Comparison of mechanical and chemical textile recycling techniques.
\r\n\t
",isbn:"978-1-83969-467-7",printIsbn:"978-1-83969-466-0",pdfIsbn:"978-1-83969-468-4",doi:null,price:0,priceEur:0,priceUsd:0,slug:null,numberOfPages:0,isOpenForSubmission:!0,hash:"a6f32d3f2227df637fffd969a0cb5ed7",bookSignature:"Dr. Peter A. Clark",publishedDate:null,coverURL:"https://cdn.intechopen.com/books/images_new/10878.jpg",keywords:"Preimplantation Genetic Diagnosis, Medical Futility, Definition of Death, Extraordinary/Ordinary Means, Need for New Antibiotics, Role of Big Pharma, Uterine Transplants, Face Transplants, Confidentiality, Ethical Decision Making, Harm Reduction Theory, Safe Injection Sites",numberOfDownloads:null,numberOfWosCitations:0,numberOfCrossrefCitations:null,numberOfDimensionsCitations:null,numberOfTotalCitations:null,isAvailableForWebshopOrdering:!0,dateEndFirstStepPublish:"February 8th 2021",dateEndSecondStepPublish:"March 8th 2021",dateEndThirdStepPublish:"May 7th 2021",dateEndFourthStepPublish:"July 26th 2021",dateEndFifthStepPublish:"September 24th 2021",remainingDaysToSecondStep:"a month",secondStepPassed:!0,currentStepOfPublishingProcess:3,editedByType:null,kuFlag:!1,biosketch:"A faculty member for medical residents, medical students, and undergraduate students and a researcher in issues that challenge the national and global arenas. He is also the Bioethicist for over 20 health care facilities in the United States and Palestine.",coeditorOneBiosketch:null,coeditorTwoBiosketch:null,coeditorThreeBiosketch:null,coeditorFourBiosketch:null,coeditorFiveBiosketch:null,editors:[{id:"58889",title:"Dr.",name:"Peter A.",middleName:null,surname:"Clark",slug:"peter-a.-clark",fullName:"Peter A. Clark",profilePictureURL:"https://mts.intechopen.com/storage/users/58889/images/system/58889.jpg",biography:"Peter A. Clark, S.J., Ph.D. is the John McShain Chair in Ethics and Director of the Institute of Clinical Bioethics at Saint Joseph’s University in Philadelphia, Pennsylvania. He is also the Bioethicist for over 20 health care facilities in the United States and Palestine. He is the author of To Treat or Not To Treat and Death With Dignity and has published numerous peer-reviewed articles in national and international medical and ethical journals.",institutionString:"Saint Joseph's University",position:null,outsideEditionCount:0,totalCites:0,totalAuthoredChapters:"3",totalChapterViews:"0",totalEditedBooks:"2",institution:{name:"Saint Joseph's University",institutionURL:null,country:{name:"United States of America"}}}],coeditorOne:null,coeditorTwo:null,coeditorThree:null,coeditorFour:null,coeditorFive:null,topics:[{id:"16",title:"Medicine",slug:"medicine"}],chapters:null,productType:{id:"1",title:"Edited Volume",chapterContentType:"chapter",authoredCaption:"Edited by"},personalPublishingAssistant:{id:"346794",firstName:"Mia",lastName:"Miskulin",middleName:null,title:"Ms.",imageUrl:"https://mts.intechopen.com/storage/users/346794/images/15795_n.png",email:"mia@intechopen.com",biography:"As an Author Service Manager my responsibilities include monitoring and facilitating all publishing activities for authors and editors. From chapter submission and review, to approval and revision, copyediting and design, until final publication, I work closely with authors and editors to ensure a simple and easy publishing process. I maintain constant and effective communication with authors, editors and reviewers, which allows for a level of personal support that enables contributors to fully commit and concentrate on the chapters they are writing, editing, or reviewing. I assist authors in the preparation of their full chapter submissions and track important deadlines and ensure they are met. I help to coordinate internal processes such as linguistic review, and monitor the technical aspects of the process. As an ASM I am also involved in the acquisition of editors. Whether that be identifying an exceptional author and proposing an editorship collaboration, or contacting researchers who would like the opportunity to work with IntechOpen, I establish and help manage author and editor acquisition and contact."}},relatedBooks:[{type:"book",id:"1743",title:"Contemporary Issues in Bioethics",subtitle:null,isOpenForSubmission:!1,hash:"978cee44b901ff59a20a088f7dcfdbc5",slug:"contemporary-issues-in-bioethics",bookSignature:"Peter A. Clark",coverURL:"https://cdn.intechopen.com/books/images_new/1743.jpg",editedByType:"Edited by",editors:[{id:"58889",title:"Dr.",name:"Peter A.",surname:"Clark",slug:"peter-a.-clark",fullName:"Peter A. Clark"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"5418",title:"Bioethics",subtitle:"Medical, Ethical and Legal Perspectives",isOpenForSubmission:!1,hash:"767abdeb559d66387ad2a75b5d26e078",slug:"bioethics-medical-ethical-and-legal-perspectives",bookSignature:"Peter A. Clark",coverURL:"https://cdn.intechopen.com/books/images_new/5418.jpg",editedByType:"Edited by",editors:[{id:"58889",title:"Dr.",name:"Peter A.",surname:"Clark",slug:"peter-a.-clark",fullName:"Peter A. Clark"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"6550",title:"Cohort Studies in Health Sciences",subtitle:null,isOpenForSubmission:!1,hash:"01df5aba4fff1a84b37a2fdafa809660",slug:"cohort-studies-in-health-sciences",bookSignature:"R. Mauricio Barría",coverURL:"https://cdn.intechopen.com/books/images_new/6550.jpg",editedByType:"Edited by",editors:[{id:"88861",title:"Dr.",name:"R. Mauricio",surname:"Barría",slug:"r.-mauricio-barria",fullName:"R. Mauricio Barría"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"1591",title:"Infrared Spectroscopy",subtitle:"Materials Science, Engineering and Technology",isOpenForSubmission:!1,hash:"99b4b7b71a8caeb693ed762b40b017f4",slug:"infrared-spectroscopy-materials-science-engineering-and-technology",bookSignature:"Theophile Theophanides",coverURL:"https://cdn.intechopen.com/books/images_new/1591.jpg",editedByType:"Edited by",editors:[{id:"37194",title:"Dr.",name:"Theophanides",surname:"Theophile",slug:"theophanides-theophile",fullName:"Theophanides Theophile"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"3161",title:"Frontiers in Guided Wave Optics and Optoelectronics",subtitle:null,isOpenForSubmission:!1,hash:"deb44e9c99f82bbce1083abea743146c",slug:"frontiers-in-guided-wave-optics-and-optoelectronics",bookSignature:"Bishnu Pal",coverURL:"https://cdn.intechopen.com/books/images_new/3161.jpg",editedByType:"Edited by",editors:[{id:"4782",title:"Prof.",name:"Bishnu",surname:"Pal",slug:"bishnu-pal",fullName:"Bishnu Pal"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"3092",title:"Anopheles mosquitoes",subtitle:"New insights into malaria vectors",isOpenForSubmission:!1,hash:"c9e622485316d5e296288bf24d2b0d64",slug:"anopheles-mosquitoes-new-insights-into-malaria-vectors",bookSignature:"Sylvie Manguin",coverURL:"https://cdn.intechopen.com/books/images_new/3092.jpg",editedByType:"Edited by",editors:[{id:"50017",title:"Prof.",name:"Sylvie",surname:"Manguin",slug:"sylvie-manguin",fullName:"Sylvie Manguin"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"371",title:"Abiotic Stress in Plants",subtitle:"Mechanisms and Adaptations",isOpenForSubmission:!1,hash:"588466f487e307619849d72389178a74",slug:"abiotic-stress-in-plants-mechanisms-and-adaptations",bookSignature:"Arun Shanker and B. Venkateswarlu",coverURL:"https://cdn.intechopen.com/books/images_new/371.jpg",editedByType:"Edited by",editors:[{id:"58592",title:"Dr.",name:"Arun",surname:"Shanker",slug:"arun-shanker",fullName:"Arun Shanker"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"72",title:"Ionic Liquids",subtitle:"Theory, Properties, New Approaches",isOpenForSubmission:!1,hash:"d94ffa3cfa10505e3b1d676d46fcd3f5",slug:"ionic-liquids-theory-properties-new-approaches",bookSignature:"Alexander Kokorin",coverURL:"https://cdn.intechopen.com/books/images_new/72.jpg",editedByType:"Edited by",editors:[{id:"19816",title:"Prof.",name:"Alexander",surname:"Kokorin",slug:"alexander-kokorin",fullName:"Alexander Kokorin"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"314",title:"Regenerative Medicine and Tissue Engineering",subtitle:"Cells and Biomaterials",isOpenForSubmission:!1,hash:"bb67e80e480c86bb8315458012d65686",slug:"regenerative-medicine-and-tissue-engineering-cells-and-biomaterials",bookSignature:"Daniel Eberli",coverURL:"https://cdn.intechopen.com/books/images_new/314.jpg",editedByType:"Edited by",editors:[{id:"6495",title:"Dr.",name:"Daniel",surname:"Eberli",slug:"daniel-eberli",fullName:"Daniel Eberli"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"57",title:"Physics and Applications of Graphene",subtitle:"Experiments",isOpenForSubmission:!1,hash:"0e6622a71cf4f02f45bfdd5691e1189a",slug:"physics-and-applications-of-graphene-experiments",bookSignature:"Sergey Mikhailov",coverURL:"https://cdn.intechopen.com/books/images_new/57.jpg",editedByType:"Edited by",editors:[{id:"16042",title:"Dr.",name:"Sergey",surname:"Mikhailov",slug:"sergey-mikhailov",fullName:"Sergey Mikhailov"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}}]},chapter:{item:{type:"chapter",id:"71083",title:"Primary Sclerosing Cholangitis (PSC) in Children",doi:"10.5772/intechopen.90714",slug:"primary-sclerosing-cholangitis-psc-in-children",body:'Primary sclerosing cholangitis (PSC) is a chronic liver disease of unknown aetiology affecting extrahepatic and/or intrahepatic bile ducts causing its inflammation and fibrosis with most frequent consequences including biliary cirrhosis and liver failure. The incidence of PSC in children and adolescents is 0.2 per 100,000 children per year when in adults the reported incidence is higher and equals 0.5 to 1 in 100,000 individuals per year. Several studies indicate the incidence of primary sclerosing cholangitis is increasing. A similar increase has been seen in most autoimmune diseases. PSC is more common among men and boys. The diagnosis is usually established in the second decade of life in the paediatric population with the mean age of diagnosis of 13.8 years [1, 2, 3, 4, 5, 6, 7, 8, 9].
Many studies point out a strong correlation between IBD and PSC, especially ulcerative colitis. The prevalence of IBD among children with PSC diagnosis varies from 60 to 99%, however the incidence of PSC is about 12% in patients with ulcerative colitis and fluctuates about 2 to 5% in Crohn’s disease diagnosed patients. In children, the diagnosis of IBD generally precedes the diagnosis of PSC [10, 11, 12, 13, 14, 15].
The pathogenesis of PSC is unknown, but a number of mechanistic theories have been proposed. Despite the lack of scientifically proven aetiological factors, many components can be responsible for the PSC development.
Genetic background including an impact of HLA-A1, B8, DR3 haplotypes are one of the suspects as the diagnosis is made at a young age and family occurrence has been reported. Genome-wide comparisons of the frequency of genetic variants have provided a means of dissecting genetic risk in the many human diseases primary sclerosing cholangitis included. In the pathogenesis of PSC can play the role the presence of more non-HLA genes related to immunity and/or bile homeostasis. However most PSC genes appear to relate to adaptive immune reactions. There are limited genetic links between IBD and PSC. The HLA class 1 (expressed on all cells) and HLA class II (expressed on antigen- presenting cells) present potentially antigenic peptides derived from intra- and extracellular sources, to the T cell receptor (TCR) on CD* and CD4 T cells. But the antigenic peptides are unknown. Data suggest the presence of PSC specific TCR in the livers of patients. The predominant cell type in the portal inflammatory infiltrate in liver patients with primary sclerosing cholangitis is the T cell. It is suggested that there is cross-reaction between cholangiocytes and T-cells. Some of scientists believe that genes as PRDX5, TGR5, PSMG1, NFKB1 may play a role in innate immune reactions [11, 16, 17, 18].
The concentric fibrosis around the bile ducts in PSC is found in a variety of conditions and likely represents a final pathway for bile ducts injury. Defects of mechanisms protecting against bile acid toxicity can be a factor playing an important role in PSC development. The biliary epithelium shows an activated phenotype in PSC, including an expansion of the peribiliary gland system [19, 20, 21].
What is more, certain autoimmune reactions in genetically susceptible individuals seem to play an important role as well. The presence of non-specific autoantibodies such as ANA, ANCA (in >80% of patients) and anti-SMA (in >60% of patients) together with autoimmune diseases such as autoimmune hepatitis (overlap syndrome PSC/AIH in 25–35%), rheumatoid arthritis, autoimmune thyroiditis or type 1 diabetes mellitus suggests that PSC can be described as an autoimmune disease. However its prevalence among men (2:1) and the lack of response to immunosuppressive therapy contributed to the concept of PSC being rather an immune-mediated disease. PSC with high immunoglobulin 4 (IgG4) levels and autoimmune hepatitis overlap syndrome have been described. But the lack of the efficacy of immunosuppressive treatment despite isolated autoimmune aetiology [11, 22, 23, 24, 25].
