Optimum switching table.
\\n\\n
Dr. Pletser’s experience includes 30 years of working with the European Space Agency as a Senior Physicist/Engineer and coordinating their parabolic flight campaigns, and he is the Guinness World Record holder for the most number of aircraft flown (12) in parabolas, personally logging more than 7,300 parabolas.
\\n\\nSeeing the 5,000th book published makes us at the same time proud, happy, humble, and grateful. This is a great opportunity to stop and celebrate what we have done so far, but is also an opportunity to engage even more, grow, and succeed. It wouldn't be possible to get here without the synergy of team members’ hard work and authors and editors who devote time and their expertise into Open Access book publishing with us.
\\n\\nOver these years, we have gone from pioneering the scientific Open Access book publishing field to being the world’s largest Open Access book publisher. Nonetheless, our vision has remained the same: to meet the challenges of making relevant knowledge available to the worldwide community under the Open Access model.
\\n\\nWe are excited about the present, and we look forward to sharing many more successes in the future.
\\n\\nThank you all for being part of the journey. 5,000 times thank you!
\\n\\nNow with 5,000 titles available Open Access, which one will you read next?
\\n\\nRead, share and download for free: https://www.intechopen.com/books
\\n\\n\\n\\n
\\n"}]',published:!0,mainMedia:null},components:[{type:"htmlEditorComponent",content:'
Preparation of Space Experiments edited by international leading expert Dr. Vladimir Pletser, Director of Space Training Operations at Blue Abyss is the 5,000th Open Access book published by IntechOpen and our milestone publication!
\n\n"This book presents some of the current trends in space microgravity research. The eleven chapters introduce various facets of space research in physical sciences, human physiology and technology developed using the microgravity environment not only to improve our fundamental understanding in these domains but also to adapt this new knowledge for application on earth." says the editor. Listen what else Dr. Pletser has to say...
\n\n\n\nDr. Pletser’s experience includes 30 years of working with the European Space Agency as a Senior Physicist/Engineer and coordinating their parabolic flight campaigns, and he is the Guinness World Record holder for the most number of aircraft flown (12) in parabolas, personally logging more than 7,300 parabolas.
\n\nSeeing the 5,000th book published makes us at the same time proud, happy, humble, and grateful. This is a great opportunity to stop and celebrate what we have done so far, but is also an opportunity to engage even more, grow, and succeed. It wouldn't be possible to get here without the synergy of team members’ hard work and authors and editors who devote time and their expertise into Open Access book publishing with us.
\n\nOver these years, we have gone from pioneering the scientific Open Access book publishing field to being the world’s largest Open Access book publisher. Nonetheless, our vision has remained the same: to meet the challenges of making relevant knowledge available to the worldwide community under the Open Access model.
\n\nWe are excited about the present, and we look forward to sharing many more successes in the future.
\n\nThank you all for being part of the journey. 5,000 times thank you!
\n\nNow with 5,000 titles available Open Access, which one will you read next?
\n\nRead, share and download for free: https://www.intechopen.com/books
\n\n\n\n
\n'}],latestNews:[{slug:"stanford-university-identifies-top-2-scientists-over-1-000-are-intechopen-authors-and-editors-20210122",title:"Stanford University Identifies Top 2% Scientists, Over 1,000 are IntechOpen Authors and Editors"},{slug:"intechopen-authors-included-in-the-highly-cited-researchers-list-for-2020-20210121",title:"IntechOpen Authors Included in the Highly Cited Researchers List for 2020"},{slug:"intechopen-maintains-position-as-the-world-s-largest-oa-book-publisher-20201218",title:"IntechOpen Maintains Position as the World’s Largest OA Book Publisher"},{slug:"all-intechopen-books-available-on-perlego-20201215",title:"All IntechOpen Books Available on Perlego"},{slug:"oiv-awards-recognizes-intechopen-s-editors-20201127",title:"OIV Awards Recognizes IntechOpen's Editors"},{slug:"intechopen-joins-crossref-s-initiative-for-open-abstracts-i4oa-to-boost-the-discovery-of-research-20201005",title:"IntechOpen joins Crossref's Initiative for Open Abstracts (I4OA) to Boost the Discovery of Research"},{slug:"intechopen-hits-milestone-5-000-open-access-books-published-20200908",title:"IntechOpen hits milestone: 5,000 Open Access books published!"},{slug:"intechopen-books-hosted-on-the-mathworks-book-program-20200819",title:"IntechOpen Books Hosted on the MathWorks Book Program"}]},book:{item:{type:"book",id:"9239",leadTitle:null,fullTitle:"Digital Imaging",title:"Digital Imaging",subtitle:null,reviewType:"peer-reviewed",abstract:"Digital imaging is used widely in various real-life applications today. There are a number of potential digital imaging applications that include different areas such as television, photography, robotics, remote sensing, medical diagnosis, reconnaissance, architectural and engineering design, art, crime prevention, geographical information systems, communication, intellectual property, retail catalogs, nudity detection, face finding, industrial, and others. This book is specifically dedicated to digital imaging research, applications, techniques, tools, and algorithms that originate from different fields such as image processing, computer vision, pattern recognition, signal processing, artificial intelligence, intelligent systems, and soft computing. In general, this comprehensive book contains state-of-the-art chapters focusing on the latest developments using theories, methods, approaches, algorithms, analyses, display of images, visual information, and videos.",isbn:"978-1-78985-600-2",printIsbn:"978-1-78985-599-9",pdfIsbn:"978-1-83880-389-6",doi:"10.5772/intechopen.83239",price:119,priceEur:129,priceUsd:155,slug:"digital-imaging",numberOfPages:104,isOpenForSubmission:!1,isInWos:null,hash:"656ebe9652b39a1f5dc33d004170a1c4",bookSignature:"Muhammad Sarfraz",publishedDate:"May 13th 2020",coverURL:"https://cdn.intechopen.com/books/images_new/9239.jpg",numberOfDownloads:1512,numberOfWosCitations:0,numberOfCrossrefCitations:2,numberOfDimensionsCitations:2,hasAltmetrics:0,numberOfTotalCitations:4,isAvailableForWebshopOrdering:!0,dateEndFirstStepPublish:"February 6th 2019",dateEndSecondStepPublish:"April 3rd 2019",dateEndThirdStepPublish:"June 2nd 2019",dateEndFourthStepPublish:"August 21st 2019",dateEndFifthStepPublish:"October 20th 2019",currentStepOfPublishingProcess:5,indexedIn:"1,2,3,4,5,6,7",editedByType:"Edited by",kuFlag:!1,editors:[{id:"215610",title:"Prof.",name:"Muhammad",middleName:null,surname:"Sarfraz",slug:"muhammad-sarfraz",fullName:"Muhammad Sarfraz",profilePictureURL:"https://mts.intechopen.com/storage/users/215610/images/system/215610.jpeg",biography:"Muhammad Sarfraz is a Professor and Director of MSIT in the Department of Information Science, Kuwait University, Kuwait. His research interests include computer graphics, computer vision, image processing, machine learning, pattern recognition, soft computing, data science, intelligent systems, information technology and information systems. Prof. Sarfraz has been a keynote/invited speaker at various platforms around the globe. He has advised more than 85 students for their MSc and Ph.D. theses. He has published more than 400 publications as books, journal articles, and conference papers. Prof. Sarfraz is a member of various professional societies. He is the Chair and member of the International Advisory Committees and Organizing Committees of various international conferences. He is also Editor-in-Chief and Editor of various international journals.",institutionString:"Kuwait University",position:null,outsideEditionCount:0,totalCites:0,totalAuthoredChapters:"2",totalChapterViews:"0",totalEditedBooks:"2",institution:{name:"Kuwait University",institutionURL:null,country:{name:"Kuwait"}}}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,coeditorOne:null,coeditorTwo:null,coeditorThree:null,coeditorFour:null,coeditorFive:null,topics:[{id:"601",title:"Digital Image Processing",slug:"numerical-analysis-and-scientific-computing-digital-image-processing"}],chapters:[{id:"71817",title:"Introductory Chapter: On Digital Image Processing",doi:"10.5772/intechopen.92060",slug:"introductory-chapter-on-digital-image-processing",totalDownloads:388,totalCrossrefCites:1,totalDimensionsCites:1,signatures:"Muhammad Sarfraz",downloadPdfUrl:"/chapter/pdf-download/71817",previewPdfUrl:"/chapter/pdf-preview/71817",authors:[{id:"215610",title:"Prof.",name:"Muhammad",surname:"Sarfraz",slug:"muhammad-sarfraz",fullName:"Muhammad Sarfraz"}],corrections:null},{id:"67657",title:"Fast Motion Estimation’s Configuration Using Diamond Pattern and ECU, CFM, and ESD Modes for Reducing HEVC Computational Complexity",doi:"10.5772/intechopen.86792",slug:"fast-motion-estimation-s-configuration-using-diamond-pattern-and-ecu-cfm-and-esd-modes-for-reducing-",totalDownloads:257,totalCrossrefCites:1,totalDimensionsCites:1,signatures:"Randa Khemiri, Nejmeddine Bahri, Fatma Belghith, Soulef Bouaafia, Fatma Elzahra Sayadi, Mohamed Atri and Nouri Masmoudi",downloadPdfUrl:"/chapter/pdf-download/67657",previewPdfUrl:"/chapter/pdf-preview/67657",authors:[{id:"298629",title:"Dr.",name:"Randa",surname:"Khemiri",slug:"randa-khemiri",fullName:"Randa Khemiri"},{id:"304368",title:"Dr.",name:"Nejmeddine",surname:"Bahri",slug:"nejmeddine-bahri",fullName:"Nejmeddine Bahri"},{id:"304387",title:"Prof.",name:"Mohamed",surname:"Atri",slug:"mohamed-atri",fullName:"Mohamed Atri"},{id:"304388",title:"Dr.",name:"Fatma",surname:"Belghith",slug:"fatma-belghith",fullName:"Fatma Belghith"},{id:"304390",title:"Dr.",name:"Soulef",surname:"Bouaafia",slug:"soulef-bouaafia",fullName:"Soulef Bouaafia"},{id:"304391",title:"Dr.",name:"Fatma Elzahra",surname:"Sayadi",slug:"fatma-elzahra-sayadi",fullName:"Fatma Elzahra Sayadi"},{id:"304392",title:"Prof.",name:"Nouri",surname:"Masmoudi",slug:"nouri-masmoudi",fullName:"Nouri Masmoudi"}],corrections:null},{id:"68748",title:"Digital Image Processing Applied to Optical Measurements",doi:"10.5772/intechopen.88704",slug:"digital-image-processing-applied-to-optical-measurements",totalDownloads:176,totalCrossrefCites:0,totalDimensionsCites:0,signatures:"Alonso Saldaña-Heredia, Pedro Antonio Márquez-Aguilar, Álvaro Zamudio Lara and Arturo Molina-Ocampo",downloadPdfUrl:"/chapter/pdf-download/68748",previewPdfUrl:"/chapter/pdf-preview/68748",authors:[{id:"51029",title:"Dr.",name:"Pedro Antonio",surname:"Marquez Aguilar",slug:"pedro-antonio-marquez-aguilar",fullName:"Pedro Antonio Marquez Aguilar"},{id:"299407",title:"Dr.",name:"Alonso",surname:"Saldaña Heredia",slug:"alonso-saldana-heredia",fullName:"Alonso Saldaña Heredia"},{id:"299409",title:"Dr.",name:"Álvaro",surname:"Zamudio Lara",slug:"alvaro-zamudio-lara",fullName:"Álvaro Zamudio Lara"},{id:"306535",title:"Dr.",name:"Arturo",surname:"Molina Ocampo",slug:"arturo-molina-ocampo",fullName:"Arturo Molina Ocampo"}],corrections:null},{id:"67608",title:"Experimental and Theoretical Investigation on the Shear Behaviour of High Strength Reinforced Concrete Beams Using Digital Image Correlation",doi:"10.5772/intechopen.86499",slug:"experimental-and-theoretical-investigation-on-the-shear-behaviour-of-high-strength-reinforced-concre",totalDownloads:217,totalCrossrefCites:0,totalDimensionsCites:0,signatures:"Touhami Tahenni and Thibaut Lecompte",downloadPdfUrl:"/chapter/pdf-download/67608",previewPdfUrl:"/chapter/pdf-preview/67608",authors:[{id:"299556",title:"Dr.",name:"Touhami",surname:"Tahenni",slug:"touhami-tahenni",fullName:"Touhami Tahenni"}],corrections:null},{id:"69142",title:"Implementation of an Artificial Vision System for Welding in the Retrofitting Process of a Robotic Arm Industrial",doi:"10.5772/intechopen.88360",slug:"implementation-of-an-artificial-vision-system-for-welding-in-the-retrofitting-process-of-a-robotic-a",totalDownloads:214,totalCrossrefCites:0,totalDimensionsCites:0,signatures:"Yomin Estiven Jaramillo Munera, Jhon Edison Goez Mora, Juan Camilo Londoño Lopera and Edgar Mario Rico Mesa",downloadPdfUrl:"/chapter/pdf-download/69142",previewPdfUrl:"/chapter/pdf-preview/69142",authors:[{id:"300249",title:"M.Sc.",name:"Edgar Mario",surname:"Rico Mesa",slug:"edgar-mario-rico-mesa",fullName:"Edgar Mario Rico Mesa"},{id:"300795",title:"Prof.",name:"Jhon Edison",surname:"Goez Mora",slug:"jhon-edison-goez-mora",fullName:"Jhon Edison Goez Mora"},{id:"300796",title:"Prof.",name:"Juan",surname:"Londoño Lopera",slug:"juan-londono-lopera",fullName:"Juan Londoño Lopera"},{id:"300801",title:"Prof.",name:"Yomin Estiven",surname:"Jaramillo Múnera",slug:"yomin-estiven-jaramillo-munera",fullName:"Yomin Estiven Jaramillo Múnera"}],corrections:null},{id:"69261",title:"EBSCO Discovery Service (EDS) Usage in Israeli Academic Libraries",doi:"10.5772/intechopen.89453",slug:"ebsco-discovery-service-eds-usage-in-israeli-academic-libraries",totalDownloads:262,totalCrossrefCites:0,totalDimensionsCites:0,signatures:"Riki Greenberg",downloadPdfUrl:"/chapter/pdf-download/69261",previewPdfUrl:"/chapter/pdf-preview/69261",authors:[{id:"306624",title:"Ph.D.",name:"Riki",surname:"Greenberg",slug:"riki-greenberg",fullName:"Riki Greenberg"}],corrections:null}],productType:{id:"1",title:"Edited Volume",chapterContentType:"chapter",authoredCaption:"Edited by"}},relatedBooks:[{type:"book",id:"9905",title:"Biometric Systems",subtitle:null,isOpenForSubmission:!1,hash:"c730560dd2e3837a03407b3a86b0ef2a",slug:"biometric-systems",bookSignature:"Muhammad Sarfraz",coverURL:"https://cdn.intechopen.com/books/images_new/9905.jpg",editedByType:"Edited by",editors:[{id:"215610",title:"Prof.",name:"Muhammad",surname:"Sarfraz",slug:"muhammad-sarfraz",fullName:"Muhammad Sarfraz"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"3845",title:"MATLAB",subtitle:"Applications for the Practical Engineer",isOpenForSubmission:!1,hash:"1079f9d5879db7c7c13257713a2e9710",slug:"matlab-applications-for-the-practical-engineer",bookSignature:"Kelly Bennett",coverURL:"https://cdn.intechopen.com/books/images_new/3845.jpg",editedByType:"Edited by",editors:[{id:"169605",title:"Dr.",name:"Kelly",surname:"Bennett",slug:"kelly-bennett",fullName:"Kelly Bennett"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"1591",title:"Infrared Spectroscopy",subtitle:"Materials Science, Engineering and Technology",isOpenForSubmission:!1,hash:"99b4b7b71a8caeb693ed762b40b017f4",slug:"infrared-spectroscopy-materials-science-engineering-and-technology",bookSignature:"Theophile Theophanides",coverURL:"https://cdn.intechopen.com/books/images_new/1591.jpg",editedByType:"Edited by",editors:[{id:"37194",title:"Dr.",name:"Theophanides",surname:"Theophile",slug:"theophanides-theophile",fullName:"Theophanides Theophile"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"3092",title:"Anopheles mosquitoes",subtitle:"New insights into malaria vectors",isOpenForSubmission:!1,hash:"c9e622485316d5e296288bf24d2b0d64",slug:"anopheles-mosquitoes-new-insights-into-malaria-vectors",bookSignature:"Sylvie Manguin",coverURL:"https://cdn.intechopen.com/books/images_new/3092.jpg",editedByType:"Edited by",editors:[{id:"50017",title:"Prof.",name:"Sylvie",surname:"Manguin",slug:"sylvie-manguin",fullName:"Sylvie Manguin"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"3161",title:"Frontiers in Guided Wave Optics and Optoelectronics",subtitle:null,isOpenForSubmission:!1,hash:"deb44e9c99f82bbce1083abea743146c",slug:"frontiers-in-guided-wave-optics-and-optoelectronics",bookSignature:"Bishnu Pal",coverURL:"https://cdn.intechopen.com/books/images_new/3161.jpg",editedByType:"Edited by",editors:[{id:"4782",title:"Prof.",name:"Bishnu",surname:"Pal",slug:"bishnu-pal",fullName:"Bishnu Pal"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"72",title:"Ionic Liquids",subtitle:"Theory, Properties, New Approaches",isOpenForSubmission:!1,hash:"d94ffa3cfa10505e3b1d676d46fcd3f5",slug:"ionic-liquids-theory-properties-new-approaches",bookSignature:"Alexander Kokorin",coverURL:"https://cdn.intechopen.com/books/images_new/72.jpg",editedByType:"Edited by",editors:[{id:"19816",title:"Prof.",name:"Alexander",surname:"Kokorin",slug:"alexander-kokorin",fullName:"Alexander Kokorin"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"1373",title:"Ionic Liquids",subtitle:"Applications and Perspectives",isOpenForSubmission:!1,hash:"5e9ae5ae9167cde4b344e499a792c41c",slug:"ionic-liquids-applications-and-perspectives",bookSignature:"Alexander Kokorin",coverURL:"https://cdn.intechopen.com/books/images_new/1373.jpg",editedByType:"Edited by",editors:[{id:"19816",title:"Prof.",name:"Alexander",surname:"Kokorin",slug:"alexander-kokorin",fullName:"Alexander Kokorin"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"57",title:"Physics and Applications of Graphene",subtitle:"Experiments",isOpenForSubmission:!1,hash:"0e6622a71cf4f02f45bfdd5691e1189a",slug:"physics-and-applications-of-graphene-experiments",bookSignature:"Sergey Mikhailov",coverURL:"https://cdn.intechopen.com/books/images_new/57.jpg",editedByType:"Edited by",editors:[{id:"16042",title:"Dr.",name:"Sergey",surname:"Mikhailov",slug:"sergey-mikhailov",fullName:"Sergey Mikhailov"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"371",title:"Abiotic Stress in Plants",subtitle:"Mechanisms and Adaptations",isOpenForSubmission:!1,hash:"588466f487e307619849d72389178a74",slug:"abiotic-stress-in-plants-mechanisms-and-adaptations",bookSignature:"Arun Shanker and B. Venkateswarlu",coverURL:"https://cdn.intechopen.com/books/images_new/371.jpg",editedByType:"Edited by",editors:[{id:"58592",title:"Dr.",name:"Arun",surname:"Shanker",slug:"arun-shanker",fullName:"Arun Shanker"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"878",title:"Phytochemicals",subtitle:"A Global Perspective of Their Role in Nutrition and Health",isOpenForSubmission:!1,hash:"ec77671f63975ef2d16192897deb6835",slug:"phytochemicals-a-global-perspective-of-their-role-in-nutrition-and-health",bookSignature:"Venketeshwer Rao",coverURL:"https://cdn.intechopen.com/books/images_new/878.jpg",editedByType:"Edited by",editors:[{id:"82663",title:"Dr.",name:"Venketeshwer",surname:"Rao",slug:"venketeshwer-rao",fullName:"Venketeshwer Rao"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}}],ofsBooks:[]},correction:{item:{id:"66062",slug:"corrigendum-to-pain-management-in-plastic-surgery",title:"Corrigendum to: Pain Management in Plastic Surgery",doi:null,correctionPDFUrl:"https://cdn.intechopen.com/pdfs/66062.pdf",downloadPdfUrl:"/chapter/pdf-download/66062",previewPdfUrl:"/chapter/pdf-preview/66062",totalDownloads:null,totalCrossrefCites:null,bibtexUrl:"/chapter/bibtex/66062",risUrl:"/chapter/ris/66062",chapter:{id:"62958",slug:"pain-management-in-plastic-surgery",signatures:"I Gusti Ngurah Mahaalit Aribawa, Made Wiryana, Tjokorda Gde\nAgung Senapathi and Pontisomaya Parami",dateSubmitted:"April 5th 2017",dateReviewed:"June 5th 2018",datePrePublished:"November 5th 2018",datePublished:"April 3rd 2019",book:{id:"6221",title:"Anesthesia Topics for Plastic and Reconstructive Surgery",subtitle:null,fullTitle:"Anesthesia Topics for Plastic and Reconstructive Surgery",slug:"anesthesia-topics-for-plastic-and-reconstructive-surgery",publishedDate:"April 3rd 2019",bookSignature:"Víctor M. Whizar-Lugo",coverURL:"https://cdn.intechopen.com/books/images_new/6221.jpg",licenceType:"CC BY 3.0",editedByType:"Edited by",editors:[{id:"169249",title:"Prof.",name:"Víctor M.",middleName:null,surname:"Whizar-Lugo",slug:"victor-m.-whizar-lugo",fullName:"Víctor M. Whizar-Lugo"}],productType:{id:"1",title:"Edited Volume",chapterContentType:"chapter",authoredCaption:"Edited by"}},authors:[{id:"208429",title:"M.D.",name:"I Gusti Ngurah",middleName:"Mahaalit",surname:"Aribawa",fullName:"I Gusti Ngurah Aribawa",slug:"i-gusti-ngurah-aribawa",email:"mahaalit@unud.ac.id",position:null,institution:{name:"Udayana University",institutionURL:null,country:{name:"Indonesia"}}},{id:"209749",title:"Dr.",name:"Tjokorda Gde Agung",middleName:null,surname:"Senapathi",fullName:"Tjokorda Gde Agung Senapathi",slug:"tjokorda-gde-agung-senapathi",email:"tjoksenapathi@unud.ac.id",position:null,institution:null},{id:"209750",title:"Mrs.",name:"Pontisomaya",middleName:null,surname:"Parami",fullName:"Pontisomaya Parami",slug:"pontisomaya-parami",email:"ponti@unud.ac.id",position:null,institution:null},{id:"209752",title:"Prof.",name:"Made",middleName:null,surname:"Wiryana",fullName:"Made Wiryana",slug:"made-wiryana",email:"wiryana@unud.ac.id",position:null,institution:null}]}},chapter:{id:"62958",slug:"pain-management-in-plastic-surgery",signatures:"I Gusti Ngurah Mahaalit Aribawa, Made Wiryana, Tjokorda Gde\nAgung Senapathi and Pontisomaya Parami",dateSubmitted:"April 5th 2017",dateReviewed:"June 5th 2018",datePrePublished:"November 5th 2018",datePublished:"April 3rd 2019",book:{id:"6221",title:"Anesthesia Topics for Plastic and Reconstructive Surgery",subtitle:null,fullTitle:"Anesthesia Topics for Plastic and Reconstructive Surgery",slug:"anesthesia-topics-for-plastic-and-reconstructive-surgery",publishedDate:"April 3rd 2019",bookSignature:"Víctor M. Whizar-Lugo",coverURL:"https://cdn.intechopen.com/books/images_new/6221.jpg",licenceType:"CC BY 3.0",editedByType:"Edited by",editors:[{id:"169249",title:"Prof.",name:"Víctor M.",middleName:null,surname:"Whizar-Lugo",slug:"victor-m.-whizar-lugo",fullName:"Víctor M. Whizar-Lugo"}],productType:{id:"1",title:"Edited Volume",chapterContentType:"chapter",authoredCaption:"Edited by"}},authors:[{id:"208429",title:"M.D.",name:"I Gusti Ngurah",middleName:"Mahaalit",surname:"Aribawa",fullName:"I Gusti Ngurah Aribawa",slug:"i-gusti-ngurah-aribawa",email:"mahaalit@unud.ac.id",position:null,institution:{name:"Udayana University",institutionURL:null,country:{name:"Indonesia"}}},{id:"209749",title:"Dr.",name:"Tjokorda Gde Agung",middleName:null,surname:"Senapathi",fullName:"Tjokorda Gde Agung Senapathi",slug:"tjokorda-gde-agung-senapathi",email:"tjoksenapathi@unud.ac.id",position:null,institution:null},{id:"209750",title:"Mrs.",name:"Pontisomaya",middleName:null,surname:"Parami",fullName:"Pontisomaya Parami",slug:"pontisomaya-parami",email:"ponti@unud.ac.id",position:null,institution:null},{id:"209752",title:"Prof.",name:"Made",middleName:null,surname:"Wiryana",fullName:"Made Wiryana",slug:"made-wiryana",email:"wiryana@unud.ac.id",position:null,institution:null}]},book:{id:"6221",title:"Anesthesia Topics for Plastic and Reconstructive Surgery",subtitle:null,fullTitle:"Anesthesia Topics for Plastic and Reconstructive Surgery",slug:"anesthesia-topics-for-plastic-and-reconstructive-surgery",publishedDate:"April 3rd 2019",bookSignature:"Víctor M. Whizar-Lugo",coverURL:"https://cdn.intechopen.com/books/images_new/6221.jpg",licenceType:"CC BY 3.0",editedByType:"Edited by",editors:[{id:"169249",title:"Prof.",name:"Víctor M.",middleName:null,surname:"Whizar-Lugo",slug:"victor-m.-whizar-lugo",fullName:"Víctor M. Whizar-Lugo"}],productType:{id:"1",title:"Edited Volume",chapterContentType:"chapter",authoredCaption:"Edited by"}}},ofsBook:{item:{type:"book",id:"10354",leadTitle:null,title:"Current State of the Art in Cysticercosis and Neurocysticercosis",subtitle:null,reviewType:"peer-reviewed",abstract:"
\r\n\tCysticercosis, caused by the metacestode stage of Taenia solium, is a serious health and veterinary problem in many developing countries and is considered one of the most important neglected tropical diseases in developed countries. In humans, T. solium cysticerci cause neurocysticercosis, which affects ~50 million people worldwide, and it has been considered as an emergent disease in the United States. T. solium also infects pigs, its intermediate host, leading to major economic losses.
