\r\n\t
",isbn:"978-1-83962-877-1",printIsbn:"978-1-83962-876-4",pdfIsbn:"978-1-83968-120-2",doi:null,price:0,priceEur:0,priceUsd:0,slug:null,numberOfPages:0,isOpenForSubmission:!1,hash:"52f37e72f4007a3248a3658dbaeb1172",bookSignature:"Prof. Constantin Volosencu",publishedDate:null,coverURL:"https://cdn.intechopen.com/books/images_new/10402.jpg",keywords:"Control Systems, Robotics, Advanced Control Systems, Digital Signal Processing, Computer Vision, Deep Learning, Big Data, Predictive Models, Investment Management, Algorithmic Trading, Wireless Communications, Wireless Systems Simulation",numberOfDownloads:47,numberOfWosCitations:0,numberOfCrossrefCitations:0,numberOfDimensionsCitations:0,numberOfTotalCitations:0,isAvailableForWebshopOrdering:!0,dateEndFirstStepPublish:"August 25th 2020",dateEndSecondStepPublish:"September 15th 2020",dateEndThirdStepPublish:"November 14th 2020",dateEndFourthStepPublish:"February 2nd 2021",dateEndFifthStepPublish:"April 3rd 2021",remainingDaysToSecondStep:"6 months",secondStepPassed:!0,currentStepOfPublishingProcess:5,editedByType:null,kuFlag:!1,biosketch:"Dr. Volosencu is author of 10 books and has over 155 scientific papers published. He holds 27 patents and has developed electrical equipment for machine tools, spooling machines, high power ultrasound processes and other, with the homologation of 18 prototypes and 12 zero manufacturing series.",coeditorOneBiosketch:null,coeditorTwoBiosketch:null,coeditorThreeBiosketch:null,coeditorFourBiosketch:null,coeditorFiveBiosketch:null,editors:[{id:"1063",title:"Prof.",name:"Constantin",middleName:null,surname:"Volosencu",slug:"constantin-volosencu",fullName:"Constantin Volosencu",profilePictureURL:"https://mts.intechopen.com/storage/users/1063/images/system/1063.jpeg",biography:"Constantin Volosencu is a professor at the Polytechnic University of Timişoara, Department of Automation. He is the editor of 9 books, author of 10 books, 5 book chapters, and over 180 scientific papers published in journals and conference proceedings. He is also a holder of 27 patents, and a manager of research grants. He is a member of editorial boards of international journals, a former plenary speaker, a member of scientific committees, and chair at international conferences. His research is in the field of control systems, electrical drives, power ultrasounds, fuzzy logic, neural networks, fault detection and diagnosis, sensor networks, and distributed parameter systems. He has developed electrical equipment for machine tools, spooling machines, high-power ultrasound processes and others.",institutionString:"Polytechnic University of Timişoara",position:null,outsideEditionCount:0,totalCites:0,totalAuthoredChapters:"3",totalChapterViews:"0",totalEditedBooks:"8",institution:{name:"Polytechnic University of Timişoara",institutionURL:null,country:{name:"Romania"}}}],coeditorOne:null,coeditorTwo:null,coeditorThree:null,coeditorFour:null,coeditorFive:null,topics:[{id:"9",title:"Computer and Information Science",slug:"computer-and-information-science"}],chapters:[{id:"74718",title:"Laser Point Cloud Segmentation in MATLAB",slug:"laser-point-cloud-segmentation-in-matlab",totalDownloads:47,totalCrossrefCites:0,authors:[{id:"199330",title:"Associate Prof.",name:"Bahadır",surname:"Ergun",slug:"bahadir-ergun",fullName:"Bahadır Ergun"},{id:"201823",title:"Dr.",name:"Cumhur",surname:"Sahin",slug:"cumhur-sahin",fullName:"Cumhur Sahin"}]}],productType:{id:"1",title:"Edited Volume",chapterContentType:"chapter",authoredCaption:"Edited by"},personalPublishingAssistant:{id:"247041",firstName:"Dolores",lastName:"Kuzelj",middleName:null,title:"Ms.",imageUrl:"https://mts.intechopen.com/storage/users/247041/images/7108_n.jpg",email:"dolores@intechopen.com",biography:"As an Author Service Manager my responsibilities include monitoring and facilitating all publishing activities for authors and editors. From chapter submission and review, to approval and revision, copyediting and design, until final publication, I work closely with authors and editors to ensure a simple and easy publishing process. I maintain constant and effective communication with authors, editors and reviewers, which allows for a level of personal support that enables contributors to fully commit and concentrate on the chapters they are writing, editing, or reviewing. I assist authors in the preparation of their full chapter submissions and track important deadlines and ensure they are met. I help to coordinate internal processes such as linguistic review, and monitor the technical aspects of the process. As an ASM I am also involved in the acquisition of editors. Whether that be identifying an exceptional author and proposing an editorship collaboration, or contacting researchers who would like the opportunity to work with IntechOpen, I establish and help manage author and editor acquisition and contact."}},relatedBooks:[{type:"book",id:"2020",title:"New Technologies",subtitle:"Trends, Innovations and Research",isOpenForSubmission:!1,hash:"170d84903f390df23023d0623d8577d3",slug:"new-technologies-trends-innovations-and-research",bookSignature:"Constantin Volosencu",coverURL:"https://cdn.intechopen.com/books/images_new/2020.jpg",editedByType:"Edited by",editors:[{id:"1063",title:"Prof.",name:"Constantin",surname:"Volosencu",slug:"constantin-volosencu",fullName:"Constantin Volosencu"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"6024",title:"System Reliability",subtitle:null,isOpenForSubmission:!1,hash:"5cf0113f60979705f5b0b0ea0bac3028",slug:"system-reliability",bookSignature:"Constantin Volosencu",coverURL:"https://cdn.intechopen.com/books/images_new/6024.jpg",editedByType:"Edited by",editors:[{id:"1063",title:"Prof.",name:"Constantin",surname:"Volosencu",slug:"constantin-volosencu",fullName:"Constantin Volosencu"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"2021",title:"Cutting Edge Research in New Technologies",subtitle:null,isOpenForSubmission:!1,hash:"5c14eed0ff55904ca388c886570c85fc",slug:"cutting-edge-research-in-new-technologies",bookSignature:"Constantin Volosencu",coverURL:"https://cdn.intechopen.com/books/images_new/2021.jpg",editedByType:"Edited by",editors:[{id:"1063",title:"Prof.",name:"Constantin",surname:"Volosencu",slug:"constantin-volosencu",fullName:"Constantin Volosencu"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"4646",title:"Cutting Edge Research in Technologies",subtitle:null,isOpenForSubmission:!1,hash:"a0c6cc73cb98936693e6e4845a19dfcf",slug:"cutting-edge-research-in-technologies",bookSignature:"Constantin Volosencu",coverURL:"https://cdn.intechopen.com/books/images_new/4646.jpg",editedByType:"Edited by",editors:[{id:"1063",title:"Prof.",name:"Constantin",surname:"Volosencu",slug:"constantin-volosencu",fullName:"Constantin Volosencu"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"7656",title:"Fuzzy Logic",subtitle:null,isOpenForSubmission:!1,hash:"54f092d4ffe0abf5e4172a80025019bc",slug:"fuzzy-logic",bookSignature:"Constantin Volosencu",coverURL:"https://cdn.intechopen.com/books/images_new/7656.jpg",editedByType:"Edited by",editors:[{id:"1063",title:"Prof.",name:"Constantin",surname:"Volosencu",slug:"constantin-volosencu",fullName:"Constantin Volosencu"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"7501",title:"Fault Detection and Diagnosis",subtitle:null,isOpenForSubmission:!1,hash:"5143fb77b96f488e4ec5dd6e7947904c",slug:"fault-detection-and-diagnosis",bookSignature:"Constantin Volosencu",coverURL:"https://cdn.intechopen.com/books/images_new/7501.jpg",editedByType:"Edited by",editors:[{id:"1063",title:"Prof.",name:"Constantin",surname:"Volosencu",slug:"constantin-volosencu",fullName:"Constantin Volosencu"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"6603",title:"Actuators",subtitle:null,isOpenForSubmission:!1,hash:"33056f58590b5920dd938eff4810e8dc",slug:"actuators",bookSignature:"Constantin Volosencu",coverURL:"https://cdn.intechopen.com/books/images_new/6603.jpg",editedByType:"Edited by",editors:[{id:"1063",title:"Prof.",name:"Constantin",surname:"Volosencu",slug:"constantin-volosencu",fullName:"Constantin Volosencu"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"9287",title:"Control Theory in Engineering",subtitle:null,isOpenForSubmission:!1,hash:"7c584de5f40193b636833aa812dab9d5",slug:"control-theory-in-engineering",bookSignature:"Constantin Volosencu, Ali Saghafinia, Xian Du and Sohom Chakrabarty",coverURL:"https://cdn.intechopen.com/books/images_new/9287.jpg",editedByType:"Edited by",editors:[{id:"1063",title:"Prof.",name:"Constantin",surname:"Volosencu",slug:"constantin-volosencu",fullName:"Constantin Volosencu"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"1591",title:"Infrared Spectroscopy",subtitle:"Materials Science, Engineering and Technology",isOpenForSubmission:!1,hash:"99b4b7b71a8caeb693ed762b40b017f4",slug:"infrared-spectroscopy-materials-science-engineering-and-technology",bookSignature:"Theophile Theophanides",coverURL:"https://cdn.intechopen.com/books/images_new/1591.jpg",editedByType:"Edited by",editors:[{id:"37194",title:"Dr.",name:"Theophanides",surname:"Theophile",slug:"theophanides-theophile",fullName:"Theophanides Theophile"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"3161",title:"Frontiers in Guided Wave Optics and Optoelectronics",subtitle:null,isOpenForSubmission:!1,hash:"deb44e9c99f82bbce1083abea743146c",slug:"frontiers-in-guided-wave-optics-and-optoelectronics",bookSignature:"Bishnu Pal",coverURL:"https://cdn.intechopen.com/books/images_new/3161.jpg",editedByType:"Edited by",editors:[{id:"4782",title:"Prof.",name:"Bishnu",surname:"Pal",slug:"bishnu-pal",fullName:"Bishnu Pal"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}}]},chapter:{item:{type:"chapter",id:"68277",title:"Behçet’s Disease and Pregnancy",doi:"10.5772/intechopen.88307",slug:"beh-et-s-disease-and-pregnancy",body:'\nBehçet’s disease (BD) is a rare, chronic, relapsing, multisystemic, and inflammatory disorder involving the oral and genital mucosa, eyes, joints, gastrointestinal, urogenital, vascular, and central nervous system [1, 2, 3]. It commonly occurs between the ages of 18 and 40, mainly affects young men, and tends to affect individuals with “silk road” bloodlines (corresponding the ancient route between the Mediterranean, the Middle East, and the Far East) [2, 3, 4, 5]. Although the etiopathogenesis of the disease still remains unknown, it has been hypothesized as a genetic predisposition determined by the human leucocyte antigen-B51 (HLA-B51) allele. Infectious agents such as herpes simplex virus 1 or Streptococcus species may play a role as pathogenic triggers in genetically predisposed individuals [4, 5, 6, 7, 8, 9, 10, 11, 12]. BD is characterized by histopathologic vasculitic changes and thrombogenicity, which are common to all involved organs. Vessels of all sizes are affected, both in the arterial and venous systems, with venous involvement being more common than arterial involvement [1, 4].
