Methods for synthesis of Fe3O4 coated with SiO2.
\r\n\tThe study of populations and plant communities in their different aspects; ecological, structural, functional and dynamic, it is essential to establish a posteriori models of forest and agricultural management.
\r\n\r\n\tFor this, the methodological approaches on the type of sampling are considered essential, since there are differences between the purely ecological and the phytosociological methods, despite the fact that both pursue the same objective.
\r\n\tAlthough the ecological method for the knowledge of the vegetation is widely extended, the phytosociological one is no less so, since in the European Union it has been developed as a consequence of policies on sustainability, through which regulations have been issued, such as the habitats directive.
\r\n\tOn the other hand, research on plant dynamics and knowledge of the landscape in an integral way, have multiplied in the last 30 years, which has favored a deep knowledge of the floristic and phytocenotic wealth, which is fundamental for agricultural management, livestock and forestry.
",isbn:"978-1-83969-386-1",printIsbn:"978-1-83969-385-4",pdfIsbn:"978-1-83969-387-8",doi:null,price:0,priceEur:0,priceUsd:0,slug:null,numberOfPages:0,isOpenForSubmission:!0,hash:"0abf2a59ee63fc1ba4fb64d77c9b1be7",bookSignature:"Dr. Eusebio Cano Carmona, Dr. Ricardo Quinto Canas, Dr. Ana Cano Ortiz and Dr. Carmelo Maria Musarella",publishedDate:null,coverURL:"https://cdn.intechopen.com/books/images_new/9662.jpg",keywords:"Climatic Factors, Bioclimate, Thermotype, Flora, Conservation, Phytocenosis, Plant Dynamics, Landscape, Cartography, Vegetation Series, Crops, Reforestation",numberOfDownloads:null,numberOfWosCitations:0,numberOfCrossrefCitations:null,numberOfDimensionsCitations:null,numberOfTotalCitations:null,isAvailableForWebshopOrdering:!0,dateEndFirstStepPublish:"November 23rd 2020",dateEndSecondStepPublish:"January 25th 2021",dateEndThirdStepPublish:"March 26th 2021",dateEndFourthStepPublish:"June 14th 2021",dateEndFifthStepPublish:"August 13th 2021",remainingDaysToSecondStep:"a month",secondStepPassed:!0,currentStepOfPublishingProcess:3,editedByType:null,kuFlag:!1,biosketch:"Dr. Cano Carmona and colleagues have directed 12 doctoral theses and more than 200 publications among articles, books, and book chapters. He has participated in national and international congresses with about 250 papers. He has held a number of different academic positions, including Dean of the Faculty of Experimental Sciences at the University of Jaen, Spain, and founder and director of the International Seminar on Management and Conservation of Biodiversity.",coeditorOneBiosketch:"Ricardo Jorge Quinto Canas is currently an Invited Assistant Professor in the Faculty of Sciences and Technology at the University of Algarve – Portugal, and a member of the Centre of Marine Sciences (CCMAR), University of Algarve. His current research projects focus on Botany, Vegetation Science (Geobotany), Biogeography, Plant Ecology, and Biology Conservation, aiming to support Nature Conservation.",coeditorTwoBiosketch:"Ana Cano Ortiz's fundamental line of research is related to botanical bioindicators. She has worked in Spain, Italy, Portugal, and Central America. It presents more than one hundred works published in various national and international journals, as well as books and book chapters; and has presented a hundred papers to national and international congresses.",coeditorThreeBiosketch:"Carmelo Maria Musarella is a biologist, specialized in Plant Biology. He is a member of the permanent scientific committee of the International Seminar on “Biodiversity Conservation and Management” guested by several European universities. He has participated in several international and national congresses, seminars, and workshops and presented oral communications and posters.",coeditorFourBiosketch:null,coeditorFiveBiosketch:null,editors:[{id:"87846",title:"Dr.",name:"Eusebio",middleName:null,surname:"Cano Carmona",slug:"eusebio-cano-carmona",fullName:"Eusebio Cano Carmona",profilePictureURL:"https://mts.intechopen.com/storage/users/87846/images/system/87846.png",biography:"Eusebio Cano Carmona obtained a PhD in Sciences from the\nUniversity of Granada, Spain. He is Professor of Botany at the\nUniversity of Jaén, Spain. His focus is flora and vegetation and he\nhas conducted research in Spain, Italy, Portugal, Palestine, the\nCaribbean islands and Mexico. As a result of these investigations,\nDr. Cano Carmona and colleagues have directed 12 doctoral theses\nand more than 200 publications among articles, books and book\nchapters. He has participated in national and international congresses with about\n250 papers/communications. He has held a number of different academic positions,\nincluding Dean of the Faculty of Experimental Sciences at the University of Jaen,\nSpain and founder and director of the International Seminar on Management and\nConservation of Biodiversity, a position he has held for 13 years. He is also a member of the Spanish, Portuguese and Italian societies of Geobotany.",institutionString:"University of Jaén",position:null,outsideEditionCount:0,totalCites:0,totalAuthoredChapters:"5",totalChapterViews:"0",totalEditedBooks:"1",institution:{name:"University of Jaén",institutionURL:null,country:{name:"Spain"}}}],coeditorOne:{id:"216982",title:"Dr.",name:"Ricardo Quinto",middleName:null,surname:"Canas",slug:"ricardo-quinto-canas",fullName:"Ricardo Quinto Canas",profilePictureURL:"https://mts.intechopen.com/storage/users/216982/images/system/216982.JPG",biography:"Ricardo Quinto Canas, Phd in Analysis and Management of Ecosystems, is currently an Invited Assistant Professor in the Faculty\nof Sciences and Technology at the University of Algarve, Portugal, and member of the Centre of Marine Sciences (CCMAR),\nUniversity of Algarve. He is also the Head of Division of Environmental Impact Assessment - Algarve Regional Coordination\nand Development Commission (CCDR - Algarve). His current\nresearch projects focus on Botany, Vegetation Science (Geobotany), Biogeography,\nPlant Ecology and Biology Conservation, aiming to support Nature Conservation.\nDr. Quinto Canas has co-authored many cited journal publication, conference articles and book chapters in above-mentioned topics.",institutionString:"University of Algarve",position:null,outsideEditionCount:0,totalCites:0,totalAuthoredChapters:"3",totalChapterViews:"0",totalEditedBooks:"0",institution:null},coeditorTwo:{id:"203697",title:"Dr.",name:"Ana",middleName:null,surname:"Cano Ortiz",slug:"ana-cano-ortiz",fullName:"Ana Cano Ortiz",profilePictureURL:"https://mts.intechopen.com/storage/users/203697/images/system/203697.png",biography:"Ana Cano Ortiz holds a PhD in Botany from the University of\nJaén, Spain. She has worked in private enterprise, in university\nand in secondary education. She is co-director of four doctoral\ntheses. Her research focus is related to botanical bioindicators.\nDr. Ortiz has worked in Spain, Italy, Portugal and Central America. She has published more than 100 works in various national\nand international journals, as well as books and book chapters.\nShe has also presented a great number of papers/communications to national and\ninternational congresses.",institutionString:"University of Jaén",position:null,outsideEditionCount:0,totalCites:0,totalAuthoredChapters:"6",totalChapterViews:"0",totalEditedBooks:"0",institution:{name:"University of Jaén",institutionURL:null,country:{name:"Spain"}}},coeditorThree:{id:"276295",title:"Dr.",name:"Carmelo Maria",middleName:null,surname:"Musarella",slug:"carmelo-maria-musarella",fullName:"Carmelo Maria Musarella",profilePictureURL:"https://mts.intechopen.com/storage/users/276295/images/system/276295.jpg",biography:"Carmelo Maria Musarella, PhD (Reggio Calabria, Italy –\n23/01/1975) is a biologist, specializing in plant biology. He\nstudied and worked in several European Universities: Messina,\nCatania, Reggio Calabria, Rome (Italy), Valencia, Jaén, Almeria\n(Spain), and Evora (Portugal). He was the Adjunct Professor\nof Plant Biology at the “Mediterranea” University of Reggio\nCalabria (Italy). His research topics are: floristic, vegetation,\nhabitat, biogeography, taxonomy, ethnobotany, endemisms, alien species, and\nbiodiversity conservation. He has authored many research articles published in\nindexed journals and books. He has been the guest editor for Plant Biosystems and a\nreferee for this same journal and others. He is a member of the permanent scientific\ncommittee of International Seminar on “Biodiversity Conservation and Management”, which includes several European universities. He has participated in several\ninternational and national congresses, seminars, workshops, and presentations of\noral communications and posters.",institutionString:'"Mediterranea" University of Reggio Calabria',position:null,outsideEditionCount:0,totalCites:0,totalAuthoredChapters:"6",totalChapterViews:"0",totalEditedBooks:"1",institution:null},coeditorFour:null,coeditorFive:null,topics:[{id:"5",title:"Agricultural and Biological Sciences",slug:"agricultural-and-biological-sciences"}],chapters:null,productType:{id:"1",title:"Edited Volume",chapterContentType:"chapter",authoredCaption:"Edited by"},personalPublishingAssistant:{id:"247865",firstName:"Jasna",lastName:"Bozic",middleName:null,title:"Ms.",imageUrl:"https://mts.intechopen.com/storage/users/247865/images/7225_n.jpg",email:"jasna.b@intechopen.com",biography:"As an Author Service Manager, my responsibilities include monitoring and facilitating all publishing activities for authors and editors. From chapter submission and review to approval and revision, copyediting and design, until final publication, I work closely with authors and editors to ensure a simple and easy publishing process. I maintain constant and effective communication with authors, editors and reviewers, which allows for a level of personal support that enables contributors to fully commit and concentrate on the chapters they are writing, editing, or reviewing. I assist authors in the preparation of their full chapter submissions and track important deadlines and ensure they are met. I help to coordinate internal processes such as linguistic review, and monitor the technical aspects of the process. As an ASM I am also involved in the acquisition of editors. Whether that be identifying an exceptional author and proposing an editorship collaboration, or contacting researchers who would like the opportunity to work with IntechOpen, I establish and help manage author and editor acquisition and contact."}},relatedBooks:[{type:"book",id:"6893",title:"Endemic Species",subtitle:null,isOpenForSubmission:!1,hash:"3290be83fff5bc015f5bd3d78ae9c6c7",slug:"endemic-species",bookSignature:"Eusebio Cano Carmona, Carmelo Maria Musarella and Ana Cano Ortiz",coverURL:"https://cdn.intechopen.com/books/images_new/6893.jpg",editedByType:"Edited by",editors:[{id:"87846",title:"Dr.",name:"Eusebio",surname:"Cano Carmona",slug:"eusebio-cano-carmona",fullName:"Eusebio Cano Carmona"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"6418",title:"Hyperspectral Imaging in Agriculture, Food and Environment",subtitle:null,isOpenForSubmission:!1,hash:"9005c36534a5dc065577a011aea13d4d",slug:"hyperspectral-imaging-in-agriculture-food-and-environment",bookSignature:"Alejandro Isabel Luna Maldonado, Humberto Rodríguez Fuentes and Juan Antonio Vidales Contreras",coverURL:"https://cdn.intechopen.com/books/images_new/6418.jpg",editedByType:"Edited by",editors:[{id:"105774",title:"Prof.",name:"Alejandro Isabel",surname:"Luna Maldonado",slug:"alejandro-isabel-luna-maldonado",fullName:"Alejandro Isabel Luna Maldonado"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"1591",title:"Infrared Spectroscopy",subtitle:"Materials Science, Engineering and Technology",isOpenForSubmission:!1,hash:"99b4b7b71a8caeb693ed762b40b017f4",slug:"infrared-spectroscopy-materials-science-engineering-and-technology",bookSignature:"Theophile Theophanides",coverURL:"https://cdn.intechopen.com/books/images_new/1591.jpg",editedByType:"Edited by",editors:[{id:"37194",title:"Dr.",name:"Theophanides",surname:"Theophile",slug:"theophanides-theophile",fullName:"Theophanides Theophile"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"3092",title:"Anopheles mosquitoes",subtitle:"New insights into malaria vectors",isOpenForSubmission:!1,hash:"c9e622485316d5e296288bf24d2b0d64",slug:"anopheles-mosquitoes-new-insights-into-malaria-vectors",bookSignature:"Sylvie Manguin",coverURL:"https://cdn.intechopen.com/books/images_new/3092.jpg",editedByType:"Edited by",editors:[{id:"50017",title:"Prof.",name:"Sylvie",surname:"Manguin",slug:"sylvie-manguin",fullName:"Sylvie Manguin"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"3161",title:"Frontiers in Guided Wave Optics and Optoelectronics",subtitle:null,isOpenForSubmission:!1,hash:"deb44e9c99f82bbce1083abea743146c",slug:"frontiers-in-guided-wave-optics-and-optoelectronics",bookSignature:"Bishnu Pal",coverURL:"https://cdn.intechopen.com/books/images_new/3161.jpg",editedByType:"Edited by",editors:[{id:"4782",title:"Prof.",name:"Bishnu",surname:"Pal",slug:"bishnu-pal",fullName:"Bishnu Pal"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"72",title:"Ionic Liquids",subtitle:"Theory, Properties, New Approaches",isOpenForSubmission:!1,hash:"d94ffa3cfa10505e3b1d676d46fcd3f5",slug:"ionic-liquids-theory-properties-new-approaches",bookSignature:"Alexander Kokorin",coverURL:"https://cdn.intechopen.com/books/images_new/72.jpg",editedByType:"Edited by",editors:[{id:"19816",title:"Prof.",name:"Alexander",surname:"Kokorin",slug:"alexander-kokorin",fullName:"Alexander Kokorin"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"1373",title:"Ionic Liquids",subtitle:"Applications and Perspectives",isOpenForSubmission:!1,hash:"5e9ae5ae9167cde4b344e499a792c41c",slug:"ionic-liquids-applications-and-perspectives",bookSignature:"Alexander Kokorin",coverURL:"https://cdn.intechopen.com/books/images_new/1373.jpg",editedByType:"Edited by",editors:[{id:"19816",title:"Prof.",name:"Alexander",surname:"Kokorin",slug:"alexander-kokorin",fullName:"Alexander Kokorin"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"57",title:"Physics and Applications of