Some important in vivo studies showing the use of fumaric acid esters for the treatment of oxidative stress and inflammation.
\r\n\tThis book is intended to provide a series of peer reviewed chapters that the guest editor believe will aid in increasing the quality of the research focus across the growing field of grain and seeds compound functionality research. Overall, the objective of this project is to serve as a reference book and as an excellent resource for students, researchers, and scientists interested and working in different functional aspects of grain and seed compounds, and particularly for the scientific community to encourage it to continue publishing their research findings on grain and seed and to provide basis for new research, and the area of sustainable crop production.
\r\n\t
The salts of fumaric acid (known as fumarates) occur naturally in some plants (Fumaria officinalis) and mushrooms. Traditionally, aerial parts of Fumaria officinalis (common fumitory, drug fumitory or earth smoke) have been utilized for the treatment of various skin diseases [1]. Because of its utilization as an herbal remedy for skin ailments, German chemist W. Schweckendiek, who was suffering from psoriasis, developed an interest in and isolated fumaric acid esters (FAE) from the plant extract. Excited about the positive effects of the FAE mixture on his own psoriatic lesions, he began offering it also to other psoriasis patients. Schweckendiek later published his findings on the beneficial effects of FAE in psoriasis [2], effects that he believed to be attributed to the improvements of this fumarate therapy on dysregulation of the citric acid cycle, the potential underlying cause of psoriasis. Nonetheless, with advancements in the understanding of psoriasis, his hypothesis was found to be incorrect. However, his preliminary observations laid the foundation for the successful development of a drug to treat psoriasis and interestingly, multiple sclerosis.
\nIn 1994, some three decades following Schweckendiek’s initial report, a fumaric acid mixture composed in large (60%) of dimethyl fumarate (DMF) and ethyl hydrogen fumarates was authorized for the treatment of psoriasis in Germany under the brand name Fumaderm® [3]. In the clinical setting, Fumaderm® proved effective against moderate to severe forms of psoriasis. To date, it remains to be the most widely used oral compound for psoriasis therapy in Germany. However, Fumaderm® was not licensed and currently remains unlicensed for use in the UK and US [4]. Despite this, results establishing DMF to be the major active principle in the Fumaderm® led to numerous clinical and experimental studies worldwide on the immunomodulatory potential of Fumaderm® and DMF in other immune-mediated diseases [5, 6]. The extremely positive results that emanated from these studies led to DMF being tested clinically for the treatment of relapsing-remitting multiple sclerosis (RRMS). Like the original discovery of FAEs, the exploratory clinical trial of FAE for MS was performed in Germany [7]. In this trial, Fumaderm® was given to 10 patients with highly active RRMS; six patients completed the 70-week trial. Magnetic resonance imaging (MRI)-based results showed that Fumaderm® significantly reduced the number of gadolinium-enhanced lesions as well as lesion volumes without further worsening of any clinical parameters [7]. Although the overall safety profile of Fumaderm® was found to be favorable in this study, the associated unwanted gastrointestinal discomforts were a major concern. Although this initial study was a small, single-center, MRI-based and open-label clinical trial, it set the stage for a number of subsequent MS trials with DMF.
\nAfter Fumaderm® was licensed to be used in Germany, efforts to develop an improved formulation with better tolerability began. This culminated ultimately in the introduction of BG12 (brand name Tecfidera) a modified FAE formulation [8, 9, 10]. Indeed BG-12, comprised only of DMF made available in enteric-coated micro tablets, showed better gastrointestinal tolerability compared to Fumaderm® and following several clinical trials, this gastro-resistant, delayed-release formulation of DMF was ultimately approved for use in the United States, New Zealand and Australia for the treatment of relapsing forms and relapsing MS, respectively, and in the European Union, Switzerland and Canada for the treatment of RRMS [11]. A plethora of additional information exists on the use of DMF in the treatment of MS and psoriasis. For further reading on DMF and MS, please refer to the following referenced excellent reviews [12, 13, 14, 15, 16, 17].
\nDrug repurposing is a highly appreciated strategy in the pharmaceutical industry [18]. The fact that agents have been previously tested prior testing of in humans and therefore a wealth of detailed information is already available regarding pharmacology, formulation and safety profile is a huge advantage! Such new candidate therapies can often be fast-tracked for clinical trials and related approval by the U.S. Food and Drug Administration. There is a burgeoning literature on the use of FAE in the prevention and treatment of diseases, other than psoriasis and MS, in which oxidative stress and/or inflammation are prominent. The present review highlights critical information gleaned from these studies and exposes and provides perspectives on lacunae of potential importance.
\nDimethyl fumarate (PubChem CID: 637568), described as a “white crystalline compound with a fruit-like taste” [19], is a dimethyl ester of fumaric acid with the official chemical name of trans-1,2-ethylene carboxylic acid dimethyl ester [20]. Because of its rapid degradation by intestinal esterase, DMF does not cross the intestinal wall in significant amounts [21]. Thus, because of its short-lived activity, evidence of direct, sustained anti-inflammatory or antioxidant effects derived directly from DMF is limited [22]. Instead, monomethyl fumarate (MMF; PubChem CID: 21721168), the product of DMF metabolism by intestinal esterase, is said to be the main active metabolite [23]. This is confirmed by pharmacokinetic studies that demonstrate following oral DMF intake, serum concentrations of MMF peak within 2–2.5 h and its half-life is approximately 1 h [24]. Further, the ingestion of DMF along with a high fat/high-calorie diet was found to interfere with intestinal absorption, delaying the systemic peak of MMF significantly [16, 17]. Following doses of delayed-release DMF of up to 240 mg, the mean Cmax of MMF in healthy human subjects was 1.43 μg/ml with a corresponding MMF area under the curve of 2.41 μg h/ml. There was no evidence of accumulation after multiple doses (e.g. 240 mg delayed-release DMF three times daily for 2 days) as MMF concentrations fell below detectable limits at the end of day 1 and day 2 [24]. MMF is eliminated primarily through breathing; negligible amounts of intact MMF are excreted through urine or feces. Additionally, there is no evidence of cytochrome P450-dependent metabolism of the compound in the liver [25]. Because of the lack of cytochrome P 450 involvement, DMF has very limited drug–drug interactions. Congruent with the above, both DMF and MMF have been popularly used for various pre-clinical pharmacological studies aimed at the testing and development of new therapeutics for various indications. The intestinal metabolism of DMF and diroximel fumarate (DRF), two current clinical FAE formulations is shown in Figure 1.
\nMetabolism of fumaric acid esters. Clinical formulations of FAE are composed of dimethyl fumarate (DMF) or diroximel fumarate (DRF). Following oral administration, intestinal esterase metabolizes both DMF and DRF into the major bioactive ingredient MMF (monomethyl fumarate). Methanol, hydroxyethyl succinimide (HES) and RDC-8439 are also produced but only as minor metabolites (< 10%).
Despite the numerous in vitro and in vivo studies that have been conducted over the years, the mechanism of action of FAE is still not fully understood and novel aspects continue to emerge. The generic hypothesis to explain the benefits of FAE is that DMF/MMF interferes with the cellular redox system by inducing a strong antioxidant response. Indeed, the robust induction of Nrf2 (nuclear factor E2 (erythroid-derived 2)-related factor) by DMF/MMF has been well described (Figure 2). In cells, DMF/MMF leads to the nuclear translocation of Nrf2, a phenomenon that is known to in turn, enhance the expression of antioxidant enzymes [26]. Specifically, it has been shown that MMF induces alkylation of a critical reactive thiol, Cys151, on Keap1 (Kelch-like ECH associated protein 1) which results in the release of Nrf2 [26, 27]. Once dissociated from Keap-1, Nrf2 translocates to the nucleus and therein, binds to the antioxidant response element (ARE) of an array of antioxidant target genes thereby upregulating their expression and related activity. This effect was corroborated in Nrf2-deficient cells in which the antioxidant effects of DMF/MMF were lost [27].
\nInvolvement of Nrf2-dependent and independent mechanisms in FAE-mediated antioxidant and anti-inflammatory effects. Fumaric acid esters (DMF/MMF) disrupt Keap1-Nrf2 binding to induce nuclear translocation of Nrf2 which in turn, activates a number of downstream antioxidant response genes. This mode of action of FAE is well known and is purported to be responsible for the positive actions of FAE in neurotoxicity, nephrotoxicity, and spinal cord injury. Additionally, however, MMF, the major bioactive ingredient of FAE, is an agonist of HCAR2, a Gi-protein coupled membrane receptor that potentiates robust anti-inflammatory signaling. Various studies have shown that while FAE-mediated Nrf2 signaling elicits both antioxidant and anti-inflammatory responses, HCAR2-dependent signaling predominantly provides an anti-inflammatory effect. The HCAR2-mediated actions of FAE have been implicated its protective effects in gastrointestinal diseases, pancreatitis and neuroinflammation. Importantly however, the combined actions (Nrf2- and HCAR2-mediated) have been demonstrated in several pathologic conditions (sickle cell disease, retinal degeneration, sepsis and stroke). FAE, fumaric acid esters; HCAR2 or HCA2, hydroxycarboxylic acid receptor 2; DMF, dimethyl fumarate; MMF, monomethyl fumarate; Keap1; kelch-like ECH associated protein 1; Nrf2, nuclear factor erythroid 2-related factor 2; ARE; antioxidant responsive element.
The majority of preclinical studies of DMF/MMF, highlight the Nrf2-mediated mechanism of the drug as the principal factor underlying its therapeutic effects. However, DMF/MMF has also been shown to elicit a robust anti-inflammatory response. This additional desirable effect is thought to be accomplished via the inhibition of NF-kB translocation into the nucleus, an action that impacts negatively the expression of a plethora of inflammatory cytokine, chemokine, and adhesion molecule genes. Relevant also to the anti-inflammatory effects of DMF/MMF, is hydroxycarboxylic acid receptor 2 (HCAR2; GPR109A)-dependent signaling (Figure 2). MMF is a strong agonist of HCAR2. DMF activates the receptor as well although with a comparably lower affinity [28]. In a study by Chen et al. 2014 it was shown that DMF treatment reduced pathological features of experimental autoimmune encephalomyelitis in WT mice, but not in Hcar2−/−\n mice, indicating the importance of HCAR2-mediated signaling by DMF [29]. In another study, Parodi et al. [30] demonstrated the importance of HCAR2 to the anti-inflammatory effects of MMF in microglia. Specifically, it was reported that MMF could modulate microglia activation through inhibition of the NF-κB pathway via the AMPK/SIRT-1 axis. MMF treatment to microglia cells resulted in the activation of the HCAR2 receptor via enhanced intracellular calcium levels, an effect that prevents microglial polarization into an inflammatory phenotype (Figure 3). Downstream, it induced CAMKK (Calcium/calmodulin-dependent protein kinase kinase 2) dependent activation of AMPK/SIRT-1 axis which also contributes to reduced inflammation. Several other studies have also reported on the HCAR2 receptor-dependent and independent anti-inflammatory effects of FAE in additional cell types including keratinocytes [31, 32, 33] and epithelial cells of the retina [34, 35].
\nThe role of FAE in regulating microglia activation. FAE (DMF/MMF) are known to induce Nrf2 and to activate HCAR2. Various studies have shown that via these mechanisms, FAE prevent the polarization of microglia from the M1 (resting) phenotype to the M2 (active and thereby pro-inflammatory) phenotype, the consequences of which are reduced free radical and pro-inflammatory cytokine production. This action of FAE is thought to underlie the neuroprotective effects of the drug in conditions like HIV-induced neuroinflammation, Parkinson’s disease, retinal degeneration, and stroke. FAE, fumaric acid esters, HCAR2, hydroxycarboxylic acid receptor 2; DMF, dimethyl fumarate; MMF, monomethyl fumarate; Nrf2, nuclear factor erythroid 2-related factor 2; HIV, human immunodeficiency virus.
Herein we highlight the findings of preclinical studies on the use of DMF/MMF to counter inflammation and oxidative stress associated with the pathogenesis of pathological conditions other than psoriasis and MS (Figure 2). A summary is provided in Table 1.
\nDisease condition | \nExperimental model | \nEffective dose | \nOutcomes | \nReferences | \n
---|---|---|---|---|
Cerebral ischemia– | \nMiddle cerebral artery occlusion in rats | \n25 and 50 mg/kg DMF (i.g.) | \nDMF protected against experimental stroke by inducing immunomodulatory and antioxidant response | \n[36] | \n
Middle cerebral artery occlusion in mice | \n30 and 45 mg/kg DMF and MMF (i.p.) | \nDMF and MMF suppressed glial activation via increasing the expression of Nrf2 | \n[37] | \n|
Experimental colitis | \n\n
| \n30 and 100 mg/kg DMF (i.g.) | \nDMF induced antioxidant response by regulating SOD-2 and inflammation by Nf-kB signaling to reduce colitis. | \n[38] | \n
Mice treated with 3% (w/v) DSS drinking water | \n30 and 60 mg/kg DMF (i.g.) | \nDMF alleviated DSS-induced colitis by regulating Nrf2-mediated inhibition of NLRP3 inflammasome | \n[39] | \n|
Intracerebral hemorrhage | \nIntra-striatal injection of autologous blood in rats and mice | \n15 mg/kg DMF (i.g.) | \nDMF can ameliorate ICH-mediated injury with a therapeutic window of at least 24 h | \n[40] | \n
Mice using either the collagenase injection model (cICH) or the autologous blood (bICH) | \n100 mg/kg (i.p.) | \nDMF-induced dissociation of Nrf2 from Keap1, and the consequent casein kinase 2 phosphorylation of Nrf2, resulted in neuroprotection after ICH | \n[41] | \n|
Nephrotoxicity | \nRats treated with 20 mg/kg Cyclosporin A for 28 days | \n50 mg / kg DMF (i.g.) | \nDMF reduced nephrotoxicity by inhibiting oxidative stress and inflammation | \n[42] | \n
Neurotoxicity | \nMice treated with 10 nmol sodium nitroprusside | \n60 and 200 mg/kg DMF (i.g.) | \nDMF reduced neurotoxicity by activating HO-1. | \n[43] | \n
Pancreatitis | \nRats treated with 2.5 g/kg L-arginine | \n25 mg/kg DMF (i.g.) | \nDMF was effective in ameliorating the histological lesions and biochemical abnormalities and improving beta-cell function | \n[44, 45] | \n
Rats treated with 3 g/Kg L-arginine | \n25 mg/Kg DMF (i.g.) | \nDMF treated rats showed reductions in the severity of inflammatory cell infiltration, acinar damage, perilobar edema, and cell necrosis | \n[46] | \n|
Parkinson’s disease | \n6-OHDA-induced neurotoxicity in mice | \n50 mg/kg DMF (i.g.) | \nDMF reduced neurotoxicity by Nrf2 mediated antioxidant response. | \n[47] | \n
Mice treated with MPTP | \n100 mg/kg MMF/ DMF (i.g.) | \nDMF and MMF exhibit neuroprotective effects via Nrf2-mediated antioxidant, anti-inflammatory, and mitochondrial functional/biogenetic effects. | \n[48] | \n|
Mice treated with a viral vector expressing human α-SYN | \n100 and 300 mg/kg DMF (i.g.) | \nDMF prevented Synucleinopathy in a mouse model of PD by activating Nrf2 signaling | \n[49] | \n|
MPTP-treated mice | \n10, 30, and 100 mg/kg DMF (i.g.) | \nDMF protected against experimental PD via regulation of the NF-κB/Nrf-2 pathway | \n[50] | \n|
Retinal degeneration | \nI/R injury in mice | \n50 mg/kg MMF (i.p.) | \nMMF reduced retinal I/R injury in mice via induction of Nrf2 signaling | \n[51] | \n
Light-induced retinal damage in mice | \n100 mg/kg MMF (i.p.) | \nMMF-mediated HCAR2 signaling provided neuroprotection via reduced microglial activation, inflammation, and oxidative stress. | \n[52] | \n|
Sepsis | \nRats subjected to cecal ligation and puncture procedure | \n15 mg/kg of DMF (i.g.) | \nDMF reduced inflammation and oxidative stress in heart, liver, lung, kidney, and brain, and improved cognitive function | \n[53, 54] | \n
50 mg/kg MMF (i.p.) | \nMMF alleviated sepsis-induced hepatic dysfunction by reducing oxidative and inflammatory via the inhibition of the TLR-4/NF-κB signaling pathway. | \n[55] | \n||
Sickle cell disease | \nHbSS-Townes and NY1DD mice | \n30 mg/kg DMF (i.g.) | \nDMF increased expression of nuclear Nrf2 in the liver and kidney to decreases oxidative stress and inflammation | \n[56] | \n
Sickle cell retinopathy | \nHbSS-Townes mice | \n1 mM (intravitreal) and 15 mg/ml MMF (in drinking water) | \nMMF treatment-induced fetal hemoglobin production and reduced oxidative stress and inflammation via Nrf2 activation | \n[34, 35] | \n
Spinal cord injury | \nSCI injury in mice using aneurysm clip | \n30 mg/kg (i.g.) | \nDMF and MMF improved SCI injury in mice. | \n[57] | \n
Ulcer | \nRats exposed to chronic foot-shock stress | \n2.5 and 5 mg/kg MMF (i.p.) | \nMMF restored monoamine, corticosterone, and cytokine homeostasis by regulating neuroendocrine-immune systems | \n[39] | \n
Some important in vivo studies showing the use of fumaric acid esters for the treatment of oxidative stress and inflammation.