The predominant coexistence of PSC and IBD led to a theory that dysregulation of gut microbiota in IBD patients causes liver T-cell activation provoking an inflammatory response in bile ducts. There is increasing appreciation of the co-metabolic functions of the gut microbiota in the bile homeostasis. The composition of the gut microbiota in PSC has been described using sequencing technologies. However, data from other diseases suggests that reduced bacterial diversity occurs prior to and independent from clinical manifestations [26, 27, 28, 29].
Clinical symptoms are present in approximately half of cases and they are unspecific in many of them. Most frequently patients complain of abdominal pain, fatigue and/or abdominal pain. Malaise, jaundice, splenomegaly or pruritus are reported less often. Elevated liver enzymes and biochemical markers of cholestasis are sometimes the only signs of PSC. The diagnosis of PSC may precede that of IBD, which may even present after liver transplantation for PSC. PSC may present in an IBD patients even after colectomy. Multiple gallbladder abnormalities in the course of primary sclerosing cholangitis including: dilatation (15%), gallstones (25%), cholecystitis, hydrops, polyps (4–6%), carcinoma (2.5–3.5%) are observed more often in patients [2, 8, 17, 22, 29, 30].
The diagnosis is based on laboratory and imaging results as well as on elimination of other than PSC cholestatic diseases. When it comes to laboratory results among children, gamma-glutamyltransferase (GGT) is more specific cholestatic marker than alkaline phosphatase (ALP) as ALP levels tend to fluctuate during bone growth. Even though ultrasound (USG) is a cheap and simple way to visualise liver pathology, bile ducts abnormalities characteristic of PSC might not be visible. Gold standard for PSC diagnosis is magnetic resonance cholangiopancreatography (MRCP) with acceptable sensitivity and specificity as a non-invasive procedure comparing to endoscopic retrograde cholangiopancreatography (ERCP) which is also used in some cases. As typical cholangiographic changes define the diagnosis of PSC, prognostic scoring system. To diagnose small duct PSC which is a type of PSC affecting intrahepatic ducts only, as well as to confirm the presence of PSC/AIH overlap syndrome it is necessary to perform liver histology. In recent years, there has been interest in the development of noninvasive tests of liver fibrosis for stratification and prognosis in PSC. Serum tests of liver fibrosis reflect fibrogenesis (APRI, Fib4 score). Liver stiffness measurement by transient elastography has been validated for the assessment of liver fibrosis in the liver diseases. Elastography in patients with PSC well correlate with the degree of fibrosis, performing best at the extremes of histological stage [5, 11, 31, 32, 33, 34].
Choledocholithiasis.
Congenital abnormalities of bile duct.
Cholangiocarcinoma without PSC.
Traumatic/ischemic changes in bile ducts.
HIV infection.
Infestation (ascaris, lambliosis)
Sarcoidosis.
Pyogenic cholangitis
Clinical review
Serum liver tests
Tumour marker: Ca 19-9, AFP
Ultrasonography examination
MRI/MRC if cirrhosis
PSC is a progressive disease where bile ducts fibrosis lead to cirrhosis and liver failure. PSC has a highly variable natural history. Asymptomatic patients have been shown to have a better prognosis than patients with symptoms at diagnosis. Comparing to adults, PSC in children seems milder, yet 15–45% of paediatric patients will require liver transplantation within 6–12 years after the diagnosis. The increased risk of biliary cancer and colorectal cancer in PSC is firmly established and of major clinical importance. The risk of cholangiocarcinoma (CCA) is about 160 times higher than in the general population. In spite of that, only 1% of patients experience this serious complication. In a multi-centre study of 7000 PSC patients hepatobiliary malignancy was diagnosed in 10.9%. Up to 50% of cholangiocarcinoma are detected within a year of PSC diagnosis. Unfortunately, PSC diagnosed children may also develop other types of cancers such as gallbladder, colon or hepatocellular cancer. In the majority of cases, the early stages of cholangiocarcinoma are asymptomatic. Sometimes are observed abdominal pain, weight loss, increasing jaundice. Diagnosis of cholangiocarcinoma is based on tumour marker Ca19-9, imaging modalities, biliary brush cytology. The indication for liver transplantation in patients with dysplasia and no signs of cholangiocarcinoma remain controversial. Presence of dysplasia of any grade has been reported in 83% of explant livers with PSC-cholangiocarcinoma and 36% without cholangiocarcinoma. MRI and CT may visualise early features of cholangiocarcinoma in PSC but difficulties in distinguishing inflammatory, bening and malignant lesions lead to suboptimal diagnostic accuracy. Combined MRI/cholangioMRI has the highest sensitivity and specificity and is preferred for detection of small focus cholangiocarcinoma. Liver transplantation or surgery with complete resection is the only treatments with curative intent for cholangiocarcinoma. Liver transplantation with neoadjuvant therapy (external beam radiotherapy, endoluminal brachytherapy, chemotherapy) can be considered in patients with unresectable, perihilar early stage. Systemic chemotherapy remains the palliative treatment for patients not eligible for surgery. Other palliative treatment strategies include endoscopic stenting and photodynamic therapy.
PSC-IBD whether considered UC or Crohn’s disease is almost universally colonic (usually a pancolitis) with a right-sided predominance, backwash ileitis and rectal sparing. The risk of colorectal cancer is fivefold higher than in IBD without PSC and may occur at any time from diagnosis. Colonoscopy should be performed in patients with PSC regularly from the moment of diagnosis. Chromoendoscopy is being increasingly recommended to facilitate detection of flat lesions with dysplasia. Four quadrant biopsies from all colonic segments and the terminal ileum should be performed. Hepatocellular and pancreatic cancer also occur in patients with PSC, but frequencies are lower than in cirrhosis liver from other causes. Currently there are no established prognostic tools that reliably estimate prognosis of the patients [2, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46].
Effective ways of PSC treatment are still lacking. Immunosuppressive medications did not show any benefits, while oral vancomycin therapy might be an option although more data is required. Symptomatic treatment of PSC also consists of supplementing the deficiencies of fat-soluble vitamins, preventing the development of osteoporosis and combating chronic itching: by using additional cholestyramine at a dose of 6–8 g/24 h and/or rifampicin. For patients refractory to the above-mentioned treatment, oral naloxone therapy (50 mg/24 h) may be effective.
Ursodeoxycholic acid (UDCA) is commonly used and has been proved to reduce GTP and AP levels which are both good prognostic factors improving patients’ survival. However, UDCA treatment did not result in improved outcomes compared to no intervention. New therapeutic applications have been derived from this research in the form of norUDCA, to enhance general resistance to bile acid induced biliary injury. NorUDCA is slightly amidated in the liver, it is secreted into the bile in both unbound and glucuronic acid form. The biliary-hepatic flow of unbound norUDCA induces excessive secretion of bile rich in bicarbonate. Studies in mouse models have shown that the drug is less toxic, more effectively prevents peripheral fibrosis, proliferation of hepatocytes and cholangiocytes, reduces the content of hydroxyproline and infiltrating immune cells. In addition, it improves cholestasis parameters [6, 31, 47, 48].
Antibiotics, particularly vancomycin, may have a positive effect on PSC either via direct effects on the microbiome or via host-mediated mechanisms. In addition vancomycin has possible immunomodulatory and anti-inflammatory mechanisms, But there is not currently sufficient evidence to support treatment recommendations. Further research is needed to establish if vancomycin is a PSC treatment [48, 49, 50].
Bile duct strictures are possible complications in the course of the disease that can be treated with prothesis during ERCP. The generally accepted arbitrary definition is stenosis of <1.5 mm in the common bile duct or <1 mmin the hepatic duct within 2 cm of the hilum. The incidence of complications associated with ERCP in patients with PSC is 4–18% [44, 46, 48].
Liver transplantation is a life-saving procedure with generally good outcomes, however, up to 16% of paediatric patients are affected by recurrent primary sclerosing cholangitis (rPSC) after transplantation. The indications for liver transplantation in PSC are similar to other liver diseases and transplanted with a qualifying MELD/PELD score in a patient with cirrhosis [11, 29, 51].
Cholangitis occurs frequently but symptoms may be atypical. Prophylactic antibiotics should be ordered prior to and following biliary interventions. Positive bacterial or fungal cultures of bile can be associated with worse prognosis. Sometimes patients with recurrent cholangitis require long-term, rotating antibiotics.
Denim is one of the most prevalent fabrics worldwide, and therefore the environmental degradation associated with denim jean production is highly dangerous as the volume of jeans produced and used by consumers today is humongous. Also, as cotton is the fundamental building block for denim production, denim represents a mainspring for cotton consumption. Considering the fact that the textile and apparel industry in general is pressured to increase the recycling potential for cotton to cover contemporary and prospective market demands, the use of recycled materials (fiber, yarn, and fabric) in the production of new denim products has become an area of great interest. The decision to use recycled materials in products occurs during design and product development, and it continues throughout the manufacturing processes. The most important requirements for recyclable denim designs are monomaterials, elimination of toxic substances, modular manufacturing for ease of removal or exchange, easily compatible materials, and labels or codes that can be recycled.
The environmental impact of denim products, during manufacture, use, or disposal, can be evaluated by looking at the different phases of the product’s life cycle and taking action at the phases where it will be most effective to reduce the impact. However, the lifecycle of a product is long and complicated, covering many areas with many people involved in each phase [1]. There is a variety of voluntary and mandatory tools which help achieve this objective. These include economic instruments, bans on certain substances, environmental labeling, voluntary agreements, product design guidelines, etc. Life cycle assessment (LCA) methodology is one of the aforementioned tools, and within the frame of this chapter, it is adopted to quantify and compare the environmental impact of recycled denim fabrics. But before that, the global denim market, environmental impacts of denim manufacturing, sources of denim waste, and recycling processes currently used in textiles and apparel today are also discussed in this chapter.
Denim is a type of sturdy cotton twill woven fabric with a characteristically diagonal ribbing known for its use in the form of jeans and other clothing all across the world. Originally used for workers’ clothes, denim has entered the world of high fashion for a long time, and this has urged the industry to produce innovative denim with different fibers including lyocell, bamboo, viscose, rayon, polyethylene terephthalate, and elastane. Also, several types of washes have been introduced, such as stonewash and stoneless wash, acid wash, moon wash, monkey wash, and enzymes which have been used because of their environmental-friendly nature in comparison with hypochlorite and pumice stones [2].
Rising casualization of clothing all over the world, together with the availability of high-quality, cost-effective denim products, has contributed to the growth of the market over the years. E-commerce is the other factor which has a positive influence on the denim market’s growth. In addition, brands have started to reinforce their commitments to responsible production efforts and launched more sustainable collections to the market, which has dramatically increased new retail products described as “sustainable” since 2017. Orta Anadolu, for example, introduced its organic cotton production of denim fabrics in 2006 and a capsule collection without virgin cotton in 2018. Similarly, Diesel launched a sustainable capsule collection with Coca-Cola [3].
The global denim market is segmented into North America (NA), Europe (EU), Asia-Pacific (APAC), the Middle East and Africa (MEA), and South America (SA). The major companies operating in the global denim market are Levi Strauss & Co., VF Corporation (with renowned brand names of Lee and Wrangler), Diesel SpA, Gap Inc., Hennes & Mauritz AB, Inditex, and PVH Corp., and Tommy Hilfiger Licensing LLC. The jean market is a highly fragmented market, with a strong presence of local and global players operating all over the world. Thus, to sustain their positions in the market, the active players are bringing innovation in their product offering, in order to cater to changing consumers’ fashion lifestyle [4].
Also, they have been focusing on social media platforms as well as online distribution channels for their marketing and branding activities so as to attract more customers. Denim manufacturers, however, appear to focus on acquisitions, expansions, and collaborations with mostly startup companies to gain a significant market share [2, 3].
In 2019, the global denim market was valued at approximately 90 billion US dollars and is expected to reach a value of around 107 billion US dollars by 2023 [5]. The global denim jean market size, on the other hand, was valued at USD 64.62 billion in 2018, and it is estimated to expand further at a compound annual growth rate (CAGR) of 6.81% from 2019 to 2025 [6]. The Asia-Pacific region led the market in 2019, which was followed by North America, Europe, South America, and the Middle East as a response to the introduction of global brands and an emphasis on premium denim. Japan, China and India are expected to lead the region through 2024 as a result of the countries’ rise in promotional activities within the denim market [2, 4].
According to the World Denim Fabric Foreign Trade Report published by the Istanbul Textile and Raw Materials Exporters Association (ITHIB), global denim fabric exports increased by 5.1% in 2018 and reached approximately 5 billion US dollars. The top five countries performing most denim exports are China (42% share of total exports), Pakistan (11.7% share of total exports), India (8.2% share of total exports), Hong Kong (7.4% share of total exports), and Turkey (6.8% share of total exports). It is stated that there is a strong growth in the denim production in Bangladesh and Vietnam, although these countries are mostly importing denim fabric [7].
Europe, the United States, and Japan are the biggest consumers of denim, whereas China and India, being relatively younger economies, are witnessing a steady rise in demand for denim. In 2018, men’s wear segment accounted for the largest market share of more than 55%. It is forecasted that the segment will retain its leading position over the upcoming years mainly because of the improved standards of living and demand for trendy fashion apparels. Women’s wear segment is, on the other hand, expected to register the fastest compound annual growth rate (CAGR) of 7.25% from 2019 to 2025. This growth is attributed to the high product demand, especially in emerging countries. In addition to that, constant product innovation in this segment is also expected to drive the growth further [2, 6].
It is estimated that producing a pair of jeans consumes around 2900 liters of water and large amounts of chemicals and energy. If this is multiplied by the number of jeans produced globally, one can get an idea of the enormous contribution of wastewater and harmful gases by denim industry to the environment [8, 9].