Graphene",subtitle:"Experiments",isOpenForSubmission:!1,hash:"0e6622a71cf4f02f45bfdd5691e1189a",slug:"physics-and-applications-of-graphene-experiments",bookSignature:"Sergey Mikhailov",coverURL:"https://cdn.intechopen.com/books/images_new/57.jpg",editedByType:"Edited by",editors:[{id:"16042",title:"Dr.",name:"Sergey",surname:"Mikhailov",slug:"sergey-mikhailov",fullName:"Sergey Mikhailov"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"371",title:"Abiotic Stress in Plants",subtitle:"Mechanisms and Adaptations",isOpenForSubmission:!1,hash:"588466f487e307619849d72389178a74",slug:"abiotic-stress-in-plants-mechanisms-and-adaptations",bookSignature:"Arun Shanker and B. Venkateswarlu",coverURL:"https://cdn.intechopen.com/books/images_new/371.jpg",editedByType:"Edited by",editors:[{id:"58592",title:"Dr.",name:"Arun",surname:"Shanker",slug:"arun-shanker",fullName:"Arun Shanker"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"878",title:"Phytochemicals",subtitle:"A Global Perspective of Their Role in Nutrition and Health",isOpenForSubmission:!1,hash:"ec77671f63975ef2d16192897deb6835",slug:"phytochemicals-a-global-perspective-of-their-role-in-nutrition-and-health",bookSignature:"Venketeshwer Rao",coverURL:"https://cdn.intechopen.com/books/images_new/878.jpg",editedByType:"Edited by",editors:[{id:"82663",title:"Dr.",name:"Venketeshwer",surname:"Rao",slug:"venketeshwer-rao",fullName:"Venketeshwer Rao"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}}]},chapter:{item:{type:"chapter",id:"34655",title:"Phylogenetic Systematics and Biogeography: Using Cladograms in Historical Biogeography Methods",doi:"10.5772/34315",slug:"phylogenetic-systematics-and-biogeography-using-cladograms-in-historical-biogeography-methods",body:null,keywords:null,chapterPDFUrl:"https://cdn.intechopen.com/pdfs/34655.pdf",chapterXML:null,downloadPdfUrl:"/chapter/pdf-download/34655",previewPdfUrl:"/chapter/pdf-preview/34655",totalDownloads:3531,totalViews:149,totalCrossrefCites:0,totalDimensionsCites:0,hasAltmetrics:0,dateSubmitted:"April 29th 2011",dateReviewed:"October 13th 2011",datePrePublished:null,datePublished:"March 30th 2012",dateFinished:null,readingETA:"0",abstract:null,reviewType:"peer-reviewed",bibtexUrl:"/chapter/bibtex/34655",risUrl:"/chapter/ris/34655",book:{slug:"global-advances-in-biogeography"},signatures:"Raúl Contreras-Medina and Isolda Luna-Vega",authors:[{id:"99612",title:"Dr.",name:"Isolda",middleName:null,surname:"Luna-Vega",fullName:"Isolda Luna-Vega",slug:"isolda-luna-vega",email:"ilv@hp.fciencias.unam.mx",position:null,institution:{name:"National Autonomous University of Mexico",institutionURL:null,country:{name:"Mexico"}}},{id:"99658",title:"Dr.",name:"Raúl",middleName:null,surname:"Contreras-Medina",fullName:"Raúl Contreras-Medina",slug:"raul-contreras-medina",email:"raconmed@gmail.com",position:null,institution:{name:"Benito Juárez Autonomous University of Oaxaca",institutionURL:null,country:{name:"Mexico"}}}],sections:null,chapterReferences:null,footnotes:null,contributors:null,corrections:null},book:{id:"1670",title:"Global Advances in Biogeography",subtitle:null,fullTitle:"Global Advances in Biogeography",slug:"global-advances-in-biogeography",publishedDate:"March 30th 2012",bookSignature:"Lawrence Stevens",coverURL:"https://cdn.intechopen.com/books/images_new/1670.jpg",licenceType:"CC BY 3.0",editedByType:"Edited by",editors:[{id:"91836",title:"Dr.",name:"Lawrence",middleName:"Edward",surname:"Stevens",slug:"lawrence-stevens",fullName:"Lawrence Stevens"}],productType:{id:"1",title:"Edited Volume",chapterContentType:"chapter",authoredCaption:"Edited by"},chapters:[{id:"34652",title:"Influences of Island Characteristics on Plant Community Structure of Farasan Archipelago, Saudi Arabia: Island Biogeography and Nested Pattern",slug:"influences-of-island-characteristics-on-plant-community-structure-of-farasan-archipelago-saudi-arabi",totalDownloads:2569,totalCrossrefCites:0,signatures:"Khalid Al Mutairi, Mashhor Mansor, Magdy El-Bana, Saud L. Al-Rowaily and Asyraf Mansor",authors:[{id:"96728",title:"Dr.",name:"Magdy",middleName:"Ibrahim",surname:"El-Bana",fullName:"Magdy El-Bana",slug:"magdy-el-bana"},{id:"97300",title:"Dr.",name:"Khalid",middleName:"Al-Mutairi",surname:"Al Mutairi",fullName:"Khalid Al Mutairi",slug:"khalid-al-mutairi"},{id:"97301",title:"Prof.",name:"Mashhor",middleName:null,surname:"Mansor",fullName:"Mashhor Mansor",slug:"mashhor-mansor"},{id:"97302",title:"Dr.",name:"Saud",middleName:null,surname:"Al-Rowaily",fullName:"Saud Al-Rowaily",slug:"saud-al-rowaily"},{id:"97303",title:"Dr.",name:"Asyraf",middleName:null,surname:"Mansor",fullName:"Asyraf Mansor",slug:"asyraf-mansor"}]},{id:"34653",title:"Biogeographic Hierarchical Levels and Parasite Speciation",slug:"biogeographic-hierarchical-levels-and-parasite-speciation",totalDownloads:1786,totalCrossrefCites:0,signatures:"Hugo H. Mejía-Madrid",authors:[{id:"86273",title:"Dr.",name:"Hugo H.",middleName:null,surname:"Mejia-Madrid",fullName:"Hugo H. Mejia-Madrid",slug:"hugo-h.-mejia-madrid"}]},{id:"34654",title:"Passive Long-Distance Migration of Apterous Dryinid Wasps Parasitizing Rice Planthoppers",slug:"passive-long-distance-migration-of-apterous-dryinid-wasps-using-rice-planthopper",totalDownloads:2088,totalCrossrefCites:0,signatures:"Toshiharu Mita, Yukiko Matsumoto, Sachiyo Sanada-Morimura and Masaya Matsumura",authors:[{id:"106245",title:"Dr.",name:"Toshiharu",middleName:null,surname:"Mita",fullName:"Toshiharu Mita",slug:"toshiharu-mita"},{id:"107271",title:"Dr.",name:"Yukiko",middleName:null,surname:"Matsumoto",fullName:"Yukiko Matsumoto",slug:"yukiko-matsumoto"},{id:"130384",title:"Dr.",name:"Sachiyo",middleName:null,surname:"Sanada-Morimura",fullName:"Sachiyo Sanada-Morimura",slug:"sachiyo-sanada-morimura"},{id:"130387",title:"Dr.",name:"Masaya",middleName:null,surname:"Matsumura",fullName:"Masaya Matsumura",slug:"masaya-matsumura"}]},{id:"34655",title:"Phylogenetic Systematics and Biogeography: Using Cladograms in Historical Biogeography Methods",slug:"phylogenetic-systematics-and-biogeography-using-cladograms-in-historical-biogeography-methods",totalDownloads:3531,totalCrossrefCites:0,signatures:"Raúl Contreras-Medina and Isolda Luna-Vega",authors:[{id:"99612",title:"Dr.",name:"Isolda",middleName:null,surname:"Luna-Vega",fullName:"Isolda Luna-Vega",slug:"isolda-luna-vega"},{id:"99658",title:"Dr.",name:"Raúl",middleName:null,surname:"Contreras-Medina",fullName:"Raúl Contreras-Medina",slug:"raul-contreras-medina"}]},{id:"34656",title:"Biogeographic Insights in Central American Cycad Biology",slug:"biogeographic-insights-in-central-american-cycad-biology",totalDownloads:3291,totalCrossrefCites:2,signatures:"Alberto S. Taylor B., Jody L. Haynes, Dennis W. Stevenson, Gregory Holzman and Jorge Mendieta",authors:[{id:"90737",title:"Dr.",name:"Alberto",middleName:"Sidney",surname:"Taylor B.",fullName:"Alberto Taylor B.",slug:"alberto-taylor-b."},{id:"97508",title:"Dr.",name:"Dennis",middleName:null,surname:"Stevenson",fullName:"Dennis Stevenson",slug:"dennis-stevenson"},{id:"97512",title:"MSc.",name:"Jody",middleName:null,surname:"Haynes",fullName:"Jody Haynes",slug:"jody-haynes"},{id:"97513",title:"Mr.",name:"Gregory",middleName:null,surname:"Holzman",fullName:"Gregory Holzman",slug:"gregory-holzman"},{id:"97515",title:"MSc.",name:"Jorge",middleName:null,surname:"Mendieta",fullName:"Jorge Mendieta",slug:"jorge-mendieta"}]},{id:"34657",title:"Establishment of Biogeographic Areas by Distributing Endemic Flora and Habitats (Dominican Republic, Haiti R.)",slug:"stablishmentof-biogeographicareas-by-distributing-endemic-flora-and-habitats",totalDownloads:2627,totalCrossrefCites:5,signatures:"Eusebio Cano Carmona and Ana Cano Ortiz",authors:[{id:"87846",title:"Dr.",name:"Eusebio",middleName:null,surname:"Cano Carmona",fullName:"Eusebio Cano Carmona",slug:"eusebio-cano-carmona"},{id:"97709",title:"Dr.",name:"Ana",middleName:null,surname:"Cano Ortiz",fullName:"Ana Cano Ortiz",slug:"ana-cano-ortiz"}]},{id:"34658",title:"Biogeography of Intertidal Barnacles in Different Marine Ecosystems of Taiwan - Potential Indicators of Climate Change?",slug:"biogeography-of-intertidal-barnacles-in-different-marine-systems-of-taiwan-potential-indicators-for-",totalDownloads:2259,totalCrossrefCites:0,signatures:"Benny K.K. Chan and Pei-Fen Lee",authors:[{id:"93490",title:"Dr.",name:"Benny K.K.",middleName:null,surname:"Chan",fullName:"Benny K.K. Chan",slug:"benny-k.k.-chan"},{id:"94326",title:"Prof.",name:"Pei-Fen",middleName:null,surname:"Lee",fullName:"Pei-Fen Lee",slug:"pei-fen-lee"}]},{id:"34659",title:"Biogeography of Chilean Herpetofauna: Biodiversity Hotspot and Extinction Risk",slug:"biogeography-of-the-chilean-herpetofauna-biodiversity-hotspot-and-extinction-risk",totalDownloads:2746,totalCrossrefCites:0,signatures:"Marcela A. Vidal and Helen Díaz-Páez",authors:[{id:"86237",title:"Dr.",name:"Marcela",middleName:null,surname:"Vidal",fullName:"Marcela Vidal",slug:"marcela-vidal"},{id:"96669",title:"Dr.",name:"Helen",middleName:null,surname:"Díaz-Páez",fullName:"Helen Díaz-Páez",slug:"helen-diaz-paez"}]},{id:"34660",title:"Contributions of Cladistic Biogeography to the Mexican Transition Zone",slug:"contributions-of-cladistic-biogeography-to-the-mexican-transition-zone",totalDownloads:2450,totalCrossrefCites:1,signatures:"Isolda Luna-Vega and Raúl Contreras-Medina",authors:[{id:"99658",title:"Dr.",name:"Raúl",middleName:null,surname:"Contreras-Medina",fullName:"Raúl Contreras-Medina",slug:"raul-contreras-medina"},{id:"114223",title:"Prof.",name:"Isolda",middleName:null,surname:"Luna Vega",fullName:"Isolda Luna Vega",slug:"isolda-luna-vega"}]},{id:"34661",title:"The Biogeographic Significance of a Large, Deep Canyon: Grand Canyon of the Colorado River, Southwestern USA",slug:"the-biogeographic-significance-of-a-large-deep-canyon-grand-canyon-of-the-colorado-river-usa",totalDownloads:2026,totalCrossrefCites:1,signatures:"Lawrence E. Stevens",authors:[{id:"91836",title:"Dr.",name:"Lawrence",middleName:"Edward",surname:"Stevens",fullName:"Lawrence Stevens",slug:"lawrence-stevens"}]},{id:"34662",title:"Aquatic Crustaceans in the Driest Desert on Earth: Reports from the Loa River, Atacama Desert, Antofagasta Region, Chile",slug:"aquatic-fauna-in-the-driest-desert-on-earth-a-review-of-on-the-molluscs-crustacean-amphibian-and-fis",totalDownloads:1836,totalCrossrefCites:0,signatures:"Patricio De los Ríos-Escalante and Alfonso Mardones Lazcano",authors:[{id:"86659",title:"Dr.",name:"Patricio",middleName:null,surname:"De Los Ríos-Escalante",fullName:"Patricio De Los Ríos-Escalante",slug:"patricio-de-los-rios-escalante"},{id:"91637",title:"Prof.",name:"Alfonso",middleName:null,surname:"Mardones",fullName:"Alfonso Mardones",slug:"alfonso-mardones"}]},{id:"34663",title:"Rare and Endemic Species in Conacu-Negresti Valley, Dobrogea, Romania",slug:"rare-and-endemic-species-in-conacu-negre-ti-valley-dobrogea-romania",totalDownloads:2847,totalCrossrefCites:0,signatures:"Monica Axini",authors:[{id:"93206",title:"MSc.",name:"Monica",middleName:"-",surname:"Axini",fullName:"Monica Axini",slug:"monica-axini"}]},{id:"34664",title:"Biogeography of Flowering Plants: A Case Study in Mignonettes (Resedaceae) and Sedges (Carex, Cyperaceae)",slug:"biogeography-of-flowering-plants-a-case-study-in-mignonettes-resedaceae-and-sedges-carex-cyperaceae-",totalDownloads:2051,totalCrossrefCites:2,signatures:"Santiago Martín-Bravo and Marcial Escudero",authors:[{id:"90929",title:"Dr.",name:"Santiago",middleName:null,surname:"Martín-Bravo",fullName:"Santiago Martín-Bravo",slug:"santiago-martin-bravo"},{id:"99980",title:"Dr.",name:"Marcial",middleName:null,surname:"Escudero",fullName:"Marcial Escudero",slug:"marcial-escudero"}]},{id:"34665",title:"Biogeography of Dragonflies and Damselflies: Highly Mobile Predators",slug:"biogeography-of-dragonflies-and-damselflies-the-highly-mobile-predators-",totalDownloads:1861,totalCrossrefCites:3,signatures:"Melissa Sánchez-Herrera and Jessica L. Ware",authors:[{id:"96913",title:"MSc.",name:"Melissa",middleName:null,surname:"Sanchez-Herrera",fullName:"Melissa Sanchez-Herrera",slug:"melissa-sanchez-herrera"},{id:"97562",title:"Dr.",name:"Jessica",middleName:null,surname:"Ware",fullName:"Jessica Ware",slug:"jessica-ware"}]},{id:"34666",title:"Aspects of the Biogeography of North American Psocoptera (Insecta)",slug:"aspects-of-the-biogeography-of-north-american-psocoptera",totalDownloads:2445,totalCrossrefCites:2,signatures:"Edward L. Mockford",authors:[{id:"95346",title:"Dr.",name:"Edward",middleName:null,surname:"Mockford",fullName:"Edward Mockford",slug:"edward-mockford"}]},{id:"34667",title:"Composition and Distribution Patterns of Species at a Global Biogeographic Region Scale: Biogeography of Aphodiini Dung Beetles (Coleoptera, Scarabaeidae) Based on Species Geographic and Taxonomic Data",slug:"what-composition-and-distribution-patterns-of-species-at-a-global-biogeographic-region-scale-can-tel",totalDownloads:2162,totalCrossrefCites:0,signatures:"Francisco José Cabrero-Sañudo",authors:[{id:"86586",title:"Dr.",name:"Francisco",middleName:"Jose",surname:"Cabrero-Sanudo",fullName:"Francisco Cabrero-Sanudo",slug:"francisco-cabrero-sanudo"}]}]},relatedBooks:[{type:"book",id:"2984",title:"The Species Problem",subtitle:"Ongoing Issues",isOpenForSubmission:!1,hash:"412f4d7e90c7760651420c3fa397f600",slug:"the-species-problem-ongoing-issues",bookSignature:"Igor Ya. Pavlinov",coverURL:"https://cdn.intechopen.com/books/images_new/2984.jpg",editedByType:"Edited by",editors:[{id:"50006",title:"Dr.",name:"Igor",surname:"Pavlinov",slug:"igor-pavlinov",fullName:"Igor Pavlinov"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"},chapters:[{id:"42174",title:"The Species Problem, Why Again?",slug:"the-species-problem-why-again-",signatures:"Igor Ya. Pavlinov",authors:[{id:"50006",title:"Dr.",name:"Igor",middleName:null,surname:"Pavlinov",fullName:"Igor Pavlinov",slug:"igor-pavlinov"}]},{id:"42175",title:"The Species Problem: A Conceptual Problem?",slug:"the-species-problem-a-conceptual-problem-",signatures:"Richard A. Richards",authors:[{id:"150948",title:"Prof.",name:"Richard",middleName:null,surname:"Richards",fullName:"Richard Richards",slug:"richard-richards"}]},{id:"42176",title:"Biological Species as a Form of Existence, the Higher Form",slug:"biological-species-as-a-form-of-existence-the-higher-form",signatures:"Victor