Summary table of different devices.
\r\n\tAnimal food additives are products used in animal nutrition for purposes of improving the quality of feed or to improve the animal’s performance and health. Other additives can be used to enhance digestibility or even flavour of feed materials. In addition, feed additives are known which improve the quality of compound feed production; consequently e.g. they improve the quality of the granulated mixed diet.
\r\n\r\n\tGenerally feed additives could be divided into five groups:
\r\n\t1.Technological additives which influence the technological aspects of the diet to improve its handling or hygiene characteristics.
\r\n\t2. Sensory additives which improve the palatability of a diet by stimulating appetite, usually through the effect these products have on the flavour or colour.
\r\n\t3. Nutritional additives, such additives are specific nutrient(s) required by the animal for optimal production.
\r\n\t4.Zootechnical additives which improve the nutrient status of the animal, not by providing specific nutrients, but by enabling more efficient use of the nutrients present in the diet, in other words, it increases the efficiency of production.
\r\n\t5. In poultry nutrition: Coccidiostats and Histomonostats which widely used to control intestinal health of poultry through direct effects on the parasitic organism concerned.
\r\n\tThe aim of the book is to present the impact of the most important feed additives on the animal production, to demonstrate their mode of action, to show their effect on intermediate metabolism and heath status of livestock and to suggest how to use the different feed additives in animal nutrition to produce high quality and safety animal origin foodstuffs for human consumer.
",isbn:"978-1-83969-404-2",printIsbn:"978-1-83969-403-5",pdfIsbn:"978-1-83969-405-9",doi:null,price:0,priceEur:0,priceUsd:0,slug:null,numberOfPages:0,isOpenForSubmission:!1,hash:"8ffe43a82ac48b309abc3632bbf3efd0",bookSignature:"Prof. László Babinszky",publishedDate:null,coverURL:"https://cdn.intechopen.com/books/images_new/10496.jpg",keywords:"Technological Feed Additives, Feed Industry, Quality of Compound Feed, Non-Antibiotic Growth Promoter, Product Quality, Additive Enzymes, Digestibility of Nutrients, NSP Enzymes, Farm Animals, Livestock, Immunity, Microbiome",numberOfDownloads:null,numberOfWosCitations:0,numberOfCrossrefCitations:null,numberOfDimensionsCitations:null,numberOfTotalCitations:null,isAvailableForWebshopOrdering:!0,dateEndFirstStepPublish:"November 24th 2020",dateEndSecondStepPublish:"December 22nd 2020",dateEndThirdStepPublish:"February 20th 2021",dateEndFourthStepPublish:"May 11th 2021",dateEndFifthStepPublish:"July 10th 2021",remainingDaysToSecondStep:"2 months",secondStepPassed:!0,currentStepOfPublishingProcess:4,editedByType:null,kuFlag:!1,biosketch:"Professor Emeritus from the University of Debrecen, Hungary who authored 297 publications (papers, book chapters) and edited 3 books. Member of various committees and chairman of the World Conference of Innovative Animal Nutrition and Feeding (WIANF).",coeditorOneBiosketch:null,coeditorTwoBiosketch:null,coeditorThreeBiosketch:null,coeditorFourBiosketch:null,coeditorFiveBiosketch:null,editors:[{id:"53998",title:"Prof.",name:"László",middleName:null,surname:"Babinszky",slug:"laszlo-babinszky",fullName:"László Babinszky",profilePictureURL:"https://mts.intechopen.com/storage/users/53998/images/system/53998.jpg",biography:"László Babinszky is Professor Emeritus of animal nutrition at the University of Debrecen, Hungary. From 1984 to 1985 he worked at the Agricultural University in Wageningen and in the Institute for Livestock Feeding and Nutrition in Lelystad (the Netherlands). He also worked at the Agricultural University of Vienna in the Institute for Animal Breeding and Nutrition (Austria) and in the Oscar Kellner Research Institute in Rostock (Germany). From 1988 to 1992, he worked in the Department of Animal Nutrition (Agricultural University in Wageningen). In 1992 he obtained a PhD degree in animal nutrition from the University of Wageningen.He has authored 297 publications (papers, book chapters). He edited 3 books and 14 international conference proceedings. His total number of citation is 407. \r\nHe is member of various committees e.g.: American Society of Animal Science (ASAS, USA); the editorial board of the Acta Agriculturae Scandinavica, Section A- Animal Science (Norway); KRMIVA, Journal of Animal Nutrition (Croatia), Austin Food Sciences (NJ, USA), E-Cronicon Nutrition (UK), SciTz Nutrition and Food Science (DE, USA), Journal of Medical Chemistry and Toxicology (NJ, USA), Current Research in Food Technology and Nutritional Sciences (USA). From 2015 he has been appointed chairman of World Conference of Innovative Animal Nutrition and Feeding (WIANF).\r\nHis main research areas are related to pig and poultry nutrition: elimination of harmful effects of heat stress by nutrition tools, energy- amino acid metabolism in livestock, relationship between animal nutrition and quality of animal food products (meat).",institutionString:"University of Debrecen",position:null,outsideEditionCount:0,totalCites:0,totalAuthoredChapters:"1",totalChapterViews:"0",totalEditedBooks:"0",institution:{name:"University of Debrecen",institutionURL:null,country:{name:"Hungary"}}}],coeditorOne:null,coeditorTwo:null,coeditorThree:null,coeditorFour:null,coeditorFive:null,topics:[{id:"25",title:"Veterinary Medicine and Science",slug:"veterinary-medicine-and-science"}],chapters:null,productType:{id:"1",title:"Edited Volume",chapterContentType:"chapter",authoredCaption:"Edited by"},personalPublishingAssistant:{id:"185543",firstName:"Maja",lastName:"Bozicevic",middleName:null,title:"Ms.",imageUrl:"https://mts.intechopen.com/storage/users/185543/images/4748_n.jpeg",email:"maja.b@intechopen.com",biography:"As an Author Service Manager my responsibilities include monitoring and facilitating all publishing activities for authors and editors. From chapter submission and review, to approval and revision, copyediting and design, until final publication, I work closely with authors and editors to ensure a simple and easy publishing process. I maintain constant and effective communication with authors, editors and reviewers, which allows for a level of personal support that enables contributors to fully commit and concentrate on the chapters they are writing, editing, or reviewing. I assist authors in the preparation of their full chapter submissions and track important deadlines and ensure they are met. I help to coordinate internal processes such as linguistic review, and monitor the technical aspects of the process. As an ASM I am also involved in the acquisition of editors. Whether that be identifying an exceptional author and proposing an editorship collaboration, or contacting researchers who would like the opportunity to work with IntechOpen, I establish and help manage author and editor acquisition and contact."}},relatedBooks:[{type:"book",id:"7144",title:"Veterinary Anatomy and Physiology",subtitle:null,isOpenForSubmission:!1,hash:"75cdacb570e0e6d15a5f6e69640d87c9",slug:"veterinary-anatomy-and-physiology",bookSignature:"Catrin Sian Rutland and Valentina Kubale",coverURL:"https://cdn.intechopen.com/books/images_new/7144.jpg",editedByType:"Edited by",editors:[{id:"202192",title:"Dr.",name:"Catrin",surname:"Rutland",slug:"catrin-rutland",fullName:"Catrin Rutland"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"1591",title:"Infrared Spectroscopy",subtitle:"Materials Science, Engineering and Technology",isOpenForSubmission:!1,hash:"99b4b7b71a8caeb693ed762b40b017f4",slug:"infrared-spectroscopy-materials-science-engineering-and-technology",bookSignature:"Theophile Theophanides",coverURL:"https://cdn.intechopen.com/books/images_new/1591.jpg",editedByType:"Edited by",editors:[{id:"37194",title:"Dr.",name:"Theophanides",surname:"Theophile",slug:"theophanides-theophile",fullName:"Theophanides Theophile"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"3092",title:"Anopheles mosquitoes",subtitle:"New insights into malaria vectors",isOpenForSubmission:!1,hash:"c9e622485316d5e296288bf24d2b0d64",slug:"anopheles-mosquitoes-new-insights-into-malaria-vectors",bookSignature:"Sylvie Manguin",coverURL:"https://cdn.intechopen.com/books/images_new/3092.jpg",editedByType:"Edited by",editors:[{id:"50017",title:"Prof.",name:"Sylvie",surname:"Manguin",slug:"sylvie-manguin",fullName:"Sylvie Manguin"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"3161",title:"Frontiers in Guided Wave Optics and Optoelectronics",subtitle:null,isOpenForSubmission:!1,hash:"deb44e9c99f82bbce1083abea743146c",slug:"frontiers-in-guided-wave-optics-and-optoelectronics",bookSignature:"Bishnu Pal",coverURL:"https://cdn.intechopen.com/books/images_new/3161.jpg",editedByType:"Edited by",editors:[{id:"4782",title:"Prof.",name:"Bishnu",surname:"Pal",slug:"bishnu-pal",fullName:"Bishnu Pal"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"72",title:"Ionic Liquids",subtitle:"Theory, Properties, New Approaches",isOpenForSubmission:!1,hash:"d94ffa3cfa10505e3b1d676d46fcd3f5",slug:"ionic-liquids-theory-properties-new-approaches",bookSignature:"Alexander Kokorin",coverURL:"https://cdn.intechopen.com/books/images_new/72.jpg",editedByType:"Edited by",editors:[{id:"19816",title:"Prof.",name:"Alexander",surname:"Kokorin",slug:"alexander-kokorin",fullName:"Alexander Kokorin"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"1373",title:"Ionic Liquids",subtitle:"Applications and Perspectives",isOpenForSubmission:!1,hash:"5e9ae5ae9167cde4b344e499a792c41c",slug:"ionic-liquids-applications-and-perspectives",bookSignature:"Alexander Kokorin",coverURL:"https://cdn.intechopen.com/books/images_new/1373.jpg",editedByType:"Edited by",editors:[{id:"19816",title:"Prof.",name:"Alexander",surname:"Kokorin",slug:"alexander-kokorin",fullName:"Alexander Kokorin"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"57",title:"Physics and Applications of Graphene",subtitle:"Experiments",isOpenForSubmission:!1,hash:"0e6622a71cf4f02f45bfdd5691e1189a",slug:"physics-and-applications-of-graphene-experiments",bookSignature:"Sergey Mikhailov",coverURL:"https://cdn.intechopen.com/books/images_new/57.jpg",editedByType:"Edited by",editors:[{id:"16042",title:"Dr.",name:"Sergey",surname:"Mikhailov",slug:"sergey-mikhailov",fullName:"Sergey Mikhailov"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"371",title:"Abiotic Stress in Plants",subtitle:"Mechanisms and Adaptations",isOpenForSubmission:!1,hash:"588466f487e307619849d72389178a74",slug:"abiotic-stress-in-plants-mechanisms-and-adaptations",bookSignature:"Arun Shanker and B. Venkateswarlu",coverURL:"https://cdn.intechopen.com/books/images_new/371.jpg",editedByType:"Edited by",editors:[{id:"58592",title:"Dr.",name:"Arun",surname:"Shanker",slug:"arun-shanker",fullName:"Arun Shanker"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"878",title:"Phytochemicals",subtitle:"A Global Perspective of Their Role in Nutrition and Health",isOpenForSubmission:!1,hash:"ec77671f63975ef2d16192897deb6835",slug:"phytochemicals-a-global-perspective-of-their-role-in-nutrition-and-health",bookSignature:"Venketeshwer Rao",coverURL:"https://cdn.intechopen.com/books/images_new/878.jpg",editedByType:"Edited by",editors:[{id:"82663",title:"Dr.",name:"Venketeshwer",surname:"Rao",slug:"venketeshwer-rao",fullName:"Venketeshwer Rao"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"4816",title:"Face Recognition",subtitle:null,isOpenForSubmission:!1,hash:"146063b5359146b7718ea86bad47c8eb",slug:"face_recognition",bookSignature:"Kresimir Delac and Mislav Grgic",coverURL:"https://cdn.intechopen.com/books/images_new/4816.jpg",editedByType:"Edited by",editors:[{id:"528",title:"Dr.",name:"Kresimir",surname:"Delac",slug:"kresimir-delac",fullName:"Kresimir Delac"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}}]},chapter:{item:{type:"chapter",id:"72281",title:"Contribution of Biomedical Equipment Management to Better Management of Sickle Cell Disease in Africa",doi:"10.5772/intechopen.92546",slug:"contribution-of-biomedical-equipment-management-to-better-management-of-sickle-cell-disease-in-afric",body:'\nBy way of introduction, the quotation below significantly translates the problem of sickle cell disease both in the Democratic Republic of the Congo and in most countries of sub-Saharan Africa: \n“Sickle cell disease is a genetic inherited disorder where hemoglobin (Hb) normal A (HbA) is replaced by another abnormal, HbS.”\n
Sickle cell anemia is a serious disease with manifestations and complications that directly affect the patient quality of life and his entourage. This is not a shameful disease contrary; it is linked to a mutation that arose for us to defend against severe forms of malaria. It is due to the so-called selective pressure that has enabled AS carriers to resist severe forms of malaria. This advantage explains among other things why, although cosmopolitan, sickle cell disease predominates in Africa and its geographical distribution is superimposed on the malaria one.
\nThere are four major outbreaks of sickle cell disease based on genetic markers called haplotypes: Arabo-Indian, Beninese, Senegalese, and Central African or Bantu. Among Bantu haplotype carriers, the clinical expression of the sickle cell disease is more severe because of, among other things, the relatively low rate of the fetal hemoglobin (HbF) and other genetic factors.
\nAccording to WHO estimates, approximately 300–500,000 children are born each year with hemoglobinopathy; 80% of them are born in developing countries, particularly in Africa. The sickle cell anemia is a hemoglobin disorder most common in Africa, where every year about 200,000 newborns with sickle cell disease are diagnosed and 80% will not reach the age of 5 years.
\n\nIn the Democratic Republic of the Congo (DRC), it is estimated that there are 25–30% heterozygous healthy carriers (AS) and about 50,000 homozygous newborns (SS) each year, equating to 2% of newborns [1].
\nSickle cell disease is particularly common among people from sub-Saharan Africa, India, Saudi Arabia, and Mediterranean countries. Migration has increased the frequency of the offending gene in the Americas. In parts of sub-Saharan Africa, sickle cell disease affects up to 2% of newborns. More broadly, the prevalence of sickle cell disease (healthy carriers that inherited the mutant gene from only one parent) in equatorial Africa is 10–40%, compared to only 1–2% on the coast of North Africa and less than 1% in South Africa. This distribution reflects the fact that the sickle cell trait confers an advantage in terms of survival against malaria and that the selection pressure due to malaria has made the mutant gene more frequent, especially in areas with high malaria transmission. In West African countries such as Ghana and Nigeria, the rate of trafficking is 15–30%, while in Uganda, where marked tribal variations are observed, it is 45% among the Bahamas of west of the country [2].
\nA country’s problem of access to health care depends on its ability to finance the required health systems. This presupposes that the country concerned can offer structures, viable infrastructures, and competent personnel. However, low-income countries are struggling to find adequate budget balances to effectively meet the ever-growing health needs of their populations [3], and this is the case of the DR Congo and many other countries in sub-Saharan Africa.
\nIndeed, the current sources of financing useful for universal health coverage are essentially public expenditure, donor funding, and compulsory contributions to social health insurance [4]. Since under current conditions household contributions to health care remain relatively low, with a few exceptions when community initiatives are organized [5] or when the state is effectively involved, only two sources are secure: public spending and donor funding.
\nWith regard to public expenditure, the state budget is low, often well below Abuja’s commitments (15%) [6]. In 2013, for example, the Congolese state allocated only 4.3% of its budget to health, while all projections for spending in 2020 are below 3%. Worse still, this state contribution has only decreased from 2013 to date.
\nIt just so happens that a large part of the financing of the health system relies heavily on donor funding. And in order to cover all needs, donors will theoretically have to continually increase their contribution in proportion to the decrease in the state budget.
\nBut is such a hypothesis sustainable? Logically, the answer is negative, since donors cannot set themselves up as substitutes for failing health systems. Indeed, the study of the financing mechanism supported by the World Bank Group shows that “the health sector in the DRC suffers from several ills: low budget allocation; excessive household expenditure; dependence on external financing; available resources are poorly spent; budget execution is weak; governance problems; and the decentralization process is partly theoretical.” [7] The same study shows that a decrease in external financing is observed from 2017, just as the projections predict that the deficit financing observed since 2019 will have to continue until 2030.
\nIn the specific case of the management of sickle cell disease, are there other ways of compensating for this financial situation?
\nThe first way already present in the field is that of the actions of charitable associations. The contribution of several nongovernmental organizations involved in the management of specific pathologies such as sickle cell disease is very significant and constitutes a major support, especially for the most deprived populations. The action is perceptible not only in the DR Congo but also in other countries of sub-Saharan Africa [8]. But these efforts remain insignificant compared to the magnitude of the disease, and a country’s health policy cannot be based on impulses that are difficult to predict.
\nThe second way is the frequent use of donated second-hand equipment to reduce the costs they (the equipment) represent in the health-care chain. This resource can make a great contribution if best practices for donors and donors’ applicants are rigorously observed [9]. Unfortunately, very often this is not the case. Many donations still arrive in Africa without observing the prerequisites, which very often makes them either ineffective or unusable. On the other hand, recourse to donations of second-hand equipment should remain ad hoc, without becoming structural.
\nThe third way is that of optimizing the use of the means available to approach the objectives set. At the international level, donors have understood the challenge of structured and well-executed health financing. This obliges the partners to accompany for decades the countries receiving aid through specific national programs in order to reduce deficits and achieve the objectives.
\nIn the DR Congo, it is through the national health development program that the government and its partners express their willingness to provide effective and realistic solutions to the health problems of the DR Congo’s populations. This is generally applied for a period of 5 years, iteratively after evaluation.
\nThe partners in the health field remain practically the same for African countries, and their health problems are very similar: the fight against epidemics, malnutrition, and hereditary diseases. This probably explains why almost all countries in sub-Saharan Africa each develop a national health development plan, with virtually the same content except for a few differences. Examples include the DR Congo, Mali, Côte d’Ivoire, Burkina Faso, Benin, and Kenya. Therefore the methods applied by the partners for health support to the different countries will be very similar.
\nIn the national health development plans drawn up in many sub-Saharan African countries since 2000 to date, the improvement of infrastructures and the strengthening of the capacities of the medical technical platforms, including the expression of needs, acquisition, and maintenance of the systems acquired, are among the issues addressed. These topics involve a lot of money that will have to be put to good use; otherwise they can be a source of conscious or unconscious waste of scarce resources.
\nIn the case of the DR Congo, a reflection carried out on the medical technical platform shows that the objectives assigned to medical infrastructure and equipment through national programs are never achieved and the situation is getting more complicated every year. And yet, after evaluation, the same programs continue with the same objectives and use practically the same methods [10]. In order to minimize procurement costs, the WHO proposes a strategic procurement approach to achieve universal health coverage [11]. The illustration below is more explicit.
\n\n
This diagram raises fundamental questions that need to be answered if we are to succeed in our efforts. Indeed, countries cannot simply spend their money on universal health coverage. They must master purchasing, define the relationships between suppliers and buyers, define a purchasing strategy on the basis of useful data before disbursement, and finally move from passive purchasing to strategic purchasing.
\nThe fourth path, a corollary to the third, consists of mobilizing and structuring human skills, each in its own sector, to boost the strategic purchasing process. Since the problem of strategic purchasing concerns all sectors, what can the biomedical engineer’s contribution be as far as it is concerned?