\nMost BD patients at disease onset are in their reproductive ages. Since about half of the patients with this disease are women, BD activity during pregnancy, and obstetric and neonatal outcomes must be carefully researched. Any possible interaction between this two multisystemic condition deserves special attention [1, 13, 14]. Very little is known about the influence of BD and pregnancy to date. In few anecdotal case reports and retrospective small sample studies, both remissions and flares during pregnancy have been reported, and the effect of the disease on pregnancy remained unclear [1, 2, 3, 4, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22]. Based on previous studies, it can be concluded that disease activity usually regresses during pregnancy.
\nThe variability in the activity of BD in different pregnancies may be associated with various immunomodulatory effects of estrogen and progesterone, which are significantly elevated during pregnancy. Pregnancy has been associated with suppression of humoral and cellular-mediated immunological functions [23, 24, 25, 26]. Estrogen may have anti-inflammatory actions by stimulating anti-inflammatory interleukin (IL)-10 production and counteracting the effects of IL-12, antigen-presenting capacity, and tumor necrosis factor [26, 27, 28, 29, 30, 31, 32]. Progesterone may induce the inhibition of T cell, macrophage, and natural killer cell activity during pregnancy [24, 28, 29, 30, 31]. Progesterone can enhance both Th2 cell polarization and Treg cell production [24, 25, 26, 27, 28, 29, 30]. Oh et al. reported the case of a young woman who experienced flares of BD during every premenstrual period [33]. This condition dramatically improved when the patient received oral contraceptive therapy. As a result, it is suggested that steady-state levels of estrogen and progesterone, during pregnancy or oral contraceptive treatment, may play a role in the suppression of BD exacerbations. Krause et al. reported that neutrophil functions such as chemotaxis and adherence were depressed during pregnancy, and this was associated with an improvement in autoimmune diseases [34]. It may be the reason for the reduced number of BD flares during pregnancy, because excessive neutrophil activation has been involved in BD pathogenesis. Ferraro et al. reported an almost complete absence of autoantibodies during pregnancy in a recent study [35].
\nIn an extensive review of the literature, both remissions and exacerbations of BD were investigated during pregnancy, and it has been reported that disease activity may differ between pregnancies in the same women [13, 15, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47]. The current data is limited to retrospective studies and individual case reports. Hurt et al. reported a case of severe, recurrent, oral, and genital mucosal ulcerations and iridocyclitis during the second trimester of pregnancy [46]. Madkour and Kudwah reported prolonged mucocutaneous and articular exacerbations during pregnancy and during treatment with oral contraceptive pills, in four women with BD [47]. Farrag et al. described one case of severe vaginal and cervical ulcers in the third trimester of pregnancy, treated by prednisolone [48]. Bang et al. reported on 20 pregnancies with BD, in which 12 became exacerbated [15]. The most common lesions were oral and genital ulcers in Bang’s study. Similarly, in the series of Gürler and Erdi, exacerbations were observed in most of the cases [49].
\nIn recent studies, the main symptoms during BD flares were oral ulceration and genital ulceration, followed by skin lesions and ocular inflammation; no neurological or gastrointestinal symptoms were observed during pregnancy [3, 13, 36, 38, 46, 47, 48]. The most serious manifestations of the exacerbation were vascular complications such as Budd-Chiari syndrome and deep vein thrombosis (DVT) [3, 36, 49]. Some case reports that have been reported are severe disease flares such as DVT with nephrotic syndrome, superior vena cava thrombosis, dural sinus thrombosis, or intracardiac thrombosis [16, 19, 50, 51].
\nConversely, some authors reported remissions during pregnancy in BD patients. Hamza et al. studied 21 pregnancies in eight women with BD and found remissions in 12 pregnancies [38]. In this study mainly genital ulcers were seen in nine flares during the last trimester, despite systemic corticotherapy. Marsal et al. studied 25 pregnancies in 10 women and reported 23 remissions and only 2 flares [36]. Chajek and Fainaro reported a woman with persistent BD who had remissions only during her pregnancies over a 20-year follow-up [43]. Ferraro et al. and Larsson and Baum reported two similar cases with complete remissions during pregnancy with a flare after delivery [35, 45]. In a recent study, Uzun et al. reported on 44 pregnancies in 28 women and found remission rate to be 52.3%, while exacerbation rate was 27.3% [13]. In this study in nine pregnancies, there were no changes in the clinical course of BD.
\nIn a single retrospective study by Noel et al., the authors compared the frequencies of BD exacerbations in the periods before gestation with the rate during pregnancy [3]. They observed that the annual incidence of BD flares per patient was lower during pregnancy than during the nonobstetric period. In most series there was no association between the pregnant woman’s ages, the age at onset of Behçet’s disease, and the course of the disease during pregnancy. Noel et al. found that the shorter duration of BD prior to conception had the higher rate of exacerbation. In addition, they investigated that the treatment with colchicine was associated with lesser exacerbations during pregnancy. On the other hand, Seyyahi et al. considered that since BD becomes less severe with the passage of time, it is also expected to see less flares with long disease duration [52]. Moreover, patients who were treated only with colchicine had probably a milder disease, and hence, they experienced less flares during pregnancy.
\nIn a review Ben-Chetrit reported the rate of complications ranges between 4 and 20% of pregnancies in eight different studies [14]. In these studies only Marsal et al., Jadaon et al., and Iskender et al. compared their study groups with healthy controls [1, 2, 36]. Marsal et al. reported no significant differences in the incidence of maternal and fetal complications (abortions, congenital abnormalities, perinatal death, etc.) between BD patients and healthy controls [36]. In the series of Iskender et al., the frequencies of stillbirth, preeclampsia, preterm delivery, and cesarean deliveries did not differ between groups [1]. Jadaon et al. reported the highest rate of complications (20%) of these studies and significantly more than control groups [2]. The authors considered that especially the higher rate of miscarriage, but also the elevated pregnancy complication rate, may be explained by the vasculitic process underlying the pathogenesis of BD, as well as by hypercoagulability during pregnancy in BD patients. There was no difference of the neonatal outcomes such as intrauterine growth restriction, congenital abnormalities, neonatal weight, APGAR score at 1 and 5 min, respiratory distress syndrome, intraventricular hemorrhage, convulsions, prematurity, and perinatal death between the study and control groups [2]. In the reports by Noel et al. and Nadzi et al., the rate of complications was similar (16–19%) among their BD pregnant patients [3, 53]. In these studies, the high rate of miscarriages and the high number of deliveries by cesarean section were reported. Noel et al. observed a significant association between a history of DVT in BD and the risk of obstetric complications (miscarriages and cesarean deliveries) [3]. They found that the previous venous involvement due to BD increased obstetric complications, as previously suggested by Jadaon et al. [2]. All of such patients in their cohort had experienced prior DVT, and two had associated cerebral venous thrombosis. The main obstetric complications were miscarriages for these patients. The authors considered that there was a link between venous thrombosis and the risk of default in trophoblast implantation [3]. They suggested that the antiphospholipid syndrome must be ruled out. The risk of fetal loss in BD is, however, lower than the risk in antiphospholipid syndrome [54]. Jadaon et al. thought that the presence of anti-endothelial cell antibodies in the sera of patients with BD and impaired function of vascular endothelial cells may explain the high rate of miscarriages and pregnancy complications in BD patients [2, 55, 56]. However, these observations were not reported by other retrospective studies. In addition, the outcome of pregnancies varied even during different pregnancies in the same BD patient, suggesting that it is not invariably related to BD.
\nJadaon et al. observed the rate of BD patients in which patients who went into remission was significantly higher than the number of patients who had exacerbations in the postpartum period [2]. In this case control study, it was shown that patients, who went into remission or exacerbation during pregnancy, tend to continue in the same direction after delivery. When the rate of remissions and exacerbations during pregnancy and postpartum period was compared, they found that the difference between the rate of remissions and exacerbations during pregnancy and postpartum for each of the women was not significant. They reported that there was no difference in disease activity during pregnancy and postpartum between HLAB51-positive and HLAB51-negative BD patients. In this study the number of pregnancies that were conceived under treatment was as follows: 29 of 77 patients with corticosteroids, 1 with colchicine, 1 with insulin, and 5 with heparin [2]. Hamza et al. reported exacerbations of BD in nine pregnancies despite corticosteroid treatment (10–15 mg/day) but no significant obstetric complications [38]. In a 20 case series reported by Marsal et al., 3 patients with corticosteroids, 1 patient with colchicine, and 1 patient with cyclosporine all discontinued the treatments at the onset of the pregnancy, due to concerns regarding adverse effects [36].
\nMany of the medications used in the treatment of BD are safe to use during pregnancy. These include corticosteroids, cyclosporine, and azathioprine. There is now growing evidence to suggest that colchicine is also safe to use in pregnancy, and previous concerns about associations with fetal chromosomal abnormalities have not been proven. The question of whether colchicine treatment is safe during pregnancy is important, because colchicine crosses the human placenta [3]. Despite the antimitotic effects of colchicine, the safety of this drug during pregnancy was recently assessed in a prospective comparative cohort study in which 238 colchicine-exposed pregnancies were followed up [57]. Increase in teratogenicity or congenital abnormalities was not observed. This finding is consistent with previous reports and underlines the safety of colchicine during pregnancy [58]. There is no agreement on the therapy of deep venous thrombosis and PE in BD [16]. Systemic anticoagulation with conventional agents including aspirin and low-molecular-weight heparin (LMWH) is usually applied because of hypercoagulability of pregnancy, but lack of response or recurrence may occur if immunosuppressive therapy is not continued [59].
\nNew agents such as the anti-TNF-alpha monoclonal antibodies such as infliximab and etanercept have been used to treat inflammatory conditions in pregnancy and appear safe. There is no report that exposure to TNF inhibitors is toxic to the developing fetus. However, due to the limitations of available data and lack of controlled trials, there is not sufficient evidence to demonstrate the safety of the fetus exposed to TNF inhibitors during pregnancy. Moreover, the long-term safety of the infant is uncertain. If possible, discontinuation of the TNF inhibitor is desirable during pregnancy. If it appears to be necessary to use a TNF inhibitor to control the disease activity during mid and late pregnancy, then inoculations of live vaccine after birth pose a problem [20, 60]. It was reported that an infant born from a patient with Crohn’s disease and exposed to infliximab during pregnancy died due to disseminated BCG because of a live vaccine received at 3 months of age [61]. Therefore, any infant exposed to anti-TNF monoclonal antibody in the uterus should be protected from the administration of a live vaccine until at least 6 months from birth or until the drug disappears from the serum [20]. Data on more than 300 pregnancies showed that infliximab carries low fetal risk during conception and the first two trimesters but suggests considering discontinuation in the early third trimester to minimize late fetal exposure to the risk of neonatal immunosuppression [62]. However, if treatment needs to be continued to keep the BD controlled, then the advantages probably outweigh the theoretical disadvantages. In a case report, a 30-year-old woman diagnosed with BD at 12 weeks of pregnancy was successfully treated with infliximab, 5 mg/kg repeated dosages after 18 weeks of pregnancy, with improvement in all symptoms and normal full-term delivery [21]. A 36-year-old Japanese woman with intestinal BD (a recurrent ileocecal ulcer) was treated with adalimumab [20]. In this case, infliximab treatment showed secondary failure, so infliximab was switched to adalimumab. After the third injection of adalimumab, the patient was unexpectedly 4-week pregnant. Adalimumab was continued until the 20 weeks of pregnancy. Remission of the disease activity during pregnancy, the disappearance of ileocecal ulcer after delivery was reported, and the birth was uneventful in this case. It was also reported that adalimumab was detected in the umbilical blood after 119 days from the last infusion. The placental transition and timing of neonatal vaccination should be considered in cases of pregnancy with TNF antibody therapy [20].