Prokhorovich Shcherbakov",authors:[{id:"151276",title:"Dr.",name:"Victor",middleName:null,surname:"Shcherbakov",fullName:"Victor Shcherbakov",slug:"victor-shcherbakov"}]},{id:"41402",title:"Defining ‘Species,’ ‘Biodiversity,’ and ‘Conservation’ by Their Transitive Relation",slug:"defining-species-biodiversity-and-conservation-by-their-transitive-relation",signatures:"Kirk Fitzhugh",authors:[{id:"149620",title:"Dr.",name:"Kirk",middleName:null,surname:"Fitzhugh",fullName:"Kirk Fitzhugh",slug:"kirk-fitzhugh"}]},{id:"40674",title:"Transitioning Toward a Universal Species Concept for the Classification of all Organisms",slug:"transitioning-toward-a-universal-species-concept-for-the-classification-of-all-organisms",signatures:"James T. Staley",authors:[{id:"152599",title:"Emeritus Prof.",name:"James",middleName:null,surname:"Staley",fullName:"James Staley",slug:"james-staley"}]},{id:"42178",title:"An Essentialistic View of the Species Problem",slug:"an-essentialistic-view-of-the-species-problem",signatures:"Larissa N. Vasilyeva and Steven L. Stephenson",authors:[{id:"150935",title:"Dr.",name:"Larissa",middleName:null,surname:"Vasilyeva",fullName:"Larissa Vasilyeva",slug:"larissa-vasilyeva"},{id:"152231",title:"Dr.",name:"Steven",middleName:null,surname:"Stephenson",fullName:"Steven Stephenson",slug:"steven-stephenson"}]},{id:"42184",title:"Species, Trees, Characters, and Concepts: Ongoing Issues, Diverse Ideologies, and a Time for Reflection and Change",slug:"species-trees-characters-and-concepts-ongoing-issues-diverse-ideologies-and-a-time-for-reflection-an",signatures:"Richard L. Mayden",authors:[{id:"148082",title:"Prof.",name:"Richard",middleName:null,surname:"Mayden",fullName:"Richard Mayden",slug:"richard-mayden"}]},{id:"42188",title:"Conspecific Recognition Systems and the Rehabilitation of the Biological Species Concept in Ornithology",slug:"conspecific-recognition-systems-and-the-rehabilitation-of-the-biological-species-concept-in-ornithol",signatures:"V. S. Friedmann",authors:[{id:"152904",title:"Dr.",name:"Friedmann",middleName:null,surname:"Vladimir",fullName:"Friedmann Vladimir",slug:"friedmann-vladimir"}]},{id:"42504",title:"Species Delimitation: A Decade After the Renaissance",slug:"species-delimitation-a-decade-after-the-renaissance",signatures:"Arley Camargo and Jack Jr. Sites",authors:[{id:"150554",title:"Dr.",name:"Jack W.",middleName:null,surname:"Sites, Jr.",fullName:"Jack W. Sites, Jr.",slug:"jack-w.-sites-jr."}]},{id:"42194",title:"Darwin’s Species Concept Revisited",slug:"darwin-s-species-concept-revisited",signatures:"David N. Stamos",authors:[{id:"151283",title:"Dr.",name:"David",middleName:"N.",surname:"Stamos",fullName:"David Stamos",slug:"david-stamos"}]}]}]},onlineFirst:{chapter:{type:"chapter",id:"62594",title:"Surface Modification of Fe3O4 as Magnetic Adsorbents for Recovery of Precious Metals",doi:"10.5772/intechopen.79586",slug:"surface-modification-of-fe3o4-as-magnetic-adsorbents-for-recovery-of-precious-metals",body:'\nMagnetic materials that are paramagnetic, ferrimagnetic, and ferromagnetic have received much attention because of their unique properties especially ready to modify and nontoxic [1, 2]. Magnetite (Fe3O4), one of many magnetic materials, is widely investigated for possible magnetic resonance imaging, sensor, and adsorbent. Magnetic nanoparticles typically consist of a magnetic core, a coating, and, in some cases, surface active modifiers.
\nThe magnetite nanoparticles have a high surface area that yields numerous active sites. However, preparation of Fe3O4 nanoparticles is problematic since it can agglomerate, which leads to the decrease in the active sites. Coating with organic or inorganic surfactants is one way to avoid the particle agglomeration. The organic surfactants act as capping agents, but at times, they can give bigger particle size. Inorganic capping agent such as silica (SiO2) has exceptional physical and chemical properties. SiO2 is chemically stable in acidic solution and tuneable for modification. Coating of Fe3O4 nanoparticles with SiO2 will also avoid the agglomeration and protect them from dissolution in acidic solution. SiO2 will cover the surface of each Fe3O4 nanoparticle to form Fe3O4/SiO2 nanoparticle core-shell system [3].
\nMorel et al. have coated Fe3O4 particles with SiO2 to form core-shell having nanometer scale with an average diameter of 49 nm [4]. The success of Fe3O4/SiO2 core-shell nanoparticle formation depends on the size of magnetite. However, stirring with the magnetic bar during the preparation causes condensation and agglomeration of the particles. The nonmagnetic mechanical stirring method was chosen for the preparation of Fe3O4 nanoparticle [5].
\nMany researchers used thiol group as an adsorbent for [AuCl4]− ion with a better performance [2, 3, 6, 7, 8, 9]. We have reported on the synthesis of the Fe3O4/SiO2 nanoparticle core-shell modified with a thiol group. The Fe3O4/SiO2 nanoparticle core-shell preparation was performed by applying nonmagnetic stirring method. For improving adsorption capacity, modification with thiol group has been conducted. The thiol groups are of the soft bases.
\nOn the other hand, the [AuCl4]− ions are classified as weak acid species, thus provided specific interaction with each other based on Pearson’s hard-soft acid-based concepts [10]. The adsorption kinetics, adsorption capacity, and interaction model for the adsorption of [AuCl4]− ion in solution by Fe3O4/SiO2 nanoparticle core-shell adsorbent are reported. A recent review of the matter can be found elsewhere [11].
\nFigure 1 shows the schematic architecture of the magnetite-silica-functional groups. The core is magnetite to function as the important part for separation. The shell is silica, which can protect the magnetite from dissolution especially when it contacts with an acidic environment. Modification of the silica surface can be realized by silanization to give functional groups having an important function to react with the metal cations. The functional group must have a strong bond with the surface via complex formation.
\nStep-by-step of Fe3O4@SiO2 core-shell preparation and functionalization [3].
Recovery of the magnetic material is key in the process following the adsorption. The spent adsorbent can be separated using a magnetic field. Figure 2 shows how the used magnetic is separated by the external magnetic field. The magnetic adsorbent that has a high content of rare metals can be subject to dissolution and further separation. It is important to state that in the industrial purpose the powerful electromagnet system can be applied to do the job. In the purification, there are many possible green purification processes of metallurgy, starting from electrochemical separation to blast furnace.
\nImage of simplified recovery technique of spent magnetic material after adsorption of precious metals [3].
Magnetite is commonly prepared by co-precipitation of Fe(II) and Fe(III) salts with suitable bases. Sodium hydroxide and ammonia are both commonly used in the preparation of magnetite. There are many bases that can be used to help control the size and the shape of the particles. Magnetite nanoparticles can be prepared in the presence of carboxylate such as laurate, palmitate, linoleate, and so on. The addition of surfactant helps reduce the particle size and control the shape. The required shape is usually spherical with a diameter of the nanoscale.
\nFor co-precipitation methods, the size, shape, and composition of the resulting nanoparticles very much depend upon the following [12]:
The type of precursors’ salts used, for example, chloride, sulfate, perchlorate, or nitrate
The Fe2+/Fe3+ ratio
The mixing orders
The mixing rates
The reaction temperature
The pH value
The ionic strength of the media
The remaining issue is that magnetite nanoparticles are easily oxidized to maghemite, so this method is often used to obtain nanoparticles of magnetite and maghemite with the small size of 4–20 nm. Grüttner et al. have listed the size, coating, heating behavior, and magnetic properties of some iron oxide nanoparticles produced by this method [13]. Nanoparticles are produced by this method range in size from 4 to 45 nm. For fixed-synthesis conditions, the quality of the magnetite nanoparticles is very reproducible. Although co-precipitation is unquestionably the easiest process and highly scalable, it is not without issues. Controlling the shape is not easy, and the nanoparticles can be more varied in size than that produced in some other methods [12].
\nPrecursors for the Fe(II) include ferrous sulfate, ferrous nitrate, and ferrous chloride. Some use ferrous acetate and ferrous oxalate. The most used precursor is ferrous sulfate. For the Fe(III), we can use ferric chloride, ferric nitrate, and so on. Ferric nitrate is used a lot. Ferric acetate and ferric oxalate are also commonly used as Fe(III) precursors.
\nThe Fe(II) to Fe(III) molar ratio must be controlled strictly at 1:2. Therefore, the concentration of the starting material must be fixed. The oxidation of the Fe(II) ion must be contained by controlling the atmosphere by the use of inert atmosphere. During the co-precipitation, the nitrogen gas must be kept flowing to reduce possible oxidation process. Other noble gases could be used, which give a better magnetite product.
\nThere are various ways to prepare Fe3O4 nanoparticles, such as hydrothermal synthesis [14], co-precipitation [15], microwave irradiation [16], oxidation of Fe(OH)2 by H2O2 [17], and microemulsion [18]. The Fe3O4 nanoparticles synthesized by a hydrothermal method in the presence of sodium sulfate have a particle size of 160 nm [14]. Among various ways to prepare Fe3O4, hydrothermal is one of the simple methods because it gives unique characters. The shape and size of nanoparticles have a good homogeneity and high degree of crystallinity [19].
\nThe widespread method to produce Fe3O4 is by co-precipitation of Fe2+/Fe3+ solution mixture with a molar ratio of 1:2 in alkaline solution [15, 20]. The reaction for Fe3O4 formation by co-precipitation method is shown in chemical Eq. (1). Although this method is well known for synthesis Fe3O4, the molar ratio of reactant, pH, and temperature still need attention to get the proper size and morphology [15]:
\nMicrowave irradiation might be a promising method in processing materials due to its thermal and nonthermal effects. Microwave synthesis has the advantages of short reaction time, small particle size, and narrow size distribution. Aging under microwave irradiation in short period yields Fe3O4 nanoparticles with complete crystalline structure than those aged for 7 days at room temperature [16]. Yu et al. used H2O2 as an oxidizing agent to construct nano-sized superparamagnetic Fe3O4 powders with the size of 8–10 nm. The Fe(OH)2 precipitates were partially oxidized to generate ultrafine Fe3O4 nanoparticles in the presence of surfactants [17]. Work on the control of the size of magnetite-silica via sol–gel method has also been reported [21].
\nSome researchers use capping agent to control crystal growth during Fe3O4 nanoparticle formation. Co-precipitation technique was used to prepare magnetite nanoparticles with diameter around 35 nm using 0.90 M NaOH solution as the precipitating agent and trisodium citrate as a capping agent. The precursors are ferric and ferrous chloride salts with predetermined Fe3+/Fe2+ molar ratio. The diameter of silica-coated magnetite nanoparticles synthesized by Stöber method was about 50 nm. Due to an electrostatic interaction between the Fe3+/Fe2+ ions of the Fe3O4 NPs and trisodium citrate surfactant, a stable magnetic fluid containing dispersed Fe3O4 NPs was produced [22]. A green and facile method for synthesis of magnetite nanoparticles was proposed [23]. Nano-sized polyhedral particles were synthesized by heating an aqueous solution of Fe2+, Fe3+, and urea at 85°C. The use of PVA in the synthesis system gives spherical magnetite nanoparticles with loose structure, unaggregated. The size of the microspheres can be tuned by changing the concentration of PVA. Upon addition of acetic acid to the system with PVA, microspheres with looser structure were produced. The size of the microspheres can further be tuned by changing the concentration of acetic acid. The co-precipitation of Fe2+ and Fe3+ in aqueous solutions under ultrasound irradiation results in smaller Fe3O4 NPs with a narrow size distribution (4–8 nm) than that produced without ultrasound irradiation [4]. Diethylene glycol (DEG) is also possibly used to control the particle size as reported earlier. This surfactant takes an important role in the preparation of magnetite/zinc oxide hybrid material [24].
\nThe next step is coating magnetite with silica (SiO2). It is usually performed via silanization reaction. The functional group that is ready to bond to iron oxide is methoxy silane (CH3-O-Si-) or ethoxy silane (CH3-CH2-O-Si-). After the reaction, it forms a covalent bond of Fe-O-Si leaving the end group remains free. The leaving group is methane and ethane. The reaction is better to be done in an organic solvent. The silane group may have a spacer of long ethylene chain (-CH2−). The ending of the silane may be carboxylic, an amine group, hydroxyl, and so on. The surface of the silica has different accesses to the organic functional groups [25].
\nFor example, modification by the use of 3-mercaptopropyltrimethoxysilane (3-MPTS) [3] reaction is depicted as a chemical reaction (2). For further surface modification, we can use other silanization compounds [3]:
\nIron oxide is not stable in acidic condition. After coating with silica, the magnetite core is usually stable in the acidic solution. It will come readily with a proton to give its corresponding ion either Fe2+ or Fe3+. Dissolution of the magnetite will make the core-shell system unstable and break the bond between Fe-O-Si. To make sure that the magnetite is not dissolved in the acidic solution, we can test it by the use of an acid such as hydrochloric acid or nitric acid. The concentration of total iron as Fe2+ or Fe3+ can be an indicator if the magnetite is still strong. If high concentration of Fe3+ is found in the solution, we can say that the magnetite structure is collapsed and even broken down.