Inflammatory bowel disease (IBD) is a group of inflammatory conditions of the colon and small intestine that includes Crohn’s disease and ulcerative colitis [58, 59]. Treatments for IBD range from symptomatic treatment with anti-diarrheal medications, anti-inflammatory agents or immunosuppressive drugs to more radical surgical interventive strategies (e.g. partial or complete colectomy). These strategies are effective in a number of patients however given the complex etiology of IBD, the need for new and/or improved therapeutic strategies remains high. Given the well-established link between inflammation and IBD development and progression, it is not surprising that several groups have sought to test the efficacy of FAE in this condition. For the most part, these studies have been conducted using experimental models of colitis; rodents treated with dinitrobenzene sulfuric acid (DNBS) or dextran sodium sulfate (DSS), etc. [60, 61]. Casili et al. induced colitis in mice via intrarectal administration of DNBS (4 mg/mouse). DMF (10, 30 or 100 mg/kg) was then administered orally every 24 h, starting 3 h after the administration of DNBS and continuing over the course of 4 days. DMF treatment to DNBS treated mice significantly improved colon injury and histological score. Further DMF also reduced lipid peroxidation by regulating the expression of SOD2 (superoxide dismutase 2, mitochondrial) and Nrf2. The anti-inflammatory effect of DMF was evident by a reduction in the expression of TNF-α (tumor necrosis factor- α), IL-1β (Interleukin 1 beta) and ICAM-1 (intercellular adhesion molecule 1) and P- selectin. This effect was thought to be a result of reduced IκB-α degradation to prevent nuclear translocation of p65 NF-κB (Nuclear factor-κB). Moreover, in vitro DMF treatment improved hydrogen peroxide-induced barrier dysfunction of human intestinal epithelial cells. The authors also confirmed the protective effect of DMF on experimental colitis using another model (9-week-old IL-10KO mice). Collectively, this study demonstrated that DMF could reduce experimental colitis by regulating inflammation and oxidative stress [38]. In another study, Liu et al., 2016 evaluated the efficacy of DMF in reducing DSS-induced murine colitis. Wild-type and Nrf2−/−\n mice received either vehicle or 3% (w/v) DSS in drinking water for 7 days and thereafter provided with only drinking water for another 3 days. Groups of mice were also given 30 or 60 mg/kg DMF (i.g.) from day 1 to 10. DMF treatment significantly reduced oxidative stress and inflammation and thereby improved signs/symptoms of colitis in DSS-treated mice. However, these effects were lost in Nrf2−/−\n mice, highlighting the importance of the Nrf2-mediated mechanism of action of the drug. This was supported by additional in vitro studies in which the authors showed that DMF-mediated Nrf2 activation reduces NLRP3 (NLR family pyrin domain containing 3) inflammasome activation to control intestinal inflammation.
\nConsistent with the above gastrointestinal benefits derived from DMF/MMF treatment, the efficacy of MMF treatment in improving stomach ulcers in rats has also been described. Although the detailed mechanism of action was not evaluated, the authors attributed the protective effect of the compound in this condition to be due primarily to the anti-inflammatory activity of MMF [39]. Collectively, these studies indicate that DMF/MMF therapy may be of benefit the clinical management of inflammatory gastrointestinal disorders. This is interesting given that gastrointestinal (GI) side effects (e.g., nausea, vomiting, diarrhea, and upper abdominal pain) are one of the most commonly reported complaints in patients receiving DMF therapy [62, 63]. Indeed, during phase 3 clinical trials for multiple sclerosis, adverse events (AEs) involving the GI system were reported in 40% of patients treated with DMF compared with 30% of patients treated with placebo [64, 65]. Though the adverse GI events are generally mild in severity and typically resolve within the first 2 months of treatment, these issues may impact patient quality of life and ultimately medication adherence. Thus, while a number of experimental studies have reported gastroprotective effects of DMF, there is some concern as to whether such therapy could reliably be extrapolated to clinical management of gastrointestinal disorders in human patients. However, the increasing number of additional reports of DMF/MMF benefit in the digestive system that continue to arise in the scientific literature suggests that perhaps efforts to implement DMF/MMF therapy for use in this regard should not be dismissed completely. For example, Rao and Mishra [66] performed a preliminary study demonstrating the hepatoprotective effects of MMF isolated from Fumaria Indica extract in various models of hepatotoxicity. Although the study was preliminary and had some limitations, it does introduce a possible hepatoprotective effect of MMF. This is supported also by a recent study by Abdelrahman et al. [67] that reported the protective effects of DMF treatment on acetaminophen-induced hepatic injury in mice. Acetaminophen-treated mice receiving a single or double dose of DMF (100 mg/kg) showed reduced oxidative stress, inflammation, and associated liver damage compared to non-DMF treated animals. Hence, additional studies in larger animal models and at some point, in humans, to test, develop and/or refine DMF/MMF formulations to improve potential suitability for use in the treatment of gastrointestinal or liver diseases are warranted.
\nWith improvements in treatments for HIV (human immunodeficiency virus), lifespan has increased significantly affected persons. However, neuroinflammation and/or toxicity remain major concerns in this disease. The critical relevance of neuroinflammation to the etiology of MS, a disease for which DMF/MMF therapy is already approved, is undeniable [68]. Further, patients with MS are at considerably higher risk for neurotoxicity than are patients without the demyelinating disease [69]. Given these commonalities between MS and HIV-induced neurologic disease, preclinical testing of DMF/MMF in the latter is of interest. Using an in vitro model of HIV-mediated neurotoxicity, Cross et al. 2011 [70] showed that HIV infection dysregulates macrophage antioxidant response and reduces the expression of heme oxygenase-1 (HO-1). Importantly, DMF and MMF (5–30 μM) dose-dependently suppressed HIV replication, improved antioxidant response and reduced neurotoxin release, effects that the authors proposed to be mediated via a two-way action of DMF: (1) inhibition of NF-kB nuclear translocation and consequent suppression of HIV replication, and (2) decreased neurotoxin release stemming from HO-1 induction. Further, they also found that DMF reduces CCL2 (C-C Motif Chemokine Ligand 2)-induced monocyte chemotaxis, suggesting that DMF additionally decreased the recruitment of activated monocytes to the CNS (central nervous system) in response to inflammatory mediators. Based on the above, the authors concluded that dysregulation of the antioxidant response during HIV infection drives macrophage-mediated neurotoxicity and DMF could serve as an adjunctive neuroprotectant. In a separate study, Ambrosius et al. [71] evaluated the effect of MMF on microglia activation and subsequent neurotoxicity. MMF treatment (10–30 μM) significantly reduced HIV-mediated neurotoxicity in microglia cells (Figure 3). A similar but prior study by a different group showed MMF to be capable of inducing a phenotypic shift from pro-inflammatory to anti-inflammatory macrophages [72] however, Ambrosius et al. did not observe such effects. These differences could be model-dependent or related to methodological differences in the two studies and therefore require further investigation since the authors did not comprehensively evaluate the possible mechanism of action in these short reports. Notwithstanding, however, the opposing effects of DMF/MMF on microglial responses, particularly those of an inflammatory nature, appear to be solidly supported by several other studies [30] which in turn, collectively support additional effort to advance DMF/MMF therapy for potential use in HIV-associated neuroinflammation and toxicity.
\nVery little information exists on the protective effect of FAEs on renal function. A study by Takasu et al. [42] evaluated the effect of DMF treatment on CsA (calcineurin inhibitor)-induced nephrotoxicity. Male Sprague–Dawley rats were treated with 20 mg/kg CsA or CsA + 50 mg/kg DMF (i.g.) for 28 days. At the end of the treatment schedule, renal function, histopathology, malondialdehyde (MDA), myeloperoxidase levels, and antioxidant enzyme expression were determined. DMF co-treatment ameliorated CsA-induced renal dysfunction as evidenced by a significant decrease in serum creatinine and urea levels, as well as improvement of creatinine clearance. DMF also significantly decreased serum and renal MDA and myeloperoxidase contents whereas, protein expression of NQO-1 (NAD (P) H quinone oxidoreductase-1), a major cellular antioxidant and the detoxifying enzyme, was significantly enhanced by DMF administration. Although evidence is limited, the above study supports the protective potential of DMF/MMF therapy in a clinically relevant model of nephrotoxicity, an effect that is afforded in part via DMF’s robust ability to enhance the cellular antioxidant capacity and thereby, inhibit oxidative stress and inflammation [42] as described in other cell and tissue systems. Thus, while much remains to be learned about the possible use of DMF/MMF in the treatment of renal diseases, initial results are encouraging.
\nPrior discussion (subSection 4.2) of neurotoxicity in this chapter was related specifically to that occurring in HIV. Irrespective, however, of the mitigating disease or pathologic process, the brain is indisputably sensitive to pro-inflammatory and/or oxidative insult. Hence, neurotoxicity can emanate from multiple variable causes. Kume et al. [43] evaluated the ability of DMF to protect against in vitro and in vivo oxidative stress in the central nervous system induced via pro-oxidant agents like sodium nitroprusside and hydrogen peroxide (H2O2). DMF pretreatment (60–200 mg/kg) for 24 h dose-dependently protected against 10 nM sodium nitroprusside-induced brain damage and in rat primary striatal cell cultures, 10 μM DMF markedly prevented cytotoxicity stemming from exposure of cells to H2O2 (1 mM). Interestingly, the protective effects of DMF against in vitro oxidative stress were countered by the HO-1 inhibitor zinc protoporphyrin IX however, buthionine sulfoximine, an inhibitor of glutathione synthesis, did not interfere with the protection afforded by DMF. Collectively, these results support the potential of DMF/MMF therapy in conditions of neurotoxicity and suggest that its ability to activate HO-1 may be critical. Neural stem/progenitor cells (NPCs) are a heterogeneous population of self-renewing and multi-potent cells that can differentiate into neurons, astrocytes, or oligodendrocytes (post-mitotic daughter cells) [73, 74]. Hence, the survival of these cells could greatly impact various forms of neurodegenerative diseases. Wang et al. [75] reported on the neuroprotective effects of DMF on mouse and rat neural stem/progenitor cells (NPCs) and neurons. DMF treatment reduced reactive oxygen species (ROS) production, increased the frequency of the multi-potent neurospheres and enhanced the survival of NPCs following H2O2-mediated oxidative stress. DMF also decreased oxidative stress-induced apoptosis and promoted the survival of motor neurons, effects that this group demonstrated to be mediated via the Nrf2-ERK1/2 MAPK pathway. These studies provide additional support of the overwhelmingly protective effects of FAE in multiple brain cell types and therefore, of the potential feasibility of this therapy in the prevention and treatment of neurodegenerative diseases.
\nChronic pancreatitis (CP) is a progressive inflammatory disorder that results in the destruction and fibrosis of the pancreatic parenchyma and its endocrine and exocrine dysfunctions [76]. Various research groups have evaluated the effect of DMF treatment on acute and chronic pancreatitis. In one of the studies, chronic pancreatitis in rats was induced by five injections of 250 mg/100 g L-Arginine and sacrificed 7 weeks later. In another group 25 mg/kg DMF was given orally 24 before L-arginine treatment and continued thereafter until the end of the study. DMF treatment significantly improved glucose tolerance, pancreas histology, biochemical parameters (MDA and MPO; myeloperoxidase), and induced HO-1 expression [44]. However, this study did not evaluate the mechanism of action for DMF-induced protection. Another study by Robles et al. [45] evaluated the efficacy of DMF in an acute model of pancreatitis. Acute pancreatitis was induced by two injections of 3 g/kg L-Arginine (1 hr. apart) to rats and sacrificed later at 24 and 72 hr. DMF (25 mg/kg) was orally administered to rats 24 h before L-arginine and continued until sacrifice. The histology of the pancreas was significantly improved in DMF-treated animals possibly due to decreased cleaved caspase-3 (apoptosis) and MDA levels. This group additionally stimulated splenocytes with 1 μg/ml for 24 h with or without DMF 20 μM. In vitro DMF treatment significantly reduced proinflammatory cytokine secretion in rat splenocytes, although a definitive mechanism for this DMF-mediated action was not put forward. Recently, however, Zhang and colleagues [46] too evaluated the effect of DMF on L-arginine induced chronic pancreatitis. In brief, this group treated Wistar rats intraperitoneally with L-arginine 5 times (250 mg/100 kg, twice per time, each interval of 1 h) to induce chronic pancreatitis (CP). One group of rats was treated with 20 mg/kg DMF. Compared with control (untreated) group, the weight of rats in CP group was significantly reduced at weeks 2, 4 and 6; blood glucose levels were significantly increased, the histopathological scores of pancreatic atrophy, acinar injury, edema, and cellular infiltration increased, levels of MDA and MPO increased, and the islet equivalent and islet activity decreased at 0, 30, 60, 120 and 180 min., parameters that were all prevented or reversed in the DMF-treated CP group. Thus, DMF treatment can protect against CP induced by L-arginine and islet function in rats. Although these three studies support the potential of DMF/MMF therapy in pancreatitis, the exact mechanism (s) to explain the benefits attained remains unknown. Because therapies to impact pancreatitis are extremely limited at present, additional detailed studies to test the efficacy of FAE in this condition would certainly be worthwhile in hopes that findings emanating therefrom could be carried forward to use in a clinical setting.
\nAgain, the brain is especially sensitive to perturbations caused by oxidative and/or inflammatory stress. In fact, these factors, particularly oxidative stress, are central to the pathology of several neurodegenerative diseases, including Parkinson’s disease (PD) [77, 78] therefore, therapies designed to enhance antioxidant potential and counter this stress may be of clinical value [79, 80]. Scientific studies published within the last couple of years highlight the high clinical potential the repurposing of DMF/MMF for the treatment of PD holds. Using various in vitro and in vivo studies it has been demonstrated that DMF/MMF induced Nrf2 signaling can protect against oxidative stress and inflammatory conditions related to PD. In an initial study by Jing et al. [47], DMF (2–4 μM) pre-treatment significantly reduced hydroxydopamine (6-OHDA) induced generation of ROS and subsequent cytotoxicity in SH-SY5Y cells. The increase in ROS production caused by 6-OHDA treatment was also attenuated by DMF. Further, siNrf2 treatment blocked DMF’s protection against 6-OHDA-induced neurotoxicity. In vivo, oral administration of DMF (50 mg/kg) to C57BL/6 mice up-regulated expression of Nrf2 and Nrf2-dependent cytoprotective genes. Taken together, this study provided initial evidence for the protective role of DMF in PD. This was followed by three different studies focusing on the mechanism of action for DMF and its metabolite, MMF in mediated protection against PD. Ahuja et al. [48] compared the effects of DMF and MMF on Nrf2 signaling by evaluating its ability to block 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP)-induced experimental PD. Their results showed that Nrf2 activation by DMF was associated with depletion of glutathione, decreased cell viability, and inhibition of mitochondrial oxygen consumption and glycolysis rates in a dose-dependent manner. Contrary to this, MMF increased these activities in vitro. However, both DMF and MMF activated the Nrf2 pathway via S-alkylation of the Nrf2 inhibitor Keap1 which promoted the nuclear exit of the Nrf2 repressor Bach1 to improve mitochondrial biogenesis. Despite the in vitro differences, both DMF and MMF exerted similar neuroprotective effects and blocked MPTP neurotoxicity in wild type but not in Nrf2−/−\n mice. It was concluded that DMF and MMF exhibit neuroprotective effects because of their distinct Nrf2-mediated antioxidant, anti-inflammatory, and mitochondrial functional/biogenetic effects, but MMF does so without depleting glutathione and inhibiting mitochondrial and glycolytic functions. Therefore, the authors advocated for the possible development of MMF rather than DMF as a novel therapy for PD. Synucleinopathies (also called α-synucleinopathies; α-SYN) are neurodegenerative diseases characterized by the abnormal accumulation of aggregates of alpha-synuclein protein in neurons, nerve fibers or glial cells [81]. Lastres-Becker et al. [49] conducted a study in which they focused primarily on the role of DMF in regulating synucleinopathies associated with oxidative stress and inflammation. In brief, an adeno-associated pseudotype 6 (rAAV6) viral vector was used to express human α-SYN under the neuron-specific human synapsin 1 promoter to create conditions of PD and animals were treated daily with DMF (100–300 mg/kg) via oral gavage. DMF protected nigral dopaminergic neurons against α-SYN toxicity and decreased astrocytosis and microgliosis. However, this protective effect was not observed in Nrf2−/−\n mice. Additionally, in vitro studies indicated that the neuroprotective effect was correlated with altered regulation of autophagy markers and with a shift in microglial dynamics toward a less pro-inflammatory and a more wound-healing phenotype (Figure 3). These experiments provide a compelling rationale for targeting Nrf2 with DMF as a therapeutic strategy to reinforce endogenous brain defense mechanisms against PD-associated synucleinopathy. These findings are supported by another study in which daily oral administration of DMF (10, 30, and 100 mg/kg) significantly reduced neuronal cell degeneration of the dopaminergic tract and behavioral impairments induced by four injections of the dopaminergic neurotoxin MPTP. Moreover, treatment with DMF prevented dopamine depletion, increased tyrosine hydroxylase, and dopamine transporter activities, and also reduced the number of α-synuclein-positive neurons. Furthermore, DMF treatment up-regulated Nrf2 as evidenced by the increased activation of SOD2 and HO-1 and elevated levels of glutathione, and increased NeuN+/Nrf2+ cell number in the striatum. Moreover, DMF reduced IL-1β levels, cyclooxygenase 2 activities, and neuronal nitrite oxide synthase expression. This treatment also modulated microglial activation (Figure 3), restored nerve growth factor levels, and preserved microtubule-associated protein 2 alterations. Using the Nrf2 inhibitor trigonelline, the authors were able to confirm the Nrf2 dependency of the protective mechanism. Collectively, these results demonstrated that DMF protects against experimental PD via NF-κB/Nrf2 pathway [50]. Several other antioxidants have shown potential as therapeutic options for PD, however, because DMF/MMF is already FDA-approved, the potential viability of this candidate therapy for PD is enhanced.
