",isbn:"978-1-83969-591-9",printIsbn:"978-1-83969-590-2",pdfIsbn:"978-1-83969-592-6",doi:null,price:0,priceEur:0,priceUsd:0,slug:null,numberOfPages:0,isOpenForSubmission:!0,hash:"e39a567d9b6d2a45d0a1d927362c9005",bookSignature:"Dr. Umar Zakir Abdul Hamid and Associate Prof. Ahmad 'Athif Mohd Faudzi",publishedDate:null,coverURL:"https://cdn.intechopen.com/books/images_new/10778.jpg",keywords:"Model-Based Control, Optimal Control, Industrial Automation, Linear Actuator, Nonlinear Actuator, System Identification, Soft Robotics, Service Robots, Unmanned Aerial Vehicle, Autonomous Vehicle, Process Engineering, Chemical Engineering",numberOfDownloads:null,numberOfWosCitations:0,numberOfCrossrefCitations:null,numberOfDimensionsCitations:null,numberOfTotalCitations:null,isAvailableForWebshopOrdering:!0,dateEndFirstStepPublish:"February 25th 2021",dateEndSecondStepPublish:"March 25th 2021",dateEndThirdStepPublish:"May 24th 2021",dateEndFourthStepPublish:"August 12th 2021",dateEndFifthStepPublish:"October 11th 2021",remainingDaysToSecondStep:"19 days",secondStepPassed:!1,currentStepOfPublishingProcess:2,editedByType:null,kuFlag:!1,biosketch:"Umar Zakir Abdul Hamid, Ph.D. is an autonomous vehicle expert, and with more than 30 scientific publications under his belt, Umar actively participates in global automotive standardization efforts and is a Secretary for a Society of Automotive Engineers (SAE) Committee.",coeditorOneBiosketch:"Associate Professor Dr. Ahmad 'Athif Mohd Faudzi has more than 100 scientific publications as of 2021 and is currently leading a team of 18 researchers in UTM doing research works on control, automation, and actuators.",coeditorTwoBiosketch:null,coeditorThreeBiosketch:null,coeditorFourBiosketch:null,coeditorFiveBiosketch:null,editors:[{id:"268173",title:"Dr.",name:"Umar Zakir Abdul",middleName:null,surname:"Hamid",slug:"umar-zakir-abdul-hamid",fullName:"Umar Zakir Abdul Hamid",profilePictureURL:"https://mts.intechopen.com/storage/users/268173/images/system/268173.jpg",biography:"Umar Zakir Abdul Hamid, PhD has been working in the autonomous vehicle field since 2014 with various teams in different countries (Malaysia, Singapore, Japan, Finland). He is now leading a team of 12 engineers working in the Autonomous Vehicle Software Product Development with Sensible 4, Finland. Umar is one of the recipients for the Finnish Engineering Award 2020 for his contributions to the development of all-weather autonomous driving solutions with the said firm. He is an aspiring automotive thought leader and often invited as a guest and keynote speaker to industrial and technical events. With more than 30 scientific and technical publications as author and editor under his belt, Umar actively participates in global automotive standardization efforts where he is a Secretary for a Society Automotive Engineers (SAE) Committee.",institutionString:"Sensible 4 Oy",position:null,outsideEditionCount:0,totalCites:0,totalAuthoredChapters:"0",totalChapterViews:"0",totalEditedBooks:"1",institution:null}],coeditorOne:{id:"204176",title:"Associate Prof.",name:"Ahmad 'Athif Mohd",middleName:null,surname:"Faudzi",slug:"ahmad-'athif-mohd-faudzi",fullName:"Ahmad 'Athif Mohd Faudzi",profilePictureURL:"https://mts.intechopen.com/storage/users/204176/images/system/204176.png",biography:"Assoc. Prof. Ir. Dr. Ahmad `Athif Bin Mohd Faudzi received the B. Eng. in Computer Engineering, the M. Eng. in Mechatronics and Automatic Control from Universiti Teknologi Malaysia, Malaysia and the Dr. Eng. in System Integration from Okayama University, Japan in 2004, 2006, and 2010 respectively. He was a Visiting Research Fellow at the Tokyo Institute of Technology from 2015 to 2017. From March 2019 to date, he is the Director of the Centre for Artificial Intelligence and Robotics (CAIRO), Universiti Teknologi Malaysia, Malaysia. He is mainly engaged in the research fields of actuators (pneumatic, soft mechanism, hydraulic, and motorized actuators) concentrate his work in field robotics, bioinspired robotics and biomedical applications. He is a Professional Engineer (PEng), a Charted Engineer (CEng), a member of the IEEE Robotics and Automation Society (RAS) and a member of two Akademi Sains Malaysia Special Interest Group (ASM SIG) of Biodiversity and Robotics. He is also the recipient of Top Research Scientist Malaysia (TRSM) 2020 in the area of Robotics. As of 2021, he has more than 100 scientific publications and leads a team of 18 researchers in UTM doing research works on automation and actuators.",institutionString:"University of Technology Malaysia",position:null,outsideEditionCount:0,totalCites:0,totalAuthoredChapters:"0",totalChapterViews:"0",totalEditedBooks:"0",institution:{name:"University of Technology Malaysia",institutionURL:null,country:{name:"Malaysia"}}},coeditorTwo:null,coeditorThree:null,coeditorFour:null,coeditorFive:null,topics:[{id:"11",title:"Engineering",slug:"engineering"}],chapters:null,productType:{id:"1",title:"Edited Volume",chapterContentType:"chapter",authoredCaption:"Edited by"},personalPublishingAssistant:{id:"346794",firstName:"Mia",lastName:"Miskulin",middleName:null,title:"Ms.",imageUrl:"https://mts.intechopen.com/storage/users/346794/images/15795_n.png",email:"mia@intechopen.com",biography:"As an Author Service Manager my responsibilities include monitoring and facilitating all publishing activities for authors and editors. From chapter submission and review, to approval and revision, copyediting and design, until final publication, I work closely with authors and editors to ensure a simple and easy publishing process. I maintain constant and effective communication with authors, editors and reviewers, which allows for a level of personal support that enables contributors to fully commit and concentrate on the chapters they are writing, editing, or reviewing. I assist authors in the preparation of their full chapter submissions and track important deadlines and ensure they are met. I help to coordinate internal processes such as linguistic review, and monitor the technical aspects of the process. As an ASM I am also involved in the acquisition of editors. Whether that be identifying an exceptional author and proposing an editorship collaboration, or contacting researchers who would like the opportunity to work with IntechOpen, I establish and help manage author and editor acquisition and contact."}},relatedBooks:[{type:"book",id:"1591",title:"Infrared Spectroscopy",subtitle:"Materials Science, Engineering and Technology",isOpenForSubmission:!1,hash:"99b4b7b71a8caeb693ed762b40b017f4",slug:"infrared-spectroscopy-materials-science-engineering-and-technology",bookSignature:"Theophile Theophanides",coverURL:"https://cdn.intechopen.com/books/images_new/1591.jpg",editedByType:"Edited by",editors:[{id:"37194",title:"Dr.",name:"Theophanides",surname:"Theophile",slug:"theophanides-theophile",fullName:"Theophanides Theophile"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"3092",title:"Anopheles mosquitoes",subtitle:"New insights into malaria vectors",isOpenForSubmission:!1,hash:"c9e622485316d5e296288bf24d2b0d64",slug:"anopheles-mosquitoes-new-insights-into-malaria-vectors",bookSignature:"Sylvie Manguin",coverURL:"https://cdn.intechopen.com/books/images_new/3092.jpg",editedByType:"Edited by",editors:[{id:"50017",title:"Prof.",name:"Sylvie",surname:"Manguin",slug:"sylvie-manguin",fullName:"Sylvie Manguin"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"3161",title:"Frontiers in Guided Wave Optics and Optoelectronics",subtitle:null,isOpenForSubmission:!1,hash:"deb44e9c99f82bbce1083abea743146c",slug:"frontiers-in-guided-wave-optics-and-optoelectronics",bookSignature:"Bishnu Pal",coverURL:"https://cdn.intechopen.com/books/images_new/3161.jpg",editedByType:"Edited by",editors:[{id:"4782",title:"Prof.",name:"Bishnu",surname:"Pal",slug:"bishnu-pal",fullName:"Bishnu Pal"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"72",title:"Ionic Liquids",subtitle:"Theory, Properties, New Approaches",isOpenForSubmission:!1,hash:"d94ffa3cfa10505e3b1d676d46fcd3f5",slug:"ionic-liquids-theory-properties-new-approaches",bookSignature:"Alexander Kokorin",coverURL:"https://cdn.intechopen.com/books/images_new/72.jpg",editedByType:"Edited by",editors:[{id:"19816",title:"Prof.",name:"Alexander",surname:"Kokorin",slug:"alexander-kokorin",fullName:"Alexander Kokorin"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"1373",title:"Ionic Liquids",subtitle:"Applications and Perspectives",isOpenForSubmission:!1,hash:"5e9ae5ae9167cde4b344e499a792c41c",slug:"ionic-liquids-applications-and-perspectives",bookSignature:"Alexander Kokorin",coverURL:"https://cdn.intechopen.com/books/images_new/1373.jpg",editedByType:"Edited by",editors:[{id:"19816",title:"Prof.",name:"Alexander",surname:"Kokorin",slug:"alexander-kokorin",fullName:"Alexander Kokorin"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"57",title:"Physics and Applications of Graphene",subtitle:"Experiments",isOpenForSubmission:!1,hash:"0e6622a71cf4f02f45bfdd5691e1189a",slug:"physics-and-applications-of-graphene-experiments",bookSignature:"Sergey Mikhailov",coverURL:"https://cdn.intechopen.com/books/images_new/57.jpg",editedByType:"Edited by",editors:[{id:"16042",title:"Dr.",name:"Sergey",surname:"Mikhailov",slug:"sergey-mikhailov",fullName:"Sergey Mikhailov"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"371",title:"Abiotic Stress in Plants",subtitle:"Mechanisms and Adaptations",isOpenForSubmission:!1,hash:"588466f487e307619849d72389178a74",slug:"abiotic-stress-in-plants-mechanisms-and-adaptations",bookSignature:"Arun Shanker and B. Venkateswarlu",coverURL:"https://cdn.intechopen.com/books/images_new/371.jpg",editedByType:"Edited by",editors:[{id:"58592",title:"Dr.",name:"Arun",surname:"Shanker",slug:"arun-shanker",fullName:"Arun Shanker"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"878",title:"Phytochemicals",subtitle:"A Global Perspective of Their Role in Nutrition and Health",isOpenForSubmission:!1,hash:"ec77671f63975ef2d16192897deb6835",slug:"phytochemicals-a-global-perspective-of-their-role-in-nutrition-and-health",bookSignature:"Venketeshwer Rao",coverURL:"https://cdn.intechopen.com/books/images_new/878.jpg",editedByType:"Edited by",editors:[{id:"82663",title:"Dr.",name:"Venketeshwer",surname:"Rao",slug:"venketeshwer-rao",fullName:"Venketeshwer Rao"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"4816",title:"Face Recognition",subtitle:null,isOpenForSubmission:!1,hash:"146063b5359146b7718ea86bad47c8eb",slug:"face_recognition",bookSignature:"Kresimir Delac and Mislav Grgic",coverURL:"https://cdn.intechopen.com/books/images_new/4816.jpg",editedByType:"Edited by",editors:[{id:"528",title:"Dr.",name:"Kresimir",surname:"Delac",slug:"kresimir-delac",fullName:"Kresimir Delac"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"3621",title:"Silver Nanoparticles",subtitle:null,isOpenForSubmission:!1,hash:null,slug:"silver-nanoparticles",bookSignature:"David Pozo Perez",coverURL:"https://cdn.intechopen.com/books/images_new/3621.jpg",editedByType:"Edited by",editors:[{id:"6667",title:"Dr.",name:"David",surname:"Pozo",slug:"david-pozo",fullName:"David Pozo"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}}]},chapter:{item:{type:"chapter",id:"13634",title:"Caching in Ubiquitous Computing Environments: Light and Shadow",doi:"10.5772/14701",slug:"caching-in-ubiquitous-computing-environments-light-and-shadow",body:null,keywords:null,chapterPDFUrl:"https://cdn.intechopen.com/pdfs/13634.pdf",chapterXML:null,downloadPdfUrl:"/chapter/pdf-download/13634",previewPdfUrl:"/chapter/pdf-preview/13634",totalDownloads:1249,totalViews:84,totalCrossrefCites:0,totalDimensionsCites:0,hasAltmetrics:0,dateSubmitted:"May 28th 2010",dateReviewed:"November 11th 2010",datePrePublished:null,datePublished:"February 10th 2011",dateFinished:null,readingETA:"0",abstract:null,reviewType:"peer-reviewed",bibtexUrl:"/chapter/bibtex/13634",risUrl:"/chapter/ris/13634",book:{slug:"ubiquitous-computing"},signatures:"Mianxiong Dong, Long Zheng, Kaoru Ota, Jun Ma, Song Guo and Minyi Guo",authors:[{id:"15566",title:"Dr.",name:"Song",middleName:null,surname:"Guo",fullName:"Song Guo",slug:"song-guo",email:"sguo@u-aizu.ac.jp",position:null,institution:{name:"University of Aizu",institutionURL:null,country:{name:"Japan"}}},{id:"17605",title:"Dr.",name:"Mianxiong",middleName:null,surname:"Dong",fullName:"Mianxiong Dong",slug:"mianxiong-dong",email:"mx.dong@ieee.org",position:null,institution:{name:"University of Aizu",institutionURL:null,country:{name:"Japan"}}},{id:"18563",title:"Dr.",name:"Kaoru",middleName:null,surname:"Ota",fullName:"Kaoru