable Targets in Cancer"},signatures:"Carlota Recio, Haidée Aranda-Tavío, Miguel Guerra-Rodríguez, Mercedes de Mirecki-Garrido, Patricia Martín-Rodríguez, Borja Guerra and Leandro Fernández-Pérez",authors:[{id:"181749",title:"Dr.",name:"Leandro",middleName:null,surname:"Fernández-Pérez",slug:"leandro-fernandez-perez",fullName:"Leandro Fernández-Pérez"},{id:"185536",title:"Dr.",name:"Borja",middleName:null,surname:"Guerra",slug:"borja-guerra",fullName:"Borja Guerra"},{id:"271326",title:"Dr.",name:"Carlota",middleName:null,surname:"Recio",slug:"carlota-recio",fullName:"Carlota Recio"},{id:"271415",title:"Ms.",name:"Haidée",middleName:null,surname:"Aranda-Tavío",slug:"haidee-aranda-tavio",fullName:"Haidée Aranda-Tavío"},{id:"271416",title:"Dr.",name:"Mercedes",middleName:null,surname:"De Mirecki-Garrido",slug:"mercedes-de-mirecki-garrido",fullName:"Mercedes De Mirecki-Garrido"},{id:"271418",title:"Mr.",name:"Miguel",middleName:null,surname:"Guerra-Rodríguez",slug:"miguel-guerra-rodriguez",fullName:"Miguel Guerra-Rodríguez"},{id:"271419",title:"Dr.",name:"Patricia",middleName:null,surname:"Martín-Rodríguez",slug:"patricia-martin-rodriguez",fullName:"Patricia Martín-Rodríguez"}]},{id:"66041",doi:"10.5772/intechopen.84873",title:"Non-receptor Tyrosine Kinases Role and Significance in Hematological Malignancies",slug:"non-receptor-tyrosine-kinases-role-and-significance-in-hematological-malignancies",totalDownloads:202,totalCrossrefCites:0,totalDimensionsCites:0,book:{slug:"tyrosine-kinases-as-druggable-targets-in-cancer",title:"Tyrosine Kinases as Druggable Targets in Cancer",fullTitle:"Tyrosine Kinases as Druggable Targets in Cancer"},signatures:"Ana Azevedo, Susana Silva and José Rueff",authors:[{id:"282451",title:"Prof.",name:"Ana",middleName:null,surname:"Azevedo",slug:"ana-azevedo",fullName:"Ana Azevedo"},{id:"282845",title:"Prof.",name:"Susana",middleName:null,surname:"Silva",slug:"susana-silva",fullName:"Susana Silva"},{id:"282846",title:"Prof.",name:"José",middleName:null,surname:"Rueff",slug:"jose-rueff",fullName:"José Rueff"}]}],mostDownloadedChaptersLast30Days:[{id:"65229",title:"Cancer Management by Tyrosine Kinase Inhibitors: Efficacy, Limitation, and Future Strategies",slug:"cancer-management-by-tyrosine-kinase-inhibitors-efficacy-limitation-and-future-strategies",totalDownloads:517,totalCrossrefCites:0,totalDimensionsCites:0,book:{slug:"tyrosine-kinases-as-druggable-targets-in-cancer",title:"Tyrosine Kinases as Druggable Targets in Cancer",fullTitle:"Tyrosine Kinases as Druggable Targets in Cancer"},signatures:"Venice Wing Tung Ho, Hor Yue Tan, Ning Wang and Yibin Feng",authors:[{id:"14428",title:"Prof.",name:"Yibin",middleName:null,surname:"Feng",slug:"yibin-feng",fullName:"Yibin Feng"},{id:"175059",title:"Dr.",name:"Ning",middleName:null,surname:"Wang",slug:"ning-wang",fullName:"Ning Wang"},{id:"281068",title:"Ms.",name:"Wing Tung Venice",middleName:null,surname:"Ho",slug:"wing-tung-venice-ho",fullName:"Wing Tung Venice Ho"},{id:"281069",title:"Dr.",name:"Hor Yue",middleName:null,surname:"Tan",slug:"hor-yue-tan",fullName:"Hor Yue Tan"}]},{id:"65694",title:"JAK, an Oncokinase in Hematological Cancer",slug:"jak-an-oncokinase-in-hematological-cancer",totalDownloads:219,totalCrossrefCites:0,totalDimensionsCites:0,book:{slug:"tyrosine-kinases-as-druggable-targets-in-cancer",title:"Tyrosine Kinases as Druggable Targets in Cancer",fullTitle:"Tyrosine Kinases as Druggable Targets in Cancer"},signatures:"Carlota Recio, Haidée Aranda-Tavío, Miguel Guerra-Rodríguez, Mercedes de Mirecki-Garrido, Patricia Martín-Rodríguez, Borja Guerra and Leandro Fernández-Pérez",authors:[{id:"181749",title:"Dr.",name:"Leandro",middleName:null,surname:"Fernández-Pérez",slug:"leandro-fernandez-perez",fullName:"Leandro Fernández-Pérez"},{id:"185536",title:"Dr.",name:"Borja",middleName:null,surname:"Guerra",slug:"borja-guerra",fullName:"Borja