\nIn recent years, others and we have investigated the potential of MMF in the treatment of degenerative retinal diseases. In an early study, we showed MMF to be protective against reactive gliosis, a characteristic response of Muller glial cells to an environment rich in pro-oxidant and inflammatory factors in retinal disease. Folate uptake by Muller cells is considered a key event in this process [82]. MMF treatment significantly reduced folate uptake by Muller cells by decreasing the expression and activity of proton-coupled folate transporter (PCFT), a transporter integral to the uptake of folate. This was the first report demonstrating that MMF could regulate folate transport in retinal glial cells and therefore, be potentially useful in the treatment of degenerative retinal diseases. To determine whether, in addition to down-regulating pro-inflammatory mechanisms, MMF affects counteractive or protective signaling, in a subsequent study we evaluated also the effect of the compound on the expression and activity of the cysteine/glutamate exchanger SLC7A11 (system xc\n−), a transport system critical for the intracellular entry of the amino acid cysteine which is required for glutathione synthesis [28]. Glutathione is the most abundant endogenous antioxidant in the retina and is therefore essential for the protection of retinal cells against oxidative stress. Further, retinal pigment epithelial (RPE) cells are one of the highest producers of glutathione of any cell type in the body. As such, we exposed human retinal pigment epithelial (ARPE-19) cells to MMF in the presence or absence of pro-oxidant stimuli and evaluated the dose- and time-dependent effects on system xc\n− mRNA, protein, and activity levels. MMF was found to up-regulate each of these parameters and additionally, up-regulate hypoxia-inducible factor 1-alpha (Hif-1α), nuclear factor erythroid 2-related factor 2 (Nrf2) expression and increase total reduced glutathione (GSH) content. Collectively, our early in vitro studies demonstrated that MMF affects multiple pathways in multiple retinal cell types in a manner that is overall protective against oxidative damage.
\nWe sought next to determine whether our findings extrapolate to the in vivo condition, therefore, we evaluated the efficacy of MMF in a living animal model of retinal disease. Retinopathy is a major cause of vision loss in sickle cell disease (SCD) and therapies to prevent and treat sickle retinopathy (SR) are very limited. Therapeutic induction of γ-globin expression and subsequent induction of fetal hemoglobin (HbF) production can alleviate some SCD-associated complications. Interestingly, Nrf2 inducers have been demonstrated to be effective γ-globin inducers [83]. The robust inductive properties of MMF on Nrf2 translocation and activity have been long recognized therefore, it was logical to explore the effects of MMF in SCD. Not only did we confirm that RPE cells, cells integral to retinal health and function, produce HbF but that MMF treatment of Townes humanized SCD mice of SCD resulted in reductions in the expression of pro-oxidant and inflammatory factors and turn, preserved retinal morphology [35]. Shortly after this study, Cho et al. [51] too reported on the potential benefit of MMF in the treatment of retinal disease in a mouse model of retinal ischemia-reperfusion. Specifically, they showed that MMF promotes Nrf2-neuroprotection in this model. MMF treatment was associated with significant increases in the expression of Nrf2-responsive antioxidant genes and a suppression of inflammatory responses as evidenced by increased expression of NAD (P) H quinone dehydrogenase 1, thioredoxin reductase 1 and heme oxygenase-1 along with decrease in interleukin-1β, chemokine (C-C motif) ligands (2, 7 and 12), expressions. Collectively, these molecular improvements interpreted to improved retinal function as evidenced by electroretinogram recordings performed on live mice and were heavily dependent upon the expression and activity of Nrf2.
\nBecause these initial reports of MMF’s potential efficacy in protecting against retinal degeneration were conducted acutely, we decided to evaluate the effect of long-term administration of the compound (5 months administration of 15 mg/ml MMF in drinking water) in the humanized SCD model [34]. Importantly we found via high-pressure liquid chromatography (HPLC) and hematological analyses of peripheral blood that MMF treatment reduced sickle hemoglobin (HbS) content and white blood cell counts, and improved hematocrit, red blood cell number, and hemoglobin concentrations significantly in SCD mice. In retina specifically, the mRNA and protein expression of well-established markers of inflammation and oxidative stress (i.e., vascular endothelial growth factor, intercellular adhesion molecule-1, interleukin-1β, dihydroethidium labeling) was reduced and the development and progression of SCD-like retinal pathology in these mice were ameliorated. Additional related in vitro studies performed toward elucidating the molecular mechanisms responsible for the MMF-induced improvements that were observed implicate Nrf2 and Bcl11A (B-cell lymphoma/leukemia 11A) as key players. This study was of extreme significance because not only did it support strongly the notion that fumaric acid ester therapy may be of benefit for the treatment of retinal pathology, especially in SCD, but for SCD in general, a concept that we have since patented [84]. Perhaps equally as astounding is the fact that MMF delivered systemically induced such robust effects in retina, meaning that MMF must be capable of crossing in significant quantities or otherwise inducing signaling across the blood-retinal barriers. Given the known difficulties with non-invasive yet efficacious drug delivery to the posterior segment of the eye (retina) and the commonality of oxidative stress and inflammation as key causative factors in the development and progression of numerous retinal diseases, the clinical relevance and therefore potential impact of the above findings is extremely high. Indeed, new reports of potential benefit derived from MMF in animal models of the degenerative retinal disease continue to surface, such as the recent study by Jiang et al. [52] demonstrating that MMF treatment protects against light-induced retinal damage on BALB/C mice and effect due potentially to HCAR2-dependent signaling in retinal microglia cells (Figure 3). Eventually, data emanating from these preclinical reports may spur increased interest in moving toward clinical testing and implementation of FAE therapy in the near future.
\nSepsis is a potentially fatal illness that can lead to the damage of multiple organs [85]. The condition is deeply associated with oxidative stress and inflammation. Firstly, a study by Giustina et al. [53] reported the protective effects of DMF against multi-organ sepsis by modulating oxidative stress and inflammation. It was reported that oral administration of 15 mg/kg of DMF provides significant protection against sepsis-induced multi-organ (heart, liver, and lung) damage in rats. Later, the same research group reported the protective effects of DMF treatment on sepsis-associated inflammation and oxidative stress and cognitive impairment in the brain [54]. Although both these studies were descriptive in nature as neither evaluated in detail the underlying mode of action, they provide evidence that DMF might be used successfully for the clinical management of sepsis. This is supported by a study by Shalmani et al. [55] in which it was reported that 50 mg/kg (i.p.) MMF treatment improved sepsis-induced liver dysfunction by regulating the TLR-4/NF-κB signaling pathway. Collectively, these preclinical studies provide a great foundation for future clinical evaluations of the utility of FAE in the management of organ damage in sepsis.
\nUncontrolled hemolysis and subsequent release of hemoglobin (Hb) and heme into the vasculature is a hallmark of sickle cell disease (SCD) [86, 87]. Heme, a damage-associated molecular pattern, is highly pro-oxidative and proinflammatory and induces vaso-occlusion in murine models of sickle cell disease (SCD) [88]. A study by Belcher et al. evaluated the protective effect of DMF treatment on SCD associated oxidative stress and inflammation in the liver and kidneys [56]. DMF (30 mg/kg/day) or vehicle (0.08% methylcellulose) was administered for 3–7 days to NY1DD and HbSS-Townes SCD mice. DMF had a significant reductive impact on vaso-occlusion in SCD mice. It increased the nuclear translocation of Nrf2 and cellular mRNA of Nrf2-responsive genes in livers and kidneys, and increased heme defenses, including HO-1, haptoglobin, hemopexin, and ferritin heavy chain, without altering plasma Hb and heme levels. Markers of inflammation were also reduced. Interestingly, much of the DMF-induced benefit was blunted by the HO-1 inhibitor, protoporphyrin. Chronic treatment (24 weeks) of SCD with DMF decreased hepatic necrosis, inflammatory cytokines, and irregularly shaped erythrocytes, and increased HbF but did not alter hematocrit, reticulocyte counts, lactate dehydrogenase or plasma heme levels or, spleen weights. These results [56] together with our previously highlighted findings in SCD (subSection 4.7) [34, 35], are supportive of the multiple beneficial effects of DMF/MMF on the pathogenesis of SCD and the need for further clinical evaluation of the drug for this indication.
\nPatients with spinal cord injury (SCI) usually have permanent and often devastating neurologic deficits and disabilities. The currently available therapeutic options include surgical decompression, methylprednisolone and hemodynamic control [89, 90]. Hence, the development of a new therapy for SCI holds great merits. Recent work by Cordaro et al. [57] evaluated the beneficial effects of DMF and MMF in a mouse model of traumatic SCI. Using an aneurysm clip, SCI was induced by extradural compression of the spinal cord at T6-T7 for 1 min. Mice were then treated with 30 mg/kg (i.g) DMF or MMF one and 6 h post-SCI. To evaluate the locomotor activity, study mice were treated with DMF/MMF once daily for 10 days. It was observed that mice treated with DMF exhibited a significant and sustained recovery of motor function. DMF/MMF significantly reduced the severity of inflammation by modulation of pro-inflammatory cytokines and apoptosis factors and increased neurotrophic factors. The authors concluded that the observed results were attributable to reduced secondary inflammation and tissue injury and therefore, DMF may constitute a promising target for future SCI therapies [57]. This study provided the first scientific evidence for the protective role of DMF in the treatment of SCI, however, additional detailed experimental and preclinical studies are needed to identify the potential mechanism(s) of action and enhance the likelihood that this therapy could be advanced to clinical testing and implementation.
\nOver the past 2 years, researchers worldwide have published several articles on the role of FAE in the treatment of stroke. In one of the early studies on intracerebral hemorrhage (ICH), male rats and mice (including Nrf2-deficient animals) were subjected to intracerebral injection of blood and then treated with DMF [40]. In rats, 5 mg/kg DMF was administered at 2 h post-ICH and again orally twice a day on days 1–3, whereas in mice, the same dose of DMF was injected (i.p.) 24 h post-ICH and then at days 2 and 3. Treatment with DMF induced Nrf2-target genes, improved hematoma resolution, reduced brain edema and eventually enhanced neurological recovery in rats and wild type mice, but not in Nrf2−/−\n mice. Based on these findings, the authors proposed that DMF may offer an impressive 24 h therapeutic window of opportunity in which to treat ICH, a concept certainly worthy of further evaluation. The potential of DMF/MMF therapy in ICH is supported further by work by Iniaghe et al. [41] in which male CD-1 mice were subjected to intrastriatal infusion of bacterial collagenase, autologous blood or sham surgery. After ICH, animals either received vehicle, DMF (10 mg or 100 mg/kg) or casein kinase 2 inhibitor (E)-3-(2,3,4,5-tetrabromophenyl) acrylic acid (TBCA). Some mice also received scrambled siRNA or MAFG siRNA 24 h before ICH. DMF treatment reduced Evans blue dye extravasation, decreased brain water content, microglia activation (Figure 3), ICAM-1 expression and, improved neurological deficits and casein kinase 2 levels. Interestingly, TBCA and MAFG siRNA blunted protection afforded by DMF. Hence, it was concluded that DMF reduced inflammation, blood-brain barrier permeability, and improved neurological outcomes via casein kinase 2 and Nrf2 signaling pathways in mice.
\nSimilar to other neurodegenerative disorders, oxidative stress is common also to the pathogenesis of ischemic stroke, potentiating the neuronal malfunction and cell death characteristic of this disease [91]. Given that the up-regulation of antioxidant genes through activation of the Nrf2 is one of the key mechanisms of cellular defense against oxidative stress [92], it is logical to explore the efficacy of FAE therapy in this condition. Congruent with this, three additional groups used experimental models of ischemic stroke to evaluate the efficacy of FAEs. In 2016, Lin et al. [36] observed that MMF (25–100 μM) rescued cultured cortical neurons from oxygen–glucose deprivation (OGD) and suppressed pro-inflammatory cytokines produced by primary mixed neuron/glia cultures subjected to OGD. In rats, DMF treatment (25 or 50 mg/kg twice daily) significantly decreased infarction volume by nearly 40% and significantly improved neurobehavioral deficits after middle cerebral artery occlusion (MCAO). In the acute early phase (72 h after MCAO), DMF induced Nrf2 expression and its downstream mediator HO-1. In addition to its antioxidant role, DMF also acted as a potent immunomodulator, reducing the infiltration of neutrophils and T-cells as well as the number of activated microglia/ macrophages in the infarct region. Concomitantly, levels of pro-inflammatory cytokines were greatly reduced in the plasma and brain and oxygen–glucose deprived neuron/glia cultures. Further, using a mouse model of transient focal brain ischemia, Yao et al. [37] showed that DMF and MMF (30 mg/kg i.p.) significantly reduced neurological deficits, infarct volume, brain edema, and cell death. Additionally, DMF and MMF suppress glial activation following brain ischemia. Importantly, the protection of DMF and MMF was most evident during the sub-acute stage and was abolished in Nrf2−/−\n mice, indicating that the Nrf2 pathway is required for the beneficial effects of DMF and MMF [37]. In another study, murine organotypic hippocampal slice cultures, and two neuronal cell lines were treated with DMF and MMF [93]. The ischemic condition was generated by exposing cells and slice cultures to oxygen-glucose deprivation. Treatment with both DMF and MMF (30–100 μM) immediately upon reoxygenation strongly reduced cell death in hippocampal cultures ex vivo. Both DMF and MMF promoted neuronal survival in HT-22 and SH-SY5Y cell lines exposed to ischemic stress. However, interestingly, DMF but not MMF activated the anti-oxidative Nrf2 pathway in neurons. Accordingly, the protective effect of DMF but not MMF was abrogated in the neurons of Nrf2-deficient mice. These results provide the basis for a new therapeutic approach to treat ischemic pathologies such as stroke using a drug that is already approved by US-FDA for clinical use.
\nBy and large, the short-term safety profile for DMF in patients with RMS is highly favorable [64, 65] and long-term safety analyses from the ENDORSE study sustains a favorable benefit: risk ratio [94]. The most common adverse events observed in patients receiving DMF include flushing, gastrointestinal (GI) events (e.g., diarrhea, nausea, abdominal pain, and vomiting), proteinuria, and pruritus [64, 65]. Aspirin pretreatment has been shown to reduce DMF induced adverse GI events [95]. Additionally, the leukotriene-receptor antagonist montelukast has been shown to help as well [96]. Further, it has been observed that consuming a high fat and high protein meal just before DMF administration may reduce GI and flushing side effects by delaying its intestinal absorption. Notably, the risk of lymphopenia is higher in adults older than 55 years, in those with lower baseline lymphocyte counts, and those switching from natalizumab [97]. Cases of multifocal leukoencephalopathy (PML) following DMF treatment have also been reported [98, 99, 100, 101, 102, 103, 104, 105, 106, 107]. Highly worthy of mention, however, is the fact that each of the affected patients detailed above had well-known pre-existing risk factors for PML including lymphocytopenia, sarcoidosis, cancer history, and/or prior efalizumab use. Thus, the negative effects of MMF treatment on PML should be interpreted very carefully. Like other pharmacological therapies, DMF/MMF treatment is associated with some side effects importantly however, advancements toward developing improved formulations minimize these events without losing efficacy are already being realized. For example, Alkermes, Inc. has developed diroximel fumarate (DRF), also known as ALKS8700, a novel MMF prodrug. Importantly, this new formulation has been shown to yield bioequivalent levels of MMF at the cellular level when compared directly to DMF (Figure 1) [108] while interacting less with off-target proteins and therefore producing fewer unwanted side effects [109]. Indeed, interim findings from EVOLVE-MS-1 and EVOLVE-MS-2 which demonstrate that DRF has a favorable safety and efficacy profile and is well-tolerated in MS patients [108, 110].
\nDrug repurposing is a very viable therapeutic strategy [18]. Many agents approved for other uses already have been tested in humans, so detailed information is available on their pharmacology, formulation and potential side effects. Since repurposing expands upon past innovative endeavors, hopeful new treatments could be prepared for clinical trials rapidly. Historically, pharmaceutical companies have achieved a number of successes via drug repositioning (e.g., for Viagra, thalidomide, metformin, etc.). Based on the literature available, DMF/MMF has been shown to protect against a variety of diseases other than MS and psoriasis.