\r\n\r\n\tWhen humans ingest undercooked contaminated pork meat, the adult worm develops in the small intestine. After two months of asymptomatic infection, this tapeworm starts producing thousands of eggs, that, once released with the stools, can contaminate the environment, infecting pigs (rapidly differentiating into cysticerci mainly in the muscle) and humans (where most severe symptoms are observed due to the presence of cysticerci in the brain). Thus, maintenance of the parasite's life cycle depends on the adult tapeworm development. Even in communities which do not rear or consume pigs, human neurocysticercosis can be found, because of the presence of a tapeworm carrier. Furthermore, tapeworm development in turn depends on scolex evagination, the initial step through which a single cysticercus becomes an adult parasite with the capability of producing infective eggs. A great deal of scientific advances on the field has been producing in recent times, all on the most important fields of the disease: vaccination, epidemiology, current drug design, diagnostic and host-parasite interaction at all levels. However, to date, there is no actualized book dealing with the recent advances in such an important disease in the world.
\r\n\r\n\tThis book will intend to provide the reader with a comprehensive overview of the current state-of-the-art in cysticercosis featuring an easy-to-follow, vignette-based format that focuses on the most important evidence-based developments in this critically important area.
",isbn:"978-1-83969-395-3",printIsbn:"978-1-83969-394-6",pdfIsbn:"978-1-83969-396-0",doi:null,price:0,priceEur:0,priceUsd:0,slug:null,numberOfPages:0,isOpenForSubmission:!1,hash:"16dae70f4745a1873fbeb34e67007b24",bookSignature:"Prof. Jorge Morales-Montor, Dr. Abraham Landa and Dr. Luis Terrazas",publishedDate:null,coverURL:"https://cdn.intechopen.com/books/images_new/10354.jpg",keywords:"Delivering Methods, DNA Vaccines, Diagnostic of Cysticercosis, Diagnostic of Taeniosis, Epidemiology of Cysticercosis, Epidemiology of Neurocysticercosis, New Drugs Available, Drug-Design, Taenia Solium, Clinical Trials, Taenia Crassiceps, Immune Response",numberOfDownloads:null,numberOfWosCitations:0,numberOfCrossrefCitations:null,numberOfDimensionsCitations:null,numberOfTotalCitations:null,isAvailableForWebshopOrdering:!0,dateEndFirstStepPublish:"November 23rd 2020",dateEndSecondStepPublish:"December 21st 2020",dateEndThirdStepPublish:"February 19th 2021",dateEndFourthStepPublish:"May 10th 2021",dateEndFifthStepPublish:"July 9th 2021",remainingDaysToSecondStep:"2 months",secondStepPassed:!0,currentStepOfPublishingProcess:4,editedByType:null,kuFlag:!1,biosketch:"A pioneering researcher in Neuroinmunoendocrinology of several parasite infections, including cysticercosis. He has published over 153 papers, has edited 12 books, and written around 50 book chapters. Head of the Laboratory of Neuroimmunoendocrinology, Institute of Biomedical Research in UNAM, Mèxico.",coeditorOneBiosketch:"A pioneering researcher in molecular parasitology of Taenia solium cysticerci. He was part of the team that sequenced the Taenia solium genome. He has published over 33 papers on cysticercosis. Head of the Laboratory of Molecular Parasitology in UNAM, Mèxico.",coeditorTwoBiosketch:"A pioneering researcher in studying the immunology of taeniasis/cysticercosis, appointed Head of the Unit of Experimental Biomedicine. Recently appointed as Director of the Office of Development and Cultural and Scientific Relationships in the School of Superior Studies Iztacala, UNAM.",coeditorThreeBiosketch:null,coeditorFourBiosketch:null,coeditorFiveBiosketch:null,editors:[{id:"63810",title:"Prof.",name:"Jorge",middleName:null,surname:"Morales-Montor",slug:"jorge-morales-montor",fullName:"Jorge Morales-Montor",profilePictureURL:"https://mts.intechopen.com/storage/users/63810/images/system/63810.jpg",biography:"Dr. Jorge Morales-Montor studied biology at the Iztacala UNAM Faculty of Higher Studies, obtaining the title in 1992. He obtained a\ndoctor’s degree in October 1997. His doctoral thesis was recognized with the Lola and Igo Flisser-PUIS Award to the best graduate thesis at thenational level in theareaofparasitology,a recognition that he has also later received as a tutor, since one of his doctorate students won the same award in 2008. In November 1997, he began a postdoctoral stay at theDepartment of CellularBiology at the UniversityofGeorgia, USA, in the laboratory of Dr. Raymond T. Damia´n, one of the most recognized parasitologists in the world. Dr. Morales received a grant from the Fogarty Foundation (one of the most prestigious in Ibero-America) to carry out research on schistosomiasis in the baboon, being a Pan American Fellow for 4 years. Dr. Ray Damia´n would write years later, which assured that\nwithout a doubt, Jorge Morales-Montor had been the best postdoctoral researcher with whom he collaborated in his nearly 35-year career. He was repatriated to Mexico in 2001 by CONACYT and joined the Department of Immunology of the Institute of Biomedical\nResearch of UNAM as Associate Investigator “C”. In just 9 years, he managed to climb the entire ladder of university academic positions, to receive its tenure track positionas a Definitive C Titular Researcher at the Institute of Biomedical Research. The same is reflected in the Level of Premiums for Academic Performance, where it has reached the highest level currently: Level D, for the third\nconsecutive period. Also in the National System of Researchers, he has had the same growth, starting in 1997 as a candidate, and, to date, being promoted to Level III, the highest, for the third consecutive period. Dr.Morales-Montor has been invited to participate\nin different congresses (more than 100). In addition, he is part of the editorial committee of more than 15 indexed international\njournals, nd Editor in Chief of 3. Some of his most important contributions are partially determining the role of steroid hormones in immunological sexual dimorphism, in the polarization of the immune response, and in the antigenic presentation.He has alsomade very relevant studies in relation to how different physiological stages, how the estrous cycle, age, sex, or pregnancy affect the functioning of\nthe immune, endocrinological, and nervous system, and what molecules could be the determinants in this context of net. It has been\nshown that the central nervous system is involved in the regulation of the immune response to parasitic infections, and the effect\nof this activation on various behaviors of the infectedhost. But the centralnervous system has provided interesting data about its\nimpact in the parasitology approach. For instance, a modern concept is depicted by how the central nervous system modulates\nthe gene and proteomic regulation of the different sex steroids in parasites,which are involved in important functions of parasites\nsuch as establishment, growth, and reproduction. Finally, the practical use of the knowledge acquired by the earlier mentioned\nstudies has been applied to a theory that he calls old drugs, new uses: the use of hormones and antihormones as antiparasitic\ntherapy. He has also entered the study of environmental contamination, specifically endocrine disruptors and disease, studying\ntheir role in two very important diseases in the country: cancer and obesity, projects with which he has formed two consortiums\nof investigation. Its results are a very important contribution to the health of both Mexicans and Latin Americans in general, since\nthis is where serious health problems related to parasitic infections, cancer, and obesity are concentrated.His investigations are characterized by an exhaustive and meticulous experimental work, and his scientific production already has 153 articles in international indexed journals, and the majority as the first author or corresponding author. He hasmore than 3000 citations to his works, and an h-index of 29, one of the highest in the country’s scientific community. His articles published in high-impact international\njournals include Nature, PlosOne, Journal of Immunology, Journal of Infectious Diseases, Journal of Interferon and Cytokine Research,\nand among others. In fact, recently, his 2015 article, The Role of Cytokines in Breast Cancer Development and Progression, published in the Journal of Interferon and Cytokine Research, was the subject of a press release released by Mary Ann Liebert Publications. This is sent all over the world, to newspapers, Journals, scientists, radio, TV, popular magazines, to what is considered as a very important contribution in a certain area of science. Very few scientific articles are released as “press release.” He is also the 4th most cited author in the area of parasitology in the country. He has also edited several books and published more than 55 chapters in books, national and foreign. In this area, recently, the chapter “The Role of Sex Steroids in the Host-Parasite Interaction,” published in the international\nbook “Sex Steroids” in 2012, reached the figure of 68,000 downloads, which means the degree of attention that has after receiving\nhis work; the foregoing makes it clear that Dr. Morales-Montor’s work is highly relevant and widespread amongthenational and international academic community, and his brilliant career has earned him more than 30 awards, such as the Miguel Aleman Valdez Award in the area of Health 2006, the Distinction National University for Young Academics in the area of Research in Natural Sciences 2006, the CANIFARMA Veterinary Prize 2007 and 2009 the Heberto Castillo Martı´nez Capital City Award for Young Latin American Academics in Basic Research, and for the third consecutive congress, in 2011, one of his works was awarded the “Dr. Jose Eleuterio Gonza´lez” Award, for the best work of and research at the XXVI National Congress of Research in Medicine, to name just a few of its achievements. He has also mentored and graduated more thn 60 students at all levels (Baccularate, Masters and Doctorate) and also been awarded many distinctions, such as joining the Mexican Academy of Sciences (2005), and being one of the few Mexican scientists to be inducted to the Latin American Academy of Sciences (2008), The National Academy of Medicine, the New York Academy of Sciences, the American Association of Immunologists are deserved recognitions for his academic quality and career. His academic leadership is reflected in the trust and respect that his peers confer on him, having been President of the Mexican Society\nof Parasitology (one of the oldest and most prestigious scientific societies in the country) and currently being President, and founding member, of the Mexican Society of Neuroimmunoendocrinology, since 2011. Due to its scientific curiosity, it is in the process of founding the Mexican Society for Translational Environmental Biomedicine. He has been invited to edit special volumes\nin various magazines with international circulation and is a member of the editorial committee of magazines of\nimportance in his area of work, such as ParasiteImmunology, The OpenParasitologyJournal, among others. He has been a jury for\nthe Arturo Rosenblueth Awards for the best CINVESTAV Doctoral Thesis, a jury for the Lola and Igo Flisser-PUIS 2010 Awards, and\na jury for the Heberto Castillo Award, for the best Latin American Researcher 2012, awarded by the Federal District Government.\nIt is noteworthy that he is an outstanding scientist, who has contributed to the scientific research of Mexico with the generation of new frontier knowledge in the world and with the training of high-level human resources.",institutionString:"National Autonomous University of Mexico",position:null,outsideEditionCount:0,totalCites:0,totalAuthoredChapters:"3",totalChapterViews:"0",totalEditedBooks:"0",institution:{name:"National Autonomous University of Mexico",institutionURL:null,country:{name:"Mexico"}}}],coeditorOne:{id:"332210",title:"Dr.",name:"Abraham",middleName:null,surname:"Landa",slug:"abraham-landa",fullName:"Abraham Landa",profilePictureURL:"https://mts.intechopen.com/storage/users/no_image.jpg",biography:'He is a Master and Doctor of Science from UNAM, he did his post-doctorate at the Harvard University School of Public Health and his sabbatical at the Tufts University in Boston. He began his career as a teacher at the Faculty of Medicine UNAM in 1992, as an assistant in the subject of Biochemistry and Molecular biology to later be the owner of it. Is currently Full Professor "C" of T.C Definitive. It is Level “D” of the PRIDE and Level III of the National Research System. Academic-administrative positions: Representative of Postgraduate Tutors in Biological Sciences (2003-2006), in Biological Sciences (2003-2006), Member of the Review Commission of Nonconformities of the Personnel Performance Bonus Program Academic (PRIDE, 2002-2005), Secretary of the Mexican Society of Parasitology (2010-2011), Member of the Technical Council of the Faculty of Medicine (2006-2013) and currently a Member of the Judging Commission Research and Postgraduate Program CAABQyS of the FES-Iztacala (2015-1017).\r\nAwards and distinctions won the Scholarship awarded by the McArthur Foundation (1988-1989), Second place in the IV Parasitology Prize "Lola and Igo Flisser" 1992, the "Gabino Barreda" medal for his Doctorate in Science studies, 1997 and the medal "Nayarit for Scientific and Technological Research in 2001". Contributions and Scientific Productivity His research has been directed to the study of the molecular biology of Cestodes, especially of Taenia solium. He pioneered cloning and characterization of cestode genes and participated in the Consortium that carried out the university megaproject of the Taenia solium genome and three genomes\r\nmore than cestodes that resulted in a 2013 publication in the journal Nature. He has obtained with collaborators from the Institute of Chemistry, Faculty of Chemistry and from UAM the first crystal and inhibitor for a protein in cestodes (Cu / Zn superoxide dismutase), developed a recombinant antibody that inhibits triose phosphate isomerase. Has characterized the 3 glutathione transferases (24, 25, 26 kDa) that form the main system of detoxification and has contributed knowledge about the regulation of transcription, the foregoing has allowed reasonable knowledge of the cestodes and the diseases they cause. As a result of your work\r\nscientist has 58 publications, 12 book chapters, plus 2 books. Teaching and Training of Human Resources: Has taught since 1991, 30 courses and topics at the Postgraduate level. He has also directed 30 undergraduate theses, 9 Master\'s, 1 Specialization and 9 Doctorate. Almost all of his students PhD students are active researchers in Mexico and abroad. Doctor Landa is an active participant in conferences, as a member of committees tutorials, professional degree examinations in all programs of Postgraduate of the UNAM.',institutionString:"National Autonomous University of Mexico",position:null,outsideEditionCount:0,totalCites:0,totalAuthoredChapters:"0",totalChapterViews:"0",totalEditedBooks:"0",institution:{name:"National Autonomous University of Mexico",institutionURL:null,country:{name:"Mexico"}}},coeditorTwo:{id:"332215",title:"Dr.",name:"Luis",middleName:null,surname:"Terrazas",slug:"luis-terrazas",fullName:"Luis Terrazas",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0033Y000031RIzxQAG/Profile_Picture_1600754945533",biography:'He is a Master and Doctor of Science from UNAM, he did his post-doctorate at the Harvard University School of Public Health and his sabbatical at the Tufts University in Boston. He began his career as a teacher at the Faculty of Medicine UNAM in 1992, as an assistant in the subject of Biochemistry and Molecular biology to later be the owner of it. Is currently Full Professor "C" of T.C Definitive. It is Level “D” of the PRIDE and Level III of the National Research System. Academic-administrative positions: Representative of Postgraduate Tutors in Biological Sciences (2003-2006), in Biological Sciences (2003-2006), Member of the Review Commission of Nonconformities of the Personnel Performance Bonus Program Academic (PRIDE, 2002-2005), Secretary of the Mexican Society of Parasitology (2010-2011), Member of the Technical Council of the Faculty of Medicine (2006-2013) and currently a Member of the Judging Commission Research and Postgraduate Program CAABQyS of the FES-Iztacala (2015-1017).\r\nAwards and distinctions won the Scholarship awarded by the McArthur Foundation (1988-1989), Second place in the IV Parasitology Prize "Lola and Igo Flisser" 1992, the "Gabino Barreda" medal for his Doctorate in Science studies, 1997 and the medal "Nayarit for Scientific and Technological Research in 2001". Contributions and Scientific Productivity His research has been directed to the study of the molecular biology of Cestodes, especially of Taenia solium. He pioneered cloning and characterization of cestode genes and participated in the Consortium that carried out the university megaproject of the Taenia solium genome and three genomes\r\nmore than cestodes that resulted in a 2013 publication in the journal Nature. He has obtained with collaborators from the Institute of Chemistry, Faculty of Chemistry and from UAM the first crystal and inhibitor for a protein in cestodes (Cu / Zn superoxide dismutase), developed a recombinant antibody that inhibits triose phosphate isomerase. Has characterized the 3 glutathione transferases (24, 25, 26 kDa) that form the main system of detoxification and has contributed knowledge about the regulation of transcription, the foregoing has allowed reasonable knowledge of the cestodes and the diseases they cause. As a result of your work\r\nscientist has 58 publications, 12 book chapters, plus 2 books. Teaching and Training of Human Resources: Has taught since 1991, 30 courses and topics at the Postgraduate level. He has also directed 30 undergraduate theses, 9 Master\'s, 1 Specialization and 9 Doctorate. Almost all of his students PhD students are active researchers in Mexico and abroad. Doctor Landa is an active participant in conferences, as a member of committees tutorials, professional degree examinations in all programs of Postgraduate of the UNAM.',institutionString:"National Autonomous University of Mexico",position:null,outsideEditionCount:0,totalCites:0,totalAuthoredChapters:"0",totalChapterViews:"0",totalEditedBooks:"0",institution:{name:"National Autonomous University of Mexico",institutionURL:null,country:{name:"Mexico"}}},coeditorThree:null,coeditorFour:null,coeditorFive:null,topics:[{id:"16",title:"Medicine",slug:"medicine"}],chapters:null,productType:{id:"1",title:"Edited Volume",chapterContentType:"chapter",authoredCaption:"Edited by"},personalPublishingAssistant:{id:"280415",firstName:"Josip",lastName:"Knapic",middleName:null,title:"Mr.",imageUrl:"https://mts.intechopen.com/storage/users/280415/images/8050_n.jpg",email:"josip@intechopen.com",biography:"As an Author Service Manager my responsibilities include monitoring and facilitating all publishing activities for authors and editors. From chapter submission and review, to approval and revision, copy-editing and design, until final publication, I work closely with authors and editors to ensure a simple and easy publishing process. I maintain constant and effective communication with authors, editors and reviewers, which allows for a level of personal support that enables contributors to fully commit and concentrate on the chapters they are writing, editing, or reviewing. I assist authors in the preparation of their full chapter submissions and track important deadlines and ensure they are met. I help to coordinate internal processes such as linguistic review, and monitor the technical aspects of the process. As an ASM I am also involved in the acquisition of editors. Whether that be identifying an exceptional author and proposing an editorship collaboration, or contacting researchers who would like the opportunity to work with IntechOpen, I establish and help manage author and editor acquisition and contact."}},relatedBooks:[{type:"book",id:"6550",title:"Cohort Studies in Health Sciences",subtitle:null,isOpenForSubmission:!1,hash:"01df5aba4fff1a84b37a2fdafa809660",slug:"cohort-studies-in-health-sciences",bookSignature:"R. Mauricio Barría",coverURL:"https://cdn.intechopen.com/books/images_new/6550.jpg",editedByType:"Edited by",editors:[{id:"88861",title:"Dr.",name:"R. Mauricio",surname:"Barría",slug:"r.-mauricio-barria",fullName:"R. Mauricio Barría"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"1591",title:"Infrared Spectroscopy",subtitle:"Materials Science, Engineering and Technology",isOpenForSubmission:!1,hash:"99b4b7b71a8caeb693ed762b40b017f4",slug:"infrared-spectroscopy-materials-science-engineering-and-technology",bookSignature:"Theophile Theophanides",coverURL:"https://cdn.intechopen.com/books/images_new/1591.jpg",editedByType:"Edited by",editors:[{id:"37194",title:"Dr.",name:"Theophanides",surname:"Theophile",slug:"theophanides-theophile",fullName:"Theophanides Theophile"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"3092",title:"Anopheles mosquitoes",subtitle:"New insights into malaria vectors",isOpenForSubmission:!1,hash:"c9e622485316d5e296288bf24d2b0d64",slug:"anopheles-mosquitoes-new-insights-into-malaria-vectors",bookSignature:"Sylvie Manguin",coverURL:"https://cdn.intechopen.com/books/images_new/3092.jpg",editedByType:"Edited by",editors:[{id:"50017",title:"Prof.",name:"Sylvie",surname:"Manguin",slug:"sylvie-manguin",fullName:"Sylvie Manguin"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"3161",title:"Frontiers in Guided Wave Optics and Optoelectronics",subtitle:null,isOpenForSubmission:!1,hash:"deb44e9c99f82bbce1083abea743146c",slug:"frontiers-in-guided-wave-optics-and-optoelectronics",bookSignature:"Bishnu Pal",coverURL:"https://cdn.intechopen.com/books/images_new/3161.jpg",editedByType:"Edited by",editors:[{id:"4782",title:"Prof.",name:"Bishnu",surname:"Pal",slug:"bishnu-pal",fullName:"Bishnu Pal"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"72",title:"Ionic Liquids",subtitle:"Theory, Properties, New Approaches",isOpenForSubmission:!1,hash:"d94ffa3cfa10505e3b1d676d46fcd3f5",slug:"ionic-liquids-theory-properties-new-approaches",bookSignature:"Alexander Kokorin",coverURL:"https://cdn.intechopen.com/books/images_new/72.jpg",editedByType:"Edited by",editors:[{id:"19816",title:"Prof.",name:"Alexander",surname:"Kokorin",slug:"alexander-kokorin",fullName:"Alexander Kokorin"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"1373",title:"Ionic Liquids",subtitle:"Applications and Perspectives",isOpenForSubmission:!1,hash:"5e9ae5ae9167cde4b344e499a792c41c",slug:"ionic-liquids-applications-and-perspectives",bookSignature:"Alexander Kokorin",coverURL:"https://cdn.intechopen.com/books/images_new/1373.jpg",editedByType:"Edited by",editors:[{id:"19816",title:"Prof.",name:"Alexander",surname:"Kokorin",slug:"alexander-kokorin",fullName:"Alexander Kokorin"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"57",title:"Physics and Applications of Graphene",subtitle:"Experiments",isOpenForSubmission:!1,hash:"0e6622a71cf4f02f45bfdd5691e1189a",slug:"physics-and-applications-of-graphene-experiments",bookSignature:"Sergey Mikhailov",coverURL:"https://cdn.intechopen.com/books/images_new/57.jpg",editedByType:"Edited by",editors:[{id:"16042",title:"Dr.",name:"Sergey",surname:"Mikhailov",slug:"sergey-mikhailov",fullName:"Sergey Mikhailov"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"371",title:"Abiotic Stress in Plants",subtitle:"Mechanisms and Adaptations",isOpenForSubmission:!1,hash:"588466f487e307619849d72389178a74",slug:"abiotic-stress-in-plants-mechanisms-and-adaptations",bookSignature:"Arun Shanker and B. Venkateswarlu",coverURL:"https://cdn.intechopen.com/books/images_new/371.jpg",editedByType:"Edited by",editors:[{id:"58592",title:"Dr.",name:"Arun",surname:"Shanker",slug:"arun-shanker",fullName:"Arun Shanker"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"878",title:"Phytochemicals",subtitle:"A Global Perspective of Their Role in Nutrition and Health",isOpenForSubmission:!1,hash:"ec77671f63975ef2d16192897deb6835",slug:"phytochemicals-a-global-perspective-of-their-role-in-nutrition-and-health",bookSignature:"Venketeshwer Rao",coverURL:"https://cdn.intechopen.com/books/images_new/878.jpg",editedByType:"Edited by",editors:[{id:"82663",title:"Dr.",name:"Venketeshwer",surname:"Rao",slug:"venketeshwer-rao",fullName:"Venketeshwer Rao"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"4816",title:"Face Recognition",subtitle:null,isOpenForSubmission:!1,hash:"146063b5359146b7718ea86bad47c8eb",slug:"face_recognition",bookSignature:"Kresimir Delac and Mislav Grgic",coverURL:"https://cdn.intechopen.com/books/images_new/4816.jpg",editedByType:"Edited by",editors:[{id:"528",title:"Dr.",name:"Kresimir",surname:"Delac",slug:"kresimir-delac",fullName:"Kresimir Delac"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}}]},chapter:{item:{type:"chapter",id:"73820",title:"Torque Ripple Reduction in DTC Induction Motor Drive",doi:"10.5772/intechopen.94225",slug:"torque-ripple-reduction-in-dtc-induction-motor-drive",body:'The electric motors are electromechanical machines, which are used for the conversion of electrical energy into mechanical energy. The foremost categories of AC motors are asynchronous and synchronous motors. The asynchronous motors are called singly excited machines, that is, the stator windings are connected to AC supply whereas the rotor has no connection from the stator or to any other source of supply. The power is transferred from the stator to the rotor only by mutual induction, owing to which the asynchronous motors are called as induction machines. The induction motor is used widely in several industrial applications because of the following advantages 1. Ruggedness 2. Good efficiency 3. Simple and easy control. When the induction motor is compared to separately excited DC drives it is inferior because of coupled torque and flux. To bring high performance in induction motor drive the advanced control techniques of induction motor uses independent control of torque and flux, like in separately excited DC drives.
