Clinical Laboratory Disturbances in Manifested Babesiosis in Our Patients N-12
\r\n\t
",isbn:"978-1-83968-571-2",printIsbn:"978-1-83968-570-5",pdfIsbn:"978-1-83968-599-6",doi:null,price:0,priceEur:0,priceUsd:0,slug:null,numberOfPages:0,isOpenForSubmission:!0,hash:"dd81bc60e806fddc63d1ae22da1c779a",bookSignature:"Dr. Sebahattin Demirkan and Dr. Irem Demirkan",publishedDate:null,coverURL:"https://cdn.intechopen.com/books/images_new/10818.jpg",keywords:"Decision Making, Blockchain, Accounting, Earnings Management, Strategic Alliances, Innovation, Performance, Corporate Governance, Accounting Quality, Digital Assets, Internationalization, MNCs",numberOfDownloads:null,numberOfWosCitations:0,numberOfCrossrefCitations:null,numberOfDimensionsCitations:null,numberOfTotalCitations:null,isAvailableForWebshopOrdering:!0,dateEndFirstStepPublish:"January 28th 2021",dateEndSecondStepPublish:"February 25th 2021",dateEndThirdStepPublish:"April 26th 2021",dateEndFourthStepPublish:"July 15th 2021",dateEndFifthStepPublish:"September 13th 2021",remainingDaysToSecondStep:"5 days",secondStepPassed:!0,currentStepOfPublishingProcess:3,editedByType:null,kuFlag:!1,biosketch:"Academician in the area of accounting who believes in the impact of interdisciplinary research. Dr. Sebahattin Demirkan's research interests are in the areas of financial accounting, capital markets, auditing, corporate governance, strategic alliances, taxation, CSR, and data analytics.",coeditorOneBiosketch:"Researcher of strategic management, corporate entrepreneurship, and international business; specific interests include innovation, the ambidexterity framework, inter-organizational relationships, and networks. Experienced in teaching graduate and undergraduate courses in strategy, entrepreneurship, and international business and management areas.",coeditorTwoBiosketch:null,coeditorThreeBiosketch:null,coeditorFourBiosketch:null,coeditorFiveBiosketch:null,editors:[{id:"336397",title:"Dr.",name:"Sebahattin",middleName:null,surname:"Demirkan",slug:"sebahattin-demirkan",fullName:"Sebahattin Demirkan",profilePictureURL:"https://mts.intechopen.com/storage/users/336397/images/system/336397.jpg",biography:"Dr. Sebahattin Demirkan is a Professor of Accounting. He earned his Ph.D. in Accounting/Management Science at Jindal School of Management of the University of Texas at Dallas where he got his MS in Accounting, MSA Supply Chain, and MBA degrees. He got his BA in Economics and Management at the Faculty of Economics and Administrative Sciences at Bogazici University, Istanbul. He worked at Koc Holding, a private venture capital firm, and the University of California, Berkeley during and after his education at Bogazici University. His research interests are in the areas of financial accounting, capital markets, auditing, corporate governance, strategic alliances, taxation, CSR, and data analytics. Dr. Sebahattin Demirkan has published articles in Contemporary Accounting Research, JAPP, JAAF, TEM, Journal of Management, and other top academic journals. He teaches several different classes in both undergraduate and graduate levels in Accounting and Analytics programs. He is a treasurer and vice president of the TASSA, board member of the BURCIN and member of the American Accounting Association.",institutionString:"Manhattan College",position:null,outsideEditionCount:0,totalCites:0,totalAuthoredChapters:"0",totalChapterViews:"0",totalEditedBooks:"0",institution:{name:"Manhattan College",institutionURL:null,country:{name:"United States of America"}}}],coeditorOne:{id:"342242",title:"Dr.",name:"Irem",middleName:null,surname:"Demirkan",slug:"irem-demirkan",fullName:"Irem Demirkan",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0033Y000033HrA8QAK/Profile_Picture_1606729803873",biography:"Dr. Irem Demirkan earned her Ph.D. in International Management Studies and M.S. in Administrative Studies at Jindal School of Management at the University of Texas at Dallas, USA. She got her BA in Economics at the Faculty of Economics and Administrative Sciences at Bogazici University, Istanbul, Turkey. She worked in the finance and textile industries before joining to academia. Dr. Demirkan has published research in the areas of strategic management and corporate entrepreneurship in journals such as the Journal of Management, Journal of Business Research, Management Science, European Journal of Innovation and Management, IEEE Transactions on Engineering Management, among others. Dr. Demirkan currently teaches strategic management, entrepreneurship, and international business at Loyola University Maryland in Baltimore, MD.",institutionString:"Loyola University Maryland",position:null,outsideEditionCount:0,totalCites:0,totalAuthoredChapters:"0",totalChapterViews:"0",totalEditedBooks:"0",institution:{name:"Loyola University Maryland",institutionURL:null,country:{name:"United States of America"}}},coeditorTwo:null,coeditorThree:null,coeditorFour:null,coeditorFive:null,topics:[{id:"7",title:"Business, Management and Economics",slug:"business-management-and-economics"}],chapters:null,productType:{id:"1",title:"Edited Volume",chapterContentType:"chapter",authoredCaption:"Edited by"},personalPublishingAssistant:{id:"301331",firstName:"Mia",lastName:"Vulovic",middleName:null,title:"Mrs.",imageUrl:"https://mts.intechopen.com/storage/users/301331/images/8498_n.jpg",email:"mia.v@intechopen.com",biography:"As an Author Service Manager, my responsibilities include monitoring and facilitating all publishing activities for authors and editors. From chapter submission and review to approval and revision, copyediting and design, until final publication, I work closely with authors and editors to ensure a simple and easy publishing process. I maintain constant and effective communication with authors, editors and reviewers, which allows for a level of personal support that enables contributors to fully commit and concentrate on the chapters they are writing, editing, or reviewing. I assist authors in the preparation of their full chapter submissions and track important deadlines and ensure they are met. I help to coordinate internal processes such as linguistic review, and monitor the technical aspects of the process. As an ASM I am also involved in the acquisition of editors. Whether that be identifying an exceptional author and proposing an editorship collaboration, or contacting researchers who would like the opportunity to work with IntechOpen, I establish and help manage author and editor acquisition and contact."}},relatedBooks:[{type:"book",id:"1591",title:"Infrared Spectroscopy",subtitle:"Materials Science, Engineering and Technology",isOpenForSubmission:!1,hash:"99b4b7b71a8caeb693ed762b40b017f4",slug:"infrared-spectroscopy-materials-science-engineering-and-technology",bookSignature:"Theophile Theophanides",coverURL:"https://cdn.intechopen.com/books/images_new/1591.jpg",editedByType:"Edited by",editors:[{id:"37194",title:"Dr.",name:"Theophanides",surname:"Theophile",slug:"theophanides-theophile",fullName:"Theophanides Theophile"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"3092",title:"Anopheles mosquitoes",subtitle:"New insights into malaria vectors",isOpenForSubmission:!1,hash:"c9e622485316d5e296288bf24d2b0d64",slug:"anopheles-mosquitoes-new-insights-into-malaria-vectors",bookSignature:"Sylvie Manguin",coverURL:"https://cdn.intechopen.com/books/images_new/3092.jpg",editedByType:"Edited by",editors:[{id:"50017",title:"Prof.",name:"Sylvie",surname:"Manguin",slug:"sylvie-manguin",fullName:"Sylvie Manguin"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"3161",title:"Frontiers in Guided Wave Optics and Optoelectronics",subtitle:null,isOpenForSubmission:!1,hash:"deb44e9c99f82bbce1083abea743146c",slug:"frontiers-in-guided-wave-optics-and-optoelectronics",bookSignature:"Bishnu Pal",coverURL:"https://cdn.intechopen.com/books/images_new/3161.jpg",editedByType:"Edited by",editors:[{id:"4782",title:"Prof.",name:"Bishnu",surname:"Pal",slug:"bishnu-pal",fullName:"Bishnu Pal"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"72",title:"Ionic Liquids",subtitle:"Theory, Properties, New Approaches",isOpenForSubmission:!1,hash:"d94ffa3cfa10505e3b1d676d46fcd3f5",slug:"ionic-liquids-theory-properties-new-approaches",bookSignature:"Alexander Kokorin",coverURL:"https://cdn.intechopen.com/books/images_new/72.jpg",editedByType:"Edited by",editors:[{id:"19816",title:"Prof.",name:"Alexander",surname:"Kokorin",slug:"alexander-kokorin",fullName:"Alexander Kokorin"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"1373",title:"Ionic Liquids",subtitle:"Applications and Perspectives",isOpenForSubmission:!1,hash:"5e9ae5ae9167cde4b344e499a792c41c",slug:"ionic-liquids-applications-and-perspectives",bookSignature:"Alexander Kokorin",coverURL:"https://cdn.intechopen.com/books/images_new/1373.jpg",editedByType:"Edited by",editors:[{id:"19816",title:"Prof.",name:"Alexander",surname:"Kokorin",slug:"alexander-kokorin",fullName:"Alexander Kokorin"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"57",title:"Physics and Applications of Graphene",subtitle:"Experiments",isOpenForSubmission:!1,hash:"0e6622a71cf4f02f45bfdd5691e1189a",slug:"physics-and-applications-of-graphene-experiments",bookSignature:"Sergey Mikhailov",coverURL:"https://cdn.intechopen.com/books/images_new/57.jpg",editedByType:"Edited by",editors:[{id:"16042",title:"Dr.",name:"Sergey",surname:"Mikhailov",slug:"sergey-mikhailov",fullName:"Sergey Mikhailov"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"371",title:"Abiotic Stress in Plants",subtitle:"Mechanisms and Adaptations",isOpenForSubmission:!1,hash:"588466f487e307619849d72389178a74",slug:"abiotic-stress-in-plants-mechanisms-and-adaptations",bookSignature:"Arun Shanker and B. Venkateswarlu",coverURL:"https://cdn.intechopen.com/books/images_new/371.jpg",editedByType:"Edited by",editors:[{id:"58592",title:"Dr.",name:"Arun",surname:"Shanker",slug:"arun-shanker",fullName:"Arun Shanker"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"878",title:"Phytochemicals",subtitle:"A Global Perspective of Their Role in Nutrition and Health",isOpenForSubmission:!1,hash:"ec77671f63975ef2d16192897deb6835",slug:"phytochemicals-a-global-perspective-of-their-role-in-nutrition-and-health",bookSignature:"Venketeshwer Rao",coverURL:"https://cdn.intechopen.com/books/images_new/878.jpg",editedByType:"Edited by",editors:[{id:"82663",title:"Dr.",name:"Venketeshwer",surname:"Rao",slug:"venketeshwer-rao",fullName:"Venketeshwer Rao"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"4816",title:"Face Recognition",subtitle:null,isOpenForSubmission:!1,hash:"146063b5359146b7718ea86bad47c8eb",slug:"face_recognition",bookSignature:"Kresimir Delac and Mislav Grgic",coverURL:"https://cdn.intechopen.com/books/images_new/4816.jpg",editedByType:"Edited by",editors:[{id:"528",title:"Dr.",name:"Kresimir",surname:"Delac",slug:"kresimir-delac",fullName:"Kresimir Delac"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"3621",title:"Silver Nanoparticles",subtitle:null,isOpenForSubmission:!1,hash:null,slug:"silver-nanoparticles",bookSignature:"David Pozo Perez",coverURL:"https://cdn.intechopen.com/books/images_new/3621.jpg",editedByType:"Edited by",editors:[{id:"6667",title:"Dr.",name:"David",surname:"Pozo",slug:"david-pozo",fullName:"David Pozo"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}}]},chapter:{item:{type:"chapter",id:"49268",title:"Human Vector-Borne Transmissible Parasitic Diseases in Montenegro",doi:"10.5772/61534",slug:"human-vector-borne-transmissible-parasitic-diseases-in-montenegro",body:'The transmissible way of spreading infection from animals to humans by different vectors is of great importance in contemporary world infectious pathology. This group includes a large number of vectors that cause different emerging diseases, the so called zoonoses. [1, 2]
Vectors play complex role in the epidemiology and pathogenesis of these diseases, with abundance of species that provide the resources for expansion into new geographic areas and direct participation in the pathogenic immunity mechanisms of infections [3]
The natural factors are adjacent to the problems of globalization and increase the importance of these diseases in the world due to: numerical magnification of human population, frequent contact between human and animal population, and behavioral changes in the human population. Also climate change is of special interest [3, 4]
Mediterranean area presents the region with frequent representations of a wide specter of vectorborne diseases (VBD). Montenegro is a Mediterranean country, geographically situated in the Balkan area. Natural conditions in Montenegro represent an ideal ecological basis for the existence of VBD [5]
New characteristics of parasitic VBD present increased frequency, severe clinical courses, and difficulties in diagnosis of nondefined way and prognosis of diseases. On the basis of this fact, they are imputed in the group of emerging zoonoses, occupying an important place [6,7,8]. Frequent multietiological (coinfective) forms of diseases represent additional problem in this group of parasitic VBD [9], based on the natural factors (coexisting of different causers in common endemic areas, natural hosts, cotransmissions of these agents with common vectors).
