Analysis of cosinor rhythmometry for daily changes in core temperature,Vo2, and locomotor activity.
\r\n\t
",isbn:"978-1-83969-600-8",printIsbn:"978-1-83969-599-5",pdfIsbn:"978-1-83969-601-5",doi:null,price:0,priceEur:0,priceUsd:0,slug:null,numberOfPages:0,isOpenForSubmission:!0,hash:"47659401ffe512c28313440110c0a903",bookSignature:"Dr. Min Huang",publishedDate:null,coverURL:"https://cdn.intechopen.com/books/images_new/10896.jpg",keywords:"Yield Potential, Grain Quality, Biotic Stress Resistance, Climatic Adaptation, Soil Management, Straw Management, Mechanical Transplanting, Direct Seeding, Nutrient Management, Water Management, Pest Management, Abiotic Stress Management",numberOfDownloads:null,numberOfWosCitations:0,numberOfCrossrefCitations:null,numberOfDimensionsCitations:null,numberOfTotalCitations:null,isAvailableForWebshopOrdering:!0,dateEndFirstStepPublish:"February 26th 2021",dateEndSecondStepPublish:"March 26th 2021",dateEndThirdStepPublish:"May 25th 2021",dateEndFourthStepPublish:"August 13th 2021",dateEndFifthStepPublish:"October 12th 2021",remainingDaysToSecondStep:"21 days",secondStepPassed:!1,currentStepOfPublishingProcess:2,editedByType:null,kuFlag:!1,biosketch:"Dr. Huang is a professor in crop science at the Hunan Agricultural University, a committee member of the Council of the International Forum on Rice Development, and a first and/or corresponding author of more than 70 publications in international journals.",coeditorOneBiosketch:null,coeditorTwoBiosketch:null,coeditorThreeBiosketch:null,coeditorFourBiosketch:null,coeditorFiveBiosketch:null,editors:[{id:"189829",title:"Dr.",name:"Min",middleName:null,surname:"Huang",slug:"min-huang",fullName:"Min Huang",profilePictureURL:"https://mts.intechopen.com/storage/users/189829/images/system/189829.jpg",biography:"Dr. Min Huang received his PhD in the major of Crop Cultivation and Farming System from the Hunan Agricultural University (HAU), China in 2011. He successively held the positions of Assistant and Associate Professor in the Department of Agronomy at the Guangxi University, China from 2012 to 2014. He joined the faculty as an Associate Professor in the Department of Agronomy at the HAU in 2015 and was promoted to the position of Professor in 2017. He worked as a visiting fellow at the International Programs-College of Agriculture and Life Sciences, Cornell University, USA in 2017 and 2018. He serves as a committee member of the Crop Cultivation Professional Council of the Crop Science Society of China and a committee member of the Council of the International Forum on Rice Development. He obtained 5 research grants from the National Natural Science Foundation of China and the Ministry of Science and Technology of China. He is a first and/or corresponding author of more than 70 publications in international journals and an editor of 2 books. He won the Excellent Doctoral Thesis Award of Hunan Province in 2014, and the Second Prize of Science and Technology Progress Award of the Ministry of Education of China in 2016.",institutionString:"Hunan Agricultural University",position:null,outsideEditionCount:0,totalCites:0,totalAuthoredChapters:"1",totalChapterViews:"0",totalEditedBooks:"0",institution:{name:"Hunan Agricultural University",institutionURL:null,country:{name:"China"}}}],coeditorOne:null,coeditorTwo:null,coeditorThree:null,coeditorFour:null,coeditorFive:null,topics:[{id:"5",title:"Agricultural and Biological Sciences",slug:"agricultural-and-biological-sciences"}],chapters:null,productType:{id:"1",title:"Edited Volume",chapterContentType:"chapter",authoredCaption:"Edited by"},personalPublishingAssistant:{id:"301331",firstName:"Mia",lastName:"Vulovic",middleName:null,title:"Mrs.",imageUrl:"https://mts.intechopen.com/storage/users/301331/images/8498_n.jpg",email:"mia.v@intechopen.com",biography:"As an Author Service Manager, my responsibilities include monitoring and facilitating all publishing activities for authors and editors. From chapter submission and review to approval and revision, copyediting and design, until final publication, I work closely with authors and editors to ensure a simple and easy publishing process. I maintain constant and effective communication with authors, editors and reviewers, which allows for a level of personal support that enables contributors to fully commit and concentrate on the chapters they are writing, editing, or reviewing. I assist authors in the preparation of their full chapter submissions and track important deadlines and ensure they are met. I help to coordinate internal processes such as linguistic review, and monitor the technical aspects of the process. As an ASM I am also involved in the acquisition of editors. Whether that be identifying an exceptional author and proposing an editorship collaboration, or contacting researchers who would like the opportunity to work with IntechOpen, I establish and help manage author and editor acquisition and contact."}},relatedBooks:[{type:"book",id:"6418",title:"Hyperspectral Imaging in Agriculture, Food and Environment",subtitle:null,isOpenForSubmission:!1,hash:"9005c36534a5dc065577a011aea13d4d",slug:"hyperspectral-imaging-in-agriculture-food-and-environment",bookSignature:"Alejandro Isabel Luna Maldonado, Humberto Rodríguez Fuentes and Juan Antonio Vidales Contreras",coverURL:"https://cdn.intechopen.com/books/images_new/6418.jpg",editedByType:"Edited by",editors:[{id:"105774",title:"Prof.",name:"Alejandro Isabel",surname:"Luna Maldonado",slug:"alejandro-isabel-luna-maldonado",fullName:"Alejandro Isabel Luna Maldonado"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"1591",title:"Infrared Spectroscopy",subtitle:"Materials Science, Engineering and Technology",isOpenForSubmission:!1,hash:"99b4b7b71a8caeb693ed762b40b017f4",slug:"infrared-spectroscopy-materials-science-engineering-and-technology",bookSignature:"Theophile Theophanides",coverURL:"https://cdn.intechopen.com/books/images_new/1591.jpg",editedByType:"Edited by",editors:[{id:"37194",title:"Dr.",name:"Theophanides",surname:"Theophile",slug:"theophanides-theophile",fullName:"Theophanides Theophile"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"3092",title:"Anopheles mosquitoes",subtitle:"New insights into malaria vectors",isOpenForSubmission:!1,hash:"c9e622485316d5e296288bf24d2b0d64",slug:"anopheles-mosquitoes-new-insights-into-malaria-vectors",bookSignature:"Sylvie Manguin",coverURL:"https://cdn.intechopen.com/books/images_new/3092.jpg",editedByType:"Edited by",editors:[{id:"50017",title:"Prof.",name:"Sylvie",surname:"Manguin",slug:"sylvie-manguin",fullName:"Sylvie Manguin"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"3161",title:"Frontiers in Guided Wave Optics and Optoelectronics",subtitle:null,isOpenForSubmission:!1,hash:"deb44e9c99f82bbce1083abea743146c",slug:"frontiers-in-guided-wave-optics-and-optoelectronics",bookSignature:"Bishnu Pal",coverURL:"https://cdn.intechopen.com/books/images_new/3161.jpg",editedByType:"Edited by",editors:[{id:"4782",title:"Prof.",name:"Bishnu",surname:"Pal",slug:"bishnu-pal",fullName:"Bishnu Pal"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"72",title:"Ionic Liquids",subtitle:"Theory, Properties, New Approaches",isOpenForSubmission:!1,hash:"d94ffa3cfa10505e3b1d676d46fcd3f5",slug:"ionic-liquids-theory-properties-new-approaches",bookSignature:"Alexander Kokorin",coverURL:"https://cdn.intechopen.com/books/images_new/72.jpg",editedByType:"Edited by",editors:[{id:"19816",title:"Prof.",name:"Alexander",surname:"Kokorin",slug:"alexander-kokorin",fullName:"Alexander Kokorin"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"1373",title:"Ionic Liquids",subtitle:"Applications and Perspectives",isOpenForSubmission:!1,hash:"5e9ae5ae9167cde4b344e499a792c41c",slug:"ionic-liquids-applications-and-perspectives",bookSignature:"Alexander Kokorin",coverURL:"https://cdn.intechopen.com/books/images_new/1373.jpg",editedByType:"Edited by",editors:[{id:"19816",title:"Prof.",name:"Alexander",surname:"Kokorin",slug:"alexander-kokorin",fullName:"Alexander Kokorin"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"57",title:"Physics and Applications of Graphene",subtitle:"Experiments",isOpenForSubmission:!1,hash:"0e6622a71cf4f02f45bfdd5691e1189a",slug:"physics-and-applications-of-graphene-experiments",bookSignature:"Sergey Mikhailov",coverURL:"https://cdn.intechopen.com/books/images_new/57.jpg",editedByType:"Edited by",editors:[{id:"16042",title:"Dr.",name:"Sergey",surname:"Mikhailov",slug:"sergey-mikhailov",fullName:"Sergey Mikhailov"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"371",title:"Abiotic Stress in Plants",subtitle:"Mechanisms and Adaptations",isOpenForSubmission:!1,hash:"588466f487e307619849d72389178a74",slug:"abiotic-stress-in-plants-mechanisms-and-adaptations",bookSignature:"Arun Shanker and B. Venkateswarlu",coverURL:"https://cdn.intechopen.com/books/images_new/371.jpg",editedByType:"Edited by",editors:[{id:"58592",title:"Dr.",name:"Arun",surname:"Shanker",slug:"arun-shanker",fullName:"Arun Shanker"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"878",title:"Phytochemicals",subtitle:"A Global Perspective of Their Role in Nutrition and Health",isOpenForSubmission:!1,hash:"ec77671f63975ef2d16192897deb6835",slug:"phytochemicals-a-global-perspective-of-their-role-in-nutrition-and-health",bookSignature:"Venketeshwer Rao",coverURL:"https://cdn.intechopen.com/books/images_new/878.jpg",editedByType:"Edited by",editors:[{id:"82663",title:"Dr.",name:"Venketeshwer",surname:"Rao",slug:"venketeshwer-rao",fullName:"Venketeshwer Rao"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"4816",title:"Face Recognition",subtitle:null,isOpenForSubmission:!1,hash:"146063b5359146b7718ea86bad47c8eb",slug:"face_recognition",bookSignature:"Kresimir Delac and Mislav Grgic",coverURL:"https://cdn.intechopen.com/books/images_new/4816.jpg",editedByType:"Edited by",editors:[{id:"528",title:"Dr.",name:"Kresimir",surname:"Delac",slug:"kresimir-delac",fullName:"Kresimir Delac"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}}]},chapter:{item:{type:"chapter",id:"60867",title:"Circadian Body Temperature Rhythm and the Interaction with Energy State",doi:"10.5772/intechopen.76229",slug:"circadian-body-temperature-rhythm-and-the-interaction-with-energy-state",body:'\nThe temperature of the cell(s), tissues, organs, and body is an important factor that determines the biological functions and survival of organisms, from prokaryotes to vertebrates, although the preferred temperature varies. Homeothermic animals can constantly regulate body temperature (Tb). Thermoregulation is the balance between heat loss and heat production in the body. The temperature regulation is different among species, and the range of temperature regulation is fairly narrow compared to the larger temperature ranges in the living environment [1].
\nHomeothermic animals show a circadian Tb rhythm, although the goal of thermoregulation is to maintain a constant Tb. The Tb is higher in the active phase and lower in the inactive phase in both diurnal and nocturnal animals. The Tb rhythm is also observed under conditions wherein the influence of physical activity (i.e., heat production) is minimized. For example, circadian Tb rhythm is observed even in individuals forced to be on complete bed rest [2]. Results suggested that the circadian Tb rhythm can also be regulated.
\nDespite the usual small amplitude of the circadian Tb rhythm (e.g., less than 1°C in human beings [3]), the rhythm is still important for preserving energy during the inactive phase. The maintenance of higher Tb is energy-costly because more energy from the total daily intake is used for heat production [4]. Therefore, the circadian Tb rhythm may be important in saving energy in homeothermic animals when energy is not needed.
\nEnvironmental temperature significantly affects the thermoregulation system. We assessed the circadian Tb change in rats that were placed in an ambient temperature of 18, 25, or 32°C (unpublished data). Laboratory rats are usually housed at 25°C. However, such cold or heat stress did not alter the circadian Tb rhythm. Results suggested that the Tb rhythm is not simply a result of circadian change in heat loss or production in the body. Rather, it is a result of the coordinated thermoregulatory processes that maintain a specific Tb at a given time of the day. Moreover, the Tb rhythm is probably generated by the association between the circadian and thermoregulation system. However, the mechanism is not yet known.
\nAs mentioned previously, the Tb rhythm remains unchanged even when environmental temperature is altered. However, our previous studies have revealed that the Tb rhythm is remarkably influenced by fasting/fasting-related hormones. It is hypothesized that a lack of energy affects thermoregulation and the Tb rhythm. However, several previous studies do not support this hypothesis. In this study, a review of the literature on the mechanism and physiological effects of the circadian Tb rhythm was carried out.
\nFasting is a strong stimulus that changes the amplitude of the circadian Tb rhythm in both mammals and birds [5, 6, 7, 8]. In a previous study by Tokizawa et al. [9], Tb was obtained with a thermometer placed in the abdominal cavity of mice, and it was continuously and noninvasively monitored with a telemetry. The most significant reduction was during the light (inactive) phase, whereas the reduction in the dark (active) phase was not remarkable (Figure 1A). In addition, no difference was observed in the spontaneous activity during both phases (Figure 1B). Results suggested that less heat production due to a decreased physical activity was not associated with the mechanism involved in the reduction of Tb during fasting. Moreover, a remarkable change in Tb was observed at a specific time, which may indicate an association with the circadian rhythm, although the phase shift of the rhythm was not observed.
\nCircadian changes in Tb and spontaneous activity during ad lib feeding and fasting in settings with normal temperature (27°C) in mice. The x-axis indicates ZT. The lighting condition is shown at the bottom with the open bar denoting the light phase and the closed bar the dark phase. Data were plotted in 5-min bins. The vertical dashed line shows the time when the 48-h fasting period was started. The modified figure was obtained from the manuscript by Tokizawa et al. [9].
Compared to that during a normal Tb rhythm, the significant decrease in Tb during the light phase (i.e., from 36.0°C during feeding to 34.1°C during fasting) may lessen heat transfer from the body to the environment and preserve energy. In contrast, the maintenance of Tb during the dark phase may be essential in the maintenance of physical activity. On the basis of previous studies, the following questions might be raised: (1) Is the reduction in Tb during the light phase a regulated phenomenon by the thermoregulation system? (2) Is the circadian system involved in the phenomenon? and (3) Which factor that is associated with fasting causes the decrease in Tb, and how?
\nTb in homeothermic animals is controlled by heat production and heat loss mechanisms. However, whether such control is maintained and generates the circadian Tb rhythm during fasting is still not verified. Fasting is a strong stimulus that decreases metabolic heat production in rodents and pigeons [5, 6, 10, 11, 12, 13, 14, 15]. In addition, fasting decreases thermal conductance (i.e., opposite of thermal resistance) from the body core to the environment (heat loss [16, 17, 18]). If these physiological responses occurred in the same manner during the day of fasting, the reduction of Tb, specifically during the light phase, would not be observed. Therefore, the thermoregulatory responses must be different during the two phases.
\nNagashima et al. [19] assessed the Tb, counts of locomotor activity, and oxygen consumption rate (\n
Body core temperature (A, Tcore), counts of locomotor activity (B), and oxygen consumption rate (C, V̇o2) during feeding, day 3 of fasting, and day 4 of recovery. Stippled area, dark phase (1900–0700). Each point has an average of 30 min. The values are the means ± SE in six rats. *Significant difference from controlled feeding, P < 0.05. The figure was obtained from the manuscript by Nagashima et al. [19].
Animals use several mechanisms to change the efficiency of heat loss. Among the mechanisms, the tail is a crucial site for the regulation of heat loss in rats and mice, with its physiological and anatomic characteristics, that is, a high density of arteriovenous anastomosis [6], the absence of fur, and a remarkable surface-to-volume ratio. Young and Dawson [20] reported that rats could dissipate 25% of basal heat production by changing the blood flow in the tail.
\nTo assess the contribution of the tail in thermoregulation, Nagashima et al. [19] estimated the tail surface temperature by thermography (Figure 3). Tail temperature during the fasting day was lower than that during the fed control day. However, body trunk temperature during the fasting was lower than that during the fed control only around the light-onset period. Interestingly, different from the fed control, tail temperature in the fasting condition increased after light onset and remained at a higher level during the light phase. The results strongly suggested an attenuation of tail blood flow in the dark phase during the fasting condition and were blunted at the beginning of the light phase. Thus, the tail may help in determining the process of heat loss from the body in the fasting condition, which was the factor regulating the Tb rhythm.
