Comparison of mechanical and chemical textile recycling techniques.
\r\n\t
",isbn:"978-1-83969-467-7",printIsbn:"978-1-83969-466-0",pdfIsbn:"978-1-83969-468-4",doi:null,price:0,priceEur:0,priceUsd:0,slug:null,numberOfPages:0,isOpenForSubmission:!0,hash:"a6f32d3f2227df637fffd969a0cb5ed7",bookSignature:"Dr. Peter A. Clark",publishedDate:null,coverURL:"https://cdn.intechopen.com/books/images_new/10878.jpg",keywords:"Preimplantation Genetic Diagnosis, Medical Futility, Definition of Death, Extraordinary/Ordinary Means, Need for New Antibiotics, Role of Big Pharma, Uterine Transplants, Face Transplants, Confidentiality, Ethical Decision Making, Harm Reduction Theory, Safe Injection Sites",numberOfDownloads:null,numberOfWosCitations:0,numberOfCrossrefCitations:null,numberOfDimensionsCitations:null,numberOfTotalCitations:null,isAvailableForWebshopOrdering:!0,dateEndFirstStepPublish:"February 8th 2021",dateEndSecondStepPublish:"March 8th 2021",dateEndThirdStepPublish:"May 7th 2021",dateEndFourthStepPublish:"July 26th 2021",dateEndFifthStepPublish:"September 24th 2021",remainingDaysToSecondStep:"a month",secondStepPassed:!0,currentStepOfPublishingProcess:3,editedByType:null,kuFlag:!1,biosketch:"A faculty member for medical residents, medical students, and undergraduate students and a researcher in issues that challenge the national and global arenas. He is also the Bioethicist for over 20 health care facilities in the United States and Palestine.",coeditorOneBiosketch:null,coeditorTwoBiosketch:null,coeditorThreeBiosketch:null,coeditorFourBiosketch:null,coeditorFiveBiosketch:null,editors:[{id:"58889",title:"Dr.",name:"Peter A.",middleName:null,surname:"Clark",slug:"peter-a.-clark",fullName:"Peter A. Clark",profilePictureURL:"https://mts.intechopen.com/storage/users/58889/images/system/58889.jpg",biography:"Peter A. Clark, S.J., Ph.D. is the John McShain Chair in Ethics and Director of the Institute of Clinical Bioethics at Saint Joseph’s University in Philadelphia, Pennsylvania. He is also the Bioethicist for over 20 health care facilities in the United States and Palestine. He is the author of To Treat or Not To Treat and Death With Dignity and has published numerous peer-reviewed articles in national and international medical and ethical journals.",institutionString:"Saint Joseph's University",position:null,outsideEditionCount:0,totalCites:0,totalAuthoredChapters:"3",totalChapterViews:"0",totalEditedBooks:"2",institution:{name:"Saint Joseph's University",institutionURL:null,country:{name:"United States of America"}}}],coeditorOne:null,coeditorTwo:null,coeditorThree:null,coeditorFour:null,coeditorFive:null,topics:[{id:"16",title:"Medicine",slug:"medicine"}],chapters:null,productType:{id:"1",title:"Edited Volume",chapterContentType:"chapter",authoredCaption:"Edited by"},personalPublishingAssistant:{id:"346794",firstName:"Mia",lastName:"Miskulin",middleName:null,title:"Ms.",imageUrl:"https://mts.intechopen.com/storage/users/346794/images/15795_n.png",email:"mia@intechopen.com",biography:"As an Author Service Manager my responsibilities include monitoring and facilitating all publishing activities for authors and editors. From chapter submission and review, to approval and revision, copyediting and design, until final publication, I work closely with authors and editors to ensure a simple and easy publishing process. I maintain constant and effective communication with authors, editors and reviewers, which allows for a level of personal support that enables contributors to fully commit and concentrate on the chapters they are writing, editing, or reviewing. I assist authors in the preparation of their full chapter submissions and track important deadlines and ensure they are met. I help to coordinate internal processes such as linguistic review, and monitor the technical aspects of the process. As an ASM I am also involved in the acquisition of editors. Whether that be identifying an exceptional author and proposing an editorship collaboration, or contacting researchers who would like the opportunity to work with IntechOpen, I establish and help manage author and editor acquisition and contact."}},relatedBooks:[{type:"book",id:"1743",title:"Contemporary Issues in Bioethics",subtitle:null,isOpenForSubmission:!1,hash:"978cee44b901ff59a20a088f7dcfdbc5",slug:"contemporary-issues-in-bioethics",bookSignature:"Peter A. Clark",coverURL:"https://cdn.intechopen.com/books/images_new/1743.jpg",editedByType:"Edited by",editors:[{id:"58889",title:"Dr.",name:"Peter A.",surname:"Clark",slug:"peter-a.-clark",fullName:"Peter A. Clark"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"5418",title:"Bioethics",subtitle:"Medical, Ethical and Legal Perspectives",isOpenForSubmission:!1,hash:"767abdeb559d66387ad2a75b5d26e078",slug:"bioethics-medical-ethical-and-legal-perspectives",bookSignature:"Peter A. Clark",coverURL:"https://cdn.intechopen.com/books/images_new/5418.jpg",editedByType:"Edited by",editors:[{id:"58889",title:"Dr.",name:"Peter A.",surname:"Clark",slug:"peter-a.-clark",fullName:"Peter A. Clark"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"6550",title:"Cohort Studies in Health Sciences",subtitle:null,isOpenForSubmission:!1,hash:"01df5aba4fff1a84b37a2fdafa809660",slug:"cohort-studies-in-health-sciences",bookSignature:"R. Mauricio Barría",coverURL:"https://cdn.intechopen.com/books/images_new/6550.jpg",editedByType:"Edited by",editors:[{id:"88861",title:"Dr.",name:"R. Mauricio",surname:"Barría",slug:"r.-mauricio-barria",fullName:"R. Mauricio Barría"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"1591",title:"Infrared Spectroscopy",subtitle:"Materials Science, Engineering and Technology",isOpenForSubmission:!1,hash:"99b4b7b71a8caeb693ed762b40b017f4",slug:"infrared-spectroscopy-materials-science-engineering-and-technology",bookSignature:"Theophile Theophanides",coverURL:"https://cdn.intechopen.com/books/images_new/1591.jpg",editedByType:"Edited by",editors:[{id:"37194",title:"Dr.",name:"Theophanides",surname:"Theophile",slug:"theophanides-theophile",fullName:"Theophanides Theophile"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"3161",title:"Frontiers in Guided Wave Optics and Optoelectronics",subtitle:null,isOpenForSubmission:!1,hash:"deb44e9c99f82bbce1083abea743146c",slug:"frontiers-in-guided-wave-optics-and-optoelectronics",bookSignature:"Bishnu Pal",coverURL:"https://cdn.intechopen.com/books/images_new/3161.jpg",editedByType:"Edited by",editors:[{id:"4782",title:"Prof.",name:"Bishnu",surname:"Pal",slug:"bishnu-pal",fullName:"Bishnu Pal"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"3092",title:"Anopheles mosquitoes",subtitle:"New insights into malaria vectors",isOpenForSubmission:!1,hash:"c9e622485316d5e296288bf24d2b0d64",slug:"anopheles-mosquitoes-new-insights-into-malaria-vectors",bookSignature:"Sylvie Manguin",coverURL:"https://cdn.intechopen.com/books/images_new/3092.jpg",editedByType:"Edited by",editors:[{id:"50017",title:"Prof.",name:"Sylvie",surname:"Manguin",slug:"sylvie-manguin",fullName:"Sylvie Manguin"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"371",title:"Abiotic Stress in Plants",subtitle:"Mechanisms and Adaptations",isOpenForSubmission:!1,hash:"588466f487e307619849d72389178a74",slug:"abiotic-stress-in-plants-mechanisms-and-adaptations",bookSignature:"Arun Shanker and B. Venkateswarlu",coverURL:"https://cdn.intechopen.com/books/images_new/371.jpg",editedByType:"Edited by",editors:[{id:"58592",title:"Dr.",name:"Arun",surname:"Shanker",slug:"arun-shanker",fullName:"Arun Shanker"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"72",title:"Ionic Liquids",subtitle:"Theory, Properties, New Approaches",isOpenForSubmission:!1,hash:"d94ffa3cfa10505e3b1d676d46fcd3f5",slug:"ionic-liquids-theory-properties-new-approaches",bookSignature:"Alexander Kokorin",coverURL:"https://cdn.intechopen.com/books/images_new/72.jpg",editedByType:"Edited by",editors:[{id:"19816",title:"Prof.",name:"Alexander",surname:"Kokorin",slug:"alexander-kokorin",fullName:"Alexander Kokorin"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"314",title:"Regenerative Medicine and Tissue Engineering",subtitle:"Cells and Biomaterials",isOpenForSubmission:!1,hash:"bb67e80e480c86bb8315458012d65686",slug:"regenerative-medicine-and-tissue-engineering-cells-and-biomaterials",bookSignature:"Daniel Eberli",coverURL:"https://cdn.intechopen.com/books/images_new/314.jpg",editedByType:"Edited by",editors:[{id:"6495",title:"Dr.",name:"Daniel",surname:"Eberli",slug:"daniel-eberli",fullName:"Daniel Eberli"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"57",title:"Physics and Applications of Graphene",subtitle:"Experiments",isOpenForSubmission:!1,hash:"0e6622a71cf4f02f45bfdd5691e1189a",slug:"physics-and-applications-of-graphene-experiments",bookSignature:"Sergey Mikhailov",coverURL:"https://cdn.intechopen.com/books/images_new/57.jpg",editedByType:"Edited by",editors:[{id:"16042",title:"Dr.",name:"Sergey",surname:"Mikhailov",slug:"sergey-mikhailov",fullName:"Sergey Mikhailov"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}}]},chapter:{item:{type:"chapter",id:"70502",title:"Small Grains as Winter Pasture in the Southern Great Plains of the United States",doi:"10.5772/intechopen.90524",slug:"small-grains-as-winter-pasture-in-the-southern-great-plains-of-the-united-states",body:'Small grains, such as wheat (
As a dual-purpose crop, small-grain cereals have other unnoticed advantages, such as weed and disease suppression by grazing animals. However, grazing small grains at the vegetative stage can reduce grain yield later in the summer depending on management practices and growing conditions, especially moisture. Farmers in the SGP often prefer the use of small grains for dual purpose mainly because of alternative income options from livestock and/or grain, ensuring relatively stable income especially when product prices fluctuate with market demands. As one of the crop-livestock integration methods, dual-purpose cereal crops can advance sustainable development through increased environmental balance, livelihood diversification, and flexibility to economic stresses, thus reducing risks [3].
Another aspect of crop-livestock integration is the use of cereal as both a cover crop and forage where plants seasonally cover the soil while serving as forage. Cover crops protect the soil primarily from wind and water erosion, improve soil quality, and increase nutrient cycling [4, 5, 6]. While small grains offer different advantages in the integrated crop-livestock system in the SGP, farming management practices, such as planting date and grazing intensity and duration, which depend on the weather and growth stage of the crop, can maximize the benefits [7, 8]. However, understanding overall management practices and fitting crops to climatic conditions is necessary for reliable accomplishment [9]. In this chapter, we present the significance of small grains as winter pasture in the SGP.
The SGP of the United States extends from east of the Rocky Mountains in Colorado and New Mexico to Oklahoma and Kansas. The region also includes the Texas Panhandle and adjoining areas of West Texas and eastern New Mexico [10, 11]. The majority of the region is represented by Kansas, Oklahoma, and Texas. Agriculture is the most important land use in the region, where farming is more common in the east, while ranching dominates in the western part. The region mainly consists of mixed-grass and shortgrass terrestrial ecosystems. The main agricultural activity in the shortgrass prairie is animal grazing, while wheat cultivation dominates in the mixed-grass prairie [12]. Overtime, much of the native ecosystems have been converted to either farmland or pasture grazed by domestic livestock [13]. In 2012, the value of agricultural activities in the region surpassed $59 billion, of which livestock contributed more than half of the total [2]. Farming is generally water-limited in the region, as drought occasionally occurs and impacts the whole agricultural system [14, 15].
The climate of the SGP is typically characterized with low precipitation, high evaporation rate, windy hot summers, and a wide range of daily and seasonal temperatures [10, 11]. The weather is highly variable, spanning from extreme cold to extreme heat and from very limited or no rain to extreme rainfall or flooding conditions, which often affect the overall socioeconomic system in the region [16]. These extreme weather conditions sometimes enable proliferation of invasive weeds and pests, leading to ecosystem imbalance.
Although temperature and precipitation are highly variable, making it difficult to define a crop that performs well region-wide [17], the mild winter favors cool-season crops for grazing animals [18]. The region is known for its mixed farming practices, producing both livestock and grain. The most common crop-livestock integration methods in the United States are sod-based crop rotations, livestock grazing of crops within cash crop rotations, grazing of crop residues, sod intercropping, dual-purpose cereal crops, and silvopasture [19]. Wherever it is practiced, crop-livestock integration in the United States can be implemented either within the farm, in which crops and livestock produced at the same time and space, or among the farms, in which farmers work together in agreements to attain the intended synergies between production systems [20]. Dual-purpose cereal production has been the preferred system in the SGP because it gives relatively stable income [21]. In dual-purpose settings, small grains are grazed without removing terminal meristems so that plants regenerate and grow for grain production. Based on grain and cattle (
Small-grain forage is important in agricultural systems worldwide. In some parts of the world, intensive grazing of small-grain pasture occurs only once but continuously for days [22, 23, 24]. In the Central and Southern Great Plains of the United States, however, grazing is often at lower stocking rates for an extended period of time (months) [25, 26]. The grassland in the SGP is predominantly warm-season species, and hence the cool-season small-grain pasture plays critical roles in supplying nutritionally high-quality forage in winter when the quantity and quality of warm-season forage become low [27, 28].