\nThalidomide is an effective treatment of oral and genital ulceration in BD but should never be used in pregnancy or in the absence of effective contraception because of its teratogenicity. Mycophenolate mofetil may also cause fetal malformations and should ideally be discontinued prior to pregnancy. It may sometimes be replaced with azathioprine. Disease-modifying drugs such as low-dose methotrexate and cytotoxic drugs such as chlorambucil and cyclophosphamide used in BD to treat inflammation of the brain and eye should also be avoided when planning a pregnancy as these medications may cause fetal abnormalities. These drugs should be discontinued at least 3 months prior to conception and alternative safe medications commenced if necessary [63].
\nDuring lactation the risk of taking medication that may suppress neonatal immune system must be balanced against the many benefits that breast milk confers and the risk of disease relapsing if medication is not taken. Prednisolone and azathioprine are safe to use during lactation, and only low concentrations of cyclosporine are transferred to the breast milk, so these may be safe as well. Similarly colchicine, which is secreted into breast milk, has had no adverse side effects associated with its use in lactation [57]. Other agents such as infliximab and etanercept are not thought to be secreted in breast milk, but there are as yet no data on whether these drugs are safe to use in lactation [20, 21].
\nIt seems that pregnancy in general does not have harmful effects on the natural course of BD at all, though the limited number of cases reported and the lack of prospective studies. When the data from all the published series were analyzed, it has been considered that more than 50% of BD patients will improve remission during pregnancy. However, the BD activity usually regresses during pregnancy, and it is more recommended that due to the diverse course of the disease among different patients with the various clinical presentations and organ involvement, the disease course will differ. In some patients, the disease will go into remission, and in others, it will exacerbate during pregnancy. The variability in BD course during pregnancy is not limited to different patients. Even in the same patient, in one pregnancy, the disease may remain stable, while in a subsequent one, the disease exacerbates. There was no association between the number of pregnancy and the natural course of the disease.
\nThe rapid growth of global population as well as industrialization has led to a concomitant increase in environmental pollution. This has very negative effects on natural elements that are vital for life on earth such as air and water. It becomes very crucial therefore to find sustainable ways to mitigate pollution in order to provide a clean and safe environment for humans. Photocatalysis has attracted worldwide interest due to its potential to use solar energy not only to solve environmental problems but also provide a renewable and sustainable energy source. An efficient photocatalyst converts solar energy into chemical energy which can be used for environmental and energy applications such as water treatment, air purification, self-cleaning surfaces, hydrogen production by water cleavage and CO2 conversion to hydrocarbon fuels.
\nResearch in the development of efficient photocatalytic materials has seen significant progress in the last 2 decades with a large number of research papers published every year. Improvements in the performance of photocatalytic materials have been largely correlated with advances in nanotechnology. Of many materials that have been studied for photocatalysis, titanium dioxide (TiO2; titania) has been extensively researched because it possesses may merits such as high photocatalytic activity, excellent physical and chemical stability, low cost, non-corrosive, nontoxicity and high availability [1, 2, 3, 4]. The photocatalytic activity of titania depends on its phase. It exists in three crystalline phases; the anatase, rutile and brookite. The anatase phase is metastable and has a higher photocatalytic activity, while the rutile phase is more chemically stable but less active. Some titania with a mixture of both anatase and rutile phases exhibit higher activities compared to pure anatase and rutile phases [5, 6, 7]. When titania is irradiated with light of sufficient energy, electrons from the valence band are promoted to the conduction band, leaving an electron deficiency or hole, h+, in the valence band and an excess of negative charge in the conduction band. The free electrons in the conduction band are good reducing agents while the resultant holes in the valence band are strong oxidizing agents and can both participate in redox reactions.
\nTitania however suffers from a number of drawbacks that limit its practical applications in photocatalysis. Firstly, the photogenerated electrons and holes coexist in the titania particle and the probability of their recombination is high. This leads to low rates of the desired chemical transformations with respect to the absorbed light energy [8, 9]. The relatively large band gap energy (~ 3.2 eV) requires ultraviolet light for photoactivation, resulting in a very low efficiency in utilizing solar light. UV light accounts for only about 5% of the solar spectrum compared to visible light (45%) [1, 10]. In addition to these, because titania is non-porous and has a polar surface, it exhibits low absorption ability for non-polar organic pollutants [10, 11, 12, 13]. There is also the challenge to recover nano-sized titania particles from treated water in regards to both economic and safety concern [14]. The TiO2 nanoparticles also suffer from aggregation and agglomeration which affect the photoactivity as well as light absorption [15, 16, 17, 18]. Several strategies have been employed in the open literature to overcome these drawbacks. These strategies aim at extending the wavelength of photoactivation of TiO2 into the visible region of the spectrum thereby increasing the utilization of solar energy; preventing the electron/hole pair recombination and thus allowing more charge carriers to successfully diffuse to the surface; increasing the absorption affinity of TiO2 towards organic pollutants as well as preventing the aggregation and agglomeration of the nano-titania particles while easing their recovery from treated water. Several reviews have been published in recent years on the development of strategies to eliminate the limitations of titania photocatalysis [1, 19, 20, 21, 22, 23, 24, 25]. Most of these however focus on pollutant removal from wastewater, water splitting for hydrogen production, CO2 conversion and reaction mechanisms [1, 21, 25, 26, 27, 28, 29, 30, 31]. In this chapter, we review some of the latest publications mainly covering the last 5 years, on strategies that have been researched to overcome the limitations of TiO2 for general photocatalytic applications and the level of success that these strategies have been able to achieve. Based on the current level of research in this field, we also present some perspectives on the future of modified TiO2 photocatalysis.
\nA large number of research works have been published on TiO2 modification to enhance its photocatalytic properties. These modifications have been done in many different ways which include metal and non-metal doping, dye sensitization, surface modification, fabrication of composites with other materials and immobilization and stabilization on support structures. The properties of modified TiO2 are always intrinsically different from the pure TiO2 with regards to light absorption, charge separation, adsorption of organic pollutants, stabilization of the TiO2 particles and ease of separation of TiO2 particles.
\nMetal doping has been extensively used to advance efforts at developing modified TiO2 photocatalysts to operate efficiently under visible light. The photoactivity of metal-doped TiO2 photocatalysts depends to a large extent on the nature of the dopant ion and its nature, its level, the method used in the doping, the type of TiO2 used as well as the reaction for which the catalyst is used and the reaction conditions [32]. The mechanism of the lowering of the band gap energy of TiO2 with metal doping is shown in Figure 1. It is believed that doping TiO2 with metals results in an overlap of the Ti 3d orbitals with the d levels of the metals causing a shift in the absorption spectrum to longer wavelengths which in turn favours the use of visible light to photoactivate the TiO2.
\nBand-gap lowering mechanism of metal-doped TiO2.
Doping of TiO2 nanoparticles with Li, Na, Mg, Fe and Co by high energy ball milling with the metal nitrates was found to widen the TiO2 visible light response range. In the Na-doped sample, Ti existed as both Ti4+ and Ti3+ and the conversion between Ti4+ and Ti3+ was found to prevent the recombination of electrons and (e−) and holes (h+). The metal ion doping promoted crystal phase transformations that generated electrons (e−) and holes (h+) [33]. Mesoporous TiO2 prepared by sol gel technique and doped with different levels of Pt (1–5 wt% nominal loading) resulted in a high surface area TiO2 with an enhanced catalytic performance in photocatalytic water splitting for the Pt-doped samples. The 2.5 wt%Pt-TiO2 had showed the optimum catalytic performance and a reduction in the TiO2 band gap energy from 3.00 to 2.34 eV with an enhanced electron storage capacity, leading to a minimization of the electron-hole recombination rate [34]. Noble metal nanoparticles such as Ag [35], Pt [34], Pd [36], Rh [37] and Au [38] have also been used to modify TiO2 for photocatalysis and have been reported to efficiently hinder electron-hole recombination due to the resulting Schottky barrier at the metal-TiO2 interface. The noble metal nanoparticles act as a mediator in storing and transporting photogenerated electrons from the surface of TiO2 to an acceptor. The photocatalytic activity increases as the charge carriers recombination rate is decreased.
\nIn a recent review by Low et al. [21] the deposition of Au onto TiO2 surface is reported to result in electron transfer from photo-excited Au particles (> 420 nm) to the conduction band of TiO2, which showed a decrease in their absorption band (∼550 nm) and the band was recovered by the addition of electron donors such as Fe2+ and alcohols. Zhang et al. [39] reported that the visible light activity of coupled Au/TiO2 can be ascribed to the electric field enhancement near the metal nanoparticles. Moreover, numerous researchers coupled Au and Ag nanoparticles onto TiO2 surface to use their properties of localized surface plasmonic resonance (LSPR) in photocatalysis [40]. Wang et al. [41] and Hu et al. [42] reported an improved photocatalytic performance due to the Pt nanoparticle which increased the electron transfer rate to the oxidant. It was observed that photocatalytic sacrificial hydrogen generation was influenced by several parameters such as platinum loading (wt%) on TiO2, solution pH, and light (UV, visible and solar) intensities [43]. Moreover, complete discoloration and dye mineralization were achieved using Pt/TiO2 as catalyst; the results were attributed to the higher Pt content of the photocatalyst prepared with the highest deposition time. For Pt-TiO2 catalysts the best discoloration and dye mineralization were obtained over the catalyst prepared by photochemical deposition method and using 120 min of deposition time in the synthesis. These results may be due to the higher Pt content of the photocatalyst prepared with the highest deposition time.
\nHaung et al. [44] prepared Pt/TiO2 nanoparticles from TiO2 prepared at various hydrolysis pH values and found that the phase of TiO2 obtained depended largely on the hydrolysis pH. The anatase/rutile intersection of a Pt/TiO2 sample had a lower recombination rate compared to the anatase phase of Pt/TiO2 due to the longer recombination pathway. Though, the Pt/TiO2 anatase phase showed better degradation efficiency than the Pt/TiO2 anatase/rutile intersection. The decrease in the anatase composition of TiO2, and the decrease in the composition of TiO2 resulted in the degradation rate decrease, suggesting that anatase composition in the Pt/TiO2 system played a crucial role of increasing the photocatalytic degradation of Acid Red 1 dye.
\nLiu et al. [45] prepared the palladium doped TiO2 (Pd-TiO2) photocatalyst using chemical reduction method and tested it the photocatalytic degradation of organic pollutant. It was found that the TiO2 grain size was reduced while the specific surface area increased and the absorption of ultraviolet light also enhanced after using chemical reduction method, however, all these changes had no effect on degradation of organic pollutant. But the degradation was significantly improved due to the deposition of Pd nanoparticles; the Pd/TiO2 organic pollutant degradation was 7.3 times higher compared to TiO2 (P25).
\nRepouse et al. [46] prepared a series of noble metal promoted TiO2 (P25) by wet impregnation and found that the dispersion of the small metal crystallites on TiO2 did not affect the optical band gap of TiO2. The Pt-promoted catalyst exhibited the highest photocatalytic efficiency in the degradation of bisphenol A under solar irradiation. They also found the presence of humic acid to considerably improve the reaction rate of Rh/TiO2 but had a clearly adverse effect with P25 TiO2 photocatalyst. Fluorescence data revealed that humic acid is capable of photosensitizing the Rh/TiO2 catalyst.
\nIndium-doped TiO2 have recently been used for photocatalytic reduction of CO2 [47]. Indium doping resulted in an increase in surface area because of suppression of TiO2 particle growth during the TiO2 synthesis. The light absorption ability of the In-TiO2 was enhanced due to the introduction of the impurity level below the conduction band level of the TiO2. The photocatalytic CO2 reduction activity of the In-TiO2 was about 8 time that of pure TiO2 as a consequence of the high surface area and extended light absorption range.