\nThe visual indication can be seen from the color of the dispersion of Fe3O4@SiO2 core-shell. The solution of Fe3+ in the solution is pale yellow. If the dispersion color is pale yellow, it can be concluded that magnetite does dissolve. The color is getting dark when the more magnetite dissolved in the dispersion. A combination of atomic absorption spectrometry and visual observation helps us make sure the magnetite core is still strongly intact.
\nFe3O4/SiO2 core-shell nanoparticles were obtained by dispersing Fe3O4 into the mixture solution of 80 mL of ethanol, 20 mL of deionized water, and 1.0 mL of concentrated aqueous ammonia solution (28 wt.%). After this, the mixture solution was homogenized by ultrasonication for 30 min to form a uniform dispersion. Subsequently, a certain amount of tetraethoxysilane (TEOS) was added dropwise into the solution with vigorous stirring. After stirring at room temperature for 6 h, the product was separated with a magnet bar, washed with deionized water for three times, and dried in vacuum at 50°C for 12 h. A series of SiO2@Fe3O4 particles were prepared with 1–9% SiO2 content [26].
\nThe silica coating used on a core particle has several advantages. The essential advantages of the silica coating compared with another inorganic (metal or metal oxide) or organic coating are as follows: It reduces the bulk conductivity and increases the suspension stability of the core particles. Also, silica is the most chemically inert material available; it can block the core surface without interfering in the redox reaction at the core surface [27]. There are two methods for coating Fe3O4 with silica, by acidic hydrolysis of silicate in aqueous solutions and the modified Stöber process [4, 28].
\nThe Stöber method consists of the alkaline hydrolysis of tetraethyl orthosilicate (TEOS) in ethanol/water mixture in the presence of Fe3O4 NPs [28]. The Stöber process is applied to the classic sol–gel process [29]. The Stöber synthesis has the advantage of being easy to scale up for commercial applications and the possibility to effortlessly transfer the nanoparticles into aqueous solutions [30]. Some methods that lead to the synthesis of Fe3O4/SiO2 are shown in Table 1.
\nCore | \nShell | \n||
---|---|---|---|
Method | \nPrecursors | \nMethod | \nBasic reagent | \n
Wet chemical reaction | \nFeCl3, N2H4 | \nSol–gel | \nTEOS | \n
Wet chemical reaction | \nFeCl3, FeSO4 | \nHydrolysis | \nNa2SiO3 | \n
Wet chemical reaction | \nFeCl3, FeSO4 | \nHydrolysis | \nCommercial SiO2 | \n
A chemical reaction in microemulsion | \nFeCl3, FeSO4 | \nSol–gel reaction in microemulsion | \nTEOS | \n
Methods for synthesis of Fe3O4 coated with SiO2.
About the modification and application of magnetic materials, a coating of Fe3O4 by the use of various materials has been reported elsewhere. TiO2@Fe3O4, TiO2@Fe3O4@chitosan, and methyl pyrazolone-functionalized TiO2@Fe3O4@chitosan were prepared for photocatalytic degradation of dyes [32]. They found that the core is important for separation and the shell is an active catalyst. The degradation of dye using these catalysts can reach up to 98–99%.
\nThioctic acid-modified silica-coated magnetite nanoparticles, RS-SR-NH-SiO2@Fe3O4, have been prepared, and its ability for the recovery of Au(III) in aqueous solutions was evaluated [31]. The Au(III) adsorption capacity of the produced adsorbent is about 25 mg/g. The possible interaction is shown in Figure 3. Another study shows the success of recovery of gold from copper anode slime by means of magnetite nanoparticles [33]. The surface of magnetite was also modified with oleic acid, methyl methacrylate, and ethylenediamine (EDA-MMA-OA@ Fe3O4) giving the adsorption of indium of about 54 mg/g [34].
\nPossible interaction between RS-SR-NH-SiO2@Fe3O4 and au(III) ions [31].
An interesting example of functionalization of Fe3O4 is by the use of dithiocarbamate, and it is applied as a magnetic nano-adsorbent for recovery of precious metal nanoparticles by contacting the nano-adsorbent with Au, Ag, Pd, or Pt hydrosols [35]. The magnetic particles are very efficient for Au due to strong affinity of sulfur-containing groups at the magnetite surfaces with this metal. Since Au colloids are used in laboratory and industrial contexts, the material could have an impact on the development of nanotechnology to recover precious metals like Au [35] and Ag. Another trial is modification using chitosan and EDTA. It shows more selective for the quasi-precious metal of Cu than Cd and Pb [36].
\nIn reaction (1), we can see the steps of surface modification of Fe3O4@SiO2 core-shell to form Fe3O4@SiO2−X, where X is a functional group. The layer of SiO2 was usually coated on the surface of Fe3O4 using the Stöber method. The prepared Fe3O4 nanoparticles were used as cores and dispersed in ethanol, and it was added to a three-neck round-bottom flask in ethanol and deionized water. The solution of the concentrated ammonia solution was added. After 15 min, TEOS was added dropwise in 10 min. The mixture was allowed for mechanical stirring for 8 h to perform the silica coating. The produced Fe3O4@SiO2 was separated and washed with deionized water and ethanol [37].
\nDirect modification by the use of organic compound is also studied, without first modification by silica. Magnetic nanoparticles modified with third-generation dendrimers followed by ethylenediaminetetraacetic acid (EDTA) were prepared and tested for their performance for recovery of precious metals that are Pd(IV), Au(III), Pd(II), and Ag(I) in the aqueous system [38]. It is interesting that high valence Pd(IV) and Au(III) exhibit relatively better adsorption efficiency than that of Pd(II) and Ag(I) with lower valence. It suggests that the adsorption of precious metals by this type of materials modified with EDTA is a function of valence. When the competing ion such as Zn(II) presents, the adsorption efficiency of the adsorbent for all four precious metals, which are Pd(IV), Au(III), Pd(II), and Ag(I), reduces much.
\nMagnetite nanoparticles could be directly modified with an organic compound of oleic acid. Iron oxide surface possibly bonds to carboxylic end of lauric acid [21]. However, this method of functionalization might not produce an acid-resistive magnetic adsorbent. The bond between lauric acid and magnetite could be easily damaged when the acidic solution is used. Therefore, the magnetite modified with lauric acid may find application in biological systems since both lauric acid and magnetite are biocompatible.
\nSilane compound such as (3-aminopropyl)trimethoxysilane (APTMS) could be used to coat magnetite nanoparticles. The product can be described as Fe3O4@SiO2-CH3-NH2. Further surface modification by alginate gives Fe3O4@SiO2-CH3-NH2-AA. The alginate forms the outer shell of the magnetite by electrostatic interaction with amine [39]. Figure 1 shows a step-by-step extension of magnetite coating and functionalization. Silica coating will allow further functionalization via silanization, extension (additional of the spacer), and functional group attachment. The functional groups should be free to bond the metal ion either by an ionic or covalent coordination bond. Directed functional groups allow selective reaction with certain cation.
\nCharacterization of the magnetite can be done by at least five methods, which are vibrating sample magnetometer, powder X-ray diffraction, electron microscopy, elemental analysis, and infrared (IR) spectroscopy. The vibrating sample magnetometer (VSM) can reveal the magnetic properties of the magnetic materials. The microscopic images can be obtained commonly by the use of scanning electron microscopy (SEM), transmission electron microscopy (TEM), and atomic force microscopy (AFM). Nanomaterials are best to characterize by TEM and AFM. The IR spectroscopy is useful to detect the functional groups present on the magnetite surface. The IR spectroscopy is one of the methods to make sure that functionalization of the surface is successful.
\nFor elemental analysis, a nondestructive energy dispersive X-ray spectrometry (EDS) can be used to estimate the chemical composition. The SEM is usually equipped with EDS system. The EDS results may lack precision and accuracy; however, it can detect the chemical composition in situ. The destructive methods such as atomic absorption spectrometry, UV–Vis spectrometry, and so forth may be used in place of EDS method. The destructive methods are usually not of choices for this type of materials.
\nOne major analytical method in the magnetite characterization is powder X‐ray diffraction. Figure 4 shows the XRD patterns of Fe3O4 and Fe3O4/SiO2 solid nanoparticle core-shell. The Fe3O4 diffraction patterns have five main peaks at 2θ values of 30.1°, 35.5°, 43.3°, 57.1°, and 62.5°. The Fe3O4 has a cubic system as confirmed by JCPDS Card No. 88–0315. The magnetite phase can be detected with certainty by XRD. However, when it is coated with silica, the intensity of the XRD peaks will be much diminished since silica is an amorphous solid. Further decrease in the XRD is expected after organic modification on top of the silica layer.
\nXRD patterns of Fe3O4 (top) and Fe3O4/SiO2 nanoparticle core-shell modified with a thiol group (bottom) [3].
The FT-IR could also be useful for more characterization of magnetic materials. It can offer details of the bond between the core, the shells, and the surface modifiers. Here is the example, the FT-IR spectra of Fe3O4 and Fe3O4/SiO2 nanoparticle core-shell are presented in Figure 5. Both spectra have a broad peak at 586 cm−1. The peak is attributed to the Fe-O stretching mode of magnetite. The peak at 3400 cm−1 is due to the O-H stretching mode. The sharp peak at 1100 cm−1 can be attributed to the Si-O-Si stretching mode. The Si-O bending vibration mode of the silanol group is seen at 964 cm−1. It indicates that the silica has coated well the outer surface of Fe3O4 particles [3]. The surface modification of Fe3O4/SiO2 nanoparticles by thiol groups can give a better interaction with [AuCl4]− ions in the solution. The FT-IR spectra of the Fe3O4/SiO2 nanoparticle core-shell after modification with thiol group are shown in Figure 5. The peak at 686 cm−1 is attributed to the C-S bending vibration mode. The peak at near 2570–2590 cm−1 is attributed to the stretching vibration mode of S-H. The S-H stretching vibration mode is not usually detected [2]. The band at around 2850–2900 cm−1 is due to the stretching vibration of C-H of methylene. This result suggests that the surface modification of Fe3O4/SiO2 nanoparticle core-shell is successful.
\nFT-IR spectra of resulted Fe3O4 (a), Fe3O4/SiO2 nanoparticle core-shell (b), and Fe3O4/SiO2 nanoparticle core-shell modified with a thiol group (c) [3].
The covering of Fe3O4 nanoparticle core-shell by using silica does not only protect the magnetite core from dissolution in acid but also control the agglomeration of Fe3O4 particles. Silica acts as a capping agent for each Fe3O4 nanoparticle to form Fe3O4/SiO2 core-shell. Figure 6 shows the TEM images of Fe3O4/SiO2 nanoparticle core-shell. The Fe3O4/SiO2 nanoparticle core-shell has a size of approximately 10–20 nm. The size of Fe3O4/SiO2 core-shell can be observed. These results prove that the synthesis of Fe3O4/SiO2 nanoparticle core-shell is successful.
\nTEM image of Fe3O4/SiO2 nanoparticle core-shell [3].
In situ analysis of adsorbent is preferable to understand the chemical composition of the product without a change in its nature. Figure 7 shows the EDX spectra of modified Fe3O4/SiO2 solid nanoparticle core-shell. The sulfur content is 1.32% (w/w). It suggests that thiol group is present on the surface of Fe3O4/SiO2 nanoparticle core-shell material. It confirms the FT-IR spectra. The modification of Fe3O4/SiO2 solid nanoparticle core-shell by 3-MPTS will give free thiol groups on the nanoparticles’ surface. The thiols are expected to form covalent coordination bond with the target ion.
\nEDX spectra of Fe3O4/SiO2 nanoparticles modified with thiol group [3].
The EDX may also give details of atomic mapping across the sample, especially that of the functional group. For example, sulfur atom in the thiol group is mapped by the EDX method nicely. Functional groups such as amine, thiol, sulfonate, and phosphate may be better detected by EDX rather than destructive methods such as UV–Vis spectrophotometry.
\nTable 2 shows a comparison of adsorbent performance for adsorption of precious metals especially gold and palladium [3, 38]. The first two rows show the adsorption performance of magnetic material modified with thiol and dendrimers. It shows that functionalization of the magnetite is very important to increase the adsorption capacity. Thiol group on the surface of magnetite produces high affinity toward Au(III). As we know, thiol can strongly react with gold to form a covalent bond. However, the adsorption capacity of magnetite is still far below that of adsorbent produced by the use of lignin as a precursor.
\nAdsorbents | \nAdsorption capacity (mg/g) | \nReference | \n||
---|---|---|---|---|
Au(III) | \nPd(II) | \nAg(I) | \n||
Magnetite nanoparticles/thiolated | \n115 | \n— | \n— | \n[3] | \n
Magnetite nanoparticles/dendrimer | \n3.58 | \n2.71 | \n— | \n[38] | \n
Magnetite nanoparticles/thiourea | \n118.5 | \n111.6 | \n— | \n[40] | \n
Magnetite nanoparticles/chitosan | \n709.2 | \n— | \n226.5 | \n[41] | \n
Magnetite nanoparticles/chitosan | \n59.5 | \n— | \n— | \n[42] | \n
Primary amine-lignin | \n384 | \n40.43 | \n— | \n[43] | \n
Ethylenediamine-lignin | \n606.76 | \n22.66 | \n— | \n[43] | \n
Comparison of adsorption capacities (qmax) of some adsorbents for selected precious metals from aqueous solution. Data presented here are based on the Langmuir isotherm.
An adsorbent of magnetic nanoparticles modified by thiourea for effective and selective adsorption of precious metals like gold(III), palladium(II), and platinum(IV) in aqueous acid solution has also been reported. It needs contact time of less than 30 min to reach maximum capacity. Its maximum adsorption capacity of precious metals as determined by Langmuir model was 43.34, 118.46, and 111.58 mg/g for Pt(IV), Au(III), and Pd(II), respectively, at pH 2 and 25°C [40]. The adsorption is selective for Au(III) even in the presence of high concentrations of interfering ion Cu(II). The recycling was achieved by the use of a solution containing 0.7 M thiourea and 2% HCl. The result of the adsorption–desorption test shows that the adsorbent is reusable for the recovery of precious metals.
\nIn general, the adsorption capacity of the magnetite-based adsorbent can reach up to 118.46 mg/g, which is very promising. It may still be less than that of lignin derivatives. For chitosan-modified magnetite, it even can reach the capacity for gold(III) of 707 mg/g [41]. The core‐shell‐modifier based adsorbent may not have such a high adsorption capacity. The modification step was done through the reaction between chitosan and polymeric Schiff’s base of thiourea/glutaraldehyde in the presence of magnetite.
\nAfter adsorption test, desorption of the adsorbed cation must also be examined. Complete desorption of the adsorbed cation indicates a better adsorbent performance. In most cases, the acids can desorb adsorbed ion from the surface. The desorption process may use strong acids such as HCl, H2SO4, and HNO3. The cation is believed to form complex coordination bonds with the surface, and leaching them is difficult.