\nFAE are perhaps most noted for the robust antioxidant effects that they elicit via Nrf2 induction. A number of additional (non-FAE based) Nrf2 inducing drugs have been developed and tested in experimental and clinical systems in recent years (e.g., resveratrol, sulforaphane, etc.) and several have been with considerable success with regard to potential for clinical development [111]. However, the multimodal actions of FAE make this emerging drug stand out among the rest. It is commonly said that oxidative stress and inflammation go hand-in-hand, meaning that one potentiates the other in somewhat of a cyclic manner. Thus, it can only be hoped that in turn, if one is suppressed then the other similarly complies. However, things are usually not that simple. In the case of FAE, there are two arms of action: one induces Nrf2 and the other interacts with the anti-inflammatory hydroxycarboxylic acid receptor (HCAR2 or HCA2; Figure 2). Thus, the compound has a direct impact on inflammation independent of its actions on oxidative stress. The fascinating thing about these two mechanistic arms, is that they appear to act simultaneously in many cell and tissue systems. This may explain why FAE has exceled in so many variable pathologic conditions. MMF through its interaction with HCAR2, which is expressed by primary immune cells and a multitude of accessory immune cells (i.e., those that initiate the immune response and those cells like retinal pigment epithelial cells, for example, that aren’t truly “immune” cells but are capable just the same of secreting pro- and anti-inflammatory factors depending upon the stimulus), elicits a tremendous anti-inflammatory response. The combined Nrf2-inducing and immune-modulatory properties of FAE have enabled this drug to be efficacious in a broad range of body systems. The evidence provided in this chapter alone demonstrates convincingly that the benefits of FAE have been realized in the central nervous system (brain and retina), the cardiovascular system, the digestive and/or gastrointestinal system, the immune system, the integumentary system and the renal system; this list continues to grow. Thus, the potential clinical impact of FAE therapy use is high and importantly extremely broad. It is acknowledged that as with virtually all pharmacologic agents, FAE therapy is not without adverse effects. Importantly, however, the effects are relatively mild and the benefit(s) indisputably outweigh the risks. As such, there is a prompt need for additional experimental and clinical studies to translate the information gleaned from exploratory trials of FAE therapy in various cell, tissue, and disease types into clinical use.
\nWe would like to acknowledge funding support from the National Eye Institute grants EY022704 and EY029113 to Pamela M. Martin.
\nP.M.M. is a coinventor of US20140171504 A1 patent titled “Methods of treating SCD and related disorders using fumaric acid esters.” The remaining authors declare that they have no conflict of interest.
MicroRNAs (miRNAs) are a small, non-coding, single-stranded RNA consisting of around 22 nucleotides [1]. More than 3% of the human genome (gene portion) encodes for microRNA, and their number is around 1000 [2, 3, 4]. This small RNA can regulate gene expression posttranscriptionally [5, 6, 7]. This small RNA can regulate gene expression posttranscriptionally by binding to its cognate RNA target at the 30 untranslated region (UTR) [8, 9, 10, 11]. A small microRNA was discovered for the first time in C. elegans and is encoded by the Lin-4 gene [12] providing evidence for its evolutionary conservation. This conserved microRNA was found to be involved in many important biological processes including cell proliferation, growth, apoptosis, etc. [13, 14], and many cell-based factors have been known to regulate its expression [15]. The genes transcribing the miRNA are considered to belong to the set of tumor suppressor genes, and the serum level of miRNA can be detected [16, 17]. There are certain miRNAs that can behave as either oncomiRs (whose expression can cause the cancer) or tumor suppressor depending on the context “Several miRNAs cannot be clearly and unequivocally categorized as tumor suppressors or oncomiRs because data in our hands are quite intricate and conflicting since they could act as tumor suppressors in one scenario or as oncomiRs in the other” [18].
Synthesis of miRNA takes place in the nucleus as well as in the cytoplasm. Genes encoding miRNAs are present in the form of a cluster and contain introns (Figure 1). These genes are transcribed by polymerase II with the generation of the primary precursor pri-miRNA. This precursor miRNA consists of a 3′ poly-A tail and a 5′ end cap [19, 20] with a stem-loop structure. RNase 3 Drosha cleaves this structure with the help of its Pasha cofactor DGCR8. This resultant cleaved, precursor structure is known as pre-miRNA and consists of ∼70–90 nucleotides [21]. This ∼70 nt precursor is exported to the cytoplasm by Exportin-5.
Biogenesis of microRNA.
In the cytoplasm, the whole pri-miRNA is recruited by a RNA-induced silencing complex (RISC) and is converted into mature miRNA. These are mediated by an RISC leaching complex (RLS), which is basically a multiprotein complex and consists of a double-stranded RNA domain protein (DICER), tar RNA-binding protein (TARB), and the Ago 2 protein. The RNAse 3 DICER along with its cofactor yields duplex miRNA (19–25 nucleotide duplex miRNA with 2 nucleotide overhangs at each 3′end). During the process of cleavage, two strands are formed, namely, a functional and a passenger strand. The functional strand along with the Ago protein (RISC) is involved in gene silencing function, while the passenger strand is degraded due to its instability. This miRISC incorporates one strand of miRNA (functional strand and guide strand) so that it takes the guidance from this complex to target mRNA (complementary) for its degradation or inhibition at the translational level [22]. miRNA is processed in the cytosol and transported to the blood. It is resistant to degradation because it is carried by complexes of lipoprotein inclusions [23] or in the form of exosomes [24, 25].
The mechanism of action of microRNA is such that it binds to its partial complementary sequence in the target mRNA (that codes for protein). Hence, the expression is repressed (Figure 2) and no product is synthesized [7].
Mechanism of action of miRNA.
In another scenario, the microRNA may bind to the complementary sequence of target mRNA that codes for protein and initiates RNA-mediated gene silencing, with the resultant cleavage of the target RNA (Figure 3) [26].
Mechanism of miRNA.
There are reported differences in the expression pattern of miRNA in normal and cancer cells [27]. Some miRNAs are overexpressed, while the others are downregulated in different kinds of cancers [28]. Due to its small size and resistance to RNase-mediated degradation, they have the potential as powerful biomarkers for cancer diagnosis [29]. miRNA expression is involved with the rearrangement of chromosomes, methylation of the promoter region, and transcriptional regulation. miRNA-mediated aberrations in one or more of these processes can culminate in alterations in protein and mRNA expression [30].
Different miRNAs are involved in different types of cancers:
Breast cancer is the most prevalent form of cancer in women. Among 12.7 million cancer cases globally, breast cancer is most frequently diagnosed, that is, 23 and 14% deaths due to breast cancer have been reported [1, 31]. The alarmingly increasing mortality data coupled with increases in relapses warrants an improved molecular understanding of the etiology and mechanistic details that contribute to the chemoresistance. There are four subtypes (intrinsic) of breast cancer. These are ErbB2+ (epidermal growth factor receptor 2-positive (also called HER2)), luminal A (hormone receptor positive for estrogen and progesterone, HER2), luminal B (hormone receptor positive for estrogen and progesterone and positive or negative for HER2), and basal like (hormone receptors negative for estrogen, progesterone, and HER2) showing its heterogeneity. Many of the microRNAs play a role in the inhibition of breast cancer. The upregulation of miR-21 (Table 1) results in the increased expression of BCL-2 protein and chemoresistance in breast cancer [38]. MiR-125b shows the resistance to chemotherapeutic agents 5-fluorouracil, and it has higher expression in the patients that are nonresponsive to this agent (Table 2). Many promote the prognosis of breast cancer by targeting the tumor suppressor at the gene level and activating the transcriptional factors that are oncogenic in nature [32, 38].
Sr. no. | MicroRNAs | Potential targets | Function | Ref. |
---|---|---|---|---|
1 | miR-10b | Homeobox D10 | Promotes cellular invasion, migration, and metastasis by targeting the RhoC | [32] |
2 | miR-21 | Programmed cell death protein 4, hypoxia-inducible factor-1α | Promotes cellular invasion, metastasis, epithelial-to-mesenchymal transition and migration | |
Phosphatase and tensin homolog, programmed cell death protein 4, tropomyosin 1 | Promotes cellular invasion | [33] | ||
Metalloproteinase inhibitor 3 | Promotes cellular invasion | [34] | ||
3 | miR-155 (chemosensitive determinant by targeting the FOXO3) | Suppressor of cytokine signaling 1 | Promotes cell proliferation and growth | [35] |
Tumor protein p53 inducible nuclear protein | Promotes cell proliferation | [36] | ||
Forkhead box protein O3 | Promotes cell proliferation and cell survival | [37, 38] | ||
4 | miR-373 | CD44 (inversely correlated) | Promotes cellular invasion and migration | [39] |
Promotes cellular invasion and metastasis | [40] | |||
5 | miR-520c | Promotes cellular migration, invasion, and metastasis | [39] |
MicroRNAs upregulating the breast cancer.
Meta-analysis or Cochrane reviews documenting the involvement of a specific miRNA or a battery of miRNAs contributing to relapse or recurrence can be displayed as a separate table for each of the cancers.
Sr. no. | MicroRNAs | Potential targets | Function | Ref. |
---|---|---|---|---|
1 | miR-125b | Erythropoietin, erythropoietin receptors (positive correlation with ERBB2/HER2 expression) | Inhibition of cellular differentiation and proliferation | [41] |
Glutamyl aminopeptidase or aminopeptidase A, casein kinase 2-alpha, cyclin J, multiple EGF-like domains 9 | Inhibition of cellular proliferation | [42] | ||
Receptor tyrosine-protein kinase erbB-2 (human epidermal growth factor receptor 2) (induction of miR cause the downregulation of ERBB2/ERBB3) | Inhibition of invasion and migration | [43, 44] | ||
2 | miR-205 | High-mobility group box 3 gene | Suppression of invasion and proliferation | [45, 46] |
3 | miR-17-92 | Mitogen-activated protein kinase kinase kinase 2 | Promotes the antitumoral activity of natural killer cells and reduction in metastasis | [47] |
4 | miR-206 | Cyclin D2, connexin 43 | Reduction in invasion, migration, and metastasis | [48] |
5 | miR-200 | Zinc finger E-box binding homeobox 1/2, snail family zinc finger ½ | Reduction in tumor growth, EMT through E-cadherin, and metastasis | [49] |
6 | miR-146b | Nuclear factor kappa B, signal transducer, and activator of transcription 3 | Reduction in survival and metastasis via interleukin 6 | [50] |
7 | miR-126 | Insulin-like growth factor-binding protein 2, c-Mer tyrosine kinase, phosphatidylinositol transfer protein, cytoplasmic 1 | Reduction in angiogenesis and metastasis | [51] |
8 | miR-335 | SRY-related HMG-box 4, tenascin C | Suppression in migration and metastasis | [52] |
9 | miR-31 | Ras homolog gene family | Targets various steps of metastasis and invasion for inhibition | [38] |
WAS protein family, member 3, Ras homolog gene family | Reduction in the metastasis and progression of cancer | [53] | ||
WAS protein family, member 3 | Reduction in the metastasis and progression of cancer | [54] |
MicroRNAs downregulating the breast cancer.
The Rab protein is a member of the Ras superfamily (Figure 4). This protein is a G-protein-coupled receptor and is involved in many cellular processes including fusion, budding, synthesis of vesicles, and motility [55]. A member of the Rab class is Rab11a, and this protein has many functions including cellular migration and phagocytosis [56]. In breast cancer there is overexpression of Rab11a protein [57] and is regulated by miRNA 320a. This miRNA can downregulate Rab11a protein, thereby mediating the inhibition of breast cancer progression.
MicroRNA and breast cancer.
MiR-320a has an important role in tumor suppression [58] and can be a biomarker for breast cancer. This miR-320a results in a 15% increase of cells in G0/G1, and the population of cells in the S phase is decreased. Apart from the G0/G1 cell cycle arrest, miR-320a also increases the activity of caspase resulting in the induction of apoptosis [59]. The potential target of miR-20 is Rab11a; it has two binding sites at the 3′UTR region for miR-320a and can mediate its posttranscriptional repression. This protein is also necessary for the activation of Akt via phosphatidylinositol-4-kinase (PI4K3) in breast cancer—a pro-survival signal [60]. Further, overexpression of Rab11a protein results in the reversal of cell cycle arrest and apoptosis mediated by miR-320a by targeting the MTDH at 3′UTR [61]. The gene coding for the Rab coupling protein (RCP) (a Rab11-FIP1C (Rab coupling protein)) is amplified in breast cancer and aids in the sorting of epidermal growth factor receptor (EGFR) [62, 63]. For the metastasis or migration of cancer, the cell critical factor is RCP which mediates this effect via cell surface integrin alpha-5-beta-1 demonstrating that Rab11a is a protein that is involved in the metastatic or invasive phenotype of breast cancer [64, 65].
Colorectal cancer is the third most common cancer around the world. The incidence rate is increased up to 6% [66]. Survival rate can increase to 90%, if it is diagnosed at an early stage. Survival rate is inversely proportional to the stage of cancer [67].
In a study, the cluster of miR-17/miR-92 (chromosomal region 13q31.1 with miR-20a as one of its members). The region encompassing this cluster is under the regulation of the oncogenic Myc transcriptional factor and TGF-β [68, 69]. Overexpression converts a benign tumor to colorectal cancer [70].
MicroRNA and colorectal cancer.
Mir-20 acts as a potential colorectal cancer cell biomarker [71]. Induction of miR-20-mediated EMT is a critical factor contributing to the increases in tumor cell migration, metastasis, E-cadherin downregulation, and upregulation of matrix metalloproteinases (Figure 5) [72, 73]. This microRNA can cause a delay in TGF-β-mediated G1/S transition. However, cell cycle progression occurs due to an inactivating mutation in this pathway [74]. Normal TGF-β-mediated signaling can be a cytostatic response and inhibit tumorigenicity in colorectal cancer cells [75]. miR-20 may be degraded by a bacterial strain that is dominant in the lumen of the bowel of colorectal patients. Hence, expression of miR-20a is reduced in patients having colorectal adenoma [76, 77, 78].
In another study, miR-34a modulates EMT and MET processes. There is methylation in CpG islands (cancer specific), and these are repressed by IL-6/STAT3 pathway which is mediated by interleukin-6 receptors (IL6R) and inactivation of TP53. This results in downregulation of miR-34a [79]. miR-34a inhibits SIRT and activates TP53. A positive feedback loop has been suggested between miR-34a (Table 3) and TP53 [81]. In many cancers, TP53-inducible microRNA is miR-34a [82].
Sr. no. | MicroRNAs | Potential target | Function |
---|---|---|---|
1 | miR-185 | Ras homolog gene family, member A, and cell division control protein 42 homolog | Reduction in the proliferation, induction of cell cycle arrest at the G1 stage, and promotion of apoptosis |
2 | miR-192 | cyclin-dependent kinase inhibitor 1 | Regulating the p53 |
3 | miR-215 | ||
4 | miR-34a | Tumor suppressor p53 | Modulate the EMT transition |
MicroRNAs suppressing the colorectal cancer [80].
In another study, miR-200 is downregulated in primary colorectal cancer (invasive stage) correlatable with the disruption of the basement membrane [83]. The miR-200 family consists of five members and is encoded in two clusters. One cluster is present on chromosome 1 and encodes for miR-200a, miR-200b, miR-200c, and miR-141. The other cluster is present on chromosome 12 and encodes for miR-141. The potential target of miR-200 family is ZEB1/ZEB2 which is a repressor of CDH1 (Table 4). Expression of all members of this family can be repressed following methylation of CpG islands in the regulatory region of their genes [84, 85]. Strong expression of miR-200 results in metastatic colorectal cancer [83]. Another study shows that miR-155 and miR-21 are overexpressed in colorectal cancer [86]. In another study involving colorectal cancer patients, the expression of miR-195 and miR-497 is reduced [87].
Sr. no. | MicroRNAs | Potential target | Function |
---|---|---|---|
1 | miR-130a | Mothers against decapentaplegic homolog 4 (SMAD4) | Enhances the cell proliferation and migration |
2 | miR-301a | ||
3 | miR-454 | ||
4 | miR-200 | Zinc finger E-box-binding homeobox ½ | Promotes metastasis |
MicroRNAs promoting the colorectal cancer [80].
Cervical cancer is the most common cause of death among women in the developing countries [88, 89]. Cervical cancer can cause the death of 270,000 women per year [90]. Human papillomavirus (HPV) is the causative agent, with the E6 and E7 proteins targeting p53 and pRb, respectively [91].
Several miRNAs are upregulated and downregulated during cervical cancer (Table 5). miR-135b is a biomarker for cervical cancer. Suppression of this biomarker results in the inhibition of cell growth.
Type of miRNA | Function | Ref. |
---|---|---|
miR-491-5p | Downregulated; suppress cervical cancer by telomerase reverse transcriptase and regulate the PI3K/AKT pathway | [92] |
miR-142-3p | Inhibit the proliferation of cell Frizzled_7 receptor (FZD7) | [93] |
miR-142-3p | Inhibit the growth of cell via downregulation of its FOXM1 target | [94] |
AmiRNA involved in cervical cancer.
Downregulation of miR-135b results in the percentage of G1 cells with a concomitant decrease in those in the S phase. The expression of cyclin-dependent kinases (p27 and p21) is increased and that of cyclin D1 is decreased. Cyclin D1 (nuclear protein) is responsible for the regulation of cells (proliferating) that are at the G1 phase of the cell cycle [72, 73].
There seems to be an inverse relationship between miR-135b and FOXO1 protein. When FOXO1 protein is downregulated, cervical cancer is promoted. When FOXO1 protein is expressed, then there is an increase in the p27 and p21 expression with a decrease in cyclin D1 level and cell cycle is arrested [95, 96]. So, when miR-135 is downregulated, FOXO1 is upregulated with the resultant inhibition of cell growth (Figure 6).
MicroRNA and cervical cancer.
In cervical cancer, miR-196a is upregulated and its targets are p27Kip and FOXO1. It promotes the transition of cells from G1 phase to S phase, enhances the cellular proliferation by involving the PI3K/Akt pathway, and is involved in tumorigenesis [97].
In one study, miR-10a is overexpressed in cervical cancer (Long et al., 2012; [28]). The target of miR-10a is transmembrane protein type 1 close homolog of L1 (CHL1) that is downregulated. A decrease in CHL1 protein dysregulates PAK and MAPK pathways resulting in increases in cell growth followed by migration and invasion [98].