Forage-based livestock production is an important element of the SGP agricultural economy [29]. This region plays an important role in the beef industry of the United States due to the strategic location between the humid southeast where a majority of the cow/calf enterprises reside and the High Plains region where the grain production and the finishing feedlots exclusively reside. Millions of stocker calves from more than 500,000 farms across the southern United States pass through the SGP on their way to the feedlots [30]. Managing small grains for both grazing and grain is an alternative and sustainable practice that supports the crop-livestock system in the region [30, 31, 32]. Cool-season small-grain forage provides more flexible and profitable crop-livestock systems, in which producers can adjust production outcomes they want based on market values of grains and livestock [28, 33]. In the past, it has been estimated that 30 to 80% of the total wheat area planted in the SGP is grazed at some time during the growing season and 10 to 20% of the area is grazed throughout the spring and not harvested for grain, which is referred to as “graze-out” [34]. When combined with summer annual forages, the winter annual small-grain forages can result in the best net return in unit area of land [35].
Small grains generally grow faster in winter than most other pastures and can also recover after grazing [36]. Small grains are also known to have high tillering capacity that enables them to tolerate stress from grazing. The average autumn-winter forage yield of small grains in the SGP is about 2500–3500 kg ha−1; however, large yield variation was observed depending on growing conditions [37, 38]. In addition, small-grain forage is high in protein content and digestibility and hence promotes more weight gain in grazing animals [39]. In Texas, Oklahoma, and Kansas, small grains are a good source of high-quality pasture from late autumn to early spring [40]. Several studies indicated that small grains produce about 1.0 kg d−1 of average daily gain (ADG) in grazing animals [41, 42].
To maximize the advantage of small grains as winter pasture, proper management practices should be followed. For example, early planting in a prepared seedbed is important to ensure early availability of the pasture for grazing. However, early planting may not be feasible if there are biotic and abiotic stresses in the farm. Grazing too early when plants are small (not well-rooted) leads to pulling up of plants and also severe damage from trampling. In the dual-purpose production system, termination of grazing at the first hollow stem (jointing) stage is critical to achieve the best economic return [43]. Delaying the termination of grazing will reduce subsequent grain yield by approximately as much as five percent per day for every day past the first hollow stem [8].
Although winter wheat is the main cool-season forage source in the region, other small grains in general are also important for their wide adaptability and versatility in forage use, such as pasture, green cut, silage, and hay. The most commonly grown small grains for winter pasture in the region are wheat, rye, triticale, and oat. Compared to wheat, other small grains (rye, triticale, and oat) can produce greater forage yield in a specific season (autumn, winter, or spring), and they have competitive advantage in graze-out systems. Farmers select the crop that fits the need of winter pasture based on the characteristics of the crops, available management practices, and production goals.
Wheat is the largest and most important crop in the SGP, with 3.1, 1.8, and 1.8 million hectares being planted in Kansas, Oklahoma, and Texas, respectively, in 2018 [1]. Wherever growing conditions are favorable, the economic advantage of managing wheat as a dual-purpose crop is better than managing it as a grain-only or forage-only crop [44, 45]. Wheat cultivars, such as “Endurance” and “Duster,” with superior dual-purpose production have been released by the Oklahoma Agricultural Experiment Station [46, 47].
Obviously, the main reason why wheat is the most commonly planted small-grain species for grazing is its dual-purpose economic flexibility in the SGP. However, wheat is below average in amount of early growth and total forage yield compared to other small grains. Wheat is considered more tolerant to wet clay soils than the other small-grain species. Wheat forage is high in protein, energy, and minerals but low in fiber. To maximize forage yield in a dual-purpose winter wheat production system, the crop is often planted early in the autumn so that grazing can begin in late autumn. It is also very important to stop grazing at the first hollow stem stage when dormancy of the crop is released. Depending on the availability of moisture, wheat pasture can last 4–5 months.
Although rye acreage in the United States is much lower than wheat and oat acreages, it is an important forage crop in the SGP. Only 20% of the rye acreage in the United States is harvested [1], indicating that the majority of the crop is used for grazing animals. Oklahoma is the largest rye-growing state in the United States [1], at least partially because of the historical contribution of the Noble Research Institute in releasing a few well-known rye cultivars, such as “Elbon” (1956), which is still widely grown today. The Noble Research Institute has also released “Maton” (1975), “Oklon” (1993), “Bates” (1995), “Maton II” (2007), and “Bates RS4” (2013) rye cultivars, which were primarily selected for increasing autumn-winter production.
Among all small-grain cereals, rye is the most winter-hardy crop. It is proved to be the best in performance, especially under stressed growing conditions, because of its excellent biotic stress tolerance to multiple diseases and abiotic stress tolerance to frost, drought, low pH, and marginal soil fertility [48, 49]. Rye performs better than other small grains, especially in the light-textured sandy soils, due to its prolific root system. It grows faster and produces more forage than wheat from autumn to winter. Livestock producers consider rye the most dependable cereal for winter grazing because of its reliable and great forage production [50, 51] and lower potential for causing grass tetany (livestock disease caused by magnesium deficiency) [52].
The main drawback of rye is that it is considered a terrible weed in wheat grown for grain, so it should not be planted in areas expected to be used for wheat grain production in the future. In addition, since rye develops fast and matures early, rye flowers often encounter late-spring freezing damage, causing potential seed yield loss.
The progress of increasing rye forage yield has been minimal because of limited breeding efforts, as only a few institutes, such as the University of Florida and the Noble Research Institute, have rye breeding programs. Cultivars commonly grown in the southern United States are those released many years ago. Rye is also an important grain crop worldwide, with 75% of grain production from Russia, Poland, Germany, and Ukraine [48].
In addition, rye is the most widely grown cover crop for sustainable agriculture because of its competitive ability to suppress weeds and scavenge residual soil nitrogen after other crops. Cereal rye is used widely as a winter annual cover crop in the United States because of its winterhardiness, high biomass production, and residues against weed species [53]. Studies have indicated that rye cover crop improves soil organic matter, nitrogen mineralization, and particulate organic matter [54].
Triticale is a man-made crop from hybridizing wheat (
Triticale is an important crop especially in livestock farming systems, in which the crop is mainly produced for animal feed grain and/or forage [57, 58, 59, 60]. In the SGP, triticale is grown mainly for grazing because of its superior performance in forage biomass production [56]. The forage yield of triticale is similar to that of rye but greater than that of wheat and oat in the southern Oklahoma [61]. Triticale also has greater forage quality for grazing animals when compared to rye [56]. In addition, triticale is a preferred forage crop for producing silage to cover the forage quality gap during dry, hot summers because of its high yielding and nutritional forage [56, 62]. Therefore, triticale is becoming more popular as an alternative forage to wheat and rye in the SGP, and it has the greatest potential for improvement due to its short breeding history [56].
Oat is another cereal commonly grown for grain and forage throughout the world. It is produced mainly in temperate, cool, and subtropical climates for grain and different forms of animal feed [63]. In the United States, spring oat is primarily produced for grain, while winter type is often grown for forage and in some cases as a dual-purpose crop [63].
The use of winter oat as pasture or forage is common in the SGP of the United States [64]. Oat is an important forage crop in the region and is a useful alternative to forage wheat for stocker cattle production [63]. Oat grows fast and generates very competitive forage biomass yield in autumn and spring when air temperature is optimal for the crop; however, it produces much less forage in winter than wheat, rye, and triticale because of its sensitivity to freezing temperatures. Therefore, improving winterhardiness is one of the main breeding objectives for winter forage oat. In addition, compared to other small grains, oat is in general more susceptible to various diseases, and it does not grow well in low-input systems; thus, it is not recommended for marginal land. Oat is generally the most preferred forage to grazing animals among all small grains due to its superior palatability.
In summary, pasture production varies greatly among small-grain cereals. Comparing forage, especially for stocker development, requires different considerations specific to the farm, growing season, and climatic conditions. For example, oat is the best for autumn forage yield on clay soil at Ardmore, Oklahoma, while rye is the best on sandy soil at Burneyville, Oklahoma (Figures 1 and 2). Therefore, a holistic understanding of production environment, available management options, and economic analysis is key to attain the intended use. The availability of alternative forage options of small grains enables producers to make decisions that best fit their specific farm and climatic conditions.
Relative pasture production distribution of cool season small grain crops on heavy soil at Ardmore, Oklahoma.
Relative pasture production distribution of cool season small grain crops on sandy soil at Burneyville, Oklahoma.
Since small-grain cereals are produced mainly for grain, breeding efforts to improve small grains mostly focus on increasing grain yield and quality worldwide. Although small-grain cereals are also widely used as forage crops, cultivars being used for winter pastures were mostly developed for grain rather than forage. Therefore, there is a need to improve small grains for winter forage or dual-purpose production, especially in the SGP where livestock and forage production are the largest contributors to agricultural income. Ideally, small grains for grazing are those with tolerance to early planting, animal grazing, and various seedling biotic and abiotic stresses and those with vigorous early growth and regrowth and/or extended periods of vegetative growth.
In the southern United States, institutes that have breeding programs to improve cereals for forage or dual purpose include the Noble Research Institute (formerly the Samuel Roberts Noble Foundation), the Oklahoma State University, the Texas A&M AgriLife Research (Texas A&M University), the University of Georgia, and the University of Florida [46, 63, 65]. However, only the Noble Research Institute has a forage-focused small-grain breeding program, while other universities mainly deliver dual-purpose cultivars from their grain-focused breeding programs. The Noble Research Institute started its small-grain breeding program with rye in the early 1950s. Since then, the institute has expanded its breeding program to include wheat, triticale, and oat with the objective of increasing forage or dual-purpose production. The research has particularly focused on developing cultivars with improved early vigor and regrowth vigor, improved grazing tolerance, and increased autumn-winter forage yield or total forage yield. The program has developed multiple improved forage cultivars of wheat, rye, oat, and triticale.
Biomass yield is the main target for forage crop improvement. The trait is usually measured through multiple clipping over seasons, posing difficulty in biomass yield estimation, especially when a large number of samples need to be evaluated at field scales [63]. Other physical methods of estimating biomass involved rising plate meters, capacitance meters, and clipping samples with meter sticks [66, 67, 68, 69]. However, not only are these methods time-consuming, but it is also difficult to establish a reliable model for estimating biomass yield [70].
To augment breeding efficiency, high-throughput phenotyping platforms using remote sensing have been adopted recently in forage breeding and have facilitated biomass yield estimation for breeding selection [70, 71, 72, 73]. Over the last few years, the Noble Research Institute has developed ground-based high-throughput phenotyping platforms and improved biomass prediction accuracies by incorporating normalized difference vegetation index (NDVI) with proximal sensors, such as ultrasonic and laser height measurements [70]. Similar phenotyping platforms have also been used in other breeding programs.
Cool-season annual small grains remain the most important forage for stocker cattle producers in the SGP of the United States due to their high forage quality, adaptation to the environment, and economic contribution. They are also valuable for filling forage gaps and extending the grazing season as a complement to other grasses. Wheat, rye, triticale, and oat are the most common small-grain forages that provide production flexibility and economic stability with an alternative dual-purpose option. Wheat is the most commonly grown because of its alternative value as a cash crop; rye is currently the best forage option on sandy, drought-prone soils or in graze-out systems; oat can be the most valuable when providing autumn forage; and triticale has the greatest potential for improvement and increased adoption.
The authors sincerely thank Andrea Mongler for critical reading of the manuscript.
The authors declare no conflicts of interest.
Denim is one of the most prevalent fabrics worldwide, and therefore the environmental degradation associated with denim jean production is highly dangerous as the volume of jeans produced and used by consumers today is humongous. Also, as cotton is the fundamental building block for denim production, denim represents a mainspring for cotton consumption. Considering the fact that the textile and apparel industry in general is pressured to increase the recycling potential for cotton to cover contemporary and prospective market demands, the use of recycled materials (fiber, yarn, and fabric) in the production of new denim products has become an area of great interest. The decision to use recycled materials in products occurs during design and product development, and it continues throughout the manufacturing processes. The most important requirements for recyclable denim designs are monomaterials, elimination of toxic substances, modular manufacturing for ease of removal or exchange, easily compatible materials, and labels or codes that can be recycled.
The environmental impact of denim products, during manufacture, use, or disposal, can be evaluated by looking at the different phases of the product’s life cycle and taking action at the phases where it will be most effective to reduce the impact. However, the lifecycle of a product is long and complicated, covering many areas with many people involved in each phase [1]. There is a variety of voluntary and mandatory tools which help achieve this objective. These include economic instruments, bans on certain substances, environmental labeling, voluntary agreements, product design guidelines, etc. Life cycle assessment (LCA) methodology is one of the aforementioned tools, and within the frame of this chapter, it is adopted to quantify and compare the environmental impact of recycled denim fabrics. But before that, the global denim market, environmental impacts of denim manufacturing, sources of denim waste, and recycling processes currently used in textiles and apparel today are also discussed in this chapter.
Denim is a type of sturdy cotton twill woven fabric with a characteristically diagonal ribbing known for its use in the form of jeans and other clothing all across the world. Originally used for workers’ clothes, denim has entered the world of high fashion for a long time, and this has urged the industry to produce innovative denim with different fibers including lyocell, bamboo, viscose, rayon, polyethylene terephthalate, and elastane. Also, several types of washes have been introduced, such as stonewash and stoneless wash, acid wash, moon wash, monkey wash, and enzymes which have been used because of their environmental-friendly nature in comparison with hypochlorite and pumice stones [2].
Rising casualization of clothing all over the world, together with the availability of high-quality, cost-effective denim products, has contributed to the growth of the market over the years. E-commerce is the other factor which has a positive influence on the denim market’s growth. In addition, brands have started to reinforce their commitments to responsible production efforts and launched more sustainable collections to the market, which has dramatically increased new retail products described as “sustainable” since 2017. Orta Anadolu, for example, introduced its organic cotton production of denim fabrics in 2006 and a capsule collection without virgin cotton in 2018. Similarly, Diesel launched a sustainable capsule collection with Coca-Cola [3].