\nSurface temperatures of the tail (A) and trunk (B) determined by thermography in a controlled feeding condition, on day 3 of fasting, and day 4 of recovery. Ttail is the average of surface temperatures at one-third of the length of the tail from the root and the tip. Ttrunk is the average of surface temperatures of the head and middle parts of the upper and lower back. Each point has an average of 30 min. The values are the means ± SE in five rats. *Significant differences from controlled feeding conditions, P < 0.05. The figure was obtained from the manuscript by Nagashima et al. [19].
The suprachiasmatic nucleus (SCN) in the hypothalamus is thought to be the master clock of the circadian rhythm. In addition, electrical or chemical lesions of the SCN destroy the Tb rhythm in rodents [21, 22, 23, 24, 25, 26]. However, these findings may not indicate that the circadian clock regulates the Tb rhythm. Behavioral and/or physiological responses, such as locomotor activity, eating, and the secretion of several hormones, are also inhibited due to the SCN lesion, which may have direct influences on heat production and Tb [17, 27, 28, 29]. Simply put, SCN lesion inhibits such behavioral and/or physiological responses [3, 21, 24, 30], and the Tb rhythm is subsequently destroyed.
\nLiu et al. [23] assessed the circadian Tb rhythm within 4 days of fasting in rats, of which SCN was electrically lesioned. The rats had arrhythmia of Tb and spontaneous activity, and no difference was observed during the light and dark phases and the non-fasting and fasting periods. Although the experiment did not answer the question of whether the circadian clock directly regulates the Tb rhythm, the result suggested that SCN may be important for the changes in thermoregulation and Tb due to fasting.
\nSeveral genes in the central and peripheral tissues have expression rhythms with a periodicity of ~24 h. Among these genes, those with autoregulatory transcription-translation loops with a periodicity of ~24 h may be responsible for the core molecular mechanisms of the circadian clock (i.e., clock genes). These genes are observed in both the central and the peripheral tissues [31, 32, 33].
\nNagashima et al. [34] assessed the circadian Tb rhythm in mice that lack the cryptochrome 1 and 2 genes (Cry1 and Cry2), two of the core clock genes [35, 36, 37, 38]. The mice loose the transcription-translation rhythms of the Cry1 and Cry2 and other clock genes and periodicity in a wheel-running behavior [38], as well as the electrophysiological activity of the SCN cells under constant dark conditions [39]. However, the behavior is suppressed under the light condition, and the daily rhythm is observed under both light and dark conditions. Therefore, despite the lack of the internal rhythm, lighting rhythm could induce Tb rhythm.
\nTable 1 summarizes the cosinor rhythm analysis [34] of Tb, spontaneous activity, and \n
\n | Tcore, °C | \n\n\n | \nActivity, Au | \n||||||
---|---|---|---|---|---|---|---|---|---|
\n | Fed | \nFast | \nRec | \nFed | \nFast | \nRec | \nFed | \nFast | \nRec | \n
Mesor | \n37.5 ± 0.1 | \n37.3 ± 0.1* | \n37.4 ± 0.1 | \n21.63 ± 0.84 | \n15.02 ± 0.55* | \n20.11 ± 0.78‡ | \n5.0 ± 1.0 | \n3.2 ± 0.3 | \n5.0 ± 0.9 | \n
Amplitude | \n0.5 ± 0.1 | \n0.7 ± 0.1* | \n0.4 ± 0.1*,‡ | \n3.74 ± 0.44 | \n1.57 ± 0.27* | \n3.06 ± 0.38*,‡ | \n3.4 ± 0.6 | \n2.6 ± 0.3 | \n3.5 ± 0.5‡ | \n
Acrophase | \n18.2 ± 0.3 | \n16.4 ± 0.3* | \n17.5 ± 0.3*,‡ | \n18.2 ± 0.2 | \n16.4 ± 0.3* | \n17.6 ± 0.4*,‡ | \n17.7 ± 0.4 | \n17.9 ± 0.4 | \n17.3 ± 0.6 | \n
r | \n0.76–0.91† | \n0.80–0.85† | \n0.56–0.91† | \n0.51–0.85† | \n0.36–0.61† | \n0.45–0.74† | \n0.38–0.67† | \n0.39–0.63† | \n0.43–0.67† | \n
Analysis of cosinor rhythmometry for daily changes in core temperature,Vo2, and locomotor activity.
Significantly different from control, P < 0.05.
Significant regression coefficient (r) for fitted cosine curve for daily change of variable, P < 0.05.
Significantly different from fasting period, P< 0.05.
Values are means ± SE. \n
In the wild-type mice, no significant difference was observed between the mean, amplitude, and peak phase of the Tb rhythm under the LD condition with ad lib feeding and DD condition. Differences were found in the Tb and \n
Figure 4 shows the results of the regression analysis of the \n
Relationship between metabolic heat production (\n\n\nV˙\n\n\n O2) and Tb in wild-type mice (A) and Cry1−/−/Cry2−/− (B) based on three trials. The values are the means (±SE) in five mice for 30 min, and data corresponding to each hour are used for this illustration. Regression lines were applied for the averaged values in each group. The figure was obtained from the manuscript by Nagashima et al. [34].
The mammalian sirtuins (SIRT) modulate the circadian epigenome and provide specificity in transcriptional control [40, 41, 42, 43]. It was reported that the circadian clock regulates mitochondrial oxygen consumption rate in the oxidoreductase factor nicotinamide adenine dinucleotide (NAD+)/SIRT3-dependent manner. In addition, NAD+-dependent enzymes are important in fasting and oxidative metabolism. Peek et al. [40] evaluated NAD+ biosynthesis, lipid and glucose oxidation, and acetylation of mitochondrial proteins in normal and circadian (Bmal1)-mutant mice. They reported that lipid oxidation and mitochondrial protein acetylation exhibited circadian oscillations that corresponded with the clock-driven NAD+ cycle in the liver; however, rhythmic NAD+ and oxidative cycles were self-sustained in fasted mice. These results suggest a strong interaction between circadian and metabolic rhythms and its destruction during fasting but do not explain for the change in circadian Tb rhythm during fasting.
\nTokizawa et al. [9] tested the hypothesis that thermoregulation is modulated by the circadian system (including the SCN and clock genes), depending on the time of day and feeding condition. Moreover, the physiological and neural responses of the mice during exposure to cold (20°C) under ad lib feeding and during 48-h fasting conditions and the dark and light phases were compared. The differences in the responses between wild-type and Clock-mutant mice were also examined. Clock is also a gene that organizes the core loop of molecular circadian oscillation. The mutation of Clock causes the disappearance of oscillation [44]. However, mutant mice show a Tb rhythm under light-dark conditions because of the masking effect of light.
\nDuring ad lib feeding at a low temperature setting (20°C), the Tb of the wild-type mice was similar to that of the wild-type mice during both the dark and light phases at normal temperature settings (27°C) (Figure 5A and B). However, \n
Tb and \n\n\nV˙\n\n\n O2 at low-temperature settings (27 or 20°C) with ad lib feeding or fasting in the wild-type and Clock-mutant mice (A–H). The values given are the means ± SEM (n = 8). *P < 0.05, 20°C (low-temperature setting) versus 27°C (control setting) in each feeding condition. #P < 0.05, versus the dark phase in wild-type mice and both phases in Clock-mutant mice; §P < 0.05, versus dark phase in wild-type mice and light phase in Clock-mutant mice. The modified figure was obtained from the manuscript by Tokizawa et al. [9].
During ad lib feeding at low temperature settings, Tb in Clock-mutant mice was also maintained at the 27°C level (Figure 5C and D). \n
The study indicated that the physiological response of mice to low temperature conditions is different during ad lib feeding and fasting in wild-type animals and during the dark and light phases. However, such differences were not observed or significantly decreased in Clock-mutant mice. The thermoregulatory mechanism of heat production is attenuated or inhibited during fasting and light phases. For such response, the circadian system is important. To support this result, the expression of uncoupling protein 1 (UCP1) mRNA [45, 46, 47] in the interscapular brown adipose tissue (iBAT, one of the effector organs for thermoregulatory heat production) was suppressed during the light phase and fasting in wild-type animals. However, cold exposure increased the expression during both dark and light phases in Clock-mutant mice.
\nOn the basis of the physiological findings, the association between the circadian and thermoregulation systems may be significant during fasting. The center of thermoregulation is thought to be in the hypothalamus [48, 49]. However, whether functional and anatomical neural connections between the SCN exist (the center of the circadian system) and the hypothalamic subregion is involved in the thermoregulation remains unclear.
\nLiu et al. [23] assessed the cFos (i.e., early gene expression protein) expression in the SCN of rats. cFos can be a marker of neuronal activation in the brain [50]. The number of cFos immunoreactive (cFos-IR) cells changes daily, which is higher during the light phase and smaller during the dark phase. A 4-day fasting did not change the phase difference in the number of cFos-IR cells. However, the number increased during the dark phase and decreased during the light phase. Whether such change in the SCN causes altered Tb rhythm during fasting remains unknown. However, results showed that the SCN receives some information that is associated with fasting and alters Tb rhythm and/or the thermoregulatory responses.
\nTokizawa et al. [9] evaluated cFos expressions in the SCN and other hypothalamic areas in wild-type and Clock-mutant mice. The mice were exposed to settings with a temperature of 20°C and/or 48-h fasting. Neural associations were also observed between the SCN and the hypothalamic areas involved in thermoregulation. Data are summarized in Figure 6. Fasting increased the number of cFos-IR cells in the SCN in both wild-type and Clock-mutant mice. The number was smaller in Clock-mutant mice than in wild-type mice. cFos-IR cells also increased during fasting in other hypothalamic areas, such as the medial preoptic nucleus (MPO), dorsomedial hypothalamus (DMH), paraventricular nucleus (PVN), and dorsal subparaventricular zone (dSPZ), in wild-type mice. Differences were observed in the number of cFos-IR cells during the dark and light phases (Figure 6A, B, D, E). Small increases were also observed in the DMH, ARC, and PVN in Clock-mutant mice. However, no phase differences were observed. Neural outputs from the SCN, including the SPZ, reached these hypothalamic areas [51, 52]. Thus, the activation of the SCN during fasting may be linked with the activation of the hypothalamic areas.
\nCounts of cFos-IR cells in the MPO (A), dorsomedial hypothalamus (B, DMH), ARC (C), PVN (D), dorsal subparaventricular zone (E, dSPZ), and SCN (F) under various conditions. Values are the means ± SEM (n = 8). *P < 0.05, dark versus light phase; §P < 0.05, 20°C (low-temperature setting) versus 27°C (control setting); †P < 0.05, fasting versus ad lib feeding; #P < 0.05, wild-type versus Clock-mutant mice. The figure was obtained from the manuscript by Tokizawa et al. [9].
The preoptic area in the hypothalamus is thought to be important in thermoregulation because it has several thermosensitive neurons in the core body and skin temperatures [53]. In addition, stimulatory and inhibitory signals are sent from the area to other brain areas, which regulate the effector organs of thermoregulation, such as vasodilation, shivering, and non-shivering thermogenesis [48, 49]. The sympathetic outflow may originate from the PVN [54, 55, 56]. The DMH receives thermal input from the skin and is associated with the control of BAT thermogenesis [57]. Whether all cFos-IR cells are associated with circadian change of Tb and/or thermoregulation is not verified. However, the changes in cFos expression between the phases may, in part, be responsible for the decrease in Tb that was observed during fasting and the light phase.
\nFasting increased the cFos expression in the ARC in mice [58, 59]. The ARC is involved in the regulation of food intake and energy expenditure, which responds to peripheral nutritional signals, such as the levels of leptin and insulin [60]. However, no study on the direct association between ARC and thermoregulation was conducted. The ARC had phase differences in cFos expression in wild-type mice (Figure 5C), which increased during fasting. The ARC has neural input from the SCN [61, 62, 63]. Therefore, the fasting signals received by the ARC increased during the dark phase and were attenuated during the light phase in wild-type mice, and this may be related to the signals from the SCN.
\nThe increase in cFos expression in Clock-mutant mice that was attributed to low temperature during fasting was also observed in all the hypothalamic areas besides the SCN. However, no differences were observed between the two phases. In wild-type mice, the number of cFos expression in the SCN increased during the light phase. However, the increases in the MPO and PVN in wild-type mice were lower than those in Clock-mutant mice. Therefore, exposure to cold while fasting increases neural activity in the SCN during the light phase. In addition, normal molecular circadian mechanisms may be necessary for the response. On the basis of the results of cFos expression in the hypothalamic areas, the SCN may send inhibitory signals to the MPO and PVN, which may result in attenuated thermoregulatory responses. Moreover, since the inhibitory signals are stronger in some conditions, such as in fasting, the attenuation of thermoregulation becomes stronger.
\nOn the basis of the speculated neural connection between the SCN and MPO and/or PVN, Tokizawa et al. [9] conducted an experiment, which directly evaluated the associations. A cholera toxin b-subunit was injected (CTb; monosynaptic retrograde neural tracer) to the MPO or PVN during the light phase, and the presence in the SCN was assessed 3 days later. Cold exposure and fasting were also conducted in the same manner as the previous cFos study. The injection of CTb in the PVN resulted in a widely spread labeling in both the dorsomedial and the ventrolateral parts of the SCN of both wild-type and Clock-mutant mice. In both mice, 5–10% of CTb-labeled neurons in the SCN were also cFos-positive at 27°C during the light phase and ad lib feeding. In the cold exposure during fasting, the ratio of the double-labeled neurons of CTb and cFos increased to 25–30% only in the wild-type mice. Moreover, the double-labeled neurons are GABAergic. When CTb was injected to the MPO, the dorsomedial part of the SCN was labeled. However, the ratio of the double-labeled neurons remained at the same level (15–20%) during ad lib feeding and during fasting and cold exposure. These results suggested that the SCN may send inhibitory signals to the PVN and MPO during the light phase. Fasting and/or cold exposure increased the inhibitory signals only in the PVN. Moreover, in the process, a normal molecular circadian mechanism would be necessary. The sympathetic outflow may originate from the PVN [54, 55, 56]. Therefore, such inhibitory signals may attenuate metabolic heat production and/or skin vasoconstriction (i.e., cold defense mechanisms), thus decreasing Tb during fasting.
\nIn Section 6 of the cFos study, the ARC also seems to play a key role in the circadian change of thermoregulation during fasting, which decreases plasma leptin and increases plasma ghrelin [64]. A reduction of leptin results in hypothermia [65]. Gluck et al. [66] showed that ghrelin induces hypothermia. Decreases in both hormones are signals activating neuropeptide Y (NPY) neurons in the ARC [67], which strongly reduces heat production. The receptors for leptin and ghrelin are found in NPY neurons [68, 69]. These experimental results suggest that leptins and/or ghrelins are the factors that modulate thermoregulatory heat production and decrease Tb during fasting. Moreover, the neurons in the SCN have leptin and ghrelin receptors [68, 70, 71]. In addition, the neural activity of the SCN is modulated in the presence of leptin and ghrelin [72, 73].
\nTokizawa et al. [74] reported that the thermoregulatory response to cold was attenuated in ob/ob mice (genetically deficient of leptin). However, the response was not different between the light and dark phases. On the contrary, ghrelin injection to normal mice inhibited thermoregulatory heat production during cold exposure and reduced Tb. Such a response was observed only during the light phase. Therefore, ghrelin plays a key role in the phase-specific (light phase) modulation of thermoregulation and Tb during fasting.
\nThe administration of ghrelin suppresses sympathetic nerve activity and iBAT temperature in rats [75, 76]. In the study by Tokizawa et al., ghrelin levels after the injection and 48-h fasting did not differ between the two phases. Therefore, a central mechanism that modulates the sensitivity to plasma ghrelin levels must exist, which may affect thermoregulatory responses to cold exposure. Ghrelin induced phase-specific changes in cFos expression in the hypothalamic areas: increased cFos-IR cells in the SCN during the light phase, the ARC during the dark phase, and the PVN during the cold exposure in the dark phase. Ghrelin injection activates NPY neurons in the ARC in both phases, and cFos-IR cell counts are higher in the dark than in the light phase. In the SCN, the ghrelin effect was limited to the light phase, and 25% of the cFos-IR cells were NPY neurons. NPY acts as nonphotic stimuli in the SCN [77]. The activation of the hypothalamic nuclei, that is, the SCN, ARC, and PVN, seems to be involved in the changes in the thermoregulatory metabolic heat production. Figure 7 shows the summary of the findings.