\nThe doping of TiO2 with transition metals such as Cr [48], Co [48], Fe [48, 49, 50], Ni [48, 51], Mn [48, 52], V [53], Cu [54], Ni [51] and Zn [55], has been studied by different research groups. Numerous studies reported that doping of TiO2 with transition metals improve the photocatalytic activity, attributable to a change in the electronic structure resulting in the absorption region being shifted from UV to visible light. The shift results from charge-transfer transition between the d electrons of the transition metals and the conduct or valence band of TiO2 nanoparticles. Inturi et al. [48] compared the doping of TiO2 nanoparticles with Cr, Fe, V, Mn, Mo, Ce, Co, Cu, Ni, Y and Zr and it was found that Cr, Fe and V showed improved conversions in the visible region while, the incorporation of the other transition metals (Mn, Mo, Ce, Co, Cu, Ni, Y and Zr) exhibited an inhibition effect on the photocatalytic activity. The Cr-doped TiO2 demonstrated a superior catalytic performance and the rate constant was found to be approximately 8–19 times higher than the rest of the metal doped catalysts. It was reported that the reduction peaks in Cr-doped TiO2 shifted to much lower temperatures, due to the increase in the reduction potential of titania and chromium. Therefore, the higher photocatalytic efficiency of Cr/TiO2 in the visible light can be attributed to strong interaction (formation of Cr-O-Ti bonds). Fe-doped TiO2 nanoparticles were used in the visible light degradation of para-nitrophenol and it was found that the Fe-dopant concentration was crucially important in determining the activity of the catalyst. The maximum degradation rate of para-nitrophenol observed was 92% in 5 h when the Fe(3+) molar concentration was 0.05 mol%, without addition of any oxidizing reagents. The excellent photocatalytic activity was as a result of an increase in the threshold wavelength response as well as maximum separation of photogenerated charge carriers [49]. On the other hand, Fe-doped TiO2 evaluated for solar photocatalytic activity for the degradation of humic acid showed a retardation effect for the doped catalysts compared to the bare TiO2 specimens, which could be attributed to surface complexation reactions rather than the reactions taking place in aqueous medium. The faster removal rates attained by using bare TiO2 could be regarded as substrate specific rather than being related to the inefficient visible light activated catalytic performance [50]. Ola et al. [56] reported that the properties of V doped TiO2 were tuned towards visible light because of the substitution of the Ti4+ by V4+ or V5+ ions since the V4+ is centred at 770 nm while the absorption band of V5+ is lower than 570 nm. Moradi et al. [57] obtained high photocatalytic activity of Fe doped TiO2 and studied the effects of Fe3+ doping content on the band gap and size of the nanoparticles. It was found that the increase in the doping content decreased the band gap energy and particle size from 3.3 eV and 13 nm for bare TiO2 to 2.9 eV and 5 nm for Fe10-TiO2, respectively.
\nThe rare earth metals doped TiO2 catalyst also have good electron trapping properties which can result in a stronger absorption edge shift towards longer wavelength, obtaining narrow band gap. Bethanabotla et al. [58] carried out a comprehensive study on the rare earth doping into a TiO2 and found that the rare earth dopants improved the aqueous-phase photodegradation of phenol at low loadings under simulated solar irradiation, with improvements varying by catalyst composition. Differences in defect chemistry on key kinetic steps were given as the explanation for the enhanced performance of the rare earth doped samples compared to pure titania. Reszczyńska et al. [59] prepared a series of Y3+, Pr3+, Er3+ and Eu3+ modified TiO2 nanoparticles photocatalysts and results demonstrate that the incorporation of RE3+ ions into TiO2 nanoparticles resulted in blue shift of absorption edges of TiO2 nanoparticles and could be ascribed to movement of conduction band edge above the first excited state of RE3+. Moreover, incorporated RE3+ ions at the first excited state interact with the electrons of the conduction band of TiO2, resulting in a higher energy transfer from the TiO2 to RE3+ ions. But observed blue shift could be also attributed to decrease in crystallite size of RE3+–TiO2 in comparison to TiO2. The Y3+, Pr3+, Er3+ and Eu3+ modified TiO2 nanoparticles exhibited higher activity under visible light irradiation compared to pure P25 TiO2 and can be excited under visible light in the range from 420 to 450 nm. In a similar work on rare earths (Er, Yb, Ho, Tb, Gd and Pr) titania nanotubes (RE-NTs), [60] the RE3+ species were found to be located at the crystal boundaries rather than inside the TiO2 unit cell and an observed excitation into the TiO2 absorption band with resulting RE3+ emission confirmed energy migration between the TiO2 matrix and RE3+. The presence of the rare earth component was found to reduce recombination of the electrons and holes successfully by catching them and also by promoting their rapid development along the surface of TiO2 nanoparticles. Lanthanide ions doping did not impact the energy gap of TiO2 nanoparticles, however this enhanced the light absorption of catalyst. The surface range of TiO2 nanoparticles generally increases by La3+ particle doping by diminishing the crystallite size and accordingly, the doped TiO2 nanoparticle displayed higher adsorption capacity. Based on theoretical calculations, it was proposed that during the electrochemical process, new Ho-f states and surface vacancies were formed and may reduce the photon excitation energy from the valence to the conduction band under visible light irradiation. The photocatalytic activity under visible light irradiation was attributed not to ·OH but to other forms of reactive oxygen species (O2·−, HO2, H2O2).
\nTiO2 nanoparticles have been comprehensively doped at the O sites with non-metals such as C [61], B [62], I [63], F [64], S [65], and N [66]. Non-metal dopants are reported to be more appropriate for the extension of the photocatalytic activity of TiO2 into visible region compared to metal dopant [67, 68]. This can be ascribed to the impurity states which are near the valence band edge, however, they do not act as charge carriers, and their role as recombination centres might be minimized [53]. As shown in Figure 2, the mixing of the p states of the doped non-metal with the O2p states shifts the valence band edge upward and narrows the band-gap energy of the doped TiO2 photocatalyst. The nitrogen and carbon doped TiO2 nanoparticles has been reported to exhibit greater photocatalytic activity under visible light irradiation compared to other non-metal dopants.
\nBand-gap energy narrowing mechanism for non-metal-doped TiO2.
N-doped TiO2 (N-TiO2) appears to be the most efficient and extensively investigated photocatalyst for non-metal doping. Zeng et al. [69] reported the preparation of a highly active modified N-TiO2 nanoparticle via a novel modular calcination method. The excellent photocatalytic performance of the photocatalyst was ascribed to excellent crystallinity, strong light harvesting and fast separation of photogenerated carriers. Moreover, the enhancement of charge separation was attributed to the formation of paramagnetic [O-Ti4+-N2−-Ti4+-VO] cluster. The surface oxygen vacancy induced by vacuum treatment trapped electron and promoted to generate super oxygen anion radical which was a necessary active species in photocatalytic process. Phongamwong et al. [70] investigated the photocatalytic activity of CO2 reduction under visible light over modified N-TiO2 photocatalyst and they have found that the band gap of N-TiO2 photocatalyst slightly decreases with increasing N content. In addition, the sub-band energies related to the impurity energy level were observed in the N-TiO2 photocatalyst because of the interstitial N species and the sub-band gap energies were found to have decreased from 2.18 eV with 10 wt% N-TiO2 photocatalyst. In contrast, the replacement of O by N is difficult because of the radius of N (17.1 nm) being higher compared to O (14 nm) and the electroneutrality can be maintained by oxygen vacancies, that are provided by replacement of three oxygen vacancies by two nitrogen atom [71]. N-TiO2 photocatalyst reduces the oxygen energy vacancies from 4.2 to 0.6 eV, suggesting that N favors the formation of oxygen vacancies [72].
\nIn contrast, O atoms (14 nm) could be substituted easily by F atoms (13.3 nm) because of their similar ionic radius [73]. Yu et al. [64] reported that the F-doped TiO2 (F-TiO2) is able to absorb visible light due to the high-density states that were evaluated to be below the maxima valence band, although there was no shift in the band edge of TiO2. Samsudin et al. found a synergistic effect between fluorine and hydrogen in hydrogenated F-doped TiO2 which enabled light absorption in UV, visible and infrared light illumination with enhanced electrons and holes separation. Surface vacancies and Ti3+ centres of the hydrogenated F-doped catalyst coupled with enhanced surface hydrophilicity facilitated the production of surface-bound and free hydroxyl radicals. Species present on the surface of the catalyst triggered the formation of new Ti3+ occupied states under the conduction band of the hydrogenated F-doped TiO2, thus narrowing the band gap energy [73]. Enhanced photocatalytic performance of N-doped TiO2 over pure TiO2 has also been ascribed to efficient separation of electron-hole pairs as well as an increased creation of surface radicals such as hydroxyl The band gap can also be narrowed by doping TiO2 with S, since replacement of S into TiO2 can be performed easily due to larger radius of S atoms (18 nm) compared to O atoms (14 nm). S incorporation in TiO2 has been reported to change the lattice spacing of the TiO2 with a reduction in the band gap width from 3.2 to 1.7 eV allowing for higher photocatalytic activity [74]. N, S and C co-doped TiO2 samples photocatalytic reduction of Cr(IV) showed that the co-doping and calcination played an important role in the microstructure and photocatalytic activity of the catalysts. The co-doped samples calcined at 500°C showed the highest activities ascribed to the synergistic effect in enhancing crystallization of anatase and (N, S and C) co-doping. The carbon doped TiO2 (C-TiO2) is reported to be more active than N-TiO2, therefore, C-TiO2 has received special attention [75]. Noorimotlagh et al. [76] investigated the photocatalytic removal of nonylphenol (NP) compound using visible light active C-TiO2 with anatase/rutile. It was found that the doping of C into TiO2 lattice may enhance the visible light utilization and affect the structural properties of the as-synthesized photocatalysts. Moreover, it was reported that after C doping and changing the calcination temperature, the band gap was narrowed from 3.17 to 2.72 eV and from 2.72 to 2.66 eV, respectively. Ji et al. [61] reported the preparation of C-TiO2 with a diameter of around 200 nm and the tube wall was composed of anatase TiO2, amorphous carbon, crystalline carbon and carbon element doping into the lattice of TiO2. The C-TiO2 nanotubes exhibited much better performance in photocatalytic activity than bare TiO2 under UV and visible light. The obtained results were ascribed to the C doping, which narrowed the band gap energy of TiO2, extended the visible light adsorption toward longer wavelength and hindered charge recombination.
\nAlthough single metal doped and non-metal doped TiO2 have exhibited excellent performance in decreasing the electrons and holes recombination, but they suffer from thermal stability and losing a number of dopants during catalyst preparation process [77]. Therefore, co-doping of two kinds of atoms into TiO2 has recently attracted much interest [78]. The electronic structure of TiO2 can be altered by co-doping on TiO2 by formation of new doping levels inside its band gap. Abdullah et al. [77] reported that the doping levels situated within the band gap of TiO2 can either accept photogenerated electrons from TiO2 valence band or absorb photons with longer wavelengths. Therefore, suggesting that the TiO2 absorption range can be expanded.