\nFrom this point of view, the biomedical engineer can play an important role as a technical interface between the hospital, suppliers, and industry to make the right choices, as he is considered responsible for the research and development, architecture, selection, management, and safe use of all types of medical devices including single-use, reusable, prosthetic, implantable, and bionic devices, among others [12].
\nFor several decades, a developed country like France has been efficiently involving biomedical engineers in the medical equipment procurement process [13]. It organizes hospital purchasing, where biomedical engineers play a leading role in the purchasing function that has developed in companies over the last 30 years or so [14]. Better still, it is developing a purchasing policy that, among other things, brings together the skills of biomedical engineers to offer end customer equipment negotiated at attractive prices through group purchasing [15].
\nBut in the Democratic Republic of the Congo in particular and in sub-Saharan Africa in general, the biomedical engineering component does not seem to be sufficiently integrated at its best in the administrative and technical response mechanisms for improving health care. This aspect of things can only lead to a waste of funds when the actors at this stage do not master the equipment.
\nIn the field there are currently different types of electrophoresis equipment. However, to date, it is difficult to determine their number, origins, and brands, given the country’s size, diverse supply methods, and ineffective control mechanisms. Nevertheless, some facilities stand out from the others in terms of their number, mainly for historical and geographical, economic, and commercial reasons.
\nHistorically and geographically, sickle cell disease was first discovered in black populations in Africa and in the Arabian Peninsula; to date it remains more frequent in these geographical areas. Initially, this disease, which later turned out to be hereditary, did not directly affect the Indo-European populations.
\nHowever, due to massive immigration, countries with well-organized prevention programs are now faced with the problems of uninformed couples of allochthonous origin, as well as variations in specific population characteristics, which is rare among indigenous populations [16].
\nIn the early 1970s, screening tests were launched in the United States, and the American population of African origin was indeed very affected. In 1981, an experimental neonatal screening program began in the French Antilles and metropolitan France. It is set up by the Association Française pour le Dépistage et la Prévention du Handicap (AFDPHE). It was only in 2000 that neonatal screening for sickle cell disease was, this time, extended in whole France [17].
\nAs a result of the above, electrophoresis systems are initially more equipped with routine programs dedicated to serum protein analysis; programs for the analysis of hemoglobinopathies will gradually come into operation. Indeed, the implementation of new programs involves significant costs that the manufacturer cannot incur without a guaranteed return on investment.
\nSince the greatest need for sickle cell disease management is in Africa, countries with strong historical ties to the continent will find it easier to sell their technologies to this potential market. Among them we will mention the most prominent firms such as HELENA, TITAN, BECKMAN SEBIA, and BIORAD.
\nIn financial terms, the choice of equipment for routine needs will focus more on technical solutions that offer good results at lower cost. From this point of view, for the analysis of hemoglobinopathies, there is an established correlation between agarose gel electrophoresis on the one hand and capillary electrophoresis on the other [18]. On the other hand, high-performance liquid chromatography (HPLC) and capillary techniques are complementary and can be used routinely, knowing that capillary diagrams are easier to read and interpret than those obtained in HPLC. Even better, the development of the capillary technique for the characterization of hemoglobin variants suggested that it would become the first method of choice for screening in many clinical laboratories [19].
\nThis trend is confirmed with regular innovations from certain manufacturers, and this is the case of SEBIA, which has added to its range for the screening of hemoglobinopathies [20]. In addition, the capillary technique is more sensitive than the HPLC technique for the detection of certain variants such as hemoglobin New York [21].
\nOn the commercial level, thanks to their historical links with Africa, the first companies are more easily organized and set up local representations of their firms to facilitate the sale of their products. Among the first to obtain country-level representation are HELENA and BECKMAN.
\nBut for almost two decades, we have been observing the rise of the SEBIA company, which offers different models of equipment according to the needs and which regularly innovates its products. Today, this firm, now a world leader in the field of electrophoresis, is among those with a large number of distributors in Africa.
\nApart from the abovementioned brands, it is worth noting a slow penetration of products of Asian origin in the field. However, while the financial offer is attractive, distribution is still struggling to be structured in terms of regularity, reliability, and operation.
\nIn the present case of the management of sickle cell disease and in order to make his contribution relevant and effective, the biomedical engineer must make an inventory of the existing situation in the field, evaluate the technologies in the state of the art, and propose material solutions that present a better compromise between technical and technological contributions and optimization of the financial aspect.
\nThe following theories are drawn mainly from the book Appliances and Methods in Biochemistry and Molecular Biology, whose pedagogical approach seems clearer.
\nElectrophoresis has established itself over time as the method of choice for the qualification and quantification of different fractions in the management of hemoglobinopathy. It involves methods often embedded in laboratory materials. We review below the most common methods in electrophoresis of hemoglobin.
\nElectrophoresis is a physical method of separating molecules based on their difference in mobility, under the effect of an electric field. Zone electrophoresis, carried out on a solid support, is used to essentially separate the ionizable biological macromolecules, that is to say proteins, nucleic acids, and certain polyosides and proteoglycans.
\nLiquid vein electrophoresis, currently capillary electrophoresis, is also applied to small molecules, organic or mineral, and not necessarily ionizable. In the most common case, the movement of the molecule depends on several intrinsic (due to the molecule itself) and extrinsic parameters, in particular linked to migration buffers which play the role of solvent [22].
\nThis is the electrophoresis whose migration medium is stabilized by a real or sometimes virtual porous support as in the density gradient. In the case of a porous substrate, it is soaked with a buffer solution that both ensures conductivity and stabilizes the pH at the desired value. The molecules separate according to their different mobility in the system (they appear as migration zones) and will be visualized in a second time (“revelations”); we can even isolate them from the support for the preparatory purpose.
\nZone electrophoresis is mainly applied to the separation of macromolecules.
\nThese electrophoreses are often characterized by strong electroosmotic currents and sometimes intense Joule effect. The most common electroosmotic current is the electroendosmosis current, especially in polyosidic supports used at pH alkaline: the walls are negatively ionized as the macromolecules to be separated; positive buffer charges are attracted to the cathode and create a current that is in the opposite direction of electrophoretic migration.
\nAnother electroosmosis phenomenon is related to the structure of the support, which can be assimilated to a capillary network; the friction forces are greater on the edges of the support, and the center moves faster, distorting the migration band. Finally, the Joule effect heats the substrate and therefore evaporates the solvent; this is gradually replaced by the liquid of the vessels which rises in the support by capillary action, opposite both ends of the support, and annulling in the middle [23].
\nThe supports must be chemically inert (low adsorbent) and homogeneous (regular microporous structure), have good mechanical resistance (handling), and possibly allow densitometric reading [24].
\nPaper is a natural cellulose; it is no longer used much because it is not homogeneous. Paper electrophoresis provides a strong electroendosmosis current and is a source of parasitic adsorptions (added chromatography), resulting in poor resolution; the Joule effect is important with heating, evaporation, and even electrolysis of the buffer. At high pressure (1000–3000 V), paper electrophoresis is mainly used to separate peptides and amino acids.
\nCellulose acetate is much more homogeneous than paper; this support allows densitometric reading, but the electroendosmosis current remains high. The applications of cellulose acetate are mainly found in medical biology, allowing a quantitative densitometric reading of the protein fractions rather roughly separated (plasma and urinary proteins, lipoproteins, and hemoglobins), or finer (isoenzymes), applying the potential gradients of the order of 30 V cm−1. Resolution is poor, and reproducibility is average.
\nHowever, at alkaline pH (typically pH 8.6), Hb A2, Hb C, Hb E, and Hb O migrate to the same area, and Hb S, Hb D, and Hb G migrate at the same rate. In the case of suspicions of such hemoglobin abnormalities, an additional technique should therefore be considered [25].
\nStarch gel is a polyoside; electrophoresis on this gel allows the separation of complex or heterogeneous oligomeric protein associations. Starch gel is little used because it is opaque, fragile, and not very reproducible.
\nAgarose is desulfonated agar (purified agar); removal of sulfonates greatly limits the flow of electroendosmosis; agarose gels between 0.5 and 2% are not very viscous. They make it possible to carry out native electrophoresis as with the previous supports, that is, without denaturation of the macromolecules. Potential gradients up to 50 V cm−1 are usable for protein separation; agarose gel is gradually replacing cellulose acetate in most biomedical applications because agarose improves resolution and remains colorless, allowing a good densitometric reading. The agarose gel is also very homogeneous, thus ensuring good reproducibility, and is well adapted to zymographic reading [23].
\nThe distinction between the different variants Hb A2, Hb C, Hb E, and Hb O, as well as Hb S, Hb D, and Hb G, is most often made by electrophoresis on agarose gel at acidic pH (pH 6.0), which allows to separate Hb C, from Hb E and Hb O, as well as Hb S, from Hb D and Hb G. On the other hand, Hb E and Hb O, as well as Hb D and G, still cannot be differentiated by combining these two electrophoretic methods (cellulose acetate, agarose gel). In addition, these techniques have the disadvantage of consuming time and labor.
\nIn addition, they lack precision for the quantification of hemoglobin in low concentrations, such as Hb A2, and for the detection of fast-migrating variants, such as Hb H or Hb Bart’s. It is even now accepted that the quantification of variants by densitometry lacks precision and that these two electrophoresis techniques must be used for qualitative purposes. They are therefore most often used today in combination with another method, mainly high-performance liquid chromatography, which has a much higher accuracy.
\nA 1999 study by the College of American Pathologists showed a coefficient of variation (CV) of 33.6% for the quantification of Hb A2 at a concentration of 2.41% by densitometry from electrophoretic gels. By HPLC, the CV was 4.3% for Hb A2 at a concentration of 3.47%. Thus, the combination of these electrophoresis techniques with HPLC allows the identification and quantification of hemoglobin, the latter being performed by HPLC only [26].
\nIt is a polymer of acrylamide and N,N′-methylene-bisacrylamide (Bis), the acrylamide gel polymerization being obtained in the presence of a catalyst (ammonium persulfate) and a cross-linking agent (N,N,N′,N′-tetramethyl-ethylene-diamine [TEMED]). The porosity of gels can be very precise; it depends on the relative concentrations of acrylamide and Bis.
\nThe polymer obtained is very hydrophilic although insoluble in water and easy to mold even under small thicknesses (<1 mm); it is thermostable, not fragile, transparent, and inert chemically. There is almost no electroendosmosis flow and no macromolecules are absorbed. The resolutive power is generally superior to that of polyosidic gels using gradients of similar potential. The main disadvantage is that the acrylamide in solution is neurotoxic but also that the resulting porosities are very poorly adapted to very large molecules [27].
\nIt is made on paper, starch, cellulose acetate, agarose gel, and sometimes polyacrylamide whenever we do not want to touch the tertiary and quaternary structures of macromolecules, thus their biological activities. This method without denaturation is a priori applicable to all types of macromolecules, both in vertical and horizontal tanks [27].
\nIsoelectrofocusing, carried out on agarose gel or polyacrylamide gel, separates hemoglobin in a pH gradient according to their isoelectric point. To do this, ampholytes are introduced into the gel in order to create a continuous pH gradient under the effect of an electric field. The different hemoglobins contained in the sample to be analyzed will migrate to the region where the pH is equal to their isoelectric pH. At this position, the net load is zero, and the hemoglobin ceases to migrate and focuses into a narrow band.
\nThis technique, capable of separating hemoglobin variants with isoelectric points different from 0.02 pH units, has excellent resolution and is very useful for detecting abnormal hemoglobin in the newborn. In fact, it allows a good separation of hemoglobins F, A, and S. Moreover, the electrical isofocusing is perfectly adapted to the analysis of large series. On the other hand, the main limitations of this method are a long and complex implementation. Therefore, its use is almost reserved for neonatal screening of hemoglobinopathies [28, 29].
\nTypically, capillary electrophoresis is performed in a fused silica capillary coated with a polyamide layer of 20–200 μm of internal diameter and 20–200 cm of length. The capillary, placed in a thermostatization system, is filled with a buffer solution and plunges into two tanks containing the same solution. Each tank is connected to an electrode connected to a current generator. A large potential difference (several thousand volts) is applied to the terminals of each capillary to separate the molecules on the basis of their charge/mass ratio [30].
\nThe use of a capillary has a double advantage: increases the sensitivity of the detection since a reading window in the capillary allows an absorbance reading with a very small optical path and increases the resolution by applying the potential difference of more than 10,000 V since it is easy to regulate the capillary in temperature [31].
\nIn this method, the buffer solution in contact with the two tanks of the system constitutes the support. Since liquid has no specific form, the buffer uses the capillary as a solid support, contributing also to electroendosmosis current production.
\nThere are several methods used in capillary electrophoresis including capillary zone electrophoresis (CZE), capillary gel electrophoresis (CGE), and micellar electrokinetic chromatography (MECC) [32]. In this study, we will limit ourselves to capillary zone electrophoresis which is the most exploited for hemoglobinopathy.
\nThis method can be performed on a single-fused silica capillary in which an electroosmotic flux develops. It causes the negative molecules to the cathode where the detection is carried out, the injection being anodic.
\nThe electroosmotic flux depends on the temperature, the ionic force, and the concentration of organic solvent.
\nWe will limit ourselves here to the most common routine techniques for the analysis of hemoglobinopathies in the Democratic Republic of the Congo in particular and in sub-Saharan Africa in general. They are often affected by accessibility during acquisition, ease of commissioning, operation, maintenance and supply, and cost.
\nOn one side, our analysis is based globally on equipment meeting international standards such as ISO, FDA, and CE certification. Field experience shows that such equipment can operate for about 7 years, if the manufacturer’s operating recommendations are followed.
\nOn the other hand, high-performance liquid chromatography has been developed to allow both the detection and confirmation of hemoglobinopathy in newborns with high sensitivity and specificity. In fact, its good sensitivity to the major variants involved in pathology and its speed of completion (about 3 min per sample), allowing the analysis of a large number of samples, have made HPLC a particularly suitable method for screening for hemoglobin abnormalities [33].
\nHowever, we will not discuss this technique in this study because, since its performance is comparable to that of the HPLC method, capillary electrophoresis quickly became the method of choice, just like HPLC, for the study of hemoglobinopathy. In addition, it is of economic interest: although the material cost is comparable to that of the HPLC, the expenditures on reagents are much lower. Indeed, the price of a capillary is much lower than that of a chromatography column, and the volumes of buffer used are much lower, about 1000 times less [34].
\nManual systems for native electrophoresis (on cellulose acetate and agarose gel) or isoelectrofocusing offer the best acquisition possibility both in terms of cost and operational constraints. Their limits both in the separation and in the identification of hemoglobin variants will be used for the routine forms to be specified by the customer (identification of the electrophoretic profile, identification of specific variants).
\nThe coupling of these methods to the reading system (densitometers) makes it possible to quantify the separate variants. And from this point of view, agarose gel electrophoresis offers better performance than cellulose acetate. On the other hand, the reagents are in the form of combs which often require a minimum of seven samples. Such a constraint requires, for economic reasons, to launch the samples in series of seven, which requires a consequent sizing and proper holding wire.
\nFor native electrophoresis the system is usually composed of a current generator and a migration tank. For isoelectrofocusing, the system consists of a stabilized supply, an isoelectrofocusing, unit, and a circulating cryostat.
\nThe devices typically contain conventional electronic parts and boards, used in the manufacture of power generators. These components are often not complex, and do not require advanced technical repair. In addition, it has been found that when equipment actually meets ISO, FDA, or CE marking standards, it works well and lasts for a long time.
\nThese systems can be used in very small laboratories, without large volume flow of samples, for the screening of hemoglobinopathies, by planning a periodic operation. Indeed, the pre-analytical phase requires a lot of sample preparation time and immobilizes the staff for quite a long time. They can also be used in medium laboratories as a backup system.
\nThe isoelectrofocusing system will be more targeted for newborn screening because it allows for a good separation of the Hb F, Hb A, and Hb S fractions, which assumes that the system is usually installed near a maternity ward.
\nSemiautomatic systems for native electrophoresis on cellulose acetate or agarose gel offer the possibility of processing large series of samples. Although the cost of the system is still high for a large number of health facilities, the manual routine is clearly improved. Semiautomatic systems (on cellulose acetate or agarose gel) are embedded on compact systems generally comprising a migration and coloring modules, which considerably reduce user handling.
\nThe reading system, often equipped with advanced post-processing software, can be incorporated or remote. Nevertheless, the results obtained show the same limits as in the case of manual methods because the operating principles of the migration and coloring units taken separately are the same as those of the manual system.
\nThe semiautomatic system is generally composed of a compact unit comprising a thermoregulated migration module connected to a current generator and a fluidic module for coloring migrated gels. Technologically, an intelligent electronic unit manages the high voltage of the migration module, the fluidics of the coloring module, and the application programs for the two modules.
\nGenerally, devices typically contain conventional electronic parts and boards. The process control is often ensured by position and temperature sensors. As their complexity is not great, maintenance can be easily carried out by a duly trained biomedical technician.
\nThese systems can equip medium-sized laboratories by planning either periodic operation or continuous operation, depending on the flow of samples. They are fairly widespread in the private laboratories which can obtain them and some public hospital laboratories often on behalf of specific programs. User maintenance monitoring must be ensured to guarantee proper functioning, and periodic annual maintenance must be carried out, insured in accordance with the manufacturer’s recommendations.
\nAutomatic techniques (only capillary zone electrophoresis) are the best offer, both in terms of flexibility of use and technical performance. Prices are still very high for many customers in Africa. Nevertheless, a good expression of needs and an adequate exploitation planning can allow a return on investment in an acceptable time.
\nThese techniques are carried out on compact systems, generally comprising capillaries at the ends plunging into reservoirs of buffer solution, themselves connected to the current generator. The apparatus also includes a detection system, most often a UV–visible spectrophotometer, linked to the wavelength of specific absorption of hemoglobin at 415 nm.
\nMore sophisticated technology includes a capillary thermoregulation system, a control system comprising various sensors that manage optics, robotics, pneumatics, and detection, and a set of intelligent electronic cards capable of communicating with each other. Unlike previous methods, this method allows both to launch samples in an emergency without restriction and to process large series of samples.
\nIn view of the complexity of its technology, management requires competent personnel who are regularly trained by the manufacturer. Water quality and user maintenance of equipment are of paramount importance to ensure the quality of results. This assumes that the supplier provides user training for the best care.
\nThanks to their flexibility in the work organization, these automated systems can equip laboratories with small volumes of samples, as well as those which process large volumes. Indeed, there are small and large models of automata to cover all these needs. Because of their high prices, these automata are acquired in public hospitals on the basis of research projects and specific programs. Private clinics acquire them for routine because of their performance. However they do have a few requirements that must be observed: the operating environment must be less dusty, the quality of electricity flawless, the quality of pure water, and regular maintenance.
\nWe present in Table 1 a summary of different devices that we have reviewed.