The global denim market is segmented into North America (NA), Europe (EU), Asia-Pacific (APAC), the Middle East and Africa (MEA), and South America (SA). The major companies operating in the global denim market are Levi Strauss & Co., VF Corporation (with renowned brand names of Lee and Wrangler), Diesel SpA, Gap Inc., Hennes & Mauritz AB, Inditex, and PVH Corp., and Tommy Hilfiger Licensing LLC. The jean market is a highly fragmented market, with a strong presence of local and global players operating all over the world. Thus, to sustain their positions in the market, the active players are bringing innovation in their product offering, in order to cater to changing consumers’ fashion lifestyle [4].
Also, they have been focusing on social media platforms as well as online distribution channels for their marketing and branding activities so as to attract more customers. Denim manufacturers, however, appear to focus on acquisitions, expansions, and collaborations with mostly startup companies to gain a significant market share [2, 3].
In 2019, the global denim market was valued at approximately 90 billion US dollars and is expected to reach a value of around 107 billion US dollars by 2023 [5]. The global denim jean market size, on the other hand, was valued at USD 64.62 billion in 2018, and it is estimated to expand further at a compound annual growth rate (CAGR) of 6.81% from 2019 to 2025 [6]. The Asia-Pacific region led the market in 2019, which was followed by North America, Europe, South America, and the Middle East as a response to the introduction of global brands and an emphasis on premium denim. Japan, China and India are expected to lead the region through 2024 as a result of the countries’ rise in promotional activities within the denim market [2, 4].
According to the World Denim Fabric Foreign Trade Report published by the Istanbul Textile and Raw Materials Exporters Association (ITHIB), global denim fabric exports increased by 5.1% in 2018 and reached approximately 5 billion US dollars. The top five countries performing most denim exports are China (42% share of total exports), Pakistan (11.7% share of total exports), India (8.2% share of total exports), Hong Kong (7.4% share of total exports), and Turkey (6.8% share of total exports). It is stated that there is a strong growth in the denim production in Bangladesh and Vietnam, although these countries are mostly importing denim fabric [7].
Europe, the United States, and Japan are the biggest consumers of denim, whereas China and India, being relatively younger economies, are witnessing a steady rise in demand for denim. In 2018, men’s wear segment accounted for the largest market share of more than 55%. It is forecasted that the segment will retain its leading position over the upcoming years mainly because of the improved standards of living and demand for trendy fashion apparels. Women’s wear segment is, on the other hand, expected to register the fastest compound annual growth rate (CAGR) of 7.25% from 2019 to 2025. This growth is attributed to the high product demand, especially in emerging countries. In addition to that, constant product innovation in this segment is also expected to drive the growth further [2, 6].
It is estimated that producing a pair of jeans consumes around 2900 liters of water and large amounts of chemicals and energy. If this is multiplied by the number of jeans produced globally, one can get an idea of the enormous contribution of wastewater and harmful gases by denim industry to the environment [8, 9].
Indigo dye is one of the organic colorants used to color textiles, paper, leather, and plastic and for many applications such as cosmetic and photochemical production. Unfortunately, textile effluents containing indigo dye and other dye types make water toxic and harmful for human and animal consumption, which causes an imbalance in different aquatic ecosystem food chains [10]. The use of synthetic indigo and sulfur dyes also presents serious effluent problem. Bearing in mind that majority of warp dyeing for denim uses indigo and sulfur dyes, the environmental impacts of denim processing can be classified into three main categories:
Water pollution: dyeing and finishing effluent discharge in water bodies
Air pollution: cotton dust, abrasives, and chemicals found in air
Solid waste (sludge)
As is well-known, denim washing is imparted to fabric to improve the softness, comfort, and most importantly achieving a variety of looks such as a faded or worn-out appearance. Pumice stone is used to stonewash denim garments. The stone gets abraded during the process and becomes powdered; part of it remains in the liquor, and part of it sticks to the garment. A sizeable amount of water is required for repeated washing cycles to remove the deposited pumice from the denim. The effluent and pumice dust lead to environmental pollution. Sandblasting is a mechanical finish which uses sand containing silica. The minute silica dust spreads in air, it poses serious respiratory disease such as silicosis [10].
Micro sanding is another finish which pollutes the environment. In the case of chemical washing involving the use of sodium hypochlorite or potassium permanganate, the effluent contains chlorinated organic substances which cause severe impacts to the environment, and the bleaching chemicals are harmful to human health. Acid wash uses both pumice stone and chemicals, namely, sodium hypochlorite or potassium permanganate, and it does not require water but leads to pollution through the effluent having pumice dust and residual manganese which are hazardous [11, 12].
Despite all these setbacks of the denim processes summarized above, various suitable treatment processes have been developed and employed for the dyeing effluent on the basis of the nature and complexity of the dyes and chemicals present in denim. Fortunately, many denim companies and their suppliers have been striving hard to embrace greener methods such as laser processing and nano bubble ozone washing machines and are also making effort to develop new techniques of producing jeans, as a part of their business strategies to preserve the environment. They have also understood the importance and the need to build a sustainable business [12, 13, 14].
It is considered that sustainable material management is a precursor of circular economy, which promotes recycling, reuse, and remanufacturing. It was estimated that around 65 billion tons of raw materials were processed by the industrial system at the end of the first decade of the twenty-first century, and this quantity is expected to reach about 82 billion tons by the end of 2020. Therefore, in the last two decades, circular economy (CE) is gaining growing global consideration as the new development model which is capable of influencing the existing production and consumption model [15]. Within that concept, waste is classified on the basis of generation as pre-consumer textile waste, post-consumer textile waste, and industrial textile waste. Pre-consumer waste is the remaining production processes in the industry which includes raw material to finished products ready for market. This may include offcuts, shearing, selvedges, b-grade garments, export surplus, etc. which are homogenous and clean in nature to be used for other purposes. The waste under this class has great potential for reuse and recycling. The post-consumer textile waste can include any product that has completed its life cycle and is no longer useful to the consumer in both function and esthetics. Industrial textile waste is, however, the result of the manufacturing processes and is termed as dirty waste [13, 16].
The textile and apparel industry, which generates a substantial environmental footprint from cultivation, fabric and garment manufacturing, to the landfill disposal of post-consumer items, faces tremendous environmental and resource challenges [17]. In order to tackle such challenges to some extent, several fashion companies offer their customers to take care of their worn-out clothes including denim jeans. However, studies have concluded that less than 1% of these collected clothes are being recycled while nearly 80% of them are mainly sold on the second-hand market in poor countries around the world or used as blankets or isolation material. The remaining 20% of the clothes are either sold on the second-hand market within the EU or is sent to landfill or incineration [18].
Being the largest fraction of apparel, waste jeans (or waste denim fabric from tailoring operations) are composed mainly of “cotton” and “cotton/polyester” fabric with different weight ratios [19]. Although this may lead to the understanding that denim made with 100% cotton, in particular, will readily deteriorate in the environment, in practice a pair of such jeans can stay alive in the environment for a very long time, and therefore the negative environmental impact is very high. The literature reveals that the amount of waste jeans generated annually is estimated as 2.16 million tons and only 35–50% of this amount is collected in Western Europe in order to reuse or recycle it after sorting [13, 20, 21].
As one of the sources of solid waste, the cutting waste during denim jean production—which has relatively a homogeneous nature—is between 10% and 15%, and most of the waste is recycled by unraveling and reusing the fibers in the production of insert yarns (weft direction), which is a good example of “recycling in design (RiD).” Most jeans’ producers recycle denim waste in their own manufacturing plants or have contracts with textile waste recyclers to reuse the waste material in the spinning of new yarns. There is also substantial trade of denim waste all over the world [13, 21, 22].
Another source of denim waste is the post-consumer denim jeans. Color, quality of fabric, and garment accessories like rivets, buttons, zippers, and labels are the main components of the heterogeneous nature of this very denim waste. The main problem is the collection of post-consumer jeans. Although in many countries collection systems are in place, many consumers discard their jeans as solid municipal waste. Jeans that are collected are mostly sold to textile sorting companies which manually/automatically sort the rewearable jeans for sale to second-hand shops and in Third World countries. Nonwearable jeans are, however, shredded and used for the development of various types of products such as thermal and acoustic insulators and/or textile-based composites for certain structural and other specialized applications [13, 21, 23, 24, 25, 26, 27, 28].
Finally, as a different approach to decreasing the denim waste regarding post-consumer denim jeans, the leasing of jeans was introduced several years ago by MUD Jeans. In this concept, the producer or distributor of the jeans stays the owner. The user of the jeans only “buys” the right to the use the jeans for a period of 1 year. If the jeans need to be repaired, it is at the cost of the lease company [22]. The same company, together with several of others, has also focused on “design for recycling (D4R)” for facilitating the recycling of denim jeans, such that they do not use leather labels but printed ones at the waistband, employ rivets and buttons that are made from 100% stainless steel and no finishing (electroplating), and have utilized buttons made out of recycled jeans on their denim shirts and sweaters, etc. [13, 29, 30].
An average person buys 60% more clothing items every year and keeps them for half as long as they used to keep about 15 years ago. It is assumed that overall consumption of textiles will have reached to 102 million tons by 2030 and that the textile industry’s waste will have increased by about 60% between 2015 and 2030. That means the total level of fashion waste will reach to 148 million tons in 2030. As is known, the majority of clothing waste ends up in landfills or is incinerated, and once in landfills, it takes hundreds of years for natural fibers to decompose and may release methane and CO2 into the atmosphere. Synthetic materials, on the other hand, are not designed to decompose and may release toxic substances into groundwater and the surrounding soil. If the average life of clothing could be extended by only 3 months, it would reduce waste generation as well as their carbon and water footprints, by 5–10% [19, 31, 32, 33, 34].
The textile industry’s linear model of “make, use, and dispose of” represents an apparent pressure on scarce natural resources. Circular economy, on the other hand, aims to move away from the unsustainable linear model by decoupling economic activity from the consumption of finite resources and designing waste out of the system. When the recycling component is included, it helps to absorb the residuals of industrial and consumer use [35, 36]. Accordingly, circular economy’s principles may be given as follows:
Put an end to waste generation and pollution during the design stage.
Keep products and materials in use.
Restore and regenerate natural systems.
Within that concept, a five-step waste management hierarchy was introduced in order to direct toward a more sustainable behavior (Figure 1) [37].
Waste management hierarchy [
Waste generation prevention has the highest significance followed by reuse. Reusing is the concept of using undamaged parts of used products for manufacturing activities. When textiles turn into waste and are disposed by their consumers, recycling offers the opportunity to save raw materials and energy as well as to reduce pollution. Product/material recovery includes the activities like repairing, refurbishing, and disassembling, performed to regain the product value at the end of its life cycle. To dispose generated waste is the last step of the hierarchy [17, 38, 39, 40, 41].
Textile recycling routes can be categorized in different ways as follows:
Mechanical, chemical, thermal, and biological based on the nature of the process.
Downcycling where the product of the recycled material is of lower quality. As the length of fibers is shortened and the constituent of molecules is reduced by wear, laundry, and recycling process, the textile recycling is often in the way of downcycling.
Upcycling where the product of the recycled material is of higher quality.
Open-loop recycling covers a concept in which a product’s raw material is separated to be utilized as a part of a randomly used item. Generally, the second item is not recycled and discarded toward the end of its life. Downcycling can be equalized with open-loop recycling system in which the reclaimed material is used to make a less valuable product than the disposed one. Therefore, it results in little economic value and low environmental benefits.
Closed-loop recycling refers to recycling techniques where the material recycled is a similar material which is being delivered. For example, the waste material reenters a piece of clothing production chain. Closed-loop recycling generates a greater impact on sustainability, and a product remains in a circular stream and retains its material quality. There are a number of ways to define closed-loop recycling approaches in the apparel industry. Three of them are [41]:
Recycling pre- or post-consumer textile waste.
Cradle-to-cradle (C2C) methodology in which waste is reclaimed and used again in the production of products of the same or higher value. Biological waste can be composted, while technical waste can be reused within industry to create the same products again.
Closed-loop reuse of existing garments: Although reuse of garments is not recycling in the sense of breaking down a product into its raw materials, the product may enter a new life cycle within the same production chain.
Textile recycling technologies are also categorized into four classes as primary, secondary, tertiary and, quaternary approaches [13, 40, 42, 43]. Primary recycling involves recycling of material in its original form for recovery of equal value. Secondary recycling incorporates processing a post-consumer product into raw materials usually by mechanical means into a product with different physical and/or chemical properties (mechanical recycling). Tertiary includes processes like pyrolysis and hydrolysis, in which waste is converted to basic chemical constituents, monomers, or fuels (chemical recycling). Quaternary (recovery) covers waste-to-energy conversion processes such as incineration of solid waste or utilization of heat generated.
Recycling is the process of breaking down a product or material to make a material of a higher or equal value (upcycling) or of a lower value (downcycling), in which textiles are commonly mechanically or chemically broken down to their fiber constituents [41]. Biodegradation is another method used to recycle waste and to break down organic materials into compounds.
The difference between mechanical and chemical recycling is that wet processing is eliminated or reduced in the mechanical recycling system [44]. Most of the current recycling systems for post-consumer waste textiles mainly include reuse and mechanical processes.
The method of mechanical recycling, which is categorized as a secondary recycling approach, is composed of two main processes: sorting of the waste material and the mechanical decomposition of the fabric. The material to be recycled is sorted according to fiber type, color, quality, etc. Sorting for post-industrial waste may be performed with a risk of uncertainty as the fiber content and properties of the fibers may not be always known. The in-house reprocessing of manufacturing-related waste represents recycling on the primary level [39].
The disintegration of textile material to a fibrous form through mechanical recycling is referred to as shredding or garneting [38, 40, 41]. In mechanical recycling machines, the fabrics are cut into small pieces of 1 to 8 cm strips with a rotary blade and separated into single fibers through a process known as “picking,” “pulling,” or “tearing” by needle-equipped cylinders which have progressively smaller spiked surfaces. On such machines waste is fed through a conveyor belt of the front roller to be transferred to the spiked roller. Spiked roller rotates clockwise, and bottom roller, located under the spiked one, rotates anticlockwise. The distance between the rollers can be varied according to the type of input material, and the waste is opened while passing through rollers.