\nSummary of the histological findings together with physiological studies. During the light phase, fasting and an increase in plasma ghrelin level affect the hypothalamic areas. The activity of the suprachiasmatic nucleus (SCN) increases and that of the arcuate nucleus (ARC) relatively decreases. The SCN sends inhibitory signals to the paraventricular nucleus (PVN), which may result in a lower metabolic heat production of the interscapular brown adipose tissue (iBAT) and a lower body temperature. On the contrary, during the dark phase, the activity of the SCN decreases and that of the ARC relatively increases. The inhibitory signal from the SCN is less, and the PVN is activated. Metabolic heat production of the iBAT increases and body temperature is maintained.
This is a review article showing our previous series of studies involved in fasting-induced change in Tb rhythm. Interestingly, the change in Tb rhythm is a regulated phenomenon by molecular mechanisms such as Cry and Clock and neural mechanisms such as the SCN, MPO, and ARC in the hypothalamus. These studies are important in considering physiological importance and mechanism of the circadian body temperature and metabolic rhythms.
\nThis research was partially supported by the Ministry of Education, Science, Sports, and Culture, Japan; Grant-in-Aid for challenging Exploratory Research, No. 16 K13055; and Ibuka Foundation, Waseda University.
\nThere is no conflict of interest in this review.
One of the most intriguing variables in science must be time. Without time, there would be no physical substances, no space, and no life. In other words, time and substance have to coexist. In the chapter, I will start with Einstein’s relativity theory to show his famous energy equation, derived from in which we will show that energy and mass can be traded. Since mass is equivalent to energy and energy is equivalent to mass, we see that mass can be treated as an energy reservoir. We will show any physical space cannot be embedded in an absolute empty space and it cannot have any absolute empty subspace in it and empty space is a timeless (i.e., t = 0) space. We will show that every physical space has to be fully packed with substances (i.e., energy and mass), and we will show that our universe is a subspace within a more complex space. We see that our universe could have been one of the many universes outside our universal boundary. We will also show that it takes time to create a subspace, and it cannot bring back the time that has been used for the creation. Since all physical substances exist with time, all subspaces are created by time and substances (i.e., energy and mass). This means that our cosmos was created by time with a gigantic energy explosion, for which every subspace coexists with time. This means that without time the creation of substances would not have happened. We see that our universe is in a temporal (i.e., t > 0) space, and it is still expanding based on current observation. This shows that our universe has not reached its half-life yet, as we have accepted the big bang creation. We are not alone with almost absolute certainty. Someday, we may find a planet that once upon a time had harbored a civilization for a period of light-years. In short, the burden of a scientific postulation is to prove a solution exists within our temporal universe; otherwise it is not real or virtual as mathematics is.
Professor Hawking was a world renowned astrophysicist, a respected cosmic scientist, and a genius who passed away last year on March 14, 2018. As you will see, our creation of universe was started with the same root of the big bang explosion, but it is not a sub-universe of Hawking’s. You may see from this chapter that the creation of temporal universe is somewhat different from Hawking’s creation.
The essence of Einstein’s special theory of relativity [1] is that time is a relative quantity with respect to velocity as given by
where
We see that the time window
Equivalently, Einstein’s relativity equation can be shown in terms of relative mass as given by
where m is the effective mass (or mass in motion) of a particle, mo is the rest mass of the particle, v is the velocity of the moving particle, and c is the speed of light. In other words, the effective mass (or mass in motion) of a particle increases at the same amount with respect to when the relative time window increases.
With reference to the binomial expansion, Eq. (2) can be written as
By multiplying the preceding equation with the velocity of light c2 and noting that the terms with the orders of v4/c2 are negligibly small, the above equation can be approximated by
which can be written as
The significance of the preceding equation is that m − mo represents an increase in mass due to motion, which is the kinetic energy of the rest mass mo. And (m − mo)c2 is the extra energy gain due to motion.
What Einstein postulated, as I remembered, is that there must be energy associated with the mass even at rest. And this was exactly what he had proposed:
where ε represents the total energy of the mass and
the energy of the mass at rest, where v = 0 and m ≈ mo.
We see that Eq. (6) or equivalently Eq. (7) is the well-known Einstein energy equation.
One of the most enigmatic variables in the laws of science must be “time.” So what is time? Time is a variable and not a substance. It has no mass, no weight, no coordinate, and no origin, and it cannot be detected or even be seen. Yet time is an everlasting existing variable within our known universe. Without time there would be no physical matter, no physical space, and no life. The fact is that every physical matter is associated with time which includes our universe. Therefore, when one is dealing with science, time is one of the most enigmatic variables that are ever present and cannot be simply ignored. Strictly speaking, all the laws of science as well every physical substance cannot exist without the existence of time.
On the other hand, energy is a physical quantity that governs every existence of substance which includes the entire universe. In other words without the existence of energy, there would be no substance and no universe! Nonetheless based on our current laws of science, all the substances were created by energy, and every substance can also be converted back to energy. Thus energy and substance are exchangeable, but it requires some physical conditions (e.g., nuclei and chemical interactions and others) to make the conversion start. Since energy can be derived from mass, mass is equivalent to energy. Hence every mass can be treated as an energy reservoir. The fact is that our universe is compactly filled with mass and energy. Without the existence of time, the trading (or conversion) between mass and energy could not have happened.
Let us now start with Einstein’s energy equation which was derived by his special theory of relativity [1] as given by
where m is the rest mass and c is the velocity of light.
Since all the laws in science are approximations, for which we have intentionally used an approximated sign. Strictly speaking the energy equation should be more appropriately presented with an inequality sign as described by
This means that in practice, the total energy should be smaller or at most approaching to the rest mass m times square of light speed (i.e.,
In view of Einstein’s energy equation of Eq. (8), we see that it is a singularity-point approximation and timeless equation (i.e., t = 0). In other words, the equation needs to convert into a temporal (i.e., t > 0) representation or time-dependent equation for the conversion to take place from mass into energy. We see that, without the inclusion of time variable, the conversion would not have taken place. Nonetheless, Einstein’s energy equation represents the total amount of energy that can be converted from a rest mass m. Every mass can be viewed as an energy reservoir. Thus by incorporating with the time variable, the Einstein’s energy equation can be represented by a partial differential equation as given by [2]
where
One of the important aspects in Eq. (10) must be that energy and mass can be traded, for which the rate of energy conversion from a mass can be written in terms of electromagnetic (EM) radiation or Radian Energy as given by [4]
where
Similarly the conversion from energy to mass can also be presented as
The major difference of this equation, as compared with Eq. (11), must be the energy convergent operator −∇·S(v), where we see that the rate of energy as in the form of EM radiation converges into a small volume for the mass creation, instead of diverging from the mass. Since mass creation is inversely proportional to
Incidentally, black hole [5, 6] can be considered as one of the energy convergent operators. Instead the convergent force is relied more on the black hole’s intense gravitational field. The black hole still remains an intriguing physical substance to be known. Its gravitational field is so intense even light cannot be escaped.
By the constraints of the current laws of science, the observation is limited by the speed of light. If light is totally absorbed by the black hole, it is by no means that the black hole is an infinite energy sink [6]. Nonetheless, every black hole can actually be treated as an energy convergent operator, which is responsible for the eventuality in part of energy to mass conversion, where an answer remained to be found.
In our physical world, every matter is a substance which includes all the elemental particles; electric, magnetic, and gravitation fields; and energy. The reason is that they were all created by means of energy or mass. Our physical space (e.g., our universe) is fully compacted with substances (i.e., mass and energy) and left no absolute empty subspace within it. As a matter of fact, all physical substances exist with time, and no physical substance can exist forever or without time, which includes our universe. Thus, without time there would be no substance and no universe. Since every physical substance described itself as a physical space and it is constantly changing with respect to time. The fact is that every physical substance is itself a temporal space (or a physical subspace), as will be discussed in the subsequent sections.
In view of physical reality, every physical substance cannot exist without time; thus if there is no time, all the substances which include all the building blocks in our universe and the universe itself cannot exist. On the other hand, time cannot exist without the existence of substance or substances. Therefore, time and substance must mutually coexist or inclusively exist. In other words, substance and time have to be simultaneously existing (i.e., one cannot exist without the other). Nonetheless, if our universe has to exist with time, then our universe will eventually get old and die. So the aspects of time would not be as simple as we have known. For example, for the species living in a far distant galaxy moving closer to the speed of light, their time goes somewhat slower relatively to ours [1]. Thus, we see that the relativistic aspects of time may not be the same at different subspaces in our universe (e.g., at the edge of our universe).
Since substances (i.e., mass) were created by energy, energy and time have to simultaneously exist. As we know every conversion, either from mass to energy or from energy to mass, cannot get started without the inclusion of time. Therefore, time and substance (i.e., energy and mass) have to simultaneously exist. Thus we see that all the physical substances, including our universe and us, are coexisting with time (or function of time).
Let us define various subspaces in the following, as they will be used in the subsequence sections:
An absolute empty space has no time, no substance, and no coordinate and is not event bounded or unbounded. It is a virtual space and timeless space (i.e., t = 0), and it does not exist in practice.
A physical space is a space described by dimensional coordinates, which existed in practice, compactly filled with substances, supported by the current laws of science and the rule of time (i.e., time can only move forward and cannot move backward; t > 0). Physical space and absolute empty space are mutually exclusive. In other words, a physical space cannot be embedded in an absolute empty space, and it cannot have absolute empty subspace in it. In other words, physical space is a temporal space in which time is a forward variable (i.e., t > 0), while absolute empty space is a timeless space (i.e., t = 0) in which nothing is in it.
A temporal space is a time-variable physical space supported by the laws of science and rule of time (i.e., t > 0). In fact, all physical spaces are temporal spaces (i.e., t > 0).
A spatial space is a space described by dimensional coordinates and may not be supported by the laws of science and the rule of time (e.g., a mathematical virtual space).
A virtual space is an imaginary space, and it is generally not supported by the laws of science and the rule of time. Only mathematicians can make it happen.
As we have noted, absolutely empty space cannot exist in physical reality. Since every physical space needs to be completely filled with substances and left no absolutely empty subspace within it, every physical space is created by substances. For example, our universe is a gigantic physical space created by mass and energy (i.e., substances) and has no empty subspaces in it. Yet, in physical reality all the masses (and energy) existed with time. Without the existence of time, then there would be no mass, no energy, and no universe. Thus, we see that every physical substance coexists with time. As a matter of fact, every physical subspace is a temporal subspace (i.e., t > 0), which includes us and our universe.
Since a physical space cannot be embedded within an absolute empty space and it cannot have any absolute empty subspace in it [7], our universe must be embedded in a more complex physical space. If we accepted our universe is embedded in a more complex space, then our universe must be a bounded subspace.
How about time? Since our universe is embedded in a more complex space, the complex space may share the same rule of time (i.e., t > 0). However, the complex space that embeds our universe may not have the same laws of science as ours but may have the same rule of time (i.e., t > 0); otherwise our universe would not be bounded. Nevertheless, whether our universe is bounded or not bounded is not the major issue of our current interest, since it takes a deeper understanding of our current universe before we can move on to the next level of complex space revelation. It is however our aim, abiding within our current laws of science, to investigate the essence of time as the enigma origin of our universe.
One of the most intriguing questions in our life must be the existence of time. So far, we know that time comes from nowhere, and it can only move forward, not backward, not even stand still (i.e., t = 0). Although time may somewhat relatively slow down, based on Einstein’s special theory of relativity [1], so far time cannot move backward and cannot even stand still. As a matter of fact, time is moving at a constant rate within our subspace, and it cannot move faster or slower. We stress that time moves at the same rate within any subspace within the universe even closer the boundary of our universe, but the difference is the relativistic time. Since time is ever existing, then how do we know there is a physical space? One answer is that there is a profound connection between time and physical space. In other words, if there is no time, then there would be no physical space. A physical space is in fact a temporal (i.e., t > 0) space, in contrast to a virtual space. Temporal space can be described by time, while virtual space is an imaginary space without the constraint of time. Temporal space is supported by the laws of science, while virtual space is not.
A television video image is a typical example of trading time for space. For instance, each TV displayed an image of (dx, dy) which takes an amount of time to be displayed. Since time is a forward-moving variable, it cannot be traded back at the expense of a displayed image (dx, dy). In other words, it is time that determines the physical space, and it is not the physical space that can bring back the time that has been expended. And it is the size (or dimension) of space that determines the amount of time required to create the space (dx, dy). Time is distance and distance is time within a temporal space. Based on our current constraints of science, the speed of light is the limit. Since every physical space is created by substances, a physical space must be described by the speed of light. In other words, the dimension of a physical space is determined by the velocity of light, where the space is filled with substances (i.e., mass and energy). And this is also the reason that speed of time (e.g., 1 s, 2 s, etc.) is determined by the speed of light.
Another issue is why the speed of light is limited. It is limited because our universe is a gigantic physical space that is filled with substances that cause a time delay on an EM wave’s propagation. Nevertheless, if there were physical substances that travel beyond the speed of light (which remains to be found), their velocities would also be limited, since our physical space is fully compacted with physical substances and it is a temporal (i.e., t > 0) space. Let me further note that a substance can travel in space without a time delay if and only if the space is absolutely empty (i.e., timeless; t = 0), since distance is time (i.e., d = ct, t = 0). However, absolute empty space cannot exist in practice, since every physical space (including our universe) has to be fully filled with substances (i.e., energy and mass), with no empty subspace left within it. Since every physical subspace is temporal (i.e., t > 0), in which we see that timeless and temporal spaces are mutually exclusive.
Strictly speaking, all our laws of physics are evolved within the regime of EM science. Besides, all physical substances are part of EM-based science, and all the living species on Earth are primarily dependent on the source of energy provided by the sun. About 78% of the sunlight that reaches the surface of our planet is well concentrated within a narrow band of visible spectrum. In response to our species’ existence, which includes all living species on Earth, a pair of visible eyes (i.e., antennas) evolved in us humans, which help us for our survival. And this narrow band of visible light led us to the discovery of an even wider band of EM spectral distribution in nature. It is also the major impetus allowing us to discover all the physical substances that are part of EM-based physics. In principle, all physical substances can be observed or detected with EM interaction, and the speed of light is the current limit.
Then there is question to be asked, why is the speed of light limited? A simple answer is that our universe is filled with substances that limit the speed of light. The energy velocity of an electromagnetic wave is given by [3]
where (μ, ε) are the permeability and the permittivity of the medium. We see that the velocity of light is shown by
where (μ0,ε0) are the permeability and the permittivity of the space.
In view of Eq. (13), it is apparent that the velocity of electromagnetic wave (i.e., speed of light) within an empty subspace (i.e., timeless space) is instant (or infinitely large) since distance is time (i.e., d = ct, t = 0).
A picture that is worth more than a thousand words [8] is a trivial example to show that EM observation is one of the most efficient aspects in information transmission. Yet, the ultimate physical limitation is also imposed by limitation of the EM regime, unless new laws of science emerge. The essence of Einstein’s energy equation shows that mass and energy are exchangeable. It shows that energy and mass are equivalent and energy is a form of EM radiation in view of Einstein’s equation. We further note that all physical substances within our universe were created from energy and mass, which include the dark energies [9] and dark matter [10]. Although the dark substances may not be observed directly using EM interaction, we may indirectly detect their existence, since they are basically energy-based substances (i.e., EM-based science). It may be interesting to note that our current universe is composed of 72% dark energy, 23% dark matter, and 5% other physical substances. Although dark matter contributes about 23% of our universe, it represents a total of 23% of gravitational fields. With reference to Einstein’s energy equation (Eq. (8)), dark energy and dark matter dominate the entire universal energy reservation, well over 95%. Furthermore, if we accept the big bang theory for our universe creation [11], then creation could have been started with Einstein’s time-dependent energy formula of Eq. (11) as given by
where [∇·S(v)] represents a divergent energy operation. In this equation, we see that a broad spectral band intense radian energy diverges (i.e., explodes) at the speed of light from a compacted matter M, where M represents a gigantic mass of energy reservoir. It is apparent that the creation is ignited by time and the exploded debris (i.e., matter and energy) starts to spread out in all directions, similar to an expanding air balloon. The boundary (i.e., radius of the sphere) of the universe expands at the speed of light, as the created debris is disbursed. It took about 15 billion chaotic light-years [12, 13, 14] to come up with the present state of constellation, in which the boundary is still expanding at the speed of light beyond the current observation. With reference to a recent report using the Hubble Space Telescope, we can see galaxies about 15 billion light-years away from us. This means that the creation process is not stopping yet and at the same time the universe might have started to de-create itself, since the big bang started, due to intense convergent gravitational forces from all the newly created debris of matter (e.g., galaxies and dark matter). To wrap up this section, we would stress that one of the viable aspects of Eq. (15) is the transformation from a spatially dimensionless equation to a space-time function (i.e., ∇·S); it describes how our universe was created with a huge explosion. Furthermore, the essence of Eq. (15) is not just a piece of mathematical formula; it is a symbolic representation, a description, a language, a picture, or even a video as may be seen from its presentation. We can visualize how our universe was created, from the theory of relativity to Einstein’s energy equation and then to temporal space creation.