Guerra"},{id:"271326",title:"Dr.",name:"Carlota",middleName:null,surname:"Recio",slug:"carlota-recio",fullName:"Carlota Recio"},{id:"271415",title:"Ms.",name:"Haidée",middleName:null,surname:"Aranda-Tavío",slug:"haidee-aranda-tavio",fullName:"Haidée Aranda-Tavío"},{id:"271416",title:"Dr.",name:"Mercedes",middleName:null,surname:"De Mirecki-Garrido",slug:"mercedes-de-mirecki-garrido",fullName:"Mercedes De Mirecki-Garrido"},{id:"271418",title:"Mr.",name:"Miguel",middleName:null,surname:"Guerra-Rodríguez",slug:"miguel-guerra-rodriguez",fullName:"Miguel Guerra-Rodríguez"},{id:"271419",title:"Dr.",name:"Patricia",middleName:null,surname:"Martín-Rodríguez",slug:"patricia-martin-rodriguez",fullName:"Patricia Martín-Rodríguez"}]},{id:"66041",title:"Non-receptor Tyrosine Kinases Role and Significance in Hematological Malignancies",slug:"non-receptor-tyrosine-kinases-role-and-significance-in-hematological-malignancies",totalDownloads:202,totalCrossrefCites:0,totalDimensionsCites:0,book:{slug:"tyrosine-kinases-as-druggable-targets-in-cancer",title:"Tyrosine Kinases as Druggable Targets in Cancer",fullTitle:"Tyrosine Kinases as Druggable Targets in Cancer"},signatures:"Ana Azevedo, Susana Silva and José Rueff",authors:[{id:"282451",title:"Prof.",name:"Ana",middleName:null,surname:"Azevedo",slug:"ana-azevedo",fullName:"Ana Azevedo"},{id:"282845",title:"Prof.",name:"Susana",middleName:null,surname:"Silva",slug:"susana-silva",fullName:"Susana Silva"},{id:"282846",title:"Prof.",name:"José",middleName:null,surname:"Rueff",slug:"jose-rueff",fullName:"José Rueff"}]},{id:"67422",title:"Introductory Chapter: Tyrosine Kinases as Drug Targets in Cancer Treatment",slug:"introductory-chapter-tyrosine-kinases-as-drug-targets-in-cancer-treatment",totalDownloads:72,totalCrossrefCites:0,totalDimensionsCites:0,book:{slug:"tyrosine-kinases-as-druggable-targets-in-cancer",title:"Tyrosine Kinases as Druggable Targets in Cancer",fullTitle:"Tyrosine Kinases as Druggable Targets in Cancer"},signatures:"Huan Ren",authors:[{id:"237472",title:"Prof.",name:"Huan",middleName:null,surname:"Ren",slug:"huan-ren",fullName:"Huan Ren"}]},{id:"66849",title:"Noncoding RNAs as Predictive Biomarkers of Therapeutic Response to Tyrosine Kinase Inhibitors in Metastatic Cancer",slug:"noncoding-rnas-as-predictive-biomarkers-of-therapeutic-response-to-tyrosine-kinase-inhibitors-in-met",totalDownloads:123,totalCrossrefCites:0,totalDimensionsCites:0,book:{slug:"tyrosine-kinases-as-druggable-targets-in-cancer",title:"Tyrosine Kinases as Druggable Targets in Cancer",fullTitle:"Tyrosine Kinases as Druggable Targets in Cancer"},signatures:"Julia Kovacova and Ondrej Slaby",authors:[{id:"270982",title:"Prof.",name:"Ondrej",middleName:null,surname:"Slaby",slug:"ondrej-slaby",fullName:"Ondrej Slaby"},{id:"270983",title:"MSc.",name:"Julia",middleName:null,surname:"Kovacova",slug:"julia-kovacova",fullName:"Julia Kovacova"}]}],onlineFirstChaptersFilter:{topicSlug:"drug-discovery-cancer-biology",limit:3,offset:0},onlineFirstChaptersCollection:[],onlineFirstChaptersTotal:0},preDownload:{success:null,errors:{}},aboutIntechopen:{},privacyPolicy:{},peerReviewing:{},howOpenAccessPublishingWithIntechopenWorks:{},sponsorshipBooks:{sponsorshipBooks:[{type:"book",id:"10080",title:"Vortex Dynamics",subtitle:null,isOpenForSubmission:!0,hash:"ea97962e99b3e0ebc9b46b48ba5bea14",slug:null,bookSignature:"Dr. Zambri Harun",coverURL:"https://cdn.intechopen.com/books/images_new/10080.jpg",editedByType:null,editors:[{id:"243152",title:"Dr.",name:"Zambri",middleName:null,surname:"Harun",slug:"zambri-harun",fullName:"Zambri Harun"}],productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"8903",title:"Carbon Based Material for Environmental Protection and Remediation",subtitle:null,isOpenForSubmission:!0,hash:"19da699b370f320eca63ef2ba02f745d",slug:null,bookSignature:"Dr. Mattia