\nOn the other hand, application of concentrated acid solution may damage the structure of adsorbent. Therefore, mildly acidic solutions are usually employed to release the cation from the adsorbent’s surface. People use a complexing agent to release the adsorbed metal cations. Thiourea and EDTA are of important environmentally friendly complexing agents.
\nThiourea solution in 1 M HCl was employed to liberate [AuCl4]− ions that had been adsorbed by the material [3]. Thiourea has a better affinity than that of thiol and amine groups. It can form a complex ion with [AuCl4]− ion to dissolve back into the solution. According to the HSAB theory, both thiol and [AuCl4]− ion are among the weak bases. A strong coordination bond forms between thiourea and [AuCl4]− ion.
\nFigure 8 depicts the curve of desorption of [AuCl4]− ion by thiourea in 1 M HCl solution at various concentrations following adsorption by the magnetite modified with a thiol group. Dilute thiourea solution can only desorb 43 mg/g [AuCl4]− ion of initially adsorbed 68 mg/g or 60% of the total [AuCl4]− ions bond to the surface. Figure 9 displays schematic adsorption of [AuCl4]− ion by magnetite modified with a thiol group and desorption. The desorption is done by applying thiourea in HCl solution. The concentration of the thiourea is low. The thiol group may form a covalent coordination bond with [AuCl4]− ion on the adsorbent surface.
\nProfile of [AuCl4]− ion desorption by HCl/thiourea at various concentration [3].
Adsorption and desorption of AuCl4− ions by magnetite nanoparticles modified with a thiol group [3].
Modified magnetic adsorbents have been synthesized and used in the recovery of precious metals from aqueous solutions. Among the magnetic materials, magnetite is studied widely. Surface modification of nanoscale magnetite core is crucial to have a better adsorption capacity, stability, and turnover. The key issues of the magnetic adsorbent include size and shape of the core, choice of surface modification, adsorption capacity, stability, and recyclability. The size of the magnetite core is also better if it is in the nanoscale rather than in micron scale. It will improve the contact between pursued ions and adsorbent surface. The surface modification must have a good affinity toward certain precious metal cations. Many researchers attempt to combine adsorption capability and magnetic properties of the magnetite-based adsorbent for certain metal recovery from the solution. Selective adsorbents are also of interest for separation of precious metals from a complex system such as industrial waste. Adsorption selectivity is highly considered for complex matrices. Magnetite core has low stability in strongly acidic aqueous media. Coating with silica has two advantages, for protection against the acidic environment and a binding site for further functionalization. A suitable modification of the magnetic particles by coating or functionalization using inorganic components or organic molecules is usually needed.
\nThe synthesis of magnetite as the core material has been established. The use of salts of Fe(II) and Fe(III) with careful stoichiometric calculation is a must. The pH of the magnetic formation should also be controlled, either by the use of sodium hydroxide or ammonia solution. In many cases, ammonia can give better homogeneous particles. It may be better to add a stabilizing agent for reducing aggregation of the magnetite nanoparticle and improve the stability of the colloid. Coating of magnetite with silica has also been well understood. TEOS and TMOS are the main choices for the outer shell of the magnetite, although sodium silicate may work. Silica is a preferable coating since it is resistant to acid and base, which will protect the magnetite core.
\nThe final surface modification is functionalization of the silica with ligands that will strongly bind the cations. The end of the modification chain must have a special interaction with the cations, especially through coordination bonds. The functional groups could be an amine, carboxylate, thiol, sulfonate, amide, hydroxyl, and so on. Based on reagent availability, the functional groups determine the selectivity toward certain precious metal cations.
\nThe release of the adsorbed metal cations after being concentrated in the adsorbent can be realized using acids and strong complexing agents. The acids are usually not desirable since they can cause the magnetite core to dissolve. Dissolution will damage the structure of the magnetite, which may not be possible to reuse. Complexing agents such as thiourea and EDTA can give a better option to minimize the damage to the magnetite-based adsorbents.
\nPurification of the recovered metals may be done through well-known processes. Electrochemical process is the best choice of metallurgy. Other methods by the use of chemical reduction could also be selected. In the large scale, we can consider blast furnace combined with a redox reaction. One important point to consider, the use of environmentally friendly reprocessing of the metals must always be prioritized.
\nThe conventional metal reprocessing uses chemicals that are not environmentally friendly. The magnetite-based adsorbents offer technology that can reduce the application of toxic chemicals. The adsorbents give the possibility to reduce, reuse, and recycle for a few times. The magnetic core of the adsorbent is also readily synthesized with environmentally benign precursors. The coating with silica protects against acid and base media during application and recycle. The silica coating can also facilitate the attachment of the functional groups, which is critical in the modification step.
\nThe current advanced electronic devices utilize the precious metals in their important components. The waste of electronic devices grows rapidly along with an increase in smartphone and PC use. Computer parts like processors, memories, motherboards, hard drives, and CD/DVD drives contain gold and other precious metals such as silver, palladium, and so on. The conventional gold recovery process uses cyanide ions for complex ion formation and electrolysis. The current technology attempts to recover gold and other precious metals from computers’ and smartphones’ components by utilizing magnetite nanoparticles. The new magnetic materials are effective yet environmentally friendly to recover precious metals. The magnetic adsorbents could also be the future of reclaiming precious metals from the waste of the other industries.
\nIn the magnetic adsorbent development, the magnetite core could be possibly substituted with other oxides of transition metals such as manganese, cobalt, or nickel if they maintain strong magnetic characters. However, silica is the main choice for easy coating of the magnetic core, which also helps protect the magnetic core from dissolution in the acidic and basic media. The presence of the ligands on the surface of the magnetite-silica core-shell is critical for adsorption process. The environmentally safe polymers and simple molecules may be used to facilitate coordination bond with the target cations. The desorption process must be done using suitable solutions. The solution for desorption should leave the adsorbent in good shape for further reuse and turnover. The present technology available for purification of the recovered metals may apply electrochemical, chemical, and thermal processes.
\nAFM | atomic force microscopy |
APTMS | aminopropyl trimethoxysilane |
DEG | diethylene glycol |
EDTA | ethylenediamine tetraacetate |
EDA-MMA-OA | ethylenediamine, methyl methacrylate, and oleic acid |
EDX | energy dispersive X-ray spectroscopy |
JCPDS | Joint Committee on Powder X-ray Diffraction Standards |
MPTS | mercaptopropyltrimethoxysilane |
NPs | nanoparticles |
PVA | polyvinyl alcohol |
qe | maximum capacity of adsorbent (mg/g) |
SEM | scanning electron microscopy |
TEOS | tetraethyl orthosilicate |
TEM | transmission electron microscopy |
VSM | vibrating sample magnetometer |
Ove Odredbe i uvjeti ističu pravila i regulacije u svezi korištenja IntechOpenove stranice www.intechopen.com i svih poddomena u vlasništvu IntechOpena, tvrtke sa sjedištem u 5 Princes Gate Court, London, SW7 2QJ, Ujedinjeno Kraljevstvo.
',metaTitle:"Odredbe i uvjeti",metaDescription:"Ove Odredbe i uvjeti ističu pravila i regulacije u svezi korištenja IntechOpenove stranice www.intechopen.com i svih poddomena u vlasništvu IntechOpena, tvrtke sa sjedištem u 5 Princes Gate Court, London, SW7 2QJ, Ujedinjeno Kraljevstvo.",metaKeywords:null,canonicalURL:"/page/cro-terms-and-conditions",contentRaw:'[{"type":"htmlEditorComponent","content":"Pristupom na stranicu www.intechopen.com slažete se s ovim odredbama, sa svim primjenjivim zakonskim odredbama, te se slažete s poštovanjem svih lokalnih zakona. Korištenje i/ili pristup ovoj stranici temelji se na potpunom prihvaćanju ovih odredbi. Svi materijali na ovoj stranici zaštićeni su primjenjivim zakonima o autorskim pravima i žigu.
\\n\\nSljedeća terminologija odnosi se na Odredbe i uvjete, te na sve naše ugovore:
\\n\\nKlijent, stranka, vi, vaš odnosi se na vas, osobu koja pristupa ovoj stranici i prihvaća IntechOpenove Odredbe i uvjete;
\\n\\nKompanija, tvrtka, mi, naše odnosi se na tvrtku IntechOpen;
\\n\\nStranke, strane odnosi se na klijenta i na nas, ili samo na klijenta ili nas.
\\n\\nSve odredbe koje se odnose na ponudu, prihvat ili razmatranje plaćanja, a za koja mi pružamo asistenciju klijentu, bilo na ugovoreni ili fiksni način, a s ciljem da se ostvare potrebe i želje klijenta u svezi s našim uslugama, su podložne zakonskim odredbama Ujedinjenog Kraljevstva.
\\n\\nOsim ako nije suprotno navedeno, IntechOpen i/ili svi davatelji licence vlasnici su intelektualnog vlasništva nad svim materijalima na www.intechopen.com. Sva prava intelektualnog vlasništva su pridržana. Stranice sa www.intechopen.com možete gledati, preuzimati, dijeliti, dijeliti poveznice i printati za osobnu uporabu, a temeljem pravila sadržanih u ovim Odredbama i uvjetima.
\\n\\nMi koristimo kolačiće. Korištenjem IntechOpenove stranice slažete se s korištenjem kolačića u skladu s IntechOpenovom Politikom privatnosti. Većina modernih, interaktivnih stranica koristi kolačiće kako bi omogućila ponovno pronalaženje korisničkih detalja kod svakog posjeta. Na našoj stranici kolačići se uglavnom koriste kako bi omogućili funkcionalnost i olakšali posjetiteljima korištenje stranice.
\\n\\nIntechOpen ili njegovi suradnici niti u jednom slučaju neće biti odgovorni za štete (štete uključuju gubitak podataka ili profita, druge poslovne prekide, te sve ostale štete) koje nastanu zbog korištenja materijala na IntechOpenovoj stranici ili nemogućnosti da se iste koriste, čak i ako je IntechOpen ili njegov predstavnik o takvoj šteti obaviješten pismenim ili usmenim putem. Neke jurisdikcije ne dozvoljavaju ograničenja garancija ili ograničenja obveza za posljedične ili slučajne štete pa se u tom slučaju ova ograničenja možda ne odnose na vas.
\\n\\nMaterijali koji se pojavljuju na IntechOpenovoj stranici mogu sadržavati manje greške, tipfelere ili fotografske greške. IntechOpen može napraviti promjene na bilo kojem materijalu koji se nalazi na stranici u bilo koje vrijeme.
\\n\\nIntechOpen nije formalno povezan niti s jednom vanjskom stranicom čije poveznice vode na www.intechopen.com, osim ako to nije izravno navedeno. Iz tog razloga IntechOpen nije odgovoran za sadržaj koji se pojavljuje na takvim stranicama. Poveznica na IntechOpenovu stranicu ne implicira povezanost sa IntechOpenom. Korištenje takvih poveznica isključiva je odgovornost korisnika.
\\n\\nZadržavamo pravo vlasništva nad cjelokupnom stranicom www.intechopen.com i nad svim materijalom na toj stranici. Koristeći se našim uslugama, slažete se da maknete sve poveznice na našu stranicu odmah nakon što to od vas zatražimo. Također, zadržavamo pravo da ove Odredbe i uvjete, i politiku o poveznicama izmjenimo u bilo koje vrijeme. Koristeći se poveznicama na naše stranice slažete se s ovim Odredbama i uvjetima.
\\n\\nAko smatrate da je bilo koja poveznica na našoj stranici sumnjiva iz bilo kojeg razloga, molimo vas da nas kontaktirate. U tom slučaju razmotrit ćemo micanje poveznice s naše stranice, iako nismo obvezni to napraviti.
\\n\\nBez prethodne privole i izričite pisane dozvole, ne možete stvarati okvire oko naših stranica ili koristiti druge tehnike koje na bilo koji način mogu promijeniti prezentaciju ili izgled naše stranice.
\\n\\nIntechOpen može ove Odredbe izmijeniti u bilo koje vrijeme i bez prethodne obavijesti. Koristeći ovu stranicu vi se slažete s trenutnim Odredbama i uvjetima koje su na snazi.
\\n\\nOve Odredbe i uvjeti su sastavljeni u skladu s odredbama prava Ujedinjenog Kraljevstva, a za sve sporove nadležan je sud u Londonu, Ujedinjeno Kraljevstvo.
\\n"}]'},components:[{type:"htmlEditorComponent",content:"Pristupom na stranicu www.intechopen.com slažete se s ovim odredbama, sa svim primjenjivim zakonskim odredbama, te se slažete s poštovanjem svih lokalnih zakona. Korištenje i/ili pristup ovoj stranici temelji se na potpunom prihvaćanju ovih odredbi. Svi materijali na ovoj stranici zaštićeni su primjenjivim zakonima o autorskim pravima i žigu.
\n\nSljedeća terminologija odnosi se na Odredbe i uvjete, te na sve naše ugovore:
\n\nKlijent, stranka, vi, vaš odnosi se na vas, osobu koja pristupa ovoj stranici i prihvaća IntechOpenove Odredbe i uvjete;
\n\nKompanija, tvrtka, mi, naše odnosi se na tvrtku IntechOpen;
\n\nStranke, strane odnosi se na klijenta i na nas, ili samo na klijenta ili nas.
\n\nSve odredbe koje se odnose na ponudu, prihvat ili razmatranje plaćanja, a za koja mi pružamo asistenciju klijentu, bilo na ugovoreni ili fiksni način, a s ciljem da se ostvare potrebe i želje klijenta u svezi s našim uslugama, su podložne zakonskim odredbama Ujedinjenog Kraljevstva.
\n\nOsim ako nije suprotno navedeno, IntechOpen i/ili svi davatelji licence vlasnici su intelektualnog vlasništva nad svim materijalima na www.intechopen.com. Sva prava intelektualnog vlasništva su pridržana. Stranice sa www.intechopen.com možete gledati, preuzimati, dijeliti, dijeliti poveznice i printati za osobnu uporabu, a temeljem pravila sadržanih u ovim Odredbama i uvjetima.
\n\nMi koristimo kolačiće. Korištenjem IntechOpenove stranice slažete se s korištenjem kolačića u skladu s IntechOpenovom Politikom privatnosti. Većina modernih, interaktivnih stranica koristi kolačiće kako bi omogućila ponovno pronalaženje korisničkih detalja kod svakog posjeta. Na našoj stranici kolačići se uglavnom koriste kako bi omogućili funkcionalnost i olakšali posjetiteljima korištenje stranice.
\n\nIntechOpen ili njegovi suradnici niti u jednom slučaju neće biti odgovorni za štete (štete uključuju gubitak podataka ili profita, druge poslovne prekide, te sve ostale štete) koje nastanu zbog korištenja materijala na IntechOpenovoj stranici ili nemogućnosti da se iste koriste, čak i ako je IntechOpen ili njegov predstavnik o takvoj šteti obaviješten pismenim ili usmenim putem. Neke jurisdikcije ne dozvoljavaju ograničenja garancija ili ograničenja obveza za posljedične ili slučajne štete pa se u tom slučaju ova ograničenja možda ne odnose na vas.