Let us now take one of the simplest connections between physical subspace and time [15]:
where d is the distance, v is the velocity, and t is the time variable. Notice that this equation may be one of the most profound connections between time and physical space (or temporal space). Therefore, a three-dimensional (Euclidean) physical (or temporal) subspace can be described by
where (vx, vy, vz) are the velocities’ vectors and t is the time variable. Under the current laws of science, the speed of light is the limit. Then, by replacing the velocity vectors equal to the speed of light c, a temporal space can be written as
Thus, we see that time can be traded for space and space cannot be traded for time, since time is a forward variable (i.e., t > 0). In other words, once a section of time Δt is expended, we cannot get it back. Needless to say, a spherical temporal space can be described by
where radius r increases at the speed of light. Thus, we see that the boundary (i.e., edge) of our universe is determined by radius r, which is limited by the light speed, as illustrated in a composite temporal space diagram of Figure 1. In view of this figure, we see that our universe is expanding at the speed of light well beyond the current observable galaxies. Figure 2 shows a discrete temporal space diagram, in which we see that the size of our universe is continuously expanding as time moves forward (i.e., t > 0). Assuming that we have already accepted the big bang creation, sometime in the future (i.e., billions of light-years later), our universe will eventually stop expanding and then start to shrink back, preparing for the next cycle of the big bang explosion. The forces for the collapsing universe are mainly due to the intense gravitational field, mostly from giant black holes and matter that were derived from merging (or swallowing) with smaller black holes and other debris (i.e., physical substances). Since a black hole’s gravitational field is so intense, even light cannot escape; however, a black hole is by no means an infinite energy reservoir. Eventually, the storage capacity of a black hole will reach a limit for explosion, as started for the mass to energy and debris creation.
Composite temporal space universe diagram. r = ct, r is the radius of our universe, t is time, c is the velocity of light, and ε0 and μ0 are the permittivity and permeability of the space.
Discrete temporal universe diagrams; t is time.
In other words, there will be one dominant giant black hole within the shrinking universe, to initiate the next cycle of universe creation. Therefore, every black hole can be treated as a convergent energy sink, which relies on its intense gravitation field to collect all the debris of matter and energies. Referring to the big bang creation, a gigantic energy explosion was the major reason for the universe’s creation. In fact, it can be easily discerned that the creating process has never slowed down since the birth of our universe, as we see that our universe is still continuingly expanding even today. This is by no means an indication that all the debris created came from the big bang’s energy (e.g., mc2); there might have been some leftover debris from a preceding universe. Therefore, the overall energy within our universe cannot be restricted to just the amount that came from the big bang creation. In fact, the conversion processes between mass and energy have never been totally absent since the birth of our universe, but they are on a much smaller scale. In fact, right after birth, our universe started to slow down the divergent process due to the gravitational forces produced by the created matter. In other words, the universe will eventually reach a point when overall divergent forces will be weaker than the convergent forces, which are mostly due to gravitational fields coming from the newly created matter, including black holes. As we had mentioned earlier, our universe currently has about 23% dark matter, which represents about 23% of the gravitational fields within the current universe. The intense localized gravitational field could have been produced from a group or a giant black hole, derived from merging with (or swallowing up) some smaller black holes, nearby dark matter, and debris. Since a giant black hole is not an infinite energy sink, eventually it will explode for the next cycle of universal creation. And it is almost certain that the next big bang creation will not occur at the same center of our present universe. One can easily discern that our universe will never shrink to a few inches in size, as commonly speculated. It will, however, shrink to a smaller size until one of the giant black holes (e.g., swallowed-up sufficient physical debris) reaches the big bang explosive condition to release its gigantic energy for the next cycle of universal creation. The speculation of a possible collapsing universe remains to be observed. Nonetheless, we have found that our universe is still expanding, as observed by the Doppler shifts of the distant galaxies at the edge of our universe, about 15 billion light-years away [12, 13, 14]. This tells us that our universe has not reached its half-life yet. In fact, the expansion has never stopped since the birth of our universe, and our universe has also been started to de-create since the big bang started, which is primarily due to convergent gravitational forces from the newly created debris (e.g., galaxies, black holes, and dark matter).
Relativistic time at a different subspace within a vast universal space may not be the same as that based on Einstein’s special theory of relativity [1]. Let us start with the relativistic time dilation as given by
where Δt′ is the relativistic time window, compared with a standstill subspace, Δt is the time window of a standstill subspace, v is the velocity of a moving subspace, and c is the velocity of light. We see that time dilation Δt′ of the moving subspace, relative to the time window of the standstill subspace Δt, appears to be wider as velocity increases. For example, a 1-s time window Δt is equivalent to the 10-s relative time window Δt’. This means that a 1-s time expenditure within the moving subspace is relative to about a 10-s time expenditure within the standstill subspace. Therefore, for the species living in an environment that travels closer to the speed of light (e.g., at the edge of the universe), their time appears to be slower than ours, as illustrated in Figure 3. In this figure, we see an old man traveling at a speed closer to the velocity of light; his relative observation time window appears to be wider as he is looking at us, and the laws of science within his subspace may not be the same as ours.
Effects on relativistic time.
Two of the most important pillars in modern physics must be Einstein’s relativity theory and Schrödinger’s quantum mechanics [15]. One is dealing with very large objects (e.g., universe), and the other is dealing with very small particles (e. g., atoms). Yet, there exists a profound connection between them, by means of the Heisenberg’s uncertainty principle [16]. In view of the uncertainty relation, we see that every temporal subspace takes a section of time Δt and an amount of energy ΔE to create. Since we cannot create something from nothing, everything needs an amount of energy ΔE and a section of time Δt to make it happen. By referring to the Heisenberg uncertainty relation as given by
where h is the Planck’s constant. We see that every subspace is limited by ΔE and Δt. In other words, it is the h region, but not the shape, that determines the boundary condition. For example, the shape can be either elongated or compressed, as long as it is larger than the h region.
Incidentally, the uncertainty relationship of Eq. (21) is also the limit of reliable bit information transmission as pointed out by Gabor in [17]. Nonetheless, the connection with the special theory of relativity is that the creation of a subspace near the edge of our universe will take a short relative time with respect to our planet earth, since Δt’ > Δt. The “relativistic” uncertainty relationship within the moving subspace, as with respect to a standstill subspace, can be shown as
where we see ΔE energy is conserved. Thus a narrower time-width can be achieved as with respect to standstill subspace. It is precisely possible that one can exploit for time-domain digital communication, as from ground station to satellite information transmission.
On the other hand, as from satellite to ground station information transmission, we might want to use digital bandwidth (i.e., Δv) instead. This is a frequency-domain information transmission strategy, as in contrast with time domain, which has not been exploited yet. The “relativistic” uncertainty relationship within the standstill subspace as with respect to the moving subspace can be written as
Or equivalently we have
in which we see that a narrower bandwidth Δv can be in principle use for frequency-domain communication.
Every physical (or temporal) subspace is created by substances (i.e., energy and mass), and substances coexist with time. In this context, we see that our universe was essentially created by time and energy and the universe is continuously evolving (i.e., changing) with time. Although relativistic time may not be the same at the different subspaces within our universe, the rule of time may remain the same. As for the species living closer to the speed of light, relativistic time may not be noticeable to them, but their laws of science within their subspace may be different from ours. Nonetheless, our universe was simultaneously created by time with a gigantic energy explosion. Since our universe cannot be embedded in an empty space, it must be embedded in a more complex space that remains to be found. From an inclusive point of view, mass is energy or energy is mass, which was discovered by Einstein almost a century ago [1]. And it is this basic fundamental law of physics that we have used for investigating the origin of time. Together with a huge energy explosion (i.e., big bang theory [11]), time is the igniter for the creation of our universe. As we know, without the existence of time, the creation of our universe would not have happened. As we have shown, time can be traded for space, but space cannot be traded for time. Our universe is in fact a temporal physical subspace, and it is continuously evolving or changing with time (i.e., t > 0). Although every temporal subspace is created by time (and substances), it is not possible for us to trade any temporal subspace for time. Since every physical substance has a life, our universe (a gigantic substance) cannot be excluded. With reference to the report from a recent Hubble Space Telescope observation [12, 13, 14], we are capable of viewing galaxies about 15 billion light-years away and have also learned that our universe is still by no means slowing down in expansion. In other words, our universe has still not reached its half-life, based on our estimation. As we have shown, time ignited the creation of our universe, yet the created physical substances presented to us the existence of time.
In view of the preceding discussion, we see that our universe is a time-invariant system (i.e., from system theory stand point); as in contrast with an empty space, it is a not a time-invariant system and it is a timeless or no-time space. We see that timeless solution cannot be directly implemented within our universe. Since science is a law of approximation and mathematics is an axiom of absolute certainty, using exact math to evaluate inexact science cannot guarantee its solution to exist within our temporal (i.e., t > 0) universe. One important aspect of temporal universe is that one cannot get something from nothing: There is always a price to pay; every piece of temporal subspace (or every bit of information [7]) takes an amount of energy (i.e., ΔE) and a section of time (i.e., Δt) to create. And the subspace [i.e., f(x, y, z; t), t > 0] is a forward time-variable function. In other words, time and subspace coexist or are mutually inclusive. This is the boundary condition and constrain of our temporal universe [i.e., f(x, y, z; t), t > 0], in which every existence within our universe has to comply with this condition. Otherwise it is not existing within our universe, unless new law emerges since laws are made to be broken. Thus we see that any emerging science has to be proven to exist within our temporal universe [i.e., f(x, y, z; t), t > 0]. Otherwise it is a fictitious science, unless it can be validated by repeated experiments.
In mathematics, we see that the burden of a postulation is first to prove if there exists a solution and then search for a solution. Although we hardly have had, there is an existent burden in science. Yet, we need to prove that a scientific postulation is existing within our temporal universe [i.e., f(x, y, z; t), t > 0]; otherwise it is not real or virtual as mathematics is. For example such as the superposition principle in quantum mechanics, in which we have proven [18] it is not existed within our temporal universe (i.e., t > 0), since Schrödinger’s quantum mechanics is timeless as mathematics is.
There is however an additional constrain as imposed by our temporal universe which is the affordability. As we have shown that everything (e.g., any physical subspace) existed within our universe has a price tag, in terms of an amount of energy ΔE and a section of time Δt (i.e., ΔE, Δt). To be precise, the price tag also includes an amount of “intelligent” information ΔI or an equivalent amount of entropy ΔS (i.e., ΔE, Δt, ΔI) [7]. For example, creation of a piece of simple facial tissue will take a huge amount of energy ΔE, a section of time Δt, and an amount of information ΔI (i.e., equivalent amount of entropy ΔS). We note that on this planet Earth, only humans can make it happen. Thus we see that every physical subspace (or equivalently substance) within our universe has a price tag (i.e., ΔE, Δt, ΔS), and the question is that can we afford it?
Within our universe, we can easily estimate there were billions and billions of civilizations that had emerged and faded away in the past 15 billion light-years. Our civilization is one of the billions and billions of current consequences within our universe, and it will eventually disappear. We are here, and will be here, for just a very short moment. Hopefully, we will be able to discover substances that travel well beyond the limit of light before the end of our existence, so that a better observational instrument can be built. If we point the new instrument at the right place, we may see the edge of our universe beyond the limit of light. We are not alone with almost absolute certainty. By using the new observational equipment, we may find a planet that once upon a time had harbored a civilization for a period of twinkle thousands of (Earth) years.
We have shown that time is one of the most intriguing variables in the universe. Without time, there would be no physical substances, no space, and no life. With reference to Einstein’s energy equation, we have shown that energy and mass can be traded. In other words, mass is equivalent to energy, and energy is equivalent to mass, for which all mass can be treated as an energy reservoir. We have also shown that a physical space cannot be embedded in an absolute empty space or a timeless (i.e., t = 0) space, and it cannot even have any absolute empty subspace in it. In reality, every physical space has to be fully packed with physical substances (i.e., energy and mass). Since no physical space can be embedded in an absolute empty space, it is reasonable to assume that our universe is a subspace within a more complex space, which remains to be found. In other words, our universe could have been one of the many universes outside our universal boundary, which comes and goes like bubbles. We have also shown that it takes time to create a physical space and the time that has been used for the creation cannot be brought back. Since all physical substances exist with time, all physical spaces are created by time and substances (i.e., energy and mass). This means that our cosmos was created by time and a gigantic energy explosion, in which we see that every substance coexists with time. That is, without time, the creation of physical substances would not have happened. We have further noted that our universe is in a temporal space and it is still expanding based on current observation. This shows that our universe has not reached its half-life yet, as we have accepted the big bang creation. And it is noted that we are not alone with almost absolute certainty. Someday, we may find a planet that once upon a time had harbored a civilization for a period of light-years. We have further shown that the burden of a scientific postulation is to prove it exists within our temporal universe [i.e., f(x, y, z; t), t > 0]; otherwise it is not real or virtual as mathematics is.
Finally, I would like to take this opportunity to say a few words on behalf of Professor Stephen Hawking, who passed away last year on March 14, 2018. Professor Hawking was a world-renowned astrophysicist, a respected cosmic scientist, and a genius. Although the creation of temporal universe started with the same root of the big bang explosion, it is not a subspace of Professor Hawking’s universe. You may see from the preceding presentation that the creation of temporal universe is somewhat different from Hawking’s creation. One of the major differences may be at the origin of big bang creation. My temporal universe was started with a big bang creation within a “non-empty” space, instead within of an empty space which was normally assumed.
IntechOpen implements a robust policy to minimize and deal with instances of fraud or misconduct. As part of our general commitment to transparency and openness, and in order to maintain high scientific standards, we have a well-defined editorial policy regarding Retractions and Corrections.
",metaTitle:"Retraction and Correction Policy",metaDescription:"Retraction and Correction Policy",metaKeywords:null,canonicalURL:"/page/retraction-and-correction-policy",contentRaw:'[{"type":"htmlEditorComponent","content":"IntechOpen’s Retraction and Correction Policy has been developed in accordance with the Committee on Publication Ethics (COPE) publication guidelines relating to scientific misconduct and research ethics:
\\n\\n1. RETRACTIONS
\\n\\nA Retraction of a Chapter will be issued by the Academic Editor, either following an Author’s request to do so or when there is a 3rd party report of scientific misconduct. Upon receipt of a report by a 3rd party, the Academic Editor will investigate any allegations of scientific misconduct, working in cooperation with the Author(s) and their institution(s).
\\n\\nA formal Retraction will be issued when there is clear and conclusive evidence of any of the following:
\\n\\nPublishing of a Retraction Notice will adhere to the following guidelines:
\\n\\n1.2. REMOVALS AND CANCELLATIONS
\\n\\n2. STATEMENTS OF CONCERN
\\n\\nA Statement of Concern detailing alleged misconduct will be issued by the Academic Editor or publisher following a 3rd party report of scientific misconduct when:
\\n\\nIntechOpen believes that the number of occasions on which a Statement of Concern is issued will be very few in number. In all cases when such a decision has been taken by the Academic Editor the decision will be reviewed by another editor to whom the author can make representations.
\\n\\n3. CORRECTIONS
\\n\\nA Correction will be issued by the Academic Editor when:
\\n\\n3.1. ERRATUM
\\n\\nAn Erratum will be issued by the Academic Editor when it is determined that a mistake in a Chapter originates from the production process handled by the publisher.
\\n\\nA published Erratum will adhere to the Retraction Notice publishing guidelines outlined above.
\\n\\n3.2. CORRIGENDUM
\\n\\nA Corrigendum will be issued by the Academic Editor when it is determined that a mistake in a Chapter is a result of an Author’s miscalculation or oversight. A published Corrigendum will adhere to the Retraction Notice publishing guidelines outlined above.
\\n\\n4. FINAL REMARKS
\\n\\nIntechOpen wishes to emphasize that the final decision on whether a Retraction, Statement of Concern, or a Correction will be issued rests with the Academic Editor. The publisher is obliged to act upon any reports of scientific misconduct in its publications and to make a reasonable effort to facilitate any subsequent investigation of such claims.
\\n\\nIn the case of Retraction or removal of the Work, the publisher will be under no obligation to refund the APC.
\\n\\nThe general principles set out above apply to Retractions and Corrections issued in all IntechOpen publications.