\nZang et al. [79] evaluated the photocatalytic degradation of atrazine under UV and visible light irradiation by N,F-codoped TiO2 nanowires and nanoparticles in aqueous phase. It was found that photocatalytic degradation of atrazine was higher in the presence of N,F-codoped TiO2 nanowires than that of N,F-codoped TiO2 nanoparticles. The higher photocatalytic performance in the presence of N,F-codoped TiO2 nanowires was attributed to the higher charge carrier mobility and lower carrier recombination rate. Moreover, the speed of electron diffusion across nanoparticle intersections is several orders of magnitude smaller compared to that of nanowire because of frequent electron trapping at the intersections of nanoparticles and increasing the recombination of separated charges before they reach the TiO2 nanoparticles surface. Park et al. [80] showed the best performance for novel Cu/N-doped TiO2 photoelectrodes for dye-sensitized solar cells. It was found that the Cu/N-doped TiO2 nanoparticles provided higher surface area, active charge transfer and decreased charge recombination. Moreover, the addition of suitable content of Cu- to N-doped TiO2 electrode effectively inhibited the growth of TiO2 nanoparticles and improved the optical response of the photoelectrode under visible light irradiation. Chatzitakis et al. [81] studied the photoelectrochemical properties of C, N, F codoped TiO2 nanotubes. It was found that increasing surface area is not followed by increase in the photoconversion efficiency, but rather that an optimal balance between electroactive surface area and charge carrier concentration occurs.
\nZhao et al. [82] investigated the photocatalytic H2 evolution performance of Ir-C-N tridoped TiO2 under UV-visible light irradiation. The photocatalytic activity of TiO2 nanoparticles was reported to be improved by Ir-C-N tridoped TiO2 under UV-visible light, due the synergistic effect between Ir, C and N on the electron structure of TiO2. It was found that Ir existed as Ir4+ by substituting Ti in the lattice of TiO2 nanoparticles, whereas the C and N were also incorporated into the surface of TiO2 nanoparticles in interstitial mode. The absorption of TiO2 nanoparticles was expanded into the visible light region and the band gap was narrowed to ~3.0 eV, resulting in improved photocatalytic H2 evolution under UV-visible light irradiation. Tan et al. [83] investigated the photocatalytic degradation of methylene blue by W–Bi–S-tridoped TiO2 nanoparticles. It was found that the absorption edge of TiO2 was expanded into visible-light region after doping with W, Bi and S and the catalytst showed the best photocatalytic activity, than that of TiO2, S-TiO2, W–S–TiO2 and Bi–S–TiO2. This might be attributed to the synergistic effect of W, Bi and S.
\nAmongst the various strategies that have been used to enhance TiO2 photocatalytic activity, improvement of morphology, crystal structure and surface area have also been considered important and widely investigated approach to achieve better photocatalytic performance. The nanotitania crystallinity can simply be enhanced by optimizing the annealing temperature. However, the stability of the structure and geometries have to be considered when annealing [84]. For the nanotitania morphology and surface area, various ordered structures have been studied. TiO2 nanotubes [85, 86], nanowires [79], nanospheres [87], etc. Tang et al. fabricated monodisperse mesoporous anatase TiO2 nanospheres using a template material and found the resulting catalysts to show high photocatalytic degradation efficiency and selectivity towards different target dye molecules and could be readily separated from a slurry system after photocatalytic reaction [87]. Anodic TiO2 nanotubes have been reported to allow a high control over the separation of photogenerated charge carriers in photocatalytic reactions. The nanotube array has as key advantage the fact that nanotube modifications can be embedded site specifically into the tube wall or at defined locations along the tube wall. This allows for engineering of reaction sites giving rise to enhanced photocatalytic efficiencies and selectivities [88].
\nThe design and preparation of graphene-based composites containing metal oxides and metal nanoparticles have attracted attention for photocatalytic performances. For example, Tan et al. [89] prepared a novel graphene oxide-doped-oxygen-rich TiO2 (GO–OTiO2) hybrid heterostructure and evaluated its activity for photoreduction of CO2 under the irradiation of low-power energy-saving daylight bulbs. It was found that the photostability of O2–TiO2 was significantly improved by the addition of GO, at which the resulting hybrid composite retained a high reactivity. The photoactivity attained was about 1.6 and 14.0 folds higher than that of bare O2–TiO2 and the commercial Degussa P25, respectively. This high photocatalytic performance of GO–OTiO2 was attributed to the synergistic effect of the visible-light-responsiveness of O2–TiO2 and an enhanced separation and transfer of photogenerated charge carriers at the intimate interface of GO–OTiO2 heterojunctions. This study is reported to have opened up new possibilities in the development of novel, next generation heterojunction photocatalysts for energy and environmental related applications. Lin et al. [90] also investigated photoreduction of CO2 with H2O vapor in the gas-phase under the irradiation of a Xe lamp using TiO2/nitrogen (N) doped reduced graphene oxide (TiO2/NrGO) nanocomposites. They found that the quantity and configuration of N dopant in the TiO2/NrGO nanocomposites strongly influenced the photocatalytic efficiency, and the highest catalytic activity was observed for TiO2/NrGO nanocomposites with the highest N doping content. Moreover, modified TiO2/rGO demonstrated a synergistic effect, enhancing CO2 adsorption on the catalyst surface and promoting photogenerated electron transfer that resulted in a higher CO2 photoreduction rate of TiO2/NrGO. Qu et al. [91] prepared the graphene quantum dots (GQDs) with high quantum yield (about 23.6% at an excitation wavelength of 320 nm) and GQDs/TiO2 nanotubes (GQDs/TiO2 nanoparticles) nanocomposites and the photocatalytic activity was tested towards the degradation of methyl orange. It was found that the GQDs deposited on TiO2 nanoparticles can expand the visible light absorption of TiO2 nanoparticles and enhance the activity on photocatalytic degradation of methyl orange under UV-vis light irradiation (ʎ = 380–780 nm). Furthermore, the photocatalytic activity of GQDs/TiO2 nanoparticles was approximately 2.7 times as higher than that of bare TiO2 nanoparticles. Tian et al. [92] reported the preparation of N, S co-doped graphene quantum dots (N, S-GQDs)-reduced graphene oxide- (rGO)-TiO2 nanotubes (TiO2NT) nanocomposites for photodegradation of methyl orange under visible light irradiation. It was found that the S-GQDs+rGO + TiO2 nanocomposites simultaneously showed an extended photoresponse range, improved charge separation and transportation properties. Moreover, the apparent rate constant of N, S-GQDs+rGO + TiO2NT is 1.8 and 16.3 times higher compared to rGO + TiO2NT and pure TiO2NT, respectively. Suggesting that GQDs can improve the utilization of solar light for energy conversion and environmental therapy.
\nAnother drawback of TiO2 nanoparticles mentioned above is the formation of uniform suspension in water which makes its recovery difficult, therefore hindering the application of photocatalytic in an industrial scale. As a result, many studies have attempted the modification of TiO2 nanoparticles on support materials such as clays [93, 94] quartz [95], stainless steel [96], etc. Clays have been reported to be a significant support material for TiO2 nanoparticles because of their layered morphology, chemical as well as mechanical stability, cation exchange capacity, non-toxic nature, low cost and availability. Therefore, TiO2/clay nanocomposites have attracted much attention for application in both water and air purification and have been prepared by numerous researchers. Belver et al. [97] investigated the removal of atrazine under solar light using a novel W-TiO2/clay photocatalysts. It was found that the photocatalytic activity of W-TiO2/clay catalyst exhibited higher photocatalytic performance than that of an un-doped TiO2/clay, which was explained by the presence of W ions in the TiO2 nanostructure. The substitution of Ti ions with W resulted in the increase of its crystal size and the distortion of its lattice and moderately narrower band gap of photocatalysts. Mishra et al. [98] reported the preparation of TiO2/clay nanocomposites for photocatalytic degradation of VOC and dye. They found that the photocatalytic performance of TiO2/clay nanocomposites is highly dependent on the clay texture (as 2:1 clays show highest activity than 1:1) apart from their surface area and porosity. Moreover, the reactions involving TiO2/Clay photocatalyst were fast with rate constant of 0.02886 and 0.04600 min−1 for dye and VOC respectively than the other nanocomposites.
\nIn this chapter, we have given an overview of the development of modified TiO2 catalysts and its future prospects from a scientific point of view. We note that the field has experienced major advances in the last 5 years especially in the area of modifying TiO2 with carbon nanomaterials. Based on the literature we have covered here, we believe that there is still quite a lot that can be achieved in improving the performance of TiO2 catalysts for photocatalytic applications.
\nThere are no conflicts of interest to declare.
IntechOpen books are available online by accessing all published content on a chapter level.
",metaTitle:"Access policy",metaDescription:"IntechOpen books are available online by accessing all published content on a chapter level",metaKeywords:null,canonicalURL:null,contentRaw:'[{"type":"htmlEditorComponent","content":"All IntechOpen published chapters are available OPEN ACCESS can be read without the requirement for registration of any kind, immediately upon publication, without any barrier.
\\n\\nThe HTML version, as well as the PDF version of publications dated before 2012 that are accessible through a reader, are available to readers with no restriction.
\\n\\nThe full content of chapters can be read, copied and printed from the link location of the chapter and these actions are not limited or restricted in any way.
\\n\\nRegistration is requested only to download the PDF of the chapter. There are no subscription fees and there is no charge to user groups.
\\n\\nIntechOpen chapters are distributed under CC BY 3.0 licences allowing users to “copy, use, distribute, transmit and display the work publicly and to make and distribute derivative works, in any digital medium for any responsible purpose, subject to proper attribution of authorship...” and there is no non-commercial restriction.
\\n\\nAuthors may post published works to any repository or website with no delay, and Authors and Editors of IntechOpen books have direct access to the PDF of the full book.
\\n\\nAll published content can be crawled for indexing. Full text and metadata may be accessed with instructions publicly posted.
\\n\\nAll IntechOpen books are indexed in CLOCKSS and preservation of access to published content is clearly indicated.
\\n\\nPolicy last updated: 2021-02-26
\\n"}]'},components:[{type:"htmlEditorComponent",content:"All IntechOpen published chapters are available OPEN ACCESS can be read without the requirement for registration of any kind, immediately upon publication, without any barrier.
\n\nThe HTML version, as well as the PDF version of publications dated before 2012 that are accessible through a reader, are available to readers with no restriction.
\n\nThe full content of chapters can be read, copied and printed from the link location of the chapter and these actions are not limited or restricted in any way.
\n\nRegistration is requested only to download the PDF of the chapter. There are no subscription fees and there is no charge to user groups.
\n\nIntechOpen chapters are distributed under CC BY 3.0 licences allowing users to “copy, use, distribute, transmit and display the work publicly and to make and distribute derivative works, in any digital medium for any responsible purpose, subject to proper attribution of authorship...” and there is no non-commercial restriction.
\n\nAuthors may post published works to any repository or website with no delay, and Authors and Editors of IntechOpen books have direct access to the PDF of the full book.
\n\nAll published content can be crawled for indexing. Full text and metadata may be accessed with instructions publicly posted.
\n\nAll IntechOpen books are indexed in CLOCKSS and preservation of access to published content is clearly indicated.