The advanced control techniques such as field oriented control and direct torque control play vital role in today’s high performance AC drives. Later in the 1980s, the direct torque control (DTC) method was proposed by Takahashi and Depenbrock [1, 2]. The direct torque control is a robust method compared to other methods. In this method by selecting optimum inverter switching modes the motor torque and flux are controlled independently and also direct. The primary input of the motor is stator voltage and stator current. From this the stator flux and electromagnetic torques are calculated. The torque errors and flux errors are limited within the hysteresis band. The Direct torque control of induction motors based on discrete space vector modulation using adaptive sliding mode control was proposed by Ben Salem and Derbel [3], the results shows the effectiveness and the robustness of the DTC- discrete SVM adaptive sliding mode control of induction motors. The variations of induction motor parameters is shown by Ben Salem and Derbel in their subsequent two publications namely Performance Analysis of DTC-SVM Sliding Mode Controllers-Based on Estimator of Electric Motor Speed Drive [4], and DTC-SVM Based Sliding Mode Controllers with Load Torque Estimators for Induction Motor Drives [5] respectively. The advantages of this direct torque control method is improved efficiency and fast response of torque in dynamic conditions [6, 7].
A typical three phase Induction motor consists of two parts namely stator and rotor, the outer part is called stator having coils supplied with three phase AC current to produce a rotating magnetic field. The inside rotating part is called rotor attached to the output shaft that is gives the useful torque produced by the rotating magnetic field. The stator is made up of stack of steel laminations of 0.35-o.5 mm thick with slots similar to a stator of a synchronous machine. The Coils are placed in the slots to form a three or single phase winding. Figure 1A shows the stator stampings with slots of induction motor Figure 1B shows the stator of induction motor [6].
(A) Stator stamping with slots of induction motor. (B) Stator of Induction Motor.
The rotors of induction motors are of two types namely squirrel cage rotor and slip ring rotor. The squirrel cage rotor is made up of punched laminations with (0.35 to 0.5) mm thick steel core with rotor slots. Aluminum bars are molded in the slots instead of winding. End rings short circuit the aluminum bars at each side [6]. Figure 2 shows the squirrel cage rotor.
Squirrel cage rotor.
The slip ring rotor or wound rotor has windings like the stator and at the end of each phase the winding is connected to a slip ring. There are three slip rings and three brushes through which three resistances can be connected in three phase star configuration for reducing starting current and speed control as well as increasing the torque [6]. Figure 3 shows the slip ring rotor.
Slip ring rotor.
The various IM control techniques are classified in to scalar and vector control methods. The general classification of IM control strategies [8, 9] which are based on the variable frequency control is shown in Figure 4.
General classification of control strategies of induction motor.
The various scalar control methods are as follows 1. Stator voltage control 2.frequency control 3. Voltz/Hertz (V/F) control 4. Rotor Voltage control 5. Changing the number of poles. Out of these scalar methods, V/F control method is the best scalar control method. It can able to adjust the speed of the Induction motor by controlling the amplitude and frequency of the stator voltage of induction motor, the ratio of stator voltage to frequency should be kept constant so that, it is called as V/F control of induction motor drive. The vector control is preferred over scalar control methods due to the following disadvantages of scalar methods 1. Control of Voltage/Current/frequency magnitude is based on steady state equivalent circuit model which ignores transient conditions. 2. Coupling of torque and flux exists, and they are functions of frequency and voltage which leads to sluggish dynamic responses [6].
The FOC method is implemented based on the analogy of controlling a DC motor. It does not guarantee an exact decoupling of the torque and flux in dynamic and steady state operations. The full information about motor state variable and load torque is required for controlling the IM. The relationship between regulated value and control variables is linear only for constant rotor flux amplitude. The current controllers, coordinate transformations and a PWM algorithm are required. For direct FOC, flux estimator is required. In indirect FOC mechanical speed sensor is needed. This method is very sensitive to rotor time constant.
The DTC is one of the high performance control strategies for the control of AC machine. In a DTC drive applications, flux linkage and electromagnetic torque are controlled directly and independently by the selection of optimum inverter switching modes of operation. To acquire a faster torque output, low inverter switching frequency and low harmonic losses in the model, the selection is made to restrict the flux linkages and electromagnetic torque errors within the respective flux and torque hysteresis bands. The required optimal switching vectors can be selected by using the optimum switching voltage vector look-up table. This can be obtained by simple physical considerations involving the position of the stator-flux linkage space vector, the available switching vectors, and the required torque flux linkage.
The torque is controlled by the stator current component
The motor torque is expressed by rotor flux magnitude
The Eq. (2) is transformed into the Eq. (3)
where
The vector diagram of IM is shown in Figure 5.
Vector diagram of induction motor.
From the motor voltage Eq. (5) for the omitted voltage drop on the stator resistance, the stator flux can be expressed.
From the mathematical model of IM, the electromagnetic torque equation is given in the Eq. (4)
Taking into consideration the fact that in the cage motor the rotor voltage equals zero and the electromagnetic torque Eq. (4), the following Eq. (5) is derived.
Taking into consideration the output voltage of the inverter in the above Eq. (6) it can be written as
where
The Eq. (7) describes eight voltage vectors which correspond to possible inverter states. These vectors are shown in Figure 6. There are six active vectors U1 to U6 and two zero vectors U0, U7.
Inverter output voltage represented as space vectors.
It can be seen from the Eq. (7) that the stator flux directly depends on the inverter voltage Eq. (8). By using one of the active voltage vectors the stator flux vector moves to the direction and sense of the voltage vector. Stator flux changes direction for the cycle sequence of the active voltage vectors. Inherently the rotor flux of IM moves slowly but the stator flux could be changed immediately. In DTC methods the angle
Sectors in classical DTC.
In order to increase magnitude of the stator vector in sector 1, the following voltage vectors U1 U2 U6 are selected. Conversely to decrease, U3 U4 U5 are selected. The stator flux is not changed when any one of the zero vectors U0 or U7 is applied. The solving of integration in Eq. (7) is stopped.
To increase the motor torque, the voltage vectors U2 U3 U4 are selected and for decreasing the torque U1 U5 U6 are selected. The switching Table 1 is constructed based on the above considerations.
1 | 1 | U2 | U3 | U4 | U5 | U6 | U1 |
0 | U7 | U0 | U7 | U0 | U7 | U0 | |
−1 | U6 | U1 | U2 | U3 | U4 | U5 | |
0 | 1 | U3 | U4 | U5 | U6 | U1 | U2 |
0 | U0 | U7 | U0 | U7 | U0 | U7 | |
−1 | U5 | U6 | U1 | U2 | U3 | U4 |
Optimum switching table.
I. Takahashi and T. Nogouchi proposed the control scheme for Direct torque control and it is block diagram is shown in Figure 8.
Block diagram of DTC scheme.
The reference signals such as stator flux amplitude
According to the Eq. (15) the torque and flux errors are calculated.
Despite its simplicity and robustness, the conventional DTC control has major drawback. The use of hysteresis controllers causes high ripples in the flux and electromagnetic torque at low speeds. It results in undesirable mechanical vibrations and acoustic noise, and subsequently leads to degradation of the machine performances. Thus the variable switching frequency and current distortions could detoriate the quality of the output power. The negligence in the calculation of stator resistance leads to problems at low speed. Moreover, the practical implementation of nonlinear components of the hysteresis type needs low sampling period. Many DTC strategies are developed based on the principle of instantaneous torque and stator flux regulation in order to rectify the drawbacks of classical DTC. The direct determination of the inverter control signals from the switching table is implemented [9].
The DTC control strategies are divided into two groups: 1.Typical 2.Modern control strategies. They are classified into few other control techniques such as space vector modulation (SVM-DTC), modified switching table (m-DTC), Artificial Neural Network controller based (ANN-DTC), Fuzzy Logic controller based (FLC-DTC), Genetic algorithm based (GA-DTC), Model predictive controller based (MPC-DTC), Sliding mode based (SMO-DTC) [9, 10] as shown in Figure 9.
Classification of DTC improvement strategies.
It covers modification in switching table and/or injection of dithering signals. Few attempts are made to avoid the drawbacks in convention DTC either by implementing dither signal injection method or modified switching table method.
The modifications are carried out in the DTC- basic switching table with the objective of improving starting and overload conditions which enable all the voltage vectors are applied in appropriate sequence. They are implemented by two methods namely 1. Six sector table and 2. Twelve sector table respectively. The zero voltage vectors are selected from the switching Table 1 during starting and very low speed conditions and results in flux level reduction due to the drop in stator resistance [11].
In conventional DTC, the states v1 and v4 vectors are not used. Depending on if the position is in its first 39 degrees or in its second ones, they could increase or decrease the torque. It leads to modify the switching table and use the modified DTC. In the modified DTC, the vectors v3 and v6 are not used. The reason is the ambiguity in flux instead of torque as if it was in conventional DTC [12].
By applying zero voltage vectors V0, V7 for the states of decreasing in torque, Table 1 is modified accordingly. The inertia of the motor is reduced when zero voltage vectors are applied, torque ripple is reduced. It is more suitable than the percent given by applying the voltage vectors in Table 1 for the torque decrease states. Table 2 illustrates this modification [12].
Voltage vectors | Classical DTC | DTC with changes of zones |
---|---|---|
V1 | +30° to −30° | 0° to −60° |
V2 | +90° to +30° | +60° to 0° |
V3 | +150° to +90° | +120° to +60° |
V4 | −150° to +150° | +180° to +120° |
V5 | −90° to −150° | −120° to −180° |
V6 | −30°to −90° | −60° to −120° |
Modified switching table with 6-sectors.
In both classical DTC and modified DTC there are two states per sector that present a torque ambiguity, so they are never used either. Instead of six sectors, the stator flux locus is divided into twelve sectors. Then all six active states will be implemented per sector. Consequently, the idea of the twelve sector modified DTC [13] is introduced. The tangential voltage vector component is very small and consequently its torque variation will be small as well. Based on this fact, the technique of small torque increase instead of torque increase is implemented [10, 11].
Feedback signals should not be delayed in order to maintain maximum possible switching frequency. Due the presence of isolation amplifier, Hall effect transducer and other components, the delay is made inevitably. By introducing the dither signal at very high frequency, the effect due to delay could be compensated. Normally these dither signals are triangular waves at double or triple the sampling frequency of the system. This dithering technique minimizes the torque ripple to 30% compared to conventional DTC method [14].
The frequency of the dither signal is selected well above the cutoff frequency of the system so that its presence could not be detected in the output. When the system parameters are not exactly known and not alterable, the method of instantaneous injection of dither signal is robust to noise in measurements. The inherent delay in signal transduction, data acquisition system and computation leads to low switching frequency which would result in increased torque and flux ripples. The dithering signal injection is implemented to improve the switching frequency of inverter. The appropriate magnitude and frequency of dither signals which are injected in torque and flux errors could minimize torque ripples and acoustic noise level in the drive [15].
In the inverter operation to avoid a short circuit in the DC-link, only one switch is turned on at a time. During the transistor switching signals, a delay time must be inserted and as a result the transistors stops to conduct. The dead-time TD is presented for the transistors T1, T2 for the two control signals SA+, SA- respectively. Most of the transistors take 1-3 μs duration of dead-time. The safe operation of the inverter is guaranteed by this delay time but it results into a serious distortion in the output voltage. Consequently there is a loss of control momentarily, where a deviation in output voltage from the reference voltage is observed. It is repeated for every switching cycle, so it has significant impact on the control of the inverter and this is known as dead-time effect. The inverter has nonlinear characteristics due to the dead-time and voltage drop on the switching devices. So the compensation algorithms are required in the control strategies [8] as shown in Figure 10.
Dead-time effect in PWM inverter.
The dead-beat DTC scheme is based on the technique, forcing the magnitude of torque and stator flux to attain their reference values in one sampling period. It is achieved by synthesizing a suitable stator voltage vector applied from Space Vector Modulation (SVM). In this approach the changes in the magnitude of torque and flux over one sampling period are calculated from the motor equations. To get the command value of stator voltage vector in stationary coordinates, a quadratic equation is solved [11].
The flux estimation is crucial part in the sensor less control strategies. The algorithm used for this is sensitive on the calculation accuracy of the inverter output voltage. From the switching signals, the voltages are reconstructed. Figure 11 shows the DTC control with modification of flux error status block [13] dead-time compensation algorithm is significant in this SVM-DTC method [8].
DTC control with modification of flux error status block.
The torque and flux ripple are reduced when the switching frequency of the inverter is maintained constant and greater than the sampling frequency [11].
For general purpose IM drives, PI-DTC is an appropriate solution in a very wide power range. It is suited to very fast torque and flux controlled drives because of its short sampling time which is required by the switching table DTC schemes [10].
The stator resistance influences the estimation accuracy of stator flux. The characteristics of both torque and flux control loops are affected by error in estimation of stator flux. A new strategy in MATLAB/SIMULINK model is implemented with modified flux error block which resulted in getting quick response [13].
The largest tangential vector to the circular flux locus is produced by an optimized voltage vector. This voltage vector is switched and held to achieve a fast rate of change of angle ∆δsr. The optimized voltage before being it is fed to the lookup table; its selection is done by modifying the flux error status [13].
The main difference between classical DTC and DTC-SVM (Figure 12) control methods lies in which the control algorithm is being used for the calculations. Based on the instantaneous values, the classical DTC algorithm directly calculates the digital control signals for the inverter. In the DTC-SVM methods control algorithm calculations are based on averaged values whereas the switching signals for the inverter are calculated by space vector modulator. Based on voltage model, the flux estimator with reference flux is selected for the implementation DTC-SVM control structure in sensor less mode of operation [8].
Block diagram of FLC/ANN controller for DTC-SVM scheme for induction motor.
The classical DTC has several disadvantages, among which the variable switching frequency and the high level of ripples are the prominent issues [16]. Further they lead to high-current harmonics and an acoustical noise and they detoriate the control performance at low speeds. The ripples are produced proportionally to the width of the hysteresis band. Due to the discrete nature of the hysteresis controllers, even for the reduced bandwidth values, the ripples are still present [16].
The inverter switching frequency is increased due to even very small values of bandwidths. The modifications in classical DTC strategy is done by including a vector modulator block, which produces space vector PWM technique (SVM) and it is used to implement the voltage vector with a fixed frequency of inverter switching. The switching table and hysteresis controllers are replaced with PI controllers to control the stator flux and the torque [13].
The disadvantages of DTC-SVM with conventional PI controllers are as follows 1. Sensitivity to variation in system parameters and 2. Inadequate rejection of external disturbances and 3. Load changing conditions. These disadvantages are overcome by replacing the conventional PI controllers by intelligent controllers such as adaptive fuzzy-PI or FLC. These intelligent controllers ol more robust against the external disturbances and parameter variations [13].
The DTC-SVM methods have several following classes namely:
PI controllers based DTC-SVM.
Predictive/dead-beat based DTC-SVM.
Fuzzy logic and/or neural networks based DTC-SVM.
Variable-structure control (VSC) [8] based DTC-SVM.
The use of PI controller for torque control of induction motor drives is to overcome an overshoot during startup and to minimize steady state error. The PI controllers provide feedback signals to the system.
In voltage model based stator flux estimation, the pure integrator is replaced with LPF to eliminate the problem of saturation and integration drift due to the DC offsets which are present in the sensed currents or voltages. The LPF introduces the phase and magnitude errors of stator flux estimation which affects the selection of voltages vector and electromagnetic torque response, thereby it deteriorate the performance of DTC drive. To overcome the LPF problems, closed loop of stator flux estimation is implemented [17].
In MRAS, to estimate the rotor speed, PI controller is used and this controller takes more time to tune the proportional and integral gain to obtain the estimated target speed. The MRAS is based on rotor speed, rotor flux and stator current thereby it eliminates the need of PI controller [18].
The effective integration of SVM technique with any n-level multilevel inverter fed DTC drive is achieved by using a fractal based space-vector DTC algorithm. The current THD performance is improved at higher level of DTC drives under transient, steady state and speed reversal operating conditions. Without any significant modification, this strategy could be adapted at any n-level inverter fed DTC controller [19].
The Space Vector PWM (SVPWM) is a technique used for solving the switching losses in the power converter. The SVPWM is operated in a symmetrical way, so the switching state of each sector is predefined. In this proposed scheme, the initial values to the DTC controller have been fixed based on the induction motor rating. Then the estimation of DTC parameters is found and it is fed to the reference to the Hybrid Asymmetric Space Vector PWM (HASVPWM) controller.