\\n\\nAny suggestions or comments on this Policy are welcome and may be sent to permissions@intechopen.com.
\\n\\nPolicy last updated: 2017-09-11
\\n"}]'},components:[{type:"htmlEditorComponent",content:'IntechOpen’s Retraction and Correction Policy has been developed in accordance with the Committee on Publication Ethics (COPE) publication guidelines relating to scientific misconduct and research ethics:
\n\n1. RETRACTIONS
\n\nA Retraction of a Chapter will be issued by the Academic Editor, either following an Author’s request to do so or when there is a 3rd party report of scientific misconduct. Upon receipt of a report by a 3rd party, the Academic Editor will investigate any allegations of scientific misconduct, working in cooperation with the Author(s) and their institution(s).
\n\nA formal Retraction will be issued when there is clear and conclusive evidence of any of the following:
\n\nPublishing of a Retraction Notice will adhere to the following guidelines:
\n\n1.2. REMOVALS AND CANCELLATIONS
\n\n2. STATEMENTS OF CONCERN
\n\nA Statement of Concern detailing alleged misconduct will be issued by the Academic Editor or publisher following a 3rd party report of scientific misconduct when:
\n\nIntechOpen believes that the number of occasions on which a Statement of Concern is issued will be very few in number. In all cases when such a decision has been taken by the Academic Editor the decision will be reviewed by another editor to whom the author can make representations.
\n\n3. CORRECTIONS
\n\nA Correction will be issued by the Academic Editor when:
\n\n3.1. ERRATUM
\n\nAn Erratum will be issued by the Academic Editor when it is determined that a mistake in a Chapter originates from the production process handled by the publisher.
\n\nA published Erratum will adhere to the Retraction Notice publishing guidelines outlined above.
\n\n3.2. CORRIGENDUM
\n\nA Corrigendum will be issued by the Academic Editor when it is determined that a mistake in a Chapter is a result of an Author’s miscalculation or oversight. A published Corrigendum will adhere to the Retraction Notice publishing guidelines outlined above.
\n\n4. FINAL REMARKS
\n\nIntechOpen wishes to emphasize that the final decision on whether a Retraction, Statement of Concern, or a Correction will be issued rests with the Academic Editor. The publisher is obliged to act upon any reports of scientific misconduct in its publications and to make a reasonable effort to facilitate any subsequent investigation of such claims.
\n\nIn the case of Retraction or removal of the Work, the publisher will be under no obligation to refund the APC.
\n\nThe general principles set out above apply to Retractions and Corrections issued in all IntechOpen publications.
\n\nAny suggestions or comments on this Policy are welcome and may be sent to permissions@intechopen.com.
\n\nPolicy last updated: 2017-09-11
\n'}]},successStories:{items:[]},authorsAndEditors:{filterParams:{sort:"featured,name"},profiles:[{id:"6700",title:"Dr.",name:"Abbass A.",middleName:null,surname:"Hashim",slug:"abbass-a.-hashim",fullName:"Abbass A. Hashim",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/6700/images/1864_n.jpg",biography:"Currently I am carrying out research in several areas of interest, mainly covering work on chemical and bio-sensors, semiconductor thin film device fabrication and characterisation.\nAt the moment I have very strong interest in radiation environmental pollution and bacteriology treatment. The teams of researchers are working very hard to bring novel results in this field. I am also a member of the team in charge for the supervision of Ph.D. students in the fields of development of silicon based planar waveguide sensor devices, study of inelastic electron tunnelling in planar tunnelling nanostructures for sensing applications and development of organotellurium(IV) compounds for semiconductor applications. I am a specialist in data analysis techniques and nanosurface structure. I have served as the editor for many books, been a member of the editorial board in science journals, have published many papers and hold many patents.",institutionString:null,institution:{name:"Sheffield Hallam University",country:{name:"United Kingdom"}}},{id:"54525",title:"Prof.",name:"Abdul Latif",middleName:null,surname:"Ahmad",slug:"abdul-latif-ahmad",fullName:"Abdul Latif Ahmad",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:null},{id:"20567",title:"Prof.",name:"Ado",middleName:null,surname:"Jorio",slug:"ado-jorio",fullName:"Ado Jorio",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"Universidade Federal de Minas Gerais",country:{name:"Brazil"}}},{id:"47940",title:"Dr.",name:"Alberto",middleName:null,surname:"Mantovani",slug:"alberto-mantovani",fullName:"Alberto Mantovani",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:null},{id:"12392",title:"Mr.",name:"Alex",middleName:null,surname:"Lazinica",slug:"alex-lazinica",fullName:"Alex Lazinica",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/12392/images/7282_n.png",biography:"Alex Lazinica is the founder and CEO of IntechOpen. After obtaining a Master's degree in Mechanical Engineering, he continued his PhD studies in Robotics at the Vienna University of Technology. Here he worked as a robotic researcher with the university's Intelligent Manufacturing Systems Group as well as a guest researcher at various European universities, including the Swiss Federal Institute of Technology Lausanne (EPFL). During this time he published more than 20 scientific papers, gave presentations, served as a reviewer for major robotic journals and conferences and most importantly he co-founded and built the International Journal of Advanced Robotic Systems- world's first Open Access journal in the field of robotics. Starting this journal was a pivotal point in his career, since it was a pathway to founding IntechOpen - Open Access publisher focused on addressing academic researchers needs. Alex is a personification of IntechOpen key values being trusted, open and entrepreneurial. Today his focus is on defining the growth and development strategy for the company.",institutionString:null,institution:{name:"TU Wien",country:{name:"Austria"}}},{id:"19816",title:"Prof.",name:"Alexander",middleName:null,surname:"Kokorin",slug:"alexander-kokorin",fullName:"Alexander Kokorin",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/19816/images/1607_n.jpg",biography:"Alexander I. Kokorin: born: 1947, Moscow; DSc., PhD; Principal Research Fellow (Research Professor) of Department of Kinetics and Catalysis, N. Semenov Institute of Chemical Physics, Russian Academy of Sciences, Moscow.\r\nArea of research interests: physical chemistry of complex-organized molecular and nanosized systems, including polymer-metal complexes; the surface of doped oxide semiconductors. He is an expert in structural, absorptive, catalytic and photocatalytic properties, in structural organization and dynamic features of ionic liquids, in magnetic interactions between paramagnetic centers. The author or co-author of 3 books, over 200 articles and reviews in scientific journals and books. He is an actual member of the International EPR/ESR Society, European Society on Quantum Solar Energy Conversion, Moscow House of Scientists, of the Board of Moscow Physical Society.",institutionString:null,institution:{name:"Semenov Institute of Chemical Physics",country:{name:"Russia"}}},{id:"62389",title:"PhD.",name:"Ali Demir",middleName:null,surname:"Sezer",slug:"ali-demir-sezer",fullName:"Ali Demir Sezer",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/62389/images/3413_n.jpg",biography:"Dr. Ali Demir Sezer has a Ph.D. from Pharmaceutical Biotechnology at the Faculty of Pharmacy, University of Marmara (Turkey). He is the member of many Pharmaceutical Associations and acts as a reviewer of scientific journals and European projects under different research areas such as: drug delivery systems, nanotechnology and pharmaceutical biotechnology. Dr. Sezer is the author of many scientific publications in peer-reviewed journals and poster communications. Focus of his research activity is drug delivery, physico-chemical characterization and biological evaluation of biopolymers micro and nanoparticles as modified drug delivery system, and colloidal drug carriers (liposomes, nanoparticles etc.).",institutionString:null,institution:{name:"Marmara University",country:{name:"Turkey"}}},{id:"61051",title:"Prof.",name:"Andrea",middleName:null,surname:"Natale",slug:"andrea-natale",fullName:"Andrea Natale",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:null},{id:"100762",title:"Prof.",name:"Andrea",middleName:null,surname:"Natale",slug:"andrea-natale",fullName:"Andrea Natale",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"St David's Medical Center",country:{name:"United States of America"}}},{id:"107416",title:"Dr.",name:"Andrea",middleName:null,surname:"Natale",slug:"andrea-natale",fullName:"Andrea Natale",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"Texas Cardiac Arrhythmia",country:{name:"United States of America"}}},{id:"64434",title:"Dr.",name:"Angkoon",middleName:null,surname:"Phinyomark",slug:"angkoon-phinyomark",fullName:"Angkoon Phinyomark",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/64434/images/2619_n.jpg",biography:"My name is Angkoon Phinyomark. I received a B.Eng. degree in Computer Engineering with First Class Honors in 2008 from Prince of Songkla University, Songkhla, Thailand, where I received a Ph.D. degree in Electrical Engineering. My research interests are primarily in the area of biomedical signal processing and classification notably EMG (electromyography signal), EOG (electrooculography signal), and EEG (electroencephalography signal), image analysis notably breast cancer analysis and optical coherence tomography, and rehabilitation engineering. I became a student member of IEEE in 2008. During October 2011-March 2012, I had worked at School of Computer Science and Electronic Engineering, University of Essex, Colchester, Essex, United Kingdom. In addition, during a B.Eng. I had been a visiting research student at Faculty of Computer Science, University of Murcia, Murcia, Spain for three months.\n\nI have published over 40 papers during 5 years in refereed journals, books, and conference proceedings in the areas of electro-physiological signals processing and classification, notably EMG and EOG signals, fractal analysis, wavelet analysis, texture analysis, feature extraction and machine learning algorithms, and assistive and rehabilitative devices. I have several computer programming language certificates, i.e. Sun Certified Programmer for the Java 2 Platform 1.4 (SCJP), Microsoft Certified Professional Developer, Web Developer (MCPD), Microsoft Certified Technology Specialist, .NET Framework 2.0 Web (MCTS). I am a Reviewer for several refereed journals and international conferences, such as IEEE Transactions on Biomedical Engineering, IEEE Transactions on Industrial Electronics, Optic Letters, Measurement Science Review, and also a member of the International Advisory Committee for 2012 IEEE Business Engineering and Industrial Applications and 2012 IEEE Symposium on Business, Engineering and Industrial Applications.",institutionString:null,institution:{name:"Joseph Fourier University",country:{name:"France"}}},{id:"55578",title:"Dr.",name:"Antonio",middleName:null,surname:"Jurado-Navas",slug:"antonio-jurado-navas",fullName:"Antonio Jurado-Navas",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/55578/images/4574_n.png",biography:"Antonio Jurado-Navas received the M.S. degree (2002) and the Ph.D. degree (2009) in Telecommunication Engineering, both from the University of Málaga (Spain). He first worked as a consultant at Vodafone-Spain. From 2004 to 2011, he was a Research Assistant with the Communications Engineering Department at the University of Málaga. In 2011, he became an Assistant Professor in the same department. From 2012 to 2015, he was with Ericsson Spain, where he was working on geo-location\ntools for third generation mobile networks. Since 2015, he is a Marie-Curie fellow at the Denmark Technical University. His current research interests include the areas of mobile communication systems and channel modeling in addition to atmospheric optical communications, adaptive optics and statistics",institutionString:null,institution:{name:"University of Malaga",country:{name:"Spain"}}}],filtersByRegion:[{group:"region",caption:"North America",value:1,count:5775},{group:"region",caption:"Middle and South America",value:2,count:5238},{group:"region",caption:"Africa",value:3,count:1721},{group:"region",caption:"Asia",value:4,count:10409},{group:"region",caption:"Australia and Oceania",value:5,count:897},{group:"region",caption:"Europe",value:6,count:15805}],offset:12,limit:12,total:118374},chapterEmbeded:{data:{}},editorApplication:{success:null,errors:{}},ofsBooks:{filterParams:{topicId:"10"},books:[{type:"book",id:"8969",title:"Deserts and Desertification",subtitle:null,isOpenForSubmission:!0,hash:"4df95c7f295de7f6003e635d9a309fe9",slug:null,bookSignature:"Dr. Yajuan Zhu, Dr. Qinghong Luo and Dr. Yuguo Liu",coverURL:"https://cdn.intechopen.com/books/images_new/8969.jpg",editedByType:null,editors:[{id:"180427",title:"Dr.",name:"Yajuan",surname:"Zhu",slug:"yajuan-zhu",fullName:"Yajuan Zhu"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10754",title:"Global Warming and Climate Change",subtitle:null,isOpenForSubmission:!0,hash:"8994a915a306910a01cbe2027aa2139b",slug:null,bookSignature:"Dr. Stuart Arthur Harris",coverURL:"https://cdn.intechopen.com/books/images_new/10754.jpg",editedByType:null,editors:[{id:"12539",title:"Dr.",name:"Stuart",surname:"Harris",slug:"stuart-harris",fullName:"Stuart Harris"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10756",title:"Urban Agglomeration",subtitle:null,isOpenForSubmission:!0,hash:"65f2a1fef9c804c29b18ef3ac4a35066",slug:null,bookSignature:"Dr. Luis Loures",coverURL:"https://cdn.intechopen.com/books/images_new/10756.jpg",editedByType:null,editors:[{id:"108118",title:"Dr.",name:"Luis",surname:"Loures",slug:"luis-loures",fullName:"Luis Loures"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10761",title:"Glaciology",subtitle:null,isOpenForSubmission:!0,hash:"bd112c839a9b8037f1302ca6c0d55a2a",slug:null,bookSignature:"",coverURL:"https://cdn.intechopen.com/books/images_new/10761.jpg",editedByType:null,editors:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10762",title:"Cosmology",subtitle:null,isOpenForSubmission:!0,hash:"f28a2213571fb878839bcbacb9827a1d",slug:null,bookSignature:"",coverURL:"https://cdn.intechopen.com/books/images_new/10762.jpg",editedByType:null,editors:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10851",title:"Volcanology",subtitle:null,isOpenForSubmission:!0,hash:"6cfc09f959efecf9ba95654b1bb4b987",slug:null,bookSignature:"Prof. Angelo Paone and Prof. Sung-Hyo Yun",coverURL:"https://cdn.intechopen.com/books/images_new/10851.jpg",editedByType:null,editors:[{id:"182871",title:"Prof.",name:"Angelo",surname:"Paone",slug:"angelo-paone",fullName:"Angelo Paone"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10949",title:"Clay and Clay Minerals",subtitle:null,isOpenForSubmission:!0,hash:"44d08b9e490617fcbf7786c381c85fbc",slug:null,bookSignature:"Prof. Gustavo Morari Do Nascimento",coverURL:"https://cdn.intechopen.com/books/images_new/10949.jpg",editedByType:null,editors:[{id:"7153",title:"Prof.",name:"Gustavo",surname:"Morari Do Nascimento",slug:"gustavo-morari-do-nascimento",fullName:"Gustavo Morari Do Nascimento"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10950",title:"Landslides",subtitle:null,isOpenForSubmission:!0,hash:"8fcc0f63c22c087239f07a8e06ec2549",slug:null,bookSignature:"",coverURL:"https://cdn.intechopen.com/books/images_new/10950.jpg",editedByType:null,editors:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10952",title:"Soil Science - Emerging Technologies, Global Perspectives and Applications",subtitle:null,isOpenForSubmission:!0,hash:"3dbedd2099c57a24eaab114be4ba2b48",slug:null,bookSignature:"Dr. Michael Thomas Aide and Dr. Indi Braden",coverURL:"https://cdn.intechopen.com/books/images_new/10952.jpg",editedByType:null,editors:[{id:"185895",title:"Dr.",name:"Michael",surname:"Aide",slug:"michael-aide",fullName:"Michael Aide"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10954",title:"Dark Matter - Recent Observations and Theoretical Advances",subtitle:null,isOpenForSubmission:!0,hash:"b0fbd6ee0096e4c16e9513bf01273ab3",slug:null,bookSignature:"Dr. Michael L. Smith",coverURL:"https://cdn.intechopen.com/books/images_new/10954.jpg",editedByType:null,editors:[{id:"59479",title:"Dr.",name:"Michael L.",surname:"Smith",slug:"michael-l.