Ota",slug:"kaoru-ota",email:"k.ota@acm.org",position:null,institution:null},{id:"23319",title:"Dr.",name:"Long",middleName:null,surname:"Zheng",fullName:"Long Zheng",slug:"long-zheng",email:"d8112104@u-aizu.ac.jp",position:null,institution:null},{id:"23320",title:"Dr.",name:"Minyi",middleName:null,surname:"Guo",fullName:"Minyi Guo",slug:"minyi-guo",email:"guo-my@cs.sjtu.edu.cn",position:null,institution:null}],sections:null,chapterReferences:null,footnotes:null,contributors:null,corrections:null},book:{id:"110",title:"Ubiquitous Computing",subtitle:null,fullTitle:"Ubiquitous Computing",slug:"ubiquitous-computing",publishedDate:"February 10th 2011",bookSignature:"Eduard Babkin",coverURL:"https://cdn.intechopen.com/books/images_new/110.jpg",licenceType:"CC BY-NC-SA 3.0",editedByType:"Edited by",editors:[{id:"20125",title:"Prof.",name:"Eduard",middleName:null,surname:"Babkin",slug:"eduard-babkin",fullName:"Eduard Babkin"}],productType:{id:"1",title:"Edited Volume",chapterContentType:"chapter",authoredCaption:"Edited by"},chapters:[{id:"13630",title:"Machine Biological Clock: Exploring the Time Dimension in an Organic-Based Operating System",slug:"machine-biological-clock-exploring-the-time-dimension-in-an-organic-based-operating-system",totalDownloads:1546,totalCrossrefCites:0,signatures:"Mauro Marcelo Mattos",authors:[{id:"21126",title:"Dr.",name:"Mauro",middleName:"Marcelo",surname:"Mattos",fullName:"Mauro Mattos",slug:"mauro-mattos"}]},{id:"13631",title:"Anywhere/Anytime Software and Information Access via Collaborative Assistance",slug:"anywhere-anytime-software-and-information-access-via-collaborative-assistance",totalDownloads:1078,totalCrossrefCites:0,signatures:"Ren-Song Ko",authors:[{id:"18831",title:"Dr.",name:"Ren-Song",middleName:null,surname:"Ko",fullName:"Ren-Song Ko",slug:"ren-song-ko"}]},{id:"13632",title:"Uncertainty and Error Handling in Pervasive Computing: A User's Perspective",slug:"uncertainty-and-error-handling-in-pervasive-computing-a-user-s-perspective",totalDownloads:1519,totalCrossrefCites:1,signatures:"Marie-Luce Bourguet",authors:[{id:"21130",title:"Dr.",name:"Marie-Luce",middleName:null,surname:"Bourguet",fullName:"Marie-Luce Bourguet",slug:"marie-luce-bourguet"}]},{id:"13633",title:"Content Adaptation in Ubiquitous Computing",slug:"content-adaptation-in-ubiquitous-computing",totalDownloads:1515,totalCrossrefCites:1,signatures:"Wanderley Lopes de Souza, Antonio Francisco do Prado, Marcos Forte and Carlos Eduardo Cirilo",authors:[{id:"22586",title:"Prof.",name:"Wanderley",middleName:null,surname:"Lopes de Souza",fullName:"Wanderley Lopes de Souza",slug:"wanderley-lopes-de-souza"},{id:"22587",title:"MSc.",name:"Marcos",middleName:null,surname:"Forte",fullName:"Marcos Forte",slug:"marcos-forte"},{id:"25557",title:"Prof.",name:"Antonio Francisco",middleName:null,surname:"Do Prado",fullName:"Antonio Francisco Do Prado",slug:"antonio-francisco-do-prado"},{id:"25558",title:"BSc",name:"Carlos Eduardo",middleName:null,surname:"Cirilo",fullName:"Carlos Eduardo Cirilo",slug:"carlos-eduardo-cirilo"}]},{id:"13634",title:"Caching in Ubiquitous Computing Environments: Light and Shadow",slug:"caching-in-ubiquitous-computing-environments-light-and-shadow",totalDownloads:1249,totalCrossrefCites:0,signatures:"Mianxiong Dong, Long Zheng, Kaoru Ota, Jun Ma, Song Guo and Minyi Guo",authors:[{id:"15566",title:"Dr.",name:"Song",middleName:null,surname:"Guo",fullName:"Song Guo",slug:"song-guo"},{id:"17605",title:"Dr.",name:"Mianxiong",middleName:null,surname:"Dong",fullName:"Mianxiong Dong",slug:"mianxiong-dong"},{id:"18563",title:"Dr.",name:"Kaoru",middleName:null,surname:"Ota",fullName:"Kaoru Ota",slug:"kaoru-ota"},{id:"23319",title:"Dr.",name:"Long",middleName:null,surname:"Zheng",fullName:"Long Zheng",slug:"long-zheng"},{id:"23320",title:"Dr.",name:"Minyi",middleName:null,surname:"Guo",fullName:"Minyi Guo",slug:"minyi-guo"}]},{id:"13635",title:"Security Analysis of the RFID Authentication Protocol Using Model Checking",slug:"security-analysis-of-the-rfid-authentication-protocol-using-model-checking",totalDownloads:1671,totalCrossrefCites:0,signatures:"Hyun-Seok Kim, Jin-Young Choi, and Sin-Jae Lee",authors:[{id:"5721",title:"Dr.",name:"Hyun-Seok",middleName:null,surname:"Kim",fullName:"Hyun-Seok Kim",slug:"hyun-seok-kim"},{id:"18845",title:"Prof.",name:"Jin-Young",middleName:null,surname:"Choi",fullName:"Jin-Young Choi",slug:"jin-young-choi"},{id:"23394",title:"Prof.",name:"Sin-Jae",middleName:null,surname:"Lee",fullName:"Sin-Jae Lee",slug:"sin-jae-lee"}]},{id:"13636",title:"On Modeling of Ubiquitous Computing Environments Featuring Privacy",slug:"on-modeling-of-ubiquitous-computing-environments-featuring-privacy",totalDownloads:1211,totalCrossrefCites:0,signatures:"Vivian C. Kalempa, Rodrigo Campiolo, Lucas Guardalben, Urian K. Bardemaker, João Bosco M. Sobral",authors:[{id:"17448",title:"Dr.",name:"Vivian C.",middleName:null,surname:"Kalempa",fullName:"Vivian C. Kalempa",slug:"vivian-c.-kalempa"}]},{id:"13637",title:"WComp, a Middleware for Ubiquitous Computing",slug:"wcomp-a-middleware-for-ubiquitous-computing",totalDownloads:1958,totalCrossrefCites:4,signatures:"Nicolas Ferry, Vincent Hourdin, Stéphane Lavirotte, Gaëtan Rey, Michel Riveill and Jean-Yves Tigli",authors:[{id:"18678",title:"Dr.",name:"Jean-Yves",middleName:null,surname:"Tigli",fullName:"Jean-Yves Tigli",slug:"jean-yves-tigli"},{id:"22427",title:"Dr.",name:"Stéphane",middleName:null,surname:"Lavirotte",fullName:"Stéphane Lavirotte",slug:"stephane-lavirotte"},{id:"22429",title:"Dr.",name:"Nicolas",middleName:null,surname:"Ferry",fullName:"Nicolas Ferry",slug:"nicolas-ferry"},{id:"22430",title:"Dr.",name:"Gaëtan",middleName:null,surname:"Rey",fullName:"Gaëtan Rey",slug:"gaetan-rey"},{id:"22431",title:"Dr.",name:"Vincent",middleName:null,surname:"Hourdin",fullName:"Vincent Hourdin",slug:"vincent-hourdin"},{id:"22432",title:"Prof.",name:"Michel",middleName:null,surname:"Riveill",fullName:"Michel Riveill",slug:"michel-riveill"}]},{id:"13638",title:"Semantically Enriched Integration Framework for Ubiquitous Computing Environment",slug:"semantically-enriched-integration-framework-for-ubiquitous-computing-environment",totalDownloads:1173,totalCrossrefCites:1,signatures:"Habib Abdulrab, Eduard Babkin and Oleg Kozyrev",authors:[{id:"20125",title:"Prof.",name:"Eduard",middleName:null,surname:"Babkin",fullName:"Eduard Babkin",slug:"eduard-babkin"},{id:"22292",title:"Prof.",name:"Habib",middleName:null,surname:"Abdulrab",fullName:"Habib Abdulrab",slug:"habib-abdulrab"},{id:"22293",title:"Prof.",name:"Oleg",middleName:null,surname:"Kozyrev",fullName:"Oleg Kozyrev",slug:"oleg-kozyrev"}]},{id:"13639",title:"Current Challenges for Mobile Location-Based Pervasive Content Sharing Application",slug:"current-challenges-for-mobile-location-based-pervasive-content-sharing-application",totalDownloads:1937,totalCrossrefCites:0,signatures:"R. Francese, I. Passero and Genoveffa Tortora",authors:[{id:"20287",title:"Dr.",name:"Rita",middleName:null,surname:"Francese",fullName:"Rita Francese",slug:"rita-francese"},{id:"21120",title:"Dr.",name:"Ignazio",middleName:null,surname:"Passero",fullName:"Ignazio Passero",slug:"ignazio-passero"},{id:"21121",title:"Prof.",name:"Genoveff",middleName:null,surname:"Tortora",fullName:"Genoveff Tortora",slug:"genoveff-tortora"}]},{id:"13640",title:"Case Study: The Condition of Ubiquitous Computing Application in Indonesia",slug:"case-study-the-condition-of-ubiquitous-computing-application-in-indonesia",totalDownloads:2639,totalCrossrefCites:0,signatures:"Dewi Agushinta R., Tb. Maulana Kusuma, Bismar Junatas and Deni Trihasta",authors:[{id:"20780",title:"Prof.",name:"Dewi",middleName:null,surname:"Agushinta R.",fullName:"Dewi Agushinta R.",slug:"dewi-agushinta-r."}]},{id:"13641",title:"Using the iDTV as the Center of an Ubiquitous Environment",slug:"using-the-idtv-as-the-center-of-an-ubiquitous-environment",totalDownloads:1954,totalCrossrefCites:0,signatures:"Orlewilson B. Maia, Nairon S. Viana and Vicente F. de Lucena Jr",authors:[{id:"18688",title:"MSc.",name:"Orlewilson B.",middleName:null,surname:"Maia",fullName:"Orlewilson B. Maia",slug:"orlewilson-b.-maia"},{id:"22795",title:"MSc.",name:"Nairon",middleName:"Saraiva",surname:"Viana",fullName:"Nairon Viana",slug:"nairon-viana"},{id:"22796",title:"Dr.",name:"Vicente",middleName:null,surname:"Ferreira de Lucena Jr",fullName:"Vicente Ferreira de Lucena Jr",slug:"vicente-ferreira-de-lucena-jr"}]}]},relatedBooks:[{type:"book",id:"2071",title:"Software Product Line",subtitle:"Advanced Topic",isOpenForSubmission:!1,hash:"cb7b5d0fffcc120586b762ec08b42677",slug:"software-product-line-advanced-topic",bookSignature:"Abdelrahman Osman Elfaki",coverURL:"https://cdn.intechopen.com/books/images_new/2071.jpg",editedByType:"Edited by",editors:[{id:"24859",title:"Dr",name:"Abdelrahman",surname:"Elfaki",slug:"abdelrahman-elfaki",fullName:"Abdelrahman Elfaki"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"},chapters:[{id:"34299",title:"\ufeffHandling Variability and Traceability over SPL Disciplines",slug:"handling-variability-and-traceability-over-spl-disciplines",signatures:"Yguarată Cerqueira Cavalcanti, Ivan do Carmo Machado, Paulo Anselmo da Mota Silveira Neto and Luanna Lopes Lobato",authors:[{id:"116790",title:"Ph.D. Student",name:"Yguaratã Cerqueira",middleName:null,surname:"Cavalcanti",fullName:"Yguaratã Cerqueira Cavalcanti",slug:"yguarata-cerqueira-cavalcanti"},{id:"119735",title:"MSc.",name:"Paulo",middleName:null,surname:"Anselmo Da Mota Silveira Neto",fullName:"Paulo Anselmo Da Mota Silveira Neto",slug:"paulo-anselmo-da-mota-silveira-neto"},{id:"120146",title:"MSc.",name:"Ivan",middleName:null,surname:"Do Carmo Machado",fullName:"Ivan Do Carmo Machado",slug:"ivan-do-carmo-machado"},{id:"120147",title:"MSc.",name:"Luanna",middleName:null,surname:"Lopes Lobato",fullName:"Luanna Lopes Lobato",slug:"luanna-lopes-lobato"}]},{id:"34300",title:"An Approach for Representing Domain Requirements and Domain Architecture in Software Product Line",slug:"an-approach-for-representing-domain-requirements-and-domain-architecture-in-software-product-line",signatures:"Shahliza Abd Halim, Dayang N. A. Jawawi, Noraini Ibrahim and Safaai Deris",authors:[{id:"512",title:"Dr.",name:"Dayang",middleName:null,surname:"Jawawi",fullName:"Dayang Jawawi",slug:"dayang-jawawi"},{id:"113980",title:"Mrs.",name:"Shahliza",middleName:null,surname:"Abd Halim",fullName:"Shahliza Abd Halim",slug:"shahliza-abd-halim"},{id:"119263",title:"Mrs.",name:"Noraini",middleName:null,surname:"Ibrahim",fullName:"Noraini Ibrahim",slug:"noraini-ibrahim"},{id:"119265",title:"Prof.",name:"Safaai",middleName:null,surname:"Deris",fullName:"Safaai Deris",slug:"safaai-deris"}]},{id:"34301",title:"Transformational Variability Modeling Approach to Configurable Business System Application",slug:"transformational-variability-modeling-approach-to-configurable-business-system-application",signatures:"Marcel Fouda Ndjodo and Amougou Ngoumou",authors:[{id:"114276",title:"MSc.",name:"Amougou",middleName:null,surname:"Ngoumou",fullName:"Amougou Ngoumou",slug:"amougou-ngoumou"},{id:"119519",title:"Dr.",name:"Marcel",middleName:null,surname:"Fouda Ndjodo",fullName:"Marcel Fouda Ndjodo",slug:"marcel-fouda-ndjodo"}]},{id:"34302",title:"Integrating Performance Analysis in Software Product Line Development Process",slug:"integrating-performance-analysis-in-software-product-line-development-process",signatures:"Rasha Tawhid and Dorina Petriu",authors:[{id:"115603",title:"Ms.",name:"Rasha",middleName:null,surname:"Tawhid",fullName:"Rasha Tawhid",slug:"rasha-tawhid"},{id:"119208",title:"Dr.",name:"Dorina",middleName:"C.",surname:"Petriu",fullName:"Dorina Petriu",slug:"dorina-petriu"}]},{id:"34303",title:"Defects in Product Line Models and How to Identify Them",slug:"defects-in-product-line-models-and-how-to-identify-them",signatures:"Camille Salinesi and Raúl Mazo",authors:[{id:"105372",title:"Prof.",name:"Camille",middleName:null,surname:"Salinesi",fullName:"Camille Salinesi",slug:"camille-salinesi"},{id:"111327",title:"Mr.",name:"Raul",middleName:null,surname:"Mazo",fullName:"Raul Mazo",slug:"raul-mazo"}]}]}]},onlineFirst:{chapter:{type:"chapter",id:"68769",title:"Modern Production Methods for Titanium Alloys: A Review",doi:"10.5772/intechopen.81712",slug:"modern-production-methods-for-titanium-alloys-a-review",body:'\n
\n
1. Introduction
\n
Titanium (Ti) is a lustrous metal with a silver color. This metal exists in two different physical crystalline state called body centered cubic (bcc) and hexagonal closed packing (hcp), shown in Figure 1 (a) and (b), respectively. Titanium has five natural isotopes, and these are 46Ti, 47Ti, 48Ti, 49Ti, 50Ti. The 48Ti is the most abundant (73.8%).