Based on the changes of the immunological characteristics of parasitic agents in infected humans, parasitic VBD can be provided by opportunistic action and reactivation of different and numerous intracellular microorganisms and cooperative action, with negative reflection on difficulties and uncertain prognosis of coinfections (eg: coinfection of Leishmania parasites and HIV, babesia parasites and B. burgdorferi [10,11]. In addition, coinfections represent big diagnostic problem.
Increasing multiresistance to drugs and necessary application of combined therapy represent multiple problems [12,13]. In national human pathology in Montenegro, there not enough research space has been dedicated to parasitic VBD hence they have not received attention in the light of their significance for the present or for the future.
An analysis observed four different parasitic transmissible zoonotic diseases, in different periods of the last decade, by using available diagnostic methods.
Current transmissible parasitic zoonoses that are registered in Montenegro and that should be a field for future research work include: leishmaniasis, babesiosis, and malaria. In 2014, the first registered case of autochthonous dirofilariasis in Montenegro presented a new dimension of the needs and seriousness of the disease, showing that new factors of transmissible parasitic zoonoses should be paid much more attention [14].
The number of diseased cases refers to the period 1992 to 2014. In the diagnostic procedure epidemiological, clinical, and laboratory methods were used. Diagnosis was etiologically confirmed through bone marrow biopsy analysis by direct microscoping of serial sections colored with Giemsa (stain), reticulin, and PAS method and by immune-biochemical methods (TdT, CD34, CD117, CD15, glucophorin A, CD31, CD79a, CD20, CD3, CD45RO, CD38, kappa, lambda, IgG, IgM, IgA, CD68). Serologically, with agglutination test, the diagnosis was confirmed in 56% of the cases.
Taking into consideration that in our country wild jackals and domestic dogs are the primary natural carriers of Leichmania parasites, significant for infections in humans, a screening of 1500 serum samples of both asylum dogs and stay dogs was done by using the indirect immunoefluorescence (IIF) method.
The clinical characteristics of human babesiosis vary from predominantly asymptomatic (silent disease) to fulminate malignant forms, which depends on the degree of parasitemia and the strength of the immune response of the host.
Babesiosis may be suspected in cases as with tick exposure and tick exposure and history of persistent fevers and hemolytic anemia. The definitive diagnosis was confirmed by detection of intraerythrocytic ring forms of parasites in the periphery blood and by microscopic slides of bone marrow biopsy colored with Giemsa-i and Romanowsky stains. Serological testing (ELISA and Western blot (WB) and polymerase chain reaction (PCR) were used for detecting coinfections of babesia parasites with Borrelia burgdorferi. Microscopic slides of bone marrow biopsy colored with Giemsa-i and Romanowsky stains were also used in differentiating babesia from the malaria parasite. Detectable antibody response takes about a week s time post infection. Serologic testing may be falsely negative in an early stage of the disease progression.
In patients with malaria malady epidemiological data play a very important role particularly with regard to residence in endemic areas and the frequent inadequate use of prevention drugs (in our sailors patients).
The golden standard for diagnosis of malaria is microscopic examination using thick and peripheral blood smears.
About 5 % of people with malaria have infections caused by several kinds of parasites therefore the analyses ought to take this into account.
The difficulty in making diagnosis of filariasis appears to be because of the long absence of disease symptoms in the initial stage. Therefore most people initially do not expect to have the disease. Later, symptoms are only slight and nonspecific. Eosinophilia was not observed in the blood of the patients. The serum IgE levels were normal, and signs of a specific humoral response to antigens of Dirofilaria spp. were absent, although slightly elevated antibody levels of antigens of Onhocerca volvulus could be demonstrated in all the patients.
Surgical removal of the worm and biopsy help in both diagnosis and treatment. Morphological examination of the matured adult worm has limitations in the identification of the exact species since a large number of zoonotic Dirofilaria spp. haves been described. The molecular identification is not widely available. It is also possible that there are different stain variations of Dirofilarial parasites. Molecular analysis of the highly conserved mitochondrial 12S rRNA gene of D. repens showed a 3% deviation from other filarial parasites.
The first cases of leishmaniasis (kala-azar) in Montenegro were registered in 1924/1925, on the Montenegrin coast (Lustica, Baosici). In period 1930 to 1932, new cases were registered in the southern coastal region, between Bar and Ulcinj. Accurate records of the number of patients with disease manifestations do not exist for the period before 1995.
Our study covers the period from 1992 to 2014, with 86 registered cases of leishmaniasis. The visceral leishmaniasis (VL) has been diagnosed in 84 cases, and 1 (1.20%) case with skin leishmaniasis. Coinfection of HIV/AIDS and leishmaniasis in one case was registered for the first time in 2014. The trend of increase in the number of patients with confirmed diagnosiswas present with 0-4 cases per year among 646000 inhabitants.
In the study sample, the child population participates approximately in 37% of the cases and adults in 48%. The diagnosis confirmation was based on microbiological-laboratory and pathohistological methods (Figure 1).
Bone marrow biopsy preparates colored with Romanowsky, visualizing amastigote forms of Leishmania parasites extracellular and in leukocytic cells. (Original preparates courtesy of Prof. Mileta Golubovic, Medical faculty – University of Montenegro)
According to the geographic area where VL was diagnosed, the expansion of endemic foci of the disease in Montenegro is evident. Three to four years ago, disease development was registered solely in the endemic area known between Bar and Ulcinj. According to the collected data, these areas now include the entire coastal area of Montenegro from Ulcinj to Herceg Novi, the Skaadar Lake area, including Podgorica and Cetinje, and even some northern parts of Montenegro.
In our country wild jackals and domestic dogs are the primary natural reservoirs of Leishmania parasites, significant for infections in humans. The screening of 1500 serum samples of both asylum dogs and stray dogs, from different parts of Montenegro, indicated the high infectiveness of dogs with leishmanias, which is 83%.
The investigation done in our country presents two types of leishmanias: L.donovani and L. infantum. The primary vectors of parasites are phlebotomi. Epidemiological studies conducted during the period 1996-1999 and in 2003 in the endemic area of VL (southern part of the Montenegrin coast) on 4770 samples of phlebotomi showed presence of five kinds: Ph. perfiliews (1%), Sergentomyia minuta (12%), Ph.papatasi (11%), and Ph.neglecticus (60%). Predominantly Ph.neglecticus is mostly found in indoor areas. It is assumed that the main vector can be found in the Bar-Ulcinj region and in the northeast Mediterranean. Evolutionary adaptability continuously allows phlebotomies to significantly expand their potential as vectors for causers of vector-borne diseases (VBD). The correlation with global changes of ecologic environment and natural base of VBD is already evident in practice and there is a tendency of further growth.
The results of clinical investigations indicate an increase in the number of clinically manifested disease syndromes of VL in humans. The clinical manifestations of Leishmaniasis are not specific and they do not make diagnosis easier. The results of complex interactions between invasiveness and tropism of parasites in relation to side and the immune response of the host. Hypothesis on long-term persistence of live leishmanias after the infection, classifies them into a group of significant opportunistic agents. Coinfective forms of disease, especially in HIV/AIDS patients, have increased in the worldwide. In Montenegro in 2014, the first coinfection of leishmaniasis and HIV/AIDS was registered in one patient. Incidental confirmation of coinfections of L. donovani and B. burgdorferi (three cases) in a common endemic area was registered in 2003.
Pentavalent antimony drug Glucantime, was relatively satisfactory in therapy of leishmaniasis over a long period of time in Montenegro. Problems arose because of the increasing resistance, which has been rapidly progressing. In our study, which took place in 2008 / 2009, there were registered recurrences in 12% of patients of the total sample. Repeated treatment with Glucantime was not successful, neither was the use of Miltefosine. The best results were obtained by using liposomal Amphotericin B.
Babesiosis (piroplasmosis) is a malaria-like vector-borne parasitic disease, the so called tick-malaria. It was first described in 1883/1884 in the Balkan (Romania) in sheep. As a cause of human infections, babesia species (spp.) were detected in 1957 in Japan.
In Montenegro the disease was first confirmed in September 2011 based on hematological and microbiological examinations. Since 2013, there have been 12 cases detected. Fourteen patients were with positive anamneses of tick bite. Six patients were with skin manifesting erythema migrans (EM) identified in examinations that were associated with Lyme borreliosis (LB). By serological methods ELISA and Western blot and PCR method, the diagnosis of coinfections of babesia parasite and B. burgdorferi was confirmed in 72% of the patients, a total of 12 patients with confirmed babesiosis.
Analyzing demographic characteristics showed all 12 cases of the diagnosed babesiosis to be between 35 and 65 years of age, with professional exposure in rural parts of Montenegro. In the clinical presentation of all patients, nonspecific symptoms are dominant. There are several dominant symptoms: prolonged febricity, feebleness, and headache and changes in the laboratory findings (anemia, indirect type of hyperbilirubinemia, and moderately increased activity of serum aminotransferases, hypoproteinemia, and hypoalbuminemia) (Table 1).
Anemia | \n\t\t\t80 % | \n\t\t
Leukopenia | \n\t\t\t45 % | \n\t\t
Thrombocytopenia | \n\t\t\t11 % | \n\t\t
Increased level of serum aminotransferases | \n\t\t\t10 % | \n\t\t
Transitory respiratory disturbances | \n\t\t\t7 % | \n\t\t
Syndrome of infective mononucleosis | \n\t\t\t15 % | \n\t\t
Syndrome of acute leukosis | \n\t\t\t2 % | \n\t\t
Prolonged febricity | \n\t\t\t29 % | \n\t\t
Clinical Laboratory Disturbances in Manifested Babesiosis in Our Patients N-12
The confirmation of etiological diagnosis of the disease was based primarily on the fact that intraerythrocytic annular forms of the parasite have been found in the peripheral blood, stained accortding to with Giemsa, and on the basis of microscopic slides of bone marrow biopsy stained with Romanowsky in 12 cases (Figure 2).
Ring forms of babesia parasite in intraerythrocytic position in our patient. (Courtesy of Prof Mileta Golubovic, Institute for pathology Medical faculty University of Montenegro 2011]
In endemic areas, the asymptomatic forms of babesiosis are the most frequent. Asymptomatic parasitemia can last for months, even years. This latent infection can be reactivated by stress, splenectomy, and immunosuppressive therapy. In human infections, babesia is a significant opportunistic agent.
The largest number of infected cases with babesia does not require a specific therapy treatment (silent disease). After the diagnosis was made in all cases, treatment was administered. There were two types of drugs used: quinine and clindamycin (within 7 to 10 days), which we also applied in our patients. Recent studies emphasize efficiency of atovaquone and azithromycine. Supportive and symptomatic treatment is important in severe cases.
Malaria is the most frequent transmissible parasitic disease in the world. The causative agent Plasmodium is a genus of Apicomplexa parasites. Of the over 200 known species of Plasmodium, at least 11 species are continually competent for infection in humans. The most frequent are Pl. falciparum, Pl. vivax, Pl. ovale, and Pl. malariae. The mosquitoes of the genus Anopheles are carriers of parasites in humans. There are about 500 different species of anopheles, and 60 of them can transmit the disease. The parasite always has two hosts in its life cycle: a vector – usually a mosquito – and a vertebrate host.
Based on the historical documentation, in the period from 1923 until 1943 in Montenegro there were 28486 registered cases of malaria (data from the Jovan Kuljaca 1925). Most severe cases of the disease have been recorded in the vicinity of Ulcinj, Skadar Lake, Rijeka Crnojevica, and Zeta. Mild cases of disease were registered in Podgorica, Danilovgrad, Niksic, Berane, Bijelo Polje, Andrijevica, and Plav. Extermination of mosquitoes began in 1947, so that malaria was officially eradicated after World War II in our country, but the cases of imported malaria (sailors, travelers to endemic areas), 1–4 cases per year, continued to be registered. Considering this the fear that the endemic foci can be rebuilt is justified. Fortunately some climatic factors do not favoring the anopheles species therefore malaria is very rare or even absent in the United States and Europe.
Imported malaria is a diagnostic and therapeutic problem. In the period from 2006 to 2013, we followed nonspecific laboratory analysis in 16 febrile returnees from Africa. It was found that the non-specific laboratory results were useful as an additional parameter for making diagnosis of malaria, with quick and simple diagnostic orientation. This is primarily related to thrombocytopenia, leukopenia, and hyperglycemia and increased level of serum aminotransferases activity and lactate dehydrogenase (LDH), urticaria, and hypocholesterinemia. It has been shown that hypocholesterinemia, severe anemia and elevated fibrinogen significantly prolonged the patient s recovery. Thrombocytopenia and increased activity of LDH were significantly associated with enlarged spleen and liver.