\nMigration support | \nAdvantages | \nDisadvantages | \nSystems | \nMaterials | \nMaintenance level | \nConstraints | \nAverage cost (€) | \n
---|---|---|---|---|---|---|---|
Paper | \n- Native electrophoresis - Separation of amino acids and peptides | \n- High electroendosmosis current - Significant Joule effect - Bad resolution - Poor homogeneity - Parasite adsorptions | \nManual | \n- Current generator | \n- Low | \nGood grounding | \n\n |
- Migration tank | \n- Free | \nFree | \n7000 | \n||||
- Densitometer | \n- Low | \nFree | \n\n | ||||
Cellulose acetate | \n- Native electrophoresis - More homogeneous than paper - Separation of plasma and urine proteins, lipoproteins, hemoglobin, and isoenzymes | \n- High electroendosmosis currents - Poor resolution - Medium reproducibility - The hemoglobins A2, C, E, and O migrate in the same zone - The hemoglobins S, D, and G migrate at the same rate - Long implementation | \nManual | \n- Current generator | \n- Low | \nGood grounding | \n\n |
- Migration tank | \n- Free | \nFree | \n7000 | \n||||
- Densitometer | \n- Low | \nFree | \n\n | ||||
Semiautomatic | \n- Compact staining and migration module and densitometer (integrated or no) | \n- Medium - Medium | \n- Steady voltage - Good grounding - Air-conditioned room - Inverter | \n15,000 | \n|||
Agarose gel | \n-Native electrophoresis - Nonnative electrophoresis - Limited electroendosmosis flow - Improved resolution - Very homogeneous - Separation of Hb C from Hb E and Hb O - Separation of Hb S from Hb D and Hb G | \n- No separation between HB E and Hb O - No separation between Hb D and Hb G - Inaccurate for the quantification of hemoglobin with low concentration (Hb A2) and for the detection of variants with fast migration (Hb H and Hb Bart’s) - Long Implementation | \nManual | \n- Current generator | \n-Low | \nGood grounding | \n\n |
- Migration tank | \n-Free | \nFree | \n7000 | \n||||
- Densitometer | \n- Low | \nFree | \n\n | ||||
Semiautomatic | \n- Compact staining and migration module and densitometer (integrated or no) | \n- Medium - Medium | \n- Steady stable - Good grounding - Air-conditioned room - Inverter | \n15,000 | \n|||
\n | \n\n | \n\n | \nSemiautomatic | \n-Isoelectrofocusing module | \n- Medium | \n- Steady voltage - Good grounding - Air-conditioned room - Inverter | \n150,000 | \n
-Circulation cryostat | \n- Medium | \n- Steady voltage - Good grounding - Air-conditioned room - Inverter | \n\n | ||||
Liquid vein (capillaries) | \n- Fast - Precise quantification of hemoglobin fractions - Flexible (small and large series) | \n-High water quality -Demanding environment | \nAutomatic | \n- Compact migration and detection module | \n- High | \n- Steady voltage - Good grounding - Air-conditioned room - Inverter - Water quality | \n30,000 | \n
Summary table of different devices.
For better use of data in Table 1, it will be broken down below with two subsidiaries: Tables 2 and 3.
\nPerformances | \nMigration support | \n|||
---|---|---|---|---|
Paper | \nCellulose acetate | \nAgarose gel | \nLiquid vein | \n|
Nonnative electrophoresis | \n\n | \n | ✓ | \n✓ | \n
Native electrophoresis | \n✓ | \n✓ | \n✓ | \n✓ | \n
Separation of amino acids and peptides | \n✓ | \n✓ | \n✓ | \n✓ | \n
Homogeneity | \n✓ (poor) | \n✓ (medium) | \n✓ (good) | \n✓ | \n
Separation of plasma and urine proteins, lipoproteins, hemoglobin, and isoenzymes | \n— | \n✓ | \n✓ | \n✓ | \n
Resolution | \n✓ (bad) | \n✓ (poor) | \n✓ | \n✓ | \n
Separation of Hb A2 from Hb C, Hb E, and Hb O | \n— | \nx (migrate in the same area) | \n✓ | \n✓ | \n
Separation of Hb C from Hb E and Hb O | \n— | \nx | \n✓ | \n✓ | \n
Separation of Hb S and Hb from Hb D and G | \n— | \nx (migrate at the same rate) | \n✓ | \n✓ | \n
Separation of Hb S and Hb O | \n— | \nx | \nx | \n✓ | \n
Separation of Hb D and Hb G | \n— | \nx | \nx | \n✓ | \n
Rapidity | \nLow | \nGood | \nGood | \nFast | \n
Quantification of hemoglobin with low concentration (Hb A2) | \n— | \nx | \nx | \n✓ | \n
Detection of fast-migrating variants (Hb H, Hb Bart’s) | \n— | \nx | \nx | \n✓ | \n
Precise quantification of hemoglobin fractions | \n— | \nx | \nx | \n✓ | \n
Flexible (small and wide series) | \n— | \nx | \nx | \n✓ | \n
Electroendosmosis current | \nVery high | \nHigh | \nHigh | \nHigh | \n
Joule effect | \n✓ | \n— | \n— | \n— | \n
Pest adsorption | \n✓ | \nx | \nx | \nx | \n
Reproducibility | \n— | \n✓ (medium) | \n✓ | \n✓ | \n
Water quality | \nNormal | \nNormal | \nNormal | \nHigh | \n
Demanding environment | \nNormal | \nNormal | \nNormal | \nHigh | \n
Performance comparison based on migration support.
\n | Systems | \n||
---|---|---|---|
\n | Manual | \nSemiautomatic | \nAutomatic | \n
Migration support | \n-Paper -Cellulose acetate -Agarose gel | \nCellulose acetate -Agarose gel | \n-Vein liquid (capillaries) | \n
Equipment | \n-Power generator -Tank migration -Densitometer | \n-Module staining and migration -Densitometer (integrated or not) | \n-Module compact migration and detection | \n
Installation constraints | \n-Quality ground line -Quality voltage | \n-Quality ground line -Quality voltage -Quality air conditioning | \n-Quality ground line -Quality voltage -Quality air conditioning -Quality of water | \n
Execution time | \nTrès long | \nLong | \nCourt | \n
Acquisition cost (en €) | \n7000 | \n15,000 | \n3000 | \n
Maintenance level | \nBas | \nMoyen | \nHaut | \n
Comparison of systems in terms of hardware, installation constraints, acquisition cost, and maintenance level.
The information contained in Table 2 will highlight the performance of the equipment according to different migration or embedded media available, while those in Table 3 will compare the systems sold compared to hardware, installation constraints, execution time, and cost.
\nA cursory reading shows that the most efficient migration support remains one of the capillary methods (liquid vein): this support brings in itself the best return for the resolution, reproducibility, discrimination, and quantification, while the parasitic effects are almost nonexistent. But medical needs and health goals differ from one level to another and do not require in all cases the acquisition of such technology.
\nFor routine screening for sickle cell disease, for example, the performance of migration on cellulose acetate amply suffices needs. This assumes that the precise separation variants like Hb A2, Hb C, Hb E, and Hb O are not a need first. On the other hand, as part of the requirements to cover, the effective separation of Hb S and Hb C variant is needed, and migration on agarose gel will best meet this requirement.
\nIf, during treatment, abnormal forms of hemoglobin are associated, then the choice of medium will be directed towards agarose gel for a qualitative indication or the liquid vein for a quantitative indication of Hb A2. Indeed, abnormally low Hb A and abnormally high Hb A2 correlate with the presence of some abnormal forms of hemoglobin (alpha or beta thalassemia, etc.).
\nIf precise separation and precise quantification of the variants Hb A2, Hb C, Hb E, and Hb O are required, then the liquid vein (capillary) support should be readily chosen.
\nDepending on work previously defined criteria, this table can guide the choice of performance basis based migration media.
\nBut the only performance criteria are not sufficient to make a choice of appropriate materials. It will also take into account industrial supply in terms of existing systems, the materials that make up, their costs, and maintenance requirements. Below we provide a table that can guide us in assessing the choices to be made.
\nThe line “migration support” is added in order to link Tables 2 and 3.
\nThe analysis of the table shows that as the system moves from manual to fully automated, the necessary hardware is gradually being integrated into a compact module. From this point of view, this development provides an appreciable response to the ergonomic problems that are becoming very frequent in laboratories.
\nOn the other hand, we observe that the installation constraints are more demanding when the analysis module becomes more compact. Indeed, in addition to the quality of the electrical ground line and voltage which greatly affect the operation of systems provided, the environment requires better temperature control (air conditioning), for example, besides the requirements of the water quality.
\nThe time required to perform the analyses is a very important parameter in the choice of equipment. On the one hand, it allows better management of the patient queue, and on the other hand, it ensures the management of reagents and consumables with a limited life. When the volume of samples to be treated in a routine manner is small, manual systems are suitable for both patient satisfaction and reactive management. If the volume of samples to be processed requires more than 1 day of work, the semiautomated system should be considered to resolve the queue. Finally, if the volume of samples increases further, the fully automated system will better meet expectations.
\nThe management of reagents in the laboratory depends heavily on two important parameters that should be noted: this is the expiry date and the stability time after opening of the reagent. The expiry date indicated on the label is usually the date after which the manufacturer no longer guarantees the validity of the results, while the stability time after opening of the reagent indicates the period after which the manufacturer no longer guarantees its reliability after the first use.
\nSince the stability time is shorter than the expiry date itself, it will be necessary to ensure that each open reagent is consumed before that time. For example, the use of a reagent that has a stability time of 60 days and can analyze 1000 samples in a laboratory that receives only 10 samples per day is a waste. The use of this reagent before maturity requires an average daily rate of 20 samples, considering that the laboratory operates 6 days a week. Ten samples/day instead of 20 samples/day will theoretically cause the damage of half the reagent.
\nThe level of maintenance, and in turn cost, follows the same trend: more compact system is provided and the higher level of maintenance.
\nSince the cost of acquiring systems increases with the complexity of the technology, it is important to ask good questions, find good answers, and make good choices based on real needs, to achieve savings. As an example, is it necessary to acquire a semiautomatic agarose gel system when, taking into account the medical needs and the volume of samples to be treated, the manual system on agarose gel support gives us satisfaction? Affirmative answer incurs an additional a non-justified expenditure of 8000€. Worse still, such equipment oversizing compromises a substantial depreciation because it will be under-utilized.
\nThe management of any pathology implies the appropriate choice of techniques and technologies. Indeed, beyond the medical needs that are priority, a control equipment acquisition cost is one of the major parameters providing effective support to strategies put in place.
\nVery often in sub-Saharan countries, the aspect of the consequent acquisition of the necessary technology is not always thorough, and this can lead a poor quality of reported results, the inaccessible test cost for the poorest people, and the delicate operation of projects being implemented.
\nThe choice of equipment performed after an objective needs analysis enables to optimize the process of acquiring, to ensure the quality of reported results, and to provide more accessible costs to target populations generally poor.
\nAccording to WHO recommendations, technology assessment, device evaluation, needs planning, selection and acquisition, installation, commissioning, and finally monitoring should be part of a successful acquisition procedure [35].
\nSuch an approach should involve all stakeholders, namely, doctors, managers, biomedical engineers, and users.
\nIn the case of sickle cell anemia, the inventory of installed park shows that beside manual methods, diagnostic techniques most common in the Democratic Republic of the Congo and even in sub-Saharan Africa are phenotypic techniques. These include the electrophoresis at different pH, the isoelectrofocusing, the capillary electrophoresis, and the high-pressure liquid chromatography. The first three mentioned are most used for their reliability, flexibility, ease of installation, and maintenance.
\nThe prices of the equipment listed in the table remain indicative. We have taken into account only good-quality equipment commonly used in the DR Congo and by extension in other countries of sub-Saharan Africa.
\nFor low-income countries, the costs of such facilities are still high overall. Indeed, the increase in health expenditure, which represents 10% of the world’s gross domestic product (GDP), is faster than the growth of the world economy. According to a new World Health Organization report on global health spending, it is increasing rapidly, particularly in low- and middle-income countries, where spending is increasing at an average of 6% per year, compared to 4% in high-income countries.
\nHealth expenditure is assumed by governments, by individuals who pay for their own care (out-of-pocket payments), and by other entities such as voluntary health insurance schemes, employer-sponsored schemes, and nongovernmental organizations. On average, 51% of a country’s health expenditure is assumed by general government and more than 35% by individuals in the form of direct expenditure. One of the consequences of this situation is that every year 100 million people are plunged into extreme poverty [36].
\nFor the countries concerned, the acquisition of these health technologies requires new upstream procurement strategies to meet acquisition and operating costs. And from this point of view, some developed countries such as France are now developing group procurement procedures in public hospitals.
\nAccording to a recent study conducted in the Democratic Republic of the Congo on an investment in capillary electrophoresis equipment for a project on sickle cell disease, this can contribute to improve quality and low cost of tests, if a complete analysis of needs is carried out upstream.
\nIn this study, for an equipment activity extending over a period of 7 years, the cost of acquisition and maintenance cost represent, respectively, 11.4% and 5.0% of the total life cycle cost.
\nBut when the activity of the same equipment is done over a period of 2 years, the cost of acquisition and maintenance cost represent, respectively, 31.0% and 3.9% of the total life cycle cost.
\nAdded to this, for the same annual rate, the minimum unit test cost is € 3.9 for a 7-year activity cycle, whereas it costs € 5 if the activity cycle is reduced to 2 years [37].
\nTherefore, it should be noted that when operating conditions remain the same, amortization of equipment carried on shorter lead times significantly increases the cost of the test at the expense of patients.
\nEven though this example only concerns electrophoresis capillary equipment, extrapolating conclusions on agarose gel equipment is possible for the following reasons: installation, operation, and maintenance are less demanding than for capillary technology.
\nWhile sub-Saharan Africa is the most affected region in the world for sickle cell disease, research and care are relatively slow.
\nAt its 60th session held in Malabo from 30 August to 3 September 2010, the WHO was already raising the option of a strategy for its African region. Nine years after the effects are hardly noticeable.
\nThe management improvement of this pathology solicits several challenges, including the one concerning the technical platform necessary for diagnosis. The costs of acquiring and operating equipment often require significant fundraising, which is often lacking. The missing financial means are often one of the first obstacles to the launching of the relevant programs.
\nThe study mentioned above proves that it is possible to optimize the available resources, however modest they may be, in order to obtain good and lasting results.
\nIn the case of biomedical equipment, it is sufficient to involve the right people to achieve the expected results. Policymakers in sub-Saharan African countries must therefore integrate the skills of biomedical engineers into the design and start-up of medical projects so that they, in turn, contribute effectively to improve the quality of medical care populations.
\nBy way of introduction, the quotation below significantly translates the problem of sickle cell disease both in the Democratic Republic of the Congo and in most countries of sub-Saharan Africa: \n“Sickle cell disease is a genetic inherited disorder where hemoglobin (Hb) normal A (HbA) is replaced by another abnormal, HbS.”\n
Sickle cell anemia is a serious disease with manifestations and complications that directly affect the patient quality of life and his entourage. This is not a shameful disease contrary; it is linked to a mutation that arose for us to defend against severe forms of malaria. It is due to the so-called selective pressure that has enabled AS carriers to resist severe forms of malaria. This advantage explains among other things why, although cosmopolitan, sickle cell disease predominates in Africa and its geographical distribution is superimposed on the malaria one.
\nThere are four major outbreaks of sickle cell disease based on genetic markers called haplotypes: Arabo-Indian, Beninese, Senegalese, and Central African or Bantu. Among Bantu haplotype carriers, the clinical expression of the sickle cell disease is more severe because of, among other things, the relatively low rate of the fetal hemoglobin (HbF) and other genetic factors.
\nAccording to WHO estimates, approximately 300–500,000 children are born each year with hemoglobinopathy; 80% of them are born in developing countries, particularly in Africa. The sickle cell anemia is a hemoglobin disorder most common in Africa, where every year about 200,000 newborns with sickle cell disease are diagnosed and 80% will not reach the age of 5 years.
\n\nIn the Democratic Republic of the Congo (DRC), it is estimated that there are 25–30% heterozygous healthy carriers (AS) and about 50,000 homozygous newborns (SS) each year, equating to 2% of newborns [1].
\nSickle cell disease is particularly common among people from sub-Saharan Africa, India, Saudi Arabia, and Mediterranean countries. Migration has increased the frequency of the offending gene in the Americas. In parts of sub-Saharan Africa, sickle cell disease affects up to 2% of newborns. More broadly, the prevalence of sickle cell disease (healthy carriers that inherited the mutant gene from only one parent) in equatorial Africa is 10–40%, compared to only 1–2% on the coast of North Africa and less than 1% in South Africa. This distribution reflects the fact that the sickle cell trait confers an advantage in terms of survival against malaria and that the selection pressure due to malaria has made the mutant gene more frequent, especially in areas with high malaria transmission. In West African countries such as Ghana and Nigeria, the rate of trafficking is 15–30%, while in Uganda, where marked tribal variations are observed, it is 45% among the Bahamas of west of the country [2].
\nA country’s problem of access to health care depends on its ability to finance the required health systems. This presupposes that the country concerned can offer structures, viable infrastructures, and competent personnel. However, low-income countries are struggling to find adequate budget balances to effectively meet the ever-growing health needs of their populations [3], and this is the case of the DR Congo and many other countries in sub-Saharan Africa.
\nIndeed, the current sources of financing useful for universal health coverage are essentially public expenditure, donor funding, and compulsory contributions to social health insurance [4]. Since under current conditions household contributions to health care remain relatively low, with a few exceptions when community initiatives are organized [5] or when the state is effectively involved, only two sources are secure: public spending and donor funding.
\nWith regard to public expenditure, the state budget is low, often well below Abuja’s commitments (15%) [6]. In 2013, for example, the Congolese state allocated only 4.3% of its budget to health, while all projections for spending in 2020 are below 3%. Worse still, this state contribution has only decreased from 2013 to date.
\nIt just so happens that a large part of the financing of the health system relies heavily on donor funding. And in order to cover all needs, donors will theoretically have to continually increase their contribution in proportion to the decrease in the state budget.
\nBut is such a hypothesis sustainable? Logically, the answer is negative, since donors cannot set themselves up as substitutes for failing health systems. Indeed, the study of the financing mechanism supported by the World Bank Group shows that “the health sector in the DRC suffers from several ills: low budget allocation; excessive household expenditure; dependence on external financing; available resources are poorly spent; budget execution is weak; governance problems; and the decentralization process is partly theoretical.” [7] The same study shows that a decrease in external financing is observed from 2017, just as the projections predict that the deficit financing observed since 2019 will have to continue until 2030.
\nIn the specific case of the management of sickle cell disease, are there other ways of compensating for this financial situation?
\nThe first way already present in the field is that of the actions of charitable associations. The contribution of several nongovernmental organizations involved in the management of specific pathologies such as sickle cell disease is very significant and constitutes a major support, especially for the most deprived populations. The action is perceptible not only in the DR Congo but also in other countries of sub-Saharan Africa [8]. But these efforts remain insignificant compared to the magnitude of the disease, and a country’s health policy cannot be based on impulses that are difficult to predict.
\nThe second way is the frequent use of donated second-hand equipment to reduce the costs they (the equipment) represent in the health-care chain. This resource can make a great contribution if best practices for donors and donors’ applicants are rigorously observed [9]. Unfortunately, very often this is not the case. Many donations still arrive in Africa without observing the prerequisites, which very often makes them either ineffective or unusable. On the other hand, recourse to donations of second-hand equipment should remain ad hoc, without becoming structural.
\nThe third way is that of optimizing the use of the means available to approach the objectives set. At the international level, donors have understood the challenge of structured and well-executed health financing. This obliges the partners to accompany for decades the countries receiving aid through specific national programs in order to reduce deficits and achieve the objectives.
\nIn the DR Congo, it is through the national health development program that the government and its partners express their willingness to provide effective and realistic solutions to the health problems of the DR Congo’s populations. This is generally applied for a period of 5 years, iteratively after evaluation.
\nThe partners in the health field remain practically the same for African countries, and their health problems are very similar: the fight against epidemics, malnutrition, and hereditary diseases. This probably explains why almost all countries in sub-Saharan Africa each develop a national health development plan, with virtually the same content except for a few differences. Examples include the DR Congo, Mali, Côte d’Ivoire, Burkina Faso, Benin, and Kenya. Therefore the methods applied by the partners for health support to the different countries will be very similar.