\n\n
Figure 1.
Crystalline state of titanium: (a) bcc, and (b) hcp [8].
\n\n
Titanium has high strength of 430 MPa and low density of 4.5 g/cm3, compared to iron with strength of 200 MPa and density of 7.9 g/cm3. Accordingly, titanium has the highest strength-to-density ratio than all other metals. However, titanium is quite ductile especially in an oxygen-free environment. In addition, titanium has relatively high melting point (more than 1650°C or 3000°F), and is paramagnetic with fairly low electrical and thermal conductivity. Further, titanium has very low bio-toxicity and is therefore bio-compatible. Furthermore, titanium readily reacts with oxygen at 1200°C (2190°F) in air, and at 610°C (1130°F) in pure oxygen, forming titanium dioxide. At ambient temperature, titanium slowly reacts with water and air to form a passive oxide coating that protects the bulk metal from further oxidation, hence, it has excellent resistance to corrosion and attack by dilute sulfuric and hydrochloric acids, chloride solutions, and most organic acids. However, titanium reacts with pure nitrogen gas at 800°C (1470°F) to form titanium nitride [1, 2].
\n
Some of the major areas where titanium is used include the aerospace industry, orthopedics, dental implants, medical equipment, power generation, nuclear waste storage, automotive components, and food and pharmaceutical manufacturing.
\n
Titanium is the ninth-most abundant element in Earth‘s crust (0.63% by mass) and the seventh-most abundant metal. The fact that titanium has most useful properties makes it be preferred material of future engineering application. Moreover, the application of titanium can be extended when alloyed with other elements as described below.
\n
\n
\n
2. Titanium alloys
\n
An alloy is a substance composed of two or more elements (metals or nonmetals) that are intimately mixed by fusion or electro-deposition. On this basis, titanium alloys are made by adding elements such as aluminum, vanadium, molybdenum, niobium, zirconium and many others to produce alloys such as Ti-6Al-4V and Ti-24Nb-4Zr-8Sn and several others [2]. These alloys have exceptional properties as illustrated below. Depending on their influence on the heat treating temperature and the alloying elements, the alloys of titanium can be classified into the following three types:
\n
\n
2.1 Type 1: the alpha (α) alloys
\n
These alloys contain a large amount of α-stabilizing alloying elements such as aluminum, oxygen, nitrogen or carbon. Aluminum is widely used as the alpha stabilizer for most commercial titanium alloys because it is capable strengthening the alloy at ambient and elevated temperatures up to about 550°C. This capability coupled with its low density makes aluminum to have additional advantage over other alloying elements such as copper and molybdenum. However, the amount of aluminum that can be added is limited because of the formation of a brittle titanium-aluminum compound when 8% or more by weight aluminum is added. Occasionally, oxygen is added to pure titanium to produce a range of grades having increasing strength as the oxygen level is raised. The limitation of the α alloys of titanium is non-heat treatable but these are generally very weldable. In addition, these alloys have low to medium strength, good notch toughness, reasonably good ductility and have excellent properties at cryogenic temperatures. These alloys can be strengthened further by the addition of tin or zirconium. These metals have appreciable solubility in both alpha and beta phases and as their addition does not markedly influence the transformation temperature they are normally classified as neutral additions. Just like aluminum, the benefit of hardening at ambient temperature is retained even at elevated temperatures when tin and zirconium are used as alloying elements.
\n
\n
\n
2.2 Type 2: alpha-beta (α-β) titanium alloys
\n
These alloys contain 4–6% of β-phase stabilizer elements such as molybdenum, vanadium, tungsten, tantalum, and silicon. The amount of these elements increases the amount of β-phase is the metal matrix. Consequently, these alloys are heat treatable, and are significantly strengthened by precipitation hardening. Solution treatment of these alloys causes increase of β-phase content mechanical strength while ductility decreases. The most popular example of the α-β titanium alloy is the Ti-6Al-4V with 6 and 4% by weight aluminum and vanadium, respectively. This alloy of titanium is about half of all titanium alloys produced. In these alloys, the aluminum is added as α-phase stabilizer and hardener due to its solution strength-ening effect. The vanadium stabilizes the ductile β-phase, providing hot workability of the alloy.
\n
\n
2.2.1 Properties of α-β titanium alloys
\n
The α-β titanium alloys have high tensile strength, high fatigue strength, high corrosion resistance, good hot formability and high creep resistance [3].
\n
\n
\n
2.2.2 Novel application of α-β titanium alloys
\n
Therefore, these alloys are used for manufacturing steam turbine blades, gas and chemical pumps, airframes and jet engine parts, pressure vessels, blades and discs of aircraft turbines, aircraft hydraulic tubing, rocket motor cases, cryogenic parts, and marine components [4].
\n
\n
\n
\n
2.3 Type 3: beta (β) titanium alloys
\n
These alloys exhibit the body centered cubic crystalline form shown in Figure 1 (a). The β stabilizing elements used in these alloy are one or more of the following: molybdenum, vanadium, niobium, tantalum, zirconium, manganese, iron, chromium, cobalt, nickel, and copper. Besides strengthening the beta phase, these β stabilizers lower the resistance to deformation which tends to improve alloy fabricability during both hot and cold working operations. In addition, this β stabilizer to titanium compositions also confers a heat treatment capability which permits significant strengthening during the heat treatment process [4].
\n\n
\n
2.3.1 Properties of beta (β) titanium alloys
\n
As a result, the β titanium alloys have large strength to modulus of elasticity ratios that is almost twice those of 18–8 austenitic stainless steel. In addition, these β titanium alloys contain completely biocompatible elements that impart exceptional biochemical properties such as superior properties such as exceptionally high strength-to-weight ratio, low elastic modulus, super-elasticity low elastic modulus, larger elastic deflections, and low toxicity [1, 3].
\n
\n
\n
2.3.2 Novel application of beta (β) titanium alloys
\n
The above properties make them to be bio-compatible and are excellent prospective materials for manufacturing of bio-implants. Therefore, nowadays these alloys are largely utilized in the orthodontic field since the 1980s, replacing the stainless steel for certain uses, as stainless steel had dominated orthodontics since the 1960s [2].
\n
\n
\n
\n
2.4 Summary
\n
Because of alloying the titanium achieve improved properties that make it to be preferred material of choice for application in aerospace, medical, marine and instrumentation. The extent of improvement to the properties of titanium alloys and ultimately the choice of area of application is influenced by the methods of production and processing as discussed in the subsequent sections.
\n
\n
\n
\n
3. Production of titanium
\n
The base metal required for production of titanium alloys is pure titanium. Pure titanium is produced using several methods including the Kroll process. This process produces the majority of titanium primary metals used globally by industry today. In this process, the titanium is extracted from its ore rutile—TiO2 or titanium concentrates. These materials are put in a fluidized-bed reactor along with chlorine gas and carbon and heated to 900°C and the subsequent chemical reaction results in the creation of impure titanium tetrachloride (TiCl4) and carbon monoxide. The resultant titanium tetrachloride is fed into vertical distillation tanks where it is heated to remove the impurities by separation using processes such as fractional distillation and precipitation. These processes remove metal chlorides including those of iron, silicon, zirconium, vanadium and magnesium. Thereafter, the purified liquid titanium tetrachloride is transferred to a reactor vessel in which magnesium is added and the container is heated to slightly above 1000°C. At this stage, the argon is pumped into the container to remove the air and prevent the contamination of the titanium with oxygen or nitrogen. During this process, the magnesium reacts with the chlorine to produce liquid magnesium chloride thereby leaving the pure titanium solid. This process is schematically presented in Figure 2.
\n
Figure 2.
Kroll process for production of titanium: (a) chlorination, (b) fractional distillation [5].
\n
The resultant titanium solid is removed from the reactor by boring and then treated with water and hydrochloric acid to remove excess magnesium and magnesium chloride leaving porous titanium sponge, which is jackhammered, crushed, and pressed, followed by melting in a vacuum electric arc furnace using expendable carbon electrode. The melted ingot is allowed to solidify in a vacuum atmosphere. This solid is often remelted to remove inclusions and to homogenize its constituents. These melting steps add to the cost of producing titanium, and this cost is usually about six times that of stainless steel. Usually the titanium solid undergo further treatment to produce titanium powder required in alloying process. The basic methods used to produce titanium powder are summarized below.
\n
\n
3.1 Armstrong process
\n
The first method is called the Armstrong process, shown in Figure 3, in which the powder is made as the product of extractive processes that produce primary metal powder. This process is capable of producing commercially pure titanium (Ti) powder by the reduction of titanium tetrachloride (TiCl4) and other metal halides using sodium (Na). This process produces powder particles with a unique properties and low bulk density. To improve powder properties such as the particle size distribution and the tap density, additional post processing activities such as dry and wet ball milling are applied. The narrowed particle size distributions are necessary for typical powder metallurgical processes. In addition, the resultant powder’s morphology produced by the Armstrong process provide for excellent compressibility and compaction properties that result in dense compacts with increased green strength than those produced by the irregular powders. For this reason, the powders can even be consolidated by traditional powder metallurgy techniques such as uniaxial compaction and cold isostatic pressing. Figure 4 illustration the scanning electron microscope images of the titanium powders of the Armstrong process. As seen in the figure, the powder has an irregular morphology made of granular agglomerates of smaller particles.
\n
Figure 3.
Illustration of the Armstrong process [5].
\n
Figure 4.
SEM micrographs of CP-Ti produced by Armstrong process [5].
\n
\n
\n
3.2 The hydride-dehydride process
\n
The hydride-dehydride (HDH) process, illustrated in Figure 5, is used to produce titanium powder using titanium sponge, titanium, mill products, or titanium scrap as the raw material. The hydrogenation process is achieved using a batch furnace that is usually operated in vacuum and/or hydrogen atmospheric conditions. The conditions necessary for hydrogenation of titanium are pressure of one atmospheric and temperatures of utmost 800°C. This process results in forming of titanium hydride and alloy hydrides that are usually brittle in nature. These metal hydrides are milled and screened to produce fine powders. The powder is resized using a variety of powder-crushing and milling techniques may be used including: a jaw crusher, ball milling, or jet milling. After the titanium hydride powders are crushed and classified, they are placed back in the batch furnace to dehydrogenate and remove the interstitial hydrogen under vacuum or argon atmosphere and produce metal powder. These powders are irregular and angular in morphology and can also be magnetically screened and acid washed to remove any ferromagnetic contamination. Finer particle sizes can be obtained, but rarely used because oxygen content increases rapidly when the powder is finer than −325 mesh. Powder finer than −325 mesh also possess more safety challenges [5]. The powder can be passivated upon completion of both the hydrogenating and dehydrogenating cycles to minimize exothermic heat generated when exposed to air.
\n
Figure 5.
Hydride-dehydride process for obtaining of titanium powders [6].
\n
The hydride-dehydride process is relatively inexpensive because the hydrogenation and dehydrogenation processes contribute small amount of cost to that of input material. The additional benefit of this process is the fact that the purity of the powder can be very high, as long as the raw material’s impurities are reduced. The oxygen content of final powder has a strong dependence on the input material, the handling processes and the specific surface area of the powder. Therefore, the main disadvantages of hydride-dehydride powder include: the powder morphology is irregular, and the process is not suitable for making virgin alloyed powders or modification of alloy compositions if the raw material is from scrap alloys (Figure 6) [5].
\n
Figure 6.
SEM micrographs of CP-Ti produced by HDH [5].
\n
\n
\n
\n
4. Conventional methods of production for titanium alloys
\n
\n
4.1 Powder metallurgy
\n
Conventional sintering, shown in Figure 7, is one of the widely applied powder metallurgy (PM) based method for manufacturing titanium alloys. In this method, the feedstock titanium powder is mixed thoroughly with alloying elements mentioned in Section 2 using a suitable powder blender, followed by compaction of the mixture under high pressure, and finally sintered. The sintering operation is carried out at high temperature and pressure treatment process that causes the powder particles to bond to each other with minor change to the particle shape, which also allows porosity formation in the product when the temperature is well regulated. This method can produce high performance and low cost titanium alloy parts. The titanium alloy parts produced by powder metallurgy have several advantages such as comparable mechanical properties, near-net-shape, low cost, full dense material, minimal inner defect, nearly homogenous microstructure, good particle-to-particle bonding, and low internal stress compared with those titanium parts produced by other conventional processes [7].
\n
Figure 7.
Powder metallurgy process [7].
\n
\n
\n
4.2 Self-propagating high temperature synthesis
\n
Self-propagating high temperature synthesis (SHS), shown in Figure 8, is another PM based process used to produce titanium alloys. The steps in this process include: mixing of reagents, cold compaction, and finally ignition to initiate a spontaneous self-sustaining exothermic reaction to create the titanium alloy [7].
\n
Figure 8.
SHS process [7].
\n
Although the above PM processes are mature technologies for fabrication of bone implants they have difficulties of fabricating porous coatings on surfaces that are delicate or with complex geometries. In addition, these processes tend to produce brittle products because of cracks and oxides formed inside the materials. Further, the high costs and poor workability associated with these PM processes restrict their application in commercial production of bone implants. Consequently, new methods, based on additive manufacturing principles were developed [7].
\n
\n
\n
\n
5. Advanced methods for production of titanium alloys
\n
The definitions of advanced methods of production is the use of technological method to improve the quality of the products and/or processes, with the relevant technology being described as “advanced,” “innovative,“ or “cutting edge.” These technologies evolved from conventional processes some of which have been developed to achieve various components of titanium base alloys and aluminides. Atomisation processes are among the most widely used cutting edge methods for production of titanium alloys [5].
\n
\n
5.1 Atomisation
\n
Atomisation processes are used to make alloyed titanium powders. In these processes, the feedstock material is generally titanium, and the alloy powders produced are further processed typically to manufacture components using processes such as hot isostatic pressing (hip). As mentioned previously, it is generally believed that alloyed powders are not suitable for cold compaction using conventional uniaxial die pressing methods. Moreover, the inherent strength of the alloyed powders is too high, making it difficult to deform the particles in order to achieve desired green density. The atomisation processes produce relatively spherically shaped titanium alloy powders that are most suitable for additive manufacturing using techniques such as selective laser melting or electron beam melting. These spherical powders are also required for manufacturing titanium components using metal injection molding techniques. Typically, additive manufacturing and metal injection molding processes require particle sizes of powders to be in the range of 100 μm to ensure good flowability of the powder during operations. However, the challenge of the atomisation processes usually is that powders produced tend to have a wide particle size distribution, from a few to hundreds of micrometers. Examples of atomisation processes are gas atomisation and plasma atomisation processes described below [5].