Indigo dye is one of the organic colorants used to color textiles, paper, leather, and plastic and for many applications such as cosmetic and photochemical production. Unfortunately, textile effluents containing indigo dye and other dye types make water toxic and harmful for human and animal consumption, which causes an imbalance in different aquatic ecosystem food chains [10]. The use of synthetic indigo and sulfur dyes also presents serious effluent problem. Bearing in mind that majority of warp dyeing for denim uses indigo and sulfur dyes, the environmental impacts of denim processing can be classified into three main categories:
Water pollution: dyeing and finishing effluent discharge in water bodies
Air pollution: cotton dust, abrasives, and chemicals found in air
Solid waste (sludge)
As is well-known, denim washing is imparted to fabric to improve the softness, comfort, and most importantly achieving a variety of looks such as a faded or worn-out appearance. Pumice stone is used to stonewash denim garments. The stone gets abraded during the process and becomes powdered; part of it remains in the liquor, and part of it sticks to the garment. A sizeable amount of water is required for repeated washing cycles to remove the deposited pumice from the denim. The effluent and pumice dust lead to environmental pollution. Sandblasting is a mechanical finish which uses sand containing silica. The minute silica dust spreads in air, it poses serious respiratory disease such as silicosis [10].
Micro sanding is another finish which pollutes the environment. In the case of chemical washing involving the use of sodium hypochlorite or potassium permanganate, the effluent contains chlorinated organic substances which cause severe impacts to the environment, and the bleaching chemicals are harmful to human health. Acid wash uses both pumice stone and chemicals, namely, sodium hypochlorite or potassium permanganate, and it does not require water but leads to pollution through the effluent having pumice dust and residual manganese which are hazardous [11, 12].
Despite all these setbacks of the denim processes summarized above, various suitable treatment processes have been developed and employed for the dyeing effluent on the basis of the nature and complexity of the dyes and chemicals present in denim. Fortunately, many denim companies and their suppliers have been striving hard to embrace greener methods such as laser processing and nano bubble ozone washing machines and are also making effort to develop new techniques of producing jeans, as a part of their business strategies to preserve the environment. They have also understood the importance and the need to build a sustainable business [12, 13, 14].
It is considered that sustainable material management is a precursor of circular economy, which promotes recycling, reuse, and remanufacturing. It was estimated that around 65 billion tons of raw materials were processed by the industrial system at the end of the first decade of the twenty-first century, and this quantity is expected to reach about 82 billion tons by the end of 2020. Therefore, in the last two decades, circular economy (CE) is gaining growing global consideration as the new development model which is capable of influencing the existing production and consumption model [15]. Within that concept, waste is classified on the basis of generation as pre-consumer textile waste, post-consumer textile waste, and industrial textile waste. Pre-consumer waste is the remaining production processes in the industry which includes raw material to finished products ready for market. This may include offcuts, shearing, selvedges, b-grade garments, export surplus, etc. which are homogenous and clean in nature to be used for other purposes. The waste under this class has great potential for reuse and recycling. The post-consumer textile waste can include any product that has completed its life cycle and is no longer useful to the consumer in both function and esthetics. Industrial textile waste is, however, the result of the manufacturing processes and is termed as dirty waste [13, 16].
The textile and apparel industry, which generates a substantial environmental footprint from cultivation, fabric and garment manufacturing, to the landfill disposal of post-consumer items, faces tremendous environmental and resource challenges [17]. In order to tackle such challenges to some extent, several fashion companies offer their customers to take care of their worn-out clothes including denim jeans. However, studies have concluded that less than 1% of these collected clothes are being recycled while nearly 80% of them are mainly sold on the second-hand market in poor countries around the world or used as blankets or isolation material. The remaining 20% of the clothes are either sold on the second-hand market within the EU or is sent to landfill or incineration [18].
Being the largest fraction of apparel, waste jeans (or waste denim fabric from tailoring operations) are composed mainly of “cotton” and “cotton/polyester” fabric with different weight ratios [19]. Although this may lead to the understanding that denim made with 100% cotton, in particular, will readily deteriorate in the environment, in practice a pair of such jeans can stay alive in the environment for a very long time, and therefore the negative environmental impact is very high. The literature reveals that the amount of waste jeans generated annually is estimated as 2.16 million tons and only 35–50% of this amount is collected in Western Europe in order to reuse or recycle it after sorting [13, 20, 21].
As one of the sources of solid waste, the cutting waste during denim jean production—which has relatively a homogeneous nature—is between 10% and 15%, and most of the waste is recycled by unraveling and reusing the fibers in the production of insert yarns (weft direction), which is a good example of “recycling in design (RiD).” Most jeans’ producers recycle denim waste in their own manufacturing plants or have contracts with textile waste recyclers to reuse the waste material in the spinning of new yarns. There is also substantial trade of denim waste all over the world [13, 21, 22].
Another source of denim waste is the post-consumer denim jeans. Color, quality of fabric, and garment accessories like rivets, buttons, zippers, and labels are the main components of the heterogeneous nature of this very denim waste. The main problem is the collection of post-consumer jeans. Although in many countries collection systems are in place, many consumers discard their jeans as solid municipal waste. Jeans that are collected are mostly sold to textile sorting companies which manually/automatically sort the rewearable jeans for sale to second-hand shops and in Third World countries. Nonwearable jeans are, however, shredded and used for the development of various types of products such as thermal and acoustic insulators and/or textile-based composites for certain structural and other specialized applications [13, 21, 23, 24, 25, 26, 27, 28].
Finally, as a different approach to decreasing the denim waste regarding post-consumer denim jeans, the leasing of jeans was introduced several years ago by MUD Jeans. In this concept, the producer or distributor of the jeans stays the owner. The user of the jeans only “buys” the right to the use the jeans for a period of 1 year. If the jeans need to be repaired, it is at the cost of the lease company [22]. The same company, together with several of others, has also focused on “design for recycling (D4R)” for facilitating the recycling of denim jeans, such that they do not use leather labels but printed ones at the waistband, employ rivets and buttons that are made from 100% stainless steel and no finishing (electroplating), and have utilized buttons made out of recycled jeans on their denim shirts and sweaters, etc. [13, 29, 30].
An average person buys 60% more clothing items every year and keeps them for half as long as they used to keep about 15 years ago. It is assumed that overall consumption of textiles will have reached to 102 million tons by 2030 and that the textile industry’s waste will have increased by about 60% between 2015 and 2030. That means the total level of fashion waste will reach to 148 million tons in 2030. As is known, the majority of clothing waste ends up in landfills or is incinerated, and once in landfills, it takes hundreds of years for natural fibers to decompose and may release methane and CO2 into the atmosphere. Synthetic materials, on the other hand, are not designed to decompose and may release toxic substances into groundwater and the surrounding soil. If the average life of clothing could be extended by only 3 months, it would reduce waste generation as well as their carbon and water footprints, by 5–10% [19, 31, 32, 33, 34].
The textile industry’s linear model of “make, use, and dispose of” represents an apparent pressure on scarce natural resources. Circular economy, on the other hand, aims to move away from the unsustainable linear model by decoupling economic activity from the consumption of finite resources and designing waste out of the system. When the recycling component is included, it helps to absorb the residuals of industrial and consumer use [35, 36]. Accordingly, circular economy’s principles may be given as follows:
Put an end to waste generation and pollution during the design stage.
Keep products and materials in use.
Restore and regenerate natural systems.
Within that concept, a five-step waste management hierarchy was introduced in order to direct toward a more sustainable behavior (Figure 1) [37].
Waste management hierarchy [
Waste generation prevention has the highest significance followed by reuse. Reusing is the concept of using undamaged parts of used products for manufacturing activities. When textiles turn into waste and are disposed by their consumers, recycling offers the opportunity to save raw materials and energy as well as to reduce pollution. Product/material recovery includes the activities like repairing, refurbishing, and disassembling, performed to regain the product value at the end of its life cycle. To dispose generated waste is the last step of the hierarchy [17, 38, 39, 40, 41].
Textile recycling routes can be categorized in different ways as follows:
Mechanical, chemical, thermal, and biological based on the nature of the process.
Downcycling where the product of the recycled material is of lower quality. As the length of fibers is shortened and the constituent of molecules is reduced by wear, laundry, and recycling process, the textile recycling is often in the way of downcycling.
Upcycling where the product of the recycled material is of higher quality.
Open-loop recycling covers a concept in which a product’s raw material is separated to be utilized as a part of a randomly used item. Generally, the second item is not recycled and discarded toward the end of its life. Downcycling can be equalized with open-loop recycling system in which the reclaimed material is used to make a less valuable product than the disposed one. Therefore, it results in little economic value and low environmental benefits.
Closed-loop recycling refers to recycling techniques where the material recycled is a similar material which is being delivered. For example, the waste material reenters a piece of clothing production chain. Closed-loop recycling generates a greater impact on sustainability, and a product remains in a circular stream and retains its material quality. There are a number of ways to define closed-loop recycling approaches in the apparel industry. Three of them are [41]:
Recycling pre- or post-consumer textile waste.
Cradle-to-cradle (C2C) methodology in which waste is reclaimed and used again in the production of products of the same or higher value. Biological waste can be composted, while technical waste can be reused within industry to create the same products again.
Closed-loop reuse of existing garments: Although reuse of garments is not recycling in the sense of breaking down a product into its raw materials, the product may enter a new life cycle within the same production chain.
Textile recycling technologies are also categorized into four classes as primary, secondary, tertiary and, quaternary approaches [13, 40, 42, 43]. Primary recycling involves recycling of material in its original form for recovery of equal value. Secondary recycling incorporates processing a post-consumer product into raw materials usually by mechanical means into a product with different physical and/or chemical properties (mechanical recycling). Tertiary includes processes like pyrolysis and hydrolysis, in which waste is converted to basic chemical constituents, monomers, or fuels (chemical recycling). Quaternary (recovery) covers waste-to-energy conversion processes such as incineration of solid waste or utilization of heat generated.
Recycling is the process of breaking down a product or material to make a material of a higher or equal value (upcycling) or of a lower value (downcycling), in which textiles are commonly mechanically or chemically broken down to their fiber constituents [41]. Biodegradation is another method used to recycle waste and to break down organic materials into compounds.
The difference between mechanical and chemical recycling is that wet processing is eliminated or reduced in the mechanical recycling system [44]. Most of the current recycling systems for post-consumer waste textiles mainly include reuse and mechanical processes.
The method of mechanical recycling, which is categorized as a secondary recycling approach, is composed of two main processes: sorting of the waste material and the mechanical decomposition of the fabric. The material to be recycled is sorted according to fiber type, color, quality, etc. Sorting for post-industrial waste may be performed with a risk of uncertainty as the fiber content and properties of the fibers may not be always known. The in-house reprocessing of manufacturing-related waste represents recycling on the primary level [39].
The disintegration of textile material to a fibrous form through mechanical recycling is referred to as shredding or garneting [38, 40, 41]. In mechanical recycling machines, the fabrics are cut into small pieces of 1 to 8 cm strips with a rotary blade and separated into single fibers through a process known as “picking,” “pulling,” or “tearing” by needle-equipped cylinders which have progressively smaller spiked surfaces. On such machines waste is fed through a conveyor belt of the front roller to be transferred to the spiked roller. Spiked roller rotates clockwise, and bottom roller, located under the spiked one, rotates anticlockwise. The distance between the rollers can be varied according to the type of input material, and the waste is opened while passing through rollers.
Mechanical recycling has some shortcomings since the process is too aggressive to retain fiber quality and can result in a 75% loss of value after the first cycle. The mechanical process breaks may cause a tremendous loss in fiber length and a significant decrease in the material quality. For the process, longer processing times are needed, and the production rate is lower. As a result, blending with virgin material (especially in the case of cotton and wool fibers) for spinning processes is inevitable [38, 42, 44]. Consistently, waste collected from the manufacturing supply chain produces higher-quality recycled fibers than those collected from post-consumer waste. The pre-consumer and post-industrial waste can be respun into yarns which are further woven or knitted into fabrics and then used in apparel, upholstery, etc. [13]. Heterogeneity of post-consumer waste worsens constant quality retention.
Nonetheless, despite the drawbacks of mechanical recycling, the technology has shown promising for the reprocessing of denim fabric and garments [45].
The method of chemical recycling, which is categorized as a tertiary recycling approach, involves chemical processing of the fiber polymers, e.g., depolymerizing or dissolving. Chemical recycling depends on the quality of the processed waste to a limited degree and decomposes fibers down to the polymeric level [39]. Various chemical recycling processes have been demonstrated and developed. Chemical recycling of synthetic polymers and feedstock recycling depolymerize waste plastics into base chemical molecule called monomers with high purity [38]. The presence of additives and chemicals used in the polymerization process affects the purity and quality of the monomers obtained after recycling. The thermochemical process used to decompose polymers is referred to as pyrolysis, sometimes thermolysis. Pyrolysis is conducted at various temperatures and pressure levels and with the presence of catalysts or reactive gases. Pyrolysis processes are only economically viable for certain manufactured fibers including polyesters, polyamides, and polyolefins [13, 40]. Chemical recycling for polyester also includes glycolysis, hydrolysis, and metanolysis processes.
Chemical recycling is a promising process since it allows the recovery of a more valuable product in comparison to the products recycled by mechanical processes [34, 38, 42, 44]. As it uses a selective degradation method, chemical recycling is expected to be more suitable for large-scale recycling of blended materials, while mechanical recycling has been efficiently adopted by industry for recycling of single fiber materials. In products of cotton and polyester, the fibers can be chemically separated and then reformed into new fibers [13]. On the other hand, although chemical textile recycling has broader use than do the mechanical method, chemical and water consumption (70% lower in case of mechanical processing) for wet processing is high. Barriers to the widespread adoption of chemical recycling also include high costs, multiple processing steps requiring high operational knowledge, and energy requirement for heating and scouring processes [42, 44].