\n\nPolicy last updated: 2021-02-26
\n"}]},successStories:{items:[]},authorsAndEditors:{filterParams:{sort:"featured,name"},profiles:[{id:"6700",title:"Dr.",name:"Abbass A.",middleName:null,surname:"Hashim",slug:"abbass-a.-hashim",fullName:"Abbass A. Hashim",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/6700/images/1864_n.jpg",biography:"Currently I am carrying out research in several areas of interest, mainly covering work on chemical and bio-sensors, semiconductor thin film device fabrication and characterisation.\nAt the moment I have very strong interest in radiation environmental pollution and bacteriology treatment. The teams of researchers are working very hard to bring novel results in this field. I am also a member of the team in charge for the supervision of Ph.D. students in the fields of development of silicon based planar waveguide sensor devices, study of inelastic electron tunnelling in planar tunnelling nanostructures for sensing applications and development of organotellurium(IV) compounds for semiconductor applications. I am a specialist in data analysis techniques and nanosurface structure. I have served as the editor for many books, been a member of the editorial board in science journals, have published many papers and hold many patents.",institutionString:null,institution:{name:"Sheffield Hallam University",country:{name:"United Kingdom"}}},{id:"54525",title:"Prof.",name:"Abdul Latif",middleName:null,surname:"Ahmad",slug:"abdul-latif-ahmad",fullName:"Abdul Latif Ahmad",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:null},{id:"20567",title:"Prof.",name:"Ado",middleName:null,surname:"Jorio",slug:"ado-jorio",fullName:"Ado Jorio",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"Universidade Federal de Minas Gerais",country:{name:"Brazil"}}},{id:"47940",title:"Dr.",name:"Alberto",middleName:null,surname:"Mantovani",slug:"alberto-mantovani",fullName:"Alberto Mantovani",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:null},{id:"12392",title:"Mr.",name:"Alex",middleName:null,surname:"Lazinica",slug:"alex-lazinica",fullName:"Alex Lazinica",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/12392/images/7282_n.png",biography:"Alex Lazinica is the founder and CEO of IntechOpen. After obtaining a Master's degree in Mechanical Engineering, he continued his PhD studies in Robotics at the Vienna University of Technology. Here he worked as a robotic researcher with the university's Intelligent Manufacturing Systems Group as well as a guest researcher at various European universities, including the Swiss Federal Institute of Technology Lausanne (EPFL). During this time he published more than 20 scientific papers, gave presentations, served as a reviewer for major robotic journals and conferences and most importantly he co-founded and built the International Journal of Advanced Robotic Systems- world's first Open Access journal in the field of robotics. Starting this journal was a pivotal point in his career, since it was a pathway to founding IntechOpen - Open Access publisher focused on addressing academic researchers needs. Alex is a personification of IntechOpen key values being trusted, open and entrepreneurial. Today his focus is on defining the growth and development strategy for the company.",institutionString:null,institution:{name:"TU Wien",country:{name:"Austria"}}},{id:"19816",title:"Prof.",name:"Alexander",middleName:null,surname:"Kokorin",slug:"alexander-kokorin",fullName:"Alexander Kokorin",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/19816/images/1607_n.jpg",biography:"Alexander I. Kokorin: born: 1947, Moscow; DSc., PhD; Principal Research Fellow (Research Professor) of Department of Kinetics and Catalysis, N. Semenov Institute of Chemical Physics, Russian Academy of Sciences, Moscow.\r\nArea of research interests: physical chemistry of complex-organized molecular and nanosized systems, including polymer-metal complexes; the surface of doped oxide semiconductors. He is an expert in structural, absorptive, catalytic and photocatalytic properties, in structural organization and dynamic features of ionic liquids, in magnetic interactions between paramagnetic centers. The author or co-author of 3 books, over 200 articles and reviews in scientific journals and books. He is an actual member of the International EPR/ESR Society, European Society on Quantum Solar Energy Conversion, Moscow House of Scientists, of the Board of Moscow Physical Society.",institutionString:null,institution:{name:"Semenov Institute of Chemical Physics",country:{name:"Russia"}}},{id:"62389",title:"PhD.",name:"Ali Demir",middleName:null,surname:"Sezer",slug:"ali-demir-sezer",fullName:"Ali Demir Sezer",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/62389/images/3413_n.jpg",biography:"Dr. Ali Demir Sezer has a Ph.D. from Pharmaceutical Biotechnology at the Faculty of Pharmacy, University of Marmara (Turkey). He is the member of many Pharmaceutical Associations and acts as a reviewer of scientific journals and European projects under different research areas such as: drug delivery systems, nanotechnology and pharmaceutical biotechnology. Dr. Sezer is the author of many scientific publications in peer-reviewed journals and poster communications. Focus of his research activity is drug delivery, physico-chemical characterization and biological evaluation of biopolymers micro and nanoparticles as modified drug delivery system, and colloidal drug carriers (liposomes, nanoparticles etc.).",institutionString:null,institution:{name:"Marmara University",country:{name:"Turkey"}}},{id:"61051",title:"Prof.",name:"Andrea",middleName:null,surname:"Natale",slug:"andrea-natale",fullName:"Andrea Natale",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:null},{id:"100762",title:"Prof.",name:"Andrea",middleName:null,surname:"Natale",slug:"andrea-natale",fullName:"Andrea Natale",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"St David's Medical Center",country:{name:"United States of America"}}},{id:"107416",title:"Dr.",name:"Andrea",middleName:null,surname:"Natale",slug:"andrea-natale",fullName:"Andrea Natale",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"Texas Cardiac Arrhythmia",country:{name:"United States of America"}}},{id:"64434",title:"Dr.",name:"Angkoon",middleName:null,surname:"Phinyomark",slug:"angkoon-phinyomark",fullName:"Angkoon Phinyomark",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/64434/images/2619_n.jpg",biography:"My name is Angkoon Phinyomark. I received a B.Eng. degree in Computer Engineering with First Class Honors in 2008 from Prince of Songkla University, Songkhla, Thailand, where I received a Ph.D. degree in Electrical Engineering. My research interests are primarily in the area of biomedical signal processing and classification notably EMG (electromyography signal), EOG (electrooculography signal), and EEG (electroencephalography signal), image analysis notably breast cancer analysis and optical coherence tomography, and rehabilitation engineering. I became a student member of IEEE in 2008. During October 2011-March 2012, I had worked at School of Computer Science and Electronic Engineering, University of Essex, Colchester, Essex, United Kingdom. In addition, during a B.Eng. I had been a visiting research student at Faculty of Computer Science, University of Murcia, Murcia, Spain for three months.\n\nI have published over 40 papers during 5 years in refereed journals, books, and conference proceedings in the areas of electro-physiological signals processing and classification, notably EMG and EOG signals, fractal analysis, wavelet analysis, texture analysis, feature extraction and machine learning algorithms, and assistive and rehabilitative devices. I have several computer programming language certificates, i.e. Sun Certified Programmer for the Java 2 Platform 1.4 (SCJP), Microsoft Certified Professional Developer, Web Developer (MCPD), Microsoft Certified Technology Specialist, .NET Framework 2.0 Web (MCTS). I am a Reviewer for several refereed journals and international conferences, such as IEEE Transactions on Biomedical Engineering, IEEE Transactions on Industrial Electronics, Optic Letters, Measurement Science Review, and also a member of the International Advisory Committee for 2012 IEEE Business Engineering and Industrial Applications and 2012 IEEE Symposium on Business, Engineering and Industrial Applications.",institutionString:null,institution:{name:"Joseph Fourier University",country:{name:"France"}}},{id:"55578",title:"Dr.",name:"Antonio",middleName:null,surname:"Jurado-Navas",slug:"antonio-jurado-navas",fullName:"Antonio Jurado-Navas",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/55578/images/4574_n.png",biography:"Antonio Jurado-Navas received the M.S. degree (2002) and the Ph.D. degree (2009) in Telecommunication Engineering, both from the University of Málaga (Spain). He first worked as a consultant at Vodafone-Spain. From 2004 to 2011, he was a Research Assistant with the Communications Engineering Department at the University of Málaga. In 2011, he became an Assistant Professor in the same department. From 2012 to 2015, he was with Ericsson Spain, where he was working on geo-location\ntools for third generation mobile networks. Since 2015, he is a Marie-Curie fellow at the Denmark Technical University. His current research interests include the areas of mobile communication systems and channel modeling in addition to atmospheric optical communications, adaptive optics and statistics",institutionString:null,institution:{name:"University of Malaga",country:{name:"Spain"}}}],filtersByRegion:[{group:"region",caption:"North America",value:1,count:5766},{group:"region",caption:"Middle and South America",value:2,count:5228},{group:"region",caption:"Africa",value:3,count:1717},{group:"region",caption:"Asia",value:4,count:10370},{group:"region",caption:"Australia and Oceania",value:5,count:897},{group:"region",caption:"Europe",value:6,count:15791}],offset:12,limit:12,total:118192},chapterEmbeded:{data:{}},editorApplication:{success:null,errors:{}},ofsBooks:{filterParams:{sort:"dateEndSecondStepPublish"},books:[{type:"book",id:"10176",title:"Microgrids and Local Energy Systems",subtitle:null,isOpenForSubmission:!0,hash:"c32b4a5351a88f263074b0d0ca813a9c",slug:null,bookSignature:"Prof. Nick Jenkins",coverURL:"https://cdn.intechopen.com/books/images_new/10176.jpg",editedByType:null,editors:[{id:"55219",title:"Prof.",name:"Nick",surname:"Jenkins",slug:"nick-jenkins",fullName:"Nick Jenkins"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10231",title:"Proton Therapy",subtitle:null,isOpenForSubmission:!0,hash:"f4a9009287953c8d1d89f0fa9b7597b0",slug:null,bookSignature:"",coverURL:"https://cdn.intechopen.com/books/images_new/10231.jpg",editedByType:null,editors:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10543",title:"Psychology and Patho-physiological Outcomes of Eating",subtitle:null,isOpenForSubmission:!0,hash:"2464b5fb6a39df380e935096743410a0",slug:null,bookSignature:"Dr. Akikazu Takada and Dr. Hubertus Himmerich",coverURL:"https://cdn.intechopen.com/books/images_new/10543.jpg",editedByType:null,editors:[{id:"248459",title:"Dr.",name:"Akikazu",surname:"Takada",slug:"akikazu-takada",fullName:"Akikazu Takada"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"9659",title:"Fibroblasts - Advances in Cancer, Autoimmunity and Inflammation",subtitle:null,isOpenForSubmission:!0,hash:"926fa6446f6befbd363fc74971a56de2",slug:null,bookSignature:"Ph.D. Mojca Frank Bertoncelj and Ms. Katja Lakota",coverURL:"https://cdn.intechopen.com/books/images_new/9659.jpg",editedByType:null,editors:[{id:"328755",title:"Ph.D.",name:"Mojca",surname:"Frank Bertoncelj",slug:"mojca-frank-bertoncelj",fullName:"Mojca Frank