\n
\n
5.1.1 Gas atomisation process
\n
In the gas atomisation process, shown in Figure 9, the metal is usually melted using gas and the molten metal is atomised using an inert gas jets. The resultant fine metal droplets are then cooled down during their fall in the atomisation tower. The metal powders obtained by gas-atomization offer a perfectly spherical shape combined with a high cleanliness level. However, even though gas atomisation is, generally, a mature technology, its application need to be widened after addressing a few issues worth noting such as considerable interactions between droplets while they cool during flight in the cooling chamber, causing the formation of satellite particles. Also, due to the erosion of atomising nozzle by the liquid metal, the possibility for contamination by ceramic particles is high. Usually, there may also be argon gas entrapment in the powder that creates unwanted voids [5].
\n
Figure 9.
Schematic diagrams of gas atomisation process [5].
\n
\n
\n
5.1.2 Plasma atomisation process
\n
Plasma atomisation, shown in Figure 10, uses a titanium wire alloy as the feed material which is a significant cost contributing factor. The titanium alloy wire, fed via a spool, is melted in a plasma torch, and a high velocity plasma flow breaks up the liquid into droplets which cool rapidly, with a typical cooling rate in the range of 100–1000°C/s. Plasma atomisation produces powders with particle sizes ranging from 25 to 250 μm. In general, the yield of particles under 45 μm using the plasma wire atomisation technique is significantly higher than that of conventional gas atomisation processes [5].
\n
Figure 10.
Schematic diagrams of plasma atomisation process [5].
\n
\n
\n
\n
\n
6. Future methods for production of titanium alloys
\n
The future methods for production of titanium alloys depend on the demand of these products and to what extend nature will be able to provide them. The demand for titanium alloys shall also influence the number and type of technological breakthroughs, the extent of automation, robotics’ application, the number of discoveries for new titanium alloys, their methods of manufacturing, and new areas of application. Automation is an important aspect of the industry’s future and already a large percentage of the manufacturing processes are fully automated. In addition, automation enables a high level of accuracy and productivity beyond human ability—even in hazardous environments. And while automation eliminates some of the most tedious manufacturing jobs, it is also creating new jobs for a re-trained workforce. The new generation of robotics is not only much easier to program, but also easier to use due to extra capabilities such as voice and image recognition during operations, they are capable of doing precisely what you ask them to do. The discovery of new titanium alloys, or innovative uses of existing ones, is essential for making progress in many of the technological challenges we face. This discovery can result in new synthesis methods of new alloy compounds and design of super alloys, theoretical modeling and even the computational prediction of titanium alloys. This discovery requires that new methods of manufacturing are developed. In light of this, “additive manufacturing” is being developed and this is viewed as a groundbreaking development in manufacturing advancement that offers manufacturers powerful solutions for making any number of products cost-effectively and with little waste. Examples of additive manufacturing technologies are cold spray, 3-D printing, electron beam melting, and selective laser melting. To fabricate alloy surfaces using these technologies, alloying elements are mixed thoroughly in the feedstock powder and the fabrication processes proceed as described in the following paragraphs [7, 8].
\n
\n
6.1 Cold spray
\n
Cold spray (CS) process, schematically shown in Figures 11 and 12 can deposit metals or metal alloys or composite powders on a metallic or dielectric substrate using a high velocity (300–1200 m/s) jet of small (5–50 μm) particles injected in a stream of preheated and compressed gas passing through a specially designed nozzle. The main components of a generic CS system include the source of compressed gas, gas heater, powder feeder, spray nozzle assembly, and sensors for gas pressure and temperature. The source of compressed gas acquires the gas from an external reservoir, compresses it to desired pressure and delivers it into the gas heater. Then, the gas heater preheats the compressed gas in order to increase its enthalpy energy. The preheated gas is delivered into the spray nozzle assembly whose convergent/divergent geometry not only converts the enthalpy energy of the gas into kinetic energy but also mixes the metal powders with the gas proportionately. The powder feeder meters and injects the powder in the spray nozzle assembly. The sensors for the gas pressure and temperature are responsible for regulating the preset pressure and temperature of the gas stream. The powder injection point in the spray nozzle assembly, the gas pressure, and gas temperature distinguish the low pressure-CS system (LP-CS) from the high pressure CS (HP-CS). In the LP-CS system, the feedstock powder is injected in the downstream side of the convergent section of the nozzle assembly, while in the HP-CS system; the powder is injected in the upstream side of the convergent/diverging section of the nozzle assembly as illustrated in Figures 11 and 12. Several other parameters which contribute towards the distinguishing of the CS systems are summarized in Table 1 [8].
3-D printing is an additive manufacturing method that applies the principle of adding material to create structures using computer aided design (CAD), part modeling, and layer-by-layer deposition of feedstock material. This cutting-edge technology is also called stereolithography, and is illustrated in Figure 13 [8].
\n
Figure 13.
3D-printing process [8].
\n
In this technology, the pattern is transferred from a digital 3D model, stored in the CAD file, to the object using a laser beam scanned through a reactive liquid polymer which hardened to create a thin layer of the solid. In this manner, the structure is fabricated on the desired surface. This method was proved in the laboratory setup is still being integrated in commercial set-up because 3-D printing is the most widely recognized version of additive manufacturing. For this reason, the inventors and engineers for this process have for years used machines costing anywhere from a few thousand dollars to hundreds of thousands for rapid prototyping of new products. It can be noted that all of the additive-manufacturing processes follow this same basic layer-by-layer deposition principle but with slightly different ways such as using powdered or liquid polymers, metals, metal-alloys or other materials to produce a desired product [8].
\n
\n
\n
6.3 Electron beam melting
\n
Electron beam melting (EBM), shown in Figure 14, is one of the additive manufacturing processes which fabricated titanium coatings by melting and deposition of metal powders, layer-by-layer, using a magnetically directed electron beam. Though this method was proved to be successful, it has high set-up costs due to the requirement of high vacuum atmosphere [7].
\n
Figure 14.
Electron beam melting method [1].
\n
\n
\n
6.4 Selective laser melting
\n
Selective laser melting (SLM), shown in Figure 15 is the second additive manufacturing method for titanium alloy coatings which completely melt the powder using a high-power laser beam. Similarly, this method is costly because it requires advanced high rate cooling systems. Moreover, the fluctuations of temperatures during processing negatively affect the quality of the products [1].
\n
Figure 15.
Selective laser melting method [1].
\n
\n
\n
\n
7. Conclusion
\n
This chapter described the titanium as a metal that exists naturally with two crystalline forms. The chapter highlighted the properties of titanium metal that influence its application. The fact that titanium has advantageously unique properties that can be improved by alloying with other elements makes it to be preferred engineering material for future application in such areas as biomedical implants, aerospace, marine structures, and many others. The chapter discussed the traditional, current and future methods necessary to produce structures using titanium and titanium alloys. Further, the chapter suggested “additive manufacturing methods” as advanced methods for future manufacturing because they offer powerful solutions for making any type and number of products cost-effectively and with little waste. The examples of these methods are cold spray, 3-D printing, electron beam melting, and selective laser melting. Finally, the various processes used during fabrication of alloys using these methods were also presented.
\n
\n\n',keywords:"titanium, titanium alloys, production methods",chapterPDFUrl:"https://cdn.intechopen.com/pdfs/68769.pdf",chapterXML:"https://mts.intechopen.com/source/xml/68769.xml",downloadPdfUrl:"/chapter/pdf-download/68769",previewPdfUrl:"/chapter/pdf-preview/68769",totalDownloads:1090,totalViews:0,totalCrossrefCites:2,dateSubmitted:"May 18th 2018",dateReviewed:"September 27th 2018",datePrePublished:"August 24th 2019",datePublished:null,dateFinished:null,readingETA:"0",abstract:"Titanium alloys are advanced structural materials for numerous key engineering applications in medicine (implants), aerospace, marine structures, and many other areas. The novel aspects of application potential for titanium alloys are as a result of their unique properties such as high corrosion resistance, high specific strength, low elastic modulus, high elasticity, and high hardness. This chapter examines the modern methods for production of titanium alloys. The goal of this chapter is to show the process engineers the current methods for production of titanium alloys necessary for modern applications. The chapter also presents the future methods of production for titanium and titanium alloys to meet the future demands of titanium and titanium alloys’ products.",reviewType:"peer-reviewed",bibtexUrl:"/chapter/bibtex/68769",risUrl:"/chapter/ris/68769",signatures:"Hamweendo Agripa and Ionel Botef",book:{id:"8408",title:"Titanium Alloys",subtitle:"Novel Aspects of Their Manufacturing and Processing",fullTitle:"Titanium Alloys - Novel Aspects of Their Manufacturing and Processing",slug:"titanium-alloys-novel-aspects-of-their-manufacturing-and-processing",publishedDate:"November 27th 2019",bookSignature:"Maciej Motyka, Waldemar Ziaja and Jan Sieniawsk",coverURL:"https://cdn.intechopen.com/books/images_new/8408.jpg",licenceType:"CC BY 3.0",editedByType:"Edited by",editors:[{id:"101690",title:"Associate Prof.",name:"Maciej",middleName:null,surname:"Motyka",slug:"maciej-motyka",fullName:"Maciej Motyka"}],productType:{id:"1",title:"Edited Volume",chapterContentType:"chapter",authoredCaption:"Edited by"}},authors:null,sections:[{id:"sec_1",title:"1. Introduction",level:"1"},{id:"sec_2",title:"2. Titanium alloys",level:"1"},{id:"sec_2_2",title:"2.1 Type 1: the alpha (α) alloys",level:"2"},{id:"sec_3_2",title:"2.2 Type 2: alpha-beta (α-β) titanium alloys",level:"2"},{id:"sec_3_3",title:"2.2.1 Properties of α-β titanium alloys",level:"3"},{id:"sec_4_3",title:"2.2.2 Novel application of α-β titanium alloys",level:"3"},{id:"sec_6_2",title:"2.3 Type 3: beta (β) titanium alloys",level:"2"},{id:"sec_6_3",title:"2.3.1 Properties of beta (β) titanium alloys",level:"3"},{id:"sec_7_3",title:"2.3.2 Novel application of beta (β) titanium alloys",level:"3"},{id:"sec_9_2",title:"2.4 Summary",level:"2"},{id:"sec_11",title:"3. Production of titanium",level:"1"},{id:"sec_11_2",title:"3.1 Armstrong process",level:"2"},{id:"sec_12_2",title:"3.2 The hydride-dehydride process",level:"2"},{id:"sec_14",title:"4. Conventional methods of production for titanium alloys",level:"1"},{id:"sec_14_2",title:"4.1 Powder metallurgy",level:"2"},{id:"sec_15_2",title:"4.2 Self-propagating high temperature synthesis",level:"2"},{id:"sec_17",title:"5. Advanced methods for production of titanium alloys",level:"1"},{id:"sec_17_2",title:"5.1 Atomisation",level:"2"},{id:"sec_17_3",title:"5.1.1 Gas atomisation process",level:"3"},{id:"sec_18_3",title:"5.1.2 Plasma atomisation process",level:"3"},{id:"sec_21",title:"6. Future methods for production of titanium alloys",level:"1"},{id:"sec_21_2",title:"6.1 Cold spray",level:"2"},{id:"sec_22_2",title:"6.2 3-D printing",level:"2"},{id:"sec_23_2",title:"6.3 Electron beam melting",level:"2"},{id:"sec_24_2",title:"6.4 Selective laser melting",level:"2"},{id:"sec_26",title:"7. Conclusion",level:"1"}],chapterReferences:[{id:"B1",body:'Sidambe AT. Biocompatibility of advanced manufactured titanium implants a review. Materials. 2014;7(12):8168-8188'},{id:"B2",body:'Yang R, Hao Y, Li S. Development and application of low-modulus biomedical titanium alloy Ti2448. Biomedical Engineering Trends. 2011;10:225-247'},{id:"B3",body:'Elahinia MH, Hashemi M, Tabesh M, Bhaduri SB. Manufacturing and processing of NiTi implants: A review. Progress in Materials Science. 2012;57:911-946'},{id:"B4",body:'Kopeliovich D. Titanium Alpha-Beta Alloys; 2018'},{id:"B5",body:'Fang ZZ, Paramore JD, Sun P, Chandran KSR, Zhang Y, Xia Y, et al. Powder metallurgy of titanium—Past, present, and future. International Materials Reviews. ISSN: 0950-6608 (Print) 1743-2804 (Online). Available from: http://www.tandfonline.com/loi/yimr20'},{id:"B6",body:'Ovchinnikov A, Smolyak Y, Dzhugan A, Yunusov E, Ianko T, Panov S. Technology of New Generation Titanium Alloys Powder for Additive Technology; 2018. pp. 101-107'},{id:"B7",body:'Hamweendo A, Malama T, Botef I. Titanium-nickel alloys for bone tissue engineering application via cold spray. In: International Conference on Competitive Manufacturing COMA16. Vol. 2016. Stellenbosch, South Africa. pp. 273-279'},{id:"B8",body:'Hamweendo A. Fabrication of porous structures using cold gas dynamic spray technology [thesis]. Johannesburg, South Africa: University of the Witwatersrand; 2017. pp. 1-198'}],footnotes:[],contributors:[{corresp:null,contributorFullName:"Hamweendo Agripa",address:null,affiliation:'
School of Mechanical Industrial and Aeronautical Engineering, University of the Witwatersrand, Johannesburg, South Africa