A comparison of mechanical and chemical textile recycling techniques are given in Table 1 [38, 44].
Mechanical recycling | Chemical recycling |
---|---|
Categorized as a secondary recycling approach Wet processing is eliminated It is not as energy-intensive as chemical recycling Mechanical recycling process is too aggressive to retain fiber quality Heterogeneity of post-consumer waste worsens constant quality retention Mechanical recycling has been efficiently adopted by industry for recycling of single fiber materials | Categorized as a tertiary recycling approach Involves chemical processing The biggest challenge is that chemical recycling is very energy-intensive Chemical recycling allows a more valuable product in comparison to the products recycled by mechanical processes Chemical recycling depends on the quality of the processed waste to a limited degree Chemical recycling is expected to be more suitable for large-scale recycling of blended materials |
Comparison of mechanical and chemical textile recycling techniques.
Biodegradation can be featured as a method used by nature to recycle waste and to break down organic materials into compounds by microorganisms such as bacteria, fungi, insects, worms, and others. Through biodegradation processes, it is possible for nature to clean up wastes, to provide nutrients for the growth of new lives, and to produce the energy necessary for various biological processes [46]. Biochemical transformation via fermentation is an attractive way for utilizing recycling textile waste. Cotton is typically composed of 88–96% cellulose, and it is possible to hydrolyze waste cotton by enzymatic or chemical methods to obtain glucose and then ferment it into value-added products. Biogas production from textile waste via anaerobic digestion is an alternative route to utilize solid waste from textile industry. Organic compounds in solid waste can be used as a raw material to produce desired products via bioconversion processes. On the contrary, thermal and chemical processes can convert both organic and inorganic compounds to value-added products [47].
Conventional thermal processing refers to the combustion of solid waste and its conversion into energy. Since solid waste from the textile industry contains a high energy content, it can be used as a raw material to generate heat energy [47]. Solid waste from the textile industry can be used as a raw material to produce briquette. The thermal processes that are performed at high temperature with inadequate oxygen could generate carbon monoxide, which is a greenhouse gas. Therefore, a thermochemical conversion process, such as pyrolysis, is applied. Pyrolysis is referred to the decompositional process with high temperature in the absence of oxygen condition [47]. Products from pyrolysis are various, such as activated carbon fiber, char, bio-oil, and syngas. The variation of product is related to pyrolysis condition.
Despite its growing popularity, there are numerous obstacles to textile recycling [47, 48]. The major ones to the optimization of textile recycling are:
Economic viability: Due to the widespread production of lower-grade products (downcycling) from textile recycling, many recycled textile wastes are unsuitable for multiple recirculation and use. Limited recirculation and reuse are not economically viable and discourages investment in textile recycling.
Composition of textile products: The base components of many textile products make them unsuitable for recycling. The presence of plastics and metals in textile products hinders their recyclability.
Nonavailability of recyclable textile materials: A limited quantity of used textiles and textile waste are collected and sorted for recycling, and the quantity that is suitable and accessible for recycling is insufficient.
Technological limitations: One of the main reasons for the limited quantity of recyclable materials is the lack of technologies for sorting textile waste in preparation for recycling. Dyes and other contaminants cannot be separated from the original fibers by most of the existing methods.
Lack of information and limited public participation: Limited public awareness on the merits of recycling contributes immensely to the low recycling rate, causing market inefficiency.
Poor coordination, weak policies, and standards: Uncoordinated collection of waste and absence of an integrated and well-coordinated framework and policies to enhance the overall efficiency of the textile recycling are identified as barriers to efficient recycling.
There are also some constraints and challenges faced specific to denim recycling processes [29, 49]. Collection and sorting of worn-out jeans is time-consuming and laborious. Labels; metal parts like rivets, zippers, and buttons; and leather patches have to be removed manually from the jean before shredding. Generally, the metal and leather parts are removed, but it is more difficult to remove the labels, and therefore jeans are sent along with them. The consequence is that the labels contaminate the recycled denim material as they are made of other materials. Any metal parts present on the jean to be recycled may cause problems to the machinery and process. It is easier to remove buttons and zippers by using gravitation but since rivets are too small and too light, special care is needed to remove them.
Denim jeans are characterized by thick lapped seams that create problems during shredding and carding processes. The presence of elastane is another problem. It is more convenient to separate it before shredding and cutting, but this can only be done by chemical recycling. Recycling different colored jeans together results in a multicolored yarn that can create problems in dyeing. Recycled fibers might not meet the quality of virgin ones and could not be spun or woven properly.
Life cycle assessment (LCA) is a methodology where the environmental performance of a product or service is assessed starting from the raw material extraction point to the end of life of that product/service, i.e., from “cradle to grave.” The methodology of LCA is defined under the ISO 14040/44 Standard [50].
For a pair of denim jeans, the life cycle (Figure 2) starts with the production of raw materials such as fibers and chemicals. These materials are then transported to fabric manufacturer and processed to become a fabric. During fabric production, energy and water are consumed in addition to raw materials while emission to air and to water and production waste are generated. The following process for the fabric is garment manufacturing in which the fabric is cut, sewn, washed, and accessorized (rivets, buttons, etc.) according to the design. Finally, the finished garment is sent to a warehouse or directly stores to be sold. After it is bought, the garment is washed and dried (or dry-cleaned depending on its nature) many times throughout its use phase. When it completes its life span, the garment has various “end of life” scenarios such as recycling, reused, refurbished, and disposed in landfill or incinerated, etc., which were discussed in the previous sections.
Lifecycle of a jean.
Life cycle assessment (LCA) helps us analyze the environmental performance of denim production in a transparent and systematic way and identify the hot spots.
The methodology behind life cycle assessment (LCA) is to accumulate all the impacts originated from the inputs and outputs of a system starting from the “cradle to grave” and to give a total impact number for the system under discussion. Accordingly, in an attempt to exemplify the importance of recycling of denim from the perspective of its environmental impact, an experimental work regarding the life cycle assessment of a denim fabric with and without recycled fiber content was conducted. For the work, the inventory was based on the 2019 denim production figures of a Turkish denim manufacturer in their manufacturing plant in Turkey. As assessment tool, SimaPro software developed by the Pré Sustainability, was used. SimaPro is the leading life cycle assessment (LCA) software that has been used for more than 25 years by the industry and academics in more than 80 countries [51]. SimaPro uses two types of data: primary and secondary. The primary data involves the basics of a denim production such as the amount of cotton used to manufacture 1 m of denim, i.e., 0.5 kg cotton. This data is exclusive to the fabric production practices of the factory. The secondary data, however, comes from the database, and it includes the impacts originated from producing that much raw material (in our case cotton fiber) and all other inputs such as chemicals at every stage. For secondary data, Ecoinvent database that is embedded into the software and is the most common life cycle inventory (LCI) database worldwide is used [52].
To be able to perform life cycle assessment of a specific good or service, one needs to have inventory data for the complete supply chain. Due to the amount of data needed in order to be able to perform a life cycle assessment (LCA) study for a full supply chain, it is practically impossible to collect and organize the data of the complete background system. In that respect, the Ecoinvent database provides this very background system fulfilling the data required for the assessment. The Ecoinvent v3 database contains life cycle inventory (LCI) data taken from various sectors such as energy supply, agriculture, transport, building materials, production of chemicals, and metal production and consists of around 17,000 datasets, each of which describes a life cycle inventory (LCI) on a process level [52, 53].
SimaPro software provides six libraries that each contain all the processes that are found in the Ecoinvent database but uses different system models and contains either unit or system processes. The three Ecoinvent system models are “allocation at point of substitution,” “cutoff by classification,” and “consequential.” The system model “allocation at the point of substitution” follows the attributional approach in which burdens are attributed proportionally to specific processes. “Allocation, cutoff by classification” system model is based on the recycled content or cutoff approach in which the primary production of materials is always allocated to the primary user of a material. In this approach, if a material is recycled, the primary producer does not receive any credit for the provision of any recyclable materials available and burden-free to recycling processes; therefore recycled materials bear only the impacts of the recycling processes. The system model “substitution, consequential, long-term” uses different basic assumptions to assess the consequences of a change in an existing system and can be used for perspective studies and prediction of future changes [54]. In this study, for recycled materials “cutoff by classification” system model and for all other data “allocation at point of substitution” system model are used.
For life cycle assessment (LCA) of a product, the production of an item (e.g., denim fabric) is simulated, using both consumption and production data (primary) of a factory and the corresponding secondary data from the Ecoinvent database. The next step is to choose the environmental impacts to be calculated. The whole process is given in Figure 3.
LCA calculation process.
One of the most important parts of life cycle assessment (LCA) is the outputs, in other words the environmental impacts of the product. With SimaPro software, it is possible to calculate over 100 environmental impact categories. For that reason, the academic- and industry-specific life cycle assessment (LCA) studies’ guidelines and standards were surveyed to determine the environmental impacts for our study (Table 2).
References | Global warming potential (GWP) climate change | Acidification | Eutrophication | Ozone layer depletion | Abiotic depletion | Photochemical oxidant formation | Freshwater use | Human toxicity | Water consumption | Terrestrial ecotoxicity | Greenhouse gases (GHG) | Nonrenewable energy use | Carcinogens | Land occupation | Aquatic eutrophication | Mineral extraction | Ecotoxicity | Freshwater eutrophication | Freshwater aquatic ecotoxicity | Ionizing radiation | Water depletion |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
[55] | 1 | 1 | 1 | 1 | 1 | 1 | |||||||||||||||
[56] | 1 | 1 | 1 | 1 | 1 | 1 | |||||||||||||||
[57] | 1 | 1 | 1 | 1 | 1 | 1 | 1 | ||||||||||||||
[58] | 1 | 1 | |||||||||||||||||||
[59] | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | ||||||||||||
[60] | 1 | 1 | 1 | 1 | 1 | 1 | |||||||||||||||
[61] | 1 | 1 | 1 | 1 | |||||||||||||||||
[62] | 1 | 1 | 1 | 1 | 1 | ||||||||||||||||
[63] | 1 | 1 | 1 | ||||||||||||||||||
[64] | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | ||||||||||||
[65] | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | ||||||||||||
[66] | 1 | ||||||||||||||||||||
[9] | 1 | 1 | 1 | 1 | 1 | 1 | |||||||||||||||
[67] | 1 | 1 | 1 | 1 | |||||||||||||||||
Total | 10 | 8 | 8 | 5 | 5 | 4 | 3 | 3 | 3 | 3 | 3 | 3 | 3 | 3 | 2 | 2 | 2 | 2 | 2 | 2 | 2 |
A taxonomy of environmental impact categories for textiles.
With this taxonomy (Table 2), the commonly used environmental impact categories are listed for textiles. Consequently, based on the taxonomy given in Table 1 and the raw material need for a denim fabric, five impact categories are selected. These impact categories, their definitions, and calculation methodologies within the SimaPro software are presented in Table 3.
Indicator | Unit | Description | Example impact | Methodology |
---|---|---|---|---|
Global warning potential | kg CO2 eq (kilogram carbon dioxide equivalent) | Emission of greenhouse gases (GHGs) | Climate change | IPCC 2013 GWP 100a [68, 69] |
Freshwater use | lt (liters) | Excessive freshwater taken from the environment | Water scarcity | Life cycle inventory |
Land use | m2 a (meter square per annum) | The amount of agricultural area uccupied | Deforestation | ReCiPe 2016 Midpoint (H) [70, 71] |
Eutrophication potential (EP) | kg PO43− eq (kilogram phosphate equivalent) | Emission of substances to water contributing to oxygen depletion | Nutrient loading to water stream-water pollution | CML-IA baseline [72, 73, 74, 75] |
Abiotic resource depletion | kg Sb eq (kilogram antimony equivalent) | Measure of mineral, metal, and fossil fuel resources used to produce a product | Mineral scarcity | CML-IA baseline [72] |
Selected environmental impact categories.
As was mentioned above, the life cycle assessment (LCA) methodology is selected to calculate the environmental impacts of denim fabrics having different recycled contents in the same article so that the whole system can be taken into consideration. This means that we have to calculate the effect of every step in the life cycle to see the whole impact of our choices, including cultivation/production of the fiber, fabric production, garment manufacturing, distribution, consumer laundering, reuse, and final disposal [76, 77]. One may think that using recycled cotton reduces the impact drastically, but parameters such as increased waste during production and increased energy usage should also be taken into account in a system perspective.
If only one process or only fabric production as a system were calculated, this would have represented a single framed approach which is generally not preferable as calculations for production of single frames may lead to unwanted and unforeseen effects elsewhere in the whole system.
The specifications of the denim article selected for the work is given in Table 4. Life cycle assessment (LCA) was conducted for 1 m of the article in accordance with the process steps including fiber cultivation, transportation, and all the production steps covered in the Turkish denim manufacturing company. The five environmental impacts are presented in Figure 4. For the comparative study, the results are given in terms of percentages (%) so that unit differences of the impact categories were eliminated.
Article Code | Width (cm) | Weight (oz/yd2) | Composition |
---|---|---|---|
Article A | 150 | 14.89 | 100% cotton |
Article specifications.
Five environmental impacts of selected fabric according to process steps.
In denim production, the hottest spot for the selected four categories is the fiber growth stage. In the fifth impact category, abiotic resource depletion, fiber stage has the second highest impact. This clearly shows the importance of raw material selection for denim fabric production.