The most important groups of antimalarial drugs are: Quinolone, Artemizin, and antifolates.
New antimalarial drugs is Atovaxon. The big problem of treatment is resistance, particularly of Pl. falciparum. In more severe forms of the disease, in suspected resistance, combined therapy is applied. In severe forms of malaria, parenteral treatment is required.
Filariasis has systemic parasitic (worms) zoonosis from the group of VBD. Blood-feeding arthropods are those that can be transmitted. In most of cases the infective larvae (microfilariae) are injected through mosquito bites. A large number of mosquito species participate in transmission. Some species of fleas (black flea), lice, and ticks are also presumed to act as vectors. Different types of thread-like nematodes are the cause of disease in humans. The most frequent cause of filarial disease in the world is Wuchereria bancrofti. Among the many species of Dirofilaria, the most prevalent are two main filarial species (D.immitis and D.repens) that have adapted to canine, feline, and human hosts. At the same time, both the D. immitis and D. repens are themselves hosts to symbiotic bacteria of the genus Wolbachia. For the past few years, the incidence of human filariasis was increasingly reported in many parts of the world, making the disease part of the group of emerging zoonoses. The infection caused by D.repens is the most widely reported dirofilariasis with endemic foci in Eastern and Southern Europe, and Asia. In the Mediterranean area, the incidence of human dirofilariasis has increased, especially the subcutaneous and pulmonary forms of the diseases (Italy, Romania, Serbia, Germany, and France). Human dirofilariasis is typically manifested as eiter subcutaneous nodules or lung parenchyma disease, in many cases, asymptomatically [60%). Patients infected with D. repens notice a subcutaneous lump in the affected area which most commonly includes the face and conjunctiva of the eye and sometimes the chest wall, upper arms, thighs, abdominal wall and male genitalia (Figure 3). Ocular involvement is usually periorbital, orbital, subconjunctival, or subcutaneous infection. Human D.immitis infection has been associated with the human pulmonary dirofilariasis and is usually asymptomatic. Symptoms of the disease are fever, chills, malaise, cough, localized retrosternal chest pain, and pleural effusion.
Human infection with D. repens are predominantly subcutaneous and most often evolved into a granuloma (Courtesy Hariish S. Permi, Department of pathology KS Haegde Medical Academy, India, 2011, (2): 199 – 201)
Our patient is a resident of Kotor and a civil servant, who has never left Montenegro. The first polymorphic symptoms occurred in January 2014 a feeling of discomfort and wriggle. Adition symptoms including the ocular disturbances that occurred later in the form of pain in short light flash, abdominal pain and dry cough that lasted for long, resulting in pneumonia. After an extensive examination was conducted, he was admitted in the surgical ward of the General Hospital of Kotor with suspected impacted epigastric hernia. On October 10, 2014, the surgeon using intraoperative method succeeded in extirpating entirely the solid fibrous granuloma, site epifascial, the midline supraumbilically. There was an indeterminate thread parasite 9.7 cm long in the excised granuloma. The pathological findings showed a granulomatous tissue with new blood vessels and giant cells of foreign body-type cells and concluded that such images can be found in filarial infections. Multipattern blood test for microfilaria was negative. Histological examination of the worms identified Diirofilaria, based on morphological exclusion of Wuchereria bancrofti, Loa-loa and Onchocerca volvulus. Serological examination of antibodies to Toxocara and Trichinella proved to be negative. After the surgical procedure the patient was treated with oral ivermectin (150 mg per kg) and dovicine 2 x 100 mgr. He feels good so far.
Parasitic transmissible zoonoses (PTZ) in Montenegro belong to a group of emerging infections, and it is a growing public health problem. Considering the fact that enough research activity has not been devoted to this group of infectious diseases, the consequences will be reflected in the future [5,10].
Based on epidemiological studies, the extension of endemic focus of leishmaniasis in our environment is evident, based on the number of registered cases in nonendemic areas of Montenegro. Veterinary studies of domestic and stray dogs from different parts of Montenegro confirmed their high level of infection with Leishmania parasites up to 83% [16].
With filariasis (dirofilariasis), we do not have significant experience. The different types of thread-like nematodes are the cause of human diseases. Mediterranean region as to be endemic for dirofilariasis. In January 2014, the first case of human dirofilariasis in Montenegro was diagnosed. Veterinary service does not have data on the prevalence of infections in dogs in Montenegro. Numerous human cases have been reported for the European Union [16, 17, 18, 19]. In 1999, most reported cases originated from the Mediterranean area, where Dirofilaria spp. are traditionally endemic (Italy, France, Greece, Spain, Serbia), with sporadic reports of small outbreaks of subcutaneous/ocular infections caused by Dirofilaria in Germany, the Netherlands, the United Kingdom and Norway. Canine dirofilariasis was not reported earlier in Central and Northern Europe.[19, 20]
Drastic changes of ecosystem [21, 22, 23] give the basis for epidemiological changes that are characteristic for this group of infectious diseases. Agent’s adaptability coverage and expansion cover the spectrum of natural hosts and vectors [24] thanks to their easy and quick transition from enzootic to zoonotic transmission cycles. This has enabled significant expansion and has given new importance to cotransmissive and coinfective forms of the diseases, with consequent difficulties in diagnosis, therapy, and prognostic assessment. [6, 10, 12, 14]
Parasitic transmissible zoonoses in our study represent a big problem due to diagnosed coinfection. Coinfection of Leishmania parasites and HIV was diagnosed for the first time in 2014 [25, 26]. Earlier studies had proven a coinfection of Leishmania parasite and the bacterial agent B. burgdorferi [27].
The latest studies in Europe have confirmed the significance of babesia parasites as the most frequent tick-borne agent in cotransmission, and participant in coinfection with B. burgdorferi. In our study common infection with babesia and B. burgdorferi is detected in 76% of cases [27, 28, 29]. Elsewhere in the world coinfections of the causative agent of malaria Pl. falciparum and the other types of Plasmodium were detected. During our investigations in 1996, Pl. falciparum and Pl. ovale were detected in the peripheral blood smear of one case, a sailor returning from Africa with a tick stroke.
Coinfective forms of diseases are not uncommon in VBD. Their occurrence highlights two possibilities. Epidemiological parth for the formation of coinfection is the consequence of cohabitation of vectors transmitted agents in common endemic areas and in the hosts and vectors. To confirm there were test results, certifying that the bacterial agent Bartonella hensellae can exchange their proteins and genetic material with B. burgdorferi and other microorganisms in a shared host or vector, which is part of their remarkable adaptability, and agent identification itself is a big problem for researchers [30].
Another possibility is the complex pathogenesis mechanisms that occurs in the infected organism caused by complex material of the agents provoking the immune response of the host, via cellular and humoral mechanisms that are able to overcome the pathogens, or contribute to the resistance against it, and against chronic infection, recrudescences, and initiation of immune and autoimmune mechanisms of infection.
The bottom line and the failures of the therapy are possible deviations. In the study it is shown that the elimination of Wolbachia induces extensive apoptosis of germ cells in adults, and somatic cells in embryos (microfilariae, larvae). The American Heartworm Society nonetheless recommends doxycycline therapy due to its beneficial effects [31].
A major practical problem is resistance or multiresistance to the therapeutic agents by which parasitic diseases have previously successfully been treated. Malaria resistance to hinolon and artemisine derivates has led to greater practical problems [32]. During our investigations, the first cases of resistance to antileishmania drugs occurred in 2008/2009. Repeated cure of treatment with Glucantime has not been successful, as well as the use of Mmiltefosine, We received good results after the introduction of amphotericin B in the therapy of our patients.
There is an opinion that therapy treatment for infection of B. microti for patients with good function of the spleen is not necessary and that those infections are self-confining. Therapy for infection with B. divergens is more problematic because it is more frequently found in asplenic and immunodeficient patients, with high level of parasitemia. The treatment requires combination therapy with quinine sulphate (600 mgr per os 3 x a day) and clindamycin (600 mgr per 3 x a day) for 710 days. Pentamidine can be an alternative drug. Examination of animal models has shown that good effects of cure can be achieved with azithromycine. American therapy schemes recommend curing of the heavy forms of babesiosis with combined therapy of atovaquone + azithromycine or clindamycine + quinine. In coinfections with B. burgdorferi, it is given the advantage to the cure of babesiosis and afterward it is carried on with curing borreliosis. In our study, common infection with babesia and B. burgdorferi has been detected in 73% of cases.
The much changes of natural and evolutionary factors put babesiosis in emerging human diseases. Clinical manifestations or asymptomatic infections are not always correlated with the severity of the disease. Asymptomatic parasithemia can be reactivated and take a malignant course in conditions of insufficient therapeutic treatment of coinfection and immunodeficiency. Grave manifest forms of diseases usually occur as an opportunistic infection.
Dirofilariasis has to be considered as a differential diagnosis in patients with subcutaneous or pulmonary disturbances (pneumonia). Effective therapy is possible by surgical removal of the adult worms with oral diethylcarbamazine (DEC) (2 mg per kg t.i.d.) over a period of 4 weeks was added to the surgical treatment in patients, only oral ivermectine (150 mg per kg).
In Montenegro endemic areas of leishmaniasis cover the southern part of the Montenegrin coast. More recent studies testify the extension of endemic areas in the entire coastal region and in accordance with the great expansion of the vector – Phlebotominae. Altered characteristics of leishmaniasis in Montenegro include: increase in the number of clinically manifested cases from the extended endemic area, which now includes the entire coastal areas, and increase of resistance to common therapeutic agents and drugs. The first cases of leishmaniasis resistant to Glucantime and Miltefosine were registered in 2008/2009, achieving significant results with Amphfotericin B.
The first cases of HIV coinfection with leishmaniasis were registered in 2014, as well as coinfection with other agents from complex VBD. Babesiosis is a parasitic disease that shares endemic areas with B. burgdorferi, which was proved in our investigations.
Dirofilariasis is a parasitic disease from the group of filariasis, which was first diagnosed in our country in 2014. There are no data in Montenegro on the experiences of veterinarians in the diagnosis of this disease among natural hosts and dogs. But it is surely present, based on data from Europe and countries in the immediate environment.
Material that has space or cavity inside or not solid within is called a hollow material. The surface of hollow material has more area than regular materials. For example, a cube-shaped material (Figure 1a) has six surface areas, but if its shape changes to a hollow cubic structure (Figure 1b), so that it has eight surface areas. For instance, the surface area of the hollow cubic unit cell is 1.333 times the surface area of a regular cube per unit cell. The difference in the surface area depends on the geometric shape of the material if it is cylindrical or tubular, the difference in a surface area becomes much large.
The structure area of regular and hollow cubic shapes.
In nature, some inorganic compounds have hollow structures such as zeolites even though the size of the hollow has not in the range of the nano category. However, the utilization of the hollow zeolite structures turned out to be quite a lot, for example, as function as molecular sieves [1], absorbents [1], and selective catalysts [2]. Although the application categories that can be covered come in microns.
In line with the development of nano and hollow materials, the manufacture of nano hollow single-crystal zeolites was carried out and shown in Figure 2 below.
A flowchart and the example of Zeolite nano hollow formation [3, 4].
One of the applications that can be covered is the nano-sized material, such as zeolite, one of which is the molecular sieve where the application of purification or separation of pollutant particles from plastic contaminated water with nano-microns or microbes was able to be done [5].
Based on the study of specific surface area, load capacity, material transfer as well as storage, the size of the cavity makes hollow materials have extraordinary advantages in their characteristics. Having driven by these unique characteristics, the research groups eager to explore the more possible applications such as catalysis, photocatalysis, drug delivery, solar cells, supercapacitors, lithium-ion batteries, electromagnetic wave absorption, and sensors. The challenge faced in producing hollow materials at this time is to synthesize nano hollow materials which have a series of controlled structures in terms of composition and geometric configuration so that their applicative development is still constrained. However, the progress regarding the ability to manipulate both structure and morphology of nano hollow scale solid materials will have greater control over the local chemical environment [6, 7, 8, 9].
Furthermore, the simple method used in the manufacture of nano hollow materials emphasizes the preparation process, economic review, and environmental friendliness for each of the chemicals used. This simple method is possible to produce nano hallow materials of various shapes such as nano hollow spheres (NHS), nano hollow cubes (NHC), nano hollow squared tubes (NHST), and related fibers. The applications described are the catalytic utilization of carbon dioxide into alcohol compounds, degradation of dyes, and the conversion of nano-cellulose to alcoholic sugars by photocatalysis.