School of Mechanical Industrial and Aeronautical Engineering, University of the Witwatersrand, Johannesburg, South Africa
'}],corrections:null},book:{id:"8408",title:"Titanium Alloys",subtitle:"Novel Aspects of Their Manufacturing and Processing",fullTitle:"Titanium Alloys - Novel Aspects of Their Manufacturing and Processing",slug:"titanium-alloys-novel-aspects-of-their-manufacturing-and-processing",publishedDate:"November 27th 2019",bookSignature:"Maciej Motyka, Waldemar Ziaja and Jan Sieniawsk",coverURL:"https://cdn.intechopen.com/books/images_new/8408.jpg",licenceType:"CC BY 3.0",editedByType:"Edited by",editors:[{id:"101690",title:"Associate Prof.",name:"Maciej",middleName:null,surname:"Motyka",slug:"maciej-motyka",fullName:"Maciej Motyka"}],productType:{id:"1",title:"Edited Volume",chapterContentType:"chapter",authoredCaption:"Edited by"}}},profile:{item:{id:"37776",title:"Dr.",name:"Pavel",middleName:null,surname:"Fiala",email:"fialap@feec.vutbr.cz",fullName:"Pavel Fiala",slug:"pavel-fiala",position:null,biography:null,institutionString:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",totalCites:0,totalChapterViews:"0",outsideEditionCount:0,totalAuthoredChapters:"2",totalEditedBooks:"0",personalWebsiteURL:null,twitterURL:null,linkedinURL:null,institution:{name:"Brno University of Technology",institutionURL:null,country:{name:"Czech Republic"}}},booksEdited:[],chaptersAuthored:[{title:"Properties and Numerical Modeling-Simulation of Phase Changes Material",slug:"properties-and-numerical-modeling-simulation-of-phase-changes-material",abstract:null,signatures:"Pavel Fiala, Ivo Behunek and Petr Drexler",authors:[{id:"37776",title:"Dr.",name:"Pavel",surname:"Fiala",fullName:"Pavel Fiala",slug:"pavel-fiala",email:"fialap@feec.vutbr.cz"},{id:"40879",title:"Dr.",name:"Ivo",surname:"Behunek",fullName:"Ivo Behunek",slug:"ivo-behunek",email:"ivo.behunek@post.cz"},{id:"40880",title:"Dr.",name:"Petr",surname:"Drexler",fullName:"Petr Drexler",slug:"petr-drexler",email:"drexler@feec.vutbr.cz"}],book:{title:"Convection and Conduction Heat Transfer",slug:"convection-and-conduction-heat-transfer",productType:{id:"1",title:"Edited Volume"}}},{title:"Optical Fiber Birefringence Effects – Sources, Utilization and Methods of Suppression",slug:"optical-fiber-birefringence-effects-sources-utilization-and-methods-of-suppression",abstract:null,signatures:"Petr Drexler and Pavel Fiala",authors:[{id:"37776",title:"Dr.",name:"Pavel",surname:"Fiala",fullName:"Pavel Fiala",slug:"pavel-fiala",email:"fialap@feec.vutbr.cz"},{id:"40880",title:"Dr.",name:"Petr",surname:"Drexler",fullName:"Petr Drexler",slug:"petr-drexler",email:"drexler@feec.vutbr.cz"}],book:{title:"Recent Progress in Optical Fiber Research",slug:"recent-progress-in-optical-fiber-research",productType:{id:"1",title:"Edited Volume"}}}],collaborators:[{id:"43040",title:"Prof.",name:"Nencho",surname:"Deliiski",slug:"nencho-deliiski",fullName:"Nencho Deliiski",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"University of Forestry Sofia",institutionURL:null,country:{name:"Bulgaria"}}},{id:"44661",title:"Dr.",name:"Cho Young",surname:"Han",slug:"cho-young-han",fullName:"Cho Young Han",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:null},{id:"44700",title:"Prof.",name:"Se-Myong",surname:"Chang",slug:"se-myong-chang",fullName:"Se-Myong Chang",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:null},{id:"49366",title:"Dr.",name:"Jean",surname:"Batina",slug:"jean-batina",fullName:"Jean Batina",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:null},{id:"53866",title:"Dr.",name:"Gregor",surname:"Kosec",slug:"gregor-kosec",fullName:"Gregor Kosec",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:null},{id:"54781",title:"Prof.",name:"Božidar",surname:"Šarler",slug:"bozidar-sarler",fullName:"Božidar Šarler",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:null},{id:"137725",title:"Prof.",name:"Serge",surname:"Blancher",slug:"serge-blancher",fullName:"Serge Blancher",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"University of Pau and Pays de l'Adour",institutionURL:null,country:{name:"France"}}},{id:"137726",title:"Prof.",name:"Cherif",surname:"Amrouche",slug:"cherif-amrouche",fullName:"Cherif Amrouche",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"University of Pau and Pays de l'Adour",institutionURL:null,country:{name:"France"}}},{id:"137727",title:"Prof.",name:"M",surname:"Batchi",slug:"m-batchi",fullName:"M Batchi",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"University of Pau and Pays de l'Adour",institutionURL:null,country:{name:"France"}}},{id:"137728",title:"Prof.",name:"René",surname:"Creff",slug:"rene-creff",fullName:"René Creff",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"University of Pau and Pays de l'Adour",institutionURL:null,country:{name:"France"}}}]},generic:{page:{slug:"WIS-cost",title:"What Does It Cost?",intro:"
Open Access publishing helps remove barriers and allows everyone to access valuable information, but article and book processing charges also exclude talented authors and editors who can’t afford to pay. The goal of our Women in Science program is to charge zero APCs, so none of our authors or editors have to pay for publication.
",metaTitle:"What Does It Cost?",metaDescription:"Open Access publishing helps remove barriers and allows everyone to access valuable information, but article and book processing charges also exclude talented authors and editors who can’t afford to pay. The goal of our Women in Science program is to charge zero APCs, so none of our authors or editors have to pay for publication.",metaKeywords:null,canonicalURL:null,contentRaw:'[{"type":"htmlEditorComponent","content":"
We are currently in the process of collecting sponsorship. If you have any ideas or would like to help sponsor this ambitious program, we’d love to hear from you. Contact us at info@intechopen.com.
\\n\\n
All of our IntechOpen sponsors are in good company! The research in past IntechOpen books and chapters have been funded by:
\\n\\n
\\n\\t
European Commission
\\n\\t
Bill and Melinda Gates Foundation
\\n\\t
Wellcome Trust
\\n\\t
National Institute of Health (NIH)
\\n\\t
National Science Foundation (NSF)
\\n\\t
National Institute of Standards and Technology (NIST)
We are currently in the process of collecting sponsorship. If you have any ideas or would like to help sponsor this ambitious program, we’d love to hear from you. Contact us at info@intechopen.com.
\n\n
All of our IntechOpen sponsors are in good company! The research in past IntechOpen books and chapters have been funded by:
\n\n
\n\t
European Commission
\n\t
Bill and Melinda Gates Foundation
\n\t
Wellcome Trust
\n\t
National Institute of Health (NIH)
\n\t
National Science Foundation (NSF)
\n\t
National Institute of Standards and Technology (NIST)
\n\t
Research Councils United Kingdom (RCUK)
\n\t
Foundation for Science and Technology (FCT)
\n\t
Chinese Academy of Sciences
\n\t
Natural Science Foundation of China (NSFC)
\n\t
German Research Foundation (DFG)
\n\t
Max Planck Institute
\n\t
Austrian Science Fund (FWF)
\n\t
Australian Research Council (ARC)
\n
\n'}]},successStories:{items:[]},authorsAndEditors:{filterParams:{sort:"featured,name"},profiles:[{id:"6700",title:"Dr.",name:"Abbass A.",middleName:null,surname:"Hashim",slug:"abbass-a.-hashim",fullName:"Abbass A. Hashim",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/6700/images/1864_n.jpg",biography:"Currently I am carrying out research in several areas of interest, mainly covering work on chemical and bio-sensors, semiconductor thin film device fabrication and characterisation.\nAt the moment I have very strong interest in radiation environmental pollution and bacteriology treatment. The teams of researchers are working very hard to bring novel results in this field. I am also a member of the team in charge for the supervision of Ph.D. students in the fields of development of silicon based planar waveguide sensor devices, study of inelastic electron tunnelling in planar tunnelling nanostructures for sensing applications and development of organotellurium(IV) compounds for semiconductor applications. I am a specialist in data analysis techniques and nanosurface structure. I have served as the editor for many books, been a member of the editorial board in science journals, have published many papers and hold many patents.",institutionString:null,institution:{name:"Sheffield Hallam University",country:{name:"United Kingdom"}}},{id:"54525",title:"Prof.",name:"Abdul Latif",middleName:null,surname:"Ahmad",slug:"abdul-latif-ahmad",fullName:"Abdul Latif Ahmad",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:null},{id:"20567",title:"Prof.",name:"Ado",middleName:null,surname:"Jorio",slug:"ado-jorio",fullName:"Ado Jorio",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"Universidade Federal de Minas Gerais",country:{name:"Brazil"}}},{id:"47940",title:"Dr.",name:"Alberto",middleName:null,surname:"Mantovani",slug:"alberto-mantovani",fullName:"Alberto Mantovani",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:null},{id:"12392",title:"Mr.",name:"Alex",middleName:null,surname:"Lazinica",slug:"alex-lazinica",fullName:"Alex Lazinica",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/12392/images/7282_n.png",biography:"Alex Lazinica is the founder and CEO of IntechOpen. After obtaining a Master's degree in Mechanical Engineering, he continued his PhD studies in Robotics at the Vienna University of Technology. Here he worked as a robotic researcher with the university's Intelligent Manufacturing Systems Group as well as a guest researcher at various European universities, including the Swiss Federal Institute of Technology Lausanne (EPFL). During this time he published more than 20 scientific papers, gave presentations, served as a reviewer for major robotic journals and conferences and most importantly he co-founded and built the International Journal of Advanced Robotic Systems- world's first Open Access journal in the field of robotics. Starting this journal was a pivotal point in his career, since it was a pathway to founding IntechOpen - Open Access publisher focused on addressing academic researchers needs. Alex is a personification of IntechOpen key values being trusted, open and entrepreneurial. Today his focus is on defining the growth and development strategy for the company.",institutionString:null,institution:{name:"TU Wien",country:{name:"Austria"}}},{id:"19816",title:"Prof.",name:"Alexander",middleName:null,surname:"Kokorin",slug:"alexander-kokorin",fullName:"Alexander Kokorin",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/19816/images/1607_n.jpg",biography:"Alexander I. Kokorin: born: 1947, Moscow; DSc., PhD; Principal Research Fellow (Research Professor) of Department of Kinetics and Catalysis, N. Semenov Institute of Chemical Physics, Russian Academy of Sciences, Moscow.\r\nArea of research interests: physical chemistry of complex-organized molecular and nanosized systems, including polymer-metal complexes; the surface of doped oxide semiconductors. He is an expert in structural, absorptive, catalytic and photocatalytic properties, in structural organization and dynamic features of ionic liquids, in magnetic interactions between paramagnetic centers. The author or co-author of 3 books, over 200 articles and reviews in scientific journals and books. He is an actual member of the International EPR/ESR Society, European Society on Quantum Solar Energy Conversion, Moscow House of Scientists, of the Board of Moscow Physical Society.",institutionString:null,institution:{name:"Semenov Institute of Chemical Physics",country:{name:"Russia"}}},{id:"62389",title:"PhD.",name:"Ali Demir",middleName:null,surname:"Sezer",slug:"ali-demir-sezer",fullName:"Ali Demir Sezer",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/62389/images/3413_n.jpg",biography:"Dr. Ali Demir Sezer has a Ph.D. from Pharmaceutical Biotechnology at the Faculty of Pharmacy, University of Marmara (Turkey). He is the member of many Pharmaceutical Associations and acts as a reviewer of scientific journals and European projects under different research areas such as: drug delivery systems, nanotechnology and pharmaceutical biotechnology. Dr. Sezer is the author of many scientific publications in peer-reviewed journals and poster communications. Focus of his research activity is drug delivery, physico-chemical characterization and biological evaluation of biopolymers micro and nanoparticles as modified drug delivery system, and colloidal drug carriers (liposomes, nanoparticles etc.).",institutionString:null,institution:{name:"Marmara University",country:{name:"Turkey"}}},{id:"61051",title:"Prof.",name:"Andrea",middleName:null,surname:"Natale",slug:"andrea-natale",fullName:"Andrea Natale",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:null},{id:"100762",title:"Prof.",name:"Andrea",middleName:null,surname:"Natale",slug:"andrea-natale",fullName:"Andrea Natale",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"St David's Medical Center",country:{name:"United States of America"}}},{id:"107416",title:"Dr.",name:"Andrea",middleName:null,surname:"Natale",slug:"andrea-natale",fullName:"Andrea Natale",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"Texas Cardiac Arrhythmia",country:{name:"United States of America"}}},{id:"64434",title:"Dr.",name:"Angkoon",middleName:null,surname:"Phinyomark",slug:"angkoon-phinyomark",fullName:"Angkoon Phinyomark",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/64434/images/2619_n.jpg",biography:"My name is Angkoon Phinyomark. I received a B.Eng. degree in Computer Engineering with First Class Honors in 2008 from Prince of Songkla University, Songkhla, Thailand, where I received a Ph.D. degree in Electrical Engineering. My research interests are primarily in the area of biomedical signal processing and classification notably EMG (electromyography signal), EOG (electrooculography signal), and EEG (electroencephalography signal), image analysis notably breast cancer analysis and optical coherence tomography, and rehabilitation engineering. I became a student member of IEEE in 2008. During October 2011-March 2012, I had worked at School of Computer Science and Electronic Engineering, University of Essex, Colchester, Essex, United Kingdom. In addition, during a B.Eng. I had been a visiting research student at Faculty of Computer Science, University of Murcia, Murcia, Spain for three months.