Traditional PWM techniques consist of two signals called carrier signal and reference signal for generating the PWM pulses. If any distortions in the reference signal (i.e error signal) may produce miscellaneous pulses, which will affect the performance of the converter. But SVPWM technique is purely based on estimating the voltage magnitude and its angle for pulse generation. In this, three phase voltages Vabc are converted into Vd,Vq and V0 using abc-dq0 theory. This method will make the estimation of the sector angle and voltage magnitude easier. In traditional SVPWM, each sector denotes 600 angles and totally it has six sector and two reference vector in its implementation. Even though the estimation is done for every sector accuracy of generating the pulses is lagging due to the higher range of sector angle and minimum switching sectors. For an example, if estimated sector angle is 550, then the switching pattern in sector 1 is selected for the PWM generation. But V2 vector is also having different switching pattern and that may also well suited for the same estimated sector angle 550. In order avoid such difficult situations, a HASVPWM is used for controlling the DTC drive which reduces torque ripples, switching losses and improved power quality.
The implementation of HASVPWM is similar to the SVPWM technique. In general, three phase Voltage source inverters (VSI) have eight distinct switching losses, where state 1 to 6 are active states, 0 and 7 are inactive switching states. In HASVPWM, asymmetric voltage vectors are represented as Vni, Vnj and Vnk where n = 1,2,3,4,5,6 and four quadrants. HASVPWM has two non-zero vectors (V1 and V2) and two zero vectors (V0 and V24) in each vector will be used for the vector 150.Hence this HASVPWM have 24 sectors and it is shown in Figure 13.
Structure of HASVPWM hexagon.
Major portion in HASVPWM is to removal of mismatching pulses which will be done by comparing the HASVPWM pulses with the traditional SVPWM pulse. The mismatching pulses are removed by calculating its rise time (Tr) and fall time (Tf) of the mismatching pulses with magnitude. Then the same magnitude of pulse with same instant is added. For mismatching pulse removal. This logic avoids the mismatching pulses in the output and reduce the switching losses in the VSI based DTC drive. In this proposed system, intelligent control methods such as Fuzzy Logic Control (FLC) and Artificial Neural Network (ANN) are utilized to find the suitable sector for continuous operation. They are also efficient than the classical control techniques which are utilized to find suitable sector for the continuous operation.
The proposed hybridization process is performed by the combination of continuous ASVPWM and fuzzy operated Discontinuous ASVPWM technique. Finally, the mismatching pulses of both PWM techniques are applied to control the inverter. Pulse mismatching technique helps to reduce the active region of the switch and achieve the optimal input pulse to the inverter. Pulse mismatching technique helps to reduce the active region of the switch and achieve the optimal input pulse to the inverter. The optimal hybrid pulse reduces transition time of inverter switch and improves operating performance of the inverter. The Fuzzy rules help to select the optimal switching sector for discontinuous modulation. If there is more number of sectors in the hexagon, it allows more degrees of freedom which help to find the optimal reference voltage and angle. The Fuzzy logic system describes to what degree the rule applies, while the conclusion assigns a fuzzy function to each of one or more output variables. These Fuzzy Expert Systems allow more than one conclusion per rule.
The linguistic labels are divided into five groups. They are: NB-Negative Big; NS- Negative Small; ZE-zero; PS-Positive Small; PB-Positive Big. Each of the inputs and the output contain membership functions with all these five linguistics.
The set of rules in a fuzzy expert system is given in Table 3 and corresponding input and membership function values are indicated in Figure 8.
CE\\E | NB | NS | ZE | PS | PB |
---|---|---|---|---|---|
NB | NB | NB | NS | NS | ZE |
NS | NB | NS | NS | ZE | PS |
ZE | NS | NS | ZE | PS | PS |
PS | NS | ZE | PS | PS | PB |
PB | ZE | PS | PS | PB | PB |
Fuzzy Logic Rules to select suitable sector in HASVPWM.
The simulation model of DTC with HASVPWM scheme is developed using MATLAB software Simulink tool. The fuzzified inputs and defuzzified outputs are shown in Figures 14–16 respectively. Consider a case, when the sector angle estimated from the SVPWM calculation as shown in Figure 14 is equal to −1650, it means negative big (NB) as mentioned in Table 3. And change in the sector angle at the next instant is about −1100, it represent the negative small (NS). Then the corresponding fuzzy output is NB, which is mentioned in Figure 16.
Degree input to FLC.
Change in degree error input to FLC.
Fuzzy output Modulation index for HASPWM.
The DTC control can also be achieved with HASVPWM using Artificial Neural Network (ANN) control. ANN is nonlinear model that is easy to use and understand compared to statistical methods like Fuzzy logic. Compare with Fuzzy Logic, ANN has an ability to learn from the previous trained data. Hence, the major advantage of ANN is to train a system with large amount of data sets. The output performance will depend upon the trained parameters and the data set relevant to the training data. In this proposed scheme, ANN is used to estimate the suitable sector of HASVPWM.
ANN is used to determine the sector number for the estimated value of θe. There are total of 24 sectors, each sector of 15 degree. Again three layers of neurons are used but with a 5–4-1 feed forward configuration as shown in Figure 17. The Input layer is of log sigmoid transfer function, hidden layer is of hyperbolic tangent sigmoid function and the output layer is of linear transfer function. Levenberg -Marquardt back propagation based training method is used for train the neurons. As soon as the training procedure is over, the neural network gives almost the same output pattern for the same or nearby values of input. This tendency of the neural networks which approximates the output for new input i.e. angle theta since sector selection is purely based on theta.
The structure of network utilized in the proposed technique.
The following Figure 17 shows the structure of Neural Network (NN) which is utilized in the proposed ANN controller for DTC-SVM scheme for induction motor.
The Step by step procedure for NN Algorithm is given below:
Step 1: Initialize the input weight for each neuron.
Step 2: Apply the training dataset to the network. Here X is the input to the Network and Y1, Y2 and Y3 are the output of the network.
Step 3: Adjust the weights of all neurons.
Step 4: Determine Sector Angle for SVPWM.
Compare with Fuzzy logic control, ANN control in HASVPWM is able to identify the suitable voltage vector and its angle for minimizing the torque ripple and PEC losses and THD, maximizing DTC capabilities under various operating conditions like speed reversal, loading conditions etc. The effectiveness of ANN-HASVPWM in DTC scheme is predicted by comparing ANN with the Fuzzy based HASVPWM scheme. The results for ANN based HASVPWM scheme to DTC controller under the same loading conditions, it shows that torques ripple, switching loss and harmonic content reduction is expected. The comparative simulation results are clearly presented and shown in Table 4.
Control strategies | Torque ripple factor (%) |
---|---|
Proposed FLC controller for HASVPWM FOR DTC-SVM scheme | 5.1 |
Proposed ANN controller for HASVPWM FOR DTC-SVM scheme | 4.5 |
Comparison of control strategies in induction motor.
The two proposed schemes namely 1.Fuzzy Logic Controller (FLC) for DTC-SVM and 2.Artificial Neural Network (ANN) controller for DTC-SVM respectively for IM. Has been simulated using MATLAB version R2009a and the results are compared and shown in Table 4. Both of the proposed scheme methods uses HASVPWM. The parameters of IM used in the simulation are given in the appendix.
The torque ripple can be calculated by using the relation.
The simulation results of FLC for DTC-SVM of IM with HASVPWM is shown in Figures 18 and 19.The simulation results of ANN for DTC-SVM of IM with HASVPWM is shown in Figures 20 and 21.
Speed and torque output for FLC based DTC-SVM of IM with HASVPWM.
Torque ripples for FLC based DTC-SVM of IM with HASVPWM.
Speed and torque output for ANN based DTC-SVM of IM with HASVPWM.
Torque ripples for ANN based DTC-SVM of IM with HASVPWM.
From Figure 19 (Torque ripple waveform) it is inferred that the torque ripples oscillates from 9.5 Nm (Minimum) to 10.1 Nm (maximum) for the given Reference torque of 10 Nm.
Torque Ripple factor (%) as per Eq. 23 is given by = ((10.01–9.5)/10) × 100 = 0.51/10×100 = 5.1.
From Figure 21 (Torque ripple waveform) it is inferred that the torque ripples oscillates from 9.55 Nm (Minimum) to 10 Nm (maximum) for the given Reference torque of 10 Nm.
Torque Ripple factor (%) as per Eq. 23 is given by = ((10–9.55)/10) × 100 = 0.45/10×100 = 4.5.
Figure 22 shows the comparison of Torque Ripple of FLC and ANN based DTC-SVM of IM with HASVPWM at 1000 rpm.
Torque ripple comparison of FLC and ANN based DTC- SVM of IM with HASVPWM.
It is clear that variation in Torque ripples shown in Table 4 is less in case of ANN and they can achieve a minimum torque ripple than other control techniques. It has been viewed that the discussed control strategy has helped in reducing the torque ripples. Thus, by using FLC and ANN based controller for DTC of IM, the ripples are reduced completely.
The limits of the torque hysteresis band are controlled by FLC. It entails a minimization of the torque ripples as well as an improvement of the dynamic performances of IM. The FLC selects the optimum bandwidth of the torque hysteresis in real time [9].
The fuzzified parameters such as torque error, stator flux errors, and stator flux angle are the input to FLC. The switching state of the inverter is a crisp value obtained as an output from the FLC [11].
A detailed classification and comparison of DTC strategies like SMC, FLC and ANN in terms of performance parameters of induction machine were discussed in [20].
The PI controller and FLC algorithm have been implemented for the three-phase induction motor and it is found that the proposed FLC scheme is better than the conventional DTC control with PI control in [21].
The effective DTC improvements are achieved by Fuzzy logic controller thereby the ripples in torque and flux are reduced, consequently secondary problems for the motor such as heating, mechanical vibration, aging are also rectified. The merits of the conventional are also preserved [22].
A multilayer ANN allows to replace both hysteresis comparators and the selection table in classical DTC.
The ANN offers the following merit over classical DTC.
The complexity of the controller is reduced;
The effects of motor parameter variations are minimized.
The controller time response is improved.
The robustness of drive is improved [11].
For electric vehicle applications, the FLC and ANN based monitoring systems for the DTC controlled induction motor drive was implemented to detect a very small change in performance parameters [23].
We are thankful to the management of following institutes, the Department of Electrical and Electronics Engineering, PSG Institute of Technology and Applied Research, Coimbatore, Tamilnadu, India, and the Department of Mechatronics Engineering, Nehru Institute of Engineering and Technology, Coimbatore, India, for their encouragement, support and facilities provided for our book chapter work.
RATED POWER | 5.4 HP |
RATED VOLTAGE | 400 V |
RATED SPEED | 1430 RPM |
RATED TORQUE | 26.7 Nm |
RATED CURRENT | 8.5 A |
STATOR RESISTANCE | 1.405 Ω |
ROTOR RESISTANCE | 1.395 Ω |
STATOR INDUCTANCE Ls | 0.005839H |
ROTOR INDUCTANCE Lr | 0.005839H |
MAGNETIC FLUX | 0.1827 weber |
NO. OF POLES | 4 |
MOMENT OF INERTIA | 0.0131 kgm2 |
FRICTION FACTOR | 0.002985 Nms/rad |
fc | crossover frequency |
id | d-axis current |
Ldm | d-axis magnetizing inductance |
Ld | d-axis self-inductance |
Vd | d-axis voltage |
ρ | derivative operator |
Te | develop electromagnetic torque |
d | direct or polar axis |
DTC | direct torque control |
ωr | electrical speed |
if | equivalent permanent magnet field current |
Ls | equivalent self-inductance per phase |
λd | flux linkage due d axis |
λq | flux linkage due q axis |
λdm | flux linkage due to rotor magnets linking the stator |
B | friction |
FLC | fuzzy logic controller |
J | inertia |
ki | integral control gain |
TL | load torque |
ωrated | motor rated speed |
Tm | motor torque |
P | number of poles |
Im | peak value of supply current |
λf | PM flux linkage or field flux linkage |
kp | proportional control gain |
iq | q-axis current |
Lqm | q-axis magnetizing inductance |
Lq | q-axis self-inductance |
Vq | q-axis voltage |
q | quadrature or interpolar axis |
Tref | reference motor torque |
θr | rotor position |
ωm | rotor speed |
L | self-inductance |
Lls | stator leakage inductance |
Rs | stator resistance |
ia, ib, ic | three phase currents |
Va, Vb, Vc | three phase voltage |
Since the conception of the term “epigenetic landscape” by Conrad Waddington in 1940, the field of epigenetics has rapidly evolved with technological advances. In the study of embryonic development, it was observed that a single gene has the ability to produce different phenotypes, so epigenetics was used to describe the mechanisms through which that happens [1]. Today, epigenetics is defined as the study of changes in organisms caused by modification of gene expression through addition and removal of chemical groups to nucleotides and proteins rather than the alteration of the genetic code itself [2]. The human genome contains approximately 3 billion bases of nucleotides and they are compacted into chromosomes in the nucleus via histone proteins. About 146 base pairs of nucleotides are wound around core histone octamers and are sealed with the linker histone (H1) to form a nucleosome. The linker histone connects multiple nucleosomes in the chromatin. The core histone octamers consist of two dimers of H2A-H2B and a tetramer of H3-H4 proteins [3]. These core histones contain two regions namely: the histone fold and the histone tails. The C-termini of H2A and N-termini of other core histones protrude out of the fold to form histone tails and are commonly subjected to epigenetic modifications [4]. DNA and RNA also undergo epigenetic modifications, and these modifications control gene expression and maintain genomic integrity. Epigenetic enzymes can be broadly categorized into three components: the writers, the erasers, and the readers. Writers are enzymes responsible for adding the modifications, erasers remove it, and readers recognize it. These modifications include but are not limited to methylation, acetylation, phosphorylation, ubiquitination, GlcNAcylation, and SUMOylation [5].
DNA mainly undergoes methylation, and this occurs through the action of a family of DNA methyltransferases (DNMT1, DNMT2, DNMT3a, and DNMT3b). DNMTs covalently modify DNA by catalyzing the transfer of methyl group from S-adenosylmethionine (SAM) to the C5 position on a cytosine ring. DNA methylation mostly occurs in CpG islands, a region of the DNA rich in cytosine and guanine base repeats [6]. This modification to the DNA functions to repress transcription when it occurs in gene promoters and regulates splicing when it occurs in gene bodies [7]. DNA methylation is a reversible mechanism, which can be either passive through reduced DNMT1 activity during DNA replication or active through activity of its erasers, DNA demethylases. For instance, the ten-eleven translocation proteins (TET 1/2/3) are human demethylases that catalyze the oxidation of 5-methyl-cytosine to 5-hydroxymethylcytosine [8]. Following DNA methylation, often readers such as the family of methyl binding domain proteins recognize the methylation marks to drive transcriptional repression [9].
RNA is also methylated on C5 position of cytosine (m5C) and N6 position of adenosine ring(m6A) by family of RNA methyltransferases such as Dnmt2, NOP2/Sun, Mettl3, and Mettl14. RNA methylation can be reversed by these RNA demethylases: fat mass and obesity associated protein (Fto) and α-ketoglutarate-dependent dioxygenase alkB homolog 5 (AlkBH5) [10]. Methylation modification on RNA is interpreted by readers such as the YTH domain family, and they mediate RNA splicing, export, stability, maturation, decay, secondary structure switch, and translation [11]. There have also been reports of RNA acetylation by NAT10 acetyltransferase, which functions to promote mRNA stability and efficiency in translation [12].
Moving up the central dogma, lysine and arginine residues on histone proteins are mostly subjected to various post-translational modifications by their respective epigenetic enzymes to either activate or repress transcription. Although the focus of this chapter is histone methylation, histone acetylation will be briefly discussed. Histone methyltransferases (HMTs) and histone acetylases (HATs) are the writers of histone methylation and acetylation, respectively. HMTs can be further subdivided into lysine methyltransferase (KMT) and protein arginine methyltransferase (PRMT) [13]. The families and functions of HMTs will be further explored in this chapter. On the other hand, several HATs have been discovered, with the major ones being the GNATs (Gcn5-N-acyltransferases), the MYST families, and p300/CBP [5]. These enzymes catalyze the transfer of acetyl group from acetyl Co A to the side chain amino group on histone lysine residues, inducing transcriptionally active chromatin [13]. Histone deacetylases and histone demethylases are involved in reversing the histone modifications discussed above. The families of lysine-specific histone demethylase 1 (LSD1) and Jumonji histone demethylases (JMJD) mediate the removal of methyl groups from histone through respective mechanisms [13, 14]. Readers of histone methylation include protein containing the MBT, PHD, chromo, Tudor, double/tandem Tudor, Ankyrin Repeats, zf-CW, WD40, and PWWP domains [15].
Given this array of epigenetic enzymes and their broad spectrum of function in regulating several gene expression in humans, the roles of epigenetic enzymes have been implicated in tumorigenesis. The epigenome of cancerous cells has widespread changes in DNA methylation and histone modification patterns [16]. For instance, hypermethylation of CpG islands in the promoter of chromodomain helicase DNA-binding protein 5 (CHD5), a chromatin remodeler, was observed in colon, breast, hepatocarcinoma, cervix, and glioma cell lines [17]. This results in the downregulation of CHD5, which plays a tumor suppressive role in cells. Similarly, hypomethylation of DNA at promoters of oncogenes such as insulin-like growth factor 2 (IGF2) has been observed in breast and colon cancers. The differential methylation patterns on promoters of tumor suppressors and oncogenes mediated by increased/reduced activity of DNMTs and TETs enzymes have been used as biomarkers to predict the predisposition of individuals to cancer [18]. Also, aberrant expression of histone acetyl transferases (HATs) and histone deacetylases (HDACs) has been linked to tumor development. Studies have shown that that p300/CBP acts as a coactivator with c-Myb to activate the transformation of fusion oncoproteins in myeloid leukemia [19]. Increased expression of HDACs was reported in gastric, prostate, colon, and breast carcinomas, and this results in repression of tumor suppressor genes like cyclin-dependent kinase inhibitor, see p21 [20]. Of all the histone modifications, histone methylation dysregulation is mostly attributed to poor prognosis in several cancers, which we will further elaborate in detail in Section II “Histone Methyltransferases in Cancer.”
As these epigenetic enzymes’ activity has been altered in cancer and contributes to the genomic instability in cancer cells, it is crucial to develop targeted therapeutic treatments to restore their normal function. Aside from surgery, some common treatment options for cancer patients can be broadly categorized as thus: chemotherapy, immunotherapy, radiotherapy, and precision medicine/targeted therapy [21]. These classes of treatments are not mutually exclusive and can be used in concert for treating cancer patients. Among these different therapeutic approaches, targeted therapy is the future for cancer treatment. Targeted therapy involves the use of drugs that target a specific biological molecule/pathway or drug treatment that requires genome profiling of an individual before it can be administered [22]. For optimal development of drugs for targeted therapies, it is important to identify a well-defined biological target whose activity contributes to one to several hallmarks of cancer including propagating growth signals, evading immunosurveillance, cell death resistance, activating metastatic programs, suppressing antigrowth signals, inducing angiogenesis, and enabling immortal replication of cells [23, 24]. For example, cancer patients whose tumors are driven by high activity of epidermal growth factor receptor (EGFR) signaling can be treated with specific monoclonal antibodies or small molecule kinase inhibitors antagonizing the aberrant signaling, and thereby reducing tumor proliferation [25]. Similarly, targeting an epigenetic enzyme, PRMT5, which is highly expressed in gastrointestinal cancers, with small molecule inhibitor, PR5-LL-CM01, was shown to slow down cancer cell growth and invasion in vitro [26]. The limitations of targeted therapies include cancer cell resistance to drug treatment by activating a parallel pathway or sometimes targets can undergo mutation, making drug accessibility to target difficult [27].
Given the myriad of biological targets that have been discovered to mediate cancer progression, there has been increasing interest in the development of small molecule inhibitors capable of decreasing the activity of those targets. Small molecules are intracellular targeting compounds with low molecular weight of less than 900Da. They can modulate their target activity as an agonist or antagonist [23]. The growing interest in the use of small molecules for drug development is not only due to their small size, which enables easy permeability into the cell, but also their desirable pharmacokinetics, pharmacodynamics, longer shelf life, and easy synthesis [28]. Several small molecule modulators have been developed into drugs to treat various types of cancers. The range of small molecule inhibitors developed to enable tumor regression can be broadly categorized into small molecule kinase inhibitors, proteasome inhibitors, metalloproteinases and heat shock protein inhibitors, and apoptosis targeting inhibitors [29]. The most common small molecule inhibitors, kinase inhibitors, have been used to inhibit the several protein kinases whose activity is dysregulated in cancers. The first tyrosine kinase inhibitor drug, Imatinib, is a small molecule ATP analog that competitively inhibits Bcr-Abl fusion protein kinase activity in chronic myeloid leukemia patients [30]. Similarly, a number of small molecule inhibitors targeting epigenetic enzymes implicated in tumorigenesis are in development or have been FDA approved for cancer treatment. For instance, drugs like belinostat and romidepsin are HDAC inhibitors that are FDA approved for the treatment of lymphoma [31]. After the first clinical trial in 2014, tazemetostat, an EZH2 small molecule inhibitor, moved to phase 2 clinical trial and was fast tracked by FDA in 2017 for the treatment of follicular lymphoma [32]. The use of tazemetostat for treatment of epithelioid sarcoma in adults 16 years and above was also granted accelerated approval by the FDA. These examples, among many others, show the potentials of epigenetic modifiers as a druggable target for cancer treatment. More of these small molecule inhibitors for histone methyltransferases will be explored later on in this chapter. However, challenges in the clinical application of certain small molecule inhibitors as drugs remain due to their off-target effects or development of resistance by cancer cells [29].
As we mentioned above, epigenetic enzymes, including histone methyltransferases, are novel targets for cancer therapy. In this section, we will review the role of histone methyltransferases in cancer.
Lysine methylation of histones was first characterized in the 1960s [33, 34] and was initially described as an “irreversible” post-translation modification. This dogma was challenged by the discovery of histone demethylases by Shi et al. indicating a dynamic function of methylation allowing the addition and removal of methyl groups [35]. The proteins responsible for the addition of methyl groups to histones are known as lysine methyltransferases (KMTs). KMTs are broadly defined as SET [Su(var)3-9, Enhancer of Zeste, Trithorax] domain-containing proteins and non-SET domain-containing proteins [36]. The only non-SET domain-containing KMTs identified so far are DOT1 (disrupter of telomeric silencing 1) family members, which methylate K79 of histone H3 and which also do not share structural similarities with SET-containing proteins [37, 38, 39]. KMTs act by catalyzing the transfer of 1~3 methyl groups to lysine residues of histone and non-histone proteins through the addition of the cofactor S-adenosyl methionine (SAM), which acts as a methyl donor group [40]. In the case of SET domain-containing proteins, SAM interacts and orients with a lysine residue of the substrate histone tail within the catalytic pocket of the SET domain. Then, a tyrosine residue acts to deprotonate the ε-amino group of the lysine residue, which allows the lysine chain to nucleophilically attack the methyl group of the SAM molecule, transferring the methyl group to the lysine side chain [41]. In the case of non-SET domain-containing KMTs, the enzyme DOT1 acts to methylate a lysine residue in the histone core [40]. As we described above, histone methylation is a critical epigenetic modification of chromatin that can impact genomic stability, alter expression of different genes, determine cell lineage, alter DNA methylation, as well as control cell mitosis [42].