Mechanical recycling has some shortcomings since the process is too aggressive to retain fiber quality and can result in a 75% loss of value after the first cycle. The mechanical process breaks may cause a tremendous loss in fiber length and a significant decrease in the material quality. For the process, longer processing times are needed, and the production rate is lower. As a result, blending with virgin material (especially in the case of cotton and wool fibers) for spinning processes is inevitable [38, 42, 44]. Consistently, waste collected from the manufacturing supply chain produces higher-quality recycled fibers than those collected from post-consumer waste. The pre-consumer and post-industrial waste can be respun into yarns which are further woven or knitted into fabrics and then used in apparel, upholstery, etc. [13]. Heterogeneity of post-consumer waste worsens constant quality retention.
Nonetheless, despite the drawbacks of mechanical recycling, the technology has shown promising for the reprocessing of denim fabric and garments [45].
The method of chemical recycling, which is categorized as a tertiary recycling approach, involves chemical processing of the fiber polymers, e.g., depolymerizing or dissolving. Chemical recycling depends on the quality of the processed waste to a limited degree and decomposes fibers down to the polymeric level [39]. Various chemical recycling processes have been demonstrated and developed. Chemical recycling of synthetic polymers and feedstock recycling depolymerize waste plastics into base chemical molecule called monomers with high purity [38]. The presence of additives and chemicals used in the polymerization process affects the purity and quality of the monomers obtained after recycling. The thermochemical process used to decompose polymers is referred to as pyrolysis, sometimes thermolysis. Pyrolysis is conducted at various temperatures and pressure levels and with the presence of catalysts or reactive gases. Pyrolysis processes are only economically viable for certain manufactured fibers including polyesters, polyamides, and polyolefins [13, 40]. Chemical recycling for polyester also includes glycolysis, hydrolysis, and metanolysis processes.
Chemical recycling is a promising process since it allows the recovery of a more valuable product in comparison to the products recycled by mechanical processes [34, 38, 42, 44]. As it uses a selective degradation method, chemical recycling is expected to be more suitable for large-scale recycling of blended materials, while mechanical recycling has been efficiently adopted by industry for recycling of single fiber materials. In products of cotton and polyester, the fibers can be chemically separated and then reformed into new fibers [13]. On the other hand, although chemical textile recycling has broader use than do the mechanical method, chemical and water consumption (70% lower in case of mechanical processing) for wet processing is high. Barriers to the widespread adoption of chemical recycling also include high costs, multiple processing steps requiring high operational knowledge, and energy requirement for heating and scouring processes [42, 44].
A comparison of mechanical and chemical textile recycling techniques are given in Table 1 [38, 44].
Mechanical recycling | Chemical recycling |
---|---|
Categorized as a secondary recycling approach Wet processing is eliminated It is not as energy-intensive as chemical recycling Mechanical recycling process is too aggressive to retain fiber quality Heterogeneity of post-consumer waste worsens constant quality retention Mechanical recycling has been efficiently adopted by industry for recycling of single fiber materials | Categorized as a tertiary recycling approach Involves chemical processing The biggest challenge is that chemical recycling is very energy-intensive Chemical recycling allows a more valuable product in comparison to the products recycled by mechanical processes Chemical recycling depends on the quality of the processed waste to a limited degree Chemical recycling is expected to be more suitable for large-scale recycling of blended materials |
Comparison of mechanical and chemical textile recycling techniques.
Biodegradation can be featured as a method used by nature to recycle waste and to break down organic materials into compounds by microorganisms such as bacteria, fungi, insects, worms, and others. Through biodegradation processes, it is possible for nature to clean up wastes, to provide nutrients for the growth of new lives, and to produce the energy necessary for various biological processes [46]. Biochemical transformation via fermentation is an attractive way for utilizing recycling textile waste. Cotton is typically composed of 88–96% cellulose, and it is possible to hydrolyze waste cotton by enzymatic or chemical methods to obtain glucose and then ferment it into value-added products. Biogas production from textile waste via anaerobic digestion is an alternative route to utilize solid waste from textile industry. Organic compounds in solid waste can be used as a raw material to produce desired products via bioconversion processes. On the contrary, thermal and chemical processes can convert both organic and inorganic compounds to value-added products [47].
Conventional thermal processing refers to the combustion of solid waste and its conversion into energy. Since solid waste from the textile industry contains a high energy content, it can be used as a raw material to generate heat energy [47]. Solid waste from the textile industry can be used as a raw material to produce briquette. The thermal processes that are performed at high temperature with inadequate oxygen could generate carbon monoxide, which is a greenhouse gas. Therefore, a thermochemical conversion process, such as pyrolysis, is applied. Pyrolysis is referred to the decompositional process with high temperature in the absence of oxygen condition [47]. Products from pyrolysis are various, such as activated carbon fiber, char, bio-oil, and syngas. The variation of product is related to pyrolysis condition.
Despite its growing popularity, there are numerous obstacles to textile recycling [47, 48]. The major ones to the optimization of textile recycling are:
Economic viability: Due to the widespread production of lower-grade products (downcycling) from textile recycling, many recycled textile wastes are unsuitable for multiple recirculation and use. Limited recirculation and reuse are not economically viable and discourages investment in textile recycling.
Composition of textile products: The base components of many textile products make them unsuitable for recycling. The presence of plastics and metals in textile products hinders their recyclability.
Nonavailability of recyclable textile materials: A limited quantity of used textiles and textile waste are collected and sorted for recycling, and the quantity that is suitable and accessible for recycling is insufficient.
Technological limitations: One of the main reasons for the limited quantity of recyclable materials is the lack of technologies for sorting textile waste in preparation for recycling. Dyes and other contaminants cannot be separated from the original fibers by most of the existing methods.
Lack of information and limited public participation: Limited public awareness on the merits of recycling contributes immensely to the low recycling rate, causing market inefficiency.
Poor coordination, weak policies, and standards: Uncoordinated collection of waste and absence of an integrated and well-coordinated framework and policies to enhance the overall efficiency of the textile recycling are identified as barriers to efficient recycling.
There are also some constraints and challenges faced specific to denim recycling processes [29, 49]. Collection and sorting of worn-out jeans is time-consuming and laborious. Labels; metal parts like rivets, zippers, and buttons; and leather patches have to be removed manually from the jean before shredding. Generally, the metal and leather parts are removed, but it is more difficult to remove the labels, and therefore jeans are sent along with them. The consequence is that the labels contaminate the recycled denim material as they are made of other materials. Any metal parts present on the jean to be recycled may cause problems to the machinery and process. It is easier to remove buttons and zippers by using gravitation but since rivets are too small and too light, special care is needed to remove them.
Denim jeans are characterized by thick lapped seams that create problems during shredding and carding processes. The presence of elastane is another problem. It is more convenient to separate it before shredding and cutting, but this can only be done by chemical recycling. Recycling different colored jeans together results in a multicolored yarn that can create problems in dyeing. Recycled fibers might not meet the quality of virgin ones and could not be spun or woven properly.
Life cycle assessment (LCA) is a methodology where the environmental performance of a product or service is assessed starting from the raw material extraction point to the end of life of that product/service, i.e., from “cradle to grave.” The methodology of LCA is defined under the ISO 14040/44 Standard [50].
For a pair of denim jeans, the life cycle (Figure 2) starts with the production of raw materials such as fibers and chemicals. These materials are then transported to fabric manufacturer and processed to become a fabric. During fabric production, energy and water are consumed in addition to raw materials while emission to air and to water and production waste are generated. The following process for the fabric is garment manufacturing in which the fabric is cut, sewn, washed, and accessorized (rivets, buttons, etc.) according to the design. Finally, the finished garment is sent to a warehouse or directly stores to be sold. After it is bought, the garment is washed and dried (or dry-cleaned depending on its nature) many times throughout its use phase. When it completes its life span, the garment has various “end of life” scenarios such as recycling, reused, refurbished, and disposed in landfill or incinerated, etc., which were discussed in the previous sections.
Lifecycle of a jean.
Life cycle assessment (LCA) helps us analyze the environmental performance of denim production in a transparent and systematic way and identify the hot spots.
The methodology behind life cycle assessment (LCA) is to accumulate all the impacts originated from the inputs and outputs of a system starting from the “cradle to grave” and to give a total impact number for the system under discussion. Accordingly, in an attempt to exemplify the importance of recycling of denim from the perspective of its environmental impact, an experimental work regarding the life cycle assessment of a denim fabric with and without recycled fiber content was conducted. For the work, the inventory was based on the 2019 denim production figures of a Turkish denim manufacturer in their manufacturing plant in Turkey. As assessment tool, SimaPro software developed by the Pré Sustainability, was used. SimaPro is the leading life cycle assessment (LCA) software that has been used for more than 25 years by the industry and academics in more than 80 countries [51]. SimaPro uses two types of data: primary and secondary. The primary data involves the basics of a denim production such as the amount of cotton used to manufacture 1 m of denim, i.e., 0.5 kg cotton. This data is exclusive to the fabric production practices of the factory. The secondary data, however, comes from the database, and it includes the impacts originated from producing that much raw material (in our case cotton fiber) and all other inputs such as chemicals at every stage. For secondary data, Ecoinvent database that is embedded into the software and is the most common life cycle inventory (LCI) database worldwide is used [52].
To be able to perform life cycle assessment of a specific good or service, one needs to have inventory data for the complete supply chain. Due to the amount of data needed in order to be able to perform a life cycle assessment (LCA) study for a full supply chain, it is practically impossible to collect and organize the data of the complete background system. In that respect, the Ecoinvent database provides this very background system fulfilling the data required for the assessment. The Ecoinvent v3 database contains life cycle inventory (LCI) data taken from various sectors such as energy supply, agriculture, transport, building materials, production of chemicals, and metal production and consists of around 17,000 datasets, each of which describes a life cycle inventory (LCI) on a process level [52, 53].
SimaPro software provides six libraries that each contain all the processes that are found in the Ecoinvent database but uses different system models and contains either unit or system processes. The three Ecoinvent system models are “allocation at point of substitution,” “cutoff by classification,” and “consequential.” The system model “allocation at the point of substitution” follows the attributional approach in which burdens are attributed proportionally to specific processes. “Allocation, cutoff by classification” system model is based on the recycled content or cutoff approach in which the primary production of materials is always allocated to the primary user of a material. In this approach, if a material is recycled, the primary producer does not receive any credit for the provision of any recyclable materials available and burden-free to recycling processes; therefore recycled materials bear only the impacts of the recycling processes. The system model “substitution, consequential, long-term” uses different basic assumptions to assess the consequences of a change in an existing system and can be used for perspective studies and prediction of future changes [54]. In this study, for recycled materials “cutoff by classification” system model and for all other data “allocation at point of substitution” system model are used.
For life cycle assessment (LCA) of a product, the production of an item (e.g., denim fabric) is simulated, using both consumption and production data (primary) of a factory and the corresponding secondary data from the Ecoinvent database. The next step is to choose the environmental impacts to be calculated. The whole process is given in Figure 3.
LCA calculation process.
One of the most important parts of life cycle assessment (LCA) is the outputs, in other words the environmental impacts of the product. With SimaPro software, it is possible to calculate over 100 environmental impact categories. For that reason, the academic- and industry-specific life cycle assessment (LCA) studies’ guidelines and standards were surveyed to determine the environmental impacts for our study (Table 2).
References | Global warming potential (GWP) climate change | Acidification | Eutrophication | Ozone layer depletion | Abiotic depletion | Photochemical oxidant formation | Freshwater use | Human toxicity | Water consumption | Terrestrial ecotoxicity | Greenhouse gases (GHG) | Nonrenewable energy use | Carcinogens | Land occupation | Aquatic eutrophication | Mineral extraction | Ecotoxicity | Freshwater eutrophication | Freshwater aquatic ecotoxicity | Ionizing radiation | Water depletion |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
[55] | 1 | 1 | 1 | 1 | 1 | 1 | |||||||||||||||
[56] | 1 | 1 | 1 | 1 | 1 | 1 | |||||||||||||||
[57] | 1 | 1 | 1 | 1 | 1 | 1 | 1 | ||||||||||||||
[58] | 1 | 1 | |||||||||||||||||||
[59] | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | ||||||||||||
[60] | 1 | 1 | 1 | 1 | 1 | 1 | |||||||||||||||
[61] | 1 | 1 | 1 | 1 | |||||||||||||||||
[62] | 1 | 1 | 1 | 1 | 1 | ||||||||||||||||
[63] | 1 | 1 | 1 | ||||||||||||||||||
[64] | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | ||||||||||||
[65] | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | ||||||||||||
[66] | 1 | ||||||||||||||||||||
[9] | 1 | 1 | 1 | 1 | 1 | 1 | |||||||||||||||
[67] | 1 | 1 | 1 | 1 | |||||||||||||||||
Total | 10 | 8 | 8 | 5 | 5 | 4 | 3 | 3 | 3 | 3 | 3 | 3 | 3 | 3 | 2 | 2 | 2 | 2 | 2 | 2 | 2 |
A taxonomy of environmental impact categories for textiles.
With this taxonomy (Table 2), the commonly used environmental impact categories are listed for textiles. Consequently, based on the taxonomy given in Table 1 and the raw material need for a denim fabric, five impact categories are selected. These impact categories, their definitions, and calculation methodologies within the SimaPro software are presented in Table 3.
Indicator | Unit | Description | Example impact | Methodology |
---|---|---|---|---|
Global warning potential | kg CO2 eq (kilogram carbon dioxide equivalent) | Emission of greenhouse gases (GHGs) | Climate change | IPCC 2013 GWP 100a [68, 69] |
Freshwater use | lt (liters) | Excessive freshwater taken from the environment | Water scarcity | Life cycle inventory |
Land use | m2 a (meter square per annum) | The amount of agricultural area uccupied | Deforestation | ReCiPe 2016 Midpoint (H) [70, 71] |
Eutrophication potential (EP) | kg PO43− eq (kilogram phosphate equivalent) | Emission of substances to water contributing to oxygen depletion | Nutrient loading to water stream-water pollution | CML-IA baseline [72, 73, 74, 75] |
Abiotic resource depletion | kg Sb eq (kilogram antimony equivalent) | Measure of mineral, metal, and fossil fuel resources used to produce a product | Mineral scarcity | CML-IA baseline [72] |
Selected environmental impact categories.