Hollow materials, in general, can be prepared using the Kirkendall effect and Ostwald ripening based on events, as well as the templating method (hard, soft, or one-pot/self-templating and free) based on the use of templates. In more detail, it described below:
Kirkendall effect, a vacuum ordering occurs due to a change in the rate of diffusion between two or more components diffusing simultaneously. The process of different diffusion movements was proven experimentally by Smigelkas and Kirkendall [10] in 1947 that atomic diffusion occurs through the exchange of vacancies rather than by the direct replace of atoms. One example of this method is the preparation of metal oxides that can change the morphology of nanowires to nanotubes [11]. The example of nanowire formation based on Kirkendall effect is shown in Figure 3.
The schematic formation of Hollow Cu nanowires based on Kirkendall effect during the thermal oxidation process in air at 300°C [12].
The mechanism explaining the formation of a cavity or hollow material in the inner direction could be described as follows: cations will flow rapidly outward through the oxide layer and flow inward from the void as a counterweight to the metal oxide interfacial void. Then, the direction of flow of the material is equalized by the direction of flow of the void through condensation into the pore or eliminating the crystalline defects. The direction of material flow can also result from the phenomena of diffusion and reaction pairs at the gas/solid or liquid/solid interfaces, the formation of deformations and vacancies, or both during the growth of metal oxide or sulfide layers [13, 14]. It should be remembered that the hollows produced in the metal-metal diffusion pair or near the metal oxide interfaces of an oxide growth do not produce mono-spheres in regular directions but form a very heterogeneous molecular collection.
Ostwald Ripening is a phenomenon that is observed in solid solutions or liquid soles and explains changes in the structure of inhomogeneity with time, for example, small crystals or sol particles dissolving and being deposited back into crystals or larger sol particles. This phenomenon was first described by Wilhelm Ostwald in 1896 [15, 16] and is commonly found in oil-in-water [17] emulsions when flocculation is found in water-in-oil [18] emulsions. Schematically the w/o and o/w emulsions are presented below in Figure 4a.
Schematic of both w/o and o/w emulsion and hollow particles formation (a) using oleyamine micelles [19], and the growth of solid carbon sphere (b) based on Ostwald repining mechanism [23].
Ostwald ripening mechanism is well-known through several growth methods, such as island formation [20], layer by layer formation [21], and the mixed layers and islands formation [22] as illustrated in a solidified growth of carbon sphere in Figure 4b.
The emulsion produced in the w/o or o/w system is affected by various factors such as pressure (Laplace and osmotic), the concentration of the dispersed phase, the concentration of surfactants, and the additives used. Furthermore, the emulsifiers or surfactants used are generally biopolymers such as various proteins (whey protein isolate (WPI), β-lactoglobulin, casein, soy protein isolate (SPI), and pea protein [24], polysaccharides such as xanthan, Arabic gum, modified starch, carrageenan, pectin, and modified celluloses frequently utilized to stabilize emulsions, especially O / W and W/O/W double emulsions [25].
The Smoluchowski process is a process to produce nano hollow complex materials in an “integrative” nature from colloidal particles. An example of this preparation was the manufacture of titanium oxide, TiO2, and the yield observed by a high-resolution TEM [26]. The HRTEM TiO2 micrograph showed that the tiny nanocrystallites stuck to each other in the aggregated end product while keeping the overall orientation unchanged. An example of the formation of particles based on the Smoluchowski mechanism is presented in Figure 5 below.
An example of a particle formation mechanism based on the Smoluchowski process with an emphasis on agglomeration and aggregation [27].
These methods can effectively control the morphology, particle size, and structure during the nanomaterial manufacturing process. In general, these methods consist of two types/categories, namely: hard methods and soft (or one-pot or self) templates according to different structures. The methods of templates in their preparation are insensitive, easy to operate, and practice.
In principle, this method is for the preparation of one-dimensional hollow materials. Materials used as hard-templates are polymer microspheres, porous membranes, plastic foam, ion exchange resins, carbon fiber, and anodic aluminum oxide (AAO) [28, 29]. Because the templates and the resulting target products have a unique structure and influence the particle size range, they play an important role in many areas of application. Furthermore, after the desired target is obtained so that a template used is moved/separated or modified.
One example of using the hard template method is making the ordered mesoporous CeO2 prepared via a hard-template method using SBA-15 as a structure-directing agent. Leaching with NaOH and thermal treatment at 500°C enabled the removal of the inorganic template, thus resulting in the formation of long-range ordered CeO2. Nevertheless, small amounts of silica were present in the final oxides. The resulting CeO2 samples were used as supports for Au nanoparticles as shown in Figure 6 below.
Schematic pathways of Au doped CeO using hard template method [30].
The soft templating or the endotemplate method refers to supramolecular entities like self-assembled arrangements of structure-directing molecules such as surfactants, leading to mesopores up to 30 nm [31, 32].
In the soft template method as shown schematically in Figure 7, compounds that function as templates are organic compounds whose molecules form aggregates through inter-molecular or intra-molecular interactions such as hydrogen bonds, chemical bonds, and electrostatic forces. The metal cations as the target as the hollow material are deposited on the surface or in the inside of the aggregate. The process of placing metal cations in the aggregate carried out using electrochemical methods, precipitation, and other synthesis/preparation methods to form metal oxide or composite materials of various shapes and sizes. Organic compounds that commonly function as templates are surfactants, polymers, biopolymers, supramolecules, and inorganic compounds. Based on the type of compound that can act as a soft template, it is possible to develop nanomaterial synthesis because this method has advantages such as simplicity of the process, repetition of the process with good results, and does not require removal of targets from the aggregates [34, 35, 36, 37, 38].
Soft template pathways to produce hollow material [33].
One example of a soft template method to generate ABO3/AB2O4 nano hollow is spinel compounds of both Fe3O4 and CoFe2O4, respectively [39, 40]. Magnetite hollow spheres, Fe3O4 were prepared using a soft/free template with the solvothermal method described by Chen et al. [39] as follows: 13 g FeCl3.6H2O was dissolved in 350 mL of ethylene glycol and diethylene glycol. Subsequently, 2 g NaAc, 2 g polyvinyl pyrrolidone (PVP), and sodium citrate (Na3Cit) were added to the solution’s ultrasonic processing. After an hour, the solution was sealed in a 400 mL Teflon-lined stainless-steel autoclave. The autoclave was heated to 210°C for 12 h and then cooled to room temperature naturally. The black products were collected by magnetic decantation and centrifugation, followed by repeated washing with deionized water and ethanol. The final products were dried in a vacuum oven at 50 C for 12 h. Another procedure with the same steps and only differs in the number of materials used and the washing process of the solution which turned black was washed with alcohol several times and dried at 60°C overnight. The diameter size of the product magnetite hollow spheres can be adjusted by changing the concentration of the added PVP [41]. Preparation of Fe3O4 using urea and PVP as a binder for Fen+ cations gives nano hollow spheres as shown in the following figure.
Mandal et al. [41] have synthesized of hollow Fe3O4 particles via a one-step solvothermal approach for microwave absorption materials: effect of reactant concentration, reaction temperature, and reaction time as shown in Figure 8j below.
The TEM results of NHS Fe3O4 (j), NHS Fe3O4 (c), and NHS NiFe2O4 spinel (a) using the solvothermal method.
Then, another method of a template-free preparation of Fe3O4 nano hollow spheres has prepared by researcher Shi et al., 2019 [42] using the following procedure, hydrated ferrous chlorine salt (FeCl3.6H2O, 1.084 g) was dissolved in 80 mL of deionized water under rigorous and constant stirring for 10 minutes. Then added Na-citrate salt (2.352 g), PAM (0.8 g), and urea (0.72 g) while stirring vigorously for 30 minutes. The mixture was then transferred to Teflon and tightly closed before being placed into the autoclave and heated at 200°C and held at the temperature for 24 hours. Then cooled naturally with air. The result of a black precipitate Fe3O4 was washed with water and ethanol, separated by magnetic attraction, and finally dried at 50°C for 12 hours in an oven. An example of the results obtained by the research group of Shi et al. [42] is shown in Figure 8c below. Furthermore, NiFe2O4 nano hollow spinel preparation used a template-free method, namely the solvothermal process was carried out using oleyl amine capping agent. Hydrated chlorine salts of nickel (NiCl2.6H2O) and iron (FeCl3.6H2O) respectively mixed with urea with a 1:2 molar ratio. The solvent uses a mixture of ethylene glycol and ethanol with a ratio of 2:1. After all these substances put into a glass chemical 100 mL, added as much as 1 mL while stirring. After 30 minutes stir, the solution becomes transparent and homogeneous, then put the Teflon which is tightly closed and put into the autoclave steel and heated at 200°C for 24 hours. The product was then passed with ethanol and collected by separation and heated at 60°C for 30 minutes. Product samples were analyzed by TEM with a result in the following Figure 8a below [43].
The simple method for producing hollow nanomaterials in question is in terms of the use of chemicals to produce nano hollow materials and environmentally friendly products. In the nano hollow material preparation, water and pectin or egg white solution is used as media. The procedure to obtain the nano hollow material is explained in brief here. The procedure to obtain the nano hollow material is explained in brief here. A stoichiometric amount of Ni (II) nitrate hydrates, ammonium vanadates, and Fe (III) nitrate hydrates were dissolved in distilled water, having compositions of Ni1-xVxFe2O4 under magnetic stirring for 1 h, respectively, followed by mixing each solution to make the final solution weight ratio between nitrates to pectin is 3:2. Adjust the pH = 11 in the above solution by an addition of ammonia, and heat it at 80 °C with continuous stirring to form a viscous gel. Then, dried the gel using the freeze dryer for 7 h to form the precursors’ networks and calcined at 600 °C for 3 h. The results are shown in Figure 9 below.
TEM results of hollow material Ni1-xFe2O4 (where x = 0.1 – 0.5) were prepared using sol-gel method [44].
Figure 9b and c clearly show the formation of nano hollow cube (NHC) from Ni1-xVxFe2O4 (x= 0.1 – 0.5) spinel. Furthermore, in Figure 9a, if you notice there are the cubic hollow aggregate and also a squared nano hollow tube (SNHT).
Then, in Figure 10a the micrograph shows that squared hollow pipes, hollow cube, and hollow tubes formed. In Figure 10b, you can see the nano hollow cubes (NHC) and micron sizes and nano spherical tubes (NST). Whereas in Figure 10c, you can see the interconnected pillars of micron and nano hollow cube sizes.
TEM results of hollow nanomaterial LaCr1-xMoxO3 (x = 0.01-0.05) were prepared using sol-gel method [45].
In the preparation of both pure LaCrO3 and modified LaCrO3 by the sol-gel method [46] gave SEM micrograph results shown in Figure 11a and b. It seemed that the shapes of material are varied that are nano hollow cubes (NHC), nano hollow tubes (NHT), and the blended shapes presented in Figure 11a. In Figure 11b, the interconnected microfiber structure and the hollow micro material formed. Meanwhile, Figure 11c shows the homogeneous nanoscale grains of hollow NiFe2-xCoxO4 spinels prepared using the egg white solution.
TEM and SEM results of LaCrO3 and LaCr1-xVxO3 materials prepared using pectin and egg-white solution [46, 47].
After the preparation of all the catalysts is done, it is used respectively for both thermic catalytic reactions and photocatalysis. The compounds that are the research targets are CO2, NOx, dyestuffs, and cellulose. The selection of the four targets intensely focused on the impact factor and the benefits that can gain.
Carbon dioxide (CO2) and NOx gas emitted from the use of fossil energy sources containing the main elements H, C, and O as well as other minor elements N, and S. The overall reaction can be described below:
The greater use of energy sources for activities, causing the emission of CO2, NOx, and SOx gases to increase [48]. Continuous emissions without treatment will cause acid rain and the greenhouse effect. This emission will stimulate global warming and even higher. One way to participate in the handling of COx and NOx wastes is through its utilization. One of the handling methods is using the nanocatalysts to handle thermally and photonically by converting the organic wastes (solid, liquid, and gaseous) such as cellulose, dyes, and COx and NOx pollutant into products that are economically valuable and environmentally friendly as described below.
Catalytic reaction - thermic is a catalytic reaction that takes place with the help of thermal energy. These catalytic reactions control more than 90% of processes in the chemical industry [49]. In thermic catalytic research, the study is the hydrogenation reaction of CO2 and the decomposition of NOx exhaust gases. The research results of this reaction are briefly presented below.
The CO2 hydrogenation reaction was carried out using the perovskite LaCrO3, and spinel Ni1-xFe2MxO4 catalysts (M = Cu, Co, and Zn) with the reactor scheme shown in Figure 12a below.
Lab scale reactor (a) of CO2 hydrogenation reaction [50], results of rapid test (b) for alcohol product [51], and chromatogram results (c) of the CO2 hydrogenation reaction [52].
The catalytic reaction takes place at a temperature of 100 to 400°C with a composition of CO2/H2 = 1/3 in the gas flow. Examples of reaction results using rapid tests and several quantitative analyzes are shown in Figure 12b and Figure 12c, respectively.