In another study, miR-21 is upregulated in cervical cancer, and it is located at the 17q23.21 locus (Table 6). The pri-miR-21 is transcribed by the intronic region of TMEM49 (protein-coding gene). This miRNA targets the p53 and Cdc25 (regulators of the expression of genes), TPM1 and RECK (suppressing the metastasis), and PTEN and PDCD4 (inducing the apoptosis of metastasized cell). Hence, decreases in this miRNA can result in the PDCD4 gene providing signals for the activation of the RAS pathway. This activation, in turn, activates the transcription factor AP-1gene. This AP-1 binds to a specific site on the promoter of miR-21 and as a result miR-21 gene is transcribed [99], thereby providing a plausible mechanism for a positive feedback loop.
Sr. no. | MicroRNAs | Potential targets | Function | Ref. |
---|---|---|---|---|
1 | miR-196a | Binds to the 3′UTR of p27Kip and FOXO1 and inhibits their translation | Increases in cell proliferation and tumorigenesis | [97] |
2 | miR-10a | Has an inverse relation with the expression of close homolog of L1 (CHL1) transmembrane protein type 1—a cell-adhesion protein | Cell growth followed by migration and invasion | [91] |
3 | miR-21 | Negatively regulates p53 and Cdc25, TPM1 and RECK, and PTEN and PDCD4 | Enhances the expression of genes associated with cell proliferation, metastasis, as well as those involved in the antiapoptosis effect | [91] |
4 | miR-886-5p | Negatively regulates the Bax gene | Dysregulation of the gene involved in apoptosis (miR-10a, miR-106b, miR-21, miR-135b, miR-141, miR146, miR-148a, miR-214, and miR-886-5p) | [91] |
5 | miR-20a | TNKS2 oncogene is upregulated (by binding at 3′UTR of mRNA of TNKS2 results in enhanced translation) | Migration, colony formation, and invasion | [91] |
MicroRNAs activating the cervical cancer.
It was reported that miR-886-5p targets and negatively regulates Bax gene expression via inhibition of translation, and hence, this form of control may be significant for the development of cervical cancer. When there is a death signal, the proapoptotic protein coded by Bax gene is inserted into the outer membrane of mitochondria. As a result, cytochrome C is released, and the initiator caspase-9 is subsequently activated with the initiation of apoptosis (Table 7) [91].
Sr. no. | MicroRNAs | Potential target | Function |
---|---|---|---|
1 | miR-143 | Target k-Ras, Bcl-2 and Macc1, specifically downregulation of Bcl-2 | Inhibition of apoptosis and uncontrolled cell proliferation |
2 | miR-129-5p | Downregulates HPV18 E5 and E7 expression as well as inhibits the translation of SP-1 transcriptional factor | Suppressing the progression of cervical cancer |
3 | miR-34a | Cyclin E2 and D1, CDK6, E2F3, CDK4, E2F1, E2F5, P18, Bcl-2, and SIRT1 | Aberrations in cell proliferation and differentiation—cell transformation |
MicroRNAs suppressing cervical cancer [91].
Liver cancer is rising very rapidly globally with aflatoxins also contributing to its etiology. Specific miRNA may be expressed in the case of liver cancer. One of the miRNA biomarkers in liver cancer is miR-26a. Its expression is reduced in liver cancer unlike normal hepatic cells, where its expression level is increased [100].
MicroRNA and liver cancer.
miR-26a and miR-34a cause an increased number of cells in the G1 phase of the cell cycle, while there is a decrease in the cells in the S phase of the cell cycle. miR-26 causes cell cycle arrest at the G1 phase [84]. In the 3′UTR region of cyclins E2 and D2, there is a conserved binding site for miR-26a. miR-26a binds to these binding sites and represses the expression of both cyclins (Figure 7). miR-26 causes the induction of apoptosis in the tumor cells and suppresses hepatic cancer [101].
Kim et al. studied the expression of miR-31 in liver cancer (Table 8). The main target of miR-31 is CDK2 protein and HDAC2, with these proteins suppressed in the livers of normal individuals. There is an enhanced expression of CDK2 protein and HDAC2 in liver cancer. When HDAC2 is suppressed, p21WAF1/Cip1 and p16INK4A are activated, and positive regulators of the cell cycle (cyclin D1, CDK2, and CDK4) are suppressed simultaneously [102].
Sr. no. | MicroRNAs | Potential targets | Function | Ref. |
---|---|---|---|---|
1 | miR-26a | Cyclin E2 and D2 | The arrest of the cell cycle at G1 phase | [84] |
2 | miR-31 | CDK2 protein and HDAC2 | Suppress the positive regulators of cell cycle and promote those proteins involved in EMT-related processes | [102] |
MicroRNAs suppressing the liver cancer.
In another study, the expression of miR-9 enhances the formation of tumor spheres in the liver. The direct target of the miR-9 is PPARA and CDH1 genes and regulates them via binding to the 3′UTR region of these genes. Upregulation of miR-9 enhances the level of vimentin (mesenchymal marker) and deregulates the CDH1 (Table 9). The transcriptional factor PPARA has been implicated in the metabolic homeostasis of the liver by regulating the nuclear factor-4 alpha (hepatocyte HNF4A) gene, which is a tumor suppressor. In liver cancer, miR-9 suppresses the CDH1 and also suppresses the PPARA at their mRNA level by binding to the 3′UTR of these genes [103].
Sr. no. | MicroRNAs | Potential targets | Function | Ref. |
---|---|---|---|---|
1 | miR-9 | Influences the PPARA/CDH1pathway | Suppress the tumor suppressor | [103] |
2 | miR-525-3p | Downregulates ZNF395 | Enhances cell growth and prevent apoptosis | [104] |
MicroRNAs activating the liver cancer.
In one study, there is overexpression of miR-525-3p in liver cancer, and its potential target is a zinc finger protein (Krüppel C2H2 type family) ZNF395. This zinc finger protein was originally a transcriptional factor and binds to the promoter region of the human papillomavirus (HPV). This protein mediates the regulation of PI3K/Akt pathway and causes the inhibition of cell growth via the induction of caspase-3 and the promotion of apoptosis. The expression of miR-525-3p enhances cell growth and prevention of apoptosis [104].
In countries in the West, prostate cancer is a more prevalent form of cancer among males with an increasing incidence rate [105]. Prostate cancer is the result of undesirable genomic alteration [106, 107]. CD9 is inactivated during prostate cancer and may cause its progression [108].
In the prostate cancer, serum level of miR-141 is elevated [109]. So it acts as the biomarker of prostate cancer. In the progression or repression of prostate cancer, miR-141 function is understood poorly [110]. One other study is done by Waltering et al. in which miR-141 is castrated and results in upregulation and activation (Figure 8). This causes the LNCaP cell growth to increase. This miRNA is also involved in the regulation of signaling of the androgen. This androgen has a crucial role in the growth of prostate cancer (castration-resistant and androgen-dependent). So it may be involved in the progression of prostate cancer [111, 112].
miRNA and prostate cancer.
In a study involving prostate cancer, miR-888 was found to be upregulated. Its target is the tumor suppressors SMAD4 and RBL1. Binding of this miRNA to the 3′UTR causes their downregulation. RBL1 is the member of the RB (retinoblastoma) family and blocks the progression of cells at the G1-S phase following its binding and inhibition of the transcription factor E2F. SMAD4 protein binds to SMAD receptors and transduces the signal initiated by TGF-β/BMP ligands in order to regulate differentiation and cell growth [113].
In another study, there is the downregulation of miR-23a, b (Table 10). There is upregulation of the-Myc gene which causes the repression of these miRNAs at the transcriptional level. Mitochondrial glutaminase protein is expressed in the prostate cancer cells. Consequently, glutamine catabolism is increased, providing a growth advantage to the cancer cells [114].
Sr. no. | MicroRNAs | Potential targets | Function | Ref. |
---|---|---|---|---|
1 | miR-141 | LNCaP cells | Promote cell growth Decreased growth in response to anti-miR-141 treatment | [112] |
2 | miR-888 | Downregulates SMAD4 and RBL1 | G1-S phase transition | [113] |
MicroRNAs activating the prostate cancer.
In another study, miR-34a is suppressed in prostate cancer. The target of miR-34a is deacetylase sirtuin (SIRT1) and cyclin-dependent kinase 6 (CDK6). CDK6 regulates cyclin D, which, in turn, regulates cell cycle progression and G1-S phase transition, while p53 protein-dependent apoptosis is regulated by SIRT1 via deacetylation and stabilization of p53. The target of the p53 gene is miR-34a. It is suggested that there is a positive feedback loop in which SIRT1 mediates the activation of miR-34a via stabilization of p53 and induces the apoptosis and blocks the cell cycle transition. This activation of p53 causes the upregulation of miR-34a which in turn suppresses the SIRT1 (Table 11) [114].
Sr. no. | MicroRNAs | Potential targets | Function |
---|---|---|---|
1 | miR-23a,b | Glutaminase protein (indirect) | Glutamine catabolism |
2 | miR-34a | SIRT1 and CDK6 | Progression of cell cycle, G1-S phase transition, and antiapoptosis |
MicroRNAs suppressing the prostate cancer [114].
The leading cause of death around the world is lung cancer by tobacco smoke. This environmental lifestyle-related factor may cause undesirable epigenetic and genetic modifications [115]. The key role in lung cancer is the alteration and mutation in tumor suppressor genes (p53 and RB/p16pathway) and less frequent is the genetic alteration of FHIT, K-ras, MYO18B, and PTEN [116].
Five miRNAs were differentially expressed in lung cancer tissues, and these include miR-21, miR-155, miR-145, miR-17-3p, and hsa-let-7a-2. Specifically, hsa-miR-155 levels were increased, while that of hsa-let-7a-2 was downregulated [117].
There is a functional interaction of let-7 with the Ras as a target gene is overexpressed associated with protein kinase and resulting intracellular pathway of signaling [118]. The molecular mechanism is unclear involving miRNA in lung cancer. Alteration in the somatic genes resulted in the defective miRNA expression in lung cancer. This reduced expression of miRNA (has-let-7a-2) in the lung cancer is due to epigenetic modification and results in the silencing of tumor suppressor gene and many others (Figure 9) [119, 120]. The expression of hsa-miR-21 is upregulated in cancer cell and causes the inhibition of product of gene which initiates apoptosis and causes lung cancer [121]. In a report miR-17∼92 cluster is overexpressed in the lung cancer. This cluster consists of six miRNAs.
miRNA and lung cancer.
This cluster in lung cancer is transactivated via MYC and members of the E2F family. The direct target of this cluster is HIF-1α. Upregulation of MYC causes the downregulation of HIF-1α and affects proliferation of cell in normoxia without affecting the hypoxic condition. Overexpression of this cluster causes knockdown of retinoblastoma gene and results in the formation of reactive oxygen species. Another direct target of this cluster is RAS-related protein 14 (RAB-14), and it is downregulated by this cluster and results in the initiation and development of cancer [122].
In another study, miR-21 is upregulated in the lung cancer. Its direct target is tumor suppressor gene PTEN that is repressed by overexpression of miR-21 (Table 12), which results in cell growth enhancement and non-small cell lung carcinoma invasion [123]. miR-21 is upregulated by RAS via PI3K and RAF/MAPK pathways [122].
Sr. no. | MicroRNAs | Potential targets | Function | Ref. |
---|---|---|---|---|
1 | let-7 | Ras | Protein kinase-associated signaling pathway | [118] |
2 | miR-17∼92 | HIF-1α and RAB14 | ROS and initiation and development of cancer | [122] |
3 | miR-21 | PTEN | Cell growth enhancement and invasion | [122] |
MicroRNAs activating the lung cancer.
In another study, miR-34 is downregulated in the lung cancer. This miRNA is directly regulated by p53 and regulates the apoptosis and arrest of the cell cycle in cancer [81].
The miR-34/miR-499 is downregulated in lung cancer and its direct target is E2F and p53 (Table 13). Both miRNAs suppress the E2F and upregulate the p53 via SIRT1 so cell growth is increased [124].
Sr. no. | MicroRNAs | Potential targets | Function | Ref. |
---|---|---|---|---|
1 | miR-34 | p53 | Regulate the apoptosis and arrest of cell cycle | [81] |
2 | miR-34/miR-499 | E2F and p53 | Cell growth and proliferation | [124] |
3 | miR-15/miR-16 | Cyclin D1 | The arrest of the cell cycle at the G1 phase | [122] |
MicroRNAs suppressing the lung cancer.
The miR-15/miR-16 is downregulated in lung cancer. There is upregulation of cyclin D1 with the downregulation of miR-15/miR-16. The overexpression of miR-15/miR-16 causes the arrest of the cell cycle at G1 phase [122]
The second malignancy that is widely prevailed is the gastric cancer which results in 12% deaths around the world [125]. Gastric cancer is the result of a series of steps. When transforming growth factor (TGF-beta) resistance is developed and E2F1 is upregulated, then gastric cancer is developed [126, 127].
In gastric cancer, there is upregulation of cluster of miR-106b-25 present on Mcm gene [128]. The transition of the G1/S phase of the cell cycle is targeted by Mcm gene. It ensures that DNA is replicated only one time when replication fork is assembled on the DNA during each cycle [129]. When cells exit from the mitosis, then expression of cluster of miR-106b-25 is activated by E2F1 (Figure 10) and gains the reentry in the G1 phase of the cell cycle. The cell cycle inhibitor is p21 [130].
miR-106b-25 cluster.
The cytokine TGF-beta causes the cell cycle arrests by activating p21 and causes the apoptosis [131]. As this cytokine is activated it causes the downregulation of miR-106b-25 cluster, reduces the expression of E2F1, causes the cell cycle arrest at G1/S phase of cell cycle, and causes the induction of apoptosis. The key target of miR-93 and miR-106b is E2F1 [132]. The key target of miR-25, the biomarker of gastric cancer, is TGF-beta cytokine [133]. The target of cytokine in mediating the apoptosis is Bim protein that in turn causes the activation of proapoptotic Bax and Bad molecules acting as an antagonist of Bcl2 and BclXL antiapoptotic factors (Figure 11) [134].
miRNA and gastric cancer.
Lim found that miR-196b is upregulated in the gastric cancer (Table 14). This miRNA is present in chromosome 9 at HOXA cluster. There is a positive association of expression of miR-196b with the expression of HOXA10. Unmethylation of CpG islands results in the expression of miR-196b. The HOXA10 expression results in hematopoietic stem cell proliferation and progenitor cell proliferation leading to the development of cancer via expression of genes that codes for integrin-β3, TGFβ2, and dual-specificity protein phosphatase 4 [135].
Sr. no. | MicroRNAs | Potential targets | Function | Ref. |
---|---|---|---|---|
1 | miR-106b-25 | E2F1 | Antiapoptosis and cell proliferation | [132] |
2 | miR-196b | HOXA10 | Progenitor and hematopoietic stem cell proliferation | [135] |
MicroRNAs activating the gastric cancer.
We studied miR-375 is downregulated in gastric cancer (Table 15). Its expression in cancer cell causes the decrease in cell viability by downregulation of PDK1 and JAK2 revealing that miR-375 is a tumor suppressor in gastric cancer [136, 137].
Sr. no. | MicroRNAs | Potential targets | Function | Ref. |
---|---|---|---|---|
1 | miR-375 | PDK1 and JAK2 | Decrease the cell viability | [136, 137] |
2 | miR-135a | E2F | Suppress cell proliferation, metastasis, and EMT | [138] |
MicroRNAs suppressing the gastric cancer.
In another study, miR-135a is a tumor suppressor in gastric cancer. Upregulation of miR-135a causes the suppression of gastric cancer via suppression of proliferation of cell via E2F, metastasis, and EMT. In gastric cancer, lymph node metastasis is associated with proliferation, metastasis, and EMT which is suppressed by overexpression of miR135a [138].
In males, bladder cancer is an important malignancy present in two forms that are muscle invasive and non-muscle invasive (benign) [139]. There are two microRNAs associated with bladder cancer. They are miR-21 and miR-129 [140].
In the bladder cancer, miR-129 and miR-21 both are upregulated. The direct target of miR-21 is the tumor suppressor genes that are TPM1 and PTEN (Figure 12) [141, 142]. The known targets of miR-129 are the genes involved in the regulation of transcription and processing of miRNA that are TAMTA1 and EIF2CA [143]. The mir-129’s pathway of death effectors leads to the tumor as its target is also SOX4 [144].
miRNA and bladder cancer.
According to one study, miR-19a is frequently upregulated in the bladder cancer. The expression of miR-19a is related to PTEN expression (Table 16). PTEN is a tumor suppressor gene. When miR-19a is overexpressed, it causes the downregulation of PTEN and increases the cell level of phosphatidylinositol-3,4,5-trisphosphate in AKT/PKB pathway. When growth factors are released, then the AKT pathway is initiated and cell growth is increased [145].
Sr. no. | MicroRNAs | Potential targets | Function | Ref. |
---|---|---|---|---|
1 | miR-129 | TAMTA1 and EIF2CA | Regulation of transcription | [143] |
2 | miR-21 | TPM1 and PTEN | Growth of tumor cell | [141] |
3 | miR-19a | PTEN | Increase in the cell growth | [145] |
MicroRNAs activating the bladder cancer.
Zhang studied that miR-125b is downregulated in bladder cancer. The expression of miR-135b causes the inhibition of formation of colony and development of cancer via suppression of E2F3 which is overexpressed in bladder cancer [74].