As was mentioned above, the life cycle assessment (LCA) methodology is selected to calculate the environmental impacts of denim fabrics having different recycled contents in the same article so that the whole system can be taken into consideration. This means that we have to calculate the effect of every step in the life cycle to see the whole impact of our choices, including cultivation/production of the fiber, fabric production, garment manufacturing, distribution, consumer laundering, reuse, and final disposal [76, 77]. One may think that using recycled cotton reduces the impact drastically, but parameters such as increased waste during production and increased energy usage should also be taken into account in a system perspective.
If only one process or only fabric production as a system were calculated, this would have represented a single framed approach which is generally not preferable as calculations for production of single frames may lead to unwanted and unforeseen effects elsewhere in the whole system.
The specifications of the denim article selected for the work is given in Table 4. Life cycle assessment (LCA) was conducted for 1 m of the article in accordance with the process steps including fiber cultivation, transportation, and all the production steps covered in the Turkish denim manufacturing company. The five environmental impacts are presented in Figure 4. For the comparative study, the results are given in terms of percentages (%) so that unit differences of the impact categories were eliminated.
Article Code | Width (cm) | Weight (oz/yd2) | Composition |
---|---|---|---|
Article A | 150 | 14.89 | 100% cotton |
Article specifications.
Five environmental impacts of selected fabric according to process steps.
In denim production, the hottest spot for the selected four categories is the fiber growth stage. In the fifth impact category, abiotic resource depletion, fiber stage has the second highest impact. This clearly shows the importance of raw material selection for denim fabric production.
This section aims to determine the impact of recycled cotton content in the denim fabric under discussion (Table 4). Accordingly, different recycled cotton contents are used in the life cycle assessment calculations of Article A. These are as follows:
Article A-1: 100% cotton
Article A-2: 80% cotton +20% recycled cotton
Article A-3: 70% cotton +30% recycled cotton
Article A-4: 60% cotton +40% recycled cotton
Article A-5: 50% cotton +50% recycled cotton
In each version, the recycled cotton content was increased by 10%. The recycled cotton used in the calculations is post-consumer recycled cotton, and its industrial data such as production and transportation data is obtained from a local supplier.
The results of the life cycle assessment (LCA) calculations are presented in Figure 5. As may be seen from these results, global warming potential decreases by 5%, eutrophication drops by 8%, and abiotic resource depletion drops by 3% with each addition of 10% recycled content in the blend.
Results of LCA calculations of virgin and post-consumer recycled cotton blends.
Global warming potential, in other words climate change impact, is affected by two main stages: fiber cultivation and spinning. The energy usage in spinning increases when the recycled cotton content is increased, which implies a negative impact of the use of such fiber on global warming potential. However, since the percentage of the virgin cotton usage is decreased, this decline delivers a high positive impact for global warming potential, lessening the effect of energy usage.
In eutrophication calculation, the main effect derives from usage of fertilizers, pesticides, and insecticides at farm level. During irrigation of cotton, the probability of water pollution caused by these chemicals increases. Once the usage of virgin cotton decreases in the blend, the value of eutrophication decreases. Overall, the decrease results as 8% with a use of 10% recycled cotton.
Water use and land use impacts decrease by 10% with an addition of 10% recycled cotton. Since cotton uses land, and a high amount of water in the field during cultivation, avoiding the use of virgin cotton creates a high decrease in impact categories. If one can spin and weave a blend of 50% virgin and 50% recycled cotton, the overall impact on these two categories decreases 50%, which is a considerable figure when the amount of fabric produced reaches approximately 3 billion meters annually.
This section aims to determine the impact of blending recycled cotton with organic cotton. Organic cotton data used in the calculations is generated from the literature [78, 79]. The percentages used in the life cycle assessment (LCA) calculations are as follows:
Article A-1: 100% cotton
Article A-6: 100% organic cotton
Article A-7: 80% organic cotton +20% recycled cotton
Once organic cotton is used, at least 25% decrease appears in three categories: namely, global warming potential, eutrophication, and abiotic resource depletion. The decrease in water use (11%) is comparably low. On the other hand, real decrease happens in the land use, nearly 40%. This is due to the data for Aegean Region organic cotton. The yield in Turkish organic cotton is comparably high. The land use for 1 kg of lint organic cotton is 4.65m2 for Turkish organic cotton. The same figure appears to be 19.7 for global production and 20.9 for the US organic cotton (Figure 6).
Land needed for 1 kg lint organic cotton, m2 [
The virgin cotton used in study for calculations is a blend of the US, Turkish, Greek, and Brazilian cotton.
The results of the life cycle assessment (LCA) calculations are presented in Figure 7. The data shows that diverting from 100% regular cotton to 100% organic cotton reduces global warming potential by 27%, eutrophication by 26%, abiotic depletion by 24%, and land use by 39%. In addition, as in Article A-7, blending organic cotton with 20% recycle cotton generates an additional 10% decrease in land use. With the aid of this blend, the comparably lowest impact in land use is achieved in this study. The same is true for global warming potential and abiotic depletion. Article A-7 has the lowest values compared to the rest of the articles in Figures 5 and 7.
Results of LCA calculations of organic and post-consumer recycled cotton blends.
On the other hand, eutrophication and water use remain higher than those of the articles in Figure 5. Organic cotton still uses a decent amount of water during cultivation. Therefore, Article A-7 could not result with the lowest impact on water use and eutrophication.
Fiber selection stage—in this study fiber cultivation stage—has the main role in environmental impact of a denim fabric. Selected five impact categories are divided into the article’s process steps starting from cradle, meaning cotton cultivation, to gate, the end of fabric production. When it is analyzed (Section 4.3.2), one can see that fiber has more than 50% of the total impact in four out of the five categories. Only in abiotic depletion, warp preparation and dyeing have a greater effect than that of the fiber itself. Since recycled cotton usage means eliminating the fiber growing stage or in other words not using virgin raw material that requires natural resource, the environmental impact decreases as the recycle content increases in the fabric. And this is mainly true for global warming potential, eutrophication, water use, and land use. Especially for water and land use, fiber growth stage has more than 90% impact on the overall score. Fifty percent recycled cotton use decreases both impacts by 50%. Therefore, it is better to use recycled content to decrease the environmental impact of water and land use mainly.
Organic cotton with recycled cotton combination has the lowest impact in land use. Using 100% organic cotton also helps reduce global warming potential and eutrophication more than using 50% recycled cotton. However, when it comes to water use and land use, recycled cotton always scores the best since it is not a grown raw material. Here, one can question the production of recycling. The data related to production and transportations are taken into account in the LCA calculations.
In conclusion, denim recycling is very crucial to reduce the water and land use impact of jeans. Combining recycled cotton with organic cotton also leads to reductions in other impact categories such as eutrophication, global warming potential, and abiotic depletion as well. As a future study, the impact of different fibers used in denim fabric production may also be analyzed with a combination of recycled cotton.
Recycled cotton source appears to be the first challenge when whole textile system is considered. There are regulations in countries either limiting or declining the import of second-hand garments. This creates a limitation in source since the collection of second-hand garments is not organized in some countries.
The second challenge is the composition of jeans. Historically, the main composition was 100% cotton. Right now, more than half of the jeans include elastane fiber as well. Besides elastane, new compositions include man-made fibers and regenerated cellulosic fibers. The more complex the composition, the harder it gets to recycle jeans mechanically.
The most important challenge here is always the consumer mindset. Across the industry, only 13% of the total material input is in some way recycled after clothing use. Most of this recycling consists of cascading to other industries and is used in lower-value applications, for example, insulation materials, wiping cloths [81], Once discarded, over half the garments are not recycled but end up in mixed household waste and are subsequently sent to incinerators or landfill. According to a McKinsey analysis, as was mentioned before, an average consumer buys 60% more clothes per year than 15 years ago but keeps the clothes only half the time, and this really is shocking once the numbers become visible [82]. Consumer awareness should be increased via marketing channels and mainly in schools.
Since mechanical recycling technique is a challenge in the process, recently, new techniques have emerged to use denim jeans and other cellulosic materials as a source/raw material. Companies like Re:newcell, Infinited Fibers, and Nanollose are taking second-hand garments, applying fiber separation and turning cellulosic part into liquid [83, 84, 85]. Some of them include fermentation, and as a last step, they turn the liquid into the material. The process resembles regenerated cellulosic fiber process. The use of fermentation appears to be a promising step into bio design for textiles, and this also eliminates all the negative sides of mechanical recycling.
The authors declare no conflict of interest.
IntechOpen books are available online by accessing all published content on a chapter level.
",metaTitle:"Access policy",metaDescription:"IntechOpen books are available online by accessing all published content on a chapter level",metaKeywords:null,canonicalURL:null,contentRaw:'[{"type":"htmlEditorComponent","content":"All IntechOpen published chapters are available OPEN ACCESS can be read without the requirement for registration of any kind, immediately upon publication, without any barrier.
\\n\\nThe HTML version, as well as the PDF version of publications dated before 2012 that are accessible through a reader, are available to readers with no restriction.
\\n\\nThe full content of chapters can be read, copied and printed from the link location of the chapter and these actions are not limited or restricted in any way.
\\n\\nRegistration is requested only to download the PDF of the chapter. There are no subscription fees and there is no charge to user groups.
\\n\\nIntechOpen chapters are distributed under CC BY 3.0 licences allowing users to “copy, use, distribute, transmit and display the work publicly and to make and distribute derivative works, in any digital medium for any responsible purpose, subject to proper attribution of authorship...” and there is no non-commercial restriction.
\\n\\nAuthors may post published works to any repository or website with no delay, and Authors and Editors of IntechOpen books have direct access to the PDF of the full book.
\\n\\nAll published content can be crawled for indexing. Full text and metadata may be accessed with instructions publicly posted.
\\n\\nAll IntechOpen books are indexed in CLOCKSS and preservation of access to published content is clearly indicated.
\\n\\nPolicy last updated: 2021-02-26
\\n"}]'},components:[{type:"htmlEditorComponent",content:"All IntechOpen published chapters are available OPEN ACCESS can be read without the requirement for registration of any kind, immediately upon publication, without any barrier.
\n\nThe HTML version, as well as the PDF version of publications dated before 2012 that are accessible through a reader, are available to readers with no restriction.
\n\nThe full content of chapters can be read, copied and printed from the link location of the chapter and these actions are not limited or restricted in any way.
\n\nRegistration is requested only to download the PDF of the chapter. There are no subscription fees and there is no charge to user groups.
\n\nIntechOpen chapters are distributed under CC BY 3.0 licences allowing users to “copy, use, distribute, transmit and display the work publicly and to make and distribute derivative works, in any digital medium for any responsible purpose, subject to proper attribution of authorship...” and there is no non-commercial restriction.
\n\nAuthors may post published works to any repository or website with no delay, and Authors and Editors of IntechOpen books have direct access to the PDF of the full book.
\n\nAll published content can be crawled for indexing. Full text and metadata may be accessed with instructions publicly posted.
\n\nAll IntechOpen books are indexed in CLOCKSS and preservation of access to published content is clearly indicated.