\nIn the national health development plans drawn up in many sub-Saharan African countries since 2000 to date, the improvement of infrastructures and the strengthening of the capacities of the medical technical platforms, including the expression of needs, acquisition, and maintenance of the systems acquired, are among the issues addressed. These topics involve a lot of money that will have to be put to good use; otherwise they can be a source of conscious or unconscious waste of scarce resources.
\nIn the case of the DR Congo, a reflection carried out on the medical technical platform shows that the objectives assigned to medical infrastructure and equipment through national programs are never achieved and the situation is getting more complicated every year. And yet, after evaluation, the same programs continue with the same objectives and use practically the same methods [10]. In order to minimize procurement costs, the WHO proposes a strategic procurement approach to achieve universal health coverage [11]. The illustration below is more explicit.
\n\n
This diagram raises fundamental questions that need to be answered if we are to succeed in our efforts. Indeed, countries cannot simply spend their money on universal health coverage. They must master purchasing, define the relationships between suppliers and buyers, define a purchasing strategy on the basis of useful data before disbursement, and finally move from passive purchasing to strategic purchasing.
\nThe fourth path, a corollary to the third, consists of mobilizing and structuring human skills, each in its own sector, to boost the strategic purchasing process. Since the problem of strategic purchasing concerns all sectors, what can the biomedical engineer’s contribution be as far as it is concerned?
\nFrom this point of view, the biomedical engineer can play an important role as a technical interface between the hospital, suppliers, and industry to make the right choices, as he is considered responsible for the research and development, architecture, selection, management, and safe use of all types of medical devices including single-use, reusable, prosthetic, implantable, and bionic devices, among others [12].
\nFor several decades, a developed country like France has been efficiently involving biomedical engineers in the medical equipment procurement process [13]. It organizes hospital purchasing, where biomedical engineers play a leading role in the purchasing function that has developed in companies over the last 30 years or so [14]. Better still, it is developing a purchasing policy that, among other things, brings together the skills of biomedical engineers to offer end customer equipment negotiated at attractive prices through group purchasing [15].
\nBut in the Democratic Republic of the Congo in particular and in sub-Saharan Africa in general, the biomedical engineering component does not seem to be sufficiently integrated at its best in the administrative and technical response mechanisms for improving health care. This aspect of things can only lead to a waste of funds when the actors at this stage do not master the equipment.
\nIn the field there are currently different types of electrophoresis equipment. However, to date, it is difficult to determine their number, origins, and brands, given the country’s size, diverse supply methods, and ineffective control mechanisms. Nevertheless, some facilities stand out from the others in terms of their number, mainly for historical and geographical, economic, and commercial reasons.
\nHistorically and geographically, sickle cell disease was first discovered in black populations in Africa and in the Arabian Peninsula; to date it remains more frequent in these geographical areas. Initially, this disease, which later turned out to be hereditary, did not directly affect the Indo-European populations.
\nHowever, due to massive immigration, countries with well-organized prevention programs are now faced with the problems of uninformed couples of allochthonous origin, as well as variations in specific population characteristics, which is rare among indigenous populations [16].
\nIn the early 1970s, screening tests were launched in the United States, and the American population of African origin was indeed very affected. In 1981, an experimental neonatal screening program began in the French Antilles and metropolitan France. It is set up by the Association Française pour le Dépistage et la Prévention du Handicap (AFDPHE). It was only in 2000 that neonatal screening for sickle cell disease was, this time, extended in whole France [17].
\nAs a result of the above, electrophoresis systems are initially more equipped with routine programs dedicated to serum protein analysis; programs for the analysis of hemoglobinopathies will gradually come into operation. Indeed, the implementation of new programs involves significant costs that the manufacturer cannot incur without a guaranteed return on investment.
\nSince the greatest need for sickle cell disease management is in Africa, countries with strong historical ties to the continent will find it easier to sell their technologies to this potential market. Among them we will mention the most prominent firms such as HELENA, TITAN, BECKMAN SEBIA, and BIORAD.
\nIn financial terms, the choice of equipment for routine needs will focus more on technical solutions that offer good results at lower cost. From this point of view, for the analysis of hemoglobinopathies, there is an established correlation between agarose gel electrophoresis on the one hand and capillary electrophoresis on the other [18]. On the other hand, high-performance liquid chromatography (HPLC) and capillary techniques are complementary and can be used routinely, knowing that capillary diagrams are easier to read and interpret than those obtained in HPLC. Even better, the development of the capillary technique for the characterization of hemoglobin variants suggested that it would become the first method of choice for screening in many clinical laboratories [19].
\nThis trend is confirmed with regular innovations from certain manufacturers, and this is the case of SEBIA, which has added to its range for the screening of hemoglobinopathies [20]. In addition, the capillary technique is more sensitive than the HPLC technique for the detection of certain variants such as hemoglobin New York [21].
\nOn the commercial level, thanks to their historical links with Africa, the first companies are more easily organized and set up local representations of their firms to facilitate the sale of their products. Among the first to obtain country-level representation are HELENA and BECKMAN.
\nBut for almost two decades, we have been observing the rise of the SEBIA company, which offers different models of equipment according to the needs and which regularly innovates its products. Today, this firm, now a world leader in the field of electrophoresis, is among those with a large number of distributors in Africa.
\nApart from the abovementioned brands, it is worth noting a slow penetration of products of Asian origin in the field. However, while the financial offer is attractive, distribution is still struggling to be structured in terms of regularity, reliability, and operation.
\nIn the present case of the management of sickle cell disease and in order to make his contribution relevant and effective, the biomedical engineer must make an inventory of the existing situation in the field, evaluate the technologies in the state of the art, and propose material solutions that present a better compromise between technical and technological contributions and optimization of the financial aspect.
\nThe following theories are drawn mainly from the book Appliances and Methods in Biochemistry and Molecular Biology, whose pedagogical approach seems clearer.
\nElectrophoresis has established itself over time as the method of choice for the qualification and quantification of different fractions in the management of hemoglobinopathy. It involves methods often embedded in laboratory materials. We review below the most common methods in electrophoresis of hemoglobin.
\nElectrophoresis is a physical method of separating molecules based on their difference in mobility, under the effect of an electric field. Zone electrophoresis, carried out on a solid support, is used to essentially separate the ionizable biological macromolecules, that is to say proteins, nucleic acids, and certain polyosides and proteoglycans.
\nLiquid vein electrophoresis, currently capillary electrophoresis, is also applied to small molecules, organic or mineral, and not necessarily ionizable. In the most common case, the movement of the molecule depends on several intrinsic (due to the molecule itself) and extrinsic parameters, in particular linked to migration buffers which play the role of solvent [22].
\nThis is the electrophoresis whose migration medium is stabilized by a real or sometimes virtual porous support as in the density gradient. In the case of a porous substrate, it is soaked with a buffer solution that both ensures conductivity and stabilizes the pH at the desired value. The molecules separate according to their different mobility in the system (they appear as migration zones) and will be visualized in a second time (“revelations”); we can even isolate them from the support for the preparatory purpose.
\nZone electrophoresis is mainly applied to the separation of macromolecules.
\nThese electrophoreses are often characterized by strong electroosmotic currents and sometimes intense Joule effect. The most common electroosmotic current is the electroendosmosis current, especially in polyosidic supports used at pH alkaline: the walls are negatively ionized as the macromolecules to be separated; positive buffer charges are attracted to the cathode and create a current that is in the opposite direction of electrophoretic migration.
\nAnother electroosmosis phenomenon is related to the structure of the support, which can be assimilated to a capillary network; the friction forces are greater on the edges of the support, and the center moves faster, distorting the migration band. Finally, the Joule effect heats the substrate and therefore evaporates the solvent; this is gradually replaced by the liquid of the vessels which rises in the support by capillary action, opposite both ends of the support, and annulling in the middle [23].
\nThe supports must be chemically inert (low adsorbent) and homogeneous (regular microporous structure), have good mechanical resistance (handling), and possibly allow densitometric reading [24].
\nPaper is a natural cellulose; it is no longer used much because it is not homogeneous. Paper electrophoresis provides a strong electroendosmosis current and is a source of parasitic adsorptions (added chromatography), resulting in poor resolution; the Joule effect is important with heating, evaporation, and even electrolysis of the buffer. At high pressure (1000–3000 V), paper electrophoresis is mainly used to separate peptides and amino acids.
\nCellulose acetate is much more homogeneous than paper; this support allows densitometric reading, but the electroendosmosis current remains high. The applications of cellulose acetate are mainly found in medical biology, allowing a quantitative densitometric reading of the protein fractions rather roughly separated (plasma and urinary proteins, lipoproteins, and hemoglobins), or finer (isoenzymes), applying the potential gradients of the order of 30 V cm−1. Resolution is poor, and reproducibility is average.
\nHowever, at alkaline pH (typically pH 8.6), Hb A2, Hb C, Hb E, and Hb O migrate to the same area, and Hb S, Hb D, and Hb G migrate at the same rate. In the case of suspicions of such hemoglobin abnormalities, an additional technique should therefore be considered [25].
\nStarch gel is a polyoside; electrophoresis on this gel allows the separation of complex or heterogeneous oligomeric protein associations. Starch gel is little used because it is opaque, fragile, and not very reproducible.
\nAgarose is desulfonated agar (purified agar); removal of sulfonates greatly limits the flow of electroendosmosis; agarose gels between 0.5 and 2% are not very viscous. They make it possible to carry out native electrophoresis as with the previous supports, that is, without denaturation of the macromolecules. Potential gradients up to 50 V cm−1 are usable for protein separation; agarose gel is gradually replacing cellulose acetate in most biomedical applications because agarose improves resolution and remains colorless, allowing a good densitometric reading. The agarose gel is also very homogeneous, thus ensuring good reproducibility, and is well adapted to zymographic reading [23].
\nThe distinction between the different variants Hb A2, Hb C, Hb E, and Hb O, as well as Hb S, Hb D, and Hb G, is most often made by electrophoresis on agarose gel at acidic pH (pH 6.0), which allows to separate Hb C, from Hb E and Hb O, as well as Hb S, from Hb D and Hb G. On the other hand, Hb E and Hb O, as well as Hb D and G, still cannot be differentiated by combining these two electrophoretic methods (cellulose acetate, agarose gel). In addition, these techniques have the disadvantage of consuming time and labor.
\nIn addition, they lack precision for the quantification of hemoglobin in low concentrations, such as Hb A2, and for the detection of fast-migrating variants, such as Hb H or Hb Bart’s. It is even now accepted that the quantification of variants by densitometry lacks precision and that these two electrophoresis techniques must be used for qualitative purposes. They are therefore most often used today in combination with another method, mainly high-performance liquid chromatography, which has a much higher accuracy.
\nA 1999 study by the College of American Pathologists showed a coefficient of variation (CV) of 33.6% for the quantification of Hb A2 at a concentration of 2.41% by densitometry from electrophoretic gels. By HPLC, the CV was 4.3% for Hb A2 at a concentration of 3.47%. Thus, the combination of these electrophoresis techniques with HPLC allows the identification and quantification of hemoglobin, the latter being performed by HPLC only [26].
\nIt is a polymer of acrylamide and N,N′-methylene-bisacrylamide (Bis), the acrylamide gel polymerization being obtained in the presence of a catalyst (ammonium persulfate) and a cross-linking agent (N,N,N′,N′-tetramethyl-ethylene-diamine [TEMED]). The porosity of gels can be very precise; it depends on the relative concentrations of acrylamide and Bis.
\nThe polymer obtained is very hydrophilic although insoluble in water and easy to mold even under small thicknesses (<1 mm); it is thermostable, not fragile, transparent, and inert chemically. There is almost no electroendosmosis flow and no macromolecules are absorbed. The resolutive power is generally superior to that of polyosidic gels using gradients of similar potential. The main disadvantage is that the acrylamide in solution is neurotoxic but also that the resulting porosities are very poorly adapted to very large molecules [27].
\nIt is made on paper, starch, cellulose acetate, agarose gel, and sometimes polyacrylamide whenever we do not want to touch the tertiary and quaternary structures of macromolecules, thus their biological activities. This method without denaturation is a priori applicable to all types of macromolecules, both in vertical and horizontal tanks [27].
\nIsoelectrofocusing, carried out on agarose gel or polyacrylamide gel, separates hemoglobin in a pH gradient according to their isoelectric point. To do this, ampholytes are introduced into the gel in order to create a continuous pH gradient under the effect of an electric field. The different hemoglobins contained in the sample to be analyzed will migrate to the region where the pH is equal to their isoelectric pH. At this position, the net load is zero, and the hemoglobin ceases to migrate and focuses into a narrow band.
\nThis technique, capable of separating hemoglobin variants with isoelectric points different from 0.02 pH units, has excellent resolution and is very useful for detecting abnormal hemoglobin in the newborn. In fact, it allows a good separation of hemoglobins F, A, and S. Moreover, the electrical isofocusing is perfectly adapted to the analysis of large series. On the other hand, the main limitations of this method are a long and complex implementation. Therefore, its use is almost reserved for neonatal screening of hemoglobinopathies [28, 29].
\nTypically, capillary electrophoresis is performed in a fused silica capillary coated with a polyamide layer of 20–200 μm of internal diameter and 20–200 cm of length. The capillary, placed in a thermostatization system, is filled with a buffer solution and plunges into two tanks containing the same solution. Each tank is connected to an electrode connected to a current generator. A large potential difference (several thousand volts) is applied to the terminals of each capillary to separate the molecules on the basis of their charge/mass ratio [30].
\nThe use of a capillary has a double advantage: increases the sensitivity of the detection since a reading window in the capillary allows an absorbance reading with a very small optical path and increases the resolution by applying the potential difference of more than 10,000 V since it is easy to regulate the capillary in temperature [31].
\nIn this method, the buffer solution in contact with the two tanks of the system constitutes the support. Since liquid has no specific form, the buffer uses the capillary as a solid support, contributing also to electroendosmosis current production.
\nThere are several methods used in capillary electrophoresis including capillary zone electrophoresis (CZE), capillary gel electrophoresis (CGE), and micellar electrokinetic chromatography (MECC) [32]. In this study, we will limit ourselves to capillary zone electrophoresis which is the most exploited for hemoglobinopathy.
\nThis method can be performed on a single-fused silica capillary in which an electroosmotic flux develops. It causes the negative molecules to the cathode where the detection is carried out, the injection being anodic.
\nThe electroosmotic flux depends on the temperature, the ionic force, and the concentration of organic solvent.
\nWe will limit ourselves here to the most common routine techniques for the analysis of hemoglobinopathies in the Democratic Republic of the Congo in particular and in sub-Saharan Africa in general. They are often affected by accessibility during acquisition, ease of commissioning, operation, maintenance and supply, and cost.
\nOn one side, our analysis is based globally on equipment meeting international standards such as ISO, FDA, and CE certification. Field experience shows that such equipment can operate for about 7 years, if the manufacturer’s operating recommendations are followed.
\nOn the other hand, high-performance liquid chromatography has been developed to allow both the detection and confirmation of hemoglobinopathy in newborns with high sensitivity and specificity. In fact, its good sensitivity to the major variants involved in pathology and its speed of completion (about 3 min per sample), allowing the analysis of a large number of samples, have made HPLC a particularly suitable method for screening for hemoglobin abnormalities [33].
\nHowever, we will not discuss this technique in this study because, since its performance is comparable to that of the HPLC method, capillary electrophoresis quickly became the method of choice, just like HPLC, for the study of hemoglobinopathy. In addition, it is of economic interest: although the material cost is comparable to that of the HPLC, the expenditures on reagents are much lower. Indeed, the price of a capillary is much lower than that of a chromatography column, and the volumes of buffer used are much lower, about 1000 times less [34].
\nManual systems for native electrophoresis (on cellulose acetate and agarose gel) or isoelectrofocusing offer the best acquisition possibility both in terms of cost and operational constraints. Their limits both in the separation and in the identification of hemoglobin variants will be used for the routine forms to be specified by the customer (identification of the electrophoretic profile, identification of specific variants).
\nThe coupling of these methods to the reading system (densitometers) makes it possible to quantify the separate variants. And from this point of view, agarose gel electrophoresis offers better performance than cellulose acetate. On the other hand, the reagents are in the form of combs which often require a minimum of seven samples. Such a constraint requires, for economic reasons, to launch the samples in series of seven, which requires a consequent sizing and proper holding wire.
\nFor native electrophoresis the system is usually composed of a current generator and a migration tank. For isoelectrofocusing, the system consists of a stabilized supply, an isoelectrofocusing, unit, and a circulating cryostat.
\nThe devices typically contain conventional electronic parts and boards, used in the manufacture of power generators. These components are often not complex, and do not require advanced technical repair. In addition, it has been found that when equipment actually meets ISO, FDA, or CE marking standards, it works well and lasts for a long time.
\nThese systems can be used in very small laboratories, without large volume flow of samples, for the screening of hemoglobinopathies, by planning a periodic operation. Indeed, the pre-analytical phase requires a lot of sample preparation time and immobilizes the staff for quite a long time. They can also be used in medium laboratories as a backup system.
\nThe isoelectrofocusing system will be more targeted for newborn screening because it allows for a good separation of the Hb F, Hb A, and Hb S fractions, which assumes that the system is usually installed near a maternity ward.
\nSemiautomatic systems for native electrophoresis on cellulose acetate or agarose gel offer the possibility of processing large series of samples. Although the cost of the system is still high for a large number of health facilities, the manual routine is clearly improved. Semiautomatic systems (on cellulose acetate or agarose gel) are embedded on compact systems generally comprising a migration and coloring modules, which considerably reduce user handling.
\nThe reading system, often equipped with advanced post-processing software, can be incorporated or remote. Nevertheless, the results obtained show the same limits as in the case of manual methods because the operating principles of the migration and coloring units taken separately are the same as those of the manual system.
\nThe semiautomatic system is generally composed of a compact unit comprising a thermoregulated migration module connected to a current generator and a fluidic module for coloring migrated gels. Technologically, an intelligent electronic unit manages the high voltage of the migration module, the fluidics of the coloring module, and the application programs for the two modules.
\nGenerally, devices typically contain conventional electronic parts and boards. The process control is often ensured by position and temperature sensors. As their complexity is not great, maintenance can be easily carried out by a duly trained biomedical technician.
\nThese systems can equip medium-sized laboratories by planning either periodic operation or continuous operation, depending on the flow of samples. They are fairly widespread in the private laboratories which can obtain them and some public hospital laboratories often on behalf of specific programs. User maintenance monitoring must be ensured to guarantee proper functioning, and periodic annual maintenance must be carried out, insured in accordance with the manufacturer’s recommendations.
\nAutomatic techniques (only capillary zone electrophoresis) are the best offer, both in terms of flexibility of use and technical performance. Prices are still very high for many customers in Africa. Nevertheless, a good expression of needs and an adequate exploitation planning can allow a return on investment in an acceptable time.
\nThese techniques are carried out on compact systems, generally comprising capillaries at the ends plunging into reservoirs of buffer solution, themselves connected to the current generator. The apparatus also includes a detection system, most often a UV–visible spectrophotometer, linked to the wavelength of specific absorption of hemoglobin at 415 nm.
\nMore sophisticated technology includes a capillary thermoregulation system, a control system comprising various sensors that manage optics, robotics, pneumatics, and detection, and a set of intelligent electronic cards capable of communicating with each other. Unlike previous methods, this method allows both to launch samples in an emergency without restriction and to process large series of samples.
\nIn view of the complexity of its technology, management requires competent personnel who are regularly trained by the manufacturer. Water quality and user maintenance of equipment are of paramount importance to ensure the quality of results. This assumes that the supplier provides user training for the best care.