This section aims to determine the impact of recycled cotton content in the denim fabric under discussion (Table 4). Accordingly, different recycled cotton contents are used in the life cycle assessment calculations of Article A. These are as follows:
Article A-1: 100% cotton
Article A-2: 80% cotton +20% recycled cotton
Article A-3: 70% cotton +30% recycled cotton
Article A-4: 60% cotton +40% recycled cotton
Article A-5: 50% cotton +50% recycled cotton
In each version, the recycled cotton content was increased by 10%. The recycled cotton used in the calculations is post-consumer recycled cotton, and its industrial data such as production and transportation data is obtained from a local supplier.
The results of the life cycle assessment (LCA) calculations are presented in Figure 5. As may be seen from these results, global warming potential decreases by 5%, eutrophication drops by 8%, and abiotic resource depletion drops by 3% with each addition of 10% recycled content in the blend.
Results of LCA calculations of virgin and post-consumer recycled cotton blends.
Global warming potential, in other words climate change impact, is affected by two main stages: fiber cultivation and spinning. The energy usage in spinning increases when the recycled cotton content is increased, which implies a negative impact of the use of such fiber on global warming potential. However, since the percentage of the virgin cotton usage is decreased, this decline delivers a high positive impact for global warming potential, lessening the effect of energy usage.
In eutrophication calculation, the main effect derives from usage of fertilizers, pesticides, and insecticides at farm level. During irrigation of cotton, the probability of water pollution caused by these chemicals increases. Once the usage of virgin cotton decreases in the blend, the value of eutrophication decreases. Overall, the decrease results as 8% with a use of 10% recycled cotton.
Water use and land use impacts decrease by 10% with an addition of 10% recycled cotton. Since cotton uses land, and a high amount of water in the field during cultivation, avoiding the use of virgin cotton creates a high decrease in impact categories. If one can spin and weave a blend of 50% virgin and 50% recycled cotton, the overall impact on these two categories decreases 50%, which is a considerable figure when the amount of fabric produced reaches approximately 3 billion meters annually.
This section aims to determine the impact of blending recycled cotton with organic cotton. Organic cotton data used in the calculations is generated from the literature [78, 79]. The percentages used in the life cycle assessment (LCA) calculations are as follows:
Article A-1: 100% cotton
Article A-6: 100% organic cotton
Article A-7: 80% organic cotton +20% recycled cotton
Once organic cotton is used, at least 25% decrease appears in three categories: namely, global warming potential, eutrophication, and abiotic resource depletion. The decrease in water use (11%) is comparably low. On the other hand, real decrease happens in the land use, nearly 40%. This is due to the data for Aegean Region organic cotton. The yield in Turkish organic cotton is comparably high. The land use for 1 kg of lint organic cotton is 4.65m2 for Turkish organic cotton. The same figure appears to be 19.7 for global production and 20.9 for the US organic cotton (Figure 6).
Land needed for 1 kg lint organic cotton, m2 [
The virgin cotton used in study for calculations is a blend of the US, Turkish, Greek, and Brazilian cotton.
The results of the life cycle assessment (LCA) calculations are presented in Figure 7. The data shows that diverting from 100% regular cotton to 100% organic cotton reduces global warming potential by 27%, eutrophication by 26%, abiotic depletion by 24%, and land use by 39%. In addition, as in Article A-7, blending organic cotton with 20% recycle cotton generates an additional 10% decrease in land use. With the aid of this blend, the comparably lowest impact in land use is achieved in this study. The same is true for global warming potential and abiotic depletion. Article A-7 has the lowest values compared to the rest of the articles in Figures 5 and 7.
Results of LCA calculations of organic and post-consumer recycled cotton blends.
On the other hand, eutrophication and water use remain higher than those of the articles in Figure 5. Organic cotton still uses a decent amount of water during cultivation. Therefore, Article A-7 could not result with the lowest impact on water use and eutrophication.
Fiber selection stage—in this study fiber cultivation stage—has the main role in environmental impact of a denim fabric. Selected five impact categories are divided into the article’s process steps starting from cradle, meaning cotton cultivation, to gate, the end of fabric production. When it is analyzed (Section 4.3.2), one can see that fiber has more than 50% of the total impact in four out of the five categories. Only in abiotic depletion, warp preparation and dyeing have a greater effect than that of the fiber itself. Since recycled cotton usage means eliminating the fiber growing stage or in other words not using virgin raw material that requires natural resource, the environmental impact decreases as the recycle content increases in the fabric. And this is mainly true for global warming potential, eutrophication, water use, and land use. Especially for water and land use, fiber growth stage has more than 90% impact on the overall score. Fifty percent recycled cotton use decreases both impacts by 50%. Therefore, it is better to use recycled content to decrease the environmental impact of water and land use mainly.
Organic cotton with recycled cotton combination has the lowest impact in land use. Using 100% organic cotton also helps reduce global warming potential and eutrophication more than using 50% recycled cotton. However, when it comes to water use and land use, recycled cotton always scores the best since it is not a grown raw material. Here, one can question the production of recycling. The data related to production and transportations are taken into account in the LCA calculations.
In conclusion, denim recycling is very crucial to reduce the water and land use impact of jeans. Combining recycled cotton with organic cotton also leads to reductions in other impact categories such as eutrophication, global warming potential, and abiotic depletion as well. As a future study, the impact of different fibers used in denim fabric production may also be analyzed with a combination of recycled cotton.
Recycled cotton source appears to be the first challenge when whole textile system is considered. There are regulations in countries either limiting or declining the import of second-hand garments. This creates a limitation in source since the collection of second-hand garments is not organized in some countries.
The second challenge is the composition of jeans. Historically, the main composition was 100% cotton. Right now, more than half of the jeans include elastane fiber as well. Besides elastane, new compositions include man-made fibers and regenerated cellulosic fibers. The more complex the composition, the harder it gets to recycle jeans mechanically.
The most important challenge here is always the consumer mindset. Across the industry, only 13% of the total material input is in some way recycled after clothing use. Most of this recycling consists of cascading to other industries and is used in lower-value applications, for example, insulation materials, wiping cloths [81], Once discarded, over half the garments are not recycled but end up in mixed household waste and are subsequently sent to incinerators or landfill. According to a McKinsey analysis, as was mentioned before, an average consumer buys 60% more clothes per year than 15 years ago but keeps the clothes only half the time, and this really is shocking once the numbers become visible [82]. Consumer awareness should be increased via marketing channels and mainly in schools.
Since mechanical recycling technique is a challenge in the process, recently, new techniques have emerged to use denim jeans and other cellulosic materials as a source/raw material. Companies like Re:newcell, Infinited Fibers, and Nanollose are taking second-hand garments, applying fiber separation and turning cellulosic part into liquid [83, 84, 85]. Some of them include fermentation, and as a last step, they turn the liquid into the material. The process resembles regenerated cellulosic fiber process. The use of fermentation appears to be a promising step into bio design for textiles, and this also eliminates all the negative sides of mechanical recycling.
The authors declare no conflict of interest.
IntechOpen books are available online by accessing all published content on a chapter level.
",metaTitle:"Access policy",metaDescription:"IntechOpen books are available online by accessing all published content on a chapter level",metaKeywords:null,canonicalURL:null,contentRaw:'[{"type":"htmlEditorComponent","content":"All IntechOpen published chapters are available OPEN ACCESS can be read without the requirement for registration of any kind, immediately upon publication, without any barrier.
\\n\\nThe HTML version, as well as the PDF version of publications dated before 2012 that are accessible through a reader, are available to readers with no restriction.
\\n\\nThe full content of chapters can be read, copied and printed from the link location of the chapter and these actions are not limited or restricted in any way.
\\n\\nRegistration is requested only to download the PDF of the chapter. There are no subscription fees and there is no charge to user groups.
\\n\\nIntechOpen chapters are distributed under CC BY 3.0 licences allowing users to “copy, use, distribute, transmit and display the work publicly and to make and distribute derivative works, in any digital medium for any responsible purpose, subject to proper attribution of authorship...” and there is no non-commercial restriction.
\\n\\nAuthors may post published works to any repository or website with no delay, and Authors and Editors of IntechOpen books have direct access to the PDF of the full book.
\\n\\nAll published content can be crawled for indexing. Full text and metadata may be accessed with instructions publicly posted.
\\n\\nAll IntechOpen books are indexed in CLOCKSS and preservation of access to published content is clearly indicated.
\\n\\nPolicy last updated: 2021-02-26
\\n"}]'},components:[{type:"htmlEditorComponent",content:"All IntechOpen published chapters are available OPEN ACCESS can be read without the requirement for registration of any kind, immediately upon publication, without any barrier.
\n\nThe HTML version, as well as the PDF version of publications dated before 2012 that are accessible through a reader, are available to readers with no restriction.
\n\nThe full content of chapters can be read, copied and printed from the link location of the chapter and these actions are not limited or restricted in any way.
\n\nRegistration is requested only to download the PDF of the chapter. There are no subscription fees and there is no charge to user groups.
\n\nIntechOpen chapters are distributed under CC BY 3.0 licences allowing users to “copy, use, distribute, transmit and display the work publicly and to make and distribute derivative works, in any digital medium for any responsible purpose, subject to proper attribution of authorship...” and there is no non-commercial restriction.
\n\nAuthors may post published works to any repository or website with no delay, and Authors and Editors of IntechOpen books have direct access to the PDF of the full book.
\n\nAll published content can be crawled for indexing. Full text and metadata may be accessed with instructions publicly posted.
\n\nAll IntechOpen books are indexed in CLOCKSS and preservation of access to published content is clearly indicated.