\n\nPolicy last updated: 2021-02-26
\n"}]},successStories:{items:[]},authorsAndEditors:{filterParams:{sort:"featured,name"},profiles:[{id:"6700",title:"Dr.",name:"Abbass A.",middleName:null,surname:"Hashim",slug:"abbass-a.-hashim",fullName:"Abbass A. Hashim",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/6700/images/1864_n.jpg",biography:"Currently I am carrying out research in several areas of interest, mainly covering work on chemical and bio-sensors, semiconductor thin film device fabrication and characterisation.\nAt the moment I have very strong interest in radiation environmental pollution and bacteriology treatment. The teams of researchers are working very hard to bring novel results in this field. I am also a member of the team in charge for the supervision of Ph.D. students in the fields of development of silicon based planar waveguide sensor devices, study of inelastic electron tunnelling in planar tunnelling nanostructures for sensing applications and development of organotellurium(IV) compounds for semiconductor applications. I am a specialist in data analysis techniques and nanosurface structure. I have served as the editor for many books, been a member of the editorial board in science journals, have published many papers and hold many patents.",institutionString:null,institution:{name:"Sheffield Hallam University",country:{name:"United Kingdom"}}},{id:"54525",title:"Prof.",name:"Abdul Latif",middleName:null,surname:"Ahmad",slug:"abdul-latif-ahmad",fullName:"Abdul Latif Ahmad",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:null},{id:"20567",title:"Prof.",name:"Ado",middleName:null,surname:"Jorio",slug:"ado-jorio",fullName:"Ado Jorio",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"Universidade Federal de Minas Gerais",country:{name:"Brazil"}}},{id:"47940",title:"Dr.",name:"Alberto",middleName:null,surname:"Mantovani",slug:"alberto-mantovani",fullName:"Alberto Mantovani",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:null},{id:"12392",title:"Mr.",name:"Alex",middleName:null,surname:"Lazinica",slug:"alex-lazinica",fullName:"Alex Lazinica",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/12392/images/7282_n.png",biography:"Alex Lazinica is the founder and CEO of IntechOpen. After obtaining a Master's degree in Mechanical Engineering, he continued his PhD studies in Robotics at the Vienna University of Technology. Here he worked as a robotic researcher with the university's Intelligent Manufacturing Systems Group as well as a guest researcher at various European universities, including the Swiss Federal Institute of Technology Lausanne (EPFL). During this time he published more than 20 scientific papers, gave presentations, served as a reviewer for major robotic journals and conferences and most importantly he co-founded and built the International Journal of Advanced Robotic Systems- world's first Open Access journal in the field of robotics. Starting this journal was a pivotal point in his career, since it was a pathway to founding IntechOpen - Open Access publisher focused on addressing academic researchers needs. Alex is a personification of IntechOpen key values being trusted, open and entrepreneurial. Today his focus is on defining the growth and development strategy for the company.",institutionString:null,institution:{name:"TU Wien",country:{name:"Austria"}}},{id:"19816",title:"Prof.",name:"Alexander",middleName:null,surname:"Kokorin",slug:"alexander-kokorin",fullName:"Alexander Kokorin",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/19816/images/1607_n.jpg",biography:"Alexander I. Kokorin: born: 1947, Moscow; DSc., PhD; Principal Research Fellow (Research Professor) of Department of Kinetics and Catalysis, N. Semenov Institute of Chemical Physics, Russian Academy of Sciences, Moscow.\r\nArea of research interests: physical chemistry of complex-organized molecular and nanosized systems, including polymer-metal complexes; the surface of doped oxide semiconductors. He is an expert in structural, absorptive, catalytic and photocatalytic properties, in structural organization and dynamic features of ionic liquids, in magnetic interactions between paramagnetic centers. The author or co-author of 3 books, over 200 articles and reviews in scientific journals and books. He is an actual member of the International EPR/ESR Society, European Society on Quantum Solar Energy Conversion, Moscow House of Scientists, of the Board of Moscow Physical Society.",institutionString:null,institution:{name:"Semenov Institute of Chemical Physics",country:{name:"Russia"}}},{id:"62389",title:"PhD.",name:"Ali Demir",middleName:null,surname:"Sezer",slug:"ali-demir-sezer",fullName:"Ali Demir Sezer",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/62389/images/3413_n.jpg",biography:"Dr. Ali Demir Sezer has a Ph.D. from Pharmaceutical Biotechnology at the Faculty of Pharmacy, University of Marmara (Turkey). He is the member of many Pharmaceutical Associations and acts as a reviewer of scientific journals and European projects under different research areas such as: drug delivery systems, nanotechnology and pharmaceutical biotechnology. Dr. Sezer is the author of many scientific publications in peer-reviewed journals and poster communications. Focus of his research activity is drug delivery, physico-chemical characterization and biological evaluation of biopolymers micro and nanoparticles as modified drug delivery system, and colloidal drug carriers (liposomes, nanoparticles etc.).",institutionString:null,institution:{name:"Marmara University",country:{name:"Turkey"}}},{id:"61051",title:"Prof.",name:"Andrea",middleName:null,surname:"Natale",slug:"andrea-natale",fullName:"Andrea Natale",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:null},{id:"100762",title:"Prof.",name:"Andrea",middleName:null,surname:"Natale",slug:"andrea-natale",fullName:"Andrea Natale",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"St David's Medical Center",country:{name:"United States of America"}}},{id:"107416",title:"Dr.",name:"Andrea",middleName:null,surname:"Natale",slug:"andrea-natale",fullName:"Andrea Natale",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"Texas Cardiac Arrhythmia",country:{name:"United States of America"}}},{id:"64434",title:"Dr.",name:"Angkoon",middleName:null,surname:"Phinyomark",slug:"angkoon-phinyomark",fullName:"Angkoon Phinyomark",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/64434/images/2619_n.jpg",biography:"My name is Angkoon Phinyomark. I received a B.Eng. degree in Computer Engineering with First Class Honors in 2008 from Prince of Songkla University, Songkhla, Thailand, where I received a Ph.D. degree in Electrical Engineering. My research interests are primarily in the area of biomedical signal processing and classification notably EMG (electromyography signal), EOG (electrooculography signal), and EEG (electroencephalography signal), image analysis notably breast cancer analysis and optical coherence tomography, and rehabilitation engineering. I became a student member of IEEE in 2008. During October 2011-March 2012, I had worked at School of Computer Science and Electronic Engineering, University of Essex, Colchester, Essex, United Kingdom. In addition, during a B.Eng. I had been a visiting research student at Faculty of Computer Science, University of Murcia, Murcia, Spain for three months.\n\nI have published over 40 papers during 5 years in refereed journals, books, and conference proceedings in the areas of electro-physiological signals processing and classification, notably EMG and EOG signals, fractal analysis, wavelet analysis, texture analysis, feature extraction and machine learning algorithms, and assistive and rehabilitative devices. I have several computer programming language certificates, i.e. Sun Certified Programmer for the Java 2 Platform 1.4 (SCJP), Microsoft Certified Professional Developer, Web Developer (MCPD), Microsoft Certified Technology Specialist, .NET Framework 2.0 Web (MCTS). I am a Reviewer for several refereed journals and international conferences, such as IEEE Transactions on Biomedical Engineering, IEEE Transactions on Industrial Electronics, Optic Letters, Measurement Science Review, and also a member of the International Advisory Committee for 2012 IEEE Business Engineering and Industrial Applications and 2012 IEEE Symposium on Business, Engineering and Industrial Applications.",institutionString:null,institution:{name:"Joseph Fourier University",country:{name:"France"}}},{id:"55578",title:"Dr.",name:"Antonio",middleName:null,surname:"Jurado-Navas",slug:"antonio-jurado-navas",fullName:"Antonio Jurado-Navas",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/55578/images/4574_n.png",biography:"Antonio Jurado-Navas received the M.S. degree (2002) and the Ph.D. degree (2009) in Telecommunication Engineering, both from the University of Málaga (Spain). He first worked as a consultant at Vodafone-Spain. From 2004 to 2011, he was a Research Assistant with the Communications Engineering Department at the University of Málaga. In 2011, he became an Assistant Professor in the same department. From 2012 to 2015, he was with Ericsson Spain, where he was working on geo-location\ntools for third generation mobile networks. Since 2015, he is a Marie-Curie fellow at the Denmark Technical University. His current research interests include the areas of mobile communication systems and channel modeling in addition to atmospheric optical communications, adaptive optics and statistics",institutionString:null,institution:{name:"University of Malaga",country:{name:"Spain"}}}],filtersByRegion:[{group:"region",caption:"North America",value:1,count:5820},{group:"region",caption:"Middle and South America",value:2,count:5289},{group:"region",caption:"Africa",value:3,count:1761},{group:"region",caption:"Asia",value:4,count:10546},{group:"region",caption:"Australia and Oceania",value:5,count:909},{group:"region",caption:"Europe",value:6,count:15932}],offset:12,limit:12,total:119318},chapterEmbeded:{data:{}},editorApplication:{success:null,errors:{}},ofsBooks:{filterParams:{topicId:"14"},books:[{type:"book",id:"10666",title:"Noble Metals Recent Advanced Studies and Applications",subtitle:null,isOpenForSubmission:!0,hash:"7322b325b1276e2b4185a7db798d588a",slug:null,bookSignature:"Dr. Mousumi Sen",coverURL:"https://cdn.intechopen.com/books/images_new/10666.jpg",editedByType:null,editors:[{id:"310218",title:"Dr.",name:"Mousumi",surname:"Sen",slug:"mousumi-sen",fullName:"Mousumi Sen"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10667",title:"Intermetallic Compounds - Properties and Applications",subtitle:null,isOpenForSubmission:!0,hash:"eb6769bb88a11d0d7d681449b7e14e4a",slug:null,bookSignature:"Dr. Barun Shankar Gupta",coverURL:"https://cdn.intechopen.com/books/images_new/10667.jpg",editedByType:null,editors:[{id:"343769",title:"Dr.",name:"Barun Shankar",surname:"Gupta",slug:"barun-shankar-gupta",fullName:"Barun Shankar Gupta"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10668",title:"Sustainable Concrete",subtitle:null,isOpenForSubmission:!0,hash:"55856c6a8bc3a5b21dae5a1af09a56b6",slug:null,bookSignature:"Prof. Hosam M. Saleh",coverURL:"https://cdn.intechopen.com/books/images_new/10668.jpg",editedByType:null,editors:[{id:"144691",title:"Prof.",name:"Hosam",surname:"Saleh",slug:"hosam-saleh",fullName:"Hosam Saleh"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10669",title:"Corrosion",subtitle:null,isOpenForSubmission:!0,hash:"4a76d54f8a40fc2e7002a8d13fd617c1",slug:null,bookSignature:"Dr. Fahmina Zafar, Dr. Anujit Ghosal and Dr. Eram Sharmin",coverURL:"https://cdn.intechopen.com/books/images_new/10669.jpg",editedByType:null,editors:[{id:"89672",title:"Dr.",name:"Fahmina",surname:"Zafar",slug:"fahmina-zafar",fullName:"Fahmina Zafar"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10670",title:"Properties and Applications of Alginates",subtitle:null,isOpenForSubmission:!0,hash:"062083e53cc5c808af597de6426cea06",slug:null,bookSignature:"Dr. Irem Deniz, Dr. Esra Imamoglu and Dr. Tugba Keskin Gundogdu",coverURL:"https://cdn.intechopen.com/books/images_new/10670.jpg",editedByType:null,editors:[{id:"204855",title:"Dr.",name:"Irem",surname:"Deniz",slug:"irem-deniz",fullName:"Irem Deniz"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10941",title:"Ferrite",subtitle:null,isOpenForSubmission:!0,hash:"f6a323bfa4565d7c676bc3733b4983b0",slug:null,bookSignature:"Dr. Maaz Khan",coverURL:"https://cdn.intechopen.com/books/images_new/10941.jpg",editedByType:null,editors:[{id:"107765",title:"Dr.",name:"Maaz",surname:"Khan",slug:"maaz-khan",fullName:"Maaz Khan"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10944",title:"Bioactive Glass - Recent Advances, New Perspectives and Applications",subtitle:null,isOpenForSubmission:!0,hash:"f5ef9a732ba59084cd6ac45451b0f32f",slug:null,bookSignature:"Prof. Petrică Vizureanu",coverURL:"https://cdn.intechopen.com/books/images_new/10944.jpg",editedByType:null,editors:[{id:"12354",title:"Prof.",name:"Petrică",surname:"Vizureanu",slug:"petrica-vizureanu",fullName:"Petrică Vizureanu"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}}],filtersByTopic:[{group:"topic",caption:"Agricultural and Biological Sciences",value:5,count:28},{group:"topic",caption:"Biochemistry, Genetics and Molecular Biology",value:6,count:9},{group:"topic",caption:"Business, Management and Economics",value:7,count:3},{group:"topic",caption:"Chemistry",value:8,count:11},{group:"topic",caption:"Computer and Information Science",value:9,count:10},{group:"topic",caption:"Earth and Planetary Sciences",value:10,count:10},{group:"topic",caption:"Engineering",value:11,count:25},{group:"topic",caption:"Environmental Sciences",value:12,count:2},{group:"topic",caption:"Immunology and Microbiology",value:13,count:4},{group:"topic",caption:"Materials Science",value:14,count:7},{group:"topic",caption:"Mathematics",value:15,count:3},{group:"topic",caption:"Medicine",value:16,count:48},{group:"topic",caption:"Neuroscience",value:18,count:3},{group:"topic",caption:"Pharmacology, Toxicology and Pharmaceutical Science",value:19,count:3},{group:"topic",caption:"Physics",value:20,count:4},{group:"topic",caption:"Psychology",value:21,count:5},{group:"topic",caption:"Robotics",value:22,count:2},{group:"topic",caption:"Social Sciences",value:23,count:3},{group:"topic",caption:"Technology",value:24,count:1},{group:"topic",caption:"Veterinary Medicine and Science",value:25,count:2}],offset:12,limit:12,total:7},popularBooks:{featuredBooks:[],offset:0,limit:12,total:null},hotBookTopics:{hotBooks:[],offset:0,limit:12,total:null},publish:{},publishingProposal:{success:null,errors:{}},books:{featuredBooks:[{type:"book",id:"9154",title:"Spinal Deformities in Adolescents, Adults and Older Adults",subtitle:null,isOpenForSubmission:!1,hash:"313f1dffa803b60a14ff1e6966e93d91",slug:"spinal-deformities-in-adolescents-adults-and-older-adults",bookSignature:"Josette Bettany-Saltikov and Gokulakannan Kandasamy",coverURL:"https://cdn.intechopen.com/books/images_new/9154.jpg",editors:[{id:"94802",title:"Dr.",name:"Josette",middleName:null,surname:"Bettany-Saltikov",slug:"josette-bettany-saltikov",fullName:"Josette Bettany-Saltikov"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"7030",title:"Satellite Systems",subtitle:"Design, Modeling, Simulation and Analysis",isOpenForSubmission:!1,hash:"b9db6d2645ef248ceb1b33ea75f38e88",slug:"satellite-systems-design-modeling-simulation-and-analysis",bookSignature:"Tien Nguyen",coverURL:"https://cdn.intechopen.com/books/images_new/7030.jpg",editors:[{id:"210657",title:"Dr.",name:"Tien M.",middleName:"Manh",surname:"Nguyen",slug:"tien-m.