In another study angiogenesis in the bladder cancer is suppressed by miR-34a (Table 17). The target of miR-34a is CD44 and causes the suppression of CD44 when upregulated which results in the regulation of transcription of the various genes in bladder cancer. Over expression of miR-34a causes the inhibition of invasion, metastasis, migration, tube formation, and angiogenesis by targeting the CD44 [146].
Glioblastoma is the tumor of astrocytes, star-shaped cells that form the supportive tissues (glue-like) of the brain. This is readily metastasizing tumor because it is surrounded by large blood vessels. Glioblastoma is a complex and heterogeneous tumor that comprises on neoplastic cells, endothelial cells, stemlike cells, neural precursor cells, microglia, reactive extracellular components, and peripheral immune cells [147].
The biomarker in glioblastoma is miR-21 that is upregulated in this cancer (Figure 13). It mediates its effect in two ways: acting at the translational level and acting at the transcription level. It binds the 3′UTR region of the target gene (for apoptosis) [148] and causes the inhibition of transcription of apoptotic genes by decreasing the stability. It also resists the caspases 3 and 7 that are important apoptotic agents so apoptosis does not occur [149].
miRNA and glioblastoma.
Upregulation of miR-221 and miR-222 was in glioma cells. These two miRNAs present as a cluster on Xp11.3 and have the same target. Functional studies revealed that there is an association of these two miRNAs with the progression of the cell cycle. Their direct target is cyclin-dependent kinase 1B/p27. The overexpression of these miRNAs cause the activation of quiescent glioblastoma cells and the progression of these cells from G1 phase to S phase of the cell cycle. miR-221/miR-222 also targets the p57 and p27 (inhibitors of cell-dependent kinase) to prevent the quiescence at G1 phase and cause their entry to S phase of the cell cycle. The miR-221/miR-222 also targets the PUMA, a proapoptotic protein, to prevent the apoptosis (Table 18) [150].
Sr. no. | MicroRNAs | Potential targets | Function | Ref. |
---|---|---|---|---|
1 | miR-21 | Caspases 3 and 7 | Antiapoptotic | [149] |
2 | miR-221/miR-222 | Cyclin-dependent kinase 1B/p27 | Prevent the apoptosis | [150] |
MicroRNAs activating the glioblastoma.
Another biomarker miR-128 is found to be downregulated in glioblastoma. The expression of miR-128 causes the regulation of proliferation of glioblastoma multiform (GBM) cells via targeting the PDGFR-α and EGFR, the oncogenic kinases (receptor tyrosine kinases) (Table 19). It suppresses the GBM by enhancing the differentiation of neuronal cells. It also targets the signaling molecules in the PI3-kinase/AKT pathway which causes the tumor cell proliferation [147].
Sr. no. | MicroRNAs | Potential targets | Function | Ref. |
---|---|---|---|---|
1 | miR-128 | PDGFR-α and EGFR | Enhancing the differentiation of neuronal cells | [147] |
2 | miR-7 | EGFR | Reduction of cell viability | [151] |
MicroRNAs suppressing the glioblastoma.
In other study miR-7 is downregulated in glioblastoma. Its target is EGFR and causes the inhibition of AKT pathways and EGFR and results in the reduction of cell viability of GBM via direct binding to mRNA of EGFR or via targeting to IRS1 and IRS2 (insulin receptor substrate). The major regulators EGFR and IRS are at upstream site of AKT pathway [151].
This is the cancer of B lymphocytes (antibodies), and it is a prevalent form of leukemia in the adult around western countries [152].
In B cell leukemia, the expression of three microRNAs is seen as cancer biomarker. These are miR-15a, miR-16-1, and miR-19a (Figure 14). Two microRNAs are present at 13q14.3 chromosomal location; these are miR-15a and 16-1 [153]. The expression of these two is decreased in this leukemia, whereas the expression of miR-19a is increased [152]. The region encoding for miR-15a and miR-16-1 was deleted. This leads to the presence of the genes of IgVH that were mutated [154]. The potent target of miR-19a is PTEN, and there is down-expression of this PTEN gene; hence its protein is not properly synthesized because the promoter of the gene is hypermethylated [155].
miRNA and B cell lymphocytic leukemia.
The miR-16-1 and miR-15a (located on chromosome 13) are downregulated in B cell lymphocytic leukemia (Table 20). These miroRNAs target the p53 gene which is a tumor suppressor gene. When these miRNAs are downregulated, then the expression of p53 is reduced or inhibited, and expression of BCL-2 is increased which prevent the apoptosis and cell survival is increased [156].
Sr. no. | MicroRNAs | Potential targets | Function | Ref. |
---|---|---|---|---|
1 | miR-15a | p53 | Prevent the apoptosis and cell survival is increased | [153] |
2 | miR-16-1 | p53 | Prevent the apoptosis and cell survival is increased | [156] |
MicroRNAs suppressing the B cell lymphocytic leukemia.
In one study, miR-17/miR-92 cluster is overexpressed in the B cell lymphocytic leukemia (Table 21). The direct target of this cluster is PTEN and Bim. The PTEN is a tumor suppressor gene, and Bim is proapoptotic protein. Overexpression of this cluster causes prevention of apoptosis and progression of tumor [157].
Sr. no. | MicroRNAs | Potential targets | Function | Ref. |
---|---|---|---|---|
1 | miR-19a | PTEN | Cause the tumor | [155] |
2 | miR-17/miR-92 | PTEN and Bim | Prevention of apoptosis and progression of tumor | [157] |
3 | miR-155 | SHIP1 | Inhibition of BCR signaling and surface immunoglobulin | [158] |
MicroRNAs activating the B cell lymphocytic leukemia.
In other study, miR-155 is overexpressed in the B cell lymphocytic leukemia [159]. The potential target for miR-155 is SHIP1. Expression of miR-155 causes the alteration of BCR response in signaling pathway via the modulation of SHIP1 expression in chronic lymphocytic leukemia. Scr homology-2 domain comprising the inositol 5-phosphatase is encoded by SHIP1. This phosphatase causes the inhibition of BCR signaling and surface immunoglobulin [158].
Pancreatic tumor is most of the time identified at the last stages when therapy does not save life. Li et al. characterize the pancreatic cancer stem cells (PCSCs) for the very first time [160].
In one study, there is overexpression of miR-1290 in pancreatic cancer. The direct target of miR-1290 is FoxA1 which has an effect on the transition of epithelial mesenchyma. The overexpression of miR-1290 results in the growth of cell and invasion [94].
In another study there is overexpression of miR-194 in pancreatic cancer. The target of miR-194 is DACH1 and results in the formation of the colony, the proliferation of cell, and migration (Table 22), so miR-194 causes the progression of the tumor [161].
Sr. no. | MicroRNAs | Potential targets | Function | Ref. |
---|---|---|---|---|
1 | miR-1290 | FoxA1 | Cell growth and invasion | [94] |
2 | miR-194 | DACH1 | Progression of tumor | [161] |
MicroRNAs activating the pancreatic cancer.
The growth and differentiation of the cell are regulated by LIN28, a protein that binds to the RNA [162]. The protein that is encoded by LIN28 is 25 kDa and has two binding sites for RNA: cold shock domain (CSD) and a pair of zinc fingers. In pancreatic cancer, the expression of LIN28 is increased which in turn suppresses the biosynthesis of family let-7 of microRNA (Figure 15). This family targets the genes involved in the growth and differentiation regulation [163]. This LIN28 causes the inhibition by binging to the loop present at the terminal region of let-7 family, so their processing is blocked [45, 46, 164]. This family is involved in the regulation of tumor by cyclin D1 (CCND1) inhibition [165, 166].
miRNA and pancreatic cancer.
In one study there is downregulation of miR-145 in pancreatic cancer. The decreased expression of miR-145 is due to activation of the K-ras gene. Expression of miR-145 causes the inhibition of expression of insulin growth factor-1 receptors (Table 23). Its expression causes the downregulation of genes related to cancer (SET, MCM2, SPTBN1). These genes cause growth and carcinogenesis of pancreatic cancer [161].
In the myeloid leukemia, malignant blast cells are synthesized in comparison to mononuclear cells of healthy bone marrow [167]. In myeloid leukemia the hypermethylation of the DNA is involved in tumor suppression [168]. In one study, there is overexpression of miR-204 in acute myeloid leukemia. The target of miR-204 is MEIS1 and HOXA 10 genes which disturbs the differentiation of myeloid cells. Its overexpression causes tumorigenesis [169].
In another study, miR-125b (located on chromosome 1) is overexpressed in acute myeloid leukemia. The target of miR-125b is BCL2-antagonist/killer 1 (Bak1) which enhance the proliferation of AML cell and prevent the apoptosis [169].
In another study, miR-155 (located on chromosome 21) is overexpressed in the acute myeloid leukemia. This miR-155 is located in B cell integration cluster (BIC) gene. This BIC correlated to MYC to initiate lymphomas. Overexpression of miR-155 causes the inhibition of WEE1, a regulator of the cell cycle, and hMLH1, hMLH6, and hMLH4, the genes for mismatch repair (Table 24). The result of this inhibition is increased in mutation rate in progenitor and hematopoietic stem cells [169].
Sr. no. | MicroRNAs | Potential targets | Function |
---|---|---|---|
1 | miR-204 | MEIS1 and HOXA | Tumorigenesis |
2 | miR-125b | Bak1 | Enhance proliferation and prevent apoptosis |
3 | miR-155 | WEE1, hMLH1, hMLH6, and hMLH4 | Increase mutation rate in progenitor and hematopoietic stem cells |
MicroRNAs activating the acute myeloid leukemia [169].
The known biomarker for the acute myeloid leukemia is miR-29b [167]. miR-29b causes the hypomethylation of the DNA. Sp1 transcriptional factor has the binding site for both miR-29b and DNMT1. In DNMT, it binds to its promoter and 3′UTR for miR-29b of Sp1 (specificity protein 1). Binding to the 3′UTR causes the reduced expression of Sp1, so DNMT (DNA methyltransferase) expression is also reduced (Figure 16). In acute myeloid leukemia, miR-29b results in the apoptosis when it directly targets the MCL (induced myeloid leukemia cell differentiation protein) [170]. So the expression of miR-29b is reduced in acute myeloid leukemia which leads to cancer progression as apoptosis has been decreased with reduced expression of miR-29b (Table 25).
miRNA and acute myeloid leukemia.
Sr. no. | MicroRNAs | Potential targets | Function |
---|---|---|---|
1 | miR-29b | DNMT | Apoptosis |
2 | miR-29b | MCL protein | Apoptosis |
MicroRNAs suppressing the acute myeloid leukemia [170].
In ovarian cancer, the biomarker that is used is miR-214 and it is upregulated in cancer. It binds to the 3′UTR region of phosphatase and tensin analog (PTEN) gene and causes its hypermethylation. So this is inactivated. The direct target of PTEN is Akt protein kinase B and mediates its activation by the help of PI4K3B [171]. Akt causes the downstream effects such as activation of glycogen synthase. So when PTEN is inhibited, it activates the expression of Akt. This miR-214 resists the cisplatin-mediated cell death, so it is antiapoptotic in nature (Figure 17). Cisplatin is an important factor in mediating cell death [172].
miRNA and ovarian cancer.
In a study, there is overexpression of Hsa-miR-182 in ovarian cancer. The potential target of Hsa-miR-182 is forkhead box 3 (FOXO3) and forkhead box 1 (FOXO1) which promote the differentiation and inhibition of growth (acting as a tumor suppressor). These tumor suppressor genes are suppressed, and growth and proliferation of ovarian cell are increased (Table 26) [173].
Sr. no. | MicroRNAs | Potential targets | Function | Ref. |
---|---|---|---|---|
1 | miR-214 | PTEN | Antiapoptosis | [172] |
2 | Hsa-miR-182 | FOXO3 and FOXO1 | Increased proliferation and growth | [173] |
MicroRNAs activating the ovarian cancer.
In another study, there is downregulation of miR-200 family in ovarian cancer. The direct target of miR-200 is zinc finger E-box-binding homeobox 1 and 2 (ZEB1 and ZEB2). It prevents the EMT, metastasis, invasion, and migration of tumor cell. Interleukin-8 and CXCL1 (released from tumor epithelial cells) are also the target of miR-200 and prevent the angiogenesis of tumor cell [174].
In another study there is downregulation of miR-506 in ovarian cancer, so there is cell migration invasion of the cancer cell. When this miRNA is overexpressed, it causes the expression of E-cadherin and results in inhibition of cell invasion and migration and proliferation of ovarian cancer and, via targeting SNAI2 (E-cadherin transcriptional factor), prevents the EMT induction by TGF-β (Table 27). The miR-506 directly targets the CDK4/CDK6-FOXM1 axis and initiates the senescence [175].
MicroRNAs (miRNAs) could be used as potential tool for early detection of cancer. It may upregulate or downregulate multiple targets through various mechanisms. It is upregulated as an oncogene (miRNA) and downregulated as a tumor suppressor. microRNA targets the PTEN, interferon (tumor suppressor genes), and also to the cell cycle along with the regulation of these genes [172]. MicroRNA is of vital importance because of its resistance to degradation and could be a potential candidate for clinical applications. However, its expression level can be screened in the serum/plasma (blood) by high-throughput sequencing technology. Further research for identification of novel microRNA will warrant the development of microRNA-related cancer prognosis [176, 177, 178, 179, 180].
miRISC | microRNA-associated RNA-induced silencing complex |
DGCR8 | DiGeorge syndrome chromosomal [or critical] region 8 |
EGFR | epidermal growth factor receptor |
FOXO1 | forkhead box protein O1 |
PTEN | phosphatase and tensin homolog |
TPM1 | tropomyosin alpha-1 chain |
SOX4 | SRY-related HMG-box |
CCND1 | cyclin-D1 |
DNMT | DNA methyltransferase |
MCL | induced myeloid leukemia cell differentiation protein Mcl-1 |
PKB | Akt (protein kinase B) |
You have been successfully unsubscribed.