SET-containing proteins have been characterized in greater detail than non-SET-containing proteins. SET domain proteins are characterized as seven families of the superfamily of KMTs: SUV39, SET1, SET2, EZ, RIZ, SMYD, and SUV4-20 [36]. There are also several SET domain proteins that do not fall into these groups including SET7/9 and SET8 [36]. The SUV39 family has been characterized the most out of these groups of KMTs. Specifically, Schizosaccharomyces pombe Cryptic loci regulator 4 (CLR4), human SUV39H1, and murine SUV39H2 were among the first identified SET domain protein lysine methyltransferases characterized when their sequence homology between their SET domains was discovered. These proteins methylate lysine 9 of histone H3 (H3K9) [43]. SET1 and SET2 complexes are involved in the RNA polymerase II holoenzyme [44, 45]. TSET1 acts to tri-methylate H3K4 and is associated with early gene transcription as opposed to SET2-mediated methylation of H3K36, which is associated with later transcriptional elongation of downstream genes. The mammalian nuclear-receptor-binding SET domain-containing protein (NSD1, a member of the SET2 family) has an important function in methylation of H3K36 and H4K20 in development [46]. Lu et al. in our research group also reported that NSD1 could methylate non-histone protein, NF-κB, at K218/221 of its p65 subunit, leading to the activation of NF-κB and its downstream target gene expression [47, 48, 49, 50]. Another example is SETDB1, a H3K9 methyltransferase, which is amplified in primary tumors of lung cancer patients and contributes to the invasive phenotype of tumor cells [51]. Additionally, SETDB1 methylates H3K9 in euchromatin, and is also required for development [52]. Human SET7/9 acts to mono-methylate H3K4 [53]. Furthermore, SET domain enzymes’ functions are not specifically tied to histone methylation. Human SET7/9 methylates K189 on transcription factor TAF10, which increases RNA polymerase II affinity and transcriptional activity, thereby expression of TAF10-dependent genes [54]. SET7/9 is also involved in p53 methylation, which increases its stability [55]. These examples described are only a few of the many SET-containing proteins of which over 50 different proteins have been discovered [56]. While SET domain proteins are typically referred to as histone lysine methyltransferases, it may be more accurate to refer to them as protein lysine methyltransferases due to their identification of non-histone targets for these KMTs.
These examples of SET and non-SET domain-containing proteins exhibit the importance of KMTs in the regulation of histone and non-histone proteins. Therefore, it is not surprising that dysregulation of KMT function can result in dysregulation of cellular functions. Specifically several KMTs have been associated with tumorigenesis of several different cancers.
H3K9 methyltransferases SETDB1 and G9a are both known to have roles in gene silencing and embryo development [57]. G9a regulates cancer metabolism in several types of cancer [58]. Overexpression of G9a is associated with worse prognosis in patients with prostate cancer. Intriguingly, G9a knockdown in breast and lung cancer has been shown to promote E-cadherin expression and thus tumor metastasis [59, 60]. Moreover, G9a’s higher expression predicts higher mortality of ovarian cancer patients [61] and is reported to be associated with cell growth and proliferation in neuroblastoma [57]. Furthermore, G9a has been shown to have a critical role in the development of pancreatic carcinoma and acute myeloid squamous cell carcinoma. G9a-dependent repression of genes is also associated with development of leukemia as well as squamous cell carcinomas [57]. SETDB1 is another H3K9 methyltransferase reported to play a role in numerous types of human cancer. SETDB1 is involved in regulation of several cellular processes, including apoptosis, DNA damage repair, and regulation of transcription factors [62]. SETB1 is associated with oncogenic activity and is upregulated in several cancers including lung cancers, gliomas, and prostate cancer [63, 64, 65, 66]. For instance, in lung cancer, overexpression of SETDB1 promotes invasiveness and knockdown reduced lung cancer cell growth. In gliomas, cell proliferation was reduced by suppression of SETDB1. In prostate cancer, downregulation of SETDB1 led to reduced cellular proliferation, migratory ability, and invasive ability.
EZH2 (Enhancer of zeste homolog 2), a H3K27 methyltransferase, plays an important role in transcriptional repression [36]. EZH2 plays a critical regulatory role in as many as 46 types of human cancer [57, 67]. Typically, EZH2 is overexpressed in cancers, and its high expression has been linked to worse patient survival. For instance, EZH2 downregulation in breast cancer can block cell growth and survival [68]. Moreover, EZH2 knockdown inhibits invasive ability and cellular proliferation in prostate cancer [69]. Additionally, EZH2 has also been shown to have roles in gliomas and renal cell carcinoma, wherein decreased EZH2 expression reduces cellular proliferative ability and promotes apoptosis [70].
Another example is SMYD3 (SET and MYND domain-containing 3). It is a KMT that methylates H3K4 and is extremely important for initiation of transcription. High SMYD3 activity is indicative of an epigenetic signature of active enhancers [71]. SMYD3 knockdown in colorectal cancer can impair cellular proliferation [72]. In breast cancer, knockdown of SMYD3 also inhibits cell growth, and overexpression can promote carcinogenesis by regulation of the Wnt signaling pathways [73]. Additionally, reduction of SMYD3 expression in prostate cancer inhibits cellular proliferation, migration, and colony formation [74].
H3K36 methylation is critical for transcriptional elongation, and H3K36 methyltransferases have been identified to play important regulatory roles in several types of cancer. NSD1, a H3K36 KMT, is involved in prostate cancer androgen receptor transactivation, which results in prostate tumorigenesis [75]. Overexpression of NSD1 in neuroblastoma reduces cellular growth ability and colony formation [76]. NSD1 has also been reported to play a role in myelomas and lung cancers [57]. As we described above, our lab also found that NSD1 activates NF-κB to induce its target gene expression. The function of these genes is frequently involved in oncogenic phenotype, or cytokine, chemokine secretion [47]. Another example is H4K20 methylation, which is reported to be important for gene transcription. For example, overexpression of methyltransferases of H4K20 SUV420H1 and SUV420H2 is associated with decreased cell invasiveness in breast cancer, and knockdown increases epithelial to mesenchymal transition [77].
DOT1, the only known H3K79 methyltransferase and non-SET containing KMT, also plays an important role in cancer development. DOT1 is involved in cell survival and colony formation in several forms of leukemia [78]. The activity of human DOT1L (hDOT1 like) methyltransferase is compromised in mixed lineage leukemia (MLL) and is required for maintaining proliferative state of transformed cells [79]. Also, downregulation of DOT1 in lung cancer can cause cell cycle arrest and reduce cellular proliferation [80].
Together, these examples show several of the pathways regulated by KMTs and also highlight the critical importance of tight regulation of these pathways wherein dysregulation of KMTs can result in promotion of tumorigenesis.
In contrast to KTMs, there is another important family of protein methyltransferases, namely, protein arginine methyltransferases (PRMTs). It is a family of nine members (PRMT1-9) and specifically catalyzes the methyl transfer from SAM to the guanidine nitrogen (ω-NG) of the arginine residues of protein substrates [81]. After the donation of methyl groups, SAM forms S-adenosyl-L-homocysteine (AdoHcy, SAH) and methylarginine is produced [81]. There are three forms of methylarginine recognized in mammalian cells: ω-NG-monomethylarginine (MMA), ω-NG, NG-asymmetric dimethylarginine (ADMA), and ω-NG, N’G-symmetric dimethylarginine (SDMA) [82]. The family of PRMTs is categorized into three major types: type I, II, and III. Type I and II PRMTs first catalyze the formation of MMA, and then type I PRMTs (PRMT1, 2, 3, 4, 6, and 8) further catalyze the formation of ADMA, while type II (PRMT5 and 9) would instead catalyze the production of SDMA. For type III PRMTs (PRMT7), they only catalyze the formation of MMA [83]. These three types of PRMTs methylated similar substrates, such as histone, but they also can catalyze different non-histone substrate proteins. Additionally, although the majority of PRMTs methylate glycine-arginine-rich (GAR) motifs in their substrates [84, 85], some of them display a preference of methylation on the proline-glycine-methionine rich (PGM) motifs in substrate proteins such as PRMT4 [86, 87], while PRMT5 is characterized with the methylation of both types of motifs in proteins [86, 88].
PRMTs are widely expressed in mammalian cells and regulate primary cellular processes, including cell proliferation and differentiation. The abnormal expression of some types of PRMTs such as PRMT1, 4, 5 and 6 frequently leads to tumorigenesis and malignancy.
PRMT1 was the first protein arginine transferase recognized in mammals and assumes the large fraction of arginine transferases activity in mammalian cells [89, 90]. It has been reported that PRMT1 is related to various kinds of cancer. Le Romancer et al. suggested that PRMT1 governed the interaction of estrogen receptor α (ERα) with steroid receptor coactivator proteins (Src), the p85 subunit of phosphatidylinositide 3-kinases (PI3K) and focal adhesion kinase (FAK) [91]. PRMT1-mediated ERα methylation is integral for the activation of the Src-PI3K-FAK signaling pathway [91]. In their subsequent report, the authors further demonstrated arginine methylation of ERα by PRMT1 might remarkably activate protein kinase B (PKB, also known as AKT) [92]. Another example is methylation of Axin by PRMT1. Cha et al. showed that arginine methylation of Axin by PRMT1 may activate the WNT pathway by destabilizing Axin and promote tumorigenesis [93, 94]. Importantly, it is reported that methylation of meiotic recombination 11 (MRE11, also known as MRE11A) and p53 binding protein 1 (53BP1) by PRMT1 can block the DNA repair pathway, contributing to cancer progression [95, 96]. MRE11 combines with DNA repair protein RAD50 and Nijmegen breakage syndrome 1 (NBS1) to form MRE11-RAD50-NBS1 complex (MRN complex). The mammalian MRN complex plays significant role in repairing DNA double-strand breaks (DSBs). Yu et al. reported that the deficiency of arginine methylation of MRE11 in its GAR motif resulted in exonuclease and DNA-binding defects and finally failing to repair DNA damage [96]. Interestingly, Boisvert et al. found that 53BP1 could not relocalize to DNA damage sites and γ-H2AX formation was decreased in fibroblasts treated with methylase inhibitors [95, 97]. Moreover, Mitchell et al. discovered that depletion of PRMT1 affected the length and stability of telomere [98]. Since dysfunction of both DNA repair pathway and telomere maintenance is known to be the cause of cancer, deregulation of PRMT1 may lead to tumorigenesis by these pathways.
In addition to PRMT1, another PRMT member, PRMT4 (also known as CARM1), is reported to be tightly associated with estrogen-mediated oncogenesis of breast cancer through the upregulation of transcription factor E2F1 expression [99]. Moreover, CARM1 is suggested to be overexpressed in human colon cancer and exert a crucial role in Wnt signaling through mediating the action of β-catenin on Wnt target genes as a transcriptional coactivator [100]. Moreover, c-fos is a proto-oncogene and overexpressed in a set of cancers. Some groups reveal that PRMT4 regulates transcriptional activation of c-fos, and that matrix metalloproteinases (MMPs), c-fos target genes, are significantly downregulated in CARM1-deficient cells [101]. Therefore, arginine methylation by PRMT4 is related to multiple oncogenic signaling pathways.
An important PRMT member that plays a critical role in cancer is PRMT5. As a primary type II PRMT, PRMT5 functions in the presence of other binding partners, such as MEP50. Hou et al. discovered that E-cadherin expression was remarkably repressed by SNAIL and PRMT5 recruited by bridge molecule AJUBA, which was favorable for tumor metastasis [102]. It was also reported that p53 can be methylated on multiple arginine sites by PRMT5 in response to DNA damage [103]. Scoumanne et al. proposed that PRMT5 inhibition may promote cancer cells to progress toward apoptosis under chemotherapy/radiotherapy [104]. Moreover, Cho et al. found methylation of E2F1 by PRMT5 weakened its ability to promote apoptosis and repress proliferation, indicating PRMT5 overexpression may enhance cancer cells’ growth and survival [105]. It is well known that continuous NF-κB activation exists in most cancers. Our group uncovered that PRMT5 dimethylated the p65 subunit of NF-κB at arginine 30 (R30) to activate NF-κB pathway [106], an important transcription factor that is involved in the progression of many cancers. Also, PRMT5 is reported to promote its own overexpression in several cancers through a feedback loop involving NF-κB signaling [107].
Besides the PRMTs we discussed above, PRMT6 is widely taken as a transcriptional repressor. Neault et al. reported that embryonic fibroblast cells from the PRMT6 knockout mouse were subjected to a premature senescence, while the cellular senescence can be rescued in PRMT6 and p53 double knockout mouse embryonic fibroblast (MEF) cells [108], affirming growth suppression effect of excess p53 due to PRMT6 deficiency. Thus, PRMT6 actively suppresses p53 cascade to promote tumorigenesis in cancer.
Taken together, many members in the PRMT family have shown essential role in cancer development and progression. Thus, it is unsurprising that these PRMTs have become the rising targets in cancer therapeutics in recent years.
The timeline of drug development from conception of the idea to a feasible drug available in the market for treatment of diseases takes between 12 and 15 years and can cost up to $1billion [109]. Drug discovery process begins with identifying a druggable biological target that contributes to a disease progression. These targets can be identified through text mining from online databases, microarray data mining using bioinformatic tools, proteomic data mining from proteomic databases, and chemogenomic data mining, which involves simultaneous exploration of multiple cell phenotypes by screening small molecules from chemical libraries to a number of biological targets [110]. Then, promising or known targets can be validated in vitro and in vivo to confirm that their activity influences phenotype associated with a disease. This step is followed by screening or high throughput screening (HTS), which describes the process of sifting through compound libraries for molecules with high affinity for a target of interest [111]. The two approaches of developing assays for compound library screening are the biochemical target-based approach and the cell-based approach. Biochemical target-based approach is often employed as the primary screening assay in epigenetic compound screen because it allows the direct monitoring of ability of a target activity as opposed to cell-based assays wherein changes in cell phenotypes are measured [112]. Listed below are some of screening assays used in the preclinical development of drugs for epigenetic enzymes.
AlphaLISA is a high throughput screening approach used to analyze and measure post-translational modifications, protein-protein interactions, and concentrations of analytes. The robust, highly sensitive, reproducible, miniaturized, scalable, and automated nature of AlphaLISA assays earned them their widespread application in research and drug discovery. The principle behind AlphaLISA technology is based on the mechanism of another methodology, Luminescent oxygen channeling immunoassay (LOCI). LOCI involves chemiluminescent reaction of a singlet oxygen transfer and was developed in 1994 by Ullman et al. to quantify latex particle binding [113]. Similarly, AlphaLISA assays employ biotinylated antibody bound to streptavidin donor beads and an acceptor bead bound to a second antibody. These antibodies are specific to different epitope on a protein (could also be product of a bimolecular interaction or a modified protein). The binding of these antibodies to the proteins brings the donor and the acceptor bead into proximity of at most 200nm. Upon excitation of donor beads at 680nm, a singlet oxygen is excited from the donor bead and this triggers singlet oxygen reaction with the chemical dyes (thioxene and europium) on the acceptor bead, which results in chemiluminescent emission at 615nm [114, 115]. Multiplate readers equipped with AlphaLISA screen detections can be used to record signals. A systematic method used to validate the quality of HTS assay output like AlphaLISA is called the Z-factor. The Z-factor is calculated by accounting for the positive and negative controls’ mean signal-to-mean background ratio. Hence, in the design of AlphaLISA assay, to ensure quality control, wells containing maximum signal and no signal solution mix must be included [116]. This assay is widely optimized to screen for small molecule modulators for different epigenetic enzymes. For example, in our lab, Prabhu et al. used an optimized AlphaLISA screen protocol to identify a lead compound capable of targeting PRMT5, and subsequently, the compound was shown to be more potent in reducing pancreatic and colon cancer cells’ proliferation compared to another commercially available compound EPZ015666 [26]. Not only is this assay used to screen for compounds for epigenetic targeted therapy, but also they uncover new roles of different epigenetic enzymes in cancer. Consequently, together with other assays, it was uncovered using AlphaLISA HTS assay that an inhibitor of G9a lysine methyltransferase, A-366, limits cell growth and differentiation in leukemic cells [117]. Potent small molecule inhibitors for EZH2, a methyltransferase known to silence tumor suppressor genes, are also being identified using this particular HTS assay [118]. AlphaLISA kits specific for histone methyltransferase modifications, among many other epigenetic enzymes, are commercially available for research and drug development purposes [119].
Discovered in 1946 by Theodor Förster, FRET is cell-based assay that enables real-time observance of molecular interactions within cells [120]. This phenomenon depends on the proximal interaction (1-10nm) of a donor fluorophore and an acceptor fluorophore, whereby upon excitation, the donor fluorophore transfers energy to the acceptor, increasing its emission wavelength [121] (Figure 1). The measure of FRET is taken as the ratio of the intensities of the donor/acceptor fluorophore. Although highly sensitive in distance, FRET assay does not permit the level of sensitivity and high throughput as AlphaLISA [122]. A type of FRET, FLIM-FRET (fluorescence lifetime imaging FRET) was used to conduct epigenetic biomarker screening in ER-positive breast cancer cell line and patients. The utilization of FRET in this study was based on the presence of certain histone modifications around ERα in the nucleus. Consequently, the assay revealed H3K27ac and H4K12ac interaction with ERα, making HATs a potential therapeutic target in compound screening [123]. Another study optimized TR-FRET (time-resolved FRET) for high throughput screening, following the treatment with HDAC inhibitors, to detect the methylation levels of histone 3(H3) in U-2 OS cells using terbium-tagged antibodies specific to a particular H3 modification and green fluorescent protein (GFP)-tagged H3 [124].
Schematic demonstrating the use of FRET for epigenetic screen. In the presence of histone methyltransferase and its methyl donor, SAM, a GFP-tagged Histone 3 becomes methylated on lysine-9 (K9) and undergoes FRET as terbium (Tb) conjugated antibody binds to the monomethylated K9 (K9me). This leads to increased GFP emission at 540nm wavelength (Right arm of the diagram), demonstrating the occurrence of K9 methylation. In contrast, when in the absence of K9 methylation mediated by HMTs, due to the addition of potent HMT inhibitors (Lower arm of the diagram), FRET does not occur as K9 cannot be methylated and thereby the antibody cannot bind to its epitope. As a result, the wavelength of GFP will be at lower end of the emission spectra, 520 nm.
In silico screening or virtual screening is a common method used in drug discovery as a pre-filtering method for identifying promising compounds that can be used for experimental studies. Drug development using this method of screening is estimated to save approximately $130 million and 0.8 years per drug [125]. The approach to virtual screening can be broadly divided into structure-based methods and ligand-based methods. Structure-based approach encompasses docking candidate molecules against available 3D structure of the target protein. When there is no crystal structure of the target protein, ligand-based approach is more useful because it relies on the screening of bioactive ligands of a similar chemical structure [126]. This approach is similar to pharmacophore-directed homology modeling: a process that involves superposing known active ligands for structurally similar targets and then extracting matching chemical properties of the ligand that are required for their bioactivity. Pharmacophore from different bioactive molecules can be generated using commercially available software such as HipHop, PHASE, DISCO, HypoGen, among others [127].
In computer-aided design of epigenetic drugs, there are a plethora of databases like ZINC containing over 35 million compounds available for screening. Other databases like SPECS, Chembridge, and Enamine have been used to identify inhibitors for most subsets of histone methyltransferases [128]. Molecular dynamics simulation also aids in drug discovery as they are employed to understand the conformational changes in the different domains of a target protein [129]. For instance, a study developed analogs of eosin, a template molecule known for having anti-methyltransferase activity, using pharmacophore methods. These molecules were docked on to PRMT1, SET7, and CARM1, and the AutoDock analysis revealed that compounds that target SAM substrate-binding site were more active in PRMT1 and CARM1 while those that target lysine and co-factor binding site were more promising in SET7 [126].
Development of small molecule inhibitors for histone methyltransferases has garnered remarkable attention over the past years due to their combined efficacy and potency in various cancer treatments. In this section, we will discuss small molecule inhibitors of a few HMTs that have either shown promising results in preclinical development, clinical trial stage, or that have been FDA approved.
As aforementioned, EZH2 is a lysine methyltransferase that is overexpressed and found to contribute to many cancer progressions including but not limited to breast, prostate, colon, ovarian, liver, bladder, lymphoma, skin, and lung cancer. The overabundance of EZH2 causes hypersilencing of genes that restrain proliferation and promotes differentiation [67]. As a result, several studies have been conducted to understand the mechanism of action and structure of the enzyme so that appropriate drugs can be developed to inhibit its aberrant activity. For example, FDA has approved the use of tazemetostat (EPZ6438) (Table 1), an EZH2 small molecule inhibitor, for the treatment of epithelioid sarcoma (not qualified for resection) in 16 years and above patients. Tazemetostat has an inhibition constant (Ki) of 2.5nM and works by competitively inhibiting SAM binding site on EZH2 [32]. Another small molecule inhibitor, CPI-1205 (Table 1), completed phase 1 clinical trial for B-cell lymphoma and solid advanced tumor and is in phase 1b/2 clinical trial for metastatic castration-resistant prostate cancer (mCRPC) [130, 131]. Furthermore, another potent small molecule inhibitor, GSK2816126 (Table 1), which showed remarkable preclinical potential entered phase 1 clinical trial for the treatment of lymphoma and solid cancers but proved to be unsuitable target for inhibiting EZH2 due to its unfavorable pharmacokinetic profile [132]. More than 50 small molecule inhibitors for EZH2 are in preclinical development [133]. A few are highlighted in Table 1.