-nguyen",fullName:"Tien M. Nguyen"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10201",title:"Post-Transition Metals",subtitle:null,isOpenForSubmission:!1,hash:"cc7f53ff5269916e3ce29f65a51a87ae",slug:"post-transition-metals",bookSignature:"Mohammed Muzibur Rahman, Abdullah Mohammed Asiri, Anish Khan, Inamuddin and Thamer Tabbakh",coverURL:"https://cdn.intechopen.com/books/images_new/10201.jpg",editors:[{id:"24438",title:"Prof.",name:"Mohammed Muzibur",middleName:null,surname:"Rahman",slug:"mohammed-muzibur-rahman",fullName:"Mohammed Muzibur Rahman"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10413",title:"A Collection of Papers on Chaos Theory and Its Applications",subtitle:null,isOpenForSubmission:!1,hash:"900b71b164948830fec3d6254b7881f7",slug:"a-collection-of-papers-on-chaos-theory-and-its-applications",bookSignature:"Paul Bracken and Dimo I. Uzunov",coverURL:"https://cdn.intechopen.com/books/images_new/10413.jpg",editors:[{id:"92883",title:"Prof.",name:"Paul",middleName:null,surname:"Bracken",slug:"paul-bracken",fullName:"Paul Bracken"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9515",title:"Update in Geriatrics",subtitle:null,isOpenForSubmission:!1,hash:"913e16c0ae977474b283bbd4269564c8",slug:"update-in-geriatrics",bookSignature:"Somchai Amornyotin",coverURL:"https://cdn.intechopen.com/books/images_new/9515.jpg",editors:[{id:"185484",title:"Prof.",name:"Somchai",middleName:null,surname:"Amornyotin",slug:"somchai-amornyotin",fullName:"Somchai Amornyotin"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"8148",title:"Investment Strategies in Emerging New Trends in Finance",subtitle:null,isOpenForSubmission:!1,hash:"3b714d96a68d2acdfbd7b50aba6504ca",slug:"investment-strategies-in-emerging-new-trends-in-finance",bookSignature:"Reza Gharoie Ahangar and Asma Salman",coverURL:"https://cdn.intechopen.com/books/images_new/8148.jpg",editors:[{id:"91081",title:"Dr.",name:"Reza",middleName:null,surname:"Gharoie Ahangar",slug:"reza-gharoie-ahangar",fullName:"Reza Gharoie Ahangar"}],equalEditorOne:{id:"206443",title:"Prof.",name:"Asma",middleName:null,surname:"Salman",slug:"asma-salman",fullName:"Asma Salman",profilePictureURL:"https://mts.intechopen.com/storage/users/206443/images/system/206443.png",biography:"Professor Asma Salman is a blockchain developer and Professor of Finance at the American University in the Emirates, UAE. An Honorary Global Advisor at the Global Academy of Finance and Management, USA, she completed her MBA in Finance and Accounting and earned a Ph.D. in Finance from an AACSB member, AMBA accredited, School of Management at Harbin Institute of Technology, China. Her research credentials include a one-year residency at the Brunel Business School, Brunel University, UK. Prof. Salman also served as the Dubai Cohort supervisor for DBA students under the Nottingham Business School, UK, for seven years and is currently a Ph.D. supervisor at the University of Northampton, UK, where she is a visiting fellow. She also served on the Board of Etihad Airlines during 2019–2020. One of her recent articles on “Bitcoin and Blockchain” gained wide visibility and she is an active speaker on Fintech, blockchain, and crypto events around the GCC. She holds various professional certifications including Chartered Fintech Professional (USA), Certified Financial Manager (USA), Women in Leadership and Management in Higher Education, (UK), and Taxation GCC VAT Compliance, (UK). She recently won an award for “Blockchain Trainer of the Year” from Berkeley Middle East. Other recognitions include the Women Leadership Impact Award by H.E First Lady of Armenia, Research Excellence Award, and the Global Inspirational Women Leadership Award by H.H Sheikh Juma Bin Maktoum Juma Al Maktoum.",institutionString:"American University in the Emirates",position:null,outsideEditionCount:0,totalCites:0,totalAuthoredChapters:"2",totalChapterViews:"0",totalEditedBooks:"2",institution:{name:"American University in the Emirates",institutionURL:null,country:{name:"United Arab Emirates"}}},equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"8472",title:"Bioactive Compounds in Nutraceutical and Functional Food for Good Human Health",subtitle:null,isOpenForSubmission:!1,hash:"8855452919b8495810ef8e88641feb20",slug:"bioactive-compounds-in-nutraceutical-and-functional-food-for-good-human-health",bookSignature:"Kavita Sharma, Kanchan Mishra, Kula Kamal Senapati and Corina Danciu",coverURL:"https://cdn.intechopen.com/books/images_new/8472.jpg",editors:[{id:"197731",title:"Dr.",name:"Kavita",middleName:null,surname:"Sharma",slug:"kavita-sharma",fullName:"Kavita Sharma"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9959",title:"Biomedical Signal and Image Processing",subtitle:null,isOpenForSubmission:!1,hash:"22b87a09bd6df065d78c175235d367c8",slug:"biomedical-signal-and-image-processing",bookSignature:"Yongxia Zhou",coverURL:"https://cdn.intechopen.com/books/images_new/9959.jpg",editors:[{id:"259308",title:"Dr.",name:"Yongxia",middleName:null,surname:"Zhou",slug:"yongxia-zhou",fullName:"Yongxia Zhou"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9685",title:"Agroecosystems",subtitle:"Very Complex Environmental Systems",isOpenForSubmission:!1,hash:"c44f7b43a9f9610c243dc32300d37df6",slug:"agroecosystems-very-complex-environmental-systems",bookSignature:"Marcelo L. Larramendy and Sonia Soloneski",coverURL:"https://cdn.intechopen.com/books/images_new/9685.jpg",editors:[{id:"14764",title:"Dr.",name:"Marcelo L.",middleName:null,surname:"Larramendy",slug:"marcelo-l.-larramendy",fullName:"Marcelo L. Larramendy"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"8564",title:"Cell Interaction",subtitle:"Molecular and Immunological Basis for Disease Management",isOpenForSubmission:!1,hash:"98d7f080d80524285f091e72a8e92a6d",slug:"cell-interaction-molecular-and-immunological-basis-for-disease-management",bookSignature:"Bhawana Singh",coverURL:"https://cdn.intechopen.com/books/images_new/8564.jpg",editors:[{id:"315192",title:"Dr.",name:"Bhawana",middleName:null,surname:"Singh",slug:"bhawana-singh",fullName:"Bhawana Singh"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}}],latestBooks:[{type:"book",id:"9515",title:"Update in Geriatrics",subtitle:null,isOpenForSubmission:!1,hash:"913e16c0ae977474b283bbd4269564c8",slug:"update-in-geriatrics",bookSignature:"Somchai Amornyotin",coverURL:"https://cdn.intechopen.com/books/images_new/9515.jpg",editedByType:"Edited by",editors:[{id:"185484",title:"Prof.",name:"Somchai",middleName:null,surname:"Amornyotin",slug:"somchai-amornyotin",fullName:"Somchai Amornyotin"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"9021",title:"Novel Perspectives of Stem Cell Manufacturing and Therapies",subtitle:null,isOpenForSubmission:!1,hash:"522c6db871783d2a11c17b83f1fd4e18",slug:"novel-perspectives-of-stem-cell-manufacturing-and-therapies",bookSignature:"Diana Kitala and Ana Colette Maurício",coverURL:"https://cdn.intechopen.com/books/images_new/9021.jpg",editedByType:"Edited by",editors:[{id:"203598",title:"Ph.D.",name:"Diana",middleName:null,surname:"Kitala",slug:"diana-kitala",fullName:"Diana Kitala"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"7030",title:"Satellite Systems",subtitle:"Design, Modeling, Simulation and Analysis",isOpenForSubmission:!1,hash:"b9db6d2645ef248ceb1b33ea75f38e88",slug:"satellite-systems-design-modeling-simulation-and-analysis",bookSignature:"Tien Nguyen",coverURL:"https://cdn.intechopen.com/books/images_new/7030.jpg",editedByType:"Edited by",editors:[{id:"210657",title:"Dr.",name:"Tien M.",middleName:"Manh",surname:"Nguyen",slug:"tien-m.-nguyen",fullName:"Tien M. Nguyen"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10413",title:"A Collection of Papers on Chaos Theory and Its Applications",subtitle:null,isOpenForSubmission:!1,hash:"900b71b164948830fec3d6254b7881f7",slug:"a-collection-of-papers-on-chaos-theory-and-its-applications",bookSignature:"Paul Bracken and Dimo I. Uzunov",coverURL:"https://cdn.intechopen.com/books/images_new/10413.jpg",editedByType:"Edited by",editors:[{id:"92883",title:"Prof.",name:"Paul",middleName:null,surname:"Bracken",slug:"paul-bracken",fullName:"Paul Bracken"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"9154",title:"Spinal Deformities in Adolescents, Adults and Older Adults",subtitle:null,isOpenForSubmission:!1,hash:"313f1dffa803b60a14ff1e6966e93d91",slug:"spinal-deformities-in-adolescents-adults-and-older-adults",bookSignature:"Josette Bettany-Saltikov and Gokulakannan Kandasamy",coverURL:"https://cdn.intechopen.com/books/images_new/9154.jpg",editedByType:"Edited by",editors:[{id:"94802",title:"Dr.",name:"Josette",middleName:null,surname:"Bettany-Saltikov",slug:"josette-bettany-saltikov",fullName:"Josette Bettany-Saltikov"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"8148",title:"Investment Strategies in Emerging New Trends in Finance",subtitle:null,isOpenForSubmission:!1,hash:"3b714d96a68d2acdfbd7b50aba6504ca",slug:"investment-strategies-in-emerging-new-trends-in-finance",bookSignature:"Reza Gharoie Ahangar and Asma Salman",coverURL:"https://cdn.intechopen.com/books/images_new/8148.jpg",editedByType:"Edited by",editors:[{id:"91081",title:"Dr.",name:"Reza",middleName:null,surname:"Gharoie Ahangar",slug:"reza-gharoie-ahangar",fullName:"Reza Gharoie Ahangar"}],equalEditorOne:{id:"206443",title:"Prof.",name:"Asma",middleName:null,surname:"Salman",slug:"asma-salman",fullName:"Asma Salman",profilePictureURL:"https://mts.intechopen.com/storage/users/206443/images/system/206443.png",biography:"Professor Asma Salman is a blockchain developer and Professor of Finance at the American University in the Emirates, UAE. An Honorary Global Advisor at the Global Academy of Finance and Management, USA, she completed her MBA in Finance and Accounting and earned a Ph.D. in Finance from an AACSB member, AMBA accredited, School of Management at Harbin Institute of Technology, China. Her research credentials include a one-year residency at the Brunel Business School, Brunel University, UK. Prof. Salman also served as the Dubai Cohort supervisor for DBA students under the Nottingham Business School, UK, for seven years and is currently a Ph.D. supervisor at the University of Northampton, UK, where she is a visiting fellow. She also served on the Board of Etihad Airlines during 2019–2020. One of her recent articles on “Bitcoin and Blockchain” gained wide visibility and she is an active speaker on Fintech, blockchain, and crypto events around the GCC. She holds various professional certifications including Chartered Fintech Professional (USA), Certified Financial Manager (USA), Women in Leadership and Management in Higher Education, (UK), and Taxation GCC VAT Compliance, (UK). She recently won an award for “Blockchain Trainer of the Year” from Berkeley Middle East. Other recognitions include the Women Leadership Impact Award by H.E First Lady of Armenia, Research Excellence Award, and the Global Inspirational Women Leadership Award by H.H Sheikh Juma Bin Maktoum Juma Al Maktoum.",institutionString:"American University in the Emirates",position:null,outsideEditionCount:0,totalCites:0,totalAuthoredChapters:"2",totalChapterViews:"0",totalEditedBooks:"2",institution:{name:"American University in the Emirates",institutionURL:null,country:{name:"United Arab Emirates"}}},equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10201",title:"Post-Transition Metals",subtitle:null,isOpenForSubmission:!1,hash:"cc7f53ff5269916e3ce29f65a51a87ae",slug:"post-transition-metals",bookSignature:"Mohammed Muzibur Rahman, Abdullah Mohammed Asiri, Anish Khan, Inamuddin and Thamer Tabbakh",coverURL:"https://cdn.intechopen.com/books/images_new/10201.jpg",editedByType:"Edited by",editors:[{id:"24438",title:"Prof.",name:"Mohammed Muzibur",middleName:null,surname:"Rahman",slug:"mohammed-muzibur-rahman",fullName:"Mohammed Muzibur Rahman"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"9959",title:"Biomedical Signal and Image