Bertoncelj"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10652",title:"Visual Object Tracking",subtitle:null,isOpenForSubmission:!0,hash:"96f3ee634a7ba49fa195e50475412af4",slug:null,bookSignature:"",coverURL:"https://cdn.intechopen.com/books/images_new/10652.jpg",editedByType:null,editors:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10653",title:"Optimization Algorithms",subtitle:null,isOpenForSubmission:!0,hash:"753812dbb9a6f6b57645431063114f6c",slug:null,bookSignature:"",coverURL:"https://cdn.intechopen.com/books/images_new/10653.jpg",editedByType:null,editors:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10655",title:"Motion Planning",subtitle:null,isOpenForSubmission:!0,hash:"809b5e290cf2dade9e7e0a5ae0ef3df0",slug:null,bookSignature:"",coverURL:"https://cdn.intechopen.com/books/images_new/10655.jpg",editedByType:null,editors:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10657",title:"Service Robots",subtitle:null,isOpenForSubmission:!0,hash:"5f81b9eea6eb3f9af984031b7af35588",slug:null,bookSignature:"",coverURL:"https://cdn.intechopen.com/books/images_new/10657.jpg",editedByType:null,editors:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10662",title:"Pedagogy",subtitle:null,isOpenForSubmission:!0,hash:"c858e1c6fb878d3b895acbacec624576",slug:null,bookSignature:"",coverURL:"https://cdn.intechopen.com/books/images_new/10662.jpg",editedByType:null,editors:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10673",title:"The Psychology of Trust",subtitle:null,isOpenForSubmission:!0,hash:"1f6cac41fd145f718ac0866264499cc8",slug:null,bookSignature:"",coverURL:"https://cdn.intechopen.com/books/images_new/10673.jpg",editedByType:null,editors:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10675",title:"Hydrostatics",subtitle:null,isOpenForSubmission:!0,hash:"c86c2fa9f835d4ad5e7efd8b01921866",slug:null,bookSignature:"",coverURL:"https://cdn.intechopen.com/books/images_new/10675.jpg",editedByType:null,editors:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10677",title:"Topology",subtitle:null,isOpenForSubmission:!0,hash:"85eac84b173d785f989522397616124e",slug:null,bookSignature:"",coverURL:"https://cdn.intechopen.com/books/images_new/10677.jpg",editedByType:null,editors:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}}],filtersByTopic:[{group:"topic",caption:"Agricultural and Biological Sciences",value:5,count:16},{group:"topic",caption:"Biochemistry, Genetics and Molecular Biology",value:6,count:4},{group:"topic",caption:"Business, Management and Economics",value:7,count:2},{group:"topic",caption:"Chemistry",value:8,count:8},{group:"topic",caption:"Computer and Information Science",value:9,count:6},{group:"topic",caption:"Earth and Planetary Sciences",value:10,count:7},{group:"topic",caption:"Engineering",value:11,count:19},{group:"topic",caption:"Environmental Sciences",value:12,count:2},{group:"topic",caption:"Immunology and Microbiology",value:13,count:3},{group:"topic",caption:"Materials Science",value:14,count:5},{group:"topic",caption:"Mathematics",value:15,count:1},{group:"topic",caption:"Medicine",value:16,count:24},{group:"topic",caption:"Neuroscience",value:18,count:1},{group:"topic",caption:"Pharmacology, Toxicology and Pharmaceutical Science",value:19,count:3},{group:"topic",caption:"Physics",value:20,count:3},{group:"topic",caption:"Psychology",value:21,count:4},{group:"topic",caption:"Robotics",value:22,count:1},{group:"topic",caption:"Social Sciences",value:23,count:3},{group:"topic",caption:"Technology",value:24,count:1},{group:"topic",caption:"Veterinary Medicine and Science",value:25,count:1}],offset:12,limit:12,total:195},popularBooks:{featuredBooks:[{type:"book",id:"9385",title:"Renewable Energy",subtitle:"Technologies and Applications",isOpenForSubmission:!1,hash:"a6b446d19166f17f313008e6c056f3d8",slug:"renewable-energy-technologies-and-applications",bookSignature:"Tolga Taner, Archana Tiwari and Taha Selim Ustun",coverURL:"https://cdn.intechopen.com/books/images_new/9385.jpg",editors:[{id:"197240",title:"Associate Prof.",name:"Tolga",middleName:null,surname:"Taner",slug:"tolga-taner",fullName:"Tolga Taner"}],equalEditorOne:{id:"186791",title:"Dr.",name:"Archana",middleName:null,surname:"Tiwari",slug:"archana-tiwari",fullName:"Archana Tiwari",profilePictureURL:"https://mts.intechopen.com/storage/users/186791/images/system/186791.jpg",biography:"Dr. Archana Tiwari is Associate Professor at Amity University, India. Her research interests include renewable sources of energy from microalgae and further utilizing the residual biomass for the generation of value-added products, bioremediation through microalgae and microbial consortium, antioxidative enzymes and stress, and nutraceuticals from microalgae. She has been working on algal biotechnology for the last two decades. She has published her research in many international journals and has authored many books and chapters with renowned publishing houses. She has also delivered talks as an invited speaker at many national and international conferences. Dr. Tiwari is the recipient of several awards including Researcher of the Year and Distinguished Scientist.",institutionString:"Amity University",position:null,outsideEditionCount:0,totalCites:0,totalAuthoredChapters:"3",totalChapterViews:"0",totalEditedBooks:"1",institution:{name:"Amity University",institutionURL:null,country:{name:"India"}}},equalEditorTwo:{id:"197609",title:"Prof.",name:"Taha Selim",middleName:null,surname:"Ustun",slug:"taha-selim-ustun",fullName:"Taha Selim Ustun",profilePictureURL:"https://mts.intechopen.com/storage/users/197609/images/system/197609.jpeg",biography:"Dr. Taha Selim Ustun received a Ph.D. in Electrical Engineering from Victoria University, Melbourne, Australia. He is a researcher with the Fukushima Renewable Energy Institute, AIST (FREA), where he leads the Smart Grid Cybersecurity Laboratory. Prior to that, he was a faculty member with the School of Electrical and Computer Engineering, Carnegie Mellon University, Pittsburgh, PA, USA. His current research interests include power systems protection, communication in power networks, distributed generation, microgrids, electric vehicle integration, and cybersecurity in smart grids. He serves on the editorial boards of IEEE Access, IEEE Transactions on Industrial Informatics, Energies, Electronics, Electricity, World Electric Vehicle and Information journals. Dr. Ustun is a member of the IEEE 2004 and 2800, IEC Renewable Energy Management WG 8, and IEC TC 57 WG17. He has been invited to run specialist courses in Africa, India, and China. He has delivered talks for the Qatar Foundation, the World Energy Council, the Waterloo Global Science Initiative, and the European Union Energy Initiative (EUEI). His research has attracted funding from prestigious programs in Japan, Australia, the European Union, and North America.",institutionString:"Fukushima Renewable Energy Institute, AIST (FREA)",position:null,outsideEditionCount:0,totalCites:0,totalAuthoredChapters:"1",totalChapterViews:"0",totalEditedBooks:"0",institution:{name:"National Institute of Advanced Industrial Science and Technology",institutionURL:null,country:{name:"Japan"}}},equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10065",title:"Wavelet Theory",subtitle:null,isOpenForSubmission:!1,hash:"d8868e332169597ba2182d9b004d60de",slug:"wavelet-theory",bookSignature:"Somayeh Mohammady",coverURL:"https://cdn.intechopen.com/books/images_new/10065.jpg",editors:[{id:"109280",title:"Dr.",name:"Somayeh",middleName:null,surname:"Mohammady",slug:"somayeh-mohammady",fullName:"Somayeh Mohammady"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9644",title:"Glaciers and the Polar Environment",subtitle:null,isOpenForSubmission:!1,hash:"e8cfdc161794e3753ced54e6ff30873b",slug:"glaciers-and-the-polar-environment",bookSignature:"Masaki Kanao, Danilo Godone and Niccolò Dematteis",coverURL:"https://cdn.intechopen.com/books/images_new/9644.jpg",editors:[{id:"51959",title:"Dr.",name:"Masaki",middleName:null,surname:"Kanao",slug:"masaki-kanao",fullName:"Masaki Kanao"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"8985",title:"Natural Resources Management and Biological Sciences",subtitle:null,isOpenForSubmission:!1,hash:"5c2e219a6c021a40b5a20c041dea88c4",slug:"natural-resources-management-and-biological-sciences",bookSignature:"Edward R. Rhodes and Humood Naser",coverURL:"https://cdn.intechopen.com/books/images_new/8985.jpg",editors:[{id:"280886",title:"Prof.",name:"Edward R",middleName:null,surname:"Rhodes",slug:"edward-r-rhodes",fullName:"Edward R Rhodes"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9671",title:"Macrophages",subtitle:null,isOpenForSubmission:!1,hash:"03b00fdc5f24b71d1ecdfd75076bfde6",slug:"macrophages",bookSignature:"Hridayesh Prakash",coverURL:"https://cdn.intechopen.com/books/images_new/9671.jpg",editors:[{id:"287184",title:"Dr.",name:"Hridayesh",middleName:null,surname:"Prakash",slug:"hridayesh-prakash",fullName:"Hridayesh Prakash"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9313",title:"Clay Science and Technology",subtitle:null,isOpenForSubmission:!1,hash:"6fa7e70396ff10620e032bb6cfa6fb72",slug:"clay-science-and-technology",bookSignature:"Gustavo Morari Do Nascimento",coverURL:"https://cdn.intechopen.com/books/images_new/9313.jpg",editors:[{id:"7153",title:"Prof.",name:"Gustavo",middleName:null,surname:"Morari Do Nascimento",slug:"gustavo-morari-do-nascimento",fullName:"Gustavo Morari Do Nascimento"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9888",title:"Nuclear Power Plants",subtitle:"The Processes from the Cradle to the Grave",isOpenForSubmission:!1,hash:"c2c8773e586f62155ab8221ebb72a849",slug:"nuclear-power-plants-the-processes-from-the-cradle-to-the-grave",bookSignature:"Nasser Awwad",coverURL:"https://cdn.intechopen.com/books/images_new/9888.jpg",editors:[{id:"145209",title:"Prof.",name:"Nasser",middleName:"S",surname:"Awwad",slug:"nasser-awwad",fullName:"Nasser Awwad"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9027",title:"Human Blood Group Systems and Haemoglobinopathies",subtitle:null,isOpenForSubmission:!1,hash:"d00d8e40b11cfb2547d1122866531c7e",slug:"human-blood-group-systems-and-haemoglobinopathies",bookSignature:"Osaro Erhabor and Anjana Munshi",coverURL:"https://cdn.intechopen.com/books/images_new/9027.jpg",editors:[{id:"35140",title:null,name:"Osaro",middleName:null,surname:"Erhabor",slug:"osaro-erhabor",fullName:"Osaro Erhabor"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"7841",title:"New Insights Into Metabolic Syndrome",subtitle:null,isOpenForSubmission:!1,hash:"ef5accfac9772b9e2c9eff884f085510",slug:"new-insights-into-metabolic-syndrome",bookSignature:"Akikazu Takada",coverURL:"https://cdn.intechopen.com/books/images_new/7841.jpg",editors:[{id:"248459",title:"Dr.",name:"Akikazu",middleName:null,surname:"Takada",slug:"akikazu-takada",fullName:"Akikazu Takada"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"8558",title:"Aerodynamics",subtitle:null,isOpenForSubmission:!1,hash:"db7263fc198dfb539073ba0260a7f1aa",slug:"aerodynamics",bookSignature:"Mofid Gorji-Bandpy and Aly-Mousaad Aly",coverURL:"https://cdn.intechopen.com/books/images_new/8558.jpg",editors:[{id:"35542",title:"Prof.",name:"Mofid",middleName:null,surname:"Gorji-Bandpy",slug:"mofid-gorji-bandpy",fullName:"Mofid Gorji-Bandpy"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"7847",title:"Medical Toxicology",subtitle:null,isOpenForSubmission:!1,hash:"db9b65bea093de17a0855a1b27046247",slug:"medical-toxicology",bookSignature:"Pınar Erkekoglu and Tomohisa Ogawa",coverURL:"https://cdn.intechopen.com/books/images_new/7847.jpg",editors:[{id:"109978",title:"Prof.",name:"Pınar",middleName:null,surname:"Erkekoglu",slug:"pinar-erkekoglu",fullName:"Pınar Erkekoglu"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10432",title:"Casting