\nThanks to their flexibility in the work organization, these automated systems can equip laboratories with small volumes of samples, as well as those which process large volumes. Indeed, there are small and large models of automata to cover all these needs. Because of their high prices, these automata are acquired in public hospitals on the basis of research projects and specific programs. Private clinics acquire them for routine because of their performance. However they do have a few requirements that must be observed: the operating environment must be less dusty, the quality of electricity flawless, the quality of pure water, and regular maintenance.
\nWe present in Table 1 a summary of different devices that we have reviewed.
\nMigration support | \nAdvantages | \nDisadvantages | \nSystems | \nMaterials | \nMaintenance level | \nConstraints | \nAverage cost (€) | \n
---|---|---|---|---|---|---|---|
Paper | \n- Native electrophoresis - Separation of amino acids and peptides | \n- High electroendosmosis current - Significant Joule effect - Bad resolution - Poor homogeneity - Parasite adsorptions | \nManual | \n- Current generator | \n- Low | \nGood grounding | \n\n |
- Migration tank | \n- Free | \nFree | \n7000 | \n||||
- Densitometer | \n- Low | \nFree | \n\n | ||||
Cellulose acetate | \n- Native electrophoresis - More homogeneous than paper - Separation of plasma and urine proteins, lipoproteins, hemoglobin, and isoenzymes | \n- High electroendosmosis currents - Poor resolution - Medium reproducibility - The hemoglobins A2, C, E, and O migrate in the same zone - The hemoglobins S, D, and G migrate at the same rate - Long implementation | \nManual | \n- Current generator | \n- Low | \nGood grounding | \n\n |
- Migration tank | \n- Free | \nFree | \n7000 | \n||||
- Densitometer | \n- Low | \nFree | \n\n | ||||
Semiautomatic | \n- Compact staining and migration module and densitometer (integrated or no) | \n- Medium - Medium | \n- Steady voltage - Good grounding - Air-conditioned room - Inverter | \n15,000 | \n|||
Agarose gel | \n-Native electrophoresis - Nonnative electrophoresis - Limited electroendosmosis flow - Improved resolution - Very homogeneous - Separation of Hb C from Hb E and Hb O - Separation of Hb S from Hb D and Hb G | \n- No separation between HB E and Hb O - No separation between Hb D and Hb G - Inaccurate for the quantification of hemoglobin with low concentration (Hb A2) and for the detection of variants with fast migration (Hb H and Hb Bart’s) - Long Implementation | \nManual | \n- Current generator | \n-Low | \nGood grounding | \n\n |
- Migration tank | \n-Free | \nFree | \n7000 | \n||||
- Densitometer | \n- Low | \nFree | \n\n | ||||
Semiautomatic | \n- Compact staining and migration module and densitometer (integrated or no) | \n- Medium - Medium | \n- Steady stable - Good grounding - Air-conditioned room - Inverter | \n15,000 | \n|||
\n | \n\n | \n\n | \nSemiautomatic | \n-Isoelectrofocusing module | \n- Medium | \n- Steady voltage - Good grounding - Air-conditioned room - Inverter | \n150,000 | \n
-Circulation cryostat | \n- Medium | \n- Steady voltage - Good grounding - Air-conditioned room - Inverter | \n\n | ||||
Liquid vein (capillaries) | \n- Fast - Precise quantification of hemoglobin fractions - Flexible (small and large series) | \n-High water quality -Demanding environment | \nAutomatic | \n- Compact migration and detection module | \n- High | \n- Steady voltage - Good grounding - Air-conditioned room - Inverter - Water quality | \n30,000 | \n
Summary table of different devices.
For better use of data in Table 1, it will be broken down below with two subsidiaries: Tables 2 and 3.
\nPerformances | \nMigration support | \n|||
---|---|---|---|---|
Paper | \nCellulose acetate | \nAgarose gel | \nLiquid vein | \n|
Nonnative electrophoresis | \n\n | \n | ✓ | \n✓ | \n
Native electrophoresis | \n✓ | \n✓ | \n✓ | \n✓ | \n
Separation of amino acids and peptides | \n✓ | \n✓ | \n✓ | \n✓ | \n
Homogeneity | \n✓ (poor) | \n✓ (medium) | \n✓ (good) | \n✓ | \n
Separation of plasma and urine proteins, lipoproteins, hemoglobin, and isoenzymes | \n— | \n✓ | \n✓ | \n✓ | \n
Resolution | \n✓ (bad) | \n✓ (poor) | \n✓ | \n✓ | \n
Separation of Hb A2 from Hb C, Hb E, and Hb O | \n— | \nx (migrate in the same area) | \n✓ | \n✓ | \n
Separation of Hb C from Hb E and Hb O | \n— | \nx | \n✓ | \n✓ | \n
Separation of Hb S and Hb from Hb D and G | \n— | \nx (migrate at the same rate) | \n✓ | \n✓ | \n
Separation of Hb S and Hb O | \n— | \nx | \nx | \n✓ | \n
Separation of Hb D and Hb G | \n— | \nx | \nx | \n✓ | \n
Rapidity | \nLow | \nGood | \nGood | \nFast | \n
Quantification of hemoglobin with low concentration (Hb A2) | \n— | \nx | \nx | \n✓ | \n
Detection of fast-migrating variants (Hb H, Hb Bart’s) | \n— | \nx | \nx | \n✓ | \n
Precise quantification of hemoglobin fractions | \n— | \nx | \nx | \n✓ | \n
Flexible (small and wide series) | \n— | \nx | \nx | \n✓ | \n
Electroendosmosis current | \nVery high | \nHigh | \nHigh | \nHigh | \n
Joule effect | \n✓ | \n— | \n— | \n— | \n
Pest adsorption | \n✓ | \nx | \nx | \nx | \n
Reproducibility | \n— | \n✓ (medium) | \n✓ | \n✓ | \n
Water quality | \nNormal | \nNormal | \nNormal | \nHigh | \n
Demanding environment | \nNormal | \nNormal | \nNormal | \nHigh | \n
Performance comparison based on migration support.
\n | Systems | \n||
---|---|---|---|
\n | Manual | \nSemiautomatic | \nAutomatic | \n
Migration support | \n-Paper -Cellulose acetate -Agarose gel | \nCellulose acetate -Agarose gel | \n-Vein liquid (capillaries) | \n
Equipment | \n-Power generator -Tank migration -Densitometer | \n-Module staining and migration -Densitometer (integrated or not) | \n-Module compact migration and detection | \n
Installation constraints | \n-Quality ground line -Quality voltage | \n-Quality ground line -Quality voltage -Quality air conditioning | \n-Quality ground line -Quality voltage -Quality air conditioning -Quality of water | \n
Execution time | \nTrès long | \nLong | \nCourt | \n
Acquisition cost (en €) | \n7000 | \n15,000 | \n3000 | \n
Maintenance level | \nBas | \nMoyen | \nHaut | \n
Comparison of systems in terms of hardware, installation constraints, acquisition cost, and maintenance level.
The information contained in Table 2 will highlight the performance of the equipment according to different migration or embedded media available, while those in Table 3 will compare the systems sold compared to hardware, installation constraints, execution time, and cost.
\nA cursory reading shows that the most efficient migration support remains one of the capillary methods (liquid vein): this support brings in itself the best return for the resolution, reproducibility, discrimination, and quantification, while the parasitic effects are almost nonexistent. But medical needs and health goals differ from one level to another and do not require in all cases the acquisition of such technology.
\nFor routine screening for sickle cell disease, for example, the performance of migration on cellulose acetate amply suffices needs. This assumes that the precise separation variants like Hb A2, Hb C, Hb E, and Hb O are not a need first. On the other hand, as part of the requirements to cover, the effective separation of Hb S and Hb C variant is needed, and migration on agarose gel will best meet this requirement.
\nIf, during treatment, abnormal forms of hemoglobin are associated, then the choice of medium will be directed towards agarose gel for a qualitative indication or the liquid vein for a quantitative indication of Hb A2. Indeed, abnormally low Hb A and abnormally high Hb A2 correlate with the presence of some abnormal forms of hemoglobin (alpha or beta thalassemia, etc.).
\nIf precise separation and precise quantification of the variants Hb A2, Hb C, Hb E, and Hb O are required, then the liquid vein (capillary) support should be readily chosen.
\nDepending on work previously defined criteria, this table can guide the choice of performance basis based migration media.
\nBut the only performance criteria are not sufficient to make a choice of appropriate materials. It will also take into account industrial supply in terms of existing systems, the materials that make up, their costs, and maintenance requirements. Below we provide a table that can guide us in assessing the choices to be made.
\nThe line “migration support” is added in order to link Tables 2 and 3.
\nThe analysis of the table shows that as the system moves from manual to fully automated, the necessary hardware is gradually being integrated into a compact module. From this point of view, this development provides an appreciable response to the ergonomic problems that are becoming very frequent in laboratories.
\nOn the other hand, we observe that the installation constraints are more demanding when the analysis module becomes more compact. Indeed, in addition to the quality of the electrical ground line and voltage which greatly affect the operation of systems provided, the environment requires better temperature control (air conditioning), for example, besides the requirements of the water quality.
\nThe time required to perform the analyses is a very important parameter in the choice of equipment. On the one hand, it allows better management of the patient queue, and on the other hand, it ensures the management of reagents and consumables with a limited life. When the volume of samples to be treated in a routine manner is small, manual systems are suitable for both patient satisfaction and reactive management. If the volume of samples to be processed requires more than 1 day of work, the semiautomated system should be considered to resolve the queue. Finally, if the volume of samples increases further, the fully automated system will better meet expectations.
\nThe management of reagents in the laboratory depends heavily on two important parameters that should be noted: this is the expiry date and the stability time after opening of the reagent. The expiry date indicated on the label is usually the date after which the manufacturer no longer guarantees the validity of the results, while the stability time after opening of the reagent indicates the period after which the manufacturer no longer guarantees its reliability after the first use.
\nSince the stability time is shorter than the expiry date itself, it will be necessary to ensure that each open reagent is consumed before that time. For example, the use of a reagent that has a stability time of 60 days and can analyze 1000 samples in a laboratory that receives only 10 samples per day is a waste. The use of this reagent before maturity requires an average daily rate of 20 samples, considering that the laboratory operates 6 days a week. Ten samples/day instead of 20 samples/day will theoretically cause the damage of half the reagent.
\nThe level of maintenance, and in turn cost, follows the same trend: more compact system is provided and the higher level of maintenance.
\nSince the cost of acquiring systems increases with the complexity of the technology, it is important to ask good questions, find good answers, and make good choices based on real needs, to achieve savings. As an example, is it necessary to acquire a semiautomatic agarose gel system when, taking into account the medical needs and the volume of samples to be treated, the manual system on agarose gel support gives us satisfaction? Affirmative answer incurs an additional a non-justified expenditure of 8000€. Worse still, such equipment oversizing compromises a substantial depreciation because it will be under-utilized.
\nThe management of any pathology implies the appropriate choice of techniques and technologies. Indeed, beyond the medical needs that are priority, a control equipment acquisition cost is one of the major parameters providing effective support to strategies put in place.
\nVery often in sub-Saharan countries, the aspect of the consequent acquisition of the necessary technology is not always thorough, and this can lead a poor quality of reported results, the inaccessible test cost for the poorest people, and the delicate operation of projects being implemented.
\nThe choice of equipment performed after an objective needs analysis enables to optimize the process of acquiring, to ensure the quality of reported results, and to provide more accessible costs to target populations generally poor.
\nAccording to WHO recommendations, technology assessment, device evaluation, needs planning, selection and acquisition, installation, commissioning, and finally monitoring should be part of a successful acquisition procedure [35].
\nSuch an approach should involve all stakeholders, namely, doctors, managers, biomedical engineers, and users.
\nIn the case of sickle cell anemia, the inventory of installed park shows that beside manual methods, diagnostic techniques most common in the Democratic Republic of the Congo and even in sub-Saharan Africa are phenotypic techniques. These include the electrophoresis at different pH, the isoelectrofocusing, the capillary electrophoresis, and the high-pressure liquid chromatography. The first three mentioned are most used for their reliability, flexibility, ease of installation, and maintenance.
\nThe prices of the equipment listed in the table remain indicative. We have taken into account only good-quality equipment commonly used in the DR Congo and by extension in other countries of sub-Saharan Africa.
\nFor low-income countries, the costs of such facilities are still high overall. Indeed, the increase in health expenditure, which represents 10% of the world’s gross domestic product (GDP), is faster than the growth of the world economy. According to a new World Health Organization report on global health spending, it is increasing rapidly, particularly in low- and middle-income countries, where spending is increasing at an average of 6% per year, compared to 4% in high-income countries.
\nHealth expenditure is assumed by governments, by individuals who pay for their own care (out-of-pocket payments), and by other entities such as voluntary health insurance schemes, employer-sponsored schemes, and nongovernmental organizations. On average, 51% of a country’s health expenditure is assumed by general government and more than 35% by individuals in the form of direct expenditure. One of the consequences of this situation is that every year 100 million people are plunged into extreme poverty [36].
\nFor the countries concerned, the acquisition of these health technologies requires new upstream procurement strategies to meet acquisition and operating costs. And from this point of view, some developed countries such as France are now developing group procurement procedures in public hospitals.
\nAccording to a recent study conducted in the Democratic Republic of the Congo on an investment in capillary electrophoresis equipment for a project on sickle cell disease, this can contribute to improve quality and low cost of tests, if a complete analysis of needs is carried out upstream.
\nIn this study, for an equipment activity extending over a period of 7 years, the cost of acquisition and maintenance cost represent, respectively, 11.4% and 5.0% of the total life cycle cost.
\nBut when the activity of the same equipment is done over a period of 2 years, the cost of acquisition and maintenance cost represent, respectively, 31.0% and 3.9% of the total life cycle cost.
\nAdded to this, for the same annual rate, the minimum unit test cost is € 3.9 for a 7-year activity cycle, whereas it costs € 5 if the activity cycle is reduced to 2 years [37].
\nTherefore, it should be noted that when operating conditions remain the same, amortization of equipment carried on shorter lead times significantly increases the cost of the test at the expense of patients.
\nEven though this example only concerns electrophoresis capillary equipment, extrapolating conclusions on agarose gel equipment is possible for the following reasons: installation, operation, and maintenance are less demanding than for capillary technology.
\nWhile sub-Saharan Africa is the most affected region in the world for sickle cell disease, research and care are relatively slow.
\nAt its 60th session held in Malabo from 30 August to 3 September 2010, the WHO was already raising the option of a strategy for its African region. Nine years after the effects are hardly noticeable.
\nThe management improvement of this pathology solicits several challenges, including the one concerning the technical platform necessary for diagnosis. The costs of acquiring and operating equipment often require significant fundraising, which is often lacking. The missing financial means are often one of the first obstacles to the launching of the relevant programs.
\nThe study mentioned above proves that it is possible to optimize the available resources, however modest they may be, in order to obtain good and lasting results.
\nIn the case of biomedical equipment, it is sufficient to involve the right people to achieve the expected results. Policymakers in sub-Saharan African countries must therefore integrate the skills of biomedical engineers into the design and start-up of medical projects so that they, in turn, contribute effectively to improve the quality of medical care populations.
\nIntechOpen - where academia and industry create content with global impact
",metaTitle:"Team",metaDescription:"Advancing discovery in Open Access for the scientists by the scientist",metaKeywords:null,canonicalURL:"page/team",contentRaw:'[{"type":"htmlEditorComponent","content":"Our business values are based on those any scientist applies to their research. We have created a culture of respect and collaboration within a relaxed, friendly and progressive atmosphere, while maintaining academic rigour.
\\n\\nCo-founded by Alex Lazinica and Vedran Kordic: “We are passionate about the advancement of science. As Ph.D. researchers in Vienna, we found it difficult to access the scholarly research we needed. We created IntechOpen with the specific aim of putting the academic needs of the global research community before the business interests of publishers. Our Team is now a global one and includes highly-renowned scientists and publishers, as well as experts in disseminating your research.”
\\n\\nBut, one thing we have in common is -- we are all scientists at heart!
\\n\\nSara Uhac, COO
\\n\\nSara Uhac was appointed Managing Director of IntechOpen at the beginning of 2014. She directs and controls the company’s operations. Sara joined IntechOpen in 2010 as Head of Journal Publishing, a new strategically underdeveloped department at that time. After obtaining a Master's degree in Media Management, she completed her Ph.D. at the University of Lugano, Switzerland. She holds a BA in Financial Market Management from the Bocconi University in Milan, Italy, where she started her career in the American publishing house Condé Nast and further collaborated with the UK-based publishing company Time Out. Sara was awarded a professional degree in Publishing from Yale University (2012). She is a member of the professional branch association of "Publishers, Designers and Graphic Artists" at the Croatian Chamber of Commerce.
\\n\\nAdrian Assad De Marco
\\n\\nAdrian Assad De Marco joined the company as a Director in 2017. With his extensive experience in management, acquired while working for regional and global leaders, he took over direction and control of all the company's publishing processes. Adrian holds a degree in Economy and Management from the University of Zagreb, School of Economics, Croatia. A former sportsman, he continually strives to develop his skills through professional courses and specializations such as NLP (Neuro-linguistic programming).
\\n\\nDr Alex Lazinica
\\n\\nAlex Lazinica is co-founder and Board member of IntechOpen. After obtaining a Master's degree in Mechanical Engineering, he continued his Ph.D. in Robotics at the Vienna University of Technology. There, he worked as a robotics researcher with the university's Intelligent Manufacturing Systems Group, as well as a guest researcher at various European universities, including the Swiss Federal Institute of Technology Lausanne (EPFL). During this time he published more than 20 scientific papers, gave presentations, served as a reviewer for major robotic journals and conferences and, most importantly, co-founded and built the International Journal of Advanced Robotic Systems, the world's first Open Access journal in the field of robotics. Starting this journal was a pivotal point in his career since it proved to be the pathway to the foundation of IntechOpen with its focus on addressing academic researchers’ needs. Alex personifies many of IntechOpen´s key values, including the commitment to developing mutual trust, openness, and a spirit of entrepreneurialism. Today, his focus is on defining the growth and development strategy for the company.
\\n"}]'},components:[{type:"htmlEditorComponent",content:"Our business values are based on those any scientist applies to their research. We have created a culture of respect and collaboration within a relaxed, friendly and progressive atmosphere, while maintaining academic rigour.
\n\nCo-founded by Alex Lazinica and Vedran Kordic: “We are passionate about the advancement of science. As Ph.D. researchers in Vienna, we found it difficult to access the scholarly research we needed. We created IntechOpen with the specific aim of putting the academic needs of the global research community before the business interests of publishers. Our Team is now a global one and includes highly-renowned scientists and publishers, as well as experts in disseminating your research.”
\n\nBut, one thing we have in common is -- we are all scientists at heart!
\n\nSara Uhac, COO
\n\nSara Uhac was appointed Managing Director of IntechOpen at the beginning of 2014. She directs and controls the company’s operations. Sara joined IntechOpen in 2010 as Head of Journal Publishing, a new strategically underdeveloped department at that time. After obtaining a Master's degree in Media Management, she completed her Ph.D. at the University of Lugano, Switzerland. She holds a BA in Financial Market Management from the Bocconi University in Milan, Italy, where she started her career in the American publishing house Condé Nast and further collaborated with the UK-based publishing company Time Out. Sara was awarded a professional degree in Publishing from Yale University (2012). She is a member of the professional branch association of "Publishers, Designers and Graphic Artists" at the Croatian Chamber of Commerce.