Processing",subtitle:null,isOpenForSubmission:!1,hash:"22b87a09bd6df065d78c175235d367c8",slug:"biomedical-signal-and-image-processing",bookSignature:"Yongxia Zhou",coverURL:"https://cdn.intechopen.com/books/images_new/9959.jpg",editedByType:"Edited by",editors:[{id:"259308",title:"Dr.",name:"Yongxia",middleName:null,surname:"Zhou",slug:"yongxia-zhou",fullName:"Yongxia Zhou"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"8472",title:"Bioactive Compounds in Nutraceutical and Functional Food for Good Human Health",subtitle:null,isOpenForSubmission:!1,hash:"8855452919b8495810ef8e88641feb20",slug:"bioactive-compounds-in-nutraceutical-and-functional-food-for-good-human-health",bookSignature:"Kavita Sharma, Kanchan Mishra, Kula Kamal Senapati and Corina Danciu",coverURL:"https://cdn.intechopen.com/books/images_new/8472.jpg",editedByType:"Edited by",editors:[{id:"197731",title:"Dr.",name:"Kavita",middleName:null,surname:"Sharma",slug:"kavita-sharma",fullName:"Kavita Sharma"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"8760",title:"Structure Topology and Symplectic Geometry",subtitle:null,isOpenForSubmission:!1,hash:"8974840985ec3652492c83e20233bf02",slug:"structure-topology-and-symplectic-geometry",bookSignature:"Kamal Shah and Min Lei",coverURL:"https://cdn.intechopen.com/books/images_new/8760.jpg",editedByType:"Edited by",editors:[{id:"231748",title:"Dr.",name:"Kamal",middleName:null,surname:"Shah",slug:"kamal-shah",fullName:"Kamal Shah"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}}]},subject:{topic:{id:"1176",title:"Cellular Physiology",slug:"cellular-physiology",parent:{title:"Neurogastronomy",slug:"neurogastronomy"},numberOfBooks:2,numberOfAuthorsAndEditors:76,numberOfWosCitations:55,numberOfCrossrefCitations:24,numberOfDimensionsCitations:75,videoUrl:null,fallbackUrl:null,description:null},booksByTopicFilter:{topicSlug:"cellular-physiology",sort:"-publishedDate",limit:12,offset:0},booksByTopicCollection:[{type:"book",id:"5485",title:"The Amygdala",subtitle:"Where Emotions Shape Perception, Learning and Memories",isOpenForSubmission:!1,hash:"5f5b1c2a89185e92e721290beabdc2e8",slug:"the-amygdala-where-emotions-shape-perception-learning-and-memories",bookSignature:"Barbara Ferry",coverURL:"https://cdn.intechopen.com/books/images_new/5485.jpg",editedByType:"Edited by",editors:[{id:"139945",title:"Dr.",name:"Barbara",middleName:null,surname:"Ferry",slug:"barbara-ferry",fullName:"Barbara Ferry"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"1592",title:"Neuroscience",subtitle:"Dealing With Frontiers",isOpenForSubmission:!1,hash:"438fef28742bb47d3a4c39e053551c6c",slug:"neuroscience-dealing-with-frontiers",bookSignature:"Carlos M. Contreras",coverURL:"https://cdn.intechopen.com/books/images_new/1592.jpg",editedByType:"Edited by",editors:[{id:"35182",title:"Dr.",name:"Carlos M.",middleName:null,surname:"Contreras",slug:"carlos-m.-contreras",fullName:"Carlos M. Contreras"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}}],booksByTopicTotal:2,mostCitedChapters:[{id:"32399",doi:"10.5772/36092",title:"Brain Energy Metabolism in Health and Disease",slug:"brain-energy-metabolism-in-health-and-disease",totalDownloads:8594,totalCrossrefCites:1,totalDimensionsCites:9,book:{slug:"neuroscience-dealing-with-frontiers",title:"Neuroscience",fullTitle:"Neuroscience - Dealing With Frontiers"},signatures:"Felipe A. Beltrán, Aníbal I. Acuña, María Paz Miró and Maite A. Castro",authors:[{id:"107041",title:"Dr.",name:"Maite A",middleName:null,surname:"Castro",slug:"maite-a-castro",fullName:"Maite A Castro"},{id:"109692",title:"Mr.",name:"Felipe A",middleName:null,surname:"Beltran",slug:"felipe-a-beltran",fullName:"Felipe A Beltran"},{id:"109695",title:"Mr.",name:"Aníbal",middleName:"I.",surname:"Acuña",slug:"anibal-acuna",fullName:"Aníbal Acuña"},{id:"109696",title:"Ms.",name:"Maria Paz",middleName:null,surname:"Miro",slug:"maria-paz-miro",fullName:"Maria Paz Miro"}]},{id:"32393",doi:"10.5772/34852",title:"The Neurochemical Anatomy of Trigeminal Primary Afferent Neurons",slug:"the-neurochemical-anatomy-of-trigeminal-primary-afferent-neurons",totalDownloads:4288,totalCrossrefCites:0,totalDimensionsCites:8,book:{slug:"neuroscience-dealing-with-frontiers",title:"Neuroscience",fullTitle:"Neuroscience - Dealing With Frontiers"},signatures:"Nikolai E. Lazarov",authors:[{id:"101891",title:"Prof.",name:"Nikolai",middleName:null,surname:"Lazarov",slug:"nikolai-lazarov",fullName:"Nikolai Lazarov"}]},{id:"54323",doi:"10.5772/67586",title:"Inner Design Technology: Improved Affect by Quadrato Motor Training",slug:"inner-design-technology-improved-affect-by-quadrato-motor-training",totalDownloads:996,totalCrossrefCites:4,totalDimensionsCites:6,book:{slug:"the-amygdala-where-emotions-shape-perception-learning-and-memories",title:"The Amygdala",fullTitle:"The Amygdala - Where Emotions Shape Perception, Learning and Memories"},signatures:"Patrizio Paoletti, Joseph Glicksohn and Tal Dotan Ben-Soussan",authors:[{id:"191040",title:"Ph.D.",name:"Tal",middleName:null,surname:"Dotan Ben-Soussan",slug:"tal-dotan-ben-soussan",fullName:"Tal Dotan Ben-Soussan"},{id:"195042",title:"Prof.",name:"Joseph",middleName:null,surname:"Glicksohn",slug:"joseph-glicksohn",fullName:"Joseph Glicksohn"},{id:"195043",title:"Ms.",name:"Patrizio",middleName:null,surname:"Paoletti",slug:"patrizio-paoletti",fullName:"Patrizio Paoletti"}]}],mostDownloadedChaptersLast30Days:[{id:"54675",title:"The Key Role of the Amygdala in Stress",slug:"the-key-role-of-the-amygdala-in-stress",totalDownloads:2148,totalCrossrefCites:2,totalDimensionsCites:2,book:{slug:"the-amygdala-where-emotions-shape-perception-learning-and-memories",title:"The Amygdala",fullTitle:"The Amygdala - Where Emotions Shape Perception, Learning and Memories"},signatures:"Diego Andolina and Antonella Borreca",authors:[{id:"190318",title:"Dr.",name:"Diego",middleName:null,surname:"Andolina",slug:"diego-andolina",fullName:"Diego Andolina"},{id:"192832",title:"Dr.",name:"Antonella",middleName:null,surname:"Borreca",slug:"antonella-borreca",fullName:"Antonella Borreca"}]},{id:"54509",title:"The Contribution of the Amygdala to Reward-Related Learning and Extinction",slug:"the-contribution-of-the-amygdala-to-reward-related-learning-and-extinction",totalDownloads:1203,totalCrossrefCites:0,totalDimensionsCites:0,book:{slug:"the-amygdala-where-emotions-shape-perception-learning-and-memories",title:"The Amygdala",fullTitle:"The Amygdala - Where Emotions Shape Perception, Learning and Memories"},signatures:"Rose Chesworth and Laura Corbit",authors:[{id:"193670",title:"Dr.",name:"Laura",middleName:null,surname:"Corbit",slug:"laura-corbit",fullName:"Laura Corbit"},{id:"194020",title:"Dr.",name:"Rose",middleName:null,surname:"Chesworth",slug:"rose-chesworth",fullName:"Rose Chesworth"}]},{id:"32391",title:"Transforming Growth Factor Beta in the Central Nervous System",slug:"transforming-growth-factor-beta-in-the-central-nervous-system",totalDownloads:2650,totalCrossrefCites:1,totalDimensionsCites:3,book:{slug:"neuroscience-dealing-with-frontiers",title:"Neuroscience",fullTitle:"Neuroscience - Dealing With Frontiers"},signatures:"Arpád Dobolyi",authors:[{id:"99007",title:"Prof.",name:"Arpad",middleName:null,surname:"Dobolyi",slug:"arpad-dobolyi",fullName:"Arpad Dobolyi"}]},{id:"55211",title:"The Amygdala and Anxiety",slug:"the-amygdala-and-anxiety",totalDownloads:2227,totalCrossrefCites:0,totalDimensionsCites:3,book:{slug:"the-amygdala-where-emotions-shape-perception-learning-and-memories",title:"The Amygdala",fullTitle:"The Amygdala - Where Emotions Shape Perception, Learning and Memories"},signatures:"Sergio Linsambarth, Rodrigo Moraga-Amaro, Daisy Quintana-\nDonoso, Sebastian Rojas and Jimmy Stehberg",authors:[{id:"144923",title:"Dr.",name:"Jimmy",middleName:null,surname:"Stehberg",slug:"jimmy-stehberg",fullName:"Jimmy Stehberg"},{id:"194182",title:"Ph.D. Student",name:"Rodrigo",middleName:null,surname:"Moraga-Amaro",slug:"rodrigo-moraga-amaro",fullName:"Rodrigo Moraga-Amaro"},{id:"194183",title:"M.Sc.",name:"Sergio",middleName:null,surname:"Linsambarth",slug:"sergio-linsambarth",fullName:"Sergio Linsambarth"}]},{id:"55483",title:"Amygdala and Emotional Modulation of Multiple Memory Systems",slug:"amygdala-and-emotional-modulation-of-multiple-memory-systems",totalDownloads:1286,totalCrossrefCites:1,totalDimensionsCites:4,book:{slug:"the-amygdala-where-emotions-shape-perception-learning-and-memories",title:"The Amygdala",fullTitle:"The Amygdala - Where Emotions Shape Perception, Learning and Memories"},signatures:"Jarid Goodman, Christa McIntyre and Mark G. Packard",authors:[{id:"190956",title:"Dr.",name:"Mark",middleName:null,surname:"Packard",slug:"mark-packard",fullName:"Mark Packard"},{id:"193276",title:"Dr.",name:"Jarid",middleName:null,surname:"Goodman",slug:"jarid-goodman",fullName:"Jarid Goodman"},{id:"193277",title:"Dr.",name:"Christa",middleName:null,surname:"McIntyre",slug:"christa-mcintyre",fullName:"Christa McIntyre"}]},{id:"32395",title:"The Role of Delta Opioid Receptors in Ethanol Consumption and Seeking: Implications for New Treatments for Alcohol Use Disorders",slug:"the-role-of-delta-opioid-receptors-in-ethanol-consumption-and-seeking-implications-for-new-treatment",totalDownloads:2096,totalCrossrefCites:0,totalDimensionsCites:0,book:{slug:"neuroscience-dealing-with-frontiers",title:"Neuroscience",fullTitle:"Neuroscience - Dealing With Frontiers"},signatures:"Carsten K. Nielsen and Selena E. Bartlett",authors:[{id:"90682",title:"Prof.",name:"Selena",middleName:null,surname:"Bartlett",slug:"selena-bartlett",fullName:"Selena Bartlett"},{id:"94910",title:"Dr.",name:"Carsten",middleName:"K",surname:"Nielsen",slug:"carsten-nielsen",fullName:"Carsten Nielsen"}]},{id:"54301",title:"Revisiting the Role of the Amygdala in Posttraumatic Stress Disorder",slug:"revisiting-the-role-of-the-amygdala-in-posttraumatic-stress-disorder",totalDownloads:1639,totalCrossrefCites:1,totalDimensionsCites:6,book:{slug:"the-amygdala-where-emotions-shape-perception-learning-and-memories",title:"The Amygdala",fullTitle:"The Amygdala - Where Emotions Shape Perception, Learning and Memories"},signatures:"Gina L. Forster, Raluca M. Simons and Lee A. Baugh",authors:[{id:"145620",title:"Dr.",name:"Gina",middleName:null,surname:"Forster",slug:"gina-forster",fullName:"Gina Forster"},{id:"195109",title:"Dr.",name:"Raluca",middleName:null,surname:"Simons",slug:"raluca-simons",fullName:"Raluca Simons"},{id:"195110",title:"Dr.",name:"Lee",middleName:null,surname:"Baugh",slug:"lee-baugh",fullName:"Lee Baugh"}]},{id:"55539",title:"Human Amygdala in Sensory and Attentional Unawareness: Neural Pathways and Behavioural Outcomes",slug:"human-amygdala-in-sensory-and-attentional-unawareness-neural-pathways-and-behavioural-outcomes",totalDownloads:1651,totalCrossrefCites:0,totalDimensionsCites:2,book:{slug:"the-amygdala-where-emotions-shape-perception-learning-and-memories",title:"The Amygdala",fullTitle:"The Amygdala - Where Emotions Shape Perception, Learning and Memories"},signatures:"Matteo Diano, Alessia Celeghin, Arianna Bagnis and Marco\nTamietto",authors:[{id:"193692",title:"Dr.",name:"Marco",middleName:null,surname:"Tamietto",slug:"marco-tamietto",fullName:"Marco Tamietto"},{id:"194265",title:"Dr.",name:"Matteo",middleName:null,surname:"Diano",slug:"matteo-diano",fullName:"Matteo Diano"},{id:"194266",title:"Dr.",name:"Alessia",middleName:null,surname:"Celeghin",slug:"alessia-celeghin",fullName:"Alessia Celeghin"},{id:"194267",title:"Ph.D. Student",name:"Arianna",middleName:null,surname:"Bagnis",slug:"arianna-bagnis",fullName:"Arianna Bagnis"}]},{id:"54746",title:"Computational Models of the Amygdala in Acquisition and Extinction of Conditioned Fear",slug:"computational-models-of-the-amygdala-in-acquisition-and-extinction-of-conditioned-fear",totalDownloads:1212,totalCrossrefCites:3,totalDimensionsCites:3,book:{slug:"the-amygdala-where-emotions-shape-perception-learning-and-memories",title:"The Amygdala",fullTitle:"The Amygdala - Where Emotions Shape Perception, Learning and Memories"},signatures:"Guoshi Li",authors:[{id:"191728",title:"Dr.",name:"Guoshi",middleName:null,surname:"Li",slug:"guoshi-li",fullName:"Guoshi Li"}]},{id:"54565",title:"The Role of the Amygdala in Regulating the Hypothalamic-Pituitary-Adrenal Axis",slug:"the-role-of-the-amygdala-in-regulating-the-hypothalamic-pituitary-adrenal-axis",totalDownloads:3074,totalCrossrefCites:2,totalDimensionsCites:3,book:{slug:"the-amygdala-where-emotions-shape-perception-learning-and-memories",title:"The Amygdala",fullTitle:"The Amygdala - Where Emotions Shape Perception, Learning and Memories"},signatures:"Joseph Weidenfeld and Haim Ovadia",authors:[{id:"190851",title:"Ph.D.",name:"Haim",middleName:null,surname:"Ovadia",slug:"haim-ovadia",fullName:"Haim Ovadia"},{id:"192823",title:"Prof.",name:"Joseph",middleName:null,surname:"Weidenfeld",slug:"joseph-weidenfeld",fullName:"Joseph Weidenfeld"}]}],onlineFirstChaptersFilter:{topicSlug:"cellular-physiology",limit:3,offset:0},onlineFirstChaptersCollection:[],onlineFirstChaptersTotal:0},preDownload:{success:null,errors:{}},aboutIntechopen:{},privacyPolicy:{},peerReviewing:{},howOpenAccessPublishingWithIntechopenWorks:{},sponsorshipBooks:{sponsorshipBooks:[],offset:0,limit:8,total:null},route:{name:"chapter.detail",path:"/books/grasses-and-grassland-aspects/small-grains-as-winter-pasture-in-the-southern-great-plains-of-the-united-states",hash:"",query:{},params:{book:"grasses-and-grassland-aspects",chapter:"small-grains-as-winter-pasture-in-the-southern-great-plains-of-the-united-states"},fullPath:"/books/grasses-and-grassland-aspects/small-grains-as-winter-pasture-in-the-southern-great-plains-of-the-united-states",meta:{},from:{name:null,path:"/",hash:"",query:{},params:{},fullPath:"/",meta:{}}}},function(){var e;(e=document.currentScript||document.scripts[document.scripts.length-1]).parentNode.removeChild(e)}()