",metaTitle:"Unsubscribe Successful",metaDescription:"You have been successfully unsubscribed.",metaKeywords:null,canonicalURL:"/page/unsubscribe-successful",contentRaw:'[{"type":"htmlEditorComponent","content":""}]'},components:[{type:"htmlEditorComponent",content:""}]},successStories:{items:[]},authorsAndEditors:{filterParams:{sort:"featured,name"},profiles:[{id:"6700",title:"Dr.",name:"Abbass A.",middleName:null,surname:"Hashim",slug:"abbass-a.-hashim",fullName:"Abbass A. Hashim",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/6700/images/1864_n.jpg",biography:"Currently I am carrying out research in several areas of interest, mainly covering work on chemical and bio-sensors, semiconductor thin film device fabrication and characterisation.\nAt the moment I have very strong interest in radiation environmental pollution and bacteriology treatment. The teams of researchers are working very hard to bring novel results in this field. I am also a member of the team in charge for the supervision of Ph.D. students in the fields of development of silicon based planar waveguide sensor devices, study of inelastic electron tunnelling in planar tunnelling nanostructures for sensing applications and development of organotellurium(IV) compounds for semiconductor applications. I am a specialist in data analysis techniques and nanosurface structure. I have served as the editor for many books, been a member of the editorial board in science journals, have published many papers and hold many patents.",institutionString:null,institution:{name:"Sheffield Hallam University",country:{name:"United Kingdom"}}},{id:"54525",title:"Prof.",name:"Abdul Latif",middleName:null,surname:"Ahmad",slug:"abdul-latif-ahmad",fullName:"Abdul Latif Ahmad",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:null},{id:"20567",title:"Prof.",name:"Ado",middleName:null,surname:"Jorio",slug:"ado-jorio",fullName:"Ado Jorio",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"Universidade Federal de Minas Gerais",country:{name:"Brazil"}}},{id:"47940",title:"Dr.",name:"Alberto",middleName:null,surname:"Mantovani",slug:"alberto-mantovani",fullName:"Alberto Mantovani",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:null},{id:"12392",title:"Mr.",name:"Alex",middleName:null,surname:"Lazinica",slug:"alex-lazinica",fullName:"Alex Lazinica",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/12392/images/7282_n.png",biography:"Alex Lazinica is the founder and CEO of IntechOpen. After obtaining a Master's degree in Mechanical Engineering, he continued his PhD studies in Robotics at the Vienna University of Technology. Here he worked as a robotic researcher with the university's Intelligent Manufacturing Systems Group as well as a guest researcher at various European universities, including the Swiss Federal Institute of Technology Lausanne (EPFL). During this time he published more than 20 scientific papers, gave presentations, served as a reviewer for major robotic journals and conferences and most importantly he co-founded and built the International Journal of Advanced Robotic Systems- world's first Open Access journal in the field of robotics. Starting this journal was a pivotal point in his career, since it was a pathway to founding IntechOpen - Open Access publisher focused on addressing academic researchers needs. Alex is a personification of IntechOpen key values being trusted, open and entrepreneurial. Today his focus is on defining the growth and development strategy for the company.",institutionString:null,institution:{name:"TU Wien",country:{name:"Austria"}}},{id:"19816",title:"Prof.",name:"Alexander",middleName:null,surname:"Kokorin",slug:"alexander-kokorin",fullName:"Alexander Kokorin",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/19816/images/1607_n.jpg",biography:"Alexander I. Kokorin: born: 1947, Moscow; DSc., PhD; Principal Research Fellow (Research Professor) of Department of Kinetics and Catalysis, N. Semenov Institute of Chemical Physics, Russian Academy of Sciences, Moscow.\r\nArea of research interests: physical chemistry of complex-organized molecular and nanosized systems, including polymer-metal complexes; the surface of doped oxide semiconductors. He is an expert in structural, absorptive, catalytic and photocatalytic properties, in structural organization and dynamic features of ionic liquids, in magnetic interactions between paramagnetic centers. The author or co-author of 3 books, over 200 articles and reviews in scientific journals and books. He is an actual member of the International EPR/ESR Society, European Society on Quantum Solar Energy Conversion, Moscow House of Scientists, of the Board of Moscow Physical Society.",institutionString:null,institution:{name:"Semenov Institute of Chemical Physics",country:{name:"Russia"}}},{id:"62389",title:"PhD.",name:"Ali Demir",middleName:null,surname:"Sezer",slug:"ali-demir-sezer",fullName:"Ali Demir Sezer",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/62389/images/3413_n.jpg",biography:"Dr. Ali Demir Sezer has a Ph.D. from Pharmaceutical Biotechnology at the Faculty of Pharmacy, University of Marmara (Turkey). He is the member of many Pharmaceutical Associations and acts as a reviewer of scientific journals and European projects under different research areas such as: drug delivery systems, nanotechnology and pharmaceutical biotechnology. Dr. Sezer is the author of many scientific publications in peer-reviewed journals and poster communications. Focus of his research activity is drug delivery, physico-chemical characterization and biological evaluation of biopolymers micro and nanoparticles as modified drug delivery system, and colloidal drug carriers (liposomes, nanoparticles etc.).",institutionString:null,institution:{name:"Marmara University",country:{name:"Turkey"}}},{id:"61051",title:"Prof.",name:"Andrea",middleName:null,surname:"Natale",slug:"andrea-natale",fullName:"Andrea Natale",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:null},{id:"100762",title:"Prof.",name:"Andrea",middleName:null,surname:"Natale",slug:"andrea-natale",fullName:"Andrea Natale",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"St David's Medical Center",country:{name:"United States of America"}}},{id:"107416",title:"Dr.",name:"Andrea",middleName:null,surname:"Natale",slug:"andrea-natale",fullName:"Andrea Natale",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"Texas Cardiac Arrhythmia",country:{name:"United States of America"}}},{id:"64434",title:"Dr.",name:"Angkoon",middleName:null,surname:"Phinyomark",slug:"angkoon-phinyomark",fullName:"Angkoon Phinyomark",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/64434/images/2619_n.jpg",biography:"My name is Angkoon Phinyomark. I received a B.Eng. degree in Computer Engineering with First Class Honors in 2008 from Prince of Songkla University, Songkhla, Thailand, where I received a Ph.D. degree in Electrical Engineering. My research interests are primarily in the area of biomedical signal processing and classification notably EMG (electromyography signal), EOG (electrooculography signal), and EEG (electroencephalography signal), image analysis notably breast cancer analysis and optical coherence tomography, and rehabilitation engineering. I became a student member of IEEE in 2008. During October 2011-March 2012, I had worked at School of Computer Science and Electronic Engineering, University of Essex, Colchester, Essex, United Kingdom. In addition, during a B.Eng. I had been a visiting research student at Faculty of Computer Science, University of Murcia, Murcia, Spain for three months.\n\nI have published over 40 papers during 5 years in refereed journals, books, and conference proceedings in the areas of electro-physiological signals processing and classification, notably EMG and EOG signals, fractal analysis, wavelet analysis, texture analysis, feature extraction and machine learning algorithms, and assistive and rehabilitative devices. I have several computer programming language certificates, i.e. Sun Certified Programmer for the Java 2 Platform 1.4 (SCJP), Microsoft Certified Professional Developer, Web Developer (MCPD), Microsoft Certified Technology Specialist, .NET Framework 2.0 Web (MCTS). I am a Reviewer for several refereed journals and international conferences, such as IEEE Transactions on Biomedical Engineering, IEEE Transactions on Industrial Electronics, Optic Letters, Measurement Science Review, and also a member of the International Advisory Committee for 2012 IEEE Business Engineering and Industrial Applications and 2012 IEEE Symposium on Business, Engineering and Industrial Applications.",institutionString:null,institution:{name:"Joseph Fourier University",country:{name:"France"}}},{id:"55578",title:"Dr.",name:"Antonio",middleName:null,surname:"Jurado-Navas",slug:"antonio-jurado-navas",fullName:"Antonio Jurado-Navas",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/55578/images/4574_n.png",biography:"Antonio Jurado-Navas received the M.S. degree (2002) and the Ph.D. degree (2009) in Telecommunication Engineering, both from the University of Málaga (Spain). He first worked as a consultant at Vodafone-Spain. From 2004 to 2011, he was a Research Assistant with the Communications Engineering Department at the University of Málaga. In 2011, he became an Assistant Professor in the same department. From 2012 to 2015, he was with Ericsson Spain, where he was working on geo-location\ntools for third generation mobile networks. Since 2015, he is a Marie-Curie fellow at the Denmark Technical University. His current research interests include the areas of mobile communication systems and channel modeling in addition to atmospheric optical communications, adaptive optics and statistics",institutionString:null,institution:{name:"University of Malaga",country:{name:"Spain"}}}],filtersByRegion:[{group:"region",caption:"North America",value:1,count:5681},{group:"region",caption:"Middle and South America",value:2,count:5161},{group:"region",caption:"Africa",value:3,count:1683},{group:"region",caption:"Asia",value:4,count:10200},{group:"region",caption:"Australia and Oceania",value:5,count:886},{group:"region",caption:"Europe",value:6,count:15610}],offset:12,limit:12,total:117095},chapterEmbeded:{data:{}},editorApplication:{success:null,errors:{}},ofsBooks:{filterParams:{sort:"dateendthirdsteppublish"},books:[],filtersByTopic:[{group:"topic",caption:"Agricultural and Biological Sciences",value:5,count:9},{group:"topic",caption:"Biochemistry, Genetics and Molecular Biology",value:6,count:17},{group:"topic",caption:"Business, Management and Economics",value:7,count:2},{group:"topic",caption:"Chemistry",value:8,count:7},{group:"topic",caption:"Computer and Information Science",value:9,count:10},{group:"topic",caption:"Earth and Planetary Sciences",value:10,count:5},{group:"topic",caption:"Engineering",value:11,count:15},{group:"topic",caption:"Environmental Sciences",value:12,count:2},{group:"topic",caption:"Immunology and Microbiology",value:13,count:5},{group:"topic",caption:"Materials Science",value:14,count:4},{group:"topic",caption:"Mathematics",value:15,count:1},{group:"topic",caption:"Medicine",value:16,count:60},{group:"topic",caption:"Nanotechnology and Nanomaterials",value:17,count:1},{group:"topic",caption:"Neuroscience",value:18,count:1},{group:"topic",caption:"Pharmacology, Toxicology and Pharmaceutical Science",value:19,count:6},{group:"topic",caption:"Physics",value:20,count:2},{group:"topic",caption:"Psychology",value:21,count:3},{group:"topic",caption:"Robotics",value:22,count:1},{group:"topic",caption:"Social Sciences",value:23,count:3},{group:"topic",caption:"Technology",value:24,count:1},{group:"topic",caption:"Veterinary Medicine and Science",value:25,count:2}],offset:0,limit:12,total:null},popularBooks:{featuredBooks:[{type:"book",id:"9343",title:"Trace Metals in the Environment",subtitle:"New Approaches and Recent Advances",isOpenForSubmission:!1,hash:"ae07e345bc2ce1ebbda9f70c5cd12141",slug:"trace-metals-in-the-environment-new-approaches-and-recent-advances",bookSignature:"Mario Alfonso Murillo-Tovar, Hugo Saldarriaga-Noreña and Agnieszka Saeid",coverURL:"https://cdn.intechopen.com/books/images_new/9343.jpg",editors:[{id:"255959",title:"Dr.",name:"Mario Alfonso",middleName:null,surname:"Murillo-Tovar",slug:"mario-alfonso-murillo-tovar",fullName:"Mario Alfonso Murillo-Tovar"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"7769",title:"Medical Isotopes",subtitle:null,isOpenForSubmission:!1,hash:"f8d3c5a6c9a42398e56b4e82264753f7",slug:"medical-isotopes",bookSignature:"Syed Ali Raza Naqvi and Muhammad Babar Imrani",coverURL:"https://cdn.intechopen.com/books/images_new/7769.jpg",editors:[{id:"259190",title:"Dr.",name:"Syed Ali Raza",middleName:null,surname:"Naqvi",slug:"syed-ali-raza-naqvi",fullName:"Syed Ali Raza Naqvi"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9376",title:"Contemporary Developments and Perspectives in International Health Security",subtitle:"Volume 1",isOpenForSubmission:!1,hash:"b9a00b84cd04aae458fb1d6c65795601",slug:"contemporary-developments-and-perspectives-in-international-health-security-volume-1",bookSignature:"Stanislaw P. Stawicki, Michael S. Firstenberg, Sagar C. Galwankar, Ricardo Izurieta and Thomas Papadimos",coverURL:"https://cdn.intechopen.com/books/images_new/9376.jpg",editors:[{id:"181694",title:"Dr.",name:"Stanislaw P.",middleName:null,surname:"Stawicki",slug:"stanislaw-p.-stawicki",fullName:"Stanislaw P. Stawicki"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"7831",title:"Sustainability in Urban Planning and Design",subtitle:null,isOpenForSubmission:!1,hash:"c924420492c8c2c9751e178d025f4066",slug:"sustainability-in-urban-planning-and-design",bookSignature:"Amjad Almusaed, Asaad Almssad and Linh Truong - Hong",coverURL:"https://cdn.intechopen.com/books/images_new/7831.jpg",editors:[{id:"110471",title:"Dr.",name:"Amjad",middleName:"Zaki",surname:"Almusaed",slug:"amjad-almusaed",fullName:"Amjad Almusaed"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9279",title:"Concepts, Applications and Emerging Opportunities in Industrial Engineering",subtitle:null,isOpenForSubmission:!1,hash:"9bfa87f9b627a5468b7c1e30b0eea07a",slug:"concepts-applications-and-emerging-opportunities-in-industrial-engineering",bookSignature:"Gary Moynihan",coverURL:"https://cdn.intechopen.com/books/images_new/9279.jpg",editors:[{id:"16974",title:"Dr.",name:"Gary",middleName:null,surname:"Moynihan",slug:"gary-moynihan",fullName:"Gary Moynihan"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"7807",title:"A Closer Look at Organizational Culture in Action",subtitle:null,isOpenForSubmission:!1,hash:"05c608b9271cc2bc711f4b28748b247b",slug:"a-closer-look-at-organizational-culture-in-action",bookSignature:"Süleyman Davut Göker",coverURL:"https://cdn.intechopen.com/books/images_new/7807.jpg",editors:[{id:"190035",title:"Associate Prof.",name:"Süleyman Davut",middleName:null,surname:"Göker",slug:"suleyman-davut-goker",fullName:"Süleyman Davut Göker"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"7796",title:"Human 4.0",subtitle:"From Biology to Cybernetic",isOpenForSubmission:!1,hash:"5ac5c052d3a593d5c4f4df66d005e5af",slug:"human-4-0-from-biology-to-cybernetic",bookSignature:"Yves Rybarczyk",coverURL:"https://cdn.intechopen.com/books/images_new/7796.jpg",editors:[{id:"72920",title:"Prof.",name:"Yves",middleName:"Philippe",surname:"Rybarczyk",slug:"yves-rybarczyk",fullName:"Yves Rybarczyk"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9711",title:"Pests, Weeds and Diseases in Agricultural Crop and Animal Husbandry Production",subtitle:null,isOpenForSubmission:!1,hash:"12cf675f1e433135dd5bf5df7cec124f",slug:"pests-weeds-and-diseases-in-agricultural-crop-and-animal-husbandry-production",bookSignature:"Dimitrios Kontogiannatos, Anna Kourti and Kassio Ferreira Mendes",coverURL:"https://cdn.intechopen.com/books/images_new/9711.jpg",editors:[{id:"196691",title:"Dr.",name:"Dimitrios",middleName:null,surname:"Kontogiannatos",slug:"dimitrios-kontogiannatos",fullName:"Dimitrios Kontogiannatos"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10178",title:"Environmental Emissions",subtitle:null,isOpenForSubmission:!1,hash:"febf21ec717bfe20ae25a9dab9b5d438",slug:"environmental-emissions",bookSignature:"Richard Viskup",coverURL:"https://cdn.intechopen.com/books/images_new/10178.jpg",editors:[{id:"103742",title:"Dr.",name:"Richard",middleName:null,surname:"Viskup",slug:"richard-viskup",fullName:"Richard Viskup"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"8511",title:"Cyberspace",subtitle:null,isOpenForSubmission:!1,hash:"8c1cdeb133dbe6cc1151367061c1bba6",slug:"cyberspace",bookSignature:"Evon Abu-Taieh, Abdelkrim El Mouatasim and Issam H. Al Hadid",coverURL:"https://cdn.intechopen.com/books/images_new/8511.jpg",editors:[{id:"223522",title:"Dr.",name:"Evon",middleName:"M.O.",surname:"Abu-Taieh",slug:"evon-abu-taieh",fullName:"Evon Abu-Taieh"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9534",title:"Banking and Finance",subtitle:null,isOpenForSubmission:!1,hash:"af14229738af402c3b595d7e124dce82",slug:"banking-and-finance",bookSignature:"Razali Haron, Maizaitulaidawati Md Husin and Michael Murg",coverURL:"https://cdn.intechopen.com/books/images_new/9534.jpg",editors:[{id:"206517",title:"Prof.",name:"Razali",middleName:null,surname:"Haron",slug:"razali-haron",fullName:"Razali Haron"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"2160",title:"MATLAB",subtitle:"A Fundamental Tool for Scientific Computing and Engineering Applications - Volume 1",isOpenForSubmission:!1,hash:"dd9c658341fbd264ed4f8d9e6aa8ca29",slug:"matlab-a-fundamental-tool-for-scientific-computing-and-engineering-applications-volume-1",bookSignature:"Vasilios N. Katsikis",coverURL:"https://cdn.intechopen.com/books/images_new/2160.jpg",editors:[{id:"12289",title:"Prof.",name:"Vasilios",middleName:"N.",surname:"Katsikis",slug:"vasilios-katsikis",fullName:"Vasilios Katsikis"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}}],offset:12,limit:12,total:5126},hotBookTopics:{hotBooks:[],offset:0,limit:12,total:null},publish:{},publishingProposal:{success:null,errors:{}},books:{featuredBooks:[{type:"book",id:"9208",title:"Welding",subtitle:"Modern Topics",isOpenForSubmission:!1,hash:"7d6be076ccf3a3f8bd2ca52d86d4506b",slug:"welding-modern-topics",bookSignature:"Sadek Crisóstomo Absi Alfaro, Wojciech Borek and Błażej Tomiczek",coverURL:"https://cdn.intechopen.com/books/images_new/9208.jpg",editors:[{id:"65292",title:"Prof.",name:"Sadek Crisostomo Absi",middleName:"C. Absi",surname:"Alfaro",slug:"sadek-crisostomo-absi-alfaro",fullName:"Sadek Crisostomo Absi Alfaro"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9139",title:"Topics in Primary Care Medicine",subtitle:null,isOpenForSubmission:!1,hash:"ea774a4d4c1179da92a782e0ae9cde92",slug:"topics-in-primary-care-medicine",bookSignature:"Thomas F. Heston",coverURL:"https://cdn.intechopen.com/books/images_new/9139.jpg",editors:[{id:"217926",title:"Dr.",name:"Thomas F.",middleName:null,surname:"Heston",slug:"thomas-f.