Epigenetic enzyme | Small molecule inhibitors | Stage of development | Cancer treatment | Reference |
---|---|---|---|---|
Lysine methyltransferases | ||||
EZH2 | EPZ6438 (Tazemostat) | FDA approved | Epithelioid sarcoma | [32] |
Phase 1 clinical trial | Various lymphomas and advanced solid tumors | [ | ||
GSK2816126 | Phase 1 clinical trial | Lymphoma and advanced solid tumors | [132] | |
CP1-1205 | Phase 1b/2 clinical trial | B-cell lymphoma, advanced solid tumors metastatic castration-resistant prostate cancer (mCRPC) | [130, 131] | |
EI1 | Preclinical stage | B-cell lymphoma with Y641 mutation | [134] | |
EPZ011989 | Preclinical stage | Lymphoma | [135] | |
UNC 1999 | Preclinical stage | Diffused B-cell lymphoma with Y641N mutation and MLL rearranged leukemia | [136, 137] | |
hDOT1L | EPZ5676 (Pinometostat) | Phase 1 clinical trial | Acute myeloid leukemia (AML)/acute lymphoblastic leukemia (ALL) | [138] [ |
EPZ 004777 | Preclinical stage | MLL rearranged leukemia | [139] | |
SGC0946 | Preclinical application | MLL rearranged leukemia | [140] | |
Protein Arginine Methyltransferases | ||||
PRMT5 | GSK3326595(formerly EPZ015938) | Phase 1 clinical trial | Solid tumor and non-Hodgkin’s lymphoma | [ |
JNJ-64619178 | Phase 1 clinical trial | [Clinical Trial identifier: NCT03573310] | ||
EPZ015666 | Preclinical stage | Mantle cell Lymphoma | [141] | |
PR5-LL-CM01 | Preclinical stage | Colon and Pancreatic cancer | [114] | |
LLY-283 | Preclinical | Ovarian, lung, breast, gastric, skin, and hematological cancers | [142] |
List of representative small molecule inhibitors for EZH2, hDOT1L, and PRMT5.
There are over 20 hDOT1L small molecule inhibitors and can be categorized into four groups based on their mode of action: (i) SAH(S-adenosyl-L-homocysteine)-mimicking compounds; (ii) benzimidazole or (iii) urea group-containing compounds; and (iv) carbamate-containing compounds [143]. The activity of human homolog of yeast DOT1L or hDOT1L is mostly dysregulated in a subset of acute myeloid leukemia that has MLL gene translocation. This results in an onco-MLL protein which aberrantly recruits hDOT1L to the promoter of MLL target genes. Together with other transcription factors, hDOT1L drives the overexpression of HoxA9 and HoxA7 which leads to leukemia [141]. Hence, the need for inhibitors of hDOT1L. The first potent inhibitor of this HMT was EPZ004777 (Table 1), but it failed to progress through clinical development due to poor pharmacokinetics [139]. Another small molecule inhibitor, EPZ5676 (pinometostat) (Table 1) with Ki of less than 0.08nM, was shown to have improved pharmacokinetics and has now completed phase 1 clinical trial [138].
PRMT5 is overexpressed in a several types of cancers. There are currently over 50 PRMT5 small molecule inhibitors, and PRMT5 is emerging as a hotspot for cancer targeted therapy [144]. Some small molecule inhibitors of PRMT5 are currently undergoing assessment in phase 1 clinical trial for non-Hodgkin lymphomas and solid cancers include GSK3326595 and JNJ-64619178 (Table 1). PRMT5 has also been implicated in the progression and metastasis of pancreatic and colon cancer. As a result, a lead compound, PR5-LL-CM01 (Table 1), has been discovered by our group to have more potent inhibitory properties compared to EPZ015666 in pancreatic and colon cancer cells [114]. However, EPZ015666 showed high potency in vitro and in mantle lymphoma cells with an IC50 of 22nM (Table 1) [145]. Another potent inhibitor of PRMT5, LLY-283 (IC50 = 20 nM) (Table 1) showed an outstanding inhibition of breast, lung, skin, ovarian, and hematological cancer cells’ proliferation [142].
Taken together, in this chapter, we discussed the important roles that epigenetic enzymes play in a variety of cancers. We also summarized several popular methods currently used for screening small molecule inhibitors of epigenetic enzymes. As shown in Table 1, we provided a list of representative small molecule inhibitors of HMT that are either FDA approved, or at preclinical or different stages of clinical trials. Notably, compared to the well-developed HDAC small molecule inhibitors, the development of small molecule inhibitors for HMTs is a rising and cutting-edge drug development area. We can envision that in the next 5~10 years, intense attention will continuously be drawn to the discovery of HMTs small molecule inhibitors. We have no doubt that many HMTs small molecule inhibitors will be shifted into clinical trials, more will be approved by FDA, and most likely, more members of HMTs will be targeted for cancer treatment. Additionally, it is very possible that novel HTS methods will emerge, which will further accelerate the discovery of anti-HMTs drugs. Moreover, it is viable that the clinical indications of HMTs small molecule inhibitors could be further expanded to other diseases beyond cancer. In summary, the development of new classes of anti-HMTs drugs will offer brand new and exciting opportunities for diseases treatment.
This publication is made possible, in part, with support from NIH-NIGMS Grant (#1R01GM120156-01A1) (to TL), and NIH-NCI Grant (#1R03CA223906-01) (to TL).
The authors declare no potential conflicts of interest.
If you are associated with any of the institutions in our list below, you can apply to receive OA publication funds by following the instructions provided in the links.
",metaTitle:"List of Institutions by Country",metaDescription:"If you are associated with any of the institutions in our list below, you can apply to receive OA publication funds by following the instructions provided in the links. However, if your research is financed through any of the below-mentioned funders, please consult their Open Access policies or grant ‘terms and conditions’ to explore ways to cover your publication costs (also accessible by clicking on the link in their title).",metaKeywords:null,canonicalURL:"open-access-funding-institutions-list",contentRaw:'[{"type":"htmlEditorComponent","content":"Book Chapters and Monographs
\\n\\nBook Chapters
\\n\\nMonographs Only
\\n\\n\\n\\nBook Chapters and Monographs
\\n\\nMonographs Only
\\n\\nBook Chapters and Monographs
\\n\\n\\n\\nBook Chapters and Monographs
\\n\\n\\n\\nCorresponding authors will receive a 25% discount on their Open Access Publication Fees (OAPF) for Open Access book chapters. A 20% discount for publishing a long-form monographs, 25% for compacts and 23% for short-form monographs.
\\n\\nCSIC affiliated authors can also take advantage of a central Open Access fund (amounting to 10,000 EUR) to cover up to 50% of the rest of the OAPF until it expires. Effective for chapters accepted from January 1, 2020.
\\n\\nCorresponding authors will receive a 25% discount on their Open Access Publication Fees (OAPF) for Open Access book chapters. A 20% discount for publishing a long-form monographs, 25% for compacts and 23% for short-form monographs.
\\n\\nCorresponding authors will receive a 25% discount on their Open Access Publication Fees (OAPF) for Open Access book chapters. A 20% discount for publishing a long-form monographs, 25% for compacts and 23% for short-form monographs.
\\n\\n\\n\\nCorresponding authors will receive a 25% discount on their Open Access Publication Fees (OAPF) for Open Access book chapters. A 20% discount for publishing a long-form monographs, 25% for compacts and 23% for short-form monographs.
\\n\\nBook Chapters and Monographs
\\n\\nBook Chapters and Monographs
\\n\\nBook Chapters and Monographs
\\n\\nBook Chapters and Monographs
\\n\\nThe Claremont Colleges are pledging funds via the Knowledge Unlatched program to ensure academics can publish Open Access content more easily.
\\n\\nCorresponding authors will receive a 15% discount on their Open Access Publication Fees (OAPF) for Open Access book chapters or monograph publications. To use the discount you will need to verify your institutional email address. These discounts are valid from 2020 to 2022.
\\n\\nThe University of Massachusetts, Amherst is pledging funds via the Knowledge Unlatched program to ensure academics can publish Open Access content more easily.
\\n\\nCorresponding authors will receive a 10% discount on their Open Access Publication Fees (OAPF) for Open Access book chapters or monograph publications. To use the discount you will need to verify your institutional email address. These discounts are valid from 2020 to 2022.
\\n\\nThe University of Surrey is pledging funds via the Knowledge Unlatched program to ensure academics can publish Open Access content more easily.
\\n\\nCorresponding authors will receive a 10% discount on their Open Access Publication Fees (OAPF) for Open Access book chapters or monograph publications. To use the discount you will need to verify your institutional email address. These discounts are valid from 2020 to 2022.
\\n\\nMonographs Only
\\n\\n\\n\\nImportant: You must be a member or grantee of the above listed institutions in order to apply for their Open Access publication funds.
\\n"}]'},components:[{type:"htmlEditorComponent",content:'Book Chapters and Monographs
\n\n\n\nBook Chapters
\n\nMonographs Only
\n\n\n\nBook Chapters and Monographs
\n\nMonographs Only
\n\nBook Chapters and Monographs
\n\n\n\nBook Chapters and Monographs
\n\n\n\nCorresponding authors will receive a 25% discount on their Open Access Publication Fees (OAPF) for Open Access book chapters. A 20% discount for publishing a long-form monographs, 25% for compacts and 23% for short-form monographs.
\n\nCSIC affiliated authors can also take advantage of a central Open Access fund (amounting to 10,000 EUR) to cover up to 50% of the rest of the OAPF until it expires. Effective for chapters accepted from January 1, 2020.
\n\nCorresponding authors will receive a 25% discount on their Open Access Publication Fees (OAPF) for Open Access book chapters. A 20% discount for publishing a long-form monographs, 25% for compacts and 23% for short-form monographs.
\n\nCorresponding authors will receive a 25% discount on their Open Access Publication Fees (OAPF) for Open Access book chapters. A 20% discount for publishing a long-form monographs, 25% for compacts and 23% for short-form monographs.
\n\n\n\nCorresponding authors will receive a 25% discount on their Open Access Publication Fees (OAPF) for Open Access book chapters. A 20% discount for publishing a long-form monographs, 25% for compacts and 23% for short-form monographs.
\n\nBook Chapters and Monographs
\n\nBook Chapters and Monographs
\n\nBook Chapters and Monographs
\n\n\n\nBook Chapters and Monographs
\n\nThe Claremont Colleges are pledging funds via the Knowledge Unlatched program to ensure academics can publish Open Access content more easily.
\n\nCorresponding authors will receive a 15% discount on their Open Access Publication Fees (OAPF) for Open Access book chapters or monograph publications. To use the discount you will need to verify your institutional email address. These discounts are valid from 2020 to 2022.
\n\nThe University of Massachusetts, Amherst is pledging funds via the Knowledge Unlatched program to ensure academics can publish Open Access content more easily.
\n\nCorresponding authors will receive a 10% discount on their Open Access Publication Fees (OAPF) for Open Access book chapters or monograph publications. To use the discount you will need to verify your institutional email address. These discounts are valid from 2020 to 2022.
\n\nThe University of Surrey is pledging funds via the Knowledge Unlatched program to ensure academics can publish Open Access content more easily.
\n\nCorresponding authors will receive a 10% discount on their Open Access Publication Fees (OAPF) for Open Access book chapters or monograph publications. To use the discount you will need to verify your institutional email address. These discounts are valid from 2020 to 2022.
\n\nMonographs Only
\n\n\n\nImportant: You must be a member or grantee of the above listed institutions in order to apply for their Open Access publication funds.
\n'}]},successStories:{items:[]},authorsAndEditors:{filterParams:{sort:"featured,name"},profiles:[{id:"6700",title:"Dr.",name:"Abbass A.",middleName:null,surname:"Hashim",slug:"abbass-a.-hashim",fullName:"Abbass A. Hashim",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/6700/images/1864_n.jpg",biography:"Currently I am carrying out research in several areas of interest, mainly covering work on chemical and bio-sensors, semiconductor thin film device fabrication and characterisation.\nAt the moment I have very strong interest in radiation environmental pollution and bacteriology treatment. The teams of researchers are working very hard to bring novel results in this field. I am also a member of the team in charge for the supervision of Ph.D. students in the fields of development of silicon based planar waveguide sensor devices, study of inelastic electron tunnelling in planar tunnelling nanostructures for sensing applications and development of organotellurium(IV) compounds for semiconductor applications. I am a specialist in data analysis techniques and nanosurface structure. I have served as the editor for many books, been a member of the editorial board in science journals, have published many papers and hold many patents.",institutionString:null,institution:{name:"Sheffield Hallam University",country:{name:"United Kingdom"}}},{id:"54525",title:"Prof.",name:"Abdul Latif",middleName:null,surname:"Ahmad",slug:"abdul-latif-ahmad",fullName:"Abdul Latif Ahmad",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:null},{id:"20567",title:"Prof.",name:"Ado",middleName:null,surname:"Jorio",slug:"ado-jorio",fullName:"Ado Jorio",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"Universidade Federal de Minas Gerais",country:{name:"Brazil"}}},{id:"47940",title:"Dr.",name:"Alberto",middleName:null,surname:"Mantovani",slug:"alberto-mantovani",fullName:"Alberto Mantovani",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:null},{id:"12392",title:"Mr.",name:"Alex",middleName:null,surname:"Lazinica",slug:"alex-lazinica",fullName:"Alex Lazinica",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/12392/images/7282_n.png",biography:"Alex Lazinica is the founder and CEO of IntechOpen. After obtaining a Master's degree in Mechanical Engineering, he continued his PhD studies in Robotics at the Vienna University of Technology. Here he worked as a robotic researcher with the university's Intelligent Manufacturing Systems Group as well as a guest researcher at various European universities, including the Swiss Federal Institute of Technology Lausanne (EPFL). During this time he published more than 20 scientific papers, gave presentations, served as a reviewer for major robotic journals and conferences and most importantly he co-founded and built the International Journal of Advanced Robotic Systems- world's first Open Access journal in the field of robotics. Starting this journal was a pivotal point in his career, since it was a pathway to founding IntechOpen - Open Access publisher focused on addressing academic researchers needs. Alex is a personification of IntechOpen key values being trusted, open and entrepreneurial. Today his focus is on defining the growth and development strategy for the company.",institutionString:null,institution:{name:"TU Wien",country:{name:"Austria"}}},{id:"19816",title:"Prof.",name:"Alexander",middleName:null,surname:"Kokorin",slug:"alexander-kokorin",fullName:"Alexander Kokorin",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/19816/images/1607_n.jpg",biography:"Alexander I. Kokorin: born: 1947, Moscow; DSc., PhD; Principal Research Fellow (Research Professor) of Department of Kinetics and Catalysis, N. Semenov Institute of Chemical Physics, Russian Academy of Sciences, Moscow.\r\nArea of research interests: physical chemistry of complex-organized molecular and nanosized systems, including polymer-metal complexes; the surface of doped oxide semiconductors. He is an expert in structural, absorptive, catalytic and photocatalytic properties, in structural organization and dynamic features of ionic liquids, in magnetic interactions between paramagnetic centers. The author or co-author of 3 books, over 200 articles and reviews in scientific journals and books. He is an actual member of the International EPR/ESR Society, European Society on Quantum Solar Energy Conversion, Moscow House of Scientists, of the Board of Moscow Physical Society.",institutionString:null,institution:{name:"Semenov Institute of Chemical Physics",country:{name:"Russia"}}},{id:"62389",title:"PhD.",name:"Ali Demir",middleName:null,surname:"Sezer",slug:"ali-demir-sezer",fullName:"Ali Demir Sezer",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/62389/images/3413_n.jpg",biography:"Dr. Ali Demir Sezer has a Ph.D. from Pharmaceutical Biotechnology at the Faculty of Pharmacy, University of Marmara (Turkey). He is the member of many Pharmaceutical Associations and acts as a reviewer of scientific journals and European projects under different research areas such as: drug delivery systems, nanotechnology and pharmaceutical biotechnology. Dr. Sezer is the author of many scientific publications in peer-reviewed journals and poster communications. Focus of his research activity is drug delivery, physico-chemical characterization and biological evaluation of biopolymers micro and nanoparticles as modified drug delivery system, and colloidal drug carriers (liposomes, nanoparticles etc.).",institutionString:null,institution:{name:"Marmara University",country:{name:"Turkey"}}},{id:"61051",title:"Prof.",name:"Andrea",middleName:null,surname:"Natale",slug:"andrea-natale",fullName:"Andrea Natale",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:null},{id:"100762",title:"Prof.",name:"Andrea",middleName:null,surname:"Natale",slug:"andrea-natale",fullName:"Andrea Natale",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"St David's Medical Center",country:{name:"United States of America"}}},{id:"107416",title:"Dr.",name:"Andrea",middleName:null,surname:"Natale",slug:"andrea-natale",fullName:"Andrea Natale",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"Texas Cardiac Arrhythmia",country:{name:"United States of America"}}},{id:"64434",title:"Dr.",name:"Angkoon",middleName:null,surname:"Phinyomark",slug:"angkoon-phinyomark",fullName:"Angkoon Phinyomark",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/64434/images/2619_n.jpg",biography:"My name is Angkoon Phinyomark. I received a B.Eng. degree in Computer Engineering with First Class Honors in 2008 from Prince of Songkla University, Songkhla, Thailand, where I received a Ph.D. degree in Electrical Engineering. My research interests are primarily in the area of biomedical signal processing and classification notably EMG (electromyography signal), EOG (electrooculography signal), and EEG (electroencephalography signal), image analysis notably breast cancer analysis and optical coherence tomography, and rehabilitation engineering. I became a student member of IEEE in 2008. During October 2011-March 2012, I had worked at School of Computer Science and Electronic Engineering, University of Essex, Colchester, Essex, United Kingdom. In addition, during a B.Eng. I had been a visiting research student at Faculty of Computer Science, University of Murcia, Murcia, Spain for three months.