\n\nI have published over 40 papers during 5 years in refereed journals, books, and conference proceedings in the areas of electro-physiological signals processing and classification, notably EMG and EOG signals, fractal analysis, wavelet analysis, texture analysis, feature extraction and machine learning algorithms, and assistive and rehabilitative devices. I have several computer programming language certificates, i.e. Sun Certified Programmer for the Java 2 Platform 1.4 (SCJP), Microsoft Certified Professional Developer, Web Developer (MCPD), Microsoft Certified Technology Specialist, .NET Framework 2.0 Web (MCTS). I am a Reviewer for several refereed journals and international conferences, such as IEEE Transactions on Biomedical Engineering, IEEE Transactions on Industrial Electronics, Optic Letters, Measurement Science Review, and also a member of the International Advisory Committee for 2012 IEEE Business Engineering and Industrial Applications and 2012 IEEE Symposium on Business, Engineering and Industrial Applications.",institutionString:null,institution:{name:"Joseph Fourier University",country:{name:"France"}}},{id:"55578",title:"Dr.",name:"Antonio",middleName:null,surname:"Jurado-Navas",slug:"antonio-jurado-navas",fullName:"Antonio Jurado-Navas",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/55578/images/4574_n.png",biography:"Antonio Jurado-Navas received the M.S. degree (2002) and the Ph.D. degree (2009) in Telecommunication Engineering, both from the University of Málaga (Spain). He first worked as a consultant at Vodafone-Spain. From 2004 to 2011, he was a Research Assistant with the Communications Engineering Department at the University of Málaga. In 2011, he became an Assistant Professor in the same department. From 2012 to 2015, he was with Ericsson Spain, where he was working on geo-location\ntools for third generation mobile networks. Since 2015, he is a Marie-Curie fellow at the Denmark Technical University. His current research interests include the areas of mobile communication systems and channel modeling in addition to atmospheric optical communications, adaptive optics and statistics",institutionString:null,institution:{name:"University of Malaga",country:{name:"Spain"}}}],filtersByRegion:[{group:"region",caption:"North America",value:1,count:5775},{group:"region",caption:"Middle and South America",value:2,count:5239},{group:"region",caption:"Africa",value:3,count:1721},{group:"region",caption:"Asia",value:4,count:10411},{group:"region",caption:"Australia and Oceania",value:5,count:897},{group:"region",caption:"Europe",value:6,count:15810}],offset:12,limit:12,total:118378},chapterEmbeded:{data:{}},editorApplication:{success:null,errors:{}},ofsBooks:{filterParams:{sort:"dateendthirdsteppublish",topicid:"11"},books:[],filtersByTopic:[{group:"topic",caption:"Agricultural and Biological Sciences",value:5,count:18},{group:"topic",caption:"Biochemistry, Genetics and Molecular Biology",value:6,count:5},{group:"topic",caption:"Business, Management and Economics",value:7,count:2},{group:"topic",caption:"Chemistry",value:8,count:8},{group:"topic",caption:"Computer and Information Science",value:9,count:6},{group:"topic",caption:"Earth and Planetary Sciences",value:10,count:7},{group:"topic",caption:"Engineering",value:11,count:20},{group:"topic",caption:"Environmental Sciences",value:12,count:2},{group:"topic",caption:"Immunology and Microbiology",value:13,count:4},{group:"topic",caption:"Materials Science",value:14,count:5},{group:"topic",caption:"Mathematics",value:15,count:1},{group:"topic",caption:"Medicine",value:16,count:25},{group:"topic",caption:"Neuroscience",value:18,count:2},{group:"topic",caption:"Pharmacology, Toxicology and Pharmaceutical Science",value:19,count:3},{group:"topic",caption:"Physics",value:20,count:3},{group:"topic",caption:"Psychology",value:21,count:4},{group:"topic",caption:"Robotics",value:22,count:1},{group:"topic",caption:"Social Sciences",value:23,count:3},{group:"topic",caption:"Technology",value:24,count:1},{group:"topic",caption:"Veterinary Medicine and Science",value:25,count:1}],offset:0,limit:12,total:null},popularBooks:{featuredBooks:[{type:"book",id:"9521",title:"Antimicrobial Resistance",subtitle:"A One Health Perspective",isOpenForSubmission:!1,hash:"30949e78832e1afba5606634b52056ab",slug:"antimicrobial-resistance-a-one-health-perspective",bookSignature:"Mihai Mareș, Swee Hua Erin Lim, Kok-Song Lai and Romeo-Teodor Cristina",coverURL:"https://cdn.intechopen.com/books/images_new/9521.jpg",editors:[{id:"88785",title:"Prof.",name:"Mihai",middleName:null,surname:"Mares",slug:"mihai-mares",fullName:"Mihai Mares"}],equalEditorOne:{id:"190224",title:"Dr.",name:"Swee Hua Erin",middleName:null,surname:"Lim",slug:"swee-hua-erin-lim",fullName:"Swee Hua Erin Lim",profilePictureURL:"https://mts.intechopen.com/storage/users/190224/images/system/190224.png",biography:"Dr. Erin Lim is presently working as an Assistant Professor in the Division of Health Sciences, Abu Dhabi Women\\'s College, Higher Colleges of Technology in Abu Dhabi, United Arab Emirates and is affiliated as an Associate Professor to Perdana University-Royal College of Surgeons in Ireland, Selangor, Malaysia. She obtained her Ph.D. from Universiti Putra Malaysia in 2010 with a National Science Fellowship awarded from the Ministry of Science, Technology and Innovation Malaysia and has been actively involved in research ever since. Her main research interests include analysis of carriage and transmission of multidrug resistant bacteria in non-conventional settings, besides an interest in natural products for antimicrobial testing. She is heavily involved in the elucidation of mechanisms of reversal of resistance in bacteria in addition to investigating the immunological analyses of diseases, development of vaccination and treatment models in animals. She hopes her work will support the discovery of therapeutics in the clinical setting and assist in the combat against the burden of antibiotic resistance.",institutionString:"Abu Dhabi Women’s College",position:null,outsideEditionCount:0,totalCites:0,totalAuthoredChapters:"3",totalChapterViews:"0",totalEditedBooks:"0",institution:{name:"Perdana University",institutionURL:null,country:{name:"Malaysia"}}},equalEditorTwo:{id:"221544",title:"Dr.",name:"Kok-Song",middleName:null,surname:"Lai",slug:"kok-song-lai",fullName:"Kok-Song Lai",profilePictureURL:"https://mts.intechopen.com/storage/users/221544/images/system/221544.jpeg",biography:"Dr. Lai Kok Song is an Assistant Professor in the Division of Health Sciences, Abu Dhabi Women\\'s College, Higher Colleges of Technology in Abu Dhabi, United Arab Emirates. He obtained his Ph.D. in Biological Sciences from Nara Institute of Science and Technology, Japan in 2012. Prior to his academic appointment, Dr. Lai worked as a Senior Scientist at the Ministry of Science, Technology and Innovation, Malaysia. His current research areas include antimicrobial resistance and plant-pathogen interaction. His particular interest lies in the study of the antimicrobial mechanism via membrane disruption of essential oils against multi-drug resistance bacteria through various biochemical, molecular and proteomic approaches. Ultimately, he hopes to uncover and determine novel biomarkers related to antibiotic resistance that can be developed into new therapeutic strategies.",institutionString:"Higher Colleges of Technology",position:null,outsideEditionCount:0,totalCites:0,totalAuthoredChapters:"8",totalChapterViews:"0",totalEditedBooks:"0",institution:{name:"Higher Colleges of Technology",institutionURL:null,country:{name:"United Arab Emirates"}}},equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10020",title:"Operations Management",subtitle:"Emerging Trend in the Digital Era",isOpenForSubmission:!1,hash:"526f0dbdc7e4d85b82ce8383ab894b4c",slug:"operations-management-emerging-trend-in-the-digital-era",bookSignature:"Antonella Petrillo, Fabio De Felice, Germano Lambert-Torres and Erik Bonaldi",coverURL:"https://cdn.intechopen.com/books/images_new/10020.jpg",editors:[{id:"181603",title:"Dr.",name:"Antonella",middleName:null,surname:"Petrillo",slug:"antonella-petrillo",fullName:"Antonella Petrillo"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9560",title:"Creativity",subtitle:"A Force to Innovation",isOpenForSubmission:!1,hash:"58f740bc17807d5d88d647c525857b11",slug:"creativity-a-force-to-innovation",bookSignature:"Pooja Jain",coverURL:"https://cdn.intechopen.com/books/images_new/9560.jpg",editors:[{id:"316765",title:"Dr.",name:"Pooja",middleName:null,surname:"Jain",slug:"pooja-jain",fullName:"Pooja Jain"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10192",title:"Background and Management of Muscular Atrophy",subtitle:null,isOpenForSubmission:!1,hash:"eca24028d89912b5efea56e179dff089",slug:"background-and-management-of-muscular-atrophy",bookSignature:"Julianna Cseri",coverURL:"https://cdn.intechopen.com/books/images_new/10192.jpg",editors:[{id:"135579",title:"Dr.",name:"Julianna",middleName:null,surname:"Cseri",slug:"julianna-cseri",fullName:"Julianna Cseri"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9243",title:"Coastal Environments",subtitle:null,isOpenForSubmission:!1,hash:"8e05e5f631e935eef366980f2e28295d",slug:"coastal-environments",bookSignature:"Yuanzhi Zhang and X. San Liang",coverURL:"https://cdn.intechopen.com/books/images_new/9243.jpg",editors:[{id:"77597",title:"Prof.",name:"Yuanzhi",middleName:null,surname:"Zhang",slug:"yuanzhi-zhang",fullName:"Yuanzhi Zhang"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9385",title:"Renewable Energy",subtitle:"Technologies and Applications",isOpenForSubmission:!1,hash:"a6b446d19166f17f313008e6c056f3d8",slug:"renewable-energy-technologies-and-applications",bookSignature:"Tolga Taner, Archana Tiwari and Taha Selim Ustun",coverURL:"https://cdn.intechopen.com/books/images_new/9385.jpg",editors:[{id:"197240",title:"Associate Prof.",name:"Tolga",middleName:null,surname:"Taner",slug:"tolga-taner",fullName:"Tolga Taner"}],equalEditorOne:{id:"186791",title:"Dr.",name:"Archana",middleName:null,surname:"Tiwari",slug:"archana-tiwari",fullName:"Archana Tiwari",profilePictureURL:"https://mts.intechopen.com/storage/users/186791/images/system/186791.jpg",biography:"Dr. Archana Tiwari is Associate Professor at Amity University, India. Her research interests include renewable sources of energy from microalgae and further utilizing the residual biomass for the generation of value-added products, bioremediation through microalgae and microbial consortium, antioxidative enzymes and stress, and nutraceuticals from microalgae. She has been working on algal biotechnology for the last two decades. She has published her research in many international journals and has authored many books and chapters with renowned publishing houses. She has also delivered talks as an invited speaker at many national and international conferences. Dr. Tiwari is the recipient of several awards including Researcher of the Year and Distinguished Scientist.",institutionString:"Amity University",position:null,outsideEditionCount:0,totalCites:0,totalAuthoredChapters:"3",totalChapterViews:"0",totalEditedBooks:"1",institution:{name:"Amity University",institutionURL:null,country:{name:"India"}}},equalEditorTwo:{id:"197609",title:"Prof.",name:"Taha Selim",middleName:null,surname:"Ustun",slug:"taha-selim-ustun",fullName:"Taha Selim Ustun",profilePictureURL:"https://mts.intechopen.com/storage/users/197609/images/system/197609.jpeg",biography:"Dr. Taha Selim Ustun received a Ph.D. in Electrical Engineering from Victoria University, Melbourne, Australia. He is a researcher with the Fukushima Renewable Energy Institute, AIST (FREA), where he leads the Smart Grid Cybersecurity Laboratory. Prior to that, he was a faculty member with the School of Electrical and Computer Engineering, Carnegie Mellon University, Pittsburgh, PA, USA. His current research interests include power systems protection, communication in power networks, distributed generation, microgrids, electric vehicle integration, and cybersecurity in smart grids. He serves on the editorial boards of IEEE Access, IEEE Transactions on Industrial Informatics, Energies, Electronics, Electricity, World Electric Vehicle and Information journals. Dr. Ustun is a member of the IEEE 2004 and 2800, IEC Renewable Energy Management WG 8, and IEC TC 57 WG17. He has been invited to run specialist courses in Africa, India, and China. He has delivered talks for the Qatar Foundation, the World Energy Council, the Waterloo Global Science Initiative, and the European Union Energy Initiative (EUEI). His research has attracted funding from prestigious programs in Japan, Australia, the European Union, and North America.",institutionString:"Fukushima Renewable Energy Institute, AIST (FREA)",position:null,outsideEditionCount:0,totalCites:0,totalAuthoredChapters:"1",totalChapterViews:"0",totalEditedBooks:"0",institution:{name:"National Institute of Advanced Industrial Science and Technology",institutionURL:null,country:{name:"Japan"}}},equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"8985",title:"Natural Resources Management and Biological Sciences",subtitle:null,isOpenForSubmission:!1,hash:"5c2e219a6c021a40b5a20c041dea88c4",slug:"natural-resources-management-and-biological-sciences",bookSignature:"Edward R. Rhodes and Humood Naser",coverURL:"https://cdn.intechopen.com/books/images_new/8985.jpg",editors:[{id:"280886",title:"Prof.",name:"Edward R",middleName:null,surname:"Rhodes",slug:"edward-r-rhodes",fullName:"Edward R Rhodes"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10065",title:"Wavelet Theory",subtitle:null,isOpenForSubmission:!1,hash:"d8868e332169597ba2182d9b004d60de",slug:"wavelet-theory",bookSignature:"Somayeh Mohammady",coverURL:"https://cdn.intechopen.com/books/images_new/10065.jpg",editors:[{id:"109280",title:"Dr.",name:"Somayeh",middleName:null,surname:"Mohammady",slug:"somayeh-mohammady",fullName:"Somayeh Mohammady"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9644",title:"Glaciers and the Polar Environment",subtitle:null,isOpenForSubmission:!1,hash:"e8cfdc161794e3753ced54e6ff30873b",slug:"glaciers-and-the-polar-environment",bookSignature:"Masaki