-smith",fullName:"Michael L. Smith"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}}],filtersByTopic:[{group:"topic",caption:"Agricultural and Biological Sciences",value:5,count:18},{group:"topic",caption:"Biochemistry, Genetics and Molecular Biology",value:6,count:5},{group:"topic",caption:"Business, Management and Economics",value:7,count:2},{group:"topic",caption:"Chemistry",value:8,count:8},{group:"topic",caption:"Computer and Information Science",value:9,count:5},{group:"topic",caption:"Earth and Planetary Sciences",value:10,count:7},{group:"topic",caption:"Engineering",value:11,count:19},{group:"topic",caption:"Environmental Sciences",value:12,count:2},{group:"topic",caption:"Immunology and Microbiology",value:13,count:3},{group:"topic",caption:"Materials Science",value:14,count:5},{group:"topic",caption:"Mathematics",value:15,count:1},{group:"topic",caption:"Medicine",value:16,count:24},{group:"topic",caption:"Neuroscience",value:18,count:2},{group:"topic",caption:"Pharmacology, Toxicology and Pharmaceutical Science",value:19,count:3},{group:"topic",caption:"Physics",value:20,count:3},{group:"topic",caption:"Psychology",value:21,count:4},{group:"topic",caption:"Robotics",value:22,count:1},{group:"topic",caption:"Social Sciences",value:23,count:3},{group:"topic",caption:"Technology",value:24,count:1},{group:"topic",caption:"Veterinary Medicine and Science",value:25,count:1}],offset:12,limit:12,total:10},popularBooks:{featuredBooks:[{type:"book",id:"9521",title:"Antimicrobial Resistance",subtitle:"A One Health Perspective",isOpenForSubmission:!1,hash:"30949e78832e1afba5606634b52056ab",slug:"antimicrobial-resistance-a-one-health-perspective",bookSignature:"Mihai Mareș, Swee Hua Erin Lim, Kok-Song Lai and Romeo-Teodor Cristina",coverURL:"https://cdn.intechopen.com/books/images_new/9521.jpg",editors:[{id:"88785",title:"Prof.",name:"Mihai",middleName:null,surname:"Mares",slug:"mihai-mares",fullName:"Mihai Mares"}],equalEditorOne:{id:"190224",title:"Dr.",name:"Swee Hua Erin",middleName:null,surname:"Lim",slug:"swee-hua-erin-lim",fullName:"Swee Hua Erin Lim",profilePictureURL:"https://mts.intechopen.com/storage/users/190224/images/system/190224.png",biography:"Dr. Erin Lim is presently working as an Assistant Professor in the Division of Health Sciences, Abu Dhabi Women\\'s College, Higher Colleges of Technology in Abu Dhabi, United Arab Emirates and is affiliated as an Associate Professor to Perdana University-Royal College of Surgeons in Ireland, Selangor, Malaysia. She obtained her Ph.D. from Universiti Putra Malaysia in 2010 with a National Science Fellowship awarded from the Ministry of Science, Technology and Innovation Malaysia and has been actively involved in research ever since. Her main research interests include analysis of carriage and transmission of multidrug resistant bacteria in non-conventional settings, besides an interest in natural products for antimicrobial testing. She is heavily involved in the elucidation of mechanisms of reversal of resistance in bacteria in addition to investigating the immunological analyses of diseases, development of vaccination and treatment models in animals. She hopes her work will support the discovery of therapeutics in the clinical setting and assist in the combat against the burden of antibiotic resistance.",institutionString:"Abu Dhabi Women’s College",position:null,outsideEditionCount:0,totalCites:0,totalAuthoredChapters:"3",totalChapterViews:"0",totalEditedBooks:"0",institution:{name:"Perdana University",institutionURL:null,country:{name:"Malaysia"}}},equalEditorTwo:{id:"221544",title:"Dr.",name:"Kok-Song",middleName:null,surname:"Lai",slug:"kok-song-lai",fullName:"Kok-Song Lai",profilePictureURL:"https://mts.intechopen.com/storage/users/221544/images/system/221544.jpeg",biography:"Dr. Lai Kok Song is an Assistant Professor in the Division of Health Sciences, Abu Dhabi Women\\'s College, Higher Colleges of Technology in Abu Dhabi, United Arab Emirates. He obtained his Ph.D. in Biological Sciences from Nara Institute of Science and Technology, Japan in 2012. Prior to his academic appointment, Dr. Lai worked as a Senior Scientist at the Ministry of Science, Technology and Innovation, Malaysia. His current research areas include antimicrobial resistance and plant-pathogen interaction. His particular interest lies in the study of the antimicrobial mechanism via membrane disruption of essential oils against multi-drug resistance bacteria through various biochemical, molecular and proteomic approaches. Ultimately, he hopes to uncover and determine novel biomarkers related to antibiotic resistance that can be developed into new therapeutic strategies.",institutionString:"Higher Colleges of Technology",position:null,outsideEditionCount:0,totalCites:0,totalAuthoredChapters:"8",totalChapterViews:"0",totalEditedBooks:"0",institution:{name:"Higher Colleges of Technology",institutionURL:null,country:{name:"United Arab Emirates"}}},equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10020",title:"Operations Management",subtitle:"Emerging Trend in the Digital Era",isOpenForSubmission:!1,hash:"526f0dbdc7e4d85b82ce8383ab894b4c",slug:"operations-management-emerging-trend-in-the-digital-era",bookSignature:"Antonella Petrillo, Fabio De Felice, Germano Lambert-Torres and Erik Bonaldi",coverURL:"https://cdn.intechopen.com/books/images_new/10020.jpg",editors:[{id:"181603",title:"Dr.",name:"Antonella",middleName:null,surname:"Petrillo",slug:"antonella-petrillo",fullName:"Antonella Petrillo"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9560",title:"Creativity",subtitle:"A Force to Innovation",isOpenForSubmission:!1,hash:"58f740bc17807d5d88d647c525857b11",slug:"creativity-a-force-to-innovation",bookSignature:"Pooja Jain",coverURL:"https://cdn.intechopen.com/books/images_new/9560.jpg",editors:[{id:"316765",title:"Dr.",name:"Pooja",middleName:null,surname:"Jain",slug:"pooja-jain",fullName:"Pooja Jain"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10192",title:"Background and Management of Muscular Atrophy",subtitle:null,isOpenForSubmission:!1,hash:"eca24028d89912b5efea56e179dff089",slug:"background-and-management-of-muscular-atrophy",bookSignature:"Julianna Cseri",coverURL:"https://cdn.intechopen.com/books/images_new/10192.jpg",editors:[{id:"135579",title:"Dr.",name:"Julianna",middleName:null,surname:"Cseri",slug:"julianna-cseri",fullName:"Julianna Cseri"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9243",title:"Coastal Environments",subtitle:null,isOpenForSubmission:!1,hash:"8e05e5f631e935eef366980f2e28295d",slug:"coastal-environments",bookSignature:"Yuanzhi Zhang and X. San Liang",coverURL:"https://cdn.intechopen.com/books/images_new/9243.jpg",editors:[{id:"77597",title:"Prof.",name:"Yuanzhi",middleName:null,surname:"Zhang",slug:"yuanzhi-zhang",fullName:"Yuanzhi Zhang"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9385",title:"Renewable Energy",subtitle:"Technologies and Applications",isOpenForSubmission:!1,hash:"a6b446d19166f17f313008e6c056f3d8",slug:"renewable-energy-technologies-and-applications",bookSignature:"Tolga Taner, Archana Tiwari and Taha Selim Ustun",coverURL:"https://cdn.intechopen.com/books/images_new/9385.jpg",editors:[{id:"197240",title:"Associate Prof.",name:"Tolga",middleName:null,surname:"Taner",slug:"tolga-taner",fullName:"Tolga Taner"}],equalEditorOne:{id:"186791",title:"Dr.",name:"Archana",middleName:null,surname:"Tiwari",slug:"archana-tiwari",fullName:"Archana Tiwari",profilePictureURL:"https://mts.intechopen.com/storage/users/186791/images/system/186791.jpg",biography:"Dr. Archana Tiwari is Associate Professor at Amity University, India. Her research interests include renewable sources of energy from microalgae and further utilizing the residual biomass for the generation of value-added products, bioremediation through microalgae and microbial consortium, antioxidative enzymes and stress, and nutraceuticals from microalgae. She has been working on algal biotechnology for the last two decades. She has published her research in many international journals and has authored many books and chapters with renowned publishing houses. She has also delivered talks as an invited speaker at many national and international conferences. Dr. Tiwari is the recipient of several awards including Researcher of the Year and Distinguished Scientist.",institutionString:"Amity University",position:null,outsideEditionCount:0,totalCites:0,totalAuthoredChapters:"3",totalChapterViews:"0",totalEditedBooks:"1",institution:{name:"Amity University",institutionURL:null,country:{name:"India"}}},equalEditorTwo:{id:"197609",title:"Prof.",name:"Taha Selim",middleName:null,surname:"Ustun",slug:"taha-selim-ustun",fullName:"Taha Selim Ustun",profilePictureURL:"https://mts.intechopen.com/storage/users/197609/images/system/197609.jpeg",biography:"Dr. Taha Selim Ustun received a Ph.D. in Electrical Engineering from Victoria University, Melbourne, Australia. He is a researcher with the Fukushima Renewable Energy Institute, AIST (FREA), where he leads the Smart Grid Cybersecurity Laboratory. Prior to that, he was a faculty member with the School of Electrical and Computer Engineering, Carnegie Mellon University, Pittsburgh, PA, USA. His current research interests include power systems protection, communication in power networks, distributed generation, microgrids, electric vehicle integration, and cybersecurity in smart grids. He serves on the editorial boards of IEEE Access, IEEE Transactions on Industrial Informatics, Energies, Electronics, Electricity, World Electric Vehicle and Information journals. Dr. Ustun is a member of the IEEE 2004 and 2800, IEC Renewable Energy Management WG 8, and IEC TC 57 WG17. He has been invited to run specialist courses in Africa, India, and China. He has delivered talks for the Qatar Foundation, the World Energy Council, the Waterloo Global Science Initiative, and the European Union Energy Initiative (EUEI). His research has attracted funding from prestigious programs in Japan, Australia, the European Union, and North America.",institutionString:"Fukushima Renewable Energy Institute, AIST (FREA)",position:null,outsideEditionCount:0,totalCites:0,totalAuthoredChapters:"1",totalChapterViews:"0",totalEditedBooks:"0",institution:{name:"National Institute of Advanced Industrial Science and Technology",institutionURL:null,country:{name:"Japan"}}},equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"8985",title:"Natural Resources Management and Biological Sciences",subtitle:null,isOpenForSubmission:!1,hash:"5c2e219a6c021a40b5a20c041dea88c4",slug:"natural-resources-management-and-biological-sciences",bookSignature:"Edward R. Rhodes and Humood Naser",coverURL:"https://cdn.intechopen.com/books/images_new/8985.jpg",editors:[{id:"280886",title:"Prof.",name:"Edward R",middleName:null,surname:"Rhodes",slug:"edward-r-rhodes",fullName:"Edward R Rhodes"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10065",title:"Wavelet Theory",subtitle:null,isOpenForSubmission:!1,hash:"d8868e332169597ba2182d9b004d60de",slug:"wavelet-theory",bookSignature:"Somayeh Mohammady",coverURL:"https://cdn.intechopen.com/books/images_new/10065.jpg",editors:[{id:"109280",title:"Dr.",name:"Somayeh",middleName:null,surname:"Mohammady",slug:"somayeh-mohammady",fullName:"Somayeh Mohammady"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9644",title:"Glaciers and the Polar Environment",subtitle:null,isOpenForSubmission:!1,hash:"e8cfdc161794e3753ced54e6ff30873b",slug:"glaciers-and-the-polar-environment",bookSignature:"Masaki Kanao, Danilo Godone and Niccolò Dematteis",coverURL:"https://cdn.intechopen.com/books/images_new/9644.jpg",editors:[{id:"51959",title:"Dr.",name:"Masaki",middleName:null,surname:"Kanao",slug:"masaki-kanao",fullName:"Masaki Kanao"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9550",title:"Entrepreneurship",subtitle:"Contemporary Issues",isOpenForSubmission:!1,hash:"9b4ac1ee5b743abf6f88495452b1e5e7",slug:"entrepreneurship-contemporary-issues",bookSignature:"Mladen Turuk",coverURL:"https://cdn.intechopen.com/books/images_new/9550.jpg",editors:[{id:"319755",title:"Prof.",name:"Mladen",middleName:null,surname:"Turuk",slug:"mladen-turuk",fullName:"Mladen Turuk"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9027",title:"Human Blood Group Systems and Haemoglobinopathies",subtitle:null,isOpenForSubmission:!1,hash:"d00d8e40b11cfb2547d1122866531c7e",slug:"human-blood-group-systems-and-haemoglobinopathies",bookSignature:"Osaro Erhabor and Anjana Munshi",coverURL:"https://cdn.intechopen.com/books/images_new/9027.jpg",editors:[{id:"35140",title:null,name:"Osaro",middleName:null,surname:"Erhabor",slug:"osaro-erhabor",fullName:"Osaro Erhabor"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"8558",title:"Aerodynamics",subtitle:null,isOpenForSubmission:!1,hash:"db7263fc198dfb539073ba0260a7f1aa",slug:"aerodynamics",bookSignature:"Mofid Gorji-Bandpy and Aly-Mousaad Aly",coverURL:"https://cdn.intechopen.com/books/images_new/8558.jpg",editors:[{id:"35542",title:"Prof.",name:"Mofid",middleName:null,surname:"Gorji-Bandpy",slug:"mofid-gorji-bandpy",fullName:"Mofid Gorji-Bandpy"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}}],offset:12,limit:12,total:5247},hotBookTopics:{hotBooks:[],offset:0,limit:12,total:null},publish:{},publishingProposal:{success:null,errors:{}},books:{featuredBooks:[{type:"book",id:"9521",title:"Antimicrobial Resistance",subtitle:"A One Health Perspective",isOpenForSubmission:!1,hash:"30949e78832e1afba5606634b52056ab",slug:"antimicrobial-resistance-a-one-health-perspective",bookSignature:"Mihai Mareș, Swee Hua Erin Lim, Kok-Song Lai and Romeo-Teodor Cristina",coverURL:"https://cdn.intechopen.com/books/images_new/9521.jpg",editors:[{id:"88785",title:"Prof.",name:"Mihai",middleName:null,surname:"Mares",slug:"mihai-mares",fullName:"Mihai Mares"}],equalEditorOne:{id:"190224",title:"Dr.",name:"Swee Hua Erin",middleName:null,surname:"Lim",slug:"swee-hua-erin-lim",fullName:"Swee Hua Erin Lim",profilePictureURL:"https://mts.intechopen.com/storage/users/190224/images/system/190224.png",biography:"Dr. Erin Lim is presently working as an Assistant Professor in the Division of Health Sciences, Abu Dhabi Women\\'s College, Higher Colleges of Technology in Abu Dhabi, United Arab Emirates and is affiliated as an Associate Professor to Perdana University-Royal College of Surgeons in Ireland, Selangor, Malaysia. She obtained her Ph.D. from Universiti Putra Malaysia in 2010 with a National Science Fellowship awarded from the Ministry of Science, Technology and