\n\nI have published over 40 papers during 5 years in refereed journals, books, and conference proceedings in the areas of electro-physiological signals processing and classification, notably EMG and EOG signals, fractal analysis, wavelet analysis, texture analysis, feature extraction and machine learning algorithms, and assistive and rehabilitative devices. I have several computer programming language certificates, i.e. Sun Certified Programmer for the Java 2 Platform 1.4 (SCJP), Microsoft Certified Professional Developer, Web Developer (MCPD), Microsoft Certified Technology Specialist, .NET Framework 2.0 Web (MCTS). I am a Reviewer for several refereed journals and international conferences, such as IEEE Transactions on Biomedical Engineering, IEEE Transactions on Industrial Electronics, Optic Letters, Measurement Science Review, and also a member of the International Advisory Committee for 2012 IEEE Business Engineering and Industrial Applications and 2012 IEEE Symposium on Business, Engineering and Industrial Applications.",institutionString:null,institution:{name:"Joseph Fourier University",country:{name:"France"}}},{id:"55578",title:"Dr.",name:"Antonio",middleName:null,surname:"Jurado-Navas",slug:"antonio-jurado-navas",fullName:"Antonio Jurado-Navas",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/55578/images/4574_n.png",biography:"Antonio Jurado-Navas received the M.S. degree (2002) and the Ph.D. degree (2009) in Telecommunication Engineering, both from the University of Málaga (Spain). He first worked as a consultant at Vodafone-Spain. From 2004 to 2011, he was a Research Assistant with the Communications Engineering Department at the University of Málaga. In 2011, he became an Assistant Professor in the same department. From 2012 to 2015, he was with Ericsson Spain, where he was working on geo-location\ntools for third generation mobile networks. Since 2015, he is a Marie-Curie fellow at the Denmark Technical University. His current research interests include the areas of mobile communication systems and channel modeling in addition to atmospheric optical communications, adaptive optics and statistics",institutionString:null,institution:{name:"University of Malaga",country:{name:"Spain"}}}],filtersByRegion:[{group:"region",caption:"North America",value:1,count:5766},{group:"region",caption:"Middle and South America",value:2,count:5227},{group:"region",caption:"Africa",value:3,count:1717},{group:"region",caption:"Asia",value:4,count:10366},{group:"region",caption:"Australia and Oceania",value:5,count:897},{group:"region",caption:"Europe",value:6,count:15789}],offset:12,limit:12,total:118187},chapterEmbeded:{data:{}},editorApplication:{success:null,errors:{}},ofsBooks:{filterParams:{topicId:"23"},books:[{type:"book",id:"10656",title:"Intellectual Property",subtitle:null,isOpenForSubmission:!0,hash:"135df9b403b125a6458eba971faab3f6",slug:null,bookSignature:"Dr. Sakthivel Lakshmana Prabu and Dr. Suriyaprakash TNK",coverURL:"https://cdn.intechopen.com/books/images_new/10656.jpg",editedByType:null,editors:[{id:"91590",title:"Dr.",name:"Sakthivel",surname:"Lakshmana Prabu",slug:"sakthivel-lakshmana-prabu",fullName:"Sakthivel Lakshmana Prabu"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10658",title:"Multilingualism",subtitle:null,isOpenForSubmission:!0,hash:"a6bf171e05831c00f8687891ab1b10b5",slug:null,bookSignature:"Prof. Xiaoming Jiang",coverURL:"https://cdn.intechopen.com/books/images_new/10658.jpg",editedByType:null,editors:[{id:"189844",title:"Prof.",name:"Xiaoming",surname:"Jiang",slug:"xiaoming-jiang",fullName:"Xiaoming Jiang"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10662",title:"Pedagogy",subtitle:null,isOpenForSubmission:!0,hash:"c858e1c6fb878d3b895acbacec624576",slug:null,bookSignature:"",coverURL:"https://cdn.intechopen.com/books/images_new/10662.jpg",editedByType:null,editors:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10913",title:"Indigenous Populations",subtitle:null,isOpenForSubmission:!0,hash:"c5e8cd4e3ec004d0479494ca190db4cb",slug:null,bookSignature:"",coverURL:"https://cdn.intechopen.com/books/images_new/10913.jpg",editedByType:null,editors:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10914",title:"Racism",subtitle:null,isOpenForSubmission:!0,hash:"0737383fcc202641f59e4a5df02eb509",slug:null,bookSignature:"",coverURL:"https://cdn.intechopen.com/books/images_new/10914.jpg",editedByType:null,editors:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}}],filtersByTopic:[{group:"topic",caption:"Agricultural and Biological Sciences",value:5,count:14},{group:"topic",caption:"Biochemistry, Genetics and Molecular Biology",value:6,count:3},{group:"topic",caption:"Business, Management and Economics",value:7,count:1},{group:"topic",caption:"Chemistry",value:8,count:6},{group:"topic",caption:"Computer and Information Science",value:9,count:6},{group:"topic",caption:"Earth and Planetary Sciences",value:10,count:7},{group:"topic",caption:"Engineering",value:11,count:15},{group:"topic",caption:"Environmental Sciences",value:12,count:2},{group:"topic",caption:"Immunology and Microbiology",value:13,count:3},{group:"topic",caption:"Materials Science",value:14,count:5},{group:"topic",caption:"Mathematics",value:15,count:1},{group:"topic",caption:"Medicine",value:16,count:24},{group:"topic",caption:"Neuroscience",value:18,count:1},{group:"topic",caption:"Pharmacology, Toxicology and Pharmaceutical Science",value:19,count:2},{group:"topic",caption:"Physics",value:20,count:2},{group:"topic",caption:"Psychology",value:21,count:4},{group:"topic",caption:"Social Sciences",value:23,count:2},{group:"topic",caption:"Technology",value:24,count:1},{group:"topic",caption:"Veterinary Medicine and Science",value:25,count:1}],offset:12,limit:12,total:5},popularBooks:{featuredBooks:[{type:"book",id:"9385",title:"Renewable Energy",subtitle:"Technologies and Applications",isOpenForSubmission:!1,hash:"a6b446d19166f17f313008e6c056f3d8",slug:"renewable-energy-technologies-and-applications",bookSignature:"Tolga Taner, Archana Tiwari and Taha Selim Ustun",coverURL:"https://cdn.intechopen.com/books/images_new/9385.jpg",editors:[{id:"197240",title:"Associate Prof.",name:"Tolga",middleName:null,surname:"Taner",slug:"tolga-taner",fullName:"Tolga Taner"}],equalEditorOne:{id:"186791",title:"Dr.",name:"Archana",middleName:null,surname:"Tiwari",slug:"archana-tiwari",fullName:"Archana Tiwari",profilePictureURL:"https://mts.intechopen.com/storage/users/186791/images/system/186791.jpg",biography:"Dr. Archana Tiwari is Associate Professor at Amity University, India. Her research interests include renewable sources of energy from microalgae and further utilizing the residual biomass for the generation of value-added products, bioremediation through microalgae and microbial consortium, antioxidative enzymes and stress, and nutraceuticals from microalgae. She has been working on algal biotechnology for the last two decades. She has published her research in many international journals and has authored many books and chapters with renowned publishing houses. She has also delivered talks as an invited speaker at many national and international conferences. Dr. Tiwari is the recipient of several awards including Researcher of the Year and Distinguished Scientist.",institutionString:"Amity University",position:null,outsideEditionCount:0,totalCites:0,totalAuthoredChapters:"3",totalChapterViews:"0",totalEditedBooks:"1",institution:{name:"Amity University",institutionURL:null,country:{name:"India"}}},equalEditorTwo:{id:"197609",title:"Prof.",name:"Taha Selim",middleName:null,surname:"Ustun",slug:"taha-selim-ustun",fullName:"Taha Selim Ustun",profilePictureURL:"https://mts.intechopen.com/storage/users/197609/images/system/197609.jpeg",biography:"Dr. Taha Selim Ustun received a Ph.D. in Electrical Engineering from Victoria University, Melbourne, Australia. He is a researcher with the Fukushima Renewable Energy Institute, AIST (FREA), where he leads the Smart Grid Cybersecurity Laboratory. Prior to that, he was a faculty member with the School of Electrical and Computer Engineering, Carnegie Mellon University, Pittsburgh, PA, USA. His current research interests include power systems protection, communication in power networks, distributed generation, microgrids, electric vehicle integration, and cybersecurity in smart grids. He serves on the editorial boards of IEEE Access, IEEE Transactions on Industrial Informatics, Energies, Electronics, Electricity, World Electric Vehicle and Information journals. Dr. Ustun is a member of the IEEE 2004 and 2800, IEC Renewable Energy Management WG 8, and IEC TC 57 WG17. He has been invited to run specialist courses in Africa, India, and China. He has delivered talks for the Qatar Foundation, the World Energy Council, the Waterloo Global Science Initiative, and the European Union Energy Initiative (EUEI). His research has attracted funding from prestigious programs in Japan, Australia, the European Union, and North America.",institutionString:"Fukushima Renewable Energy Institute, AIST (FREA)",position:null,outsideEditionCount:0,totalCites:0,totalAuthoredChapters:"1",totalChapterViews:"0",totalEditedBooks:"0",institution:{name:"National Institute of Advanced Industrial Science and Technology",institutionURL:null,country:{name:"Japan"}}},equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"8985",title:"Natural Resources Management and Biological Sciences",subtitle:null,isOpenForSubmission:!1,hash:"5c2e219a6c021a40b5a20c041dea88c4",slug:"natural-resources-management-and-biological-sciences",bookSignature:"Edward R. Rhodes and Humood Naser",coverURL:"https://cdn.intechopen.com/books/images_new/8985.jpg",editors:[{id:"280886",title:"Prof.",name:"Edward R",middleName:null,surname:"Rhodes",slug:"edward-r-rhodes",fullName:"Edward R Rhodes"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9027",title:"Human Blood Group Systems and Haemoglobinopathies",subtitle:null,isOpenForSubmission:!1,hash:"d00d8e40b11cfb2547d1122866531c7e",slug:"human-blood-group-systems-and-haemoglobinopathies",bookSignature:"Osaro Erhabor and Anjana Munshi",coverURL:"https://cdn.intechopen.com/books/images_new/9027.jpg",editors:[{id:"35140",title:null,name:"Osaro",middleName:null,surname:"Erhabor",slug:"osaro-erhabor",fullName:"Osaro Erhabor"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"7841",title:"New Insights Into Metabolic Syndrome",subtitle:null,isOpenForSubmission:!1,hash:"ef5accfac9772b9e2c9eff884f085510",slug:"new-insights-into-metabolic-syndrome",bookSignature:"Akikazu Takada",coverURL:"https://cdn.intechopen.com/books/images_new/7841.jpg",editors:[{id:"248459",title:"Dr.",name:"Akikazu",middleName:null,surname:"Takada",slug:"akikazu-takada",fullName:"Akikazu Takada"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"8558",title:"Aerodynamics",subtitle:null,isOpenForSubmission:!1,hash:"db7263fc198dfb539073ba0260a7f1aa",slug:"aerodynamics",bookSignature:"Mofid Gorji-Bandpy and Aly-Mousaad Aly",coverURL:"https://cdn.intechopen.com/books/images_new/8558.jpg",editors:[{id:"35542",title:"Prof.",name:"Mofid",middleName:null,surname:"Gorji-Bandpy",slug:"mofid-gorji-bandpy",fullName:"Mofid Gorji-Bandpy"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9668",title:"Chemistry and Biochemistry of Winemaking, Wine Stabilization and Aging",subtitle:null,isOpenForSubmission:!1,hash:"c5484276a314628acf21ec1bdc3a86b9",slug:"chemistry-and-biochemistry-of-winemaking-wine-stabilization-and-aging",bookSignature:"Fernanda Cosme, Fernando M. Nunes and Luís Filipe-Ribeiro",coverURL:"https://cdn.intechopen.com/books/images_new/9668.jpg",editors:[{id:"186819",title:"Prof.",name:"Fernanda",middleName:null,surname:"Cosme",slug:"fernanda-cosme",fullName:"Fernanda Cosme"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"7847",title:"Medical Toxicology",subtitle:null,isOpenForSubmission:!1,hash:"db9b65bea093de17a0855a1b27046247",slug:"medical-toxicology",bookSignature:"Pınar Erkekoglu and Tomohisa Ogawa",coverURL:"https://cdn.intechopen.com/books/images_new/7847.jpg",editors:[{id:"109978",title:"Prof.",name:"Pınar",middleName:null,surname:"Erkekoglu",slug:"pinar-erkekoglu",fullName:"Pınar Erkekoglu"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"8620",title:"Mining Techniques",subtitle:"Past, Present and Future",isOpenForSubmission:!1,hash:"b65658f81d14e9e57e49377869d3a575",slug:"mining-techniques-past-present-and-future",bookSignature:"Abhay Soni",coverURL:"https://cdn.intechopen.com/books/images_new/8620.jpg",editors:[{id:"271093",title:"Dr.",name:"Abhay",middleName:null,surname:"Soni",slug:"abhay-soni",fullName:"Abhay Soni"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9660",title:"Inland Waters",subtitle:"Dynamics and Ecology",isOpenForSubmission:!1,hash:"975c26819ceb11a926793bc2adc62bd6",slug:"inland-waters-dynamics-and-ecology",bookSignature:"Adam Devlin, Jiayi Pan and Mohammad Manjur Shah",coverURL:"https://cdn.intechopen.com/books/images_new/9660.jpg",editors:[{id:"280757",title:"Dr.",name:"Adam",middleName:"Thomas",surname:"Devlin",slug:"adam-devlin",fullName:"Adam Devlin"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9122",title:"Cosmetic Surgery",subtitle:null,isOpenForSubmission:!1,hash:"207026ca4a4125e17038e770d00ee152",slug:"cosmetic-surgery",bookSignature:"Yueh-Bih Tang",coverURL:"https://cdn.intechopen.com/books/images_new/9122.jpg",editors:[{id:"202122",title:"Prof.",name:"Yueh-Bih",middleName:null,surname:"Tang",slug:"yueh-bih-tang",fullName:"Yueh-Bih Tang"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9043",title:"Parenting",subtitle:"Studies by an Ecocultural and Transactional Perspective",isOpenForSubmission:!1,hash:"6d21066c7438e459e4c6fb13217a5c8c",slug:"parenting-studies-by-an-ecocultural-and-transactional-perspective",bookSignature:"Loredana Benedetto and Massimo Ingrassia",coverURL:"https://cdn.intechopen.com/books/images_new/9043.jpg",editors:[{id:"193200",title:"Prof.",name:"Loredana",middleName:null,surname:"Benedetto",slug:"loredana-benedetto",fullName:"Loredana Benedetto"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9731",title:"Oxidoreductase",subtitle:null,isOpenForSubmission:!1,hash:"852e6f862c85fc3adecdbaf822e64e6e",slug:"oxidoreductase",bookSignature:"Mahmoud Ahmed Mansour",coverURL:"https://cdn.intechopen.com/books/images_new/9731.jpg",editors:[{id:"224662",title:"Prof.",name:"Mahmoud Ahmed",middleName:null,surname:"Mansour",slug:"mahmoud-ahmed-mansour",fullName:"Mahmoud Ahmed Mansour"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}}],offset:12,limit:12,total:5227},hotBookTopics:{hotBooks:[],offset:0,limit:12,total:null},publish:{},publishingProposal:{success:null,errors:{}},books:{featuredBooks:[{type:"book",id:"9385",title:"Renewable Energy",subtitle:"Technologies and Applications",isOpenForSubmission:!1,hash:"a6b446d19166f17f313008e6c056f3d8",slug:"renewable-energy-technologies-and-applications",bookSignature:"Tolga Taner, Archana Tiwari and Taha Selim Ustun",coverURL:"https://cdn.intechopen.com/books/images_new/9385.jpg",editors:[{id:"197240",title:"Associate Prof.",name:"Tolga",middleName:null,surname:"Taner",slug:"tolga-taner",fullName:"Tolga Taner"}],equalEditorOne:{id:"186791",title:"Dr.",name:"Archana",middleName:null,surname:"Tiwari",slug:"archana-tiwari",fullName:"Archana Tiwari",profilePictureURL:"https://mts.intechopen.com/storage/users/186791/images/system/186791.jpg",biography:"Dr. Archana Tiwari is Associate Professor at Amity University, India. Her research interests include renewable sources of energy from microalgae and further utilizing the residual biomass for the generation of value-added products, bioremediation through microalgae and microbial consortium, antioxidative enzymes and stress, and nutraceuticals from microalgae. She has been working on algal biotechnology for the last two decades. She has published her research in many international journals and has authored many books and chapters with renowned publishing houses. She has also delivered talks as an invited speaker at many national and international conferences. Dr. Tiwari is the recipient of several awards including Researcher of the Year and Distinguished Scientist.",institutionString:"Amity University",position:null,outsideEditionCount:0,totalCites:0,totalAuthoredChapters:"3",totalChapterViews:"0",totalEditedBooks:"1",institution:{name:"Amity University",institutionURL:null,country:{name:"India"}}},equalEditorTwo:{id:"197609",title:"Prof.",name:"Taha Selim",middleName:null,surname:"Ustun",slug:"taha-selim-ustun",fullName:"Taha Selim Ustun",profilePictureURL:"https://mts.intechopen.com/storage/users/197609/images/system/197609.jpeg",biography:"Dr. Taha Selim Ustun received a Ph.D. in Electrical Engineering from Victoria University, Melbourne, Australia. He is a researcher with the Fukushima Renewable Energy Institute, AIST (FREA), where he leads the Smart Grid Cybersecurity Laboratory. Prior to that, he was a faculty member with the School of Electrical and Computer Engineering, Carnegie Mellon University, Pittsburgh, PA, USA. His current research interests include power systems protection, communication in power networks, distributed generation, microgrids, electric vehicle integration, and cybersecurity in smart grids. He serves on the editorial boards of IEEE Access, IEEE Transactions on Industrial Informatics, Energies, Electronics, Electricity, World Electric Vehicle and Information journals. Dr. Ustun is a member of the IEEE 2004 and 2800, IEC Renewable Energy Management WG 8, and IEC TC 57 WG17. He has been invited to run specialist courses in Africa, India, and China. He has delivered talks for the Qatar Foundation, the World Energy Council, the Waterloo Global Science Initiative, and the European Union Energy Initiative (EUEI). His research has attracted funding from prestigious programs in Japan, Australia, the European Union, and North America.",institutionString:"Fukushima Renewable Energy Institute, AIST (FREA)",position:null,outsideEditionCount:0,totalCites:0,totalAuthoredChapters:"1",totalChapterViews:"0",totalEditedBooks:"0",institution:{name:"National Institute of Advanced Industrial Science and Technology",institutionURL:null,country:{name:"Japan"}}},equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"8985",title:"Natural Resources Management and Biological Sciences",subtitle:null,isOpenForSubmission:!1,hash:"5c2e219a6c021a40b5a20c041dea88c4",slug:"natural-resources-management-and-biological-sciences",bookSignature:"Edward R. Rhodes and Humood Naser",coverURL:"https://cdn.intechopen.com/books/images_new/8985.jpg",editors:[{id:"280886",title:"Prof.",name:"Edward R",middleName:null,surname:"Rhodes",slug:"edward-r-rhodes",fullName:"Edward R Rhodes"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9027",title:"Human Blood Group Systems and Haemoglobinopathies",subtitle:null,isOpenForSubmission:!1,hash:"d00d8e40b11cfb2547d1122866531c7e",slug:"human-blood-group-systems-and-haemoglobinopathies",bookSignature:"Osaro Erhabor and Anjana Munshi",coverURL:"https://cdn.intechopen.com/books/images_new/9027.jpg",editors:[{id:"35140",title:null,name:"Osaro",middleName:null,surname:"Erhabor",slug:"osaro-erhabor",fullName:"Osaro Erhabor"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"7841",title:"New Insights Into Metabolic Syndrome",subtitle:null,isOpenForSubmission:!1,hash:"ef5accfac9772b9e2c9eff884f085510",slug:"new-insights-into-metabolic-syndrome",bookSignature:"Akikazu Takada",coverURL:"https://cdn.intechopen.com/books/images_new/7841.jpg",editors:[{id:"248459",title:"Dr.",name:"Akikazu",middleName:null,surname:"Takada",slug:"akikazu-takada",fullName:"Akikazu Takada"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"8558",title:"Aerodynamics",subtitle:null,isOpenForSubmission:!1,hash:"db7263fc198dfb539073ba0260a7f1aa",slug:"aerodynamics",bookSignature:"Mofid Gorji-Bandpy and Aly-Mousaad Aly",coverURL:"https://cdn.intechopen.com/books/images_new/8558.jpg",editors:[{id:"35542",title:"Prof.",name:"Mofid",middleName:null,surname:"Gorji-Bandpy",slug:"mofid-gorji-bandpy",fullName:"Mofid Gorji-Bandpy"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9668",title:"Chemistry and Biochemistry of Winemaking, Wine Stabilization and Aging",subtitle:null,isOpenForSubmission:!1,hash:"c5484276a314628acf21ec1bdc3a86b9",slug:"chemistry-and-biochemistry-of-winemaking-wine-stabilization-and-aging",bookSignature:"Fernanda Cosme, Fernando M. Nunes and Luís Filipe-Ribeiro",coverURL:"https://cdn.intechopen.com/books/images_new/9668.jpg",editors:[{id:"186819",title:"Prof.",name:"Fernanda",middleName:null,surname:"Cosme",slug:"fernanda-cosme",fullName:"Fernanda Cosme"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"7847",title:"Medical Toxicology",subtitle:null,isOpenForSubmission:!1,hash:"db9b65bea093de17a0855a1b27046247",slug:"medical-toxicology",bookSignature:"Pınar Erkekoglu and Tomohisa Ogawa",coverURL:"https://cdn.intechopen.com/books/images_new/7847.jpg",editors:[{id:"109978",title:"Prof.",name:"Pınar",middleName:null,surname:"Erkekoglu",slug:"pinar-erkekoglu",fullName:"Pınar Erkekoglu"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"8620",title:"Mining Techniques",subtitle:"Past, Present and Future",isOpenForSubmission:!1,hash:"b65658f81d14e9e57e49377869d3a575",slug:"mining-techniques-past-present-and-future",bookSignature:"Abhay Soni",coverURL:"https://cdn.intechopen.com/books/images_new/8620.jpg",editors:[{id:"271093",title:"Dr.",name:"Abhay",middleName:null,surname:"Soni",slug:"abhay-soni",fullName:"Abhay Soni"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9660",title:"Inland Waters",subtitle:"Dynamics and Ecology",isOpenForSubmission:!1,hash:"975c26819ceb11a926793bc2adc62bd6",slug:"inland-waters-dynamics-and-ecology",bookSignature:"Adam Devlin, Jiayi Pan and Mohammad Manjur Shah",coverURL:"https://cdn.intechopen.com/books/images_new/9660.jpg",editors:[{id:"280757",title:"Dr.",name:"Adam",middleName:"Thomas",surname:"Devlin",slug:"adam-devlin",fullName:"Adam Devlin"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9122",title:"Cosmetic Surgery",subtitle:null,isOpenForSubmission:!1,hash:"207026ca4a4125e17038e770d00ee152",slug:"cosmetic-surgery",bookSignature:"Yueh-Bih Tang",coverURL:"https://cdn.intechopen.com/books/images_new/9122.jpg",editors:[{id:"202122",title:"Prof.",name:"Yueh-Bih",middleName:null,surname:"Tang",slug:"yueh-bih-tang",fullName:"Yueh-Bih Tang"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}}],latestBooks:[{type:"book",id:"9550",title:"Entrepreneurship",subtitle:"Contemporary Issues",isOpenForSubmission:!1,hash:"9b4ac1ee5b743abf6f88495452b1e5e7",slug:"entrepreneurship-contemporary-issues",bookSignature:"Mladen Turuk",coverURL:"https://cdn.intechopen.com/books/images_new/9550.jpg",editedByType:"Edited by",editors:[{id:"319755",title:"Prof.",name:"Mladen",middleName:null,surname:"Turuk",slug:"mladen-turuk",fullName:"Mladen Turuk"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10065",title:"Wavelet Theory",subtitle:null,isOpenForSubmission:!1,hash:"d8868e332169597ba2182d9b004d60de",slug:"wavelet-theory",bookSignature:"Somayeh Mohammady",coverURL:"https://cdn.intechopen.com/books/images_new/10065.jpg",editedByType:"Edited by",editors:[{id:"109280",title:"Dr.",name:"Somayeh",middleName:null,surname:"Mohammady",slug:"somayeh-mohammady",fullName:"Somayeh Mohammady"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"9313",title:"Clay