Kanao, Danilo Godone and Niccolò Dematteis",coverURL:"https://cdn.intechopen.com/books/images_new/9644.jpg",editors:[{id:"51959",title:"Dr.",name:"Masaki",middleName:null,surname:"Kanao",slug:"masaki-kanao",fullName:"Masaki Kanao"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9550",title:"Entrepreneurship",subtitle:"Contemporary Issues",isOpenForSubmission:!1,hash:"9b4ac1ee5b743abf6f88495452b1e5e7",slug:"entrepreneurship-contemporary-issues",bookSignature:"Mladen Turuk",coverURL:"https://cdn.intechopen.com/books/images_new/9550.jpg",editors:[{id:"319755",title:"Prof.",name:"Mladen",middleName:null,surname:"Turuk",slug:"mladen-turuk",fullName:"Mladen Turuk"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9027",title:"Human Blood Group Systems and Haemoglobinopathies",subtitle:null,isOpenForSubmission:!1,hash:"d00d8e40b11cfb2547d1122866531c7e",slug:"human-blood-group-systems-and-haemoglobinopathies",bookSignature:"Osaro Erhabor and Anjana Munshi",coverURL:"https://cdn.intechopen.com/books/images_new/9027.jpg",editors:[{id:"35140",title:null,name:"Osaro",middleName:null,surname:"Erhabor",slug:"osaro-erhabor",fullName:"Osaro Erhabor"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"8558",title:"Aerodynamics",subtitle:null,isOpenForSubmission:!1,hash:"db7263fc198dfb539073ba0260a7f1aa",slug:"aerodynamics",bookSignature:"Mofid Gorji-Bandpy and Aly-Mousaad Aly",coverURL:"https://cdn.intechopen.com/books/images_new/8558.jpg",editors:[{id:"35542",title:"Prof.",name:"Mofid",middleName:null,surname:"Gorji-Bandpy",slug:"mofid-gorji-bandpy",fullName:"Mofid Gorji-Bandpy"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}}],offset:12,limit:12,total:5249},hotBookTopics:{hotBooks:[],offset:0,limit:12,total:null},publish:{},publishingProposal:{success:null,errors:{}},books:{featuredBooks:[{type:"book",id:"9521",title:"Antimicrobial Resistance",subtitle:"A One Health Perspective",isOpenForSubmission:!1,hash:"30949e78832e1afba5606634b52056ab",slug:"antimicrobial-resistance-a-one-health-perspective",bookSignature:"Mihai Mareș, Swee Hua Erin Lim, Kok-Song Lai and Romeo-Teodor Cristina",coverURL:"https://cdn.intechopen.com/books/images_new/9521.jpg",editors:[{id:"88785",title:"Prof.",name:"Mihai",middleName:null,surname:"Mares",slug:"mihai-mares",fullName:"Mihai Mares"}],equalEditorOne:{id:"190224",title:"Dr.",name:"Swee Hua Erin",middleName:null,surname:"Lim",slug:"swee-hua-erin-lim",fullName:"Swee Hua Erin Lim",profilePictureURL:"https://mts.intechopen.com/storage/users/190224/images/system/190224.png",biography:"Dr. Erin Lim is presently working as an Assistant Professor in the Division of Health Sciences, Abu Dhabi Women\\'s College, Higher Colleges of Technology in Abu Dhabi, United Arab Emirates and is affiliated as an Associate Professor to Perdana University-Royal College of Surgeons in Ireland, Selangor, Malaysia. She obtained her Ph.D. from Universiti Putra Malaysia in 2010 with a National Science Fellowship awarded from the Ministry of Science, Technology and Innovation Malaysia and has been actively involved in research ever since. Her main research interests include analysis of carriage and transmission of multidrug resistant bacteria in non-conventional settings, besides an interest in natural products for antimicrobial testing. She is heavily involved in the elucidation of mechanisms of reversal of resistance in bacteria in addition to investigating the immunological analyses of diseases, development of vaccination and treatment models in animals. She hopes her work will support the discovery of therapeutics in the clinical setting and assist in the combat against the burden of antibiotic resistance.",institutionString:"Abu Dhabi Women’s College",position:null,outsideEditionCount:0,totalCites:0,totalAuthoredChapters:"3",totalChapterViews:"0",totalEditedBooks:"0",institution:{name:"Perdana University",institutionURL:null,country:{name:"Malaysia"}}},equalEditorTwo:{id:"221544",title:"Dr.",name:"Kok-Song",middleName:null,surname:"Lai",slug:"kok-song-lai",fullName:"Kok-Song Lai",profilePictureURL:"https://mts.intechopen.com/storage/users/221544/images/system/221544.jpeg",biography:"Dr. Lai Kok Song is an Assistant Professor in the Division of Health Sciences, Abu Dhabi Women\\'s College, Higher Colleges of Technology in Abu Dhabi, United Arab Emirates. He obtained his Ph.D. in Biological Sciences from Nara Institute of Science and Technology, Japan in 2012. Prior to his academic appointment, Dr. Lai worked as a Senior Scientist at the Ministry of Science, Technology and Innovation, Malaysia. His current research areas include antimicrobial resistance and plant-pathogen interaction. His particular interest lies in the study of the antimicrobial mechanism via membrane disruption of essential oils against multi-drug resistance bacteria through various biochemical, molecular and proteomic approaches. Ultimately, he hopes to uncover and determine novel biomarkers related to antibiotic resistance that can be developed into new therapeutic strategies.",institutionString:"Higher Colleges of Technology",position:null,outsideEditionCount:0,totalCites:0,totalAuthoredChapters:"8",totalChapterViews:"0",totalEditedBooks:"0",institution:{name:"Higher Colleges of Technology",institutionURL:null,country:{name:"United Arab Emirates"}}},equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10020",title:"Operations Management",subtitle:"Emerging Trend in the Digital Era",isOpenForSubmission:!1,hash:"526f0dbdc7e4d85b82ce8383ab894b4c",slug:"operations-management-emerging-trend-in-the-digital-era",bookSignature:"Antonella Petrillo, Fabio De Felice, Germano Lambert-Torres and Erik Bonaldi",coverURL:"https://cdn.intechopen.com/books/images_new/10020.jpg",editors:[{id:"181603",title:"Dr.",name:"Antonella",middleName:null,surname:"Petrillo",slug:"antonella-petrillo",fullName:"Antonella Petrillo"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9560",title:"Creativity",subtitle:"A Force to Innovation",isOpenForSubmission:!1,hash:"58f740bc17807d5d88d647c525857b11",slug:"creativity-a-force-to-innovation",bookSignature:"Pooja Jain",coverURL:"https://cdn.intechopen.com/books/images_new/9560.jpg",editors:[{id:"316765",title:"Dr.",name:"Pooja",middleName:null,surname:"Jain",slug:"pooja-jain",fullName:"Pooja Jain"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10192",title:"Background and Management of Muscular Atrophy",subtitle:null,isOpenForSubmission:!1,hash:"eca24028d89912b5efea56e179dff089",slug:"background-and-management-of-muscular-atrophy",bookSignature:"Julianna Cseri",coverURL:"https://cdn.intechopen.com/books/images_new/10192.jpg",editors:[{id:"135579",title:"Dr.",name:"Julianna",middleName:null,surname:"Cseri",slug:"julianna-cseri",fullName:"Julianna Cseri"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9243",title:"Coastal Environments",subtitle:null,isOpenForSubmission:!1,hash:"8e05e5f631e935eef366980f2e28295d",slug:"coastal-environments",bookSignature:"Yuanzhi Zhang and X. San Liang",coverURL:"https://cdn.intechopen.com/books/images_new/9243.jpg",editors:[{id:"77597",title:"Prof.",name:"Yuanzhi",middleName:null,surname:"Zhang",slug:"yuanzhi-zhang",fullName:"Yuanzhi Zhang"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9385",title:"Renewable Energy",subtitle:"Technologies and Applications",isOpenForSubmission:!1,hash:"a6b446d19166f17f313008e6c056f3d8",slug:"renewable-energy-technologies-and-applications",bookSignature:"Tolga Taner, Archana Tiwari and Taha Selim Ustun",coverURL:"https://cdn.intechopen.com/books/images_new/9385.jpg",editors:[{id:"197240",title:"Associate Prof.",name:"Tolga",middleName:null,surname:"Taner",slug:"tolga-taner",fullName:"Tolga Taner"}],equalEditorOne:{id:"186791",title:"Dr.",name:"Archana",middleName:null,surname:"Tiwari",slug:"archana-tiwari",fullName:"Archana Tiwari",profilePictureURL:"https://mts.intechopen.com/storage/users/186791/images/system/186791.jpg",biography:"Dr. Archana Tiwari is Associate Professor at Amity University, India. Her research interests include renewable sources of energy from microalgae and further utilizing the residual biomass for the generation of value-added products, bioremediation through microalgae and microbial consortium, antioxidative enzymes and stress, and nutraceuticals from microalgae. She has been working on algal biotechnology for the last two decades. She has published her research in many international journals and has authored many books and chapters with renowned publishing houses. She has also delivered talks as an invited speaker at many national and international conferences. Dr. Tiwari is the recipient of several awards including Researcher of the Year and Distinguished Scientist.",institutionString:"Amity University",position:null,outsideEditionCount:0,totalCites:0,totalAuthoredChapters:"3",totalChapterViews:"0",totalEditedBooks:"1",institution:{name:"Amity University",institutionURL:null,country:{name:"India"}}},equalEditorTwo:{id:"197609",title:"Prof.",name:"Taha Selim",middleName:null,surname:"Ustun",slug:"taha-selim-ustun",fullName:"Taha Selim Ustun",profilePictureURL:"https://mts.intechopen.com/storage/users/197609/images/system/197609.jpeg",biography:"Dr. Taha Selim Ustun received a Ph.D. in Electrical Engineering from Victoria University, Melbourne, Australia. He is a researcher with the Fukushima Renewable Energy Institute, AIST (FREA), where he leads the Smart Grid Cybersecurity Laboratory. Prior to that, he was a faculty member with the School of Electrical and Computer Engineering, Carnegie Mellon University, Pittsburgh, PA, USA. His current research interests include power systems protection, communication in power networks, distributed generation, microgrids, electric vehicle integration, and cybersecurity in smart grids. He serves on the editorial boards of IEEE Access, IEEE Transactions on Industrial Informatics, Energies, Electronics, Electricity, World Electric Vehicle and Information journals. Dr. Ustun is a member of the IEEE 2004 and 2800, IEC Renewable Energy Management WG 8, and IEC TC 57 WG17. He has been invited to run specialist courses in Africa, India, and China. He has delivered talks for the Qatar Foundation, the World Energy Council, the Waterloo Global Science Initiative, and the European Union Energy Initiative (EUEI). His research has attracted funding from prestigious programs in Japan, Australia, the European Union, and North America.",institutionString:"Fukushima Renewable Energy Institute, AIST (FREA)",position:null,outsideEditionCount:0,totalCites:0,totalAuthoredChapters:"1",totalChapterViews:"0",totalEditedBooks:"0",institution:{name:"National Institute of Advanced Industrial Science and Technology",institutionURL:null,country:{name:"Japan"}}},equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"8985",title:"Natural Resources Management and Biological Sciences",subtitle:null,isOpenForSubmission:!1,hash:"5c2e219a6c021a40b5a20c041dea88c4",slug:"natural-resources-management-and-biological-sciences",bookSignature:"Edward R. Rhodes and Humood Naser",coverURL:"https://cdn.intechopen.com/books/images_new/8985.jpg",editors:[{id:"280886",title:"Prof.",name:"Edward R",middleName:null,surname:"Rhodes",slug:"edward-r-rhodes",fullName:"Edward R Rhodes"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10065",title:"Wavelet Theory",subtitle:null,isOpenForSubmission:!1,hash:"d8868e332169597ba2182d9b004d60de",slug:"wavelet-theory",bookSignature:"Somayeh Mohammady",coverURL:"https://cdn.intechopen.com/books/images_new/10065.jpg",editors:[{id:"109280",title:"Dr.",name:"Somayeh",middleName:null,surname:"Mohammady",slug:"somayeh-mohammady",fullName:"Somayeh Mohammady"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9644",title:"Glaciers and the Polar Environment",subtitle:null,isOpenForSubmission:!1,hash:"e8cfdc161794e3753ced54e6ff30873b",slug:"glaciers-and-the-polar-environment",bookSignature:"Masaki Kanao, Danilo Godone and Niccolò Dematteis",coverURL:"https://cdn.intechopen.com/books/images_new/9644.jpg",editors:[{id:"51959",title:"Dr.",name:"Masaki",middleName:null,surname:"Kanao",slug:"masaki-kanao",fullName:"Masaki Kanao"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9550",title:"Entrepreneurship",subtitle:"Contemporary Issues",isOpenForSubmission:!1,hash:"9b4ac1ee5b743abf6f88495452b1e5e7",slug:"entrepreneurship-contemporary-issues",bookSignature:"Mladen Turuk",coverURL:"https://cdn.intechopen.com/books/images_new/9550.jpg",editors:[{id:"319755",title:"Prof.",name:"Mladen",middleName:null,surname:"Turuk",slug:"mladen-turuk",fullName:"Mladen Turuk"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}}],latestBooks:[{type:"book",id:"9243",title:"Coastal Environments",subtitle:null,isOpenForSubmission:!1,hash:"8e05e5f631e935eef366980f2e28295d",slug:"coastal-environments",bookSignature:"Yuanzhi Zhang and X. San Liang",coverURL:"https://cdn.intechopen.com/books/images_new/9243.jpg",editedByType:"Edited by",editors:[{id:"77597",title:"Prof.",name:"Yuanzhi",middleName:null,surname:"Zhang",slug:"yuanzhi-zhang",fullName:"Yuanzhi Zhang"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10020",title:"Operations Management",subtitle:"Emerging Trend in the Digital Era",isOpenForSubmission:!1,hash:"526f0dbdc7e4d85b82ce8383ab894b4c",slug:"operations-management-emerging-trend-in-the-digital-era",bookSignature:"Antonella Petrillo, Fabio De Felice, Germano Lambert-Torres and Erik Bonaldi",coverURL:"https://cdn.intechopen.com/books/images_new/10020.jpg",editedByType:"Edited by",editors:[{id:"181603",title:"Dr.",name:"Antonella",middleName:null,surname:"Petrillo",slug:"antonella-petrillo",fullName:"Antonella Petrillo"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"9521",title:"Antimicrobial Resistance",subtitle:"A One Health Perspective",isOpenForSubmission:!1,hash:"30949e78832e1afba5606634b52056ab",slug:"antimicrobial-resistance-a-one-health-perspective",bookSignature:"Mihai Mareș, Swee Hua Erin Lim, Kok-Song Lai and Romeo-Teodor Cristina",coverURL:"https://cdn.intechopen.com/books/images_new/9521.jpg",editedByType:"Edited by",editors:[{id:"88785",title:"Prof.",name:"Mihai",middleName:null,surname:"Mares",slug:"mihai-mares",fullName:"Mihai Mares"}],equalEditorOne:{id:"190224",title:"Dr.",name:"Swee Hua Erin",middleName:null,surname:"Lim",slug:"swee-hua-erin-lim",fullName:"Swee Hua Erin