\n\nMaterijali koji se pojavljuju na IntechOpenovoj stranici mogu sadržavati manje greške, tipfelere ili fotografske greške. IntechOpen može napraviti promjene na bilo kojem materijalu koji se nalazi na stranici u bilo koje vrijeme.
\n\nIntechOpen nije formalno povezan niti s jednom vanjskom stranicom čije poveznice vode na www.intechopen.com, osim ako to nije izravno navedeno. Iz tog razloga IntechOpen nije odgovoran za sadržaj koji se pojavljuje na takvim stranicama. Poveznica na IntechOpenovu stranicu ne implicira povezanost sa IntechOpenom. Korištenje takvih poveznica isključiva je odgovornost korisnika.
\n\nZadržavamo pravo vlasništva nad cjelokupnom stranicom www.intechopen.com i nad svim materijalom na toj stranici. Koristeći se našim uslugama, slažete se da maknete sve poveznice na našu stranicu odmah nakon što to od vas zatražimo. Također, zadržavamo pravo da ove Odredbe i uvjete, i politiku o poveznicama izmjenimo u bilo koje vrijeme. Koristeći se poveznicama na naše stranice slažete se s ovim Odredbama i uvjetima.
\n\nAko smatrate da je bilo koja poveznica na našoj stranici sumnjiva iz bilo kojeg razloga, molimo vas da nas kontaktirate. U tom slučaju razmotrit ćemo micanje poveznice s naše stranice, iako nismo obvezni to napraviti.
\n\nBez prethodne privole i izričite pisane dozvole, ne možete stvarati okvire oko naših stranica ili koristiti druge tehnike koje na bilo koji način mogu promijeniti prezentaciju ili izgled naše stranice.
\n\nIntechOpen može ove Odredbe izmijeniti u bilo koje vrijeme i bez prethodne obavijesti. Koristeći ovu stranicu vi se slažete s trenutnim Odredbama i uvjetima koje su na snazi.
\n\nOve Odredbe i uvjeti su sastavljeni u skladu s odredbama prava Ujedinjenog Kraljevstva, a za sve sporove nadležan je sud u Londonu, Ujedinjeno Kraljevstvo.
\n"}]},successStories:{items:[]},authorsAndEditors:{filterParams:{sort:"featured,name"},profiles:[{id:"6700",title:"Dr.",name:"Abbass A.",middleName:null,surname:"Hashim",slug:"abbass-a.-hashim",fullName:"Abbass A. Hashim",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/6700/images/1864_n.jpg",biography:"Currently I am carrying out research in several areas of interest, mainly covering work on chemical and bio-sensors, semiconductor thin film device fabrication and characterisation.\nAt the moment I have very strong interest in radiation environmental pollution and bacteriology treatment. The teams of researchers are working very hard to bring novel results in this field. I am also a member of the team in charge for the supervision of Ph.D. students in the fields of development of silicon based planar waveguide sensor devices, study of inelastic electron tunnelling in planar tunnelling nanostructures for sensing applications and development of organotellurium(IV) compounds for semiconductor applications. I am a specialist in data analysis techniques and nanosurface structure. I have served as the editor for many books, been a member of the editorial board in science journals, have published many papers and hold many patents.",institutionString:null,institution:{name:"Sheffield Hallam University",country:{name:"United Kingdom"}}},{id:"54525",title:"Prof.",name:"Abdul Latif",middleName:null,surname:"Ahmad",slug:"abdul-latif-ahmad",fullName:"Abdul Latif Ahmad",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:null},{id:"20567",title:"Prof.",name:"Ado",middleName:null,surname:"Jorio",slug:"ado-jorio",fullName:"Ado Jorio",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"Universidade Federal de Minas Gerais",country:{name:"Brazil"}}},{id:"47940",title:"Dr.",name:"Alberto",middleName:null,surname:"Mantovani",slug:"alberto-mantovani",fullName:"Alberto Mantovani",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:null},{id:"12392",title:"Mr.",name:"Alex",middleName:null,surname:"Lazinica",slug:"alex-lazinica",fullName:"Alex Lazinica",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/12392/images/7282_n.png",biography:"Alex Lazinica is the founder and CEO of IntechOpen. After obtaining a Master's degree in Mechanical Engineering, he continued his PhD studies in Robotics at the Vienna University of Technology. Here he worked as a robotic researcher with the university's Intelligent Manufacturing Systems Group as well as a guest researcher at various European universities, including the Swiss Federal Institute of Technology Lausanne (EPFL). During this time he published more than 20 scientific papers, gave presentations, served as a reviewer for major robotic journals and conferences and most importantly he co-founded and built the International Journal of Advanced Robotic Systems- world's first Open Access journal in the field of robotics. Starting this journal was a pivotal point in his career, since it was a pathway to founding IntechOpen - Open Access publisher focused on addressing academic researchers needs. Alex is a personification of IntechOpen key values being trusted, open and entrepreneurial. Today his focus is on defining the growth and development strategy for the company.",institutionString:null,institution:{name:"TU Wien",country:{name:"Austria"}}},{id:"19816",title:"Prof.",name:"Alexander",middleName:null,surname:"Kokorin",slug:"alexander-kokorin",fullName:"Alexander Kokorin",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/19816/images/1607_n.jpg",biography:"Alexander I. Kokorin: born: 1947, Moscow; DSc., PhD; Principal Research Fellow (Research Professor) of Department of Kinetics and Catalysis, N. Semenov Institute of Chemical Physics, Russian Academy of Sciences, Moscow.\r\nArea of research interests: physical chemistry of complex-organized molecular and nanosized systems, including polymer-metal complexes; the surface of doped oxide semiconductors. He is an expert in structural, absorptive, catalytic and photocatalytic properties, in structural organization and dynamic features of ionic liquids, in magnetic interactions between paramagnetic centers. The author or co-author of 3 books, over 200 articles and reviews in scientific journals and books. He is an actual member of the International EPR/ESR Society, European Society on Quantum Solar Energy Conversion, Moscow House of Scientists, of the Board of Moscow Physical Society.",institutionString:null,institution:{name:"Semenov Institute of Chemical Physics",country:{name:"Russia"}}},{id:"62389",title:"PhD.",name:"Ali Demir",middleName:null,surname:"Sezer",slug:"ali-demir-sezer",fullName:"Ali Demir Sezer",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/62389/images/3413_n.jpg",biography:"Dr. Ali Demir Sezer has a Ph.D. from Pharmaceutical Biotechnology at the Faculty of Pharmacy, University of Marmara (Turkey). He is the member of many Pharmaceutical Associations and acts as a reviewer of scientific journals and European projects under different research areas such as: drug delivery systems, nanotechnology and pharmaceutical biotechnology. Dr. Sezer is the author of many scientific publications in peer-reviewed journals and poster communications. Focus of his research activity is drug delivery, physico-chemical characterization and biological evaluation of biopolymers micro and nanoparticles as modified drug delivery system, and colloidal drug carriers (liposomes, nanoparticles etc.).",institutionString:null,institution:{name:"Marmara University",country:{name:"Turkey"}}},{id:"61051",title:"Prof.",name:"Andrea",middleName:null,surname:"Natale",slug:"andrea-natale",fullName:"Andrea Natale",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:null},{id:"100762",title:"Prof.",name:"Andrea",middleName:null,surname:"Natale",slug:"andrea-natale",fullName:"Andrea Natale",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"St David's Medical Center",country:{name:"United States of America"}}},{id:"107416",title:"Dr.",name:"Andrea",middleName:null,surname:"Natale",slug:"andrea-natale",fullName:"Andrea Natale",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"Texas Cardiac Arrhythmia",country:{name:"United States of America"}}},{id:"64434",title:"Dr.",name:"Angkoon",middleName:null,surname:"Phinyomark",slug:"angkoon-phinyomark",fullName:"Angkoon Phinyomark",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/64434/images/2619_n.jpg",biography:"My name is Angkoon Phinyomark. I received a B.Eng. degree in Computer Engineering with First Class Honors in 2008 from Prince of Songkla University, Songkhla, Thailand, where I received a Ph.D. degree in Electrical Engineering. My research interests are primarily in the area of biomedical signal processing and classification notably EMG (electromyography signal), EOG (electrooculography signal), and EEG (electroencephalography signal), image analysis notably breast cancer analysis and optical coherence tomography, and rehabilitation engineering. I became a student member of IEEE in 2008. During October 2011-March 2012, I had worked at School of Computer Science and Electronic Engineering, University of Essex, Colchester, Essex, United Kingdom. In addition, during a B.Eng. I had been a visiting research student at Faculty of Computer Science, University of Murcia, Murcia, Spain for three months.\n\nI have published over 40 papers during 5 years in refereed journals, books, and conference proceedings in the areas of electro-physiological signals processing and classification, notably EMG and EOG signals, fractal analysis, wavelet analysis, texture analysis, feature extraction and machine learning algorithms, and assistive and rehabilitative devices. I have several computer programming language certificates, i.e. Sun Certified Programmer for the Java 2 Platform 1.4 (SCJP), Microsoft Certified Professional Developer, Web Developer (MCPD), Microsoft Certified Technology Specialist, .NET Framework 2.0 Web (MCTS). I am a Reviewer for several refereed journals and international conferences, such as IEEE Transactions on Biomedical Engineering, IEEE Transactions on Industrial Electronics, Optic Letters, Measurement Science Review, and also a member of the International Advisory Committee for 2012 IEEE Business Engineering and Industrial Applications and 2012 IEEE Symposium on Business, Engineering and Industrial Applications.",institutionString:null,institution:{name:"Joseph Fourier University",country:{name:"France"}}},{id:"55578",title:"Dr.",name:"Antonio",middleName:null,surname:"Jurado-Navas",slug:"antonio-jurado-navas",fullName:"Antonio Jurado-Navas",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/55578/images/4574_n.png",biography:"Antonio Jurado-Navas received the M.S. degree (2002) and the Ph.D. degree (2009) in Telecommunication Engineering, both from the University of Málaga (Spain). He first worked as a consultant at Vodafone-Spain. From 2004 to 2011, he was a Research Assistant with the Communications Engineering Department at the University of Málaga. In 2011, he became an Assistant Professor in the same department. From 2012 to 2015, he was with Ericsson Spain, where he was working on geo-location\ntools for third generation mobile networks. Since 2015, he is a Marie-Curie fellow at the Denmark Technical University. His current research interests include the areas of mobile communication systems and channel modeling in addition to atmospheric optical communications, adaptive optics and statistics",institutionString:null,institution:{name:"University of Malaga",country:{name:"Spain"}}}],filtersByRegion:[{group:"region",caption:"North America",value:1,count:5766},{group:"region",caption:"Middle and South America",value:2,count:5228},{group:"region",caption:"Africa",value:3,count:1717},{group:"region",caption:"Asia",value:4,count:10370},{group:"region",caption:"Australia and Oceania",value:5,count:897},{group:"region",caption:"Europe",value:6,count:15791}],offset:12,limit:12,total:118192},chapterEmbeded:{data:{}},editorApplication:{success:null,errors:{}},ofsBooks:{filterParams:{sort:"dateEndSecondStepPublish"},books:[{type:"book",id:"10176",title:"Microgrids and Local Energy Systems",subtitle:null,isOpenForSubmission:!0,hash:"c32b4a5351a88f263074b0d0ca813a9c",slug:null,bookSignature:"Prof. Nick Jenkins",coverURL:"https://cdn.intechopen.com/books/images_new/10176.jpg",editedByType:null,editors:[{id:"55219",title:"Prof.",name:"Nick",surname:"Jenkins",slug:"nick-jenkins",fullName:"Nick Jenkins"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10231",title:"Proton Therapy",subtitle:null,isOpenForSubmission:!0,hash:"f4a9009287953c8d1d89f0fa9b7597b0",slug:null,bookSignature:"",coverURL:"https://cdn.intechopen.com/books/images_new/10231.jpg",editedByType:null,editors:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10543",title:"Psychology and Patho-physiological Outcomes of Eating",subtitle:null,isOpenForSubmission:!0,hash:"2464b5fb6a39df380e935096743410a0",slug:null,bookSignature:"Dr. Akikazu Takada and Dr. Hubertus Himmerich",coverURL:"https://cdn.intechopen.com/books/images_new/10543.jpg",editedByType:null,editors:[{id:"248459",title:"Dr.",name:"Akikazu",surname:"Takada",slug:"akikazu-takada",fullName:"Akikazu Takada"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"9659",title:"Fibroblasts - Advances in Cancer, Autoimmunity and Inflammation",subtitle:null,isOpenForSubmission:!0,hash:"926fa6446f6befbd363fc74971a56de2",slug:null,bookSignature:"Ph.D. Mojca Frank Bertoncelj and Ms. Katja Lakota",coverURL:"https://cdn.intechopen.com/books/images_new/9659.jpg",editedByType:null,editors:[{id:"328755",title:"Ph.D.",name:"Mojca",surname:"Frank Bertoncelj",slug:"mojca-frank-bertoncelj",fullName:"Mojca Frank Bertoncelj"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10652",title:"Visual Object Tracking",subtitle:null,isOpenForSubmission:!0,hash:"96f3ee634a7ba49fa195e50475412af4",slug:null,bookSignature:"",coverURL:"https://cdn.intechopen.com/books/images_new/10652.jpg",editedByType:null,editors:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10653",title:"Optimization Algorithms",subtitle:null,isOpenForSubmission:!0,hash:"753812dbb9a6f6b57645431063114f6c",slug:null,bookSignature:"",coverURL:"https://cdn.intechopen.com/books/images_new/10653.jpg",editedByType:null,editors:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10655",title:"Motion Planning",subtitle:null,isOpenForSubmission:!0,hash:"809b5e290cf2dade9e7e0a5ae0ef3df0",slug:null,bookSignature:"",coverURL:"https://cdn.intechopen.com/books/images_new/10655.jpg",editedByType:null,editors:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10657",title:"Service