The decomposition reaction of NO2 and NO or NOx is a type of reaction that uses a selective catalyst reduction (Selective Catalyst Reduction). In general, the catalyst (SCR) is used to reduce NOx, COx, and SOx emissions with the ability to reduce more than 90% of emission gases from boilers [53], power stations [54], and motorized vehicles [55] to be applicable. The results of the deNOx reaction research conducted by our team are presented in Figure 13 below.
Decomposition of NOx using catalysts (a). NiO/LaCrO3 [56], and (b). Fe/Zeolite [57].
The NO2 conversion results obtained using NiO/LaCrO3 nanocatalyst (Figure 13a) is relatively better than those obtained using Fe/Zeolite Catalyst (Figure 13b) at the same reactant conditions and reaction temperature ranges.
Photocatalytic reactions are catalytic reactions that take place with the help of photon energy, so they are often called catalytic reactions - photonics. This reaction has been going on for a long time while the development is taking quite a while. It was a German chemist, Dr. Alexander Eibner who is firstly doing research in photocatalysis by irradiated ZnO in a concentrated Prussian blue solution and the solution became clear [58, 59]. Then, it has grown rapidly from 1964 until now, for various chemical reactions such as the production of hydrogen gas [60], and to photosynthetic-mimic reactions [61, 62]. Furthermore, our research related to photocatalysis is described below.
The textile and other industries usually use dyes in their products to make them look attractive. However, the remaining dyes have gone through a waste treatment process, especially in large factories but not necessarily in medium and small factories. As usual, the dye waste is thrown away into water bodies such as rivers and seas. Since the dye waste is very toxic and difficult to degrade naturally, so it can disturb the aquatic biota. One of the dyes that difficult to degrade and widely used in the small batik textile industry (home industry) is methylene golden yellow. Our research team also studied the decomposition of these dye compounds using NiFe2O4 nanocatalysts stimulated by sunlight and UV rays. An example of the result of the decomposition reaction is shown in Figure 14 below [44].
RGY decomposition using NiFe2O4 nano hollow catalyst under the irradiated light of: (a) Sun, and (b) UV.
In the decomposition reaction of the remazol golden yellow dye under solar and UV irradiation, as shown in Figure 14, the difference in activity occurs because of sunlight contains UV rays and the nanocatalysts are active for both rays [63].
This type of reaction was studied considering the abundant availability of residual raw materials for agri-industrial products in Lampung Province and various conversion results such as glucose, xylitol, mannitol, sorbitol to fuel alcohol. The research team\'s target in the conversion of cellulose is a sugar alcohol, and the reaction takes place at room temperature and is environmentally friendly. The results achieved are shown in Figure 15 below.
Results of nano cellulose conversion (a) and the chromatogram of alcohol sugar (b) using HPLC [64].
The brief description of nano hollow materials presented in this paper is basically to provide an overview of the potential for nano hollow materials in managing reactions with results that are environmentally friendly and have economic value. Furthermore, nano hollow materials can be resulted using simple methods in terms of the chemicals used, economics point of view, and environmental considerations such as pectin, egg white, and monosaccharides in water media.
The author gratefully acknowledge both the Indonesian Government through the Directorate Research, Ministry of Research and Higher Education on the contract number 179/SP2H/LT/ADM/DRPM/2020 and the Research Institution and Community services of the University of Lampung for supporting this book chapter.
"I work with IntechOpen for a number of reasons: their professionalism, their mission in support of Open Access publishing, and the quality of their peer-reviewed publications, but also because they believe in equality. Throughout the world, we are seeing progress in attracting, retaining, and promoting women in STEMM. IntechOpen are certainly supporting this work globally by empowering all scientists and ensuring that women are encouraged and enabled to publish and take leading roles within the scientific community." Dr. Catrin Rutland, University of Nottingham, UK
",metaTitle:"Advantages of Publishing with IntechOpen",metaDescription:"We have more than a decade of experience in Open Access publishing. \n\n ",metaKeywords:null,canonicalURL:null,contentRaw:'[{"type":"htmlEditorComponent","content":"We have more than a decade of experience in Open Access publishing. The advantages of publishing with IntechOpen include:
\\n\\nOur platform – IntechOpen is the world’s leading publisher of OA books, built by scientists, for scientists.
\\n\\nOur reputation – Everything we publish goes through a two-stage peer review process. We’re proud to count Nobel laureates among our esteemed authors. We meet European Commission standards for funding, and the research we’ve published has been funded by the Bill and Melinda Gates Foundation and the Wellcome Trust, among others. IntechOpen is a member of all relevant trade associations (including the STM Association and the Association of Learned and Professional Society Publishers) and has a selection of books indexed in Web of Science's Book Citation Index.
\\n\\nOur expertise – We’ve published more than 4,500 books by more than 118,000 authors and editors.
\\n\\nOur reach – Our books have more than 130 million downloads and more than 146,150 Web of Science citations. We increase citations via indexing in all the major databases, including the Book Citation Index at Web of Science and Google Scholar.
\\n\\nOur services – The support we offer our authors and editors is second to none. Each book in our program receives the following:
\\n\\nOur end-to-end publishing service frees our authors and editors to focus on what matters: research. We empower them to shape their fields and connect with the global scientific community.
\\n\\n"In developing countries until now, advancement in science has been very limited, because insufficient economic resources are dedicated to science and education. These limitations are more marked when the scientists are women. In order to develop science in the poorest countries and decrease the gender gap that exists in scientific fields, Open Access networks like IntechOpen are essential. Free access to scientific research could contribute to ameliorating difficult life conditions and breaking down barriers." Marquidia Pacheco, National Institute for Nuclear Research (ININ), Mexico
\\n\\nInterested? Contact Ana Pantar (book.idea@intechopen.com) for more information.
\\n"}]'},components:[{type:"htmlEditorComponent",content:'We have more than a decade of experience in Open Access publishing. The advantages of publishing with IntechOpen include:
\n\nOur platform – IntechOpen is the world’s leading publisher of OA books, built by scientists, for scientists.
\n\nOur reputation – Everything we publish goes through a two-stage peer review process. We’re proud to count Nobel laureates among our esteemed authors. We meet European Commission standards for funding, and the research we’ve published has been funded by the Bill and Melinda Gates Foundation and the Wellcome Trust, among others. IntechOpen is a member of all relevant trade associations (including the STM Association and the Association of Learned and Professional Society Publishers) and has a selection of books indexed in Web of Science's Book Citation Index.
\n\nOur expertise – We’ve published more than 4,500 books by more than 118,000 authors and editors.
\n\nOur reach – Our books have more than 130 million downloads and more than 146,150 Web of Science citations. We increase citations via indexing in all the major databases, including the Book Citation Index at Web of Science and Google Scholar.
\n\nOur services – The support we offer our authors and editors is second to none. Each book in our program receives the following:
\n\nOur end-to-end publishing service frees our authors and editors to focus on what matters: research. We empower them to shape their fields and connect with the global scientific community.
\n\n"In developing countries until now, advancement in science has been very limited, because insufficient economic resources are dedicated to science and education. These limitations are more marked when the scientists are women. In order to develop science in the poorest countries and decrease the gender gap that exists in scientific fields, Open Access networks like IntechOpen are essential. Free access to scientific research could contribute to ameliorating difficult life conditions and breaking down barriers." Marquidia Pacheco, National Institute for Nuclear Research (ININ), Mexico
\n\nInterested? Contact Ana Pantar (book.idea@intechopen.com) for more information.
\n'}]},successStories:{items:[]},authorsAndEditors:{filterParams:{sort:"featured,name"},profiles:[{id:"6700",title:"Dr.",name:"Abbass A.",middleName:null,surname:"Hashim",slug:"abbass-a.-hashim",fullName:"Abbass A. Hashim",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/6700/images/1864_n.jpg",biography:"Currently I am carrying out research in several areas of interest, mainly covering work on chemical and bio-sensors, semiconductor thin film device fabrication and characterisation.\nAt the moment I have very strong interest in radiation environmental pollution and bacteriology treatment. The teams of researchers are working very hard to bring novel results in this field. I am also a member of the team in charge for the supervision of Ph.D. students in the fields of development of silicon based planar waveguide sensor devices, study of inelastic electron tunnelling in planar tunnelling nanostructures for sensing applications and development of organotellurium(IV) compounds for semiconductor applications. I am a specialist in data analysis techniques and nanosurface structure. I have served as the editor for many books, been a member of the editorial board in science journals, have published many papers and hold many patents.",institutionString:null,institution:{name:"Sheffield Hallam University",country:{name:"United Kingdom"}}},{id:"54525",title:"Prof.",name:"Abdul Latif",middleName:null,surname:"Ahmad",slug:"abdul-latif-ahmad",fullName:"Abdul Latif Ahmad",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:null},{id:"20567",title:"Prof.",name:"Ado",middleName:null,surname:"Jorio",slug:"ado-jorio",fullName:"Ado Jorio",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"Universidade Federal de Minas Gerais",country:{name:"Brazil"}}},{id:"47940",title:"Dr.",name:"Alberto",middleName:null,surname:"Mantovani",slug:"alberto-mantovani",fullName:"Alberto Mantovani",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:null},{id:"12392",title:"Mr.",name:"Alex",middleName:null,surname:"Lazinica",slug:"alex-lazinica",fullName:"Alex Lazinica",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/12392/images/7282_n.png",biography:"Alex Lazinica is the founder and CEO of IntechOpen. After obtaining a Master's degree in Mechanical Engineering, he continued his PhD studies in Robotics at the Vienna University of Technology. Here he worked as a robotic researcher with the university's Intelligent Manufacturing Systems Group as well as a guest researcher at various European universities, including the Swiss Federal Institute of Technology Lausanne (EPFL). During this time he published more than 20 scientific papers, gave presentations, served as a reviewer for major robotic journals and conferences and most importantly he co-founded and built the International Journal of Advanced Robotic Systems- world's first Open Access journal in the field of robotics. Starting this journal was a pivotal point in his career, since it was a pathway to founding IntechOpen - Open Access publisher focused on addressing academic researchers needs. Alex is a personification of IntechOpen key values being trusted, open and entrepreneurial. Today his focus is on defining the growth and development strategy for the company.",institutionString:null,institution:{name:"TU Wien",country:{name:"Austria"}}},{id:"19816",title:"Prof.",name:"Alexander",middleName:null,surname:"Kokorin",slug:"alexander-kokorin",fullName:"Alexander Kokorin",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/19816/images/1607_n.jpg",biography:"Alexander I. Kokorin: born: 1947, Moscow; DSc., PhD; Principal Research Fellow (Research Professor) of Department of Kinetics and Catalysis, N. Semenov Institute of Chemical Physics, Russian Academy of Sciences, Moscow.