Innovation Malaysia and has been actively involved in research ever since. Her main research interests include analysis of carriage and transmission of multidrug resistant bacteria in non-conventional settings, besides an interest in natural products for antimicrobial testing. She is heavily involved in the elucidation of mechanisms of reversal of resistance in bacteria in addition to investigating the immunological analyses of diseases, development of vaccination and treatment models in animals. She hopes her work will support the discovery of therapeutics in the clinical setting and assist in the combat against the burden of antibiotic resistance.",institutionString:"Abu Dhabi Women’s College",position:null,outsideEditionCount:0,totalCites:0,totalAuthoredChapters:"3",totalChapterViews:"0",totalEditedBooks:"0",institution:{name:"Perdana University",institutionURL:null,country:{name:"Malaysia"}}},equalEditorTwo:{id:"221544",title:"Dr.",name:"Kok-Song",middleName:null,surname:"Lai",slug:"kok-song-lai",fullName:"Kok-Song Lai",profilePictureURL:"https://mts.intechopen.com/storage/users/221544/images/system/221544.jpeg",biography:"Dr. Lai Kok Song is an Assistant Professor in the Division of Health Sciences, Abu Dhabi Women\\'s College, Higher Colleges of Technology in Abu Dhabi, United Arab Emirates. He obtained his Ph.D. in Biological Sciences from Nara Institute of Science and Technology, Japan in 2012. Prior to his academic appointment, Dr. Lai worked as a Senior Scientist at the Ministry of Science, Technology and Innovation, Malaysia. His current research areas include antimicrobial resistance and plant-pathogen interaction. His particular interest lies in the study of the antimicrobial mechanism via membrane disruption of essential oils against multi-drug resistance bacteria through various biochemical, molecular and proteomic approaches. Ultimately, he hopes to uncover and determine novel biomarkers related to antibiotic resistance that can be developed into new therapeutic strategies.",institutionString:"Higher Colleges of Technology",position:null,outsideEditionCount:0,totalCites:0,totalAuthoredChapters:"8",totalChapterViews:"0",totalEditedBooks:"0",institution:{name:"Higher Colleges of Technology",institutionURL:null,country:{name:"United Arab Emirates"}}},equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10020",title:"Operations Management",subtitle:"Emerging Trend in the Digital Era",isOpenForSubmission:!1,hash:"526f0dbdc7e4d85b82ce8383ab894b4c",slug:"operations-management-emerging-trend-in-the-digital-era",bookSignature:"Antonella Petrillo, Fabio De Felice, Germano Lambert-Torres and Erik Bonaldi",coverURL:"https://cdn.intechopen.com/books/images_new/10020.jpg",editors:[{id:"181603",title:"Dr.",name:"Antonella",middleName:null,surname:"Petrillo",slug:"antonella-petrillo",fullName:"Antonella Petrillo"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9560",title:"Creativity",subtitle:"A Force to Innovation",isOpenForSubmission:!1,hash:"58f740bc17807d5d88d647c525857b11",slug:"creativity-a-force-to-innovation",bookSignature:"Pooja Jain",coverURL:"https://cdn.intechopen.com/books/images_new/9560.jpg",editors:[{id:"316765",title:"Dr.",name:"Pooja",middleName:null,surname:"Jain",slug:"pooja-jain",fullName:"Pooja Jain"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10192",title:"Background and Management of Muscular Atrophy",subtitle:null,isOpenForSubmission:!1,hash:"eca24028d89912b5efea56e179dff089",slug:"background-and-management-of-muscular-atrophy",bookSignature:"Julianna Cseri",coverURL:"https://cdn.intechopen.com/books/images_new/10192.jpg",editors:[{id:"135579",title:"Dr.",name:"Julianna",middleName:null,surname:"Cseri",slug:"julianna-cseri",fullName:"Julianna Cseri"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9243",title:"Coastal Environments",subtitle:null,isOpenForSubmission:!1,hash:"8e05e5f631e935eef366980f2e28295d",slug:"coastal-environments",bookSignature:"Yuanzhi Zhang and X. San Liang",coverURL:"https://cdn.intechopen.com/books/images_new/9243.jpg",editors:[{id:"77597",title:"Prof.",name:"Yuanzhi",middleName:null,surname:"Zhang",slug:"yuanzhi-zhang",fullName:"Yuanzhi Zhang"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9385",title:"Renewable Energy",subtitle:"Technologies and Applications",isOpenForSubmission:!1,hash:"a6b446d19166f17f313008e6c056f3d8",slug:"renewable-energy-technologies-and-applications",bookSignature:"Tolga Taner, Archana Tiwari and Taha Selim Ustun",coverURL:"https://cdn.intechopen.com/books/images_new/9385.jpg",editors:[{id:"197240",title:"Associate Prof.",name:"Tolga",middleName:null,surname:"Taner",slug:"tolga-taner",fullName:"Tolga Taner"}],equalEditorOne:{id:"186791",title:"Dr.",name:"Archana",middleName:null,surname:"Tiwari",slug:"archana-tiwari",fullName:"Archana Tiwari",profilePictureURL:"https://mts.intechopen.com/storage/users/186791/images/system/186791.jpg",biography:"Dr. Archana Tiwari is Associate Professor at Amity University, India. Her research interests include renewable sources of energy from microalgae and further utilizing the residual biomass for the generation of value-added products, bioremediation through microalgae and microbial consortium, antioxidative enzymes and stress, and nutraceuticals from microalgae. She has been working on algal biotechnology for the last two decades. She has published her research in many international journals and has authored many books and chapters with renowned publishing houses. She has also delivered talks as an invited speaker at many national and international conferences. Dr. Tiwari is the recipient of several awards including Researcher of the Year and Distinguished Scientist.",institutionString:"Amity University",position:null,outsideEditionCount:0,totalCites:0,totalAuthoredChapters:"3",totalChapterViews:"0",totalEditedBooks:"1",institution:{name:"Amity University",institutionURL:null,country:{name:"India"}}},equalEditorTwo:{id:"197609",title:"Prof.",name:"Taha Selim",middleName:null,surname:"Ustun",slug:"taha-selim-ustun",fullName:"Taha Selim Ustun",profilePictureURL:"https://mts.intechopen.com/storage/users/197609/images/system/197609.jpeg",biography:"Dr. Taha Selim Ustun received a Ph.D. in Electrical Engineering from Victoria University, Melbourne, Australia. He is a researcher with the Fukushima Renewable Energy Institute, AIST (FREA), where he leads the Smart Grid Cybersecurity Laboratory. Prior to that, he was a faculty member with the School of Electrical and Computer Engineering, Carnegie Mellon University, Pittsburgh, PA, USA. His current research interests include power systems protection, communication in power networks, distributed generation, microgrids, electric vehicle integration, and cybersecurity in smart grids. He serves on the editorial boards of IEEE Access, IEEE Transactions on Industrial Informatics, Energies, Electronics, Electricity, World Electric Vehicle and Information journals. Dr. Ustun is a member of the IEEE 2004 and 2800, IEC Renewable Energy Management WG 8, and IEC TC 57 WG17. He has been invited to run specialist courses in Africa, India, and China. He has delivered talks for the Qatar Foundation, the World Energy Council, the Waterloo Global Science Initiative, and the European Union Energy Initiative (EUEI). His research has attracted funding from prestigious programs in Japan, Australia, the European Union, and North America.",institutionString:"Fukushima Renewable Energy Institute, AIST (FREA)",position:null,outsideEditionCount:0,totalCites:0,totalAuthoredChapters:"1",totalChapterViews:"0",totalEditedBooks:"0",institution:{name:"National Institute of Advanced Industrial Science and Technology",institutionURL:null,country:{name:"Japan"}}},equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"8985",title:"Natural Resources Management and Biological Sciences",subtitle:null,isOpenForSubmission:!1,hash:"5c2e219a6c021a40b5a20c041dea88c4",slug:"natural-resources-management-and-biological-sciences",bookSignature:"Edward R. Rhodes and Humood Naser",coverURL:"https://cdn.intechopen.com/books/images_new/8985.jpg",editors:[{id:"280886",title:"Prof.",name:"Edward R",middleName:null,surname:"Rhodes",slug:"edward-r-rhodes",fullName:"Edward R Rhodes"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10065",title:"Wavelet Theory",subtitle:null,isOpenForSubmission:!1,hash:"d8868e332169597ba2182d9b004d60de",slug:"wavelet-theory",bookSignature:"Somayeh Mohammady",coverURL:"https://cdn.intechopen.com/books/images_new/10065.jpg",editors:[{id:"109280",title:"Dr.",name:"Somayeh",middleName:null,surname:"Mohammady",slug:"somayeh-mohammady",fullName:"Somayeh Mohammady"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9644",title:"Glaciers and the Polar Environment",subtitle:null,isOpenForSubmission:!1,hash:"e8cfdc161794e3753ced54e6ff30873b",slug:"glaciers-and-the-polar-environment",bookSignature:"Masaki Kanao, Danilo Godone and Niccolò Dematteis",coverURL:"https://cdn.intechopen.com/books/images_new/9644.jpg",editors:[{id:"51959",title:"Dr.",name:"Masaki",middleName:null,surname:"Kanao",slug:"masaki-kanao",fullName:"Masaki Kanao"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9550",title:"Entrepreneurship",subtitle:"Contemporary Issues",isOpenForSubmission:!1,hash:"9b4ac1ee5b743abf6f88495452b1e5e7",slug:"entrepreneurship-contemporary-issues",bookSignature:"Mladen Turuk",coverURL:"https://cdn.intechopen.com/books/images_new/9550.jpg",editors:[{id:"319755",title:"Prof.",name:"Mladen",middleName:null,surname:"Turuk",slug:"mladen-turuk",fullName:"Mladen Turuk"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}}],latestBooks:[{type:"book",id:"9243",title:"Coastal Environments",subtitle:null,isOpenForSubmission:!1,hash:"8e05e5f631e935eef366980f2e28295d",slug:"coastal-environments",bookSignature:"Yuanzhi Zhang and X. San Liang",coverURL:"https://cdn.intechopen.com/books/images_new/9243.jpg",editedByType:"Edited by",editors:[{id:"77597",title:"Prof.",name:"Yuanzhi",middleName:null,surname:"Zhang",slug:"yuanzhi-zhang",fullName:"Yuanzhi Zhang"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10020",title:"Operations Management",subtitle:"Emerging Trend in the Digital Era",isOpenForSubmission:!1,hash:"526f0dbdc7e4d85b82ce8383ab894b4c",slug:"operations-management-emerging-trend-in-the-digital-era",bookSignature:"Antonella Petrillo, Fabio De Felice, Germano Lambert-Torres and Erik Bonaldi",coverURL:"https://cdn.intechopen.com/books/images_new/10020.jpg",editedByType:"Edited by",editors:[{id:"181603",title:"Dr.",name:"Antonella",middleName:null,surname:"Petrillo",slug:"antonella-petrillo",fullName:"Antonella Petrillo"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"9521",title:"Antimicrobial Resistance",subtitle:"A One Health Perspective",isOpenForSubmission:!1,hash:"30949e78832e1afba5606634b52056ab",slug:"antimicrobial-resistance-a-one-health-perspective",bookSignature:"Mihai Mareș, Swee Hua Erin Lim, Kok-Song Lai and Romeo-Teodor Cristina",coverURL:"https://cdn.intechopen.com/books/images_new/9521.jpg",editedByType:"Edited by",editors:[{id:"88785",title:"Prof.",name:"Mihai",middleName:null,surname:"Mares",slug:"mihai-mares",fullName:"Mihai Mares"}],equalEditorOne:{id:"190224",title:"Dr.",name:"Swee Hua Erin",middleName:null,surname:"Lim",slug:"swee-hua-erin-lim",fullName:"Swee Hua Erin Lim",profilePictureURL:"https://mts.intechopen.com/storage/users/190224/images/system/190224.png",biography:"Dr. Erin Lim is presently working as an Assistant Professor in the Division of Health Sciences, Abu Dhabi Women\\'s College, Higher Colleges of Technology in Abu Dhabi, United Arab Emirates and is affiliated as an Associate Professor to Perdana University-Royal College of Surgeons in Ireland, Selangor, Malaysia. She obtained her Ph.D. from Universiti Putra Malaysia in 2010 with a National Science Fellowship awarded from the Ministry of Science, Technology and Innovation Malaysia and has been actively involved in research ever since. Her main research interests include analysis of carriage and transmission of multidrug resistant bacteria in non-conventional settings, besides an interest in natural products for antimicrobial testing. She is heavily involved in the elucidation of mechanisms of reversal of resistance in bacteria in addition to investigating the immunological analyses of diseases, development of vaccination and treatment models in animals. She hopes her work will support the discovery of therapeutics in the clinical setting and assist in the combat against the burden of antibiotic resistance.",institutionString:"Abu Dhabi Women’s College",position:null,outsideEditionCount:0,totalCites:0,totalAuthoredChapters:"3",totalChapterViews:"0",totalEditedBooks:"0",institution:{name:"Perdana University",institutionURL:null,country:{name:"Malaysia"}}},equalEditorTwo:{id:"221544",title:"Dr.",name:"Kok-Song",middleName:null,surname:"Lai",slug:"kok-song-lai",fullName:"Kok-Song Lai",profilePictureURL:"https://mts.intechopen.com/storage/users/221544/images/system/221544.jpeg",biography:"Dr. Lai Kok Song is an Assistant Professor in the Division of Health Sciences, Abu Dhabi Women\\'s College, Higher Colleges of Technology in Abu Dhabi, United Arab Emirates. He obtained his Ph.D. in Biological Sciences from Nara Institute of Science and Technology, Japan in 2012. Prior to his academic appointment, Dr. Lai worked as a Senior Scientist at the Ministry of Science, Technology and Innovation, Malaysia. His current research areas include antimicrobial resistance and plant-pathogen interaction. His particular interest lies in the study of the antimicrobial mechanism via membrane disruption of essential oils against multi-drug resistance bacteria through various biochemical, molecular and proteomic approaches. Ultimately, he hopes to uncover and determine novel biomarkers related to antibiotic resistance that can be developed into new therapeutic strategies.",institutionString:"Higher Colleges of Technology",position:null,outsideEditionCount:0,totalCites:0,totalAuthoredChapters:"8",totalChapterViews:"0",totalEditedBooks:"0",institution:{name:"Higher Colleges of Technology",institutionURL:null,country:{name:"United Arab Emirates"}}},equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"9560",title:"Creativity",subtitle:"A Force to Innovation",isOpenForSubmission:!1,hash:"58f740bc17807d5d88d647c525857b11",slug:"creativity-a-force-to-innovation",bookSignature:"Pooja Jain",coverURL:"https://cdn.intechopen.com/books/images_new/9560.jpg",editedByType:"Edited by",editors:[{id:"316765",title:"Dr.",name:"Pooja",middleName:null,surname:"Jain",slug:"pooja-jain",fullName:"Pooja Jain"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"9669",title:"Recent Advances in Rice Research",subtitle:null,isOpenForSubmission:!1,hash:"12b06cc73e89af1e104399321cc16a75",slug:"recent-advances-in-rice-research",bookSignature:"Mahmood-ur- Rahman Ansari",coverURL:"https://cdn.intechopen.com/books/images_new/9669.jpg",editedByType:"Edited by",editors:[{id:"185476",title:"Dr.",name:"Mahmood-Ur-",middleName:null,surname:"Rahman Ansari",slug:"mahmood-ur-rahman-ansari",fullName:"Mahmood-Ur- Rahman Ansari"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10192",title:"Background and Management of Muscular Atrophy",subtitle:null,isOpenForSubmission:!1,hash:"eca24028d89912b5efea56e179dff089",slug:"background-and-management-of-muscular-atrophy",bookSignature:"Julianna Cseri",coverURL:"https://cdn.intechopen.com/books/images_new/10192.jpg",editedByType:"Edited by",editors:[{id:"135579",title:"Dr.",name:"Julianna",middleName:null,surname:"Cseri",slug:"julianna-cseri",fullName:"Julianna Cseri"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"9550",title:"Entrepreneurship",subtitle:"Contemporary Issues",isOpenForSubmission:!1,hash:"9b4ac1ee5b743abf6f88495452b1e5e7",slug:"entrepreneurship-contemporary-issues",bookSignature:"Mladen Turuk",coverURL:"https://cdn.intechopen.com/books/images_new/9550.jpg",editedByType:"Edited by",editors:[{id:"319755",title:"Prof.",name:"Mladen",middleName:null,surname:"Turuk",slug:"mladen-turuk",fullName:"Mladen Turuk"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10065",title:"Wavelet Theory",subtitle:null,isOpenForSubmission:!1,hash:"d8868e332169597ba2182d9b004d60de",slug:"wavelet-theory",bookSignature:"Somayeh Mohammady",coverURL:"https://cdn.intechopen.com/books/images_new/10065.jpg",editedByType:"Edited by",editors:[{id:"109280",title:"Dr.",name:"Somayeh",middleName:null,surname:"Mohammady",slug:"somayeh-mohammady",fullName:"Somayeh Mohammady"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"9313",title:"Clay Science and Technology",subtitle:null,isOpenForSubmission:!1,hash:"6fa7e70396ff10620e032bb6cfa6fb72",slug:"clay-science-and-technology",bookSignature:"Gustavo Morari Do Nascimento",coverURL:"https://cdn.intechopen.com/books/images_new/9313.jpg",editedByType:"Edited by",editors:[{id:"7153",title:"Prof.",name:"Gustavo",middleName:null,surname:"Morari Do Nascimento",slug:"gustavo-morari-do-nascimento",fullName:"Gustavo Morari Do Nascimento"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"9888",title:"Nuclear Power Plants",subtitle:"The Processes from the Cradle to the Grave",isOpenForSubmission:!1,hash:"c2c8773e586f62155ab8221ebb72a849",slug:"nuclear-power-plants-the-processes-from-the-cradle-to-the-grave",bookSignature:"Nasser Awwad",coverURL:"https://cdn.intechopen.com/books/images_new/9888.jpg",editedByType:"Edited by",editors:[{id:"145209",title:"Prof.",name:"Nasser",middleName:"S",surname:"Awwad",slug:"nasser-awwad",fullName:"Nasser Awwad"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}}]},subject:{topic:{id:"1049",title:"Mitochondrial Genetics",slug:"mitochondrial-genetics",parent:{title:"Medical Genetics",slug:"medical-genetics"},numberOfBooks:4,numberOfAuthorsAndEditors:136,numberOfWosCitations:36,numberOfCrossrefCitations:35,numberOfDimensionsCitations:68,videoUrl:null,fallbackUrl:null,description:null},booksByTopicFilter:{topicSlug:"mitochondrial-genetics",sort:"-publishedDate",limit:12,offset:0},booksByTopicCollection:[{type:"book",id:"7850",title:"Mitochondria and Brain Disorders",subtitle:null,isOpenForSubmission:!1,hash:"e4cb9b34e45c6177ede9cf78fbda4b82",slug:"mitochondria-and-brain-disorders",bookSignature:"Stavros Baloyannis",coverURL:"https://cdn.intechopen.com/books/images_new/7850.jpg",editedByType:"Edited by",editors:[{id:"156098",title:"Emeritus Prof.",name:"Stavros",middleName:"J",surname:"Baloyannis",slug:"stavros-baloyannis",fullName:"Stavros Baloyannis"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"6684",title:"Mitochondrial DNA",subtitle:"New Insights",isOpenForSubmission:!1,hash:"326a9354db0c23d8a26659e8a0c26872",slug:"mitochondrial-dna-new-insights",bookSignature:"Hervé Seligmann",coverURL:"https://cdn.intechopen.com/books/images_new/6684.jpg",editedByType:"Edited by",editors:[{id:"118814",title:"Dr.",name:"Herve",middleName:null,surname:"Seligmann",slug:"herve-seligmann",fullName:"Herve Seligmann"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"6060",title:"Mitochondrial Diseases",subtitle:null,isOpenForSubmission:!1,hash:"66c079bd70478fcc63072a8a42da4c33",slug:"mitochondrial-diseases",bookSignature:"Eylem Taskin, Celal Guven and Yusuf Sevgiler",coverURL:"https://cdn.intechopen.com/books/images_new/6060.jpg",editedByType:"Edited by",editors:[{id:"192567",title:"Prof.",name:"Eylem",middleName:null,surname:"Taskin",slug:"eylem-taskin",fullName:"Eylem Taskin"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"5232",title:"Restricted Growth",subtitle:"Clinical, Genetic and Molecular Aspects",isOpenForSubmission:!1,hash:"c604493aaeaf8258adc42b2d7dc9b22d",slug:"restricted-growth-clinical-genetic-and-molecular-aspects",bookSignature:"Maria del Carmen Cardenas- Aguayo",coverURL:"https://cdn.intechopen.com/books/images_new/5232.jpg",editedByType:"Edited by",editors:[{id:"169616",title:"Dr.",name:"Maria del Carmen",middleName:null,surname:"Cardenas-Aguayo",slug:"maria-del-carmen-cardenas-aguayo",fullName:"Maria del Carmen Cardenas-Aguayo"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}}],booksByTopicTotal:4,mostCitedChapters:[{id:"63421",doi:"10.5772/intechopen.80871",title:"Directed Mutations Recode Mitochondrial Genes: From Regular to Stopless Genetic Codes",slug:"directed-mutations-recode-mitochondrial-genes-from-regular-to-stopless-genetic-codes",totalDownloads:441,totalCrossrefCites:6,totalDimensionsCites:9,book:{slug:"mitochondrial-dna-new-insights",title:"Mitochondrial DNA",fullTitle:"Mitochondrial DNA - New Insights"},signatures:"Hervé Seligmann",authors:[{id:"118814",title:"Dr.",name:"Herve",middleName:null,surname:"Seligmann",slug:"herve-seligmann",fullName:"Herve Seligmann"}]},{id:"60263",doi:"10.5772/intechopen.75555",title:"True Mitochondrial tRNA Punctuation and Initiation Using Overlapping Stop and Start Codons at Specific and Conserved Positions",slug:"true-mitochondrial-trna-punctuation-and-initiation-using-overlapping-stop-and-start-codons-at-specif",totalDownloads:622,totalCrossrefCites:7,totalDimensionsCites:8,book:{slug:"mitochondrial-dna-new-insights",title:"Mitochondrial DNA",fullTitle:"Mitochondrial DNA - New Insights"},signatures:"Eric Faure and Roxane Barthélémy",authors:[{id:"182675",title:"Prof.",name:"Eric",middleName:null,surname:"Faure",slug:"eric-faure",fullName:"Eric Faure"},{id:"233312",title:"Dr.",name:"Roxane-Marie",middleName:null,surname:"Barthélémy",slug:"roxane-marie-barthelemy",fullName:"Roxane-Marie Barthélémy"}]},{id:"62150",doi:"10.5772/intechopen.77366",title:"Renaissance of the Tautomeric Hypothesis of the Spontaneous Point Mutations in DNA: New Ideas and Computational Approaches",slug:"renaissance-of-the-tautomeric-hypothesis-of-the-spontaneous-point-mutations-in-dna-new-ideas-and-com",totalDownloads:453,totalCrossrefCites:7,totalDimensionsCites:8,book:{slug:"mitochondrial-dna-new-insights",title:"Mitochondrial DNA",fullTitle:"Mitochondrial DNA - New Insights"},signatures:"Ol’ha O. Brovarets’ and Dmytro M. Hovorun",authors:[{id:"212825",title:"Dr.",name:"Dmytro",middleName:null,surname:"Hovorun",slug:"dmytro-hovorun",fullName:"Dmytro Hovorun"},{id:"212839",title:"Dr.",name:"Ol\\'Ha",middleName:"Oleksandrivna",surname:"Brovarets\\'",slug:"ol'ha-brovarets'",fullName:"Ol\\'Ha Brovarets\\'"}]}],mostDownloadedChaptersLast30Days:[{id:"63034",title:"Mitochondrial Dysfunction Associated with Doxorubicin",slug:"mitochondrial-dysfunction-associated-with-doxorubicin",totalDownloads:870,totalCrossrefCites:1,totalDimensionsCites:4,book:{slug:"mitochondrial-diseases",title:"Mitochondrial Diseases",fullTitle:"Mitochondrial Diseases"},signatures:"Celal Guven, Yusuf Sevgiler and Eylem Taskin",authors:[{id:"192567",title:"Prof.",name:"Eylem",middleName:null,surname:"Taskin",slug:"eylem-taskin",fullName:"Eylem Taskin"},{id:"195229",title:"Dr.",name:"Celal",middleName:null,surname:"Guven",slug:"celal-guven",fullName:"Celal Guven"},{id:"206996",title:"Prof.",name:"Yusuf",middleName:null,surname:"Sevgiler",slug:"yusuf-sevgiler",fullName:"Yusuf Sevgiler"}]},{id:"68488",title:"Mitochondrial Dysfunction as a Key Event during Aging: From Synaptic Failure to Memory Loss",slug:"mitochondrial-dysfunction-as-a-key-event-during-aging-from-synaptic-failure-to-memory-loss",totalDownloads:538,totalCrossrefCites:1,totalDimensionsCites:3,book:{slug:"mitochondria-and-brain-disorders",title:"Mitochondria and Brain Disorders",fullTitle:"Mitochondria and Brain Disorders"},signatures:"Claudia Jara, Angie K. Torres, Margrethe A. Olesen and Cheril Tapia-Rojas",authors:[{id:"183873",title:"Dr.",name:"Claudia",middleName:null,surname:"Jara",slug:"claudia-jara",fullName:"Claudia Jara"},{id:"299224",title:"Dr.",name:"Cheril",middleName:null,surname:"Tapia-Rojas",slug:"cheril-tapia-rojas",fullName:"Cheril Tapia-Rojas"},{id:"299227",title:"Ms.",name:"Angie K.",middleName:null,surname:"Torres",slug:"angie-k.-torres",fullName:"Angie K. Torres"},{id:"299230",title:"Ms.",name:"Margrethe",middleName:null,surname:"A. Olesen",slug:"margrethe-a.-olesen",fullName:"Margrethe A. Olesen"}]},{id:"60594",title:"Mitochondrial Trafficking by Prohibitin-Kinesin-Myosin- Cadherin Complex in the Eye",slug:"mitochondrial-trafficking-by-prohibitin-kinesin-myosin-cadherin-complex-in-the-eye",totalDownloads:554,totalCrossrefCites:1,totalDimensionsCites:2,book:{slug:"mitochondrial-diseases",title:"Mitochondrial Diseases",fullTitle:"Mitochondrial Diseases"},signatures:"Srinivas R. Sripathi, Weilue He, Johnpaul Offor, Diana R. Gutsaeva\nand Wan Jin Jahng",authors:[{id:"205781",title:"Associate Prof.",name:"Wan Jin",middleName:null,surname:"Jahng",slug:"wan-jin-jahng",fullName:"Wan Jin Jahng"},{id:"244413",title:"Dr.",name:"Srinivasa R.",middleName:null,surname:"Sripathi",slug:"srinivasa-r.-sripathi",fullName:"Srinivasa R. Sripathi"},{id:"244414",title:"Dr.",name:"Weilue",middleName:null,surname:"He",slug:"weilue-he",fullName:"Weilue He"},{id:"244415",title:"Dr.",name:"Johnpaul",middleName:null,surname:"Offor",slug:"johnpaul-offor",fullName:"Johnpaul Offor"},{id:"244416",title:"Dr.",name:"Diana R.",middleName:null,surname:"Gutsaeva",slug:"diana-r.-gutsaeva",fullName:"Diana R. Gutsaeva"}]},{id:"58886",title:"Modulation of Mitochondria During Viral Infections",slug:"modulation-of-mitochondria-during-viral-infections",totalDownloads:999,totalCrossrefCites:1,totalDimensionsCites:2,book:{slug:"mitochondrial-diseases",title:"Mitochondrial Diseases",fullTitle:"Mitochondrial Diseases"},signatures:"Latif Reshi, Hao-Ven Wang and Jiann-Ruey Hong",authors:[{id:"66487",title:"Prof.",name:"Jiann",middleName:"Ruey",surname:"Hong",slug:"jiann-hong",fullName:"Jiann Hong"},{id:"206951",title:"Dr.",name:"Lateef",middleName:null,surname:"Reshi",slug:"lateef-reshi",fullName:"Lateef Reshi"},{id:"213164",title:"Dr.",name:"Hao -Ven",middleName:null,surname:"Wang",slug:"hao-ven-wang",fullName:"Hao -Ven Wang"}]},{id:"62948",title:"Pyrethroid Insecticides as the Mitochondrial Dysfunction Inducers",slug:"pyrethroid-insecticides-as-the-mitochondrial-dysfunction-inducers",totalDownloads:831,totalCrossrefCites:2,totalDimensionsCites:2,book:{slug:"mitochondrial-diseases",title:"Mitochondrial Diseases",fullTitle:"Mitochondrial Diseases"},signatures:"Celal Guven, Yusuf Sevgiler and Eylem Taskin",authors:[{id:"192567",title:"Prof.",name:"Eylem",middleName:null,surname:"Taskin",slug:"eylem-taskin",fullName:"Eylem Taskin"}]},{id:"61735",title:"Phylogenetic Evolution and Phylogeography of Tibetan Sheep Based on mtDNA D-Loop Sequences",slug:"phylogenetic-evolution-and-phylogeography-of-tibetan-sheep-based-on-mtdna-d-loop-sequences",totalDownloads:565,totalCrossrefCites:0,totalDimensionsCites:0,book:{slug:"mitochondrial-dna-new-insights",title:"Mitochondrial DNA",fullTitle:"Mitochondrial DNA - New Insights"},signatures:"Jianbin Liu, Xuezhi Ding, Yufeng Zeng, Xian Guo, Xiaoping Sun and\nChao Yuan",authors:[{id:"236937",title:"Ph.D.",name:"Liu",middleName:null,surname:"Jianbin",slug:"liu-jianbin",fullName:"Liu Jianbin"}]},{id:"52131",title:"Genetic Determinants of Short Stature",slug:"genetic-determinants-of-short-stature",totalDownloads:1217,totalCrossrefCites:0,totalDimensionsCites:0,book:{slug:"restricted-growth-clinical-genetic-and-molecular-aspects",title:"Restricted Growth",fullTitle:"Restricted Growth - Clinical, Genetic and Molecular Aspects"},signatures:"Diana Miclea",authors:[{id:"181083",title:"Ph.D.",name:"Diana",middleName:null,surname:"Miclea",slug:"diana-miclea",fullName:"Diana Miclea"}]},{id:"67194",title:"PET Imaging of Mitochondrial Function in the Living Brain",slug:"pet-imaging-of-mitochondrial-function-in-the-living-brain",totalDownloads:419,totalCrossrefCites:0,totalDimensionsCites:0,book:{slug:"mitochondria-and-brain-disorders",title:"Mitochondria and Brain Disorders",fullTitle:"Mitochondria and Brain Disorders"},signatures:"Hideo Tsukada",authors:[{id:"179616",title:"Dr.",name:"Hideo",middleName:null,surname:"Tsukada",slug:"hideo-tsukada",fullName:"Hideo Tsukada"}]},{id:"58585",title:"Estrogen and Mitochondrial Function in Disease",slug:"estrogen-and-mitochondrial-function-in-disease",totalDownloads:657,totalCrossrefCites:0,totalDimensionsCites:1,book:{slug:"mitochondrial-diseases",title:"Mitochondrial Diseases",fullTitle:"Mitochondrial Diseases"},signatures:"Ved P. Mooga, C. Roger White and Samantha Giordano-Mooga",authors:[{id:"193624",title:"Prof.",name:"C. Roger",middleName:null,surname:"White",slug:"c.-roger-white",fullName:"C. Roger White"},{id:"213186",title:"Dr.",name:"Samantha",middleName:null,surname:"Giordano-Mooga",slug:"samantha-giordano-mooga",fullName:"Samantha Giordano-Mooga"},{id:"213187",title:"Dr.",name:"Ved",middleName:null,surname:"Mooga",slug:"ved-mooga",fullName:"Ved Mooga"}]},{id:"58888",title:"Mitochondria at the Base of Neuronal Innate Immunity in Alzheimer’s and Parkinson’s Diseases",slug:"mitochondria-at-the-base-of-neuronal-innate-immunity-in-alzheimer-s-and-parkinson-s-diseases",totalDownloads:544,totalCrossrefCites:1,totalDimensionsCites:1,book:{slug:"mitochondrial-diseases",title:"Mitochondrial Diseases",fullTitle:"Mitochondrial Diseases"},signatures:"A. Raquel Esteves, Diana F. Silva, Daniel Santos, Emanuel Candeias,\nFilipa Filipe and Sandra M. Cardoso",authors:[{id:"164998",title:"Ph.D.",name:"Ana",middleName:null,surname:"Esteves",slug:"ana-esteves",fullName:"Ana Esteves"},{id:"164999",title:"Prof.",name:"Sandra",middleName:null,surname:"Cardoso",slug:"sandra-cardoso",fullName:"Sandra Cardoso"},{id:"213149",title:"Dr.",name:"Diana F",middleName:null,surname:"Silva",slug:"diana-f-silva",fullName:"Diana F Silva"},{id:"213153",title:"Dr.",name:"Daniel",middleName:null,surname:"Santos",slug:"daniel-santos",fullName:"Daniel Santos"},{id:"213154",title:"Dr.",name:"Emanuel",middleName:null,surname:"Candeias",slug:"emanuel-candeias",fullName:"Emanuel Candeias"},{id:"213155",title:"Dr.",name:"Filipa",middleName:null,surname:"Filipe",slug:"filipa-filipe",fullName:"Filipa Filipe"}]}],onlineFirstChaptersFilter:{topicSlug:"mitochondrial-genetics",limit:3,offset:0},onlineFirstChaptersCollection:[],onlineFirstChaptersTotal:0},preDownload:{success:null,errors:{}},aboutIntechopen:{},privacyPolicy:{},peerReviewing:{},howOpenAccessPublishingWithIntechopenWorks:{},sponsorshipBooks:{sponsorshipBooks:[{type:"book",id:"10176",title:"Microgrids and Local Energy Systems",subtitle:null,isOpenForSubmission:!0,hash:"c32b4a5351a88f263074b0d0ca813a9c",slug:null,bookSignature:"Prof. Nick Jenkins",coverURL:"https://cdn.intechopen.com/books/images_new/10176.jpg",editedByType:null,editors:[{id:"55219",title:"Prof.",name:"Nick",middleName:null,surname:"Jenkins",slug:"nick-jenkins",fullName:"Nick Jenkins"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}}],offset:8,limit:8,total:1},route:{name:"chapter.detail",path:"/books/homeostasis-an-integrated-vision/circadian-body-temperature-rhythm-and-the-interaction-with-energy-state",hash:"",query:{},params:{book:"homeostasis-an-integrated-vision",chapter:"circadian-body-temperature-rhythm-and-the-interaction-with-energy-state"},fullPath:"/books/homeostasis-an-integrated-vision/circadian-body-temperature-rhythm-and-the-interaction-with-energy-state",meta:{},from:{name:null,path:"/",hash:"",query:{},params:{},fullPath:"/",meta:{}}}},function(){var e;(e=document.currentScript||document.scripts[document.scripts.length-1]).parentNode.removeChild(e)}()