Processes and Modelling of Metallic Materials",subtitle:null,isOpenForSubmission:!1,hash:"2c5c9df938666bf5d1797727db203a6d",slug:"casting-processes-and-modelling-of-metallic-materials",bookSignature:"Zakaria Abdallah and Nada Aldoumani",coverURL:"https://cdn.intechopen.com/books/images_new/10432.jpg",editors:[{id:"201670",title:"Dr.",name:"Zak",middleName:null,surname:"Abdallah",slug:"zak-abdallah",fullName:"Zak Abdallah"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}}],offset:12,limit:12,total:5240},hotBookTopics:{hotBooks:[],offset:0,limit:12,total:null},publish:{},publishingProposal:{success:null,errors:{}},books:{featuredBooks:[{type:"book",id:"10065",title:"Wavelet Theory",subtitle:null,isOpenForSubmission:!1,hash:"d8868e332169597ba2182d9b004d60de",slug:"wavelet-theory",bookSignature:"Somayeh Mohammady",coverURL:"https://cdn.intechopen.com/books/images_new/10065.jpg",editors:[{id:"109280",title:"Dr.",name:"Somayeh",middleName:null,surname:"Mohammady",slug:"somayeh-mohammady",fullName:"Somayeh Mohammady"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9644",title:"Glaciers and the Polar Environment",subtitle:null,isOpenForSubmission:!1,hash:"e8cfdc161794e3753ced54e6ff30873b",slug:"glaciers-and-the-polar-environment",bookSignature:"Masaki Kanao, Danilo Godone and Niccolò Dematteis",coverURL:"https://cdn.intechopen.com/books/images_new/9644.jpg",editors:[{id:"51959",title:"Dr.",name:"Masaki",middleName:null,surname:"Kanao",slug:"masaki-kanao",fullName:"Masaki Kanao"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9385",title:"Renewable Energy",subtitle:"Technologies and Applications",isOpenForSubmission:!1,hash:"a6b446d19166f17f313008e6c056f3d8",slug:"renewable-energy-technologies-and-applications",bookSignature:"Tolga Taner, Archana Tiwari and Taha Selim Ustun",coverURL:"https://cdn.intechopen.com/books/images_new/9385.jpg",editors:[{id:"197240",title:"Associate Prof.",name:"Tolga",middleName:null,surname:"Taner",slug:"tolga-taner",fullName:"Tolga Taner"}],equalEditorOne:{id:"186791",title:"Dr.",name:"Archana",middleName:null,surname:"Tiwari",slug:"archana-tiwari",fullName:"Archana Tiwari",profilePictureURL:"https://mts.intechopen.com/storage/users/186791/images/system/186791.jpg",biography:"Dr. Archana Tiwari is Associate Professor at Amity University, India. Her research interests include renewable sources of energy from microalgae and further utilizing the residual biomass for the generation of value-added products, bioremediation through microalgae and microbial consortium, antioxidative enzymes and stress, and nutraceuticals from microalgae. She has been working on algal biotechnology for the last two decades. She has published her research in many international journals and has authored many books and chapters with renowned publishing houses. She has also delivered talks as an invited speaker at many national and international conferences. Dr. Tiwari is the recipient of several awards including Researcher of the Year and Distinguished Scientist.",institutionString:"Amity University",position:null,outsideEditionCount:0,totalCites:0,totalAuthoredChapters:"3",totalChapterViews:"0",totalEditedBooks:"1",institution:{name:"Amity University",institutionURL:null,country:{name:"India"}}},equalEditorTwo:{id:"197609",title:"Prof.",name:"Taha Selim",middleName:null,surname:"Ustun",slug:"taha-selim-ustun",fullName:"Taha Selim Ustun",profilePictureURL:"https://mts.intechopen.com/storage/users/197609/images/system/197609.jpeg",biography:"Dr. Taha Selim Ustun received a Ph.D. in Electrical Engineering from Victoria University, Melbourne, Australia. He is a researcher with the Fukushima Renewable Energy Institute, AIST (FREA), where he leads the Smart Grid Cybersecurity Laboratory. Prior to that, he was a faculty member with the School of Electrical and Computer Engineering, Carnegie Mellon University, Pittsburgh, PA, USA. His current research interests include power systems protection, communication in power networks, distributed generation, microgrids, electric vehicle integration, and cybersecurity in smart grids. He serves on the editorial boards of IEEE Access, IEEE Transactions on Industrial Informatics, Energies, Electronics, Electricity, World Electric Vehicle and Information journals. Dr. Ustun is a member of the IEEE 2004 and 2800, IEC Renewable Energy Management WG 8, and IEC TC 57 WG17. He has been invited to run specialist courses in Africa, India, and China. He has delivered talks for the Qatar Foundation, the World Energy Council, the Waterloo Global Science Initiative, and the European Union Energy Initiative (EUEI). His research has attracted funding from prestigious programs in Japan, Australia, the European Union, and North America.",institutionString:"Fukushima Renewable Energy Institute, AIST (FREA)",position:null,outsideEditionCount:0,totalCites:0,totalAuthoredChapters:"1",totalChapterViews:"0",totalEditedBooks:"0",institution:{name:"National Institute of Advanced Industrial Science and Technology",institutionURL:null,country:{name:"Japan"}}},equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"8985",title:"Natural Resources Management and Biological Sciences",subtitle:null,isOpenForSubmission:!1,hash:"5c2e219a6c021a40b5a20c041dea88c4",slug:"natural-resources-management-and-biological-sciences",bookSignature:"Edward R. Rhodes and Humood Naser",coverURL:"https://cdn.intechopen.com/books/images_new/8985.jpg",editors:[{id:"280886",title:"Prof.",name:"Edward R",middleName:null,surname:"Rhodes",slug:"edward-r-rhodes",fullName:"Edward R Rhodes"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9671",title:"Macrophages",subtitle:null,isOpenForSubmission:!1,hash:"03b00fdc5f24b71d1ecdfd75076bfde6",slug:"macrophages",bookSignature:"Hridayesh Prakash",coverURL:"https://cdn.intechopen.com/books/images_new/9671.jpg",editors:[{id:"287184",title:"Dr.",name:"Hridayesh",middleName:null,surname:"Prakash",slug:"hridayesh-prakash",fullName:"Hridayesh Prakash"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9313",title:"Clay Science and Technology",subtitle:null,isOpenForSubmission:!1,hash:"6fa7e70396ff10620e032bb6cfa6fb72",slug:"clay-science-and-technology",bookSignature:"Gustavo Morari Do Nascimento",coverURL:"https://cdn.intechopen.com/books/images_new/9313.jpg",editors:[{id:"7153",title:"Prof.",name:"Gustavo",middleName:null,surname:"Morari Do Nascimento",slug:"gustavo-morari-do-nascimento",fullName:"Gustavo Morari Do Nascimento"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9888",title:"Nuclear Power Plants",subtitle:"The Processes from the Cradle to the Grave",isOpenForSubmission:!1,hash:"c2c8773e586f62155ab8221ebb72a849",slug:"nuclear-power-plants-the-processes-from-the-cradle-to-the-grave",bookSignature:"Nasser Awwad",coverURL:"https://cdn.intechopen.com/books/images_new/9888.jpg",editors:[{id:"145209",title:"Prof.",name:"Nasser",middleName:"S",surname:"Awwad",slug:"nasser-awwad",fullName:"Nasser Awwad"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9027",title:"Human Blood Group Systems and Haemoglobinopathies",subtitle:null,isOpenForSubmission:!1,hash:"d00d8e40b11cfb2547d1122866531c7e",slug:"human-blood-group-systems-and-haemoglobinopathies",bookSignature:"Osaro Erhabor and Anjana Munshi",coverURL:"https://cdn.intechopen.com/books/images_new/9027.jpg",editors:[{id:"35140",title:null,name:"Osaro",middleName:null,surname:"Erhabor",slug:"osaro-erhabor",fullName:"Osaro Erhabor"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10432",title:"Casting Processes and Modelling of Metallic Materials",subtitle:null,isOpenForSubmission:!1,hash:"2c5c9df938666bf5d1797727db203a6d",slug:"casting-processes-and-modelling-of-metallic-materials",bookSignature:"Zakaria Abdallah and Nada Aldoumani",coverURL:"https://cdn.intechopen.com/books/images_new/10432.jpg",editors:[{id:"201670",title:"Dr.",name:"Zak",middleName:null,surname:"Abdallah",slug:"zak-abdallah",fullName:"Zak Abdallah"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"7841",title:"New Insights Into Metabolic Syndrome",subtitle:null,isOpenForSubmission:!1,hash:"ef5accfac9772b9e2c9eff884f085510",slug:"new-insights-into-metabolic-syndrome",bookSignature:"Akikazu Takada",coverURL:"https://cdn.intechopen.com/books/images_new/7841.jpg",editors:[{id:"248459",title:"Dr.",name:"Akikazu",middleName:null,surname:"Takada",slug:"akikazu-takada",fullName:"Akikazu Takada"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}}],latestBooks:[{type:"book",id:"9243",title:"Coastal Environments",subtitle:null,isOpenForSubmission:!1,hash:"8e05e5f631e935eef366980f2e28295d",slug:"coastal-environments",bookSignature:"Yuanzhi Zhang and X. San Liang",coverURL:"https://cdn.intechopen.com/books/images_new/9243.jpg",editedByType:"Edited by",editors:[{id:"77597",title:"Prof.",name:"Yuanzhi",middleName:null,surname:"Zhang",slug:"yuanzhi-zhang",fullName:"Yuanzhi Zhang"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"9521",title:"Antimicrobial Resistance",subtitle:"A One Health Perspective",isOpenForSubmission:!1,hash:"30949e78832e1afba5606634b52056ab",slug:"antimicrobial-resistance-a-one-health-perspective",bookSignature:"Mihai Mareș, Swee Hua Erin Lim, Kok-Song Lai and Romeo-Teodor Cristina",coverURL:"https://cdn.intechopen.com/books/images_new/9521.jpg",editedByType:"Edited by",editors:[{id:"88785",title:"Prof.",name:"Mihai",middleName:null,surname:"Mares",slug:"mihai-mares",fullName:"Mihai Mares"}],equalEditorOne:{id:"190224",title:"Dr.",name:"Swee Hua Erin",middleName:null,surname:"Lim",slug:"swee-hua-erin-lim",fullName:"Swee Hua Erin Lim",profilePictureURL:"https://mts.intechopen.com/storage/users/190224/images/system/190224.png",biography:"Dr. Erin Lim is presently working as an Assistant Professor in the Division of Health Sciences, Abu Dhabi Women\\'s College, Higher Colleges of Technology in Abu Dhabi, United Arab Emirates and is affiliated as an Associate Professor to Perdana University-Royal College of Surgeons in Ireland, Selangor, Malaysia. She obtained her Ph.D. from Universiti Putra Malaysia in 2010 with a National Science Fellowship awarded from the Ministry of Science, Technology and Innovation Malaysia and has been actively involved in research ever since. Her main research interests include analysis of carriage and transmission of multidrug resistant bacteria in non-conventional settings, besides an interest in natural products for antimicrobial testing. She is heavily involved in the elucidation of mechanisms of reversal of resistance in bacteria in addition to investigating the immunological analyses of diseases, development of vaccination and treatment models in animals. She hopes her work will support the discovery of therapeutics in the clinical setting and assist in the combat against the burden of antibiotic resistance.",institutionString:"Abu Dhabi Women’s College",position:null,outsideEditionCount:0,totalCites:0,totalAuthoredChapters:"3",totalChapterViews:"0",totalEditedBooks:"0",institution:{name:"Perdana University",institutionURL:null,country:{name:"Malaysia"}}},equalEditorTwo:{id:"221544",title:"Dr.",name:"Kok-Song",middleName:null,surname:"Lai",slug:"kok-song-lai",fullName:"Kok-Song Lai",profilePictureURL:"https://mts.intechopen.com/storage/users/221544/images/system/221544.jpeg",biography:"Dr. Lai Kok Song is an Assistant Professor in the Division of Health Sciences, Abu Dhabi Women\\'s College, Higher Colleges of Technology in Abu Dhabi, United Arab Emirates. He obtained his Ph.D. in Biological Sciences from Nara Institute of Science and Technology, Japan in 2012. Prior to his academic appointment, Dr. Lai worked as a Senior Scientist at the Ministry of Science, Technology and Innovation, Malaysia. His current research areas include antimicrobial resistance and plant-pathogen interaction. His