\r\nArea of research interests: physical chemistry of complex-organized molecular and nanosized systems, including polymer-metal complexes; the surface of doped oxide semiconductors. He is an expert in structural, absorptive, catalytic and photocatalytic properties, in structural organization and dynamic features of ionic liquids, in magnetic interactions between paramagnetic centers. The author or co-author of 3 books, over 200 articles and reviews in scientific journals and books. He is an actual member of the International EPR/ESR Society, European Society on Quantum Solar Energy Conversion, Moscow House of Scientists, of the Board of Moscow Physical Society.",institutionString:null,institution:{name:"Semenov Institute of Chemical Physics",country:{name:"Russia"}}},{id:"62389",title:"PhD.",name:"Ali Demir",middleName:null,surname:"Sezer",slug:"ali-demir-sezer",fullName:"Ali Demir Sezer",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/62389/images/3413_n.jpg",biography:"Dr. Ali Demir Sezer has a Ph.D. from Pharmaceutical Biotechnology at the Faculty of Pharmacy, University of Marmara (Turkey). He is the member of many Pharmaceutical Associations and acts as a reviewer of scientific journals and European projects under different research areas such as: drug delivery systems, nanotechnology and pharmaceutical biotechnology. Dr. Sezer is the author of many scientific publications in peer-reviewed journals and poster communications. Focus of his research activity is drug delivery, physico-chemical characterization and biological evaluation of biopolymers micro and nanoparticles as modified drug delivery system, and colloidal drug carriers (liposomes, nanoparticles etc.).",institutionString:null,institution:{name:"Marmara University",country:{name:"Turkey"}}},{id:"61051",title:"Prof.",name:"Andrea",middleName:null,surname:"Natale",slug:"andrea-natale",fullName:"Andrea Natale",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:null},{id:"100762",title:"Prof.",name:"Andrea",middleName:null,surname:"Natale",slug:"andrea-natale",fullName:"Andrea Natale",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"St David's Medical Center",country:{name:"United States of America"}}},{id:"107416",title:"Dr.",name:"Andrea",middleName:null,surname:"Natale",slug:"andrea-natale",fullName:"Andrea Natale",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"Texas Cardiac Arrhythmia",country:{name:"United States of America"}}},{id:"64434",title:"Dr.",name:"Angkoon",middleName:null,surname:"Phinyomark",slug:"angkoon-phinyomark",fullName:"Angkoon Phinyomark",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/64434/images/2619_n.jpg",biography:"My name is Angkoon Phinyomark. I received a B.Eng. degree in Computer Engineering with First Class Honors in 2008 from Prince of Songkla University, Songkhla, Thailand, where I received a Ph.D. degree in Electrical Engineering. My research interests are primarily in the area of biomedical signal processing and classification notably EMG (electromyography signal), EOG (electrooculography signal), and EEG (electroencephalography signal), image analysis notably breast cancer analysis and optical coherence tomography, and rehabilitation engineering. I became a student member of IEEE in 2008. During October 2011-March 2012, I had worked at School of Computer Science and Electronic Engineering, University of Essex, Colchester, Essex, United Kingdom. In addition, during a B.Eng. I had been a visiting research student at Faculty of Computer Science, University of Murcia, Murcia, Spain for three months.\n\nI have published over 40 papers during 5 years in refereed journals, books, and conference proceedings in the areas of electro-physiological signals processing and classification, notably EMG and EOG signals, fractal analysis, wavelet analysis, texture analysis, feature extraction and machine learning algorithms, and assistive and rehabilitative devices. I have several computer programming language certificates, i.e. Sun Certified Programmer for the Java 2 Platform 1.4 (SCJP), Microsoft Certified Professional Developer, Web Developer (MCPD), Microsoft Certified Technology Specialist, .NET Framework 2.0 Web (MCTS). I am a Reviewer for several refereed journals and international conferences, such as IEEE Transactions on Biomedical Engineering, IEEE Transactions on Industrial Electronics, Optic Letters, Measurement Science Review, and also a member of the International Advisory Committee for 2012 IEEE Business Engineering and Industrial Applications and 2012 IEEE Symposium on Business, Engineering and Industrial Applications.",institutionString:null,institution:{name:"Joseph Fourier University",country:{name:"France"}}},{id:"55578",title:"Dr.",name:"Antonio",middleName:null,surname:"Jurado-Navas",slug:"antonio-jurado-navas",fullName:"Antonio Jurado-Navas",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/55578/images/4574_n.png",biography:"Antonio Jurado-Navas received the M.S. degree (2002) and the Ph.D. degree (2009) in Telecommunication Engineering, both from the University of Málaga (Spain). He first worked as a consultant at Vodafone-Spain. From 2004 to 2011, he was a Research Assistant with the Communications Engineering Department at the University of Málaga. In 2011, he became an Assistant Professor in the same department. From 2012 to 2015, he was with Ericsson Spain, where he was working on geo-location\ntools for third generation mobile networks. Since 2015, he is a Marie-Curie fellow at the Denmark Technical University. His current research interests include the areas of mobile communication systems and channel modeling in addition to atmospheric optical communications, adaptive optics and statistics",institutionString:null,institution:{name:"University of Malaga",country:{name:"Spain"}}}],filtersByRegion:[{group:"region",caption:"North America",value:1,count:5766},{group:"region",caption:"Middle and South America",value:2,count:5227},{group:"region",caption:"Africa",value:3,count:1717},{group:"region",caption:"Asia",value:4,count:10367},{group:"region",caption:"Australia and Oceania",value:5,count:897},{group:"region",caption:"Europe",value:6,count:15789}],offset:12,limit:12,total:118188},chapterEmbeded:{data:{}},editorApplication:{success:null,errors:{}},ofsBooks:{filterParams:{hasNoEditors:"0",sort:"ebgfFaeGuveeFgfcChcyvfu"},books:[],filtersByTopic:[{group:"topic",caption:"Agricultural and Biological Sciences",value:5,count:15},{group:"topic",caption:"Biochemistry, Genetics and Molecular Biology",value:6,count:4},{group:"topic",caption:"Business, Management and Economics",value:7,count:1},{group:"topic",caption:"Chemistry",value:8,count:8},{group:"topic",caption:"Computer and Information Science",value:9,count:6},{group:"topic",caption:"Earth and Planetary Sciences",value:10,count:7},{group:"topic",caption:"Engineering",value:11,count:15},{group:"topic",caption:"Environmental Sciences",value:12,count:2},{group:"topic",caption:"Immunology and Microbiology",value:13,count:3},{group:"topic",caption:"Materials Science",value:14,count:5},{group:"topic",caption:"Mathematics",value:15,count:1},{group:"topic",caption:"Medicine",value:16,count:26},{group:"topic",caption:"Neuroscience",value:18,count:1},{group:"topic",caption:"Pharmacology, Toxicology and Pharmaceutical Science",value:19,count:3},{group:"topic",caption:"Physics",value:20,count:2},{group:"topic",caption:"Psychology",value:21,count:4},{group:"topic",caption:"Robotics",value:22,count:1},{group:"topic",caption:"Social Sciences",value:23,count:2},{group:"topic",caption:"Technology",value:24,count:1},{group:"topic",caption:"Veterinary Medicine and Science",value:25,count:1}],offset:0,limit:12,total:null},popularBooks:{featuredBooks:[],offset:0,limit:12,total:null},hotBookTopics:{hotBooks:[],offset:0,limit:12,total:null},publish:{},publishingProposal:{success:null,errors:{}},books:{featuredBooks:[{type:"book",id:"10065",title:"Wavelet Theory",subtitle:null,isOpenForSubmission:!1,hash:"d8868e332169597ba2182d9b004d60de",slug:"wavelet-theory",bookSignature:"Somayeh Mohammady",coverURL:"https://cdn.intechopen.com/books/images_new/10065.jpg",editors:[{id:"109280",title:"Dr.",name:"Somayeh",middleName:null,surname:"Mohammady",slug:"somayeh-mohammady",fullName:"Somayeh Mohammady"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9644",title:"Glaciers and the Polar Environment",subtitle:null,isOpenForSubmission:!1,hash:"e8cfdc161794e3753ced54e6ff30873b",slug:"glaciers-and-the-polar-environment",bookSignature:"Masaki Kanao, Danilo Godone and Niccolò Dematteis",coverURL:"https://cdn.intechopen.com/books/images_new/9644.jpg",editors:[{id:"51959",title:"Dr.",name:"Masaki",middleName:null,surname:"Kanao",slug:"masaki-kanao",fullName:"Masaki Kanao"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9385",title:"Renewable Energy",subtitle:"Technologies and Applications",isOpenForSubmission:!1,hash:"a6b446d19166f17f313008e6c056f3d8",slug:"renewable-energy-technologies-and-applications",bookSignature:"Tolga Taner, Archana Tiwari and Taha Selim Ustun",coverURL:"https://cdn.intechopen.com/books/images_new/9385.jpg",editors:[{id:"197240",title:"Associate Prof.",name:"Tolga",middleName:null,surname:"Taner",slug:"tolga-taner",fullName:"Tolga Taner"}],equalEditorOne:{id:"186791",title:"Dr.",name:"Archana",middleName:null,surname:"Tiwari",slug:"archana-tiwari",fullName:"Archana Tiwari",profilePictureURL:"https://mts.intechopen.com/storage/users/186791/images/system/186791.jpg",biography:"Dr. Archana Tiwari is Associate Professor at Amity University, India. Her research interests include renewable sources of energy from microalgae and further utilizing the residual biomass for the generation of value-added products, bioremediation through microalgae and microbial consortium, antioxidative enzymes and stress, and nutraceuticals from microalgae. She has been working on algal biotechnology for the last two decades. She has published her research in many international journals and has authored many books and chapters with renowned publishing houses. She has also delivered talks as an invited speaker at many national and international conferences. Dr. Tiwari is the recipient of several awards including Researcher of the Year and Distinguished Scientist.",institutionString:"Amity University",position:null,outsideEditionCount:0,totalCites:0,totalAuthoredChapters:"3",totalChapterViews:"0",totalEditedBooks:"1",institution:{name:"Amity University",institutionURL:null,country:{name:"India"}}},equalEditorTwo:{id:"197609",title:"Prof.",name:"Taha Selim",middleName:null,surname:"Ustun",slug:"taha-selim-ustun",fullName:"Taha Selim Ustun",profilePictureURL:"https://mts.intechopen.com/storage/users/197609/images/system/197609.jpeg",biography:"Dr. Taha Selim Ustun received a Ph.D. in Electrical Engineering from Victoria University, Melbourne, Australia. He is a researcher with the Fukushima Renewable Energy Institute, AIST (FREA), where he leads the Smart Grid Cybersecurity Laboratory. Prior to that, he was a faculty member with the School of Electrical and Computer Engineering, Carnegie Mellon University, Pittsburgh, PA, USA. His current research interests include power systems protection, communication in power networks, distributed generation, microgrids, electric vehicle integration, and cybersecurity in smart grids. He serves on the editorial boards of IEEE Access, IEEE Transactions on Industrial Informatics, Energies, Electronics, Electricity, World Electric Vehicle and Information journals. Dr. Ustun is a member of the IEEE 2004 and 2800, IEC Renewable Energy Management WG 8, and IEC TC 57 WG17. He has been invited to run specialist courses in Africa, India, and China. He has delivered talks for the Qatar Foundation, the World Energy Council, the Waterloo Global Science Initiative, and the European Union Energy Initiative (EUEI). His research has attracted funding from prestigious programs in Japan, Australia, the European