Science and Technology",subtitle:null,isOpenForSubmission:!1,hash:"6fa7e70396ff10620e032bb6cfa6fb72",slug:"clay-science-and-technology",bookSignature:"Gustavo Morari Do Nascimento",coverURL:"https://cdn.intechopen.com/books/images_new/9313.jpg",editedByType:"Edited by",editors:[{id:"7153",title:"Prof.",name:"Gustavo",middleName:null,surname:"Morari Do Nascimento",slug:"gustavo-morari-do-nascimento",fullName:"Gustavo Morari Do Nascimento"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"9888",title:"Nuclear Power Plants",subtitle:"The Processes from the Cradle to the Grave",isOpenForSubmission:!1,hash:"c2c8773e586f62155ab8221ebb72a849",slug:"nuclear-power-plants-the-processes-from-the-cradle-to-the-grave",bookSignature:"Nasser Awwad",coverURL:"https://cdn.intechopen.com/books/images_new/9888.jpg",editedByType:"Edited by",editors:[{id:"145209",title:"Prof.",name:"Nasser",middleName:"S",surname:"Awwad",slug:"nasser-awwad",fullName:"Nasser Awwad"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"8098",title:"Resources of Water",subtitle:null,isOpenForSubmission:!1,hash:"d251652996624d932ef7b8ed62cf7cfc",slug:"resources-of-water",bookSignature:"Prathna Thanjavur Chandrasekaran, Muhammad Salik Javaid, Aftab Sadiq",coverURL:"https://cdn.intechopen.com/books/images_new/8098.jpg",editedByType:"Edited by",editors:[{id:"167917",title:"Dr.",name:"Prathna",middleName:null,surname:"Thanjavur Chandrasekaran",slug:"prathna-thanjavur-chandrasekaran",fullName:"Prathna Thanjavur Chandrasekaran"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"9644",title:"Glaciers and the Polar Environment",subtitle:null,isOpenForSubmission:!1,hash:"e8cfdc161794e3753ced54e6ff30873b",slug:"glaciers-and-the-polar-environment",bookSignature:"Masaki Kanao, Danilo Godone and Niccolò Dematteis",coverURL:"https://cdn.intechopen.com/books/images_new/9644.jpg",editedByType:"Edited by",editors:[{id:"51959",title:"Dr.",name:"Masaki",middleName:null,surname:"Kanao",slug:"masaki-kanao",fullName:"Masaki Kanao"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10432",title:"Casting Processes and Modelling of Metallic Materials",subtitle:null,isOpenForSubmission:!1,hash:"2c5c9df938666bf5d1797727db203a6d",slug:"casting-processes-and-modelling-of-metallic-materials",bookSignature:"Zakaria Abdallah and Nada Aldoumani",coverURL:"https://cdn.intechopen.com/books/images_new/10432.jpg",editedByType:"Edited by",editors:[{id:"201670",title:"Dr.",name:"Zak",middleName:null,surname:"Abdallah",slug:"zak-abdallah",fullName:"Zak Abdallah"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"9671",title:"Macrophages",subtitle:null,isOpenForSubmission:!1,hash:"03b00fdc5f24b71d1ecdfd75076bfde6",slug:"macrophages",bookSignature:"Hridayesh Prakash",coverURL:"https://cdn.intechopen.com/books/images_new/9671.jpg",editedByType:"Edited by",editors:[{id:"287184",title:"Dr.",name:"Hridayesh",middleName:null,surname:"Prakash",slug:"hridayesh-prakash",fullName:"Hridayesh Prakash"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"8415",title:"Extremophilic Microbes and Metabolites",subtitle:"Diversity, Bioprospecting and Biotechnological Applications",isOpenForSubmission:!1,hash:"93e0321bc93b89ff73730157738f8f97",slug:"extremophilic-microbes-and-metabolites-diversity-bioprospecting-and-biotechnological-applications",bookSignature:"Afef Najjari, Ameur Cherif, Haïtham Sghaier and Hadda Imene Ouzari",coverURL:"https://cdn.intechopen.com/books/images_new/8415.jpg",editedByType:"Edited by",editors:[{id:"196823",title:"Dr.",name:"Afef",middleName:null,surname:"Najjari",slug:"afef-najjari",fullName:"Afef Najjari"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"9731",title:"Oxidoreductase",subtitle:null,isOpenForSubmission:!1,hash:"852e6f862c85fc3adecdbaf822e64e6e",slug:"oxidoreductase",bookSignature:"Mahmoud Ahmed Mansour",coverURL:"https://cdn.intechopen.com/books/images_new/9731.jpg",editedByType:"Edited by",editors:[{id:"224662",title:"Prof.",name:"Mahmoud Ahmed",middleName:null,surname:"Mansour",slug:"mahmoud-ahmed-mansour",fullName:"Mahmoud Ahmed Mansour"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}}]},subject:{topic:{id:"158",title:"Metals and Nonmetals",slug:"metals-and-nonmetals",parent:{title:"Materials Science",slug:"materials-science"},numberOfBooks:113,numberOfAuthorsAndEditors:2715,numberOfWosCitations:2995,numberOfCrossrefCitations:2014,numberOfDimensionsCitations:4557,videoUrl:null,fallbackUrl:null,description:null},booksByTopicFilter:{topicSlug:"metals-and-nonmetals",sort:"-publishedDate",limit:12,offset:0},booksByTopicCollection:[{type:"book",id:"10432",title:"Casting Processes and Modelling of Metallic Materials",subtitle:null,isOpenForSubmission:!1,hash:"2c5c9df938666bf5d1797727db203a6d",slug:"casting-processes-and-modelling-of-metallic-materials",bookSignature:"Zakaria Abdallah and Nada Aldoumani",coverURL:"https://cdn.intechopen.com/books/images_new/10432.jpg",editedByType:"Edited by",editors:[{id:"201670",title:"Dr.",name:"Zak",middleName:null,surname:"Abdallah",slug:"zak-abdallah",fullName:"Zak Abdallah"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"9343",title:"Trace Metals in the Environment",subtitle:"New Approaches and Recent Advances",isOpenForSubmission:!1,hash:"ae07e345bc2ce1ebbda9f70c5cd12141",slug:"trace-metals-in-the-environment-new-approaches-and-recent-advances",bookSignature:"Mario Alfonso Murillo-Tovar, Hugo Saldarriaga-Noreña and Agnieszka Saeid",coverURL:"https://cdn.intechopen.com/books/images_new/9343.jpg",editedByType:"Edited by",editors:[{id:"255959",title:"Dr.",name:"Mario Alfonso",middleName:null,surname:"Murillo-Tovar",slug:"mario-alfonso-murillo-tovar",fullName:"Mario Alfonso Murillo-Tovar"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"8787",title:"Bismuth",subtitle:"Fundamentals and Optoelectronic Applications",isOpenForSubmission:!1,hash:"7751170d0b538f61d14a27a56e6567a5",slug:"bismuth-fundamentals-and-optoelectronic-applications",bookSignature:"Yanhua Luo, Jianxiang Wen and Jianzhong Zhang",coverURL:"https://cdn.intechopen.com/books/images_new/8787.jpg",editedByType:"Edited by",editors:[{id:"226148",title:"Dr.",name:"Yanhua",middleName:null,surname:"Luo",slug:"yanhua-luo",fullName:"Yanhua Luo"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"9949",title:"Lead Chemistry",subtitle:null,isOpenForSubmission:!1,hash:"b2f999b9583c748f957f612227976570",slug:"lead-chemistry",bookSignature:"Pipat Chooto",coverURL:"https://cdn.intechopen.com/books/images_new/9949.jpg",editedByType:"Edited by",editors:[{id:"197984",title:"Ph.D.",name:"Pipat",middleName:null,surname:"Chooto",slug:"pipat-chooto",fullName:"Pipat Chooto"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"9190",title:"Stability and Applications of Coordination Compounds",subtitle:null,isOpenForSubmission:!1,hash:"3f07c532e478beb8fcd2fe53b8c9bcfd",slug:"stability-and-applications-of-coordination-compounds",bookSignature:"Abhay Nanda Srivastva",coverURL:"https://cdn.intechopen.com/books/images_new/9190.jpg",editedByType:"Edited by",editors:[{id:"293623",title:"Dr.",name:"Abhay Nanda",middleName:"Nanda",surname:"Srivastva",slug:"abhay-nanda-srivastva",fullName:"Abhay Nanda Srivastva"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"7787",title:"Rare Earth Elements and Their Minerals",subtitle:null,isOpenForSubmission:!1,hash:"7ba4060b0830f7a68f00557da8ed8a39",slug:"rare-earth-elements-and-their-minerals",bookSignature:"Michael Aide and Takahito Nakajima",coverURL:"https://cdn.intechopen.com/books/images_new/7787.jpg",editedByType:"Edited by",editors:[{id:"185895",title:"Dr.",name:"Michael",middleName:"Thomas",surname:"Aide",slug:"michael-aide",fullName:"Michael Aide"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"7722",title:"Recent Advancements in the Metallurgical Engineering and Electrodeposition",subtitle:null,isOpenForSubmission:!1,hash:"0d7ff67bd6f4c13830658bc6f9a75851",slug:"recent-advancements-in-the-metallurgical-engineering-and-electrodeposition",bookSignature:"Uday Basheer Al-Naib, Dhanasekaran Vikraman and K. Karuppasamy",coverURL:"https://cdn.intechopen.com/books/images_new/7722.jpg",editedByType:"Edited by",editors:[{id:"182041",title:null,name:"Uday",middleName:"M.",surname:"Basheer Al-Naib",slug:"uday-basheer-al-naib",fullName:"Uday Basheer Al-Naib"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"7775",title:"Metallic Glasses",subtitle:null,isOpenForSubmission:!1,hash:"665fb007e1e410d119fc09d709c41cc3",slug:"metallic-glasses",bookSignature:"Dragica Minić and Milica Vasić",coverURL:"https://cdn.intechopen.com/books/images_new/7775.jpg",editedByType:"Edited by",editors:[{id:"30470",title:"Prof.",name:"Dragica",middleName:"M",surname:"Minić",slug:"dragica-minic",fullName:"Dragica Minić"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"8653",title:"Electromagnetic Materials and Devices",subtitle:null,isOpenForSubmission:!1,hash:"0cc0489a203ae888b1105719a4e70ecd",slug:"electromagnetic-materials-and-devices",bookSignature:"Man-Gui Han",coverURL:"https://cdn.intechopen.com/books/images_new/8653.jpg",editedByType:"Edited by",editors:[{id:"250649",title:"Prof.",name:"Man-Gui",middleName:null,surname:"Han",slug:"man-gui-han",fullName:"Man-Gui Han"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"8886",title:"Cobalt Compounds and Applications",subtitle:null,isOpenForSubmission:!1,hash:"0241f740fc6e17cd9dc69362ef388d04",slug:"cobalt-compounds-and-applications",bookSignature:"Yasemin Yıldız and Aynur Manzak",coverURL:"https://cdn.intechopen.com/books/images_new/8886.jpg",editedByType:"Edited by",editors:[{id:"208129",title:"Dr.",name:"Yasemin",middleName:null,surname:"Yıldız",slug:"yasemin-yildiz",fullName:"Yasemin Yıldız"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"8416",title:"Non-Equilibrium Particle Dynamics",subtitle:null,isOpenForSubmission:!1,hash:"2c3add7639dcd1cb442cb4313ea64e3a",slug:"non-equilibrium-particle-dynamics",bookSignature:"Albert S. Kim",coverURL:"https://cdn.intechopen.com/books/images_new/8416.jpg",editedByType:"Edited by",editors:[{id:"21045",title:"Prof.",name:"Albert S.",middleName:null,surname:"Kim",slug:"albert-s.-kim",fullName:"Albert S. Kim"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"8408",title:"Titanium Alloys",subtitle:"Novel Aspects of Their Manufacturing and Processing",isOpenForSubmission:!1,hash:"e5533136b732dc4ada818553023d4d55",slug:"titanium-alloys-novel-aspects-of-their-manufacturing-and-processing",bookSignature:"Maciej Motyka, Waldemar Ziaja and Jan Sieniawsk",coverURL:"https://cdn.intechopen.com/books/images_new/8408.jpg",editedByType:"Edited by",editors:[{id:"101690",title:"Associate Prof.",name:"Maciej",middleName:null,surname:"Motyka",slug:"maciej-motyka",fullName:"Maciej Motyka"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}}],booksByTopicTotal:113,mostCitedChapters:[{id:"37067",doi:"10.5772/35482",title:"Fourier Transform Infrared Spectroscopy for Natural Fibres",slug:"fourier-transform-infrared-spectroscopy-for-natural-fibres",totalDownloads:8290,totalCrossrefCites:119,totalDimensionsCites:285,book:{slug:"fourier-transform-materials-analysis",title:"Fourier Transform",fullTitle:"Fourier Transform - Materials Analysis"},signatures:"Mizi Fan, Dasong Dai and Biao Huang",authors:[{id:"104647",title:"Prof.",name:"Mizi",middleName:null,surname:"Fan",slug:"mizi-fan",fullName:"Mizi Fan"}]},{id:"60680",doi:"10.5772/intechopen.76082",title:"Environmental Contamination by Heavy Metals",slug:"environmental-contamination-by-heavy-metals",totalDownloads:12266,totalCrossrefCites:65,totalDimensionsCites:115,book:{slug:"heavy-metals",title:"Heavy Metals",fullTitle:"Heavy Metals"},signatures:"Vhahangwele Masindi and Khathutshelo L. Muedi",authors:[{id:"225304",title:"Dr.",name:"Vhahangwele",middleName:null,surname:"Masindi",slug:"vhahangwele-masindi",fullName:"Vhahangwele Masindi"},{id:"241403",title:"M.Sc.",name:"Khathutshelo",middleName:"Lilith",surname:"Muedi",slug:"khathutshelo-muedi",fullName:"Khathutshelo Muedi"}]},{id:"46243",doi:"10.5772/57255",title:"Corrosion Inhibitors – Principles, Mechanisms and Applications",slug:"corrosion-inhibitors-principles-mechanisms-and-applications",totalDownloads:13e3,totalCrossrefCites:30,totalDimensionsCites:104,book:{slug:"developments-in-corrosion-protection",title:"Developments in Corrosion Protection",fullTitle:"Developments in Corrosion Protection"},signatures:"Camila G. Dariva and Alexandre F. Galio",authors:[{id:"169261",title:"Dr.",name:"Camila",middleName:"G.",surname:"Dariva",slug:"camila-dariva",fullName:"Camila Dariva"},{id:"170138",title:"Dr.",name:"Alexandre",middleName:"Ferreira",surname:"Galio",slug:"alexandre-galio",fullName:"Alexandre Galio"}]}],mostDownloadedChaptersLast30Days:[{id:"60680",title:"Environmental Contamination by Heavy Metals",slug:"environmental-contamination-by-heavy-metals",totalDownloads:12290,totalCrossrefCites:66,totalDimensionsCites:115,book:{slug:"heavy-metals",title:"Heavy Metals",fullTitle:"Heavy Metals"},signatures:"Vhahangwele Masindi and Khathutshelo L. Muedi",authors:[{id:"225304",title:"Dr.",name:"Vhahangwele",middleName:null,surname:"Masindi",slug:"vhahangwele-masindi",fullName:"Vhahangwele Masindi"},{id:"241403",title:"M.Sc.",name:"Khathutshelo",middleName:"Lilith",surname:"Muedi",slug:"khathutshelo-muedi",fullName:"Khathutshelo Muedi"}]},{id:"59905",title:"Synthesis of Silver Nanoparticles",slug:"synthesis-of-silver-nanoparticles",totalDownloads:5054,totalCrossrefCites:2,totalDimensionsCites:6,book:{slug:"silver-nanoparticles-fabrication-characterization-and-applications",title:"Silver Nanoparticles",fullTitle:"Silver Nanoparticles - Fabrication, Characterization and Applications"},signatures:"Remziye Güzel and Gülbahar Erdal",authors:[{id:"226613",title:"Dr.",name:"Remziye",middleName:null,surname:"Güzel",slug:"remziye-guzel",fullName:"Remziye Güzel"},{id:"240772",title:"MSc.",name:"Gülbahar",middleName:null,surname:"Erdal",slug:"gulbahar-erdal",fullName:"Gülbahar Erdal"}]},{id:"59857",title:"Introductory Chapter: Introducing Heavy Metals",slug:"introductory-chapter-introducing-heavy-metals",totalDownloads:4331,totalCrossrefCites:3,totalDimensionsCites:9,book:{slug:"heavy-metals",title:"Heavy Metals",fullTitle:"Heavy Metals"},signatures:"Martin Koller and Hosam M. Saleh",authors:[{id:"144691",title:"Prof.",name:"Hosam",middleName:"M.",surname:"Saleh",slug:"hosam-saleh",fullName:"Hosam Saleh"}]},{id:"60518",title:"Synthetic Methods for Titanium Dioxide Nanoparticles: A Review",slug:"synthetic-methods-for-titanium-dioxide-nanoparticles-a-review",totalDownloads:3286,totalCrossrefCites:10,totalDimensionsCites:17,book:{slug:"titanium-dioxide-material-for-a-sustainable-environment",title:"Titanium Dioxide",fullTitle:"Titanium Dioxide - Material for a Sustainable Environment"},signatures:"Pardon Nyamukamba, Omobola Okoh, Henry Mungondori,\nRaymond Taziwa and Simcelile Zinya",authors:[{id:"196100",title:"Dr.",name:"Raymond",middleName:null,surname:"Taziwa",slug:"raymond-taziwa",fullName:"Raymond Taziwa"},{id:"219920",title:"Prof.",name:"Omobola",middleName:null,surname:"Okoh",slug:"omobola-okoh",fullName:"Omobola Okoh"},{id:"226567",title:"Dr.",name:"Pardon",middleName:null,surname:"Nyamukamba",slug:"pardon-nyamukamba",fullName:"Pardon Nyamukamba"},{id:"239758",title:"Mr.",name:"Simcelile",middleName:null,surname:"Zinya",slug:"simcelile-zinya",fullName:"Simcelile Zinya"}]},{id:"58868",title:"Iron Ore Pelletizing Process: An Overview",slug:"iron-ore-pelletizing-process-an-overview",totalDownloads:3186,totalCrossrefCites:2,totalDimensionsCites:4,book:{slug:"iron-ores-and-iron-oxide-materials",title:"Iron Ores and Iron Oxide Materials",fullTitle:"Iron Ores and Iron Oxide Materials"},signatures:"Sandra Lúcia de Moraes, José Renato Baptista de Lima and Tiago\nRamos Ribeiro",authors:[{id:"216788",title:"Dr.",name:"Sandra",middleName:"Lúcia",surname:"De Moraes",slug:"sandra-de-moraes",fullName:"Sandra De Moraes"},{id:"233466",title:"Prof.",name:"José Renato Baptista",middleName:null,surname:"De Lima",slug:"jose-renato-baptista-de-lima",fullName:"José Renato Baptista De Lima"},{id:"233467",title:"MSc.",name:"Tiago Ramos",middleName:null,surname:"Ribeiro",slug:"tiago-ramos-ribeiro",fullName:"Tiago Ramos Ribeiro"}]},{id:"58797",title:"Green Corrosion Inhibitors, Past, Present, and Future",slug:"green-corrosion-inhibitors-past-present-and-future",totalDownloads:2788,totalCrossrefCites:5,totalDimensionsCites:7,book:{slug:"corrosion-inhibitors-principles-and-recent-applications",title:"Corrosion Inhibitors, Principles and Recent Applications",fullTitle:"Corrosion Inhibitors, Principles and Recent Applications"},signatures:"Omnia S. Shehata, Lobna A. Korshed and Adel Attia",authors:[{id:"220734",title:"Associate Prof.",name:"Omnia",middleName:null,surname:"Shehata",slug:"omnia-shehata",fullName:"Omnia Shehata"},{id:"227918",title:"Prof.",name:"Adel",middleName:null,surname:"Attia",slug:"adel-attia",fullName:"Adel Attia"},{id:"227919",title:"Dr.",name:"Lobna",middleName:null,surname:"Korshed",slug:"lobna-korshed",fullName:"Lobna Korshed"}]},{id:"51497",title:"The Review of Some Commonly Used Methods and Techniques to Measure the Thermal Conductivity of Insulation Materials",slug:"the-review-of-some-commonly-used-methods-and-techniques-to-measure-the-thermal-conductivity-of-insul",totalDownloads:4196,totalCrossrefCites:13,totalDimensionsCites:28,book:{slug:"insulation-materials-in-context-of-sustainability",title:"Insulation Materials in Context of Sustainability",fullTitle:"Insulation Materials in Context of Sustainability"},signatures:"Numan Yüksel",authors:[{id:"178245",title:"Dr.",name:"Numan",middleName:null,surname:"Yüksel",slug:"numan-yuksel",fullName:"Numan Yüksel"}]},{id:"70661",title:"Bioremediation Techniques for Polluted Environment: Concept, Advantages, Limitations, and Prospects",slug:"bioremediation-techniques-for-polluted-environment-concept-advantages-limitations-and-prospects",totalDownloads:195,totalCrossrefCites:0,totalDimensionsCites:0,book:{slug:"trace-metals-in-the-environment-new-approaches-and-recent-advances",title:"Trace Metals in the Environment",fullTitle:"Trace Metals in the Environment - New Approaches and Recent Advances"},signatures:"Indu Sharma",authors:[{id:"301262",title:"Associate Prof.",name:"Indu",middleName:null,surname:"Sharma",slug:"indu-sharma",fullName:"Indu Sharma"}]},{id:"47427",title:"Corrosion and Surface Treatment of Magnesium Alloys",slug:"corrosion-and-surface-treatment-of-magnesium-alloys",totalDownloads:3470,totalCrossrefCites:10,totalDimensionsCites:24,book:{slug:"magnesium-alloys-properties-in-solid-and-liquid-states",title:"Magnesium Alloys",fullTitle:"Magnesium Alloys - Properties in Solid and Liquid States"},signatures:"Henry Hu, Xueyuan Nie and Yueyu Ma",authors:[{id:"170745",title:"Prof.",name:"Henry",middleName:null,surname:"Hu",slug:"henry-hu",fullName:"Henry Hu"}]},{id:"58695",title:"Organic Corrosion Inhibitors",slug:"organic-corrosion-inhibitors",totalDownloads:3133,totalCrossrefCites:4,totalDimensionsCites:13,book:{slug:"corrosion-inhibitors-principles-and-recent-applications",title:"Corrosion Inhibitors, Principles and Recent Applications",fullTitle:"Corrosion Inhibitors, Principles and Recent Applications"},signatures:"Bogumił Eugeniusz Brycki, Iwona H. Kowalczyk, Adrianna Szulc,\nOlga Kaczerewska and Marta Pakiet",authors:[{id:"197271",title:"Prof.",name:"Bogumil E.",middleName:null,surname:"Brycki",slug:"bogumil-e.-brycki",fullName:"Bogumil E. Brycki"},{id:"207547",title:"Dr.",name:"Iwona",middleName:null,surname:"Kowalczyk",slug:"iwona-kowalczyk",fullName:"Iwona Kowalczyk"},{id:"207548",title:"Dr.",name:"Adrianna",middleName:null,surname:"Szulc",slug:"adrianna-szulc",fullName:"Adrianna Szulc"},{id:"207549",title:"Dr.",name:"Olga",middleName:null,surname:"Kaczerewska",slug:"olga-kaczerewska",fullName:"Olga Kaczerewska"},{id:"220728",title:"MSc.",name:"Marta",middleName:null,surname:"Pakiet",slug:"marta-pakiet",fullName:"Marta Pakiet"}]}],onlineFirstChaptersFilter:{topicSlug:"metals-and-nonmetals",limit:3,offset:0},onlineFirstChaptersCollection:[],onlineFirstChaptersTotal:0},preDownload:{success:null,errors:{}},aboutIntechopen:{},privacyPolicy:{},peerReviewing:{},howOpenAccessPublishingWithIntechopenWorks:{},sponsorshipBooks:{sponsorshipBooks:[{type:"book",id:"10176",title:"Microgrids and Local Energy Systems",subtitle:null,isOpenForSubmission:!0,hash:"c32b4a5351a88f263074b0d0ca813a9c",slug:null,bookSignature:"Prof. Nick Jenkins",coverURL:"https://cdn.intechopen.com/books/images_new/10176.jpg",editedByType:null,editors:[{id:"55219",title:"Prof.",name:"Nick",middleName:null,surname:"Jenkins",slug:"nick-jenkins",fullName:"Nick Jenkins"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}}],offset:8,limit:8,total:1},route:{name:"chapter.detail",path:"/books/direct-torque-control-strategies-of-electrical-machines/torque-ripple-reduction-in-dtc-induction-motor-drive",hash:"",query:{},params:{book:"direct-torque-control-strategies-of-electrical-machines",chapter:"torque-ripple-reduction-in-dtc-induction-motor-drive"},fullPath:"/books/direct-torque-control-strategies-of-electrical-machines/torque-ripple-reduction-in-dtc-induction-motor-drive",meta:{},from:{name:null,path:"/",hash:"",query:{},params:{},fullPath:"/",meta:{}}}},function(){var e;(e=document.currentScript||document.scripts[document.scripts.length-1]).parentNode.removeChild(e)}()