Open access peer-reviewed chapter

Introductory Chapter: Fractal in Sciences

By Sid-Ali Ouadfeul

Submitted: June 2nd 2018Reviewed: January 14th 2019Published: February 25th 2019

DOI: 10.5772/intechopen.84368

Downloaded: 675

1. Introduction

The notion of fractal was introduced for the first time in 1975 by the mathematician Benoit Mandelbrot in his book entitled Fractal Objectswhich marked the beginning of his fame. The first definitions of the adjective fractal (from the Latin adjective fractus) come from the word “frangere” which means to break.

The irregularities of nature, of chaotic appearance, such as the irregularities of the seacoasts and the shape of the clouds, a tree, and a fern leaf, are in fact the expression of a very complex geometry of the sea. ‘infinitely small. It can be said, however, that a fractal object is an invariant object by dilations, translations, and rotations [1].

The fractal analysis has been widely used in sciences, for example, in physics, the fractal analysis is used in thermodynamics, particularly for the study of fully developed turbulence [1], in image segmentation and processing [2, 3], in astrophysics for the study of hydrogen distribution [4], in physical medicine for tumor localization from mammograms [3], and in cardiology, for the study of the electrocardiograms [5].

In geoscience, the fractal analysis has been used in petrophysics for the segmentation or classification of geological formations [6, 7, 8, 9]. It has also been used in geomagnetism to characterize the outer part of the geomagnetic field [10, 11, 12, 13, 14]. In environmental sciences, Burrough [15] used the semivariogram method to estimate the fractal dimension D for various environmental transects (e.g., soil factors, vegetation cover, iron ore content in rocks, rainfall levels, crop yields). In medicine and human biology, the fractal analysis has been applied in cell, protein, and chromosome structures, for example, Takahashi [16] supposed that the basic design of a chromosome has a tree-like pattern. Xu et al. [17] assumed that the twistings of DNA-binding proteins have fractal properties. Self-similarity has recently demonstrated in DNA sequences (see Stanley [18]; see also papers in Nonnenmacher et al. [19]). Glazier et al. [20] used the multifractal spectrum approach to rebuild the evolutionary history of organisms from mDNA sequences.

The aim of this book is to gather advance researches in the field of fractal analysis; the book contains seven chapters: one chapter is discussing the Parrondian games in discrete dynamic systems, two chapters are debating the application of the fractal analysis in microwave and antennas, and another chapter is showing some applications in medicine, while another one is talking about the fractal structures of the carbon nanotube system arrays and another chapter discuss the methods and challenges of the fractal analysis of the time-series data sets.

© 2019 The Author(s). Licensee IntechOpen. This chapter is distributed under the terms of the Creative Commons Attribution 3.0 License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

How to cite and reference

Link to this chapter Copy to clipboard

Cite this chapter Copy to clipboard

Sid-Ali Ouadfeul (February 25th 2019). Introductory Chapter: Fractal in Sciences, Fractal Analysis, Sid-Ali Ouadfeul, IntechOpen, DOI: 10.5772/intechopen.84368. Available from:

chapter statistics

675total chapter downloads

More statistics for editors and authors

Login to your personal dashboard for more detailed statistics on your publications.

Access personal reporting

Related Content

This Book

Next chapter

Fractal Analysis of Time-Series Data Sets: Methods and Challenges

By Ian Pilgrim and Richard P. Taylor

Related Book

First chapter

Complexity Concepts and Non-Integer Dimensions in Climate and Paleoclimate Research

By Reik V. Donner

We are IntechOpen, the world's leading publisher of Open Access books. Built by scientists, for scientists. Our readership spans scientists, professors, researchers, librarians, and students, as well as business professionals. We share our knowledge and peer-reveiwed research papers with libraries, scientific and engineering societies, and also work with corporate R&D departments and government entities.

More About Us