Lim",profilePictureURL:"https://mts.intechopen.com/storage/users/190224/images/system/190224.png",biography:"Dr. Erin Lim is presently working as an Assistant Professor in the Division of Health Sciences, Abu Dhabi Women\\'s College, Higher Colleges of Technology in Abu Dhabi, United Arab Emirates and is affiliated as an Associate Professor to Perdana University-Royal College of Surgeons in Ireland, Selangor, Malaysia. She obtained her Ph.D. from Universiti Putra Malaysia in 2010 with a National Science Fellowship awarded from the Ministry of Science, Technology and Innovation Malaysia and has been actively involved in research ever since. Her main research interests include analysis of carriage and transmission of multidrug resistant bacteria in non-conventional settings, besides an interest in natural products for antimicrobial testing. She is heavily involved in the elucidation of mechanisms of reversal of resistance in bacteria in addition to investigating the immunological analyses of diseases, development of vaccination and treatment models in animals. She hopes her work will support the discovery of therapeutics in the clinical setting and assist in the combat against the burden of antibiotic resistance.",institutionString:"Abu Dhabi Women’s College",position:null,outsideEditionCount:0,totalCites:0,totalAuthoredChapters:"3",totalChapterViews:"0",totalEditedBooks:"0",institution:{name:"Perdana University",institutionURL:null,country:{name:"Malaysia"}}},equalEditorTwo:{id:"221544",title:"Dr.",name:"Kok-Song",middleName:null,surname:"Lai",slug:"kok-song-lai",fullName:"Kok-Song Lai",profilePictureURL:"https://mts.intechopen.com/storage/users/221544/images/system/221544.jpeg",biography:"Dr. Lai Kok Song is an Assistant Professor in the Division of Health Sciences, Abu Dhabi Women\\'s College, Higher Colleges of Technology in Abu Dhabi, United Arab Emirates. He obtained his Ph.D. in Biological Sciences from Nara Institute of Science and Technology, Japan in 2012. Prior to his academic appointment, Dr. Lai worked as a Senior Scientist at the Ministry of Science, Technology and Innovation, Malaysia. His current research areas include antimicrobial resistance and plant-pathogen interaction. His particular interest lies in the study of the antimicrobial mechanism via membrane disruption of essential oils against multi-drug resistance bacteria through various biochemical, molecular and proteomic approaches. Ultimately, he hopes to uncover and determine novel biomarkers related to antibiotic resistance that can be developed into new therapeutic strategies.",institutionString:"Higher Colleges of Technology",position:null,outsideEditionCount:0,totalCites:0,totalAuthoredChapters:"8",totalChapterViews:"0",totalEditedBooks:"0",institution:{name:"Higher Colleges of Technology",institutionURL:null,country:{name:"United Arab Emirates"}}},equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"9560",title:"Creativity",subtitle:"A Force to Innovation",isOpenForSubmission:!1,hash:"58f740bc17807d5d88d647c525857b11",slug:"creativity-a-force-to-innovation",bookSignature:"Pooja Jain",coverURL:"https://cdn.intechopen.com/books/images_new/9560.jpg",editedByType:"Edited by",editors:[{id:"316765",title:"Dr.",name:"Pooja",middleName:null,surname:"Jain",slug:"pooja-jain",fullName:"Pooja Jain"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"9669",title:"Recent Advances in Rice Research",subtitle:null,isOpenForSubmission:!1,hash:"12b06cc73e89af1e104399321cc16a75",slug:"recent-advances-in-rice-research",bookSignature:"Mahmood-ur- Rahman Ansari",coverURL:"https://cdn.intechopen.com/books/images_new/9669.jpg",editedByType:"Edited by",editors:[{id:"185476",title:"Dr.",name:"Mahmood-Ur-",middleName:null,surname:"Rahman Ansari",slug:"mahmood-ur-rahman-ansari",fullName:"Mahmood-Ur- Rahman Ansari"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10192",title:"Background and Management of Muscular Atrophy",subtitle:null,isOpenForSubmission:!1,hash:"eca24028d89912b5efea56e179dff089",slug:"background-and-management-of-muscular-atrophy",bookSignature:"Julianna Cseri",coverURL:"https://cdn.intechopen.com/books/images_new/10192.jpg",editedByType:"Edited by",editors:[{id:"135579",title:"Dr.",name:"Julianna",middleName:null,surname:"Cseri",slug:"julianna-cseri",fullName:"Julianna Cseri"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"9550",title:"Entrepreneurship",subtitle:"Contemporary Issues",isOpenForSubmission:!1,hash:"9b4ac1ee5b743abf6f88495452b1e5e7",slug:"entrepreneurship-contemporary-issues",bookSignature:"Mladen Turuk",coverURL:"https://cdn.intechopen.com/books/images_new/9550.jpg",editedByType:"Edited by",editors:[{id:"319755",title:"Prof.",name:"Mladen",middleName:null,surname:"Turuk",slug:"mladen-turuk",fullName:"Mladen Turuk"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10065",title:"Wavelet Theory",subtitle:null,isOpenForSubmission:!1,hash:"d8868e332169597ba2182d9b004d60de",slug:"wavelet-theory",bookSignature:"Somayeh Mohammady",coverURL:"https://cdn.intechopen.com/books/images_new/10065.jpg",editedByType:"Edited by",editors:[{id:"109280",title:"Dr.",name:"Somayeh",middleName:null,surname:"Mohammady",slug:"somayeh-mohammady",fullName:"Somayeh Mohammady"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"9313",title:"Clay Science and Technology",subtitle:null,isOpenForSubmission:!1,hash:"6fa7e70396ff10620e032bb6cfa6fb72",slug:"clay-science-and-technology",bookSignature:"Gustavo Morari Do Nascimento",coverURL:"https://cdn.intechopen.com/books/images_new/9313.jpg",editedByType:"Edited by",editors:[{id:"7153",title:"Prof.",name:"Gustavo",middleName:null,surname:"Morari Do Nascimento",slug:"gustavo-morari-do-nascimento",fullName:"Gustavo Morari Do Nascimento"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"9888",title:"Nuclear Power Plants",subtitle:"The Processes from the Cradle to the Grave",isOpenForSubmission:!1,hash:"c2c8773e586f62155ab8221ebb72a849",slug:"nuclear-power-plants-the-processes-from-the-cradle-to-the-grave",bookSignature:"Nasser Awwad",coverURL:"https://cdn.intechopen.com/books/images_new/9888.jpg",editedByType:"Edited by",editors:[{id:"145209",title:"Prof.",name:"Nasser",middleName:"S",surname:"Awwad",slug:"nasser-awwad",fullName:"Nasser Awwad"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}}]},subject:{topic:{id:"1259",title:"Industrial Robot",slug:"psychology-artificial-intelligence-industrial-robot",parent:{title:"Artificial Intelligence",slug:"physical-sciences-engineering-and-technology-robotics-artificial-intelligence"},numberOfBooks:1,numberOfAuthorsAndEditors:1,numberOfWosCitations:48,numberOfCrossrefCitations:39,numberOfDimensionsCitations:60,videoUrl:null,fallbackUrl:null,description:null},booksByTopicFilter:{topicSlug:"psychology-artificial-intelligence-industrial-robot",sort:"-publishedDate",limit:12,offset:0},booksByTopicCollection:[{type:"book",id:"3687",title:"Advances in Service Robotics",subtitle:null,isOpenForSubmission:!1,hash:null,slug:"advances_in_service_robotics",bookSignature:"Ho Seok Ahn",coverURL:"https://cdn.intechopen.com/books/images_new/3687.jpg",editedByType:"Edited by",editors:[{id:"3106",title:"Dr.",name:"Ho Seok",middleName:null,surname:"Ahn",slug:"ho-seok-ahn",fullName:"Ho Seok Ahn"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}}],booksByTopicTotal:1,mostCitedChapters:[{id:"5424",doi:"10.5772/5950",title:"Urbano, an Interactive Mobile Tour-Guide Robot",slug:"urbano__an_interactive_mobile_tour-guide_robot",totalDownloads:3243,totalCrossrefCites:8,totalDimensionsCites:11,book:{slug:"advances_in_service_robotics",title:"Advances in Service Robotics",fullTitle:"Advances in Service Robotics"},signatures:"Diego Rodriguez-Losada, Fernando Matia, Ramon Galan, Miguel Hernando, Juan Manuel Montero and Juan Manuel Lucas",authors:null},{id:"5425",doi:"10.5772/5948",title:"Deployment of Wireless Sensor Network Using Mobile Robots to Construct an Intelligent Environment in a Multi-Robot Sensor Network",slug:"deployment_of_wireless_sensor_network_using_mobile_robots_to_construct_an_intelligent_environment_in",totalDownloads:3624,totalCrossrefCites:8,totalDimensionsCites:11,book:{slug:"advances_in_service_robotics",title:"Advances in Service Robotics",fullTitle:"Advances in Service Robotics"},signatures:"Tsuyoshi Suzuki, Kuniaki Kawabata, Yasushi Hada and Yoshito Tobe",authors:null},{id:"5422",doi:"10.5772/5951",title:"Development of Common Platform Technology for Next-Generation Robots",slug:"development_of_common_platform_technology_for_next-generation_robots",totalDownloads:2621,totalCrossrefCites:5,totalDimensionsCites:7,book:{slug:"advances_in_service_robotics",title:"Advances in Service Robotics",fullTitle:"Advances in Service Robotics"},signatures:"Tomomasa Sato, Nobuto Matsuhira and Eimei Oyama",authors:null}],mostDownloadedChaptersLast30Days:[{id:"5431",title:"Intelligent Space for Human Centered Robotics",slug:"intelligent_space_for_human_centered_robotics",totalDownloads:2690,totalCrossrefCites:0,totalDimensionsCites:4,book:{slug:"advances_in_service_robotics",title:"Advances in Service Robotics",fullTitle:"Advances in Service Robotics"},signatures:"Kazuyuki Morioka, Joo-Ho Lee and Hideki Hashimoto",authors:null},{id:"5414",title:"Intelligent Unmanned Store Service Robot "Part Timer"",slug:"intelligent_unmanned_store_service_robot_part_timer",totalDownloads:3297,totalCrossrefCites:0,totalDimensionsCites:2,book:{slug:"advances_in_service_robotics",title:"Advances in Service Robotics",fullTitle:"Advances in Service Robotics"},signatures:"Ho Seok Ahn, In-Kyu Sa, Young Min Baek and Jin Young Choi",authors:null},{id:"5426",title:"UML-Based Service Robot Software Development: A Case Study",slug:"uml-based_service_robot_software_development__a_case_study",totalDownloads:3297,totalCrossrefCites:3,totalDimensionsCites:6,book:{slug:"advances_in_service_robotics",title:"Advances in Service Robotics",fullTitle:"Advances in Service Robotics"},signatures:"Minseong Kim, Suntae Kim, Sooyong Park, Mun-Taek Choi, Munsang Kim and Hassan Gomaa",authors:null},{id:"5424",title:"Urbano, an Interactive Mobile Tour-Guide Robot",slug:"urbano__an_interactive_mobile_tour-guide_robot",totalDownloads:3244,totalCrossrefCites:8,totalDimensionsCites:11,book:{slug:"advances_in_service_robotics",title:"Advances in Service Robotics",fullTitle:"Advances in Service Robotics"},signatures:"Diego Rodriguez-Losada, Fernando Matia, Ramon Galan, Miguel Hernando, Juan Manuel Montero and Juan Manuel Lucas",authors:null},{id:"5421",title:"Modularity in Service Robotics",slug:"modularity_in_service_robotics",totalDownloads:2474,totalCrossrefCites:0,totalDimensionsCites:0,book:{slug:"advances_in_service_robotics",title:"Advances in Service Robotics",fullTitle:"Advances in Service Robotics"},signatures:"Sami Ylonen",authors:null},{id:"5423",title:"An ITER Relevant Robot for Remote Handling: On the Road to Operation on Tore Supra",slug:"an_iter_relevant_robot_for_remote_handling__on_the_road_to_operation_on_tore_supra",totalDownloads:3047,totalCrossrefCites:0,totalDimensionsCites:0,book:{slug:"advances_in_service_robotics",title:"Advances in Service Robotics",fullTitle:"Advances in Service Robotics"},signatures:"Keller Delphine, Friconneau Jean-Pierre and Perrot Yann",authors:null},{id:"5418",title:"Development of Intelligent Service Robotic System Based on Robot Technology Middleware",slug:"development_of_intelligent_service_robotic_system_based_on_robot_technology_middleware",totalDownloads:2553,totalCrossrefCites:0,totalDimensionsCites:0,book:{slug:"advances_in_service_robotics",title:"Advances in Service Robotics",fullTitle:"Advances in Service Robotics"},signatures:"Songmin Jia, Yoshiro Hada, Takayuki Ohnishi, Harunori Gakuhari and Kunikatsu Takase",authors:null},{id:"5430",title:"Universal Design with Robots Toward the Wide Use of Robots in Daily Life Environment",slug:"universal_design_with_robots_toward_the_wide_use_of_robots_in_daily_life_environment",totalDownloads:2604,totalCrossrefCites:3,totalDimensionsCites:3,book:{slug:"advances_in_service_robotics",title:"Advances in Service Robotics",fullTitle:"Advances in Service Robotics"},signatures:"Nobuto Matsuhira, Junko Hirokawa, Hideki Ogawa and Tatsuya Wada",authors:null},{id:"5425",title:"Deployment of Wireless Sensor Network Using Mobile Robots to Construct an Intelligent Environment in a Multi-Robot Sensor Network",slug:"deployment_of_wireless_sensor_network_using_mobile_robots_to_construct_an_intelligent_environment_in",totalDownloads:3625,totalCrossrefCites:8,totalDimensionsCites:11,book:{slug:"advances_in_service_robotics",title:"Advances in Service Robotics",fullTitle:"Advances in Service Robotics"},signatures:"Tsuyoshi Suzuki, Kuniaki Kawabata, Yasushi Hada and Yoshito Tobe",authors:null},{id:"5416",title:"Human - Robot Interfacing by the Aid of Cognition Based Interaction",slug:"human_robot_interfacing_by_the_aid_of_cognition_based_interaction",totalDownloads:2311,totalCrossrefCites:0,totalDimensionsCites:0,book:{slug:"advances_in_service_robotics",title:"Advances in Service Robotics",fullTitle:"Advances in Service Robotics"},signatures:"Aarne Halme",authors:null}],onlineFirstChaptersFilter:{topicSlug:"psychology-artificial-intelligence-industrial-robot",limit:3,offset:0},onlineFirstChaptersCollection:[],onlineFirstChaptersTotal:0},preDownload:{success:null,errors:{}},aboutIntechopen:{},privacyPolicy:{},peerReviewing:{},howOpenAccessPublishingWithIntechopenWorks:{},sponsorshipBooks:{sponsorshipBooks:[{type:"book",id:"10176",title:"Microgrids and Local Energy Systems",subtitle:null,isOpenForSubmission:!0,hash:"c32b4a5351a88f263074b0d0ca813a9c",slug:null,bookSignature:"Prof. Nick Jenkins",coverURL:"https://cdn.intechopen.com/books/images_new/10176.jpg",editedByType:null,editors:[{id:"55219",title:"Prof.",name:"Nick",middleName:null,surname:"Jenkins",slug:"nick-jenkins",fullName:"Nick Jenkins"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}}],offset:8,limit:8,total:1},route:{name:"book.detail",path:"/books/essentials-of-accident-and-emergency-medicine",hash:"",query:{},params:{book:"essentials-of-accident-and-emergency-medicine"},fullPath:"/books/essentials-of-accident-and-emergency-medicine",meta:{},from:{name:null,path:"/",hash:"",query:{},params:{},fullPath:"/",meta:{}}}},function(){var e;(e=document.currentScript||document.scripts[document.scripts.length-1]).parentNode.removeChild(e)}()