\n\nAdrian Assad De Marco
\n\nAdrian Assad De Marco joined the company as a Director in 2017. With his extensive experience in management, acquired while working for regional and global leaders, he took over direction and control of all the company's publishing processes. Adrian holds a degree in Economy and Management from the University of Zagreb, School of Economics, Croatia. A former sportsman, he continually strives to develop his skills through professional courses and specializations such as NLP (Neuro-linguistic programming).
\n\nDr Alex Lazinica
\n\nAlex Lazinica is co-founder and Board member of IntechOpen. After obtaining a Master's degree in Mechanical Engineering, he continued his Ph.D. in Robotics at the Vienna University of Technology. There, he worked as a robotics researcher with the university's Intelligent Manufacturing Systems Group, as well as a guest researcher at various European universities, including the Swiss Federal Institute of Technology Lausanne (EPFL). During this time he published more than 20 scientific papers, gave presentations, served as a reviewer for major robotic journals and conferences and, most importantly, co-founded and built the International Journal of Advanced Robotic Systems, the world's first Open Access journal in the field of robotics. Starting this journal was a pivotal point in his career since it proved to be the pathway to the foundation of IntechOpen with its focus on addressing academic researchers’ needs. Alex personifies many of IntechOpen´s key values, including the commitment to developing mutual trust, openness, and a spirit of entrepreneurialism. Today, his focus is on defining the growth and development strategy for the company.
\n"}]},successStories:{items:[]},authorsAndEditors:{filterParams:{sort:"featured,name"},profiles:[{id:"6700",title:"Dr.",name:"Abbass A.",middleName:null,surname:"Hashim",slug:"abbass-a.-hashim",fullName:"Abbass A. Hashim",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/6700/images/1864_n.jpg",biography:"Currently I am carrying out research in several areas of interest, mainly covering work on chemical and bio-sensors, semiconductor thin film device fabrication and characterisation.\nAt the moment I have very strong interest in radiation environmental pollution and bacteriology treatment. The teams of researchers are working very hard to bring novel results in this field. I am also a member of the team in charge for the supervision of Ph.D. students in the fields of development of silicon based planar waveguide sensor devices, study of inelastic electron tunnelling in planar tunnelling nanostructures for sensing applications and development of organotellurium(IV) compounds for semiconductor applications. I am a specialist in data analysis techniques and nanosurface structure. I have served as the editor for many books, been a member of the editorial board in science journals, have published many papers and hold many patents.",institutionString:null,institution:{name:"Sheffield Hallam University",country:{name:"United Kingdom"}}},{id:"54525",title:"Prof.",name:"Abdul Latif",middleName:null,surname:"Ahmad",slug:"abdul-latif-ahmad",fullName:"Abdul Latif Ahmad",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:null},{id:"20567",title:"Prof.",name:"Ado",middleName:null,surname:"Jorio",slug:"ado-jorio",fullName:"Ado Jorio",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"Universidade Federal de Minas Gerais",country:{name:"Brazil"}}},{id:"47940",title:"Dr.",name:"Alberto",middleName:null,surname:"Mantovani",slug:"alberto-mantovani",fullName:"Alberto Mantovani",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:null},{id:"12392",title:"Mr.",name:"Alex",middleName:null,surname:"Lazinica",slug:"alex-lazinica",fullName:"Alex Lazinica",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/12392/images/7282_n.png",biography:"Alex Lazinica is the founder and CEO of IntechOpen. After obtaining a Master's degree in Mechanical Engineering, he continued his PhD studies in Robotics at the Vienna University of Technology. Here he worked as a robotic researcher with the university's Intelligent Manufacturing Systems Group as well as a guest researcher at various European universities, including the Swiss Federal Institute of Technology Lausanne (EPFL). During this time he published more than 20 scientific papers, gave presentations, served as a reviewer for major robotic journals and conferences and most importantly he co-founded and built the International Journal of Advanced Robotic Systems- world's first Open Access journal in the field of robotics. Starting this journal was a pivotal point in his career, since it was a pathway to founding IntechOpen - Open Access publisher focused on addressing academic researchers needs. Alex is a personification of IntechOpen key values being trusted, open and entrepreneurial. Today his focus is on defining the growth and development strategy for the company.",institutionString:null,institution:{name:"TU Wien",country:{name:"Austria"}}},{id:"19816",title:"Prof.",name:"Alexander",middleName:null,surname:"Kokorin",slug:"alexander-kokorin",fullName:"Alexander Kokorin",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/19816/images/1607_n.jpg",biography:"Alexander I. Kokorin: born: 1947, Moscow; DSc., PhD; Principal Research Fellow (Research Professor) of Department of Kinetics and Catalysis, N. Semenov Institute of Chemical Physics, Russian Academy of Sciences, Moscow.\r\nArea of research interests: physical chemistry of complex-organized molecular and nanosized systems, including polymer-metal complexes; the surface of doped oxide semiconductors. He is an expert in structural, absorptive, catalytic and photocatalytic properties, in structural organization and dynamic features of ionic liquids, in magnetic interactions between paramagnetic centers. The author or co-author of 3 books, over 200 articles and reviews in scientific journals and books. He is an actual member of the International EPR/ESR Society, European Society on Quantum Solar Energy Conversion, Moscow House of Scientists, of the Board of Moscow Physical Society.",institutionString:null,institution:{name:"Semenov Institute of Chemical Physics",country:{name:"Russia"}}},{id:"62389",title:"PhD.",name:"Ali Demir",middleName:null,surname:"Sezer",slug:"ali-demir-sezer",fullName:"Ali Demir Sezer",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/62389/images/3413_n.jpg",biography:"Dr. Ali Demir Sezer has a Ph.D. from Pharmaceutical Biotechnology at the Faculty of Pharmacy, University of Marmara (Turkey). He is the member of many Pharmaceutical Associations and acts as a reviewer of scientific journals and European projects under different research areas such as: drug delivery systems, nanotechnology and pharmaceutical biotechnology. Dr. Sezer is the author of many scientific publications in peer-reviewed journals and poster communications. Focus of his research activity is drug delivery, physico-chemical characterization and biological evaluation of biopolymers micro and nanoparticles as modified drug delivery system, and colloidal drug carriers (liposomes, nanoparticles etc.).",institutionString:null,institution:{name:"Marmara University",country:{name:"Turkey"}}},{id:"61051",title:"Prof.",name:"Andrea",middleName:null,surname:"Natale",slug:"andrea-natale",fullName:"Andrea Natale",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:null},{id:"100762",title:"Prof.",name:"Andrea",middleName:null,surname:"Natale",slug:"andrea-natale",fullName:"Andrea Natale",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"St David's Medical Center",country:{name:"United States of America"}}},{id:"107416",title:"Dr.",name:"Andrea",middleName:null,surname:"Natale",slug:"andrea-natale",fullName:"Andrea Natale",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"Texas Cardiac Arrhythmia",country:{name:"United States of America"}}},{id:"64434",title:"Dr.",name:"Angkoon",middleName:null,surname:"Phinyomark",slug:"angkoon-phinyomark",fullName:"Angkoon Phinyomark",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/64434/images/2619_n.jpg",biography:"My name is Angkoon Phinyomark. I received a B.Eng. degree in Computer Engineering with First Class Honors in 2008 from Prince of Songkla University, Songkhla, Thailand, where I received a Ph.D. degree in Electrical Engineering. My research interests are primarily in the area of biomedical signal processing and classification notably EMG (electromyography signal), EOG (electrooculography signal), and EEG (electroencephalography signal), image analysis notably breast cancer analysis and optical coherence tomography, and rehabilitation engineering. I became a student member of IEEE in 2008. During October 2011-March 2012, I had worked at School of Computer Science and Electronic Engineering, University of Essex, Colchester, Essex, United Kingdom. In addition, during a B.Eng. I had been a visiting research student at Faculty of Computer Science, University of Murcia, Murcia, Spain for three months.\n\nI have published over 40 papers during 5 years in refereed journals, books, and conference proceedings in the areas of electro-physiological signals processing and classification, notably EMG and EOG signals, fractal analysis, wavelet analysis, texture analysis, feature extraction and machine learning algorithms, and assistive and rehabilitative devices. I have several computer programming language certificates, i.e. Sun Certified Programmer for the Java 2 Platform 1.4 (SCJP), Microsoft Certified Professional Developer, Web Developer (MCPD), Microsoft Certified Technology Specialist, .NET Framework 2.0 Web (MCTS). I am a Reviewer for several refereed journals and international conferences, such as IEEE Transactions on Biomedical Engineering, IEEE Transactions on Industrial Electronics, Optic Letters, Measurement Science Review, and also a member of the International Advisory Committee for 2012 IEEE Business Engineering and Industrial Applications and 2012 IEEE Symposium on Business, Engineering and Industrial Applications.",institutionString:null,institution:{name:"Joseph Fourier University",country:{name:"France"}}},{id:"55578",title:"Dr.",name:"Antonio",middleName:null,surname:"Jurado-Navas",slug:"antonio-jurado-navas",fullName:"Antonio Jurado-Navas",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/55578/images/4574_n.png",biography:"Antonio Jurado-Navas received the M.S. degree (2002) and the Ph.D. degree (2009) in Telecommunication Engineering, both from the University of Málaga (Spain). He first worked as a consultant at Vodafone-Spain. From 2004 to 2011, he was a Research Assistant with the Communications Engineering Department at the University of Málaga. In 2011, he became an Assistant Professor in the same department. From 2012 to 2015, he was with Ericsson Spain, where he was working on geo-location\ntools for third generation mobile networks. Since 2015, he is a Marie-Curie fellow at the Denmark Technical University. His current research interests include the areas of mobile communication systems and channel modeling in addition to atmospheric optical communications, adaptive optics and statistics",institutionString:null,institution:{name:"University of Malaga",country:{name:"Spain"}}}],filtersByRegion:[{group:"region",caption:"North America",value:1,count:5766},{group:"region",caption:"Middle and South America",value:2,count:5227},{group:"region",caption:"Africa",value:3,count:1717},{group:"region",caption:"Asia",value:4,count:10367},{group:"region",caption:"Australia and Oceania",value:5,count:897},{group:"region",caption:"Europe",value:6,count:15790}],offset:12,limit:12,total:118189},chapterEmbeded:{data:{}},editorApplication:{success:null,errors:{}},ofsBooks:{filterParams:{topicId:"22"},books:[{type:"book",id:"10655",title:"Motion Planning",subtitle:null,isOpenForSubmission:!0,hash:"809b5e290cf2dade9e7e0a5ae0ef3df0",slug:null,bookSignature:"",coverURL:"https://cdn.intechopen.com/books/images_new/10655.jpg",editedByType:null,editors:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10657",title:"Service Robots",subtitle:null,isOpenForSubmission:!0,hash:"5f81b9eea6eb3f9af984031b7af35588",slug:null,bookSignature:"",coverURL:"https://cdn.intechopen.com/books/images_new/10657.jpg",editedByType:null,editors:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10821",title:"Automation and Control",subtitle:null,isOpenForSubmission:!0,hash:"ba81d792368b0fc77e6076df1b9bc8d5",slug:null,bookSignature:"",coverURL:"https://cdn.intechopen.com/books/images_new/10821.jpg",editedByType:null,editors:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10823",title:"Cognitive Robotics",subtitle:null,isOpenForSubmission:!0,hash:"0c03adb67c699df0f07449af0fbf7e43",slug:null,bookSignature:"",coverURL:"https://cdn.intechopen.com/books/images_new/10823.jpg",editedByType:null,editors:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}}],filtersByTopic:[{group:"topic",caption:"Agricultural and Biological Sciences",value:5,count:15},{group:"topic",caption:"Biochemistry, Genetics and Molecular Biology",value:6,count:3},{group:"topic",caption:"Business, Management and Economics",value:7,count:1},{group:"topic",caption:"Chemistry",value:8,count:7},{group:"topic",caption:"Computer and Information Science",value:9,count:6},{group:"topic",caption:"Earth and Planetary Sciences",value:10,count:7},{group:"topic",caption:"Engineering",value:11,count:15},{group:"topic",caption:"Environmental Sciences",value:12,count:2},{group:"topic",caption:"Immunology and Microbiology",value:13,count:3},{group:"topic",caption:"Materials Science",value:14,count:5},{group:"topic",caption:"Mathematics",value:15,count:1},{group:"topic",caption:"Medicine",value:16,count:26},{group:"topic",caption:"Neuroscience",value:18,count:1},{group:"topic",caption:"Pharmacology, Toxicology and Pharmaceutical Science",value:19,count:2},{group:"topic",caption:"Physics",value:20,count:2},{group:"topic",caption:"Psychology",value:21,count:4},{group:"topic",caption:"Social Sciences",value:23,count:2},{group:"topic",caption:"Technology",value:24,count:1},{group:"topic",caption:"Veterinary Medicine and Science",value:25,count:1},{group:"topic",caption:"Environmental Pollution",value:133,count:1},{group:"topic",caption:"Dynamical Systems Theory",value:966,count:1}],offset:12,limit:12,total:4},popularBooks:{featuredBooks:[{type:"book",id:"9385",title:"Renewable Energy",subtitle:"Technologies and Applications",isOpenForSubmission:!1,hash:"a6b446d19166f17f313008e6c056f3d8",slug:"renewable-energy-technologies-and-applications",bookSignature:"Tolga Taner, Archana Tiwari and Taha Selim Ustun",coverURL:"https://cdn.intechopen.com/books/images_new/9385.jpg",editors:[{id:"197240",title:"Associate Prof.",name:"Tolga",middleName:null,surname:"Taner",slug:"tolga-taner",fullName:"Tolga Taner"}],equalEditorOne:{id:"186791",title:"Dr.",name:"Archana",middleName:null,surname:"Tiwari",slug:"archana-tiwari",fullName:"Archana Tiwari",profilePictureURL:"https://mts.intechopen.com/storage/users/186791/images/system/186791.jpg",biography:"Dr. Archana Tiwari is Associate Professor at Amity University, India. Her research interests include renewable sources of energy from microalgae and further utilizing the residual biomass for the generation of value-added products, bioremediation through microalgae and microbial consortium, antioxidative enzymes and stress, and nutraceuticals from microalgae. She has been working on algal biotechnology for the last two decades. She has published her research in many international journals and has authored many books and chapters with renowned publishing houses. She has also delivered talks as an invited speaker at many national and international conferences. Dr. Tiwari is the recipient of several awards including Researcher of the Year and Distinguished Scientist.",institutionString:"Amity University",position:null,outsideEditionCount:0,totalCites:0,totalAuthoredChapters:"3",totalChapterViews:"0",totalEditedBooks:"1",institution:{name:"Amity University",institutionURL:null,country:{name:"India"}}},equalEditorTwo:{id:"197609",title:"Prof.",name:"Taha Selim",middleName:null,surname:"Ustun",slug:"taha-selim-ustun",fullName:"Taha Selim Ustun",profilePictureURL:"https://mts.intechopen.com/storage/users/197609/images/system/197609.jpeg",biography:"Dr. Taha Selim Ustun received a Ph.D. in Electrical Engineering from Victoria University, Melbourne, Australia. He is a researcher with the Fukushima Renewable Energy Institute, AIST (FREA), where he leads the Smart Grid Cybersecurity Laboratory. Prior to that, he was a faculty member with the School of Electrical and Computer Engineering, Carnegie Mellon University, Pittsburgh, PA, USA. His current research interests include power systems protection, communication in power networks, distributed generation, microgrids, electric vehicle integration, and cybersecurity in smart grids. He serves on the editorial boards of IEEE Access, IEEE Transactions on Industrial Informatics, Energies, Electronics, Electricity, World Electric Vehicle and Information journals. Dr. Ustun is a member of the IEEE 2004 and 2800, IEC Renewable Energy Management WG 8, and IEC TC 57 WG17. He has been invited to run specialist courses in Africa, India, and China. He has delivered talks for the Qatar Foundation, the World Energy Council, the Waterloo Global Science Initiative, and the European Union Energy Initiative (EUEI). His research has attracted funding from prestigious programs in Japan, Australia, the European Union, and North America.",institutionString:"Fukushima Renewable Energy Institute, AIST (FREA)",position:null,outsideEditionCount:0,totalCites:0,totalAuthoredChapters:"1",totalChapterViews:"0",totalEditedBooks:"0",institution:{name:"National Institute of Advanced Industrial Science and Technology",institutionURL:null,country:{name:"Japan"}}},equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"8985",title:"Natural Resources Management and Biological Sciences",subtitle:null,isOpenForSubmission:!1,hash:"5c2e219a6c021a40b5a20c041dea88c4",slug:"natural-resources-management-and-biological-sciences",bookSignature:"Edward