Robots",subtitle:null,isOpenForSubmission:!0,hash:"5f81b9eea6eb3f9af984031b7af35588",slug:null,bookSignature:"",coverURL:"https://cdn.intechopen.com/books/images_new/10657.jpg",editedByType:null,editors:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10662",title:"Pedagogy",subtitle:null,isOpenForSubmission:!0,hash:"c858e1c6fb878d3b895acbacec624576",slug:null,bookSignature:"",coverURL:"https://cdn.intechopen.com/books/images_new/10662.jpg",editedByType:null,editors:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10673",title:"The Psychology of Trust",subtitle:null,isOpenForSubmission:!0,hash:"1f6cac41fd145f718ac0866264499cc8",slug:null,bookSignature:"",coverURL:"https://cdn.intechopen.com/books/images_new/10673.jpg",editedByType:null,editors:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10675",title:"Hydrostatics",subtitle:null,isOpenForSubmission:!0,hash:"c86c2fa9f835d4ad5e7efd8b01921866",slug:null,bookSignature:"",coverURL:"https://cdn.intechopen.com/books/images_new/10675.jpg",editedByType:null,editors:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10677",title:"Topology",subtitle:null,isOpenForSubmission:!0,hash:"85eac84b173d785f989522397616124e",slug:null,bookSignature:"",coverURL:"https://cdn.intechopen.com/books/images_new/10677.jpg",editedByType:null,editors:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}}],filtersByTopic:[{group:"topic",caption:"Agricultural and Biological Sciences",value:5,count:16},{group:"topic",caption:"Biochemistry, Genetics and Molecular Biology",value:6,count:4},{group:"topic",caption:"Business, Management and Economics",value:7,count:2},{group:"topic",caption:"Chemistry",value:8,count:8},{group:"topic",caption:"Computer and Information Science",value:9,count:6},{group:"topic",caption:"Earth and Planetary Sciences",value:10,count:7},{group:"topic",caption:"Engineering",value:11,count:19},{group:"topic",caption:"Environmental Sciences",value:12,count:2},{group:"topic",caption:"Immunology and Microbiology",value:13,count:3},{group:"topic",caption:"Materials Science",value:14,count:5},{group:"topic",caption:"Mathematics",value:15,count:1},{group:"topic",caption:"Medicine",value:16,count:24},{group:"topic",caption:"Neuroscience",value:18,count:1},{group:"topic",caption:"Pharmacology, Toxicology and Pharmaceutical Science",value:19,count:3},{group:"topic",caption:"Physics",value:20,count:3},{group:"topic",caption:"Psychology",value:21,count:4},{group:"topic",caption:"Robotics",value:22,count:1},{group:"topic",caption:"Social Sciences",value:23,count:3},{group:"topic",caption:"Technology",value:24,count:1},{group:"topic",caption:"Veterinary Medicine and Science",value:25,count:1}],offset:12,limit:12,total:195},popularBooks:{featuredBooks:[{type:"book",id:"9385",title:"Renewable Energy",subtitle:"Technologies and Applications",isOpenForSubmission:!1,hash:"a6b446d19166f17f313008e6c056f3d8",slug:"renewable-energy-technologies-and-applications",bookSignature:"Tolga Taner, Archana Tiwari and Taha Selim Ustun",coverURL:"https://cdn.intechopen.com/books/images_new/9385.jpg",editors:[{id:"197240",title:"Associate Prof.",name:"Tolga",middleName:null,surname:"Taner",slug:"tolga-taner",fullName:"Tolga Taner"}],equalEditorOne:{id:"186791",title:"Dr.",name:"Archana",middleName:null,surname:"Tiwari",slug:"archana-tiwari",fullName:"Archana Tiwari",profilePictureURL:"https://mts.intechopen.com/storage/users/186791/images/system/186791.jpg",biography:"Dr. Archana Tiwari is Associate Professor at Amity University, India. Her research interests include renewable sources of energy from microalgae and further utilizing the residual biomass for the generation of value-added products, bioremediation through microalgae and microbial consortium, antioxidative enzymes and stress, and nutraceuticals from microalgae. She has been working on algal biotechnology for the last two decades. She has published her research in many international journals and has authored many books and chapters with renowned publishing houses. She has also delivered talks as an invited speaker at many national and international conferences. Dr. Tiwari is the recipient of several awards including Researcher of the Year and Distinguished Scientist.",institutionString:"Amity University",position:null,outsideEditionCount:0,totalCites:0,totalAuthoredChapters:"3",totalChapterViews:"0",totalEditedBooks:"1",institution:{name:"Amity University",institutionURL:null,country:{name:"India"}}},equalEditorTwo:{id:"197609",title:"Prof.",name:"Taha Selim",middleName:null,surname:"Ustun",slug:"taha-selim-ustun",fullName:"Taha Selim Ustun",profilePictureURL:"https://mts.intechopen.com/storage/users/197609/images/system/197609.jpeg",biography:"Dr. Taha Selim Ustun received a Ph.D. in Electrical Engineering from Victoria University, Melbourne, Australia. He is a researcher with the Fukushima Renewable Energy Institute, AIST (FREA), where he leads the Smart Grid Cybersecurity Laboratory. Prior to that, he was a faculty member with the School of Electrical and Computer Engineering, Carnegie Mellon University, Pittsburgh, PA, USA. His current research interests include power systems protection, communication in power networks, distributed generation, microgrids, electric vehicle integration, and cybersecurity in smart grids. He serves on the editorial boards of IEEE Access, IEEE Transactions on Industrial Informatics, Energies, Electronics, Electricity, World Electric Vehicle and Information journals. Dr. Ustun is a member of the IEEE 2004 and 2800, IEC Renewable Energy Management WG 8, and IEC TC 57 WG17. He has been invited to run specialist courses in Africa, India, and China. He has delivered talks for the Qatar Foundation, the World Energy Council, the Waterloo Global Science Initiative, and the European Union Energy Initiative (EUEI). His research has attracted funding from prestigious programs in Japan, Australia, the European Union, and North America.",institutionString:"Fukushima Renewable Energy Institute, AIST (FREA)",position:null,outsideEditionCount:0,totalCites:0,totalAuthoredChapters:"1",totalChapterViews:"0",totalEditedBooks:"0",institution:{name:"National Institute of Advanced Industrial Science and Technology",institutionURL:null,country:{name:"Japan"}}},equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10065",title:"Wavelet Theory",subtitle:null,isOpenForSubmission:!1,hash:"d8868e332169597ba2182d9b004d60de",slug:"wavelet-theory",bookSignature:"Somayeh Mohammady",coverURL:"https://cdn.intechopen.com/books/images_new/10065.jpg",editors:[{id:"109280",title:"Dr.",name:"Somayeh",middleName:null,surname:"Mohammady",slug:"somayeh-mohammady",fullName:"Somayeh Mohammady"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9644",title:"Glaciers and the Polar Environment",subtitle:null,isOpenForSubmission:!1,hash:"e8cfdc161794e3753ced54e6ff30873b",slug:"glaciers-and-the-polar-environment",bookSignature:"Masaki Kanao, Danilo Godone and Niccolò Dematteis",coverURL:"https://cdn.intechopen.com/books/images_new/9644.jpg",editors:[{id:"51959",title:"Dr.",name:"Masaki",middleName:null,surname:"Kanao",slug:"masaki-kanao",fullName:"Masaki Kanao"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"8985",title:"Natural Resources Management and Biological Sciences",subtitle:null,isOpenForSubmission:!1,hash:"5c2e219a6c021a40b5a20c041dea88c4",slug:"natural-resources-management-and-biological-sciences",bookSignature:"Edward R. Rhodes and Humood Naser",coverURL:"https://cdn.intechopen.com/books/images_new/8985.jpg",editors:[{id:"280886",title:"Prof.",name:"Edward R",middleName:null,surname:"Rhodes",slug:"edward-r-rhodes",fullName:"Edward R Rhodes"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9671",title:"Macrophages",subtitle:null,isOpenForSubmission:!1,hash:"03b00fdc5f24b71d1ecdfd75076bfde6",slug:"macrophages",bookSignature:"Hridayesh Prakash",coverURL:"https://cdn.intechopen.com/books/images_new/9671.jpg",editors:[{id:"287184",title:"Dr.",name:"Hridayesh",middleName:null,surname:"Prakash",slug:"hridayesh-prakash",fullName:"Hridayesh Prakash"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9313",title:"Clay Science and Technology",subtitle:null,isOpenForSubmission:!1,hash:"6fa7e70396ff10620e032bb6cfa6fb72",slug:"clay-science-and-technology",bookSignature:"Gustavo Morari Do Nascimento",coverURL:"https://cdn.intechopen.com/books/images_new/9313.jpg",editors:[{id:"7153",title:"Prof.",name:"Gustavo",middleName:null,surname:"Morari Do Nascimento",slug:"gustavo-morari-do-nascimento",fullName:"Gustavo Morari Do Nascimento"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9888",title:"Nuclear Power Plants",subtitle:"The Processes from the Cradle to the Grave",isOpenForSubmission:!1,hash:"c2c8773e586f62155ab8221ebb72a849",slug:"nuclear-power-plants-the-processes-from-the-cradle-to-the-grave",bookSignature:"Nasser Awwad",coverURL:"https://cdn.intechopen.com/books/images_new/9888.jpg",editors:[{id:"145209",title:"Prof.",name:"Nasser",middleName:"S",surname:"Awwad",slug:"nasser-awwad",fullName:"Nasser Awwad"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9027",title:"Human Blood Group Systems and Haemoglobinopathies",subtitle:null,isOpenForSubmission:!1,hash:"d00d8e40b11cfb2547d1122866531c7e",slug:"human-blood-group-systems-and-haemoglobinopathies",bookSignature:"Osaro Erhabor and Anjana Munshi",coverURL:"https://cdn.intechopen.com/books/images_new/9027.jpg",editors:[{id:"35140",title:null,name:"Osaro",middleName:null,surname:"Erhabor",slug:"osaro-erhabor",fullName:"Osaro Erhabor"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"7841",title:"New Insights Into Metabolic Syndrome",subtitle:null,isOpenForSubmission:!1,hash:"ef5accfac9772b9e2c9eff884f085510",slug:"new-insights-into-metabolic-syndrome",bookSignature:"Akikazu Takada",coverURL:"https://cdn.intechopen.com/books/images_new/7841.jpg",editors:[{id:"248459",title:"Dr.",name:"Akikazu",middleName:null,surname:"Takada",slug:"akikazu-takada",fullName:"Akikazu Takada"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"8558",title:"Aerodynamics",subtitle:null,isOpenForSubmission:!1,hash:"db7263fc198dfb539073ba0260a7f1aa",slug:"aerodynamics",bookSignature:"Mofid Gorji-Bandpy and Aly-Mousaad Aly",coverURL:"https://cdn.intechopen.com/books/images_new/8558.jpg",editors:[{id:"35542",title:"Prof.",name:"Mofid",middleName:null,surname:"Gorji-Bandpy",slug:"mofid-gorji-bandpy",fullName:"Mofid Gorji-Bandpy"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"7847",title:"Medical Toxicology",subtitle:null,isOpenForSubmission:!1,hash:"db9b65bea093de17a0855a1b27046247",slug:"medical-toxicology",bookSignature:"Pınar Erkekoglu and Tomohisa Ogawa",coverURL:"https://cdn.intechopen.com/books/images_new/7847.jpg",editors:[{id:"109978",title:"Prof.",name:"Pınar",middleName:null,surname:"Erkekoglu",slug:"pinar-erkekoglu",fullName:"Pınar Erkekoglu"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10432",title:"Casting Processes and Modelling of Metallic Materials",subtitle:null,isOpenForSubmission:!1,hash:"2c5c9df938666bf5d1797727db203a6d",slug:"casting-processes-and-modelling-of-metallic-materials",bookSignature:"Zakaria Abdallah and Nada Aldoumani",coverURL:"https://cdn.intechopen.com/books/images_new/10432.jpg",editors:[{id:"201670",title:"Dr.",name:"Zak",middleName:null,surname:"Abdallah",slug:"zak-abdallah",fullName:"Zak Abdallah"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}}],offset:12,limit:12,total:5240},hotBookTopics:{hotBooks:[],offset:0,limit:12,total:null},publish:{},publishingProposal:{success:null,errors:{}},books:{featuredBooks:[{type:"book",id:"10065",title:"Wavelet Theory",subtitle:null,isOpenForSubmission:!1,hash:"d8868e332169597ba2182d9b004d60de",slug:"wavelet-theory",bookSignature:"Somayeh Mohammady",coverURL:"https://cdn.intechopen.com/books/images_new/10065.jpg",editors:[{id:"109280",title:"Dr.",name:"Somayeh",middleName:null,surname:"Mohammady",slug:"somayeh-mohammady",fullName:"Somayeh Mohammady"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9644",title:"Glaciers and the Polar Environment",subtitle:null,isOpenForSubmission:!1,hash:"e8cfdc161794e3753ced54e6ff30873b",slug:"glaciers-and-the-polar-environment",bookSignature:"Masaki Kanao, Danilo Godone and Niccolò Dematteis",coverURL:"https://cdn.intechopen.com/books/images_new/9644.jpg",editors:[{id:"51959",title:"Dr.",name:"Masaki",middleName:null,surname:"Kanao",slug:"masaki-kanao",fullName:"Masaki Kanao"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9385",title:"Renewable Energy",subtitle:"Technologies and Applications",isOpenForSubmission:!1,hash:"a6b446d19166f17f313008e6c056f3d8",slug:"renewable-energy-technologies-and-applications",bookSignature:"Tolga Taner, Archana Tiwari and Taha Selim Ustun",coverURL:"https://cdn.intechopen.com/books/images_new/9385.jpg",editors:[{id:"197240",title:"Associate Prof.",name:"Tolga",middleName:null,surname:"Taner",slug:"tolga-taner",fullName:"Tolga Taner"}],equalEditorOne:{id:"186791",title:"Dr.",name:"Archana",middleName:null,surname:"Tiwari",slug:"archana-tiwari",fullName:"Archana Tiwari",profilePictureURL:"https://mts.intechopen.com/storage/users/186791/images/system/186791.jpg",biography:"Dr. Archana Tiwari is Associate Professor at Amity University, India. Her research interests include renewable sources of energy from microalgae and further utilizing the residual biomass for the generation of value-added products, bioremediation through microalgae and microbial consortium, antioxidative enzymes and stress, and nutraceuticals from microalgae. She has been working on algal biotechnology for the last two decades. She has published her research in many international journals and has authored many books and chapters with renowned publishing houses. She has also delivered talks as an invited speaker at many national and international conferences. Dr. Tiwari is the recipient of several awards including Researcher of the Year and Distinguished Scientist.",institutionString:"Amity University",position:null,outsideEditionCount:0,totalCites:0,totalAuthoredChapters:"3",totalChapterViews:"0",totalEditedBooks:"1",institution:{name:"Amity University",institutionURL:null,country:{name:"India"}}},equalEditorTwo:{id:"197609",title:"Prof.",name:"Taha Selim",middleName:null,surname:"Ustun",slug:"taha-selim-ustun",fullName:"Taha Selim Ustun",profilePictureURL:"https://mts.intechopen.com/storage/users/197609/images/system/197609.jpeg",biography:"Dr. Taha Selim Ustun received a Ph.D. in Electrical Engineering from Victoria University, Melbourne, Australia. He is a researcher with the Fukushima Renewable Energy Institute, AIST (FREA), where he leads the Smart Grid Cybersecurity Laboratory. Prior to that, he was