\n\nPolicy last updated: 2021-02-26
\n"}]},successStories:{items:[]},authorsAndEditors:{filterParams:{sort:"featured,name"},profiles:[{id:"6700",title:"Dr.",name:"Abbass A.",middleName:null,surname:"Hashim",slug:"abbass-a.-hashim",fullName:"Abbass A. Hashim",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/6700/images/1864_n.jpg",biography:"Currently I am carrying out research in several areas of interest, mainly covering work on chemical and bio-sensors, semiconductor thin film device fabrication and characterisation.\nAt the moment I have very strong interest in radiation environmental pollution and bacteriology treatment. The teams of researchers are working very hard to bring novel results in this field. I am also a member of the team in charge for the supervision of Ph.D. students in the fields of development of silicon based planar waveguide sensor devices, study of inelastic electron tunnelling in planar tunnelling nanostructures for sensing applications and development of organotellurium(IV) compounds for semiconductor applications. I am a specialist in data analysis techniques and nanosurface structure. I have served as the editor for many books, been a member of the editorial board in science journals, have published many papers and hold many patents.",institutionString:null,institution:{name:"Sheffield Hallam University",country:{name:"United Kingdom"}}},{id:"54525",title:"Prof.",name:"Abdul Latif",middleName:null,surname:"Ahmad",slug:"abdul-latif-ahmad",fullName:"Abdul Latif Ahmad",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:null},{id:"20567",title:"Prof.",name:"Ado",middleName:null,surname:"Jorio",slug:"ado-jorio",fullName:"Ado Jorio",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"Universidade Federal de Minas Gerais",country:{name:"Brazil"}}},{id:"47940",title:"Dr.",name:"Alberto",middleName:null,surname:"Mantovani",slug:"alberto-mantovani",fullName:"Alberto Mantovani",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:null},{id:"12392",title:"Mr.",name:"Alex",middleName:null,surname:"Lazinica",slug:"alex-lazinica",fullName:"Alex Lazinica",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/12392/images/7282_n.png",biography:"Alex Lazinica is the founder and CEO of IntechOpen. After obtaining a Master's degree in Mechanical Engineering, he continued his PhD studies in Robotics at the Vienna University of Technology. Here he worked as a robotic researcher with the university's Intelligent Manufacturing Systems Group as well as a guest researcher at various European universities, including the Swiss Federal Institute of Technology Lausanne (EPFL). During this time he published more than 20 scientific papers, gave presentations, served as a reviewer for major robotic journals and conferences and most importantly he co-founded and built the International Journal of Advanced Robotic Systems- world's first Open Access journal in the field of robotics. Starting this journal was a pivotal point in his career, since it was a pathway to founding IntechOpen - Open Access publisher focused on addressing academic researchers needs. Alex is a personification of IntechOpen key values being trusted, open and entrepreneurial. Today his focus is on defining the growth and development strategy for the company.",institutionString:null,institution:{name:"TU Wien",country:{name:"Austria"}}},{id:"19816",title:"Prof.",name:"Alexander",middleName:null,surname:"Kokorin",slug:"alexander-kokorin",fullName:"Alexander Kokorin",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/19816/images/1607_n.jpg",biography:"Alexander I. Kokorin: born: 1947, Moscow; DSc., PhD; Principal Research Fellow (Research Professor) of Department of Kinetics and Catalysis, N. Semenov Institute of Chemical Physics, Russian Academy of Sciences, Moscow.\r\nArea of research interests: physical chemistry of complex-organized molecular and nanosized systems, including polymer-metal complexes; the surface of doped oxide semiconductors. He is an expert in structural, absorptive, catalytic and photocatalytic properties, in structural organization and dynamic features of ionic liquids, in magnetic interactions between paramagnetic centers. The author or co-author of 3 books, over 200 articles and reviews in scientific journals and books. He is an actual member of the International EPR/ESR Society, European Society on Quantum Solar Energy Conversion, Moscow House of Scientists, of the Board of Moscow Physical Society.",institutionString:null,institution:{name:"Semenov Institute of Chemical Physics",country:{name:"Russia"}}},{id:"62389",title:"PhD.",name:"Ali Demir",middleName:null,surname:"Sezer",slug:"ali-demir-sezer",fullName:"Ali Demir Sezer",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/62389/images/3413_n.jpg",biography:"Dr. Ali Demir Sezer has a Ph.D. from Pharmaceutical Biotechnology at the Faculty of Pharmacy, University of Marmara (Turkey). He is the member of many Pharmaceutical Associations and acts as a reviewer of scientific journals and European projects under different research areas such as: drug delivery systems, nanotechnology and pharmaceutical biotechnology. Dr. Sezer is the author of many scientific publications in peer-reviewed journals and poster communications. Focus of his research activity is drug delivery, physico-chemical characterization and biological evaluation of biopolymers micro and nanoparticles as modified drug delivery system, and colloidal drug carriers (liposomes, nanoparticles etc.).",institutionString:null,institution:{name:"Marmara University",country:{name:"Turkey"}}},{id:"61051",title:"Prof.",name:"Andrea",middleName:null,surname:"Natale",slug:"andrea-natale",fullName:"Andrea Natale",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:null},{id:"100762",title:"Prof.",name:"Andrea",middleName:null,surname:"Natale",slug:"andrea-natale",fullName:"Andrea Natale",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"St David's Medical Center",country:{name:"United States of America"}}},{id:"107416",title:"Dr.",name:"Andrea",middleName:null,surname:"Natale",slug:"andrea-natale",fullName:"Andrea Natale",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"Texas Cardiac Arrhythmia",country:{name:"United States of America"}}},{id:"64434",title:"Dr.",name:"Angkoon",middleName:null,surname:"Phinyomark",slug:"angkoon-phinyomark",fullName:"Angkoon Phinyomark",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/64434/images/2619_n.jpg",biography:"My name is Angkoon Phinyomark. I received a B.Eng. degree in Computer Engineering with First Class Honors in 2008 from Prince of Songkla University, Songkhla, Thailand, where I received a Ph.D. degree in Electrical Engineering. My research interests are primarily in the area of biomedical signal processing and classification notably EMG (electromyography signal), EOG (electrooculography signal), and EEG (electroencephalography signal), image analysis notably breast cancer analysis and optical coherence tomography, and rehabilitation engineering. I became a student member of IEEE in 2008. During October 2011-March 2012, I had worked at School of Computer Science and Electronic Engineering, University of Essex, Colchester, Essex, United Kingdom. In addition, during a B.Eng. I had been a visiting research student at Faculty of Computer Science, University of Murcia, Murcia, Spain for three months.\n\nI have published over 40 papers during 5 years in refereed journals, books, and conference proceedings in the areas of electro-physiological signals processing and classification, notably EMG and EOG signals, fractal analysis, wavelet analysis, texture analysis, feature extraction and machine learning algorithms, and assistive and rehabilitative devices. I have several computer programming language certificates, i.e. Sun Certified Programmer for the Java 2 Platform 1.4 (SCJP), Microsoft Certified Professional Developer, Web Developer (MCPD), Microsoft Certified Technology Specialist, .NET Framework 2.0 Web (MCTS). I am a Reviewer for several refereed journals and international conferences, such as IEEE Transactions on Biomedical Engineering, IEEE Transactions on Industrial Electronics, Optic Letters, Measurement Science Review, and also a member of the International Advisory Committee for 2012 IEEE Business Engineering and Industrial Applications and 2012 IEEE Symposium on Business, Engineering and Industrial Applications.",institutionString:null,institution:{name:"Joseph Fourier University",country:{name:"France"}}},{id:"55578",title:"Dr.",name:"Antonio",middleName:null,surname:"Jurado-Navas",slug:"antonio-jurado-navas",fullName:"Antonio Jurado-Navas",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/55578/images/4574_n.png",biography:"Antonio Jurado-Navas received the M.S. degree (2002) and the Ph.D. degree (2009) in Telecommunication Engineering, both from the University of Málaga (Spain). He first worked as a consultant at Vodafone-Spain. From 2004 to 2011, he was a Research Assistant with the Communications Engineering Department at the University of Málaga. In 2011, he became an Assistant Professor in the same department. From 2012 to 2015, he was with Ericsson Spain, where he was working on geo-location\ntools for third generation mobile networks. Since 2015, he is a Marie-Curie fellow at the Denmark Technical University. His current research interests include the areas of mobile communication systems and channel modeling in addition to atmospheric optical communications, adaptive optics and statistics",institutionString:null,institution:{name:"University of Malaga",country:{name:"Spain"}}}],filtersByRegion:[{group:"region",caption:"North America",value:1,count:5820},{group:"region",caption:"Middle and South America",value:2,count:5289},{group:"region",caption:"Africa",value:3,count:1761},{group:"region",caption:"Asia",value:4,count:10546},{group:"region",caption:"Australia and Oceania",value:5,count:909},{group:"region",caption:"Europe",value:6,count:15932}],offset:12,limit:12,total:119318},chapterEmbeded:{data:{}},editorApplication:{success:null,errors:{}},ofsBooks:{filterParams:{topicId:"14"},books:[{type:"book",id:"10666",title:"Noble Metals Recent Advanced Studies and Applications",subtitle:null,isOpenForSubmission:!0,hash:"7322b325b1276e2b4185a7db798d588a",slug:null,bookSignature:"Dr. Mousumi Sen",coverURL:"https://cdn.intechopen.com/books/images_new/10666.jpg",editedByType:null,editors:[{id:"310218",title:"Dr.",name:"Mousumi",surname:"Sen",slug:"mousumi-sen",fullName:"Mousumi Sen"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10667",title:"Intermetallic Compounds - Properties and Applications",subtitle:null,isOpenForSubmission:!0,hash:"eb6769bb88a11d0d7d681449b7e14e4a",slug:null,bookSignature:"Dr. Barun Shankar Gupta",coverURL:"https://cdn.intechopen.com/books/images_new/10667.jpg",editedByType:null,editors:[{id:"343769",title:"Dr.",name:"Barun Shankar",surname:"Gupta",slug:"barun-shankar-gupta",fullName:"Barun Shankar Gupta"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10668",title:"Sustainable Concrete",subtitle:null,isOpenForSubmission:!0,hash:"55856c6a8bc3a5b21dae5a1af09a56b6",slug:null,bookSignature:"Prof. Hosam M. Saleh",coverURL:"https://cdn.intechopen.com/books/images_new/10668.jpg",editedByType:null,editors:[{id:"144691",title:"Prof.",name:"Hosam",surname:"Saleh",slug:"hosam-saleh",fullName:"Hosam Saleh"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10669",title:"Corrosion",subtitle:null,isOpenForSubmission:!0,hash:"4a76d54f8a40fc2e7002a8d13fd617c1",slug:null,bookSignature:"Dr. Fahmina Zafar, Dr. Anujit Ghosal and Dr. Eram Sharmin",coverURL:"https://cdn.intechopen.com/books/images_new/10669.jpg",editedByType:null,editors:[{id:"89672",title:"Dr.",name:"Fahmina",surname:"Zafar",slug:"fahmina-zafar",fullName:"Fahmina Zafar"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10670",title:"Properties and Applications of Alginates",subtitle:null,isOpenForSubmission:!0,hash:"062083e53cc5c808af597de6426cea06",slug:null,bookSignature:"Dr. Irem Deniz, Dr. Esra Imamoglu and Dr. Tugba Keskin Gundogdu",coverURL:"https://cdn.intechopen.com/books/images_new/10670.jpg",editedByType:null,editors:[{id:"204855",title:"Dr.",name:"Irem",surname:"Deniz",slug:"irem-deniz",fullName:"Irem Deniz"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10941",title:"Ferrite",subtitle:null,isOpenForSubmission:!0,hash:"f6a323bfa4565d7c676bc3733b4983b0",slug:null,bookSignature:"Dr. Maaz Khan",coverURL:"https://cdn.intechopen.com/books/images_new/10941.jpg",editedByType:null,editors:[{id:"107765",title:"Dr.",name:"Maaz",surname:"Khan",slug:"maaz-khan",fullName:"Maaz Khan"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10944",title:"Bioactive Glass - Recent Advances, New Perspectives and Applications",subtitle:null,isOpenForSubmission:!0,hash:"f5ef9a732ba59084cd6ac45451b0f32f",slug:null,bookSignature:"Prof. Petrică Vizureanu",coverURL:"https://cdn.intechopen.com/books/images_new/10944.jpg",editedByType:null,editors:[{id:"12354",title:"Prof.",name:"Petrică",surname:"Vizureanu",slug:"petrica-vizureanu",fullName:"Petrică Vizureanu"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}}],filtersByTopic:[{group:"topic",caption:"Agricultural and Biological Sciences",value:5,count:28},{group:"topic",caption:"Biochemistry, Genetics and Molecular Biology",value:6,count:9},{group:"topic",caption:"Business, Management and Economics",value:7,count:3},{group:"topic",caption:"Chemistry",value:8,count:11},{group:"topic",caption:"Computer and Information Science",value:9,count:10},{group:"topic",caption:"Earth and Planetary Sciences",value:10,count:10},{group:"topic",caption:"Engineering",value:11,count:25},{group:"topic",caption:"Environmental Sciences",value:12,count:2},{group:"topic",caption:"Immunology and Microbiology",value:13,count:4},{group:"topic",caption:"Materials Science",value:14,count:7},{group:"topic",caption:"Mathematics",value:15,count:3},{group:"topic",caption:"Medicine",value:16,count:48},{group:"topic",caption:"Neuroscience",value:18,count:3},{group:"topic",caption:"Pharmacology, Toxicology and Pharmaceutical Science",value:19,count:3},{group:"topic",caption:"Physics",value:20,count:4},{group:"topic",caption:"Psychology",value:21,count:5},{group:"topic",caption:"Robotics",value:22,count:2},{group:"topic",caption:"Social Sciences",value:23,count:3},{group:"topic",caption:"Technology",value:24,count:1},{group:"topic",caption:"Veterinary Medicine and Science",value:25,count:2}],offset:12,limit:12,total:7},popularBooks:{featuredBooks:[],offset:0,limit:12,total:null},hotBookTopics:{hotBooks:[],offset:0,limit:12,total:null},publish:{},publishingProposal:{success:null,errors:{}},books:{featuredBooks:[{type:"book",id:"9154",title:"Spinal Deformities in Adolescents, Adults and Older Adults",subtitle:null,isOpenForSubmission:!1,hash:"313f1dffa803b60a14ff1e6966e93d91",slug:"spinal-deformities-in-adolescents-adults-and-older-adults",bookSignature:"Josette Bettany-Saltikov and Gokulakannan Kandasamy",coverURL:"https://cdn.intechopen.com/books/images_new/9154.jpg",editors:[{id:"94802",title:"Dr.",name:"Josette",middleName:null,surname:"Bettany-Saltikov",slug:"josette-bettany-saltikov",fullName:"Josette Bettany-Saltikov"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"7030",title:"Satellite Systems",subtitle:"Design, Modeling, Simulation and Analysis",isOpenForSubmission:!1,hash:"b9db6d2645ef248ceb1b33ea75f38e88",slug:"satellite-systems-design-modeling-simulation-and-analysis",bookSignature:"Tien Nguyen",coverURL:"https://cdn.intechopen.com/books/images_new/7030.jpg",editors:[{id:"210657",title:"Dr.",name:"Tien M.",middleName:"Manh",surname:"Nguyen",slug:"tien-m.