R. Rhodes and Humood Naser",coverURL:"https://cdn.intechopen.com/books/images_new/8985.jpg",editors:[{id:"280886",title:"Prof.",name:"Edward R",middleName:null,surname:"Rhodes",slug:"edward-r-rhodes",fullName:"Edward R Rhodes"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9027",title:"Human Blood Group Systems and Haemoglobinopathies",subtitle:null,isOpenForSubmission:!1,hash:"d00d8e40b11cfb2547d1122866531c7e",slug:"human-blood-group-systems-and-haemoglobinopathies",bookSignature:"Osaro Erhabor and Anjana Munshi",coverURL:"https://cdn.intechopen.com/books/images_new/9027.jpg",editors:[{id:"35140",title:null,name:"Osaro",middleName:null,surname:"Erhabor",slug:"osaro-erhabor",fullName:"Osaro Erhabor"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"7841",title:"New Insights Into Metabolic Syndrome",subtitle:null,isOpenForSubmission:!1,hash:"ef5accfac9772b9e2c9eff884f085510",slug:"new-insights-into-metabolic-syndrome",bookSignature:"Akikazu Takada",coverURL:"https://cdn.intechopen.com/books/images_new/7841.jpg",editors:[{id:"248459",title:"Dr.",name:"Akikazu",middleName:null,surname:"Takada",slug:"akikazu-takada",fullName:"Akikazu Takada"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"8558",title:"Aerodynamics",subtitle:null,isOpenForSubmission:!1,hash:"db7263fc198dfb539073ba0260a7f1aa",slug:"aerodynamics",bookSignature:"Mofid Gorji-Bandpy and Aly-Mousaad Aly",coverURL:"https://cdn.intechopen.com/books/images_new/8558.jpg",editors:[{id:"35542",title:"Prof.",name:"Mofid",middleName:null,surname:"Gorji-Bandpy",slug:"mofid-gorji-bandpy",fullName:"Mofid Gorji-Bandpy"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9668",title:"Chemistry and Biochemistry of Winemaking, Wine Stabilization and Aging",subtitle:null,isOpenForSubmission:!1,hash:"c5484276a314628acf21ec1bdc3a86b9",slug:"chemistry-and-biochemistry-of-winemaking-wine-stabilization-and-aging",bookSignature:"Fernanda Cosme, Fernando M. Nunes and Luís Filipe-Ribeiro",coverURL:"https://cdn.intechopen.com/books/images_new/9668.jpg",editors:[{id:"186819",title:"Prof.",name:"Fernanda",middleName:null,surname:"Cosme",slug:"fernanda-cosme",fullName:"Fernanda Cosme"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"7847",title:"Medical Toxicology",subtitle:null,isOpenForSubmission:!1,hash:"db9b65bea093de17a0855a1b27046247",slug:"medical-toxicology",bookSignature:"Pınar Erkekoglu and Tomohisa Ogawa",coverURL:"https://cdn.intechopen.com/books/images_new/7847.jpg",editors:[{id:"109978",title:"Prof.",name:"Pınar",middleName:null,surname:"Erkekoglu",slug:"pinar-erkekoglu",fullName:"Pınar Erkekoglu"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"8620",title:"Mining Techniques",subtitle:"Past, Present and Future",isOpenForSubmission:!1,hash:"b65658f81d14e9e57e49377869d3a575",slug:"mining-techniques-past-present-and-future",bookSignature:"Abhay Soni",coverURL:"https://cdn.intechopen.com/books/images_new/8620.jpg",editors:[{id:"271093",title:"Dr.",name:"Abhay",middleName:null,surname:"Soni",slug:"abhay-soni",fullName:"Abhay Soni"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9660",title:"Inland Waters",subtitle:"Dynamics and Ecology",isOpenForSubmission:!1,hash:"975c26819ceb11a926793bc2adc62bd6",slug:"inland-waters-dynamics-and-ecology",bookSignature:"Adam Devlin, Jiayi Pan and Mohammad Manjur Shah",coverURL:"https://cdn.intechopen.com/books/images_new/9660.jpg",editors:[{id:"280757",title:"Dr.",name:"Adam",middleName:"Thomas",surname:"Devlin",slug:"adam-devlin",fullName:"Adam Devlin"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9122",title:"Cosmetic Surgery",subtitle:null,isOpenForSubmission:!1,hash:"207026ca4a4125e17038e770d00ee152",slug:"cosmetic-surgery",bookSignature:"Yueh-Bih Tang",coverURL:"https://cdn.intechopen.com/books/images_new/9122.jpg",editors:[{id:"202122",title:"Prof.",name:"Yueh-Bih",middleName:null,surname:"Tang",slug:"yueh-bih-tang",fullName:"Yueh-Bih Tang"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9043",title:"Parenting",subtitle:"Studies by an Ecocultural and Transactional Perspective",isOpenForSubmission:!1,hash:"6d21066c7438e459e4c6fb13217a5c8c",slug:"parenting-studies-by-an-ecocultural-and-transactional-perspective",bookSignature:"Loredana Benedetto and Massimo Ingrassia",coverURL:"https://cdn.intechopen.com/books/images_new/9043.jpg",editors:[{id:"193200",title:"Prof.",name:"Loredana",middleName:null,surname:"Benedetto",slug:"loredana-benedetto",fullName:"Loredana Benedetto"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9731",title:"Oxidoreductase",subtitle:null,isOpenForSubmission:!1,hash:"852e6f862c85fc3adecdbaf822e64e6e",slug:"oxidoreductase",bookSignature:"Mahmoud Ahmed Mansour",coverURL:"https://cdn.intechopen.com/books/images_new/9731.jpg",editors:[{id:"224662",title:"Prof.",name:"Mahmoud Ahmed",middleName:null,surname:"Mansour",slug:"mahmoud-ahmed-mansour",fullName:"Mahmoud Ahmed Mansour"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}}],offset:12,limit:12,total:5227},hotBookTopics:{hotBooks:[],offset:0,limit:12,total:null},publish:{},publishingProposal:{success:null,errors:{}},books:{featuredBooks:[{type:"book",id:"9385",title:"Renewable Energy",subtitle:"Technologies and Applications",isOpenForSubmission:!1,hash:"a6b446d19166f17f313008e6c056f3d8",slug:"renewable-energy-technologies-and-applications",bookSignature:"Tolga Taner, Archana Tiwari and Taha Selim Ustun",coverURL:"https://cdn.intechopen.com/books/images_new/9385.jpg",editors:[{id:"197240",title:"Associate Prof.",name:"Tolga",middleName:null,surname:"Taner",slug:"tolga-taner",fullName:"Tolga Taner"}],equalEditorOne:{id:"186791",title:"Dr.",name:"Archana",middleName:null,surname:"Tiwari",slug:"archana-tiwari",fullName:"Archana Tiwari",profilePictureURL:"https://mts.intechopen.com/storage/users/186791/images/system/186791.jpg",biography:"Dr. Archana Tiwari is Associate Professor at Amity University, India. Her research interests include renewable sources of energy from microalgae and further utilizing the residual biomass for the generation of value-added products, bioremediation through microalgae and microbial consortium, antioxidative enzymes and stress, and nutraceuticals from microalgae. She has been working on algal biotechnology for the last two decades. She has published her research in many international journals and has authored many books and chapters with renowned publishing houses. She has also delivered talks as an invited speaker at many national and international conferences. Dr. Tiwari is the recipient of several awards including Researcher of the Year and Distinguished Scientist.",institutionString:"Amity University",position:null,outsideEditionCount:0,totalCites:0,totalAuthoredChapters:"3",totalChapterViews:"0",totalEditedBooks:"1",institution:{name:"Amity University",institutionURL:null,country:{name:"India"}}},equalEditorTwo:{id:"197609",title:"Prof.",name:"Taha Selim",middleName:null,surname:"Ustun",slug:"taha-selim-ustun",fullName:"Taha Selim Ustun",profilePictureURL:"https://mts.intechopen.com/storage/users/197609/images/system/197609.jpeg",biography:"Dr. Taha Selim Ustun received a Ph.D. in Electrical Engineering from Victoria University, Melbourne, Australia. He is a researcher with the Fukushima Renewable Energy Institute, AIST (FREA), where he leads the Smart Grid Cybersecurity Laboratory. Prior to that, he was a faculty member with the School of Electrical and Computer Engineering, Carnegie Mellon University, Pittsburgh, PA, USA. His current research interests include power systems protection, communication in power networks, distributed generation, microgrids, electric vehicle integration, and cybersecurity in smart grids. He serves on the editorial boards of IEEE Access, IEEE Transactions on Industrial Informatics, Energies, Electronics, Electricity, World Electric Vehicle and Information journals. Dr. Ustun is a member of the IEEE 2004 and 2800, IEC Renewable Energy Management WG 8, and IEC TC 57 WG17. He has been invited to run specialist courses in Africa, India, and China. He has delivered talks for the Qatar Foundation, the World Energy Council, the Waterloo Global Science Initiative, and the European Union Energy Initiative (EUEI). His research has attracted funding from prestigious programs in Japan, Australia, the European Union, and North America.",institutionString:"Fukushima Renewable Energy Institute, AIST (FREA)",position:null,outsideEditionCount:0,totalCites:0,totalAuthoredChapters:"1",totalChapterViews:"0",totalEditedBooks:"0",institution:{name:"National Institute of Advanced Industrial Science and Technology",institutionURL:null,country:{name:"Japan"}}},equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"8985",title:"Natural Resources Management and Biological Sciences",subtitle:null,isOpenForSubmission:!1,hash:"5c2e219a6c021a40b5a20c041dea88c4",slug:"natural-resources-management-and-biological-sciences",bookSignature:"Edward R. Rhodes and Humood Naser",coverURL:"https://cdn.intechopen.com/books/images_new/8985.jpg",editors:[{id:"280886",title:"Prof.",name:"Edward R",middleName:null,surname:"Rhodes",slug:"edward-r-rhodes",fullName:"Edward R Rhodes"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9027",title:"Human Blood Group Systems and Haemoglobinopathies",subtitle:null,isOpenForSubmission:!1,hash:"d00d8e40b11cfb2547d1122866531c7e",slug:"human-blood-group-systems-and-haemoglobinopathies",bookSignature:"Osaro Erhabor and Anjana Munshi",coverURL:"https://cdn.intechopen.com/books/images_new/9027.jpg",editors:[{id:"35140",title:null,name:"Osaro",middleName:null,surname:"Erhabor",slug:"osaro-erhabor",fullName:"Osaro Erhabor"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"7841",title:"New Insights Into Metabolic Syndrome",subtitle:null,isOpenForSubmission:!1,hash:"ef5accfac9772b9e2c9eff884f085510",slug:"new-insights-into-metabolic-syndrome",bookSignature:"Akikazu Takada",coverURL:"https://cdn.intechopen.com/books/images_new/7841.jpg",editors:[{id:"248459",title:"Dr.",name:"Akikazu",middleName:null,surname:"Takada",slug:"akikazu-takada",fullName:"Akikazu Takada"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"8558",title:"Aerodynamics",subtitle:null,isOpenForSubmission:!1,hash:"db7263fc198dfb539073ba0260a7f1aa",slug:"aerodynamics",bookSignature:"Mofid Gorji-Bandpy and Aly-Mousaad Aly",coverURL:"https://cdn.intechopen.com/books/images_new/8558.jpg",editors:[{id:"35542",title:"Prof.",name:"Mofid",middleName:null,surname:"Gorji-Bandpy",slug:"mofid-gorji-bandpy",fullName:"Mofid Gorji-Bandpy"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9668",title:"Chemistry and Biochemistry of Winemaking, Wine Stabilization and Aging",subtitle:null,isOpenForSubmission:!1,hash:"c5484276a314628acf21ec1bdc3a86b9",slug:"chemistry-and-biochemistry-of-winemaking-wine-stabilization-and-aging",bookSignature:"Fernanda Cosme, Fernando M. Nunes and Luís Filipe-Ribeiro",coverURL:"https://cdn.intechopen.com/books/images_new/9668.jpg",editors:[{id:"186819",title:"Prof.",name:"Fernanda",middleName:null,surname:"Cosme",slug:"fernanda-cosme",fullName:"Fernanda Cosme"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"7847",title:"Medical Toxicology",subtitle:null,isOpenForSubmission:!1,hash:"db9b65bea093de17a0855a1b27046247",slug:"medical-toxicology",bookSignature:"Pınar Erkekoglu and Tomohisa Ogawa",coverURL:"https://cdn.intechopen.com/books/images_new/7847.jpg",editors:[{id:"109978",title:"Prof.",name:"Pınar",middleName:null,surname:"Erkekoglu",slug:"pinar-erkekoglu",fullName:"Pınar Erkekoglu"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"8620",title:"Mining Techniques",subtitle:"Past, Present and Future",isOpenForSubmission:!1,hash:"b65658f81d14e9e57e49377869d3a575",slug:"mining-techniques-past-present-and-future",bookSignature:"Abhay Soni",coverURL:"https://cdn.intechopen.com/books/images_new/8620.jpg",editors:[{id:"271093",title:"Dr.",name:"Abhay",middleName:null,surname:"Soni",slug:"abhay-soni",fullName:"Abhay Soni"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9660",title:"Inland Waters",subtitle:"Dynamics and Ecology",isOpenForSubmission:!1,hash:"975c26819ceb11a926793bc2adc62bd6",slug:"inland-waters-dynamics-and-ecology",bookSignature:"Adam Devlin, Jiayi Pan and Mohammad Manjur Shah",coverURL:"https://cdn.intechopen.com/books/images_new/9660.jpg",editors:[{id:"280757",title:"Dr.",name:"Adam",middleName:"Thomas",surname:"Devlin",slug:"adam-devlin",fullName:"Adam Devlin"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9122",title:"Cosmetic Surgery",subtitle:null,isOpenForSubmission:!1,hash:"207026ca4a4125e17038e770d00ee152",slug:"cosmetic-surgery",bookSignature:"Yueh-Bih Tang",coverURL:"https://cdn.intechopen.com/books/images_new/9122.jpg",editors:[{id:"202122",title:"Prof.",name:"Yueh-Bih",middleName:null,surname:"Tang",slug:"yueh-bih-tang",fullName:"Yueh-Bih Tang"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}}],latestBooks:[{type:"book",id:"9550",title:"Entrepreneurship",subtitle:"Contemporary Issues",isOpenForSubmission:!1,hash:"9b4ac1ee5b743abf6f88495452b1e5e7",slug:"entrepreneurship-contemporary-issues",bookSignature:"Mladen Turuk",coverURL:"https://cdn.intechopen.com/books/images_new/9550.jpg",editedByType:"Edited by",editors:[{id:"319755",title:"Prof.",name:"Mladen",middleName:null,surname:"Turuk",slug:"mladen-turuk",fullName:"Mladen Turuk"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10065",title:"Wavelet Theory",subtitle:null,isOpenForSubmission:!1,hash:"d8868e332169597ba2182d9b004d60de",slug:"wavelet-theory",bookSignature:"Somayeh Mohammady",coverURL:"https://cdn.intechopen.com/books/images_new/10065.jpg",editedByType:"Edited by",editors:[{id:"109280",title:"Dr.",name:"Somayeh",middleName:null,surname:"Mohammady",slug:"somayeh-mohammady",fullName:"Somayeh Mohammady"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"9313",title:"Clay Science and Technology",subtitle:null,isOpenForSubmission:!1,hash:"6fa7e70396ff10620e032bb6cfa6fb72",slug:"clay-science-and-technology",bookSignature:"Gustavo Morari Do Nascimento",coverURL:"https://cdn.intechopen.com/books/images_new/9313.jpg",editedByType:"Edited by",editors:[{id:"7153",title:"Prof.",name:"Gustavo",middleName:null,surname:"Morari Do Nascimento",slug:"gustavo-morari-do-nascimento",fullName:"Gustavo Morari Do Nascimento"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"9888",title:"Nuclear Power Plants",subtitle:"The Processes from the Cradle to the Grave",isOpenForSubmission:!1,hash:"c2c8773e586f62155ab8221ebb72a849",slug:"nuclear-power-plants-the-processes-from-the-cradle-to-the-grave",bookSignature:"Nasser Awwad",coverURL:"https://cdn.intechopen.com/books/images_new/9888.jpg",editedByType:"Edited by",editors:[{id:"145209",title:"Prof.",name:"Nasser",middleName:"S",surname:"Awwad",slug:"nasser-awwad",fullName:"Nasser Awwad"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"8098",title:"Resources of Water",subtitle:null,isOpenForSubmission:!1,hash:"d251652996624d932ef7b8ed62cf7cfc",slug:"resources-of-water",bookSignature:"Prathna Thanjavur Chandrasekaran, Muhammad Salik Javaid, Aftab Sadiq",coverURL:"https://cdn.intechopen.com/books/images_new/8098.jpg",editedByType:"Edited by",editors:[{id:"167917",title:"Dr.",name:"Prathna",middleName:null,surname:"Thanjavur Chandrasekaran",slug:"prathna-thanjavur-chandrasekaran",fullName:"Prathna Thanjavur Chandrasekaran"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"9644",title:"Glaciers and the Polar Environment",subtitle:null,isOpenForSubmission:!1,hash:"e8cfdc161794e3753ced54e6ff30873b",slug:"glaciers-and-the-polar-environment",bookSignature:"Masaki Kanao, Danilo Godone and Niccolò Dematteis",coverURL:"https://cdn.intechopen.com/books/images_new/9644.jpg",editedByType:"Edited by",editors:[{id:"51959",title:"Dr.",name:"Masaki",middleName:null,surname:"Kanao",slug:"masaki-kanao",fullName:"Masaki Kanao"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10432",title:"Casting Processes and Modelling of Metallic Materials",subtitle:null,isOpenForSubmission:!1,hash:"2c5c9df938666bf5d1797727db203a6d",slug:"casting-processes-and-modelling-of-metallic-materials",bookSignature:"Zakaria Abdallah and Nada Aldoumani",coverURL:"https://cdn.intechopen.com/books/images_new/10432.jpg",editedByType:"Edited by",editors:[{id:"201670",title:"Dr.",name:"Zak",middleName:null,surname:"Abdallah",slug:"zak-abdallah",fullName:"Zak Abdallah"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"9671",title:"Macrophages",subtitle:null,isOpenForSubmission:!1,hash:"03b00fdc5f24b71d1ecdfd75076bfde6",slug:"macrophages",bookSignature:"Hridayesh Prakash",coverURL:"https://cdn.intechopen.com/books/images_new/9671.jpg",editedByType:"Edited by",editors:[{id:"287184",title:"Dr.",name:"Hridayesh",middleName:null,surname:"Prakash",slug:"hridayesh-prakash",fullName:"Hridayesh Prakash"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"8415",title:"Extremophilic Microbes and Metabolites",subtitle:"Diversity, Bioprospecting and Biotechnological Applications",isOpenForSubmission:!1,hash:"93e0321bc93b89ff73730157738f8f97",slug:"extremophilic-microbes-and-metabolites-diversity-bioprospecting-and-biotechnological-applications",bookSignature:"Afef Najjari, Ameur Cherif, Haïtham Sghaier and Hadda Imene Ouzari",coverURL:"https://cdn.intechopen.com/books/images_new/8415.jpg",editedByType:"Edited by",editors:[{id:"196823",title:"Dr.",name:"Afef",middleName:null,surname:"Najjari",slug:"afef-najjari",fullName:"Afef Najjari"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"9731",title:"Oxidoreductase",subtitle:null,isOpenForSubmission:!1,hash:"852e6f862c85fc3adecdbaf822e64e6e",slug:"oxidoreductase",bookSignature:"Mahmoud Ahmed Mansour",coverURL:"https://cdn.intechopen.com/books/images_new/9731.jpg",editedByType:"Edited by",editors:[{id:"224662",title:"Prof.",name:"Mahmoud Ahmed",middleName:null,surname:"Mansour",slug:"mahmoud-ahmed-mansour",fullName:"Mahmoud Ahmed Mansour"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}}]},subject:{topic:{id:"39",title:"Insectology",slug:"insectology",parent:{title:"Agricultural and Biological Sciences",slug:"agricultural-and-biological-sciences"},numberOfBooks:10,numberOfAuthorsAndEditors:277,numberOfWosCitations:303,numberOfCrossrefCitations:138,numberOfDimensionsCitations:405,videoUrl:null,fallbackUrl:null,description:null},booksByTopicFilter:{topicSlug:"insectology",sort:"-publishedDate",limit:12,offset:0},booksByTopicCollection:[{type:"book",id:"8191",title:"Life Cycle and Development of Diptera",subtitle:null,isOpenForSubmission:!1,hash:"3610997886df57ea1ec1cf71b0ff8ce2",slug:"life-cycle-and-development-of-diptera",bookSignature:"Muhammad Sarwar",coverURL:"https://cdn.intechopen.com/books/images_new/8191.jpg",editedByType:"Edited by",editors:[{id:"272992",title:"Dr.",name:"Muhammad",middleName:null,surname:"Sarwar",slug:"muhammad-sarwar",fullName:"Muhammad Sarwar"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"8246",title:"Trends in Integrated Insect Pest Management",subtitle:null,isOpenForSubmission:!1,hash:"af438c4e55f7313c78437813d1f9eff0",slug:"trends-in-integrated-insect-pest-management",bookSignature:"R. P. Soundararajan and Chitra Narayanasamy",coverURL:"https://cdn.intechopen.com/books/images_new/8246.jpg",editedByType:"Edited by",editors:[{id:"145081",title:"Dr.",name:"R.P.",middleName:null,surname:"Soundararajan",slug:"r.p.