-heston",fullName:"Thomas F. Heston"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"8697",title:"Virtual Reality and Its Application in Education",subtitle:null,isOpenForSubmission:!1,hash:"ee01b5e387ba0062c6b0d1e9227bda05",slug:"virtual-reality-and-its-application-in-education",bookSignature:"Dragan Cvetković",coverURL:"https://cdn.intechopen.com/books/images_new/8697.jpg",editors:[{id:"101330",title:"Dr.",name:"Dragan",middleName:"Mladen",surname:"Cvetković",slug:"dragan-cvetkovic",fullName:"Dragan Cvetković"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9785",title:"Endometriosis",subtitle:null,isOpenForSubmission:!1,hash:"f457ca61f29cf7e8bc191732c50bb0ce",slug:"endometriosis",bookSignature:"Courtney Marsh",coverURL:"https://cdn.intechopen.com/books/images_new/9785.jpg",editors:[{id:"255491",title:"Dr.",name:"Courtney",middleName:null,surname:"Marsh",slug:"courtney-marsh",fullName:"Courtney Marsh"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9343",title:"Trace Metals in the Environment",subtitle:"New Approaches and Recent Advances",isOpenForSubmission:!1,hash:"ae07e345bc2ce1ebbda9f70c5cd12141",slug:"trace-metals-in-the-environment-new-approaches-and-recent-advances",bookSignature:"Mario Alfonso Murillo-Tovar, Hugo Saldarriaga-Noreña and Agnieszka Saeid",coverURL:"https://cdn.intechopen.com/books/images_new/9343.jpg",editors:[{id:"255959",title:"Dr.",name:"Mario Alfonso",middleName:null,surname:"Murillo-Tovar",slug:"mario-alfonso-murillo-tovar",fullName:"Mario Alfonso Murillo-Tovar"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"8468",title:"Sheep Farming",subtitle:"An Approach to Feed, Growth and Sanity",isOpenForSubmission:!1,hash:"838f08594850bc04aa14ec873ed1b96f",slug:"sheep-farming-an-approach-to-feed-growth-and-sanity",bookSignature:"António Monteiro",coverURL:"https://cdn.intechopen.com/books/images_new/8468.jpg",editors:[{id:"190314",title:"Prof.",name:"António",middleName:"Cardoso",surname:"Monteiro",slug:"antonio-monteiro",fullName:"António Monteiro"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"8816",title:"Financial Crises",subtitle:"A Selection of Readings",isOpenForSubmission:!1,hash:"6f2f49fb903656e4e54280c79fabd10c",slug:"financial-crises-a-selection-of-readings",bookSignature:"Stelios Markoulis",coverURL:"https://cdn.intechopen.com/books/images_new/8816.jpg",editors:[{id:"237863",title:"Dr.",name:"Stelios",middleName:null,surname:"Markoulis",slug:"stelios-markoulis",fullName:"Stelios Markoulis"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"7831",title:"Sustainability in Urban Planning and Design",subtitle:null,isOpenForSubmission:!1,hash:"c924420492c8c2c9751e178d025f4066",slug:"sustainability-in-urban-planning-and-design",bookSignature:"Amjad Almusaed, Asaad Almssad and Linh Truong - Hong",coverURL:"https://cdn.intechopen.com/books/images_new/7831.jpg",editors:[{id:"110471",title:"Dr.",name:"Amjad",middleName:"Zaki",surname:"Almusaed",slug:"amjad-almusaed",fullName:"Amjad Almusaed"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9376",title:"Contemporary Developments and Perspectives in International Health Security",subtitle:"Volume 1",isOpenForSubmission:!1,hash:"b9a00b84cd04aae458fb1d6c65795601",slug:"contemporary-developments-and-perspectives-in-international-health-security-volume-1",bookSignature:"Stanislaw P. Stawicki, Michael S. Firstenberg, Sagar C. Galwankar, Ricardo Izurieta and Thomas Papadimos",coverURL:"https://cdn.intechopen.com/books/images_new/9376.jpg",editors:[{id:"181694",title:"Dr.",name:"Stanislaw P.",middleName:null,surname:"Stawicki",slug:"stanislaw-p.-stawicki",fullName:"Stanislaw P. Stawicki"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"7769",title:"Medical Isotopes",subtitle:null,isOpenForSubmission:!1,hash:"f8d3c5a6c9a42398e56b4e82264753f7",slug:"medical-isotopes",bookSignature:"Syed Ali Raza Naqvi and Muhammad Babar Imrani",coverURL:"https://cdn.intechopen.com/books/images_new/7769.jpg",editors:[{id:"259190",title:"Dr.",name:"Syed Ali Raza",middleName:null,surname:"Naqvi",slug:"syed-ali-raza-naqvi",fullName:"Syed Ali Raza Naqvi"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}}],latestBooks:[{type:"book",id:"8468",title:"Sheep Farming",subtitle:"An Approach to Feed, Growth and Sanity",isOpenForSubmission:!1,hash:"838f08594850bc04aa14ec873ed1b96f",slug:"sheep-farming-an-approach-to-feed-growth-and-sanity",bookSignature:"António Monteiro",coverURL:"https://cdn.intechopen.com/books/images_new/8468.jpg",editedByType:"Edited by",editors:[{id:"190314",title:"Prof.",name:"António",middleName:"Cardoso",surname:"Monteiro",slug:"antonio-monteiro",fullName:"António Monteiro"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"9523",title:"Oral and Maxillofacial Surgery",subtitle:null,isOpenForSubmission:!1,hash:"5eb6ec2db961a6c8965d11180a58d5c1",slug:"oral-and-maxillofacial-surgery",bookSignature:"Gokul Sridharan",coverURL:"https://cdn.intechopen.com/books/images_new/9523.jpg",editedByType:"Edited by",editors:[{id:"82453",title:"Dr.",name:"Gokul",middleName:null,surname:"Sridharan",slug:"gokul-sridharan",fullName:"Gokul Sridharan"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"9785",title:"Endometriosis",subtitle:null,isOpenForSubmission:!1,hash:"f457ca61f29cf7e8bc191732c50bb0ce",slug:"endometriosis",bookSignature:"Courtney Marsh",coverURL:"https://cdn.intechopen.com/books/images_new/9785.jpg",editedByType:"Edited by",editors:[{id:"255491",title:"Dr.",name:"Courtney",middleName:null,surname:"Marsh",slug:"courtney-marsh",fullName:"Courtney Marsh"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"9018",title:"Some RNA Viruses",subtitle:null,isOpenForSubmission:!1,hash:"a5cae846dbe3692495fc4add2f60fd84",slug:"some-rna-viruses",bookSignature:"Yogendra Shah and Eltayb Abuelzein",coverURL:"https://cdn.intechopen.com/books/images_new/9018.jpg",editedByType:"Edited by",editors:[{id:"278914",title:"Ph.D.",name:"Yogendra",middleName:null,surname:"Shah",slug:"yogendra-shah",fullName:"Yogendra Shah"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"8816",title:"Financial Crises",subtitle:"A Selection of Readings",isOpenForSubmission:!1,hash:"6f2f49fb903656e4e54280c79fabd10c",slug:"financial-crises-a-selection-of-readings",bookSignature:"Stelios Markoulis",coverURL:"https://cdn.intechopen.com/books/images_new/8816.jpg",editedByType:"Edited by",editors:[{id:"237863",title:"Dr.",name:"Stelios",middleName:null,surname:"Markoulis",slug:"stelios-markoulis",fullName:"Stelios Markoulis"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"9585",title:"Advances in Complex Valvular Disease",subtitle:null,isOpenForSubmission:!1,hash:"ef64f11e211621ecfe69c46e60e7ca3d",slug:"advances-in-complex-valvular-disease",bookSignature:"Michael S. Firstenberg and Imran Khan",coverURL:"https://cdn.intechopen.com/books/images_new/9585.jpg",editedByType:"Edited by",editors:[{id:"64343",title:null,name:"Michael S.",middleName:"S",surname:"Firstenberg",slug:"michael-s.-firstenberg",fullName:"Michael S. Firstenberg"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10150",title:"Smart Manufacturing",subtitle:"When Artificial Intelligence Meets the Internet of Things",isOpenForSubmission:!1,hash:"87004a19de13702d042f8ff96d454698",slug:"smart-manufacturing-when-artificial-intelligence-meets-the-internet-of-things",bookSignature:"Tan Yen Kheng",coverURL:"https://cdn.intechopen.com/books/images_new/10150.jpg",editedByType:"Edited by",editors:[{id:"78857",title:"Dr.",name:"Tan Yen",middleName:null,surname:"Kheng",slug:"tan-yen-kheng",fullName:"Tan Yen Kheng"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"9386",title:"Direct Numerical Simulations",subtitle:"An Introduction and Applications",isOpenForSubmission:!1,hash:"158a3a0fdba295d21ff23326f5a072d5",slug:"direct-numerical-simulations-an-introduction-and-applications",bookSignature:"Srinivasa Rao",coverURL:"https://cdn.intechopen.com/books/images_new/9386.jpg",editedByType:"Edited by",editors:[{id:"6897",title:"Dr.",name:"Srinivasa",middleName:"P",surname:"Rao",slug:"srinivasa-rao",fullName:"Srinivasa Rao"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"9139",title:"Topics in Primary Care Medicine",subtitle:null,isOpenForSubmission:!1,hash:"ea774a4d4c1179da92a782e0ae9cde92",slug:"topics-in-primary-care-medicine",bookSignature:"Thomas F. Heston",coverURL:"https://cdn.intechopen.com/books/images_new/9139.jpg",editedByType:"Edited by",editors:[{id:"217926",title:"Dr.",name:"Thomas F.",middleName:null,surname:"Heston",slug:"thomas-f.-heston",fullName:"Thomas F. Heston"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"9208",title:"Welding",subtitle:"Modern Topics",isOpenForSubmission:!1,hash:"7d6be076ccf3a3f8bd2ca52d86d4506b",slug:"welding-modern-topics",bookSignature:"Sadek Crisóstomo Absi Alfaro, Wojciech Borek and Błażej Tomiczek",coverURL:"https://cdn.intechopen.com/books/images_new/9208.jpg",editedByType:"Edited by",editors:[{id:"65292",title:"Prof.",name:"Sadek Crisostomo Absi",middleName:"C. Absi",surname:"Alfaro",slug:"sadek-crisostomo-absi-alfaro",fullName:"Sadek Crisostomo Absi Alfaro"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}}]},subject:{topic:{id:"515",title:"Computer Gaming",slug:"computer-gaming",parent:{title:"Artificial Intelligence",slug:"computer-and-information-science-artificial-intelligence"},numberOfBooks:2,numberOfAuthorsAndEditors:1,numberOfWosCitations:64,numberOfCrossrefCitations:41,numberOfDimensionsCitations:102,videoUrl:null,fallbackUrl:null,description:null},booksByTopicFilter:{topicSlug:"computer-gaming",sort:"-publishedDate",limit:12,offset:0},booksByTopicCollection:[{type:"book",id:"3751",title:"Machine Learning",subtitle:null,isOpenForSubmission:!1,hash:"5094182fa13e485c45ab489be59beed4",slug:"machine-learning",bookSignature:"Yagang Zhang",coverURL:"https://cdn.intechopen.com/books/images_new/3751.jpg",editedByType:"Edited by",editors:[{id:"2987",title:"Dr.",name:"Yagang",middleName:null,surname:"Zhang",slug:"yagang-zhang",fullName:"Yagang Zhang"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"3752",title:"New Advances in Machine Learning",subtitle:null,isOpenForSubmission:!1,hash:"5b5624fb61f120a1a6dbdecc4cc48dfb",slug:"new-advances-in-machine-learning",bookSignature:"Yagang Zhang",coverURL:"https://cdn.intechopen.com/books/images_new/3752.jpg",editedByType:"Edited by",editors:[{id:"2987",title:"Dr.",name:"Yagang",middleName:null,surname:"Zhang",slug:"yagang-zhang",fullName:"Yagang Zhang"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}}],booksByTopicTotal:2,mostCitedChapters:[{id:"10694",doi:"10.5772/9385",title:"Types of Machine Learning Algorithms",slug:"types-of-machine-learning-algorithms",totalDownloads:9622,totalCrossrefCites:12,totalDimensionsCites:41,book:{slug:"new-advances-in-machine-learning",title:"New Advances in Machine Learning",fullTitle:"New Advances in Machine Learning"},signatures:"Taiwo Oladipupo Ayodele",authors:null},{id:"10448",doi:"10.5772/9157",title:"Adaptive Basis Function Construction: An Approach for Adaptive Building of Sparse Polynomial Regression Models",slug:"adaptive-basis-function-construction-an-approach-for-adaptive-building-of-sparse-polynomial-regressi",totalDownloads:1601,totalCrossrefCites:12,totalDimensionsCites:15,book:{slug:"machine-learning",title:"Machine Learning",fullTitle:"Machine Learning"},signatures:"Gints Jekabsons",authors:null},{id:"10698",doi:"10.5772/9389",title:"Ant Colony Optimization",slug:"ant-colony-optimization",totalDownloads:2153,totalCrossrefCites:1,totalDimensionsCites:7,book:{slug:"new-advances-in-machine-learning",title:"New Advances in Machine Learning",fullTitle:"New Advances in Machine Learning"},signatures:"Benlian Xu, Jihong Zhu and Qinlan Chen",authors:null}],mostDownloadedChaptersLast30Days:[{id:"10432",title:"Automated Detection and Analysis of Particle Beams in Laser-Plasman Accelerator Simulations",slug:"automated-detection-and-analysis-of-particle-beams-in-laser-plasman-accelerator-simulations",totalDownloads:1841,totalCrossrefCites:0,totalDimensionsCites:1,book:{slug:"machine-learning",title:"Machine Learning",fullTitle:"Machine Learning"},signatures:"Daniela M. Ushizima, Cameron G. Geddes, Estelle Cormier-Michel, E.Wes Bethel, Janet Jacobsen, Prabhat, Oliver Rubel, Gunther Weber, Bernd Hamann, Peter Messmer and Hans Haggen",authors:null},{id:"10694",title:"Types of Machine Learning Algorithms",slug:"types-of-machine-learning-algorithms",totalDownloads:9622,totalCrossrefCites:12,totalDimensionsCites:41,book:{slug:"new-advances-in-machine-learning",title:"New Advances in Machine Learning",fullTitle:"New Advances in Machine Learning"},signatures:"Taiwo Oladipupo Ayodele",authors:null},{id:"10447",title:"Machine Learning: When and Where the Horses Went Astray?",slug:"machine-learning-when-and-where-the-horses-went-astray-",totalDownloads:1625,totalCrossrefCites:1,totalDimensionsCites:3,book:{slug:"machine-learning",title:"Machine Learning",fullTitle:"Machine Learning"},signatures:"Emanuel Diamant",authors:null},{id:"10690",title:"An Intelligent System for Container Image Recognition using ART2-based Self-Organizing Supervised Learning Algorithm",slug:"an-intelligent-system-for-container-image-recognition-using-art2-based-self-organizing-supervised-le",totalDownloads:1945,totalCrossrefCites:2,totalDimensionsCites:2,book:{slug:"new-advances-in-machine-learning",title:"New Advances in Machine Learning",fullTitle:"New Advances in Machine Learning"},signatures:"Kwang-Baek Kim, Sungshin Kim and Young Woon Woo",authors:null},{id:"10683",title:"Machine Learning Overview",slug:"machine-learning-overview",totalDownloads:3078,totalCrossrefCites:3,totalDimensionsCites:3,book:{slug:"new-advances-in-machine-learning",title:"New Advances in Machine Learning",fullTitle:"New Advances in Machine Learning"},signatures:"Taiwo Oladipupo Ayodele",authors:null},{id:"10703",title:"Introduction to Machine Learning",slug:"introduction-to-machine-learning",totalDownloads:2914,totalCrossrefCites:1,totalDimensionsCites:7,book:{slug:"new-advances-in-machine-learning",title:"New Advances in Machine Learning",fullTitle:"New Advances in Machine Learning"},signatures:"Taiwo Oladipupo Ayodele",authors:null},{id:"10684",title:"Knowledge Structures for Visualising Advanced Research and Trends",slug:"knowledge-structures-for-visualising-advanced-research-and-trends",totalDownloads:1569,totalCrossrefCites:0,totalDimensionsCites:0,book:{slug:"new-advances-in-machine-learning",title:"New Advances in Machine Learning",fullTitle:"New Advances in Machine Learning"},signatures:"Maria R. Lee and Tsung Teng Chen",authors:null},{id:"10428",title:"SOMs for Machine Learning",slug:"soms-for-machine-learning",totalDownloads:1451,totalCrossrefCites:1,totalDimensionsCites:0,book:{slug:"machine-learning",title:"Machine Learning",fullTitle:"Machine Learning"},signatures:"Iren Valova, Derek Beaton and Daniel MacLean",authors:null},{id:"10446",title:"Relational Analysis for Clustering Consensus",slug:"relational-analysis-for-clustering-consensus",totalDownloads:1558,totalCrossrefCites:1,totalDimensionsCites:1,book:{slug:"machine-learning",title:"Machine Learning",fullTitle:"Machine Learning"},signatures:"Mustapha Lebbah, Younes Bennani, Nistor Grozavu and Hamid Benhadda",authors:null},{id:"10687",title:"Methods for Pattern Classification",slug:"methods-for-pattern-classification",totalDownloads:1710,totalCrossrefCites:0,totalDimensionsCites:0,book:{slug:"new-advances-in-machine-learning",title:"New Advances in Machine Learning",fullTitle:"New Advances in Machine Learning"},signatures:"Yizhang Guan",authors:null}],onlineFirstChaptersFilter:{topicSlug:"computer-gaming",limit:3,offset:0},onlineFirstChaptersCollection:[],onlineFirstChaptersTotal:0},preDownload:{success:null,errors:{}},aboutIntechopen:{},privacyPolicy:{},peerReviewing:{},howOpenAccessPublishingWithIntechopenWorks:{},sponsorshipBooks:{sponsorshipBooks:[{type:"book",id:"10176",title:"Microgrids and Local Energy Systems",subtitle:null,isOpenForSubmission:!0,hash:"c32b4a5351a88f263074b0d0ca813a9c",slug:null,bookSignature:"Prof. Nick Jenkins",coverURL:"https://cdn.intechopen.com/books/images_new/10176.jpg",editedByType:null,editors:[{id:"55219",title:"Prof.",name:"Nick",middleName:null,surname:"Jenkins",slug:"nick-jenkins",fullName:"Nick Jenkins"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}}],offset:8,limit:8,total:1},route:{name:"chapter.detail",path:"/books/drug-repurposing-hypothesis-molecular-aspects-and-therapeutic-applications/repurposing-fumaric-acid-esters-to-treat-conditions-of-oxidative-stress-and-inflammation-a-promising",hash:"",query:{},params:{book:"drug-repurposing-hypothesis-molecular-aspects-and-therapeutic-applications",chapter:"repurposing-fumaric-acid-esters-to-treat-conditions-of-oxidative-stress-and-inflammation-a-promising"},fullPath:"/books/drug-repurposing-hypothesis-molecular-aspects-and-therapeutic-applications/repurposing-fumaric-acid-esters-to-treat-conditions-of-oxidative-stress-and-inflammation-a-promising",meta:{},from:{name:null,path:"/",hash:"",query:{},params:{},fullPath:"/",meta:{}}}},function(){var e;(e=document.currentScript||document.scripts[document.scripts.length-1]).parentNode.removeChild(e)}()