a faculty member with the School of Electrical and Computer Engineering, Carnegie Mellon University, Pittsburgh, PA, USA. His current research interests include power systems protection, communication in power networks, distributed generation, microgrids, electric vehicle integration, and cybersecurity in smart grids. He serves on the editorial boards of IEEE Access, IEEE Transactions on Industrial Informatics, Energies, Electronics, Electricity, World Electric Vehicle and Information journals. Dr. Ustun is a member of the IEEE 2004 and 2800, IEC Renewable Energy Management WG 8, and IEC TC 57 WG17. He has been invited to run specialist courses in Africa, India, and China. He has delivered talks for the Qatar Foundation, the World Energy Council, the Waterloo Global Science Initiative, and the European Union Energy Initiative (EUEI). His research has attracted funding from prestigious programs in Japan, Australia, the European Union, and North America.",institutionString:"Fukushima Renewable Energy Institute, AIST (FREA)",position:null,outsideEditionCount:0,totalCites:0,totalAuthoredChapters:"1",totalChapterViews:"0",totalEditedBooks:"0",institution:{name:"National Institute of Advanced Industrial Science and Technology",institutionURL:null,country:{name:"Japan"}}},equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"8985",title:"Natural Resources Management and Biological Sciences",subtitle:null,isOpenForSubmission:!1,hash:"5c2e219a6c021a40b5a20c041dea88c4",slug:"natural-resources-management-and-biological-sciences",bookSignature:"Edward R. Rhodes and Humood Naser",coverURL:"https://cdn.intechopen.com/books/images_new/8985.jpg",editors:[{id:"280886",title:"Prof.",name:"Edward R",middleName:null,surname:"Rhodes",slug:"edward-r-rhodes",fullName:"Edward R Rhodes"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9671",title:"Macrophages",subtitle:null,isOpenForSubmission:!1,hash:"03b00fdc5f24b71d1ecdfd75076bfde6",slug:"macrophages",bookSignature:"Hridayesh Prakash",coverURL:"https://cdn.intechopen.com/books/images_new/9671.jpg",editors:[{id:"287184",title:"Dr.",name:"Hridayesh",middleName:null,surname:"Prakash",slug:"hridayesh-prakash",fullName:"Hridayesh Prakash"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9313",title:"Clay Science and Technology",subtitle:null,isOpenForSubmission:!1,hash:"6fa7e70396ff10620e032bb6cfa6fb72",slug:"clay-science-and-technology",bookSignature:"Gustavo Morari Do Nascimento",coverURL:"https://cdn.intechopen.com/books/images_new/9313.jpg",editors:[{id:"7153",title:"Prof.",name:"Gustavo",middleName:null,surname:"Morari Do Nascimento",slug:"gustavo-morari-do-nascimento",fullName:"Gustavo Morari Do Nascimento"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9888",title:"Nuclear Power Plants",subtitle:"The Processes from the Cradle to the Grave",isOpenForSubmission:!1,hash:"c2c8773e586f62155ab8221ebb72a849",slug:"nuclear-power-plants-the-processes-from-the-cradle-to-the-grave",bookSignature:"Nasser Awwad",coverURL:"https://cdn.intechopen.com/books/images_new/9888.jpg",editors:[{id:"145209",title:"Prof.",name:"Nasser",middleName:"S",surname:"Awwad",slug:"nasser-awwad",fullName:"Nasser Awwad"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9027",title:"Human Blood Group Systems and Haemoglobinopathies",subtitle:null,isOpenForSubmission:!1,hash:"d00d8e40b11cfb2547d1122866531c7e",slug:"human-blood-group-systems-and-haemoglobinopathies",bookSignature:"Osaro Erhabor and Anjana Munshi",coverURL:"https://cdn.intechopen.com/books/images_new/9027.jpg",editors:[{id:"35140",title:null,name:"Osaro",middleName:null,surname:"Erhabor",slug:"osaro-erhabor",fullName:"Osaro Erhabor"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10432",title:"Casting Processes and Modelling of Metallic Materials",subtitle:null,isOpenForSubmission:!1,hash:"2c5c9df938666bf5d1797727db203a6d",slug:"casting-processes-and-modelling-of-metallic-materials",bookSignature:"Zakaria Abdallah and Nada Aldoumani",coverURL:"https://cdn.intechopen.com/books/images_new/10432.jpg",editors:[{id:"201670",title:"Dr.",name:"Zak",middleName:null,surname:"Abdallah",slug:"zak-abdallah",fullName:"Zak Abdallah"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"7841",title:"New Insights Into Metabolic Syndrome",subtitle:null,isOpenForSubmission:!1,hash:"ef5accfac9772b9e2c9eff884f085510",slug:"new-insights-into-metabolic-syndrome",bookSignature:"Akikazu Takada",coverURL:"https://cdn.intechopen.com/books/images_new/7841.jpg",editors:[{id:"248459",title:"Dr.",name:"Akikazu",middleName:null,surname:"Takada",slug:"akikazu-takada",fullName:"Akikazu Takada"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}}],latestBooks:[{type:"book",id:"9243",title:"Coastal Environments",subtitle:null,isOpenForSubmission:!1,hash:"8e05e5f631e935eef366980f2e28295d",slug:"coastal-environments",bookSignature:"Yuanzhi Zhang and X. San Liang",coverURL:"https://cdn.intechopen.com/books/images_new/9243.jpg",editedByType:"Edited by",editors:[{id:"77597",title:"Prof.",name:"Yuanzhi",middleName:null,surname:"Zhang",slug:"yuanzhi-zhang",fullName:"Yuanzhi Zhang"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"9521",title:"Antimicrobial Resistance",subtitle:"A One Health Perspective",isOpenForSubmission:!1,hash:"30949e78832e1afba5606634b52056ab",slug:"antimicrobial-resistance-a-one-health-perspective",bookSignature:"Mihai Mareș, Swee Hua Erin Lim, Kok-Song Lai and Romeo-Teodor Cristina",coverURL:"https://cdn.intechopen.com/books/images_new/9521.jpg",editedByType:"Edited by",editors:[{id:"88785",title:"Prof.",name:"Mihai",middleName:null,surname:"Mares",slug:"mihai-mares",fullName:"Mihai Mares"}],equalEditorOne:{id:"190224",title:"Dr.",name:"Swee Hua Erin",middleName:null,surname:"Lim",slug:"swee-hua-erin-lim",fullName:"Swee Hua Erin Lim",profilePictureURL:"https://mts.intechopen.com/storage/users/190224/images/system/190224.png",biography:"Dr. Erin Lim is presently working as an Assistant Professor in the Division of Health Sciences, Abu Dhabi Women\\'s College, Higher Colleges of Technology in Abu Dhabi, United Arab Emirates and is affiliated as an Associate Professor to Perdana University-Royal College of Surgeons in Ireland, Selangor, Malaysia. She obtained her Ph.D. from Universiti Putra Malaysia in 2010 with a National Science Fellowship awarded from the Ministry of Science, Technology and Innovation Malaysia and has been actively involved in research ever since. Her main research interests include analysis of carriage and transmission of multidrug resistant bacteria in non-conventional settings, besides an interest in natural products for antimicrobial testing. She is heavily involved in the elucidation of mechanisms of reversal of resistance in bacteria in addition to investigating the immunological analyses of diseases, development of vaccination and treatment models in animals. She hopes her work will support the discovery of therapeutics in the clinical setting and assist in the combat against the burden of antibiotic resistance.",institutionString:"Abu Dhabi Women’s College",position:null,outsideEditionCount:0,totalCites:0,totalAuthoredChapters:"3",totalChapterViews:"0",totalEditedBooks:"0",institution:{name:"Perdana University",institutionURL:null,country:{name:"Malaysia"}}},equalEditorTwo:{id:"221544",title:"Dr.",name:"Kok-Song",middleName:null,surname:"Lai",slug:"kok-song-lai",fullName:"Kok-Song Lai",profilePictureURL:"https://mts.intechopen.com/storage/users/221544/images/system/221544.jpeg",biography:"Dr. Lai Kok Song is an Assistant Professor in the Division of Health Sciences, Abu Dhabi Women\\'s College, Higher Colleges of Technology in Abu Dhabi, United Arab Emirates. He obtained his Ph.D. in Biological Sciences from Nara Institute of Science and Technology, Japan in 2012. Prior to his academic appointment, Dr. Lai worked as a Senior Scientist at the Ministry of Science, Technology and Innovation, Malaysia. His current research areas include antimicrobial resistance and plant-pathogen interaction. His particular interest lies in the study of the antimicrobial mechanism via membrane disruption of essential oils against multi-drug resistance bacteria through various biochemical, molecular and proteomic approaches. Ultimately, he hopes to uncover and determine novel biomarkers related to antibiotic resistance that can be developed into new therapeutic strategies.",institutionString:"Higher Colleges of Technology",position:null,outsideEditionCount:0,totalCites:0,totalAuthoredChapters:"8",totalChapterViews:"0",totalEditedBooks:"0",institution:{name:"Higher Colleges of Technology",institutionURL:null,country:{name:"United Arab Emirates"}}},equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"9560",title:"Creativity",subtitle:"A Force to Innovation",isOpenForSubmission:!1,hash:"58f740bc17807d5d88d647c525857b11",slug:"creativity-a-force-to-innovation",bookSignature:"Pooja Jain",coverURL:"https://cdn.intechopen.com/books/images_new/9560.jpg",editedByType:"Edited by",editors:[{id:"316765",title:"Dr.",name:"Pooja",middleName:null,surname:"Jain",slug:"pooja-jain",fullName:"Pooja Jain"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"9669",title:"Recent Advances in Rice Research",subtitle:null,isOpenForSubmission:!1,hash:"12b06cc73e89af1e104399321cc16a75",slug:"recent-advances-in-rice-research",bookSignature:"Mahmood-ur- Rahman Ansari",coverURL:"https://cdn.intechopen.com/books/images_new/9669.jpg",editedByType:"Edited by",editors:[{id:"185476",title:"Dr.",name:"Mahmood-Ur-",middleName:null,surname:"Rahman Ansari",slug:"mahmood-ur-rahman-ansari",fullName:"Mahmood-Ur- Rahman Ansari"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"9550",title:"Entrepreneurship",subtitle:"Contemporary Issues",isOpenForSubmission:!1,hash:"9b4ac1ee5b743abf6f88495452b1e5e7",slug:"entrepreneurship-contemporary-issues",bookSignature:"Mladen Turuk",coverURL:"https://cdn.intechopen.com/books/images_new/9550.jpg",editedByType:"Edited by",editors:[{id:"319755",title:"Prof.",name:"Mladen",middleName:null,surname:"Turuk",slug:"mladen-turuk",fullName:"Mladen Turuk"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10065",title:"Wavelet Theory",subtitle:null,isOpenForSubmission:!1,hash:"d8868e332169597ba2182d9b004d60de",slug:"wavelet-theory",bookSignature:"Somayeh Mohammady",coverURL:"https://cdn.intechopen.com/books/images_new/10065.jpg",editedByType:"Edited by",editors:[{id:"109280",title:"Dr.",name:"Somayeh",middleName:null,surname:"Mohammady",slug:"somayeh-mohammady",fullName:"Somayeh Mohammady"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"9313",title:"Clay Science and Technology",subtitle:null,isOpenForSubmission:!1,hash:"6fa7e70396ff10620e032bb6cfa6fb72",slug:"clay-science-and-technology",bookSignature:"Gustavo Morari Do Nascimento",coverURL:"https://cdn.intechopen.com/books/images_new/9313.jpg",editedByType:"Edited by",editors:[{id:"7153",title:"Prof.",name:"Gustavo",middleName:null,surname:"Morari Do Nascimento",slug:"gustavo-morari-do-nascimento",fullName:"Gustavo Morari Do Nascimento"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"9888",title:"Nuclear Power Plants",subtitle:"The Processes from the Cradle to the Grave",isOpenForSubmission:!1,hash:"c2c8773e586f62155ab8221ebb72a849",slug:"nuclear-power-plants-the-processes-from-the-cradle-to-the-grave",bookSignature:"Nasser Awwad",coverURL:"https://cdn.intechopen.com/books/images_new/9888.jpg",editedByType:"Edited by",editors:[{id:"145209",title:"Prof.",name:"Nasser",middleName:"S",surname:"Awwad",slug:"nasser-awwad",fullName:"Nasser Awwad"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"8098",title:"Resources of Water",subtitle:null,isOpenForSubmission:!1,hash:"d251652996624d932ef7b8ed62cf7cfc",slug:"resources-of-water",bookSignature:"Prathna Thanjavur Chandrasekaran, Muhammad Salik Javaid, Aftab Sadiq",coverURL:"https://cdn.intechopen.com/books/images_new/8098.jpg",editedByType:"Edited by",editors:[{id:"167917",title:"Dr.",name:"Prathna",middleName:null,surname:"Thanjavur Chandrasekaran",slug:"prathna-thanjavur-chandrasekaran",fullName:"Prathna Thanjavur Chandrasekaran"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"9644",title:"Glaciers and the Polar Environment",subtitle:null,isOpenForSubmission:!1,hash:"e8cfdc161794e3753ced54e6ff30873b",slug:"glaciers-and-the-polar-environment",bookSignature:"Masaki Kanao, Danilo Godone and Niccolò Dematteis",coverURL:"https://cdn.intechopen.com/books/images_new/9644.jpg",editedByType:"Edited by",editors:[{id:"51959",title:"Dr.",name:"Masaki",middleName:null,surname:"Kanao",slug:"masaki-kanao",fullName:"Masaki Kanao"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}}]},subject:{topic:{id:"469",title:"Investment",slug:"investment",parent:{title:"Mercantilism",slug:"mercantilism"},numberOfBooks:0,numberOfAuthorsAndEditors:0,numberOfWosCitations:0,numberOfCrossrefCitations:0,numberOfDimensionsCitations:0,videoUrl:null,fallbackUrl:null,description:null},booksByTopicFilter:{topicSlug:"investment",sort:"-publishedDate",limit:12,offset:0},booksByTopicCollection:[],booksByTopicTotal:0,mostCitedChapters:[],mostDownloadedChaptersLast30Days:[],onlineFirstChaptersFilter:{topicSlug:"investment",limit:3,offset:0},onlineFirstChaptersCollection:[],onlineFirstChaptersTotal:0},preDownload:{success:null,errors:{}},aboutIntechopen:{},privacyPolicy:{},peerReviewing:{},howOpenAccessPublishingWithIntechopenWorks:{},sponsorshipBooks:{sponsorshipBooks:[{type:"book",id:"10176",title:"Microgrids and Local Energy Systems",subtitle:null,isOpenForSubmission:!0,hash:"c32b4a5351a88f263074b0d0ca813a9c",slug:null,bookSignature:"Prof. Nick Jenkins",coverURL:"https://cdn.intechopen.com/books/images_new/10176.jpg",editedByType:null,editors:[{id:"55219",title:"Prof.",name:"Nick",middleName:null,surname:"Jenkins",slug:"nick-jenkins",fullName:"Nick Jenkins"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}}],offset:8,limit:8,total:1},route:{name:"chapter.detail",path:"/books/global-advances-in-biogeography/phylogenetic-systematics-and-biogeography-using-cladograms-in-historical-biogeography-methods",hash:"",query:{},params:{book:"global-advances-in-biogeography",chapter:"phylogenetic-systematics-and-biogeography-using-cladograms-in-historical-biogeography-methods"},fullPath:"/books/global-advances-in-biogeography/phylogenetic-systematics-and-biogeography-using-cladograms-in-historical-biogeography-methods",meta:{},from:{name:null,path:"/",hash:"",query:{},params:{},fullPath:"/",meta:{}}}},function(){var e;(e=document.currentScript||document.scripts[document.scripts.length-1]).parentNode.removeChild(e)}()