-soundararajan",fullName:"R.P. Soundararajan"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"7545",title:"Pests Control and Acarology",subtitle:null,isOpenForSubmission:!1,hash:"0022220ff47783a2098bdaf73c7640de",slug:"pests-control-and-acarology",bookSignature:"Dalila Haouas and Levente Hufnagel",coverURL:"https://cdn.intechopen.com/books/images_new/7545.jpg",editedByType:"Edited by",editors:[{id:"235583",title:"Dr.",name:"Dalila",middleName:null,surname:"Haouas",slug:"dalila-haouas",fullName:"Dalila Haouas"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"6895",title:"Moths",subtitle:"Pests of Potato, Maize and Sugar Beet",isOpenForSubmission:!1,hash:"53f66556fd9bcdc455a639838d45c2d8",slug:"moths-pests-of-potato-maize-and-sugar-beet",bookSignature:"Farzana Khan Perveen",coverURL:"https://cdn.intechopen.com/books/images_new/6895.jpg",editedByType:"Edited by",editors:[{id:"75563",title:"Dr.",name:"Farzana Khan",middleName:null,surname:"Perveen",slug:"farzana-khan-perveen",fullName:"Farzana Khan Perveen"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"6400",title:"The Complex World of Ants",subtitle:null,isOpenForSubmission:!1,hash:"f90ac84c1aa317bb2557af3b7cc09091",slug:"the-complex-world-of-ants",bookSignature:"Vonnie Shields",coverURL:"https://cdn.intechopen.com/books/images_new/6400.jpg",editedByType:"Edited by",editors:[{id:"82613",title:"Dr.",name:"Vonnie D.C.",middleName:null,surname:"Shields",slug:"vonnie-d.c.-shields",fullName:"Vonnie D.C. Shields"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"5976",title:"Drosophila melanogaster",subtitle:"Model for Recent Advances in Genetics and Therapeutics",isOpenForSubmission:!1,hash:"46ff086c2ae55b49970a648d604634cc",slug:"drosophila-melanogaster-model-for-recent-advances-in-genetics-and-therapeutics",bookSignature:"Farzana Khan Perveen",coverURL:"https://cdn.intechopen.com/books/images_new/5976.jpg",editedByType:"Edited by",editors:[{id:"75563",title:"Dr.",name:"Farzana Khan",middleName:null,surname:"Perveen",slug:"farzana-khan-perveen",fullName:"Farzana Khan Perveen"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"6048",title:"Insect Physiology and Ecology",subtitle:null,isOpenForSubmission:!1,hash:"741de9c4e0846c950ac20888e4f437c2",slug:"insect-physiology-and-ecology",bookSignature:"Vonnie D.C. Shields",coverURL:"https://cdn.intechopen.com/books/images_new/6048.jpg",editedByType:"Edited by",editors:[{id:"82613",title:"Dr.",name:"Vonnie D.C.",middleName:null,surname:"Shields",slug:"vonnie-d.c.-shields",fullName:"Vonnie D.C. Shields"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"5520",title:"Honey Analysis",subtitle:null,isOpenForSubmission:!1,hash:"ec56e9c28bf7888777db171ac62fc839",slug:"honey-analysis",bookSignature:"Vagner de Alencar Arnaut de Toledo",coverURL:"https://cdn.intechopen.com/books/images_new/5520.jpg",editedByType:"Edited by",editors:[{id:"117226",title:"Prof.",name:"Vagner De Alencar",middleName:null,surname:"Arnaut De Toledo",slug:"vagner-de-alencar-arnaut-de-toledo",fullName:"Vagner De Alencar Arnaut De Toledo"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"843",title:"Insecticides",subtitle:"Pest Engineering",isOpenForSubmission:!1,hash:"88f3cc3c937f853057f544c152ef7491",slug:"insecticides-pest-engineering",bookSignature:"Farzana Perveen",coverURL:"https://cdn.intechopen.com/books/images_new/843.jpg",editedByType:"Edited by",editors:[{id:"75563",title:"Dr.",name:"Farzana Khan",middleName:null,surname:"Perveen",slug:"farzana-khan-perveen",fullName:"Farzana Khan Perveen"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"2035",title:"Insecticides",subtitle:"Basic and Other Applications",isOpenForSubmission:!1,hash:"a1a58545e043b9616c972a9eed86b0f1",slug:"insecticides-basic-and-other-applications",bookSignature:"Sonia Soloneski and Marcelo Larramendy",coverURL:"https://cdn.intechopen.com/books/images_new/2035.jpg",editedByType:"Edited by",editors:[{id:"14863",title:"Dr.",name:"Sonia",middleName:null,surname:"Soloneski",slug:"sonia-soloneski",fullName:"Sonia Soloneski"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}}],booksByTopicTotal:10,mostCitedChapters:[{id:"28275",doi:"10.5772/28749",title:"Trends in Insecticide Resistance in Natural Populations of Malaria Vectors in Burkina Faso, West Africa: 10 Years’ Surveys",slug:"trends-in-insecticide-resistance-in-natural-populations-of-malaria-vectors-in-burkina-faso-west-afri",totalDownloads:1803,totalCrossrefCites:0,totalDimensionsCites:26,book:{slug:"insecticides-pest-engineering",title:"Insecticides",fullTitle:"Insecticides - Pest Engineering"},signatures:"K. R. Dabiré, A. Diabaté, M. Namountougou, L. Djogbenou, C. Wondji, F. Chandre, F. Simard, J-B. Ouédraogo, T. Martin, M. Weill and T. Baldet",authors:[{id:"75213",title:"Dr.",name:"Kounbobr Roch",middleName:null,surname:"Dabiré",slug:"kounbobr-roch-dabire",fullName:"Kounbobr Roch Dabiré"},{id:"140689",title:"Dr.",name:"Abdoulaye",middleName:null,surname:"Diabate",slug:"abdoulaye-diabate",fullName:"Abdoulaye Diabate"},{id:"140690",title:"Dr.",name:"Moussa",middleName:null,surname:"Namountougou",slug:"moussa-namountougou",fullName:"Moussa Namountougou"},{id:"140691",title:"Dr.",name:"Luc",middleName:null,surname:"Djogbenou",slug:"luc-djogbenou",fullName:"Luc Djogbenou"},{id:"140692",title:"Dr.",name:"Charles S.",middleName:null,surname:"Wondji",slug:"charles-s.-wondji",fullName:"Charles S. Wondji"},{id:"140693",title:"Dr.",name:"Fabrice",middleName:null,surname:"Chandre",slug:"fabrice-chandre",fullName:"Fabrice Chandre"},{id:"140694",title:"Dr.",name:"Frédéric",middleName:null,surname:"Simard",slug:"frederic-simard",fullName:"Frédéric Simard"},{id:"140695",title:"Dr.",name:"Jean-Bosco",middleName:null,surname:"Ouédraogo",slug:"jean-bosco-ouedraogo",fullName:"Jean-Bosco Ouédraogo"},{id:"140696",title:"Dr.",name:"Mylène",middleName:null,surname:"Weill",slug:"mylene-weill",fullName:"Mylène Weill"},{id:"140697",title:"Dr.",name:"Thierry",middleName:null,surname:"Balder",slug:"thierry-balder",fullName:"Thierry Balder"}]},{id:"54100",doi:"10.5772/67318",title:"Potential of Insect-Derived Ingredients for Food Applications",slug:"potential-of-insect-derived-ingredients-for-food-applications",totalDownloads:2526,totalCrossrefCites:10,totalDimensionsCites:25,book:{slug:"insect-physiology-and-ecology",title:"Insect Physiology and Ecology",fullTitle:"Insect Physiology and Ecology"},signatures:"Daylan Amelia Tzompa Sosa and Vincenzo Fogliano",authors:[{id:"192268",title:"Dr.",name:"Daylan",middleName:null,surname:"Tzompa Sosa",slug:"daylan-tzompa-sosa",fullName:"Daylan Tzompa Sosa"},{id:"197212",title:"Prof.",name:"Vincenzo",middleName:null,surname:"Fogliano",slug:"vincenzo-fogliano",fullName:"Vincenzo Fogliano"}]},{id:"28269",doi:"10.5772/29355",title:"Management Strategies for Western Flower Thrips and the Role of Insecticides",slug:"management-strategies-for-western-flower-thrips-and-the-role-of-insecticides",totalDownloads:3832,totalCrossrefCites:0,totalDimensionsCites:21,book:{slug:"insecticides-pest-engineering",title:"Insecticides",fullTitle:"Insecticides - Pest Engineering"},signatures:"Stuart R. Reitz and Joe Funderburk",authors:[{id:"77440",title:"Dr.",name:"Stuart",middleName:null,surname:"Reitz",slug:"stuart-reitz",fullName:"Stuart Reitz"},{id:"83482",title:"Dr.",name:"Joe",middleName:null,surname:"Funderburk",slug:"joe-funderburk",fullName:"Joe Funderburk"}]}],mostDownloadedChaptersLast30Days:[{id:"53175",title:"Analytical Procedures for Determining Heavy Metal Contents in Honey: A Bioindicator of Environmental Pollution",slug:"analytical-procedures-for-determining-heavy-metal-contents-in-honey-a-bioindicator-of-environmental-",totalDownloads:2817,totalCrossrefCites:2,totalDimensionsCites:5,book:{slug:"honey-analysis",title:"Honey Analysis",fullTitle:"Honey Analysis"},signatures:"Enrique Mejías and Tatiana Garrido",authors:[{id:"191583",title:"Dr.",name:"Enrique",middleName:null,surname:"Mejias",slug:"enrique-mejias",fullName:"Enrique Mejias"},{id:"193079",title:"Dr.",name:"Tatiana",middleName:null,surname:"Garrido",slug:"tatiana-garrido",fullName:"Tatiana Garrido"}]},{id:"53469",title:"Techniques for the Evaluation of Physicochemical Quality and Bioactive Compounds in Honey",slug:"techniques-for-the-evaluation-of-physicochemical-quality-and-bioactive-compounds-in-honey",totalDownloads:2758,totalCrossrefCites:3,totalDimensionsCites:9,book:{slug:"honey-analysis",title:"Honey Analysis",fullTitle:"Honey Analysis"},signatures:"Maria Josiane Sereia, Paulo Henrique Março, Marcia Regina Geraldo\nPerdoncini, Rejane Stubs Parpinelli, Erica Gomes de Lima and\nFernando Antônio Anjo",authors:[{id:"192188",title:"Dr.",name:"Maria",middleName:null,surname:"Sereia",slug:"maria-sereia",fullName:"Maria Sereia"}]},{id:"53789",title:"Cellular and Molecular Mechanisms of Insect Immunity",slug:"cellular-and-molecular-mechanisms-of-insect-immunity",totalDownloads:2969,totalCrossrefCites:10,totalDimensionsCites:15,book:{slug:"insect-physiology-and-ecology",title:"Insect Physiology and Ecology",fullTitle:"Insect Physiology and Ecology"},signatures:"Carlos Rosales",authors:[{id:"192432",title:"Dr.",name:"Carlos",middleName:null,surname:"Rosales",slug:"carlos-rosales",fullName:"Carlos Rosales"}]},{id:"54540",title:"Entomophagy: Insects as Food",slug:"entomophagy-insects-as-food",totalDownloads:2419,totalCrossrefCites:2,totalDimensionsCites:9,book:{slug:"insect-physiology-and-ecology",title:"Insect Physiology and Ecology",fullTitle:"Insect Physiology and Ecology"},signatures:"Tiencheu Bernard and Hilaire Macaire Womeni",authors:[{id:"192275",title:"Dr.",name:"Tiencheu",middleName:null,surname:"Bernard",slug:"tiencheu-bernard",fullName:"Tiencheu Bernard"},{id:"195631",title:"Prof.",name:"Womeni",middleName:null,surname:"Hilaire",slug:"womeni-hilaire",fullName:"Womeni Hilaire"}]},{id:"54451",title:"Introduction to Drosophila",slug:"introduction-to-drosophila",totalDownloads:10949,totalCrossrefCites:1,totalDimensionsCites:4,book:{slug:"drosophila-melanogaster-model-for-recent-advances-in-genetics-and-therapeutics",title:"Drosophila melanogaster",fullTitle:"Drosophila melanogaster - Model for Recent Advances in Genetics and Therapeutics"},signatures:"Farzana Khan Perveen",authors:[{id:"75563",title:"Dr.",name:"Farzana Khan",middleName:null,surname:"Perveen",slug:"farzana-khan-perveen",fullName:"Farzana Khan Perveen"}]},{id:"54100",title:"Potential of Insect-Derived Ingredients for Food Applications",slug:"potential-of-insect-derived-ingredients-for-food-applications",totalDownloads:2527,totalCrossrefCites:10,totalDimensionsCites:25,book:{slug:"insect-physiology-and-ecology",title:"Insect Physiology and Ecology",fullTitle:"Insect Physiology and Ecology"},signatures:"Daylan Amelia Tzompa Sosa and Vincenzo Fogliano",authors:[{id:"192268",title:"Dr.",name:"Daylan",middleName:null,surname:"Tzompa Sosa",slug:"daylan-tzompa-sosa",fullName:"Daylan Tzompa Sosa"},{id:"197212",title:"Prof.",name:"Vincenzo",middleName:null,surname:"Fogliano",slug:"vincenzo-fogliano",fullName:"Vincenzo Fogliano"}]},{id:"53775",title:"Honey as a Functional Food",slug:"honey-as-a-functional-food",totalDownloads:1598,totalCrossrefCites:2,totalDimensionsCites:8,book:{slug:"honey-analysis",title:"Honey Analysis",fullTitle:"Honey Analysis"},signatures:"Rosa Helena Luchese, Edlene Ribeiro Prudêncio and André\nFioravante Guerra",authors:[{id:"191671",title:"Ph.D.",name:"Rosa",middleName:null,surname:"Luchese",slug:"rosa-luchese",fullName:"Rosa Luchese"},{id:"192130",title:"MSc.",name:"Edlene",middleName:null,surname:"Prudêncio",slug:"edlene-prudencio",fullName:"Edlene Prudêncio"},{id:"192133",title:"MSc.",name:"André",middleName:null,surname:"Guerra",slug:"andre-guerra",fullName:"André Guerra"}]},{id:"54003",title:"Antimicrobial Activity of Honey",slug:"antimicrobial-activity-of-honey",totalDownloads:3514,totalCrossrefCites:5,totalDimensionsCites:11,book:{slug:"honey-analysis",title:"Honey Analysis",fullTitle:"Honey Analysis"},signatures:"Piotr Szweda",authors:[{id:"117528",title:"Dr.",name:"Szweda",middleName:null,surname:"Piotr",slug:"szweda-piotr",fullName:"Szweda Piotr"}]},{id:"54195",title:"Microorganisms in Honey",slug:"microorganisms-in-honey",totalDownloads:3273,totalCrossrefCites:2,totalDimensionsCites:10,book:{slug:"honey-analysis",title:"Honey Analysis",fullTitle:"Honey Analysis"},signatures:"Mayara Salgado Silva, Yavor Rabadzhiev, Monique Renon Eller, Ilia\nIliev, Iskra Ivanova and Weyder Cristiano Santana",authors:[{id:"192986",title:"Dr.",name:"Weyder Cristiano",middleName:null,surname:"Santana",slug:"weyder-cristiano-santana",fullName:"Weyder Cristiano Santana"},{id:"197594",title:"MSc.",name:"Mayara",middleName:null,surname:"Salgado-Silva",slug:"mayara-salgado-silva",fullName:"Mayara Salgado-Silva"},{id:"197595",title:"Dr.",name:"Yavor",middleName:null,surname:"Rabadzhiev",slug:"yavor-rabadzhiev",fullName:"Yavor Rabadzhiev"},{id:"197596",title:"Prof.",name:"Monique",middleName:null,surname:"Eller",slug:"monique-eller",fullName:"Monique Eller"},{id:"197597",title:"Prof.",name:"Iskra",middleName:null,surname:"Ivanova",slug:"iskra-ivanova",fullName:"Iskra Ivanova"},{id:"197598",title:"Prof.",name:"Ilia",middleName:null,surname:"Iliev",slug:"ilia-iliev",fullName:"Ilia Iliev"}]},{id:"54239",title:"Fundamentals of Brazilian Honey Analysis: An Overview",slug:"fundamentals-of-brazilian-honey-analysis-an-overview",totalDownloads:2060,totalCrossrefCites:1,totalDimensionsCites:1,book:{slug:"honey-analysis",title:"Honey Analysis",fullTitle:"Honey Analysis"},signatures:"Franciane Marquele-Oliveira, Daniel Blascke Carrão, Rebeca Oliveira\nde Souza, Nathalia Ursoli Baptista, Andresa Piacezzi Nascimento,\nElina Cássia Torres, Gabriela de Padua Moreno, Andrei Felipe\nMoreira Buszinski, Felipe Galeti Miguel, Gustavo Luis Cuba, Thaila\nFernanda dos Reis, Joelma Lambertucci, Carlos Redher and Andresa\nA. Berretta",authors:[{id:"191621",title:"Dr.",name:"Andresa",middleName:"Aparecida",surname:"Berretta",slug:"andresa-berretta",fullName:"Andresa Berretta"},{id:"192234",title:"Dr.",name:"Franciane",middleName:null,surname:"Marquele-Oliveira",slug:"franciane-marquele-oliveira",fullName:"Franciane Marquele-Oliveira"},{id:"192235",title:"Mrs.",name:"Nathalia",middleName:null,surname:"Baptista",slug:"nathalia-baptista",fullName:"Nathalia Baptista"},{id:"192238",title:"Mr.",name:"Carlos",middleName:null,surname:"Redher",slug:"carlos-redher",fullName:"Carlos Redher"},{id:"192327",title:"Dr.",name:"Andresa",middleName:"Piacezzi",surname:"Nascimento",slug:"andresa-nascimento",fullName:"Andresa Nascimento"},{id:"192962",title:"Prof.",name:"Daniel",middleName:null,surname:"Carrão",slug:"daniel-carrao",fullName:"Daniel Carrão"},{id:"192963",title:"Mr.",name:"Andrei",middleName:null,surname:"Buszinski",slug:"andrei-buszinski",fullName:"Andrei Buszinski"},{id:"192964",title:"Mrs.",name:"Elina",middleName:null,surname:"Torres",slug:"elina-torres",fullName:"Elina Torres"},{id:"192965",title:"Mrs.",name:"Gabriela",middleName:null,surname:"Moreno",slug:"gabriela-moreno",fullName:"Gabriela Moreno"},{id:"192966",title:"Dr.",name:"Rebeca",middleName:null,surname:"De Souza",slug:"rebeca-de-souza",fullName:"Rebeca De Souza"},{id:"192967",title:"Dr.",name:"Joelma",middleName:"Lambertucci",surname:"De Brito",slug:"joelma-de-brito",fullName:"Joelma De Brito"}]}],onlineFirstChaptersFilter:{topicSlug:"insectology",limit:3,offset:0},onlineFirstChaptersCollection:[],onlineFirstChaptersTotal:0},preDownload:{success:null,errors:{}},aboutIntechopen:{},privacyPolicy:{},peerReviewing:{},howOpenAccessPublishingWithIntechopenWorks:{},sponsorshipBooks:{sponsorshipBooks:[{type:"book",id:"10176",title:"Microgrids and Local Energy Systems",subtitle:null,isOpenForSubmission:!0,hash:"c32b4a5351a88f263074b0d0ca813a9c",slug:null,bookSignature:"Prof. Nick Jenkins",coverURL:"https://cdn.intechopen.com/books/images_new/10176.jpg",editedByType:null,editors:[{id:"55219",title:"Prof.",name:"Nick",middleName:null,surname:"Jenkins",slug:"nick-jenkins",fullName:"Nick Jenkins"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}}],offset:8,limit:8,total:1},route:{name:"chapter.detail",path:"/books/human-blood-group-systems-and-haemoglobinopathies/contribution-of-biomedical-equipment-management-to-better-management-of-sickle-cell-disease-in-afric",hash:"",query:{},params:{book:"human-blood-group-systems-and-haemoglobinopathies",chapter:"contribution-of-biomedical-equipment-management-to-better-management-of-sickle-cell-disease-in-afric"},fullPath:"/books/human-blood-group-systems-and-haemoglobinopathies/contribution-of-biomedical-equipment-management-to-better-management-of-sickle-cell-disease-in-afric",meta:{},from:{name:null,path:"/",hash:"",query:{},params:{},fullPath:"/",meta:{}}}},function(){var e;(e=document.currentScript||document.scripts[document.scripts.length-1]).parentNode.removeChild(e)}()