Union, and North America.",institutionString:"Fukushima Renewable Energy Institute, AIST (FREA)",position:null,outsideEditionCount:0,totalCites:0,totalAuthoredChapters:"1",totalChapterViews:"0",totalEditedBooks:"0",institution:{name:"National Institute of Advanced Industrial Science and Technology",institutionURL:null,country:{name:"Japan"}}},equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"8985",title:"Natural Resources Management and Biological Sciences",subtitle:null,isOpenForSubmission:!1,hash:"5c2e219a6c021a40b5a20c041dea88c4",slug:"natural-resources-management-and-biological-sciences",bookSignature:"Edward R. Rhodes and Humood Naser",coverURL:"https://cdn.intechopen.com/books/images_new/8985.jpg",editors:[{id:"280886",title:"Prof.",name:"Edward R",middleName:null,surname:"Rhodes",slug:"edward-r-rhodes",fullName:"Edward R Rhodes"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9671",title:"Macrophages",subtitle:null,isOpenForSubmission:!1,hash:"03b00fdc5f24b71d1ecdfd75076bfde6",slug:"macrophages",bookSignature:"Hridayesh Prakash",coverURL:"https://cdn.intechopen.com/books/images_new/9671.jpg",editors:[{id:"287184",title:"Dr.",name:"Hridayesh",middleName:null,surname:"Prakash",slug:"hridayesh-prakash",fullName:"Hridayesh Prakash"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9313",title:"Clay Science and Technology",subtitle:null,isOpenForSubmission:!1,hash:"6fa7e70396ff10620e032bb6cfa6fb72",slug:"clay-science-and-technology",bookSignature:"Gustavo Morari Do Nascimento",coverURL:"https://cdn.intechopen.com/books/images_new/9313.jpg",editors:[{id:"7153",title:"Prof.",name:"Gustavo",middleName:null,surname:"Morari Do Nascimento",slug:"gustavo-morari-do-nascimento",fullName:"Gustavo Morari Do Nascimento"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9888",title:"Nuclear Power Plants",subtitle:"The Processes from the Cradle to the Grave",isOpenForSubmission:!1,hash:"c2c8773e586f62155ab8221ebb72a849",slug:"nuclear-power-plants-the-processes-from-the-cradle-to-the-grave",bookSignature:"Nasser Awwad",coverURL:"https://cdn.intechopen.com/books/images_new/9888.jpg",editors:[{id:"145209",title:"Prof.",name:"Nasser",middleName:"S",surname:"Awwad",slug:"nasser-awwad",fullName:"Nasser Awwad"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9027",title:"Human Blood Group Systems and Haemoglobinopathies",subtitle:null,isOpenForSubmission:!1,hash:"d00d8e40b11cfb2547d1122866531c7e",slug:"human-blood-group-systems-and-haemoglobinopathies",bookSignature:"Osaro Erhabor and Anjana Munshi",coverURL:"https://cdn.intechopen.com/books/images_new/9027.jpg",editors:[{id:"35140",title:null,name:"Osaro",middleName:null,surname:"Erhabor",slug:"osaro-erhabor",fullName:"Osaro Erhabor"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10432",title:"Casting Processes and Modelling of Metallic Materials",subtitle:null,isOpenForSubmission:!1,hash:"2c5c9df938666bf5d1797727db203a6d",slug:"casting-processes-and-modelling-of-metallic-materials",bookSignature:"Zakaria Abdallah and Nada Aldoumani",coverURL:"https://cdn.intechopen.com/books/images_new/10432.jpg",editors:[{id:"201670",title:"Dr.",name:"Zak",middleName:null,surname:"Abdallah",slug:"zak-abdallah",fullName:"Zak Abdallah"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"7841",title:"New Insights Into Metabolic Syndrome",subtitle:null,isOpenForSubmission:!1,hash:"ef5accfac9772b9e2c9eff884f085510",slug:"new-insights-into-metabolic-syndrome",bookSignature:"Akikazu Takada",coverURL:"https://cdn.intechopen.com/books/images_new/7841.jpg",editors:[{id:"248459",title:"Dr.",name:"Akikazu",middleName:null,surname:"Takada",slug:"akikazu-takada",fullName:"Akikazu Takada"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}}],latestBooks:[{type:"book",id:"9550",title:"Entrepreneurship",subtitle:"Contemporary Issues",isOpenForSubmission:!1,hash:"9b4ac1ee5b743abf6f88495452b1e5e7",slug:"entrepreneurship-contemporary-issues",bookSignature:"Mladen Turuk",coverURL:"https://cdn.intechopen.com/books/images_new/9550.jpg",editedByType:"Edited by",editors:[{id:"319755",title:"Prof.",name:"Mladen",middleName:null,surname:"Turuk",slug:"mladen-turuk",fullName:"Mladen Turuk"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10065",title:"Wavelet Theory",subtitle:null,isOpenForSubmission:!1,hash:"d8868e332169597ba2182d9b004d60de",slug:"wavelet-theory",bookSignature:"Somayeh Mohammady",coverURL:"https://cdn.intechopen.com/books/images_new/10065.jpg",editedByType:"Edited by",editors:[{id:"109280",title:"Dr.",name:"Somayeh",middleName:null,surname:"Mohammady",slug:"somayeh-mohammady",fullName:"Somayeh Mohammady"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"9313",title:"Clay Science and Technology",subtitle:null,isOpenForSubmission:!1,hash:"6fa7e70396ff10620e032bb6cfa6fb72",slug:"clay-science-and-technology",bookSignature:"Gustavo Morari Do Nascimento",coverURL:"https://cdn.intechopen.com/books/images_new/9313.jpg",editedByType:"Edited by",editors:[{id:"7153",title:"Prof.",name:"Gustavo",middleName:null,surname:"Morari Do Nascimento",slug:"gustavo-morari-do-nascimento",fullName:"Gustavo Morari Do Nascimento"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"9888",title:"Nuclear Power Plants",subtitle:"The Processes from the Cradle to the Grave",isOpenForSubmission:!1,hash:"c2c8773e586f62155ab8221ebb72a849",slug:"nuclear-power-plants-the-processes-from-the-cradle-to-the-grave",bookSignature:"Nasser Awwad",coverURL:"https://cdn.intechopen.com/books/images_new/9888.jpg",editedByType:"Edited by",editors:[{id:"145209",title:"Prof.",name:"Nasser",middleName:"S",surname:"Awwad",slug:"nasser-awwad",fullName:"Nasser Awwad"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"8098",title:"Resources of Water",subtitle:null,isOpenForSubmission:!1,hash:"d251652996624d932ef7b8ed62cf7cfc",slug:"resources-of-water",bookSignature:"Prathna Thanjavur Chandrasekaran, Muhammad Salik Javaid, Aftab Sadiq",coverURL:"https://cdn.intechopen.com/books/images_new/8098.jpg",editedByType:"Edited by",editors:[{id:"167917",title:"Dr.",name:"Prathna",middleName:null,surname:"Thanjavur Chandrasekaran",slug:"prathna-thanjavur-chandrasekaran",fullName:"Prathna Thanjavur Chandrasekaran"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"9644",title:"Glaciers and the Polar Environment",subtitle:null,isOpenForSubmission:!1,hash:"e8cfdc161794e3753ced54e6ff30873b",slug:"glaciers-and-the-polar-environment",bookSignature:"Masaki Kanao, Danilo Godone and Niccolò Dematteis",coverURL:"https://cdn.intechopen.com/books/images_new/9644.jpg",editedByType:"Edited by",editors:[{id:"51959",title:"Dr.",name:"Masaki",middleName:null,surname:"Kanao",slug:"masaki-kanao",fullName:"Masaki Kanao"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10432",title:"Casting Processes and Modelling of Metallic Materials",subtitle:null,isOpenForSubmission:!1,hash:"2c5c9df938666bf5d1797727db203a6d",slug:"casting-processes-and-modelling-of-metallic-materials",bookSignature:"Zakaria Abdallah and Nada Aldoumani",coverURL:"https://cdn.intechopen.com/books/images_new/10432.jpg",editedByType:"Edited by",editors:[{id:"201670",title:"Dr.",name:"Zak",middleName:null,surname:"Abdallah",slug:"zak-abdallah",fullName:"Zak Abdallah"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"9671",title:"Macrophages",subtitle:null,isOpenForSubmission:!1,hash:"03b00fdc5f24b71d1ecdfd75076bfde6",slug:"macrophages",bookSignature:"Hridayesh Prakash",coverURL:"https://cdn.intechopen.com/books/images_new/9671.jpg",editedByType:"Edited by",editors:[{id:"287184",title:"Dr.",name:"Hridayesh",middleName:null,surname:"Prakash",slug:"hridayesh-prakash",fullName:"Hridayesh Prakash"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"8415",title:"Extremophilic Microbes and Metabolites",subtitle:"Diversity, Bioprospecting and Biotechnological Applications",isOpenForSubmission:!1,hash:"93e0321bc93b89ff73730157738f8f97",slug:"extremophilic-microbes-and-metabolites-diversity-bioprospecting-and-biotechnological-applications",bookSignature:"Afef Najjari, Ameur Cherif, Haïtham Sghaier and Hadda Imene Ouzari",coverURL:"https://cdn.intechopen.com/books/images_new/8415.jpg",editedByType:"Edited by",editors:[{id:"196823",title:"Dr.",name:"Afef",middleName:null,surname:"Najjari",slug:"afef-najjari",fullName:"Afef Najjari"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"9731",title:"Oxidoreductase",subtitle:null,isOpenForSubmission:!1,hash:"852e6f862c85fc3adecdbaf822e64e6e",slug:"oxidoreductase",bookSignature:"Mahmoud Ahmed Mansour",coverURL:"https://cdn.intechopen.com/books/images_new/9731.jpg",editedByType:"Edited by",editors:[{id:"224662",title:"Prof.",name:"Mahmoud Ahmed",middleName:null,surname:"Mansour",slug:"mahmoud-ahmed-mansour",fullName:"Mahmoud Ahmed Mansour"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}}]},subject:{topic:{id:"813",title:"Engineering Mechanics",slug:"mechanical-engineering-engineering-mechanics",parent:{title:"Mechanical Engineering",slug:"mechanical-engineering"},numberOfBooks:19,numberOfAuthorsAndEditors:466,numberOfWosCitations:634,numberOfCrossrefCitations:301,numberOfDimensionsCitations:697,videoUrl:null,fallbackUrl:null,description:null},booksByTopicFilter:{topicSlug:"mechanical-engineering-engineering-mechanics",sort:"-publishedDate",limit:12,offset:0},booksByTopicCollection:[{type:"book",id:"9865",title:"Tribology in Materials and Manufacturing",subtitle:"Wear, Friction and Lubrication",isOpenForSubmission:!1,hash:"45fdde7e24f08a4734017cfa4948ba94",slug:"tribology-in-materials-and-manufacturing-wear-friction-and-lubrication",bookSignature:"Amar Patnaik, Tej Singh and Vikas Kukshal",coverURL:"https://cdn.intechopen.com/books/images_new/9865.jpg",editedByType:"Edited by",editors:[{id:"43660",title:"Associate Prof.",name:"Amar",middleName:null,surname:"Patnaik",slug:"amar-patnaik",fullName:"Amar Patnaik"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"7615",title:"Fracture Mechanics Applications",subtitle:null,isOpenForSubmission:!1,hash:"eadc6edddc10fbeac471e10ff7921b75",slug:"fracture-mechanics-applications",bookSignature:"Hayri Baytan Ozmen and H. Ersen Balcioglu",coverURL:"https://cdn.intechopen.com/books/images_new/7615.jpg",editedByType:"Edited by",editors:[{id:"198122",title:"Dr.",name:"Hayri Baytan",middleName:null,surname:"Ozmen",slug:"hayri-baytan-ozmen",fullName:"Hayri Baytan Ozmen"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"6595",title:"Ballistics",subtitle:null,isOpenForSubmission:!1,hash:"3e7fa96253ce890c092b37a8678e4d03",slug:"ballistics",bookSignature:"Charles Osheku",coverURL:"https://cdn.intechopen.com/books/images_new/6595.jpg",editedByType:"Edited by",editors:[{id:"148660",title:"Dr.",name:"Charles",middleName:"Attah",surname:"Osheku",slug:"charles-osheku",fullName:"Charles Osheku"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"7231",title:"Advanced Engineering Testing",subtitle:null,isOpenForSubmission:!1,hash:"9283b3b88964a6fe002fa37431414ac7",slug:"advanced-engineering-testing",bookSignature:"Aidy Ali",coverURL:"https://cdn.intechopen.com/books/images_new/7231.jpg",editedByType:"Edited by",editors:[{id:"13626",title:"Prof.",name:"Aidy",middleName:null,surname:"Ali",slug:"aidy-ali",fullName:"Aidy Ali"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"6368",title:"Tribology, Lubricants and Additives",subtitle:null,isOpenForSubmission:!1,hash:"5c3d14346e656a204a188be6e9bbbea1",slug:"lubrication-tribology-lubricants-and-additives",bookSignature:"David W. Johnson",coverURL:"https://cdn.intechopen.com/books/images_new/6368.jpg",editedByType:"Edited by",editors:[{id:"178441",title:"Dr.",name:"David",middleName:null,surname:"Johnson",slug:"david-johnson",fullName:"David Johnson"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"6228",title:"Vibration Analysis and Control in Mechanical Structures and Wind Energy Conversion Systems",subtitle:null,isOpenForSubmission:!1,hash:"7c08aadadb9857994b1df9abf871c112",slug:"vibration-analysis-and-control-in-mechanical-structures-and-wind-energy-conversion-systems",bookSignature:"Francisco Beltran-Carbajal",coverURL:"https://cdn.intechopen.com/books/images_new/6228.jpg",editedByType:"Edited by",editors:[{id:"10444",title:"Dr.",name:"Francisco",middleName:null,surname:"Beltran-Carbajal",slug:"francisco-beltran-carbajal",fullName:"Francisco Beltran-Carbajal"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"5495",title:"Lagrangian Mechanics",subtitle:null,isOpenForSubmission:!1,hash:"cd340676a371f5e196f6e8089f5e8b28",slug:"lagrangian-mechanics",bookSignature:"Hüseyin Canbolat",coverURL:"https://cdn.intechopen.com/books/images_new/5495.jpg",editedByType:"Edited by",editors:[{id:"5887",title:"Dr.",name:"Hüseyin",middleName:null,surname:"Canbolat",slug:"huseyin-canbolat",fullName:"Hüseyin Canbolat"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"5226",title:"Fracture Mechanics",subtitle:"Properties, Patterns and Behaviours",isOpenForSubmission:!1,hash:"3d418575458d688abbe40125240ece3e",slug:"fracture-mechanics-properties-patterns-and-behaviours",bookSignature:"Lucas Maximo Alves",coverURL:"https://cdn.intechopen.com/books/images_new/5226.jpg",editedByType:"Edited by",editors:[{id:"147011",title:"Dr.",name:"Lucas",middleName:"Maximo",surname:"Alves",slug:"lucas-alves",fullName:"Lucas Alves"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"4614",title:"Surface Energy",subtitle:null,isOpenForSubmission:!1,hash:"0e17cd77d2616f544522495c30285475",slug:"surface-energy",bookSignature:"Mahmood Aliofkhazraei",coverURL:"https://cdn.intechopen.com/books/images_new/4614.jpg",editedByType:"Edited by",editors:[{id:"155413",title:"Dr.",name:"Mahmood",middleName:null,surname:"Aliofkhazraei",slug:"mahmood-aliofkhazraei",fullName:"Mahmood Aliofkhazraei"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"3128",title:"Tribology",subtitle:"Fundamentals and Advancements",isOpenForSubmission:!1,hash:"77f3ee5568b737c8d26a5eee991c9d34",slug:"tribology-fundamentals-and-advancements",bookSignature:"Jürgen Gegner",coverURL:"https://cdn.intechopen.com/books/images_new/3128.jpg",editedByType:"Edited by",editors:[{id:"40520",title:"Dr.",name:"Jürgen",middleName:null,surname:"Gegner",slug:"jurgen-gegner",fullName:"Jürgen Gegner"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"2982",title:"Tribology in Engineering",subtitle:null,isOpenForSubmission:!1,hash:"1b4719e20d06efe207620debfaf9f6e0",slug:"tribology-in-engineering",bookSignature:"Haşim Pihtili",coverURL:"https://cdn.intechopen.com/books/images_new/2982.jpg",editedByType:"Edited by",editors:[{id:"10340",title:"Dr.",name:"Hasim",middleName:null,surname:"Pihtili",slug:"hasim-pihtili",fullName:"Hasim Pihtili"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"2794",title:"Applied Fracture Mechanics",subtitle:null,isOpenForSubmission:!1,hash:"ef0b0a40b0306e7172636781a24cfb27",slug:"applied-fracture-mechanics",bookSignature:"Alexander Belov",coverURL:"https://cdn.intechopen.com/books/images_new/2794.jpg",editedByType:"Edited by",editors:[{id:"141319",title:"Dr.",name:"Alexander",middleName:null,surname:"Belov",slug:"alexander-belov",fullName:"Alexander Belov"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}}],booksByTopicTotal:19,mostCitedChapters:[{id:"21928",doi:"10.5772/20790",title:"Tribological Aspects of Rolling Bearing Failures",slug:"tribological-aspects-of-rolling-bearing-failures",totalDownloads:17609,totalCrossrefCites:34,totalDimensionsCites:59,book:{slug:"tribology-lubricants-and-lubrication",title:"Tribology",fullTitle:"Tribology - Lubricants and Lubrication"},signatures:"Jürgen Gegner",authors:[{id:"40520",title:"Dr.",name:"Jürgen",middleName:null,surname:"Gegner",slug:"jurgen-gegner",fullName:"Jürgen Gegner"}]},{id:"44858",doi:"10.5772/55860",title:"Titanium and Titanium Alloys as Biomaterials",slug:"titanium-and-titanium-alloys-as-biomaterials",totalDownloads:5935,totalCrossrefCites:20,totalDimensionsCites:46,book:{slug:"tribology-fundamentals-and-advancements",title:"Tribology",fullTitle:"Tribology - Fundamentals and Advancements"},signatures:"Virginia Sáenz de Viteri and Elena Fuentes",authors:[{id:"154811",title:"Ph.D.",name:"Virginia",middleName:null,surname:"Sáenz De Viteri",slug:"virginia-saenz-de-viteri",fullName:"Virginia Sáenz De Viteri"},{id:"155536",title:"Ms.",name:"Elena",middleName:null,surname:"Fuentes",slug:"elena-fuentes",fullName:"Elena Fuentes"}]},{id:"44864",doi:"10.5772/55470",title:"Introduction of the Ratio of the Hardness to the Reduced Elastic Modulus for Abrasion",slug:"introduction-of-the-ratio-of-the-hardness-to-the-reduced-elastic-modulus-for-abrasion",totalDownloads:5317,totalCrossrefCites:7,totalDimensionsCites:29,book:{slug:"tribology-fundamentals-and-advancements",title:"Tribology",fullTitle:"Tribology - Fundamentals and Advancements"},signatures:"Giuseppe Pintaude",authors:[{id:"18347",title:"Prof.",name:"Giuseppe",middleName:null,surname:"Pintaude",slug:"giuseppe-pintaude",fullName:"Giuseppe Pintaude"}]}],mostDownloadedChaptersLast30Days:[{id:"53939",title:"Closure Models for Lagrangian Gas Dynamics and Elastoplasticity Equations in Multimaterial Cells",slug:"closure-models-for-lagrangian-gas-dynamics-and-elastoplasticity-equations-in-multimaterial-cells",totalDownloads:1073,totalCrossrefCites:1,totalDimensionsCites:0,book:{slug:"lagrangian-mechanics",title:"Lagrangian Mechanics",fullTitle:"Lagrangian Mechanics"},signatures:"Yury Yanilkin",authors:[{id:"181004",title:"Prof.",name:"Yury",middleName:"Vasilyevich",surname:"Yanilkin",slug:"yury-yanilkin",fullName:"Yury Yanilkin"}]},{id:"44858",title:"Titanium and Titanium Alloys as Biomaterials",slug:"titanium-and-titanium-alloys-as-biomaterials",totalDownloads:5917,totalCrossrefCites:20,totalDimensionsCites:46,book:{slug:"tribology-fundamentals-and-advancements",title:"Tribology",fullTitle:"Tribology - Fundamentals and Advancements"},signatures:"Virginia Sáenz de Viteri and Elena Fuentes",authors:[{id:"154811",title:"Ph.D.",name:"Virginia",middleName:null,surname:"Sáenz De Viteri",slug:"virginia-saenz-de-viteri",fullName:"Virginia Sáenz De Viteri"},{id:"155536",title:"Ms.",name:"Elena",middleName:null,surname:"Fuentes",slug:"elena-fuentes",fullName:"Elena Fuentes"}]},{id:"44826",title:"Lubrication and Lubricants",slug:"lubrication-and-lubricants",totalDownloads:6966,totalCrossrefCites:1,totalDimensionsCites:3,book:{slug:"tribology-fundamentals-and-advancements",title:"Tribology",fullTitle:"Tribology - Fundamentals and Advancements"},signatures:"Nehal S. Ahmed and Amal M. Nassar",authors:[{id:"49812",title:"Prof.",name:"Nehal",middleName:null,surname:"Ahmed",slug:"nehal-ahmed",fullName:"Nehal Ahmed"},{id:"57028",title:"Prof.",name:"Amal",middleName:null,surname:"Nassar",slug:"amal-nassar",fullName:"Amal Nassar"}]},{id:"51255",title:"Toughness Assessment and Fracture Mechanism of Brittle Thin Films Under Nano-Indentation",slug:"toughness-assessment-and-fracture-mechanism-of-brittle-thin-films-under-nano-indentation",totalDownloads:1340,totalCrossrefCites:2,totalDimensionsCites:2,book:{slug:"fracture-mechanics-properties-patterns-and-behaviours",title:"Fracture Mechanics",fullTitle:"Fracture Mechanics - Properties, Patterns and Behaviours"},signatures:"Kunkun Fu, Youhong Tang and Li Chang",authors:[{id:"99751",title:"Dr.",name:"Youhong",middleName:null,surname:"Tang",slug:"youhong-tang",fullName:"Youhong Tang"},{id:"179479",title:"Dr.",name:"Kunkun",middleName:null,surname:"Fu",slug:"kunkun-fu",fullName:"Kunkun Fu"},{id:"179480",title:"Dr.",name:"Li",middleName:null,surname:"Chang",slug:"li-chang",fullName:"Li Chang"}]},{id:"64567",title:"State-Space Modeling of a Rocket for Optimal Control System Design",slug:"state-space-modeling-of-a-rocket-for-optimal-control-system-design",totalDownloads:1027,totalCrossrefCites:0,totalDimensionsCites:0,book:{slug:"ballistics",title:"Ballistics",fullTitle:"Ballistics"},signatures:"Aliyu Bhar Kisabo and Aliyu Funmilayo Adebimpe",authors:[{id:"200807",title:"M.Sc.",name:"Bhar",middleName:"Kisabo",surname:"Aliyu",slug:"bhar-aliyu",fullName:"Bhar Aliyu"}]},{id:"74182",title:"Tribological Behavior of Polymers and Polymer Composites",slug:"tribological-behavior-of-polymers-and-polymer-composites",totalDownloads:196,totalCrossrefCites:1,totalDimensionsCites:0,book:{slug:"tribology-in-materials-and-manufacturing-wear-friction-and-lubrication",title:"Tribology in Materials and Manufacturing",fullTitle:"Tribology in Materials and Manufacturing - Wear, Friction and Lubrication"},signatures:"Lorena Deleanu, Mihail Botan and Constantin Georgescu",authors:[{id:"230862",title:"Prof.",name:"Lorena",middleName:null,surname:"Deleanu",slug:"lorena-deleanu",fullName:"Lorena Deleanu"},{id:"259886",title:"Dr.",name:"Constantin",middleName:null,surname:"Georgescu",slug:"constantin-georgescu",fullName:"Constantin Georgescu"},{id:"326496",title:"Dr.",name:"Mihail",middleName:null,surname:"Botan",slug:"mihail-botan",fullName:"Mihail Botan"}]},{id:"73333",title:"Lubricant and Lubricant Additives",slug:"lubricant-and-lubricant-additives",totalDownloads:100,totalCrossrefCites:0,totalDimensionsCites:0,book:{slug:"tribology-in-materials-and-manufacturing-wear-friction-and-lubrication",title:"Tribology in Materials and Manufacturing",fullTitle:"Tribology in Materials and Manufacturing - Wear, Friction and Lubrication"},signatures:"Debashis Puhan",authors:[{id:"323503",title:"Dr.",name:"Debashis",middleName:null,surname:"Puhan",slug:"debashis-puhan",fullName:"Debashis Puhan"}]},{id:"48712",title:"Plasma Processing for Tailoring the Surface Properties of Polymers",slug:"plasma-processing-for-tailoring-the-surface-properties-of-polymers",totalDownloads:3081,totalCrossrefCites:6,totalDimensionsCites:16,book:{slug:"surface-energy",title:"Surface Energy",fullTitle:"Surface Energy"},signatures:"Hisham M. Abourayana and Denis P. Dowling",authors:[{id:"173659",title:"Ph.D. Student",name:"Hisham",middleName:"M.",surname:"Abourayana",slug:"hisham-abourayana",fullName:"Hisham Abourayana"},{id:"176771",title:"Dr.",name:"Denis",middleName:null,surname:"Dowling",slug:"denis-dowling",fullName:"Denis Dowling"}]},{id:"49063",title:"Re-derivation of Young’s Equation, Wenzel Equation, and Cassie-Baxter Equation Based on Energy Minimization",slug:"re-derivation-of-young-s-equation-wenzel-equation-and-cassie-baxter-equation-based-on-energy-minimiz",totalDownloads:4209,totalCrossrefCites:11,totalDimensionsCites:15,book:{slug:"surface-energy",title:"Surface Energy",fullTitle:"Surface Energy"},signatures:"Kwangseok Seo, Minyoung Kim and Do Hyun Kim",authors:[{id:"97132",title:"Prof.",name:"Do Hyun",middleName:null,surname:"Kim",slug:"do-hyun-kim",fullName:"Do Hyun Kim"}]},{id:"57787",title:"Passive, Adaptive, Active Vibration Control, and Integrated Approaches",slug:"passive-adaptive-active-vibration-control-and-integrated-approaches",totalDownloads:1065,totalCrossrefCites:0,totalDimensionsCites:1,book:{slug:"vibration-analysis-and-control-in-mechanical-structures-and-wind-energy-conversion-systems",title:"Vibration Analysis and Control in Mechanical Structures and Wind Energy Conversion Systems",fullTitle:"Vibration Analysis and Control in Mechanical Structures and Wind Energy Conversion Systems"},signatures:"Dirk Mayer and Sven Herold",authors:[{id:"43159",title:"Dr.",name:"Dirk",middleName:null,surname:"Mayer",slug:"dirk-mayer",fullName:"Dirk Mayer"},{id:"210459",title:"Dr.",name:"Sven",middleName:null,surname:"Herold",slug:"sven-herold",fullName:"Sven Herold"}]}],onlineFirstChaptersFilter:{topicSlug:"mechanical-engineering-engineering-mechanics",limit:3,offset:0},onlineFirstChaptersCollection:[],onlineFirstChaptersTotal:0},preDownload:{success:null,errors:{}},aboutIntechopen:{},privacyPolicy:{},peerReviewing:{},howOpenAccessPublishingWithIntechopenWorks:{},sponsorshipBooks:{sponsorshipBooks:[{type:"book",id:"10176",title:"Microgrids and Local Energy Systems",subtitle:null,isOpenForSubmission:!0,hash:"c32b4a5351a88f263074b0d0ca813a9c",slug:null,bookSignature:"Prof. Nick Jenkins",coverURL:"https://cdn.intechopen.com/books/images_new/10176.jpg",editedByType:null,editors:[{id:"55219",title:"Prof.",name:"Nick",middleName:null,surname:"Jenkins",slug:"nick-jenkins",fullName:"Nick Jenkins"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}}],offset:8,limit:8,total:1},route:{name:"chapter.detail",path:"/books/immunopathology-and-immunomodulation/human-vector-borne-transmissible-parasitic-diseases-in-montenegro",hash:"",query:{},params:{book:"immunopathology-and-immunomodulation",chapter:"human-vector-borne-transmissible-parasitic-diseases-in-montenegro"},fullPath:"/books/immunopathology-and-immunomodulation/human-vector-borne-transmissible-parasitic-diseases-in-montenegro",meta:{},from:{name:null,path:"/",hash:"",query:{},params:{},fullPath:"/",meta:{}}}},function(){var e;(e=document.currentScript||document.scripts[document.scripts.length-1]).parentNode.removeChild(e)}()