Bartoli and Dr. Marco Frediani",coverURL:"https://cdn.intechopen.com/books/images_new/8903.jpg",editedByType:null,editors:[{id:"188999",title:"Dr.",name:"Mattia",middleName:null,surname:"Bartoli",slug:"mattia-bartoli",fullName:"Mattia Bartoli"}],productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"8771",title:"Raman Scattering",subtitle:null,isOpenForSubmission:!0,hash:"1354b3097eaa5b27d9d4bd29d3150b27",slug:null,bookSignature:"Dr. Samir Kumar and Dr. Prabhat Kumar",coverURL:"https://cdn.intechopen.com/books/images_new/8771.jpg",editedByType:null,editors:[{id:"296661",title:"Dr.",name:"Samir",middleName:null,surname:"Kumar",slug:"samir-kumar",fullName:"Samir Kumar"}],productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10073",title:"Recent Advances in Nanophotonics-Fundamentals and Applications",subtitle:null,isOpenForSubmission:!0,hash:"aceca7dfc807140870a89d42c5537d7c",slug:null,bookSignature:"Dr. Mojtaba Kahrizi and Ms. Parsoua Abedini Sohi",coverURL:"https://cdn.intechopen.com/books/images_new/10073.jpg",editedByType:null,editors:[{id:"113045",title:"Dr.",name:"Mojtaba",middleName:null,surname:"Kahrizi",slug:"mojtaba-kahrizi",fullName:"Mojtaba Kahrizi"}],productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10132",title:"Applied Computational Near-surface Geophysics - From Integral and Derivative Formulas to MATLAB Codes",subtitle:null,isOpenForSubmission:!0,hash:"38cdbbb671df620b36ee96af1d9a3a90",slug:null,bookSignature:"Dr. Afshin Aghayan",coverURL:"https://cdn.intechopen.com/books/images_new/10132.jpg",editedByType:null,editors:[{id:"311030",title:"Dr.",name:"Afshin",middleName:null,surname:"Aghayan",slug:"afshin-aghayan",fullName:"Afshin Aghayan"}],productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10110",title:"Advances and Technologies in Building Construction and Structural Analysis",subtitle:null,isOpenForSubmission:!0,hash:"df2ad14bc5588577e8bf0b7ebcdafd9d",slug:null,bookSignature:"Dr. Ali Kaboli and Dr. Sara Shirowzhan",coverURL:"https://cdn.intechopen.com/books/images_new/10110.jpg",editedByType:null,editors:[{id:"309192",title:"Dr.",name:"Ali",middleName:null,surname:"Kaboli",slug:"ali-kaboli",fullName:"Ali Kaboli"}],productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10175",title:"Ethics in Emerging Technologies",subtitle:null,isOpenForSubmission:!0,hash:"9c92da249676e35e2f7476182aa94e84",slug:null,bookSignature:"Prof. Ali Hessami",coverURL:"https://cdn.intechopen.com/books/images_new/10175.jpg",editedByType:null,editors:[{id:"108303",title:"Prof.",name:"Ali",middleName:null,surname:"Hessami",slug:"ali-hessami",fullName:"Ali Hessami"}],productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9284",title:"Computational Aeroacoustics",subtitle:null,isOpenForSubmission:!0,hash:"7019c5e5985faef7dc384c87dca5c8ef",slug:null,bookSignature:"Prof. Ramesh K. Agarwal",coverURL:"https://cdn.intechopen.com/books/images_new/9284.jpg",editedByType:null,editors:[{id:"38519",title:"Prof.",name:"Ramesh K.",middleName:null,surname:"Agarwal",slug:"ramesh-k.-agarwal",fullName:"Ramesh K. Agarwal"}],productType:{id:"1",chapterContentType:"chapter"}}],offset:8,limit:8,total:16},humansInSpaceProgram:{},teamHumansInSpaceProgram:{},route:{name:"chapter.detail",path:"/books/insect-science-diversity-conservation-and-nutrition/role-of-sex-peptide-in-drosophila-males",hash:"",query:{},params:{book:"insect-science-diversity-conservation-and-nutrition",chapter:"role-of-sex-peptide-in-drosophila-males"},fullPath:"/books/insect-science-diversity-conservation-and-nutrition/role-of-sex-peptide-in-drosophila-males",meta:{},from:{name:null,path:"/",hash:"",query:{},params:{},fullPath:"/",meta:{}}}},function(){var e;(e=document.currentScript||document.scripts[document.scripts.length-1]).parentNode.removeChild(e)}()