-nguyen",fullName:"Tien M. Nguyen"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10201",title:"Post-Transition Metals",subtitle:null,isOpenForSubmission:!1,hash:"cc7f53ff5269916e3ce29f65a51a87ae",slug:"post-transition-metals",bookSignature:"Mohammed Muzibur Rahman, Abdullah Mohammed Asiri, Anish Khan, Inamuddin and Thamer Tabbakh",coverURL:"https://cdn.intechopen.com/books/images_new/10201.jpg",editors:[{id:"24438",title:"Prof.",name:"Mohammed Muzibur",middleName:null,surname:"Rahman",slug:"mohammed-muzibur-rahman",fullName:"Mohammed Muzibur Rahman"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10413",title:"A Collection of Papers on Chaos Theory and Its Applications",subtitle:null,isOpenForSubmission:!1,hash:"900b71b164948830fec3d6254b7881f7",slug:"a-collection-of-papers-on-chaos-theory-and-its-applications",bookSignature:"Paul Bracken and Dimo I. Uzunov",coverURL:"https://cdn.intechopen.com/books/images_new/10413.jpg",editors:[{id:"92883",title:"Prof.",name:"Paul",middleName:null,surname:"Bracken",slug:"paul-bracken",fullName:"Paul Bracken"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9515",title:"Update in Geriatrics",subtitle:null,isOpenForSubmission:!1,hash:"913e16c0ae977474b283bbd4269564c8",slug:"update-in-geriatrics",bookSignature:"Somchai Amornyotin",coverURL:"https://cdn.intechopen.com/books/images_new/9515.jpg",editors:[{id:"185484",title:"Prof.",name:"Somchai",middleName:null,surname:"Amornyotin",slug:"somchai-amornyotin",fullName:"Somchai Amornyotin"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"8148",title:"Investment Strategies in Emerging New Trends in Finance",subtitle:null,isOpenForSubmission:!1,hash:"3b714d96a68d2acdfbd7b50aba6504ca",slug:"investment-strategies-in-emerging-new-trends-in-finance",bookSignature:"Reza Gharoie Ahangar and Asma Salman",coverURL:"https://cdn.intechopen.com/books/images_new/8148.jpg",editors:[{id:"91081",title:"Dr.",name:"Reza",middleName:null,surname:"Gharoie Ahangar",slug:"reza-gharoie-ahangar",fullName:"Reza Gharoie Ahangar"}],equalEditorOne:{id:"206443",title:"Prof.",name:"Asma",middleName:null,surname:"Salman",slug:"asma-salman",fullName:"Asma Salman",profilePictureURL:"https://mts.intechopen.com/storage/users/206443/images/system/206443.png",biography:"Professor Asma Salman is a blockchain developer and Professor of Finance at the American University in the Emirates, UAE. An Honorary Global Advisor at the Global Academy of Finance and Management, USA, she completed her MBA in Finance and Accounting and earned a Ph.D. in Finance from an AACSB member, AMBA accredited, School of Management at Harbin Institute of Technology, China. Her research credentials include a one-year residency at the Brunel Business School, Brunel University, UK. Prof. Salman also served as the Dubai Cohort supervisor for DBA students under the Nottingham Business School, UK, for seven years and is currently a Ph.D. supervisor at the University of Northampton, UK, where she is a visiting fellow. She also served on the Board of Etihad Airlines during 2019–2020. One of her recent articles on “Bitcoin and Blockchain” gained wide visibility and she is an active speaker on Fintech, blockchain, and crypto events around the GCC. She holds various professional certifications including Chartered Fintech Professional (USA), Certified Financial Manager (USA), Women in Leadership and Management in Higher Education, (UK), and Taxation GCC VAT Compliance, (UK). She recently won an award for “Blockchain Trainer of the Year” from Berkeley Middle East. Other recognitions include the Women Leadership Impact Award by H.E First Lady of Armenia, Research Excellence Award, and the Global Inspirational Women Leadership Award by H.H Sheikh Juma Bin Maktoum Juma Al Maktoum.",institutionString:"American University in the Emirates",position:null,outsideEditionCount:0,totalCites:0,totalAuthoredChapters:"2",totalChapterViews:"0",totalEditedBooks:"2",institution:{name:"American University in the Emirates",institutionURL:null,country:{name:"United Arab Emirates"}}},equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"8472",title:"Bioactive Compounds in Nutraceutical and Functional Food for Good Human Health",subtitle:null,isOpenForSubmission:!1,hash:"8855452919b8495810ef8e88641feb20",slug:"bioactive-compounds-in-nutraceutical-and-functional-food-for-good-human-health",bookSignature:"Kavita Sharma, Kanchan Mishra, Kula Kamal Senapati and Corina Danciu",coverURL:"https://cdn.intechopen.com/books/images_new/8472.jpg",editors:[{id:"197731",title:"Dr.",name:"Kavita",middleName:null,surname:"Sharma",slug:"kavita-sharma",fullName:"Kavita Sharma"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9959",title:"Biomedical Signal and Image Processing",subtitle:null,isOpenForSubmission:!1,hash:"22b87a09bd6df065d78c175235d367c8",slug:"biomedical-signal-and-image-processing",bookSignature:"Yongxia Zhou",coverURL:"https://cdn.intechopen.com/books/images_new/9959.jpg",editors:[{id:"259308",title:"Dr.",name:"Yongxia",middleName:null,surname:"Zhou",slug:"yongxia-zhou",fullName:"Yongxia Zhou"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9685",title:"Agroecosystems",subtitle:"Very Complex Environmental Systems",isOpenForSubmission:!1,hash:"c44f7b43a9f9610c243dc32300d37df6",slug:"agroecosystems-very-complex-environmental-systems",bookSignature:"Marcelo L. Larramendy and Sonia Soloneski",coverURL:"https://cdn.intechopen.com/books/images_new/9685.jpg",editors:[{id:"14764",title:"Dr.",name:"Marcelo L.",middleName:null,surname:"Larramendy",slug:"marcelo-l.-larramendy",fullName:"Marcelo L. Larramendy"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"8564",title:"Cell Interaction",subtitle:"Molecular and Immunological Basis for Disease Management",isOpenForSubmission:!1,hash:"98d7f080d80524285f091e72a8e92a6d",slug:"cell-interaction-molecular-and-immunological-basis-for-disease-management",bookSignature:"Bhawana Singh",coverURL:"https://cdn.intechopen.com/books/images_new/8564.jpg",editors:[{id:"315192",title:"Dr.",name:"Bhawana",middleName:null,surname:"Singh",slug:"bhawana-singh",fullName:"Bhawana Singh"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}}],latestBooks:[{type:"book",id:"9515",title:"Update in Geriatrics",subtitle:null,isOpenForSubmission:!1,hash:"913e16c0ae977474b283bbd4269564c8",slug:"update-in-geriatrics",bookSignature:"Somchai Amornyotin",coverURL:"https://cdn.intechopen.com/books/images_new/9515.jpg",editedByType:"Edited by",editors:[{id:"185484",title:"Prof.",name:"Somchai",middleName:null,surname:"Amornyotin",slug:"somchai-amornyotin",fullName:"Somchai Amornyotin"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"9021",title:"Novel Perspectives of Stem Cell Manufacturing and Therapies",subtitle:null,isOpenForSubmission:!1,hash:"522c6db871783d2a11c17b83f1fd4e18",slug:"novel-perspectives-of-stem-cell-manufacturing-and-therapies",bookSignature:"Diana Kitala and Ana Colette Maurício",coverURL:"https://cdn.intechopen.com/books/images_new/9021.jpg",editedByType:"Edited by",editors:[{id:"203598",title:"Ph.D.",name:"Diana",middleName:null,surname:"Kitala",slug:"diana-kitala",fullName:"Diana Kitala"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"7030",title:"Satellite Systems",subtitle:"Design, Modeling, Simulation and Analysis",isOpenForSubmission:!1,hash:"b9db6d2645ef248ceb1b33ea75f38e88",slug:"satellite-systems-design-modeling-simulation-and-analysis",bookSignature:"Tien Nguyen",coverURL:"https://cdn.intechopen.com/books/images_new/7030.jpg",editedByType:"Edited by",editors:[{id:"210657",title:"Dr.",name:"Tien M.",middleName:"Manh",surname:"Nguyen",slug:"tien-m.-nguyen",fullName:"Tien M. Nguyen"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10413",title:"A Collection of Papers on Chaos Theory and Its Applications",subtitle:null,isOpenForSubmission:!1,hash:"900b71b164948830fec3d6254b7881f7",slug:"a-collection-of-papers-on-chaos-theory-and-its-applications",bookSignature:"Paul Bracken and Dimo I. Uzunov",coverURL:"https://cdn.intechopen.com/books/images_new/10413.jpg",editedByType:"Edited by",editors:[{id:"92883",title:"Prof.",name:"Paul",middleName:null,surname:"Bracken",slug:"paul-bracken",fullName:"Paul Bracken"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"9154",title:"Spinal Deformities in Adolescents, Adults and Older Adults",subtitle:null,isOpenForSubmission:!1,hash:"313f1dffa803b60a14ff1e6966e93d91",slug:"spinal-deformities-in-adolescents-adults-and-older-adults",bookSignature:"Josette Bettany-Saltikov and Gokulakannan Kandasamy",coverURL:"https://cdn.intechopen.com/books/images_new/9154.jpg",editedByType:"Edited by",editors:[{id:"94802",title:"Dr.",name:"Josette",middleName:null,surname:"Bettany-Saltikov",slug:"josette-bettany-saltikov",fullName:"Josette Bettany-Saltikov"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"8148",title:"Investment Strategies in Emerging New Trends in Finance",subtitle:null,isOpenForSubmission:!1,hash:"3b714d96a68d2acdfbd7b50aba6504ca",slug:"investment-strategies-in-emerging-new-trends-in-finance",bookSignature:"Reza Gharoie Ahangar and Asma Salman",coverURL:"https://cdn.intechopen.com/books/images_new/8148.jpg",editedByType:"Edited by",editors:[{id:"91081",title:"Dr.",name:"Reza",middleName:null,surname:"Gharoie Ahangar",slug:"reza-gharoie-ahangar",fullName:"Reza Gharoie Ahangar"}],equalEditorOne:{id:"206443",title:"Prof.",name:"Asma",middleName:null,surname:"Salman",slug:"asma-salman",fullName:"Asma Salman",profilePictureURL:"https://mts.intechopen.com/storage/users/206443/images/system/206443.png",biography:"Professor Asma Salman is a blockchain developer and Professor of Finance at the American University in the Emirates, UAE. An Honorary Global Advisor at the Global Academy of Finance and Management, USA, she completed her MBA in Finance and Accounting and earned a Ph.D. in Finance from an AACSB member, AMBA accredited, School of Management at Harbin Institute of Technology, China. Her research credentials include a one-year residency at the Brunel Business School, Brunel University, UK. Prof. Salman also served as the Dubai Cohort supervisor for DBA students under the Nottingham Business School, UK, for seven years and is currently a Ph.D. supervisor at the University of Northampton, UK, where she is a visiting fellow. She also served on the Board of Etihad Airlines during 2019–2020. One of her recent articles on “Bitcoin and Blockchain” gained wide visibility and she is an active speaker on Fintech, blockchain, and crypto events around the GCC. She holds various professional certifications including Chartered Fintech Professional (USA), Certified Financial Manager (USA), Women in Leadership and Management in Higher Education, (UK), and Taxation GCC VAT Compliance, (UK). She recently won an award for “Blockchain Trainer of the Year” from Berkeley Middle East. Other recognitions include the Women Leadership Impact Award by H.E First Lady of Armenia, Research Excellence Award, and the Global Inspirational Women Leadership Award by H.H Sheikh Juma Bin Maktoum Juma Al Maktoum.",institutionString:"American University in the Emirates",position:null,outsideEditionCount:0,totalCites:0,totalAuthoredChapters:"2",totalChapterViews:"0",totalEditedBooks:"2",institution:{name:"American University in the Emirates",institutionURL:null,country:{name:"United Arab Emirates"}}},equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10201",title:"Post-Transition Metals",subtitle:null,isOpenForSubmission:!1,hash:"cc7f53ff5269916e3ce29f65a51a87ae",slug:"post-transition-metals",bookSignature:"Mohammed Muzibur Rahman, Abdullah Mohammed Asiri, Anish Khan, Inamuddin and Thamer Tabbakh",coverURL:"https://cdn.intechopen.com/books/images_new/10201.jpg",editedByType:"Edited by",editors:[{id:"24438",title:"Prof.",name:"Mohammed Muzibur",middleName:null,surname:"Rahman",slug:"mohammed-muzibur-rahman",fullName:"Mohammed Muzibur Rahman"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"9959",title:"Biomedical Signal and Image Processing",subtitle:null,isOpenForSubmission:!1,hash:"22b87a09bd6df065d78c175235d367c8",slug:"biomedical-signal-and-image-processing",bookSignature:"Yongxia Zhou",coverURL:"https://cdn.intechopen.com/books/images_new/9959.jpg",editedByType:"Edited by",editors:[{id:"259308",title:"Dr.",name:"Yongxia",middleName:null,surname:"Zhou",slug:"yongxia-zhou",fullName:"Yongxia Zhou"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"8472",title:"Bioactive Compounds in Nutraceutical and Functional Food for Good Human Health",subtitle:null,isOpenForSubmission:!1,hash:"8855452919b8495810ef8e88641feb20",slug:"bioactive-compounds-in-nutraceutical-and-functional-food-for-good-human-health",bookSignature:"Kavita Sharma, Kanchan Mishra, Kula Kamal Senapati and Corina Danciu",coverURL:"https://cdn.intechopen.com/books/images_new/8472.jpg",editedByType:"Edited by",editors:[{id:"197731",title:"Dr.",name:"Kavita",middleName:null,surname:"Sharma",slug:"kavita-sharma",fullName:"Kavita Sharma"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"8760",title:"Structure Topology and Symplectic Geometry",subtitle:null,isOpenForSubmission:!1,hash:"8974840985ec3652492c83e20233bf02",slug:"structure-topology-and-symplectic-geometry",bookSignature:"Kamal Shah and Min Lei",coverURL:"https://cdn.intechopen.com/books/images_new/8760.jpg",editedByType:"Edited by",editors:[{id:"231748",title:"Dr.",name:"Kamal",middleName:null,surname:"Shah",slug:"kamal-shah",fullName:"Kamal Shah"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}}]},subject:{topic:{id:"678",title:"Soil Physics",slug:"soil-physics",parent:{title:"Soil Science",slug:"earth-and-planetary-sciences-soil-science"},numberOfBooks:1,numberOfAuthorsAndEditors:49,numberOfWosCitations:68,numberOfCrossrefCitations:28,numberOfDimensionsCitations:72,videoUrl:null,fallbackUrl:null,description:null},booksByTopicFilter:{topicSlug:"soil-physics",sort:"-publishedDate",limit:12,offset:0},booksByTopicCollection:[{type:"book",id:"220",title:"Hydraulic Conductivity",subtitle:"Issues, Determination and Applications",isOpenForSubmission:!1,hash:"77f359622d92baeaf977c1632585e1b4",slug:"hydraulic-conductivity-issues-determination-and-applications",bookSignature:"Lakshmanan Elango",coverURL:"https://cdn.intechopen.com/books/images_new/220.jpg",editedByType:"Edited by",editors:[{id:"47726",title:"Prof.",name:"Lakshmanan",middleName:null,surname:"Elango",slug:"lakshmanan-elango",fullName:"Lakshmanan Elango"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}}],booksByTopicTotal:1,mostCitedChapters:[{id:"23447",doi:"10.5772/20872",title:"Impacts of Wildfire Severity on Hydraulic Conductivity in Forest, Woodland, and Grassland Soils",slug:"impacts-of-wildfire-severity-on-hydraulic-conductivity-in-forest-woodland-and-grassland-soils",totalDownloads:2336,totalCrossrefCites:0,totalDimensionsCites:11,book:{slug:"hydraulic-conductivity-issues-determination-and-applications",title:"Hydraulic Conductivity",fullTitle:"Hydraulic Conductivity - Issues, Determination and Applications"},signatures:"Daniel G. Neary",authors:[{id:"40845",title:"Dr.",name:"Daniel",middleName:"George",surname:"Neary",slug:"daniel-neary",fullName:"Daniel Neary"}]},{id:"23446",doi:"10.5772/18580",title:"Plant Hydraulic Conductivity: The Aquaporins Contribution",slug:"plant-hydraulic-conductivity-the-aquaporins-contribution",totalDownloads:4893,totalCrossrefCites:4,totalDimensionsCites:10,book:{slug:"hydraulic-conductivity-issues-determination-and-applications",title:"Hydraulic Conductivity",fullTitle:"Hydraulic Conductivity - Issues, Determination and Applications"},signatures:"María del Carmen Martínez-Ballesta, María del Carmen Rodríguez-Hernández, Carlos Alcaraz-López, César Mota-Cadenas, Beatriz Muries and Micaela Carvajal",authors:[{id:"31917",title:"Dr.",name:"Micaela",middleName:null,surname:"Carvajal",slug:"micaela-carvajal",fullName:"Micaela Carvajal"},{id:"44881",title:"Dr.",name:"MCarmen",middleName:null,surname:"Martínez-Ballesta",slug:"mcarmen-martinez-ballesta",fullName:"MCarmen Martínez-Ballesta"},{id:"44891",title:"Dr.",name:"Carlos",middleName:null,surname:"Alcaraz-López",slug:"carlos-alcaraz-lopez",fullName:"Carlos Alcaraz-López"},{id:"44892",title:"Mrs",name:"Beatriz",middleName:null,surname:"Muries",slug:"beatriz-muries",fullName:"Beatriz Muries"},{id:"44893",title:"Mrs",name:"MCarmen",middleName:null,surname:"Rodríguez-Hernández",slug:"mcarmen-rodriguez-hernandez",fullName:"MCarmen Rodríguez-Hernández"},{id:"44894",title:"Mr",name:"Cesar",middleName:null,surname:"Mota-Cádenas",slug:"cesar-mota-cadenas",fullName:"Cesar Mota-Cádenas"}]},{id:"23448",doi:"10.5772/22753",title:"Estimating Hydraulic Conductivity Using Pedotransfer Functions",slug:"estimating-hydraulic-conductivity-using-pedotransfer-functions",totalDownloads:5201,totalCrossrefCites:6,totalDimensionsCites:9,book:{slug:"hydraulic-conductivity-issues-determination-and-applications",title:"Hydraulic Conductivity",fullTitle:"Hydraulic Conductivity - Issues, Determination and Applications"},signatures:"Ali Rasoulzadeh",authors:[{id:"49062",title:"Dr.",name:"Ali",middleName:null,surname:"Rasoulzadeh",slug:"ali-rasoulzadeh",fullName:"Ali Rasoulzadeh"}]}],mostDownloadedChaptersLast30Days:[{id:"23457",title:"Contribution of Seismic and Acoustic Methods to Reservoir Model Building",slug:"contribution-of-seismic-and-acoustic-methods-to-reservoir-model-building",totalDownloads:2731,totalCrossrefCites:1,totalDimensionsCites:4,book:{slug:"hydraulic-conductivity-issues-determination-and-applications",title:"Hydraulic Conductivity",fullTitle:"Hydraulic Conductivity - Issues, Determination and Applications"},signatures:"Jean Luc Mari and Frederick Delay",authors:[{id:"46025",title:"Prof.",name:"Jean Luc",middleName:"Olivier",surname:"Mari",slug:"jean-luc-mari",fullName:"Jean Luc Mari"},{id:"105115",title:"Prof.",name:"Frederick",middleName:null,surname:"Delay",slug:"frederick-delay",fullName:"Frederick Delay"}]},{id:"23458",title:"Effects of Model Layer Simplification Using Composite Hydraulic Properties",slug:"effects-of-model-layer-simplification-using-composite-hydraulic-properties",totalDownloads:1517,totalCrossrefCites:0,totalDimensionsCites:0,book:{slug:"hydraulic-conductivity-issues-determination-and-applications",title:"Hydraulic Conductivity",fullTitle:"Hydraulic Conductivity - Issues, Determination and Applications"},signatures:"Nicasio Sepúlveda and Eve L. Kuniansky",authors:[{id:"28253",title:"Dr.",name:"Nicasio",middleName:null,surname:"Sepulveda",slug:"nicasio-sepulveda",fullName:"Nicasio Sepulveda"},{id:"42738",title:"Prof.",name:"Eve",middleName:"L",surname:"Kuniansky",slug:"eve-kuniansky",fullName:"Eve Kuniansky"}]},{id:"23447",title:"Impacts of Wildfire Severity on Hydraulic Conductivity in Forest, Woodland, and Grassland Soils",slug:"impacts-of-wildfire-severity-on-hydraulic-conductivity-in-forest-woodland-and-grassland-soils",totalDownloads:2336,totalCrossrefCites:0,totalDimensionsCites:11,book:{slug:"hydraulic-conductivity-issues-determination-and-applications",title:"Hydraulic Conductivity",fullTitle:"Hydraulic Conductivity - Issues, Determination and Applications"},signatures:"Daniel G. Neary",authors:[{id:"40845",title:"Dr.",name:"Daniel",middleName:"George",surname:"Neary",slug:"daniel-neary",fullName:"Daniel Neary"}]},{id:"23441",title:"Role of Hydraulic Conductivity on Surface and Groundwater Interaction in Wetlands",slug:"role-of-hydraulic-conductivity-on-surface-and-groundwater-interaction-in-wetlands",totalDownloads:4058,totalCrossrefCites:0,totalDimensionsCites:0,book:{slug:"hydraulic-conductivity-issues-determination-and-applications",title:"Hydraulic Conductivity",fullTitle:"Hydraulic Conductivity - Issues, Determination and Applications"},signatures:"Cevza Melek Kazezyılmaz-Alhan",authors:[{id:"62359",title:"Dr.",name:"Cevza",middleName:"Melek",surname:"Kazezyilmaz-Alhan",slug:"cevza-kazezyilmaz-alhan",fullName:"Cevza Kazezyilmaz-Alhan"}]},{id:"23448",title:"Estimating Hydraulic Conductivity Using Pedotransfer Functions",slug:"estimating-hydraulic-conductivity-using-pedotransfer-functions",totalDownloads:5201,totalCrossrefCites:6,totalDimensionsCites:9,book:{slug:"hydraulic-conductivity-issues-determination-and-applications",title:"Hydraulic Conductivity",fullTitle:"Hydraulic Conductivity - Issues, Determination and Applications"},signatures:"Ali Rasoulzadeh",authors:[{id:"49062",title:"Dr.",name:"Ali",middleName:null,surname:"Rasoulzadeh",slug:"ali-rasoulzadeh",fullName:"Ali Rasoulzadeh"}]},{id:"23451",title:"Analytical and Numerical Solutions of Richards' Equation with Discussions on Relative Hydraulic Conductivity",slug:"analytical-and-numerical-solutions-of-richards-equation-with-discussions-on-relative-hydraulic-condu",totalDownloads:8532,totalCrossrefCites:1,totalDimensionsCites:6,book:{slug:"hydraulic-conductivity-issues-determination-and-applications",title:"Hydraulic Conductivity",fullTitle:"Hydraulic Conductivity - Issues, Determination and Applications"},signatures:"Fred T. Tracy",authors:[{id:"31698",title:"Dr.",name:"Fred",middleName:null,surname:"Tracy",slug:"fred-tracy",fullName:"Fred Tracy"}]},{id:"23449",title:"Determination of Hydraulic Conductivity Based on (Soil) - Moisture Content of Fine Grained Soils",slug:"determination-of-hydraulic-conductivity-based-on-soil-moisture-content-of-fine-grained-soils",totalDownloads:9152,totalCrossrefCites:4,totalDimensionsCites:8,book:{slug:"hydraulic-conductivity-issues-determination-and-applications",title:"Hydraulic Conductivity",fullTitle:"Hydraulic Conductivity - Issues, Determination and Applications"},signatures:"Rainer Schuhmann, Franz Königer, Katja Emmerich, Eduard Stefanescu and Markus Stacheder",authors:[{id:"38615",title:"Dr.",name:"Rainer",middleName:null,surname:"Schuhmann",slug:"rainer-schuhmann",fullName:"Rainer Schuhmann"},{id:"46537",title:"Dr.",name:"Katja",middleName:null,surname:"Emmerich",slug:"katja-emmerich",fullName:"Katja Emmerich"},{id:"46538",title:"Mr",name:"Franz",middleName:null,surname:"Königer",slug:"franz-koniger",fullName:"Franz Königer"},{id:"95063",title:"Mr.",name:"Eduard",middleName:null,surname:"Stefanescu",slug:"eduard-stefanescu",fullName:"Eduard Stefanescu"},{id:"95065",title:"Dr.",name:"Markus",middleName:null,surname:"Stacheder",slug:"markus-stacheder",fullName:"Markus Stacheder"}]},{id:"23450",title:"Determining Hydraulic Conductivity from Soil Characteristics with Applications for Modelling Stream Discharge in Forest Catchments",slug:"determining-hydraulic-conductivity-from-soil-characteristics-with-applications-for-modelling-stream-",totalDownloads:3170,totalCrossrefCites:3,totalDimensionsCites:2,book:{slug:"hydraulic-conductivity-issues-determination-and-applications",title:"Hydraulic Conductivity",fullTitle:"Hydraulic Conductivity - Issues, Determination and Applications"},signatures:"Marie-France Jutras and Paul A. Arp",authors:[{id:"38345",title:"Prof.",name:"Paul",middleName:"A.",surname:"Arp",slug:"paul-arp",fullName:"Paul Arp"},{id:"46711",title:"Ms.",name:"Marie-France",middleName:null,surname:"Jutras",slug:"marie-france-jutras",fullName:"Marie-France Jutras"}]},{id:"23453",title:"Contribution of Tracers for Understanding the Hydrodynamics of Karstic Aquifers Crossed by Allogenic Rivers, Spain",slug:"contribution-of-tracers-for-understanding-the-hydrodynamics-of-karstic-aquifers-crossed-by-allogenic",totalDownloads:1805,totalCrossrefCites:3,totalDimensionsCites:4,book:{slug:"hydraulic-conductivity-issues-determination-and-applications",title:"Hydraulic Conductivity",fullTitle:"Hydraulic Conductivity - Issues, Determination and Applications"},signatures:"Rafael Segovia Rosales, Eugenio Sanz Pérez and Ignacio Menéndez Pidal",authors:[{id:"46188",title:"Dr.",name:"Eugenio",middleName:null,surname:"Sanz",slug:"eugenio-sanz",fullName:"Eugenio Sanz"},{id:"84990",title:"Dr.",name:"Rafael",middleName:null,surname:"Segovia",slug:"rafael-segovia",fullName:"Rafael Segovia"},{id:"84993",title:"Prof.",name:"Ignacio",middleName:null,surname:"Menendez Pidal",slug:"ignacio-menendez-pidal",fullName:"Ignacio Menendez Pidal"}]},{id:"23443",title:"Variation in Hydraulic Conductivity by the Mobility of Heavy Metals in a Compacted Residual Soil",slug:"variation-in-hydraulic-conductivity-by-the-mobility-of-heavy-metals-in-a-compacted-residual-soil",totalDownloads:2473,totalCrossrefCites:0,totalDimensionsCites:1,book:{slug:"hydraulic-conductivity-issues-determination-and-applications",title:"Hydraulic Conductivity",fullTitle:"Hydraulic Conductivity - Issues, Determination and Applications"},signatures:"Rejane Nascentes, Izabel Christina Duarte de Azevedo and Ernani Lopes Possato",authors:[{id:"31493",title:"Prof.",name:"Rejane",middleName:null,surname:"Nascentes",slug:"rejane-nascentes",fullName:"Rejane Nascentes"},{id:"44566",title:"MSc.",name:"Ernani",middleName:null,surname:"Possato",slug:"ernani-possato",fullName:"Ernani Possato"},{id:"89053",title:"Prof.",name:"Izabel",middleName:null,surname:"Azevedo",slug:"izabel-azevedo",fullName:"Izabel Azevedo"}]}],onlineFirstChaptersFilter:{topicSlug:"soil-physics",limit:3,offset:0},onlineFirstChaptersCollection:[],onlineFirstChaptersTotal:0},preDownload:{success:null,errors:{}},aboutIntechopen:{},privacyPolicy:{},peerReviewing:{},howOpenAccessPublishingWithIntechopenWorks:{},sponsorshipBooks:{sponsorshipBooks:[],offset:0,limit:8,total:null},route:{name:"chapter.detail",path:"/books/hepatitis-a-and-other-associated-hepatobiliary-diseases/primary-sclerosing-cholangitis-psc-in-children",hash:"",query:{},params:{book:"hepatitis-a-and-other-associated-hepatobiliary-diseases",chapter:"primary-sclerosing-cholangitis-psc-in-children"},fullPath:"/books/hepatitis-a-and-other-associated-hepatobiliary-diseases/primary-sclerosing-cholangitis-psc-in-children",meta:{},from:{name:null,path:"/",hash:"",query:{},params:{},fullPath:"/",meta:{}}}},function(){var e;(e=document.currentScript||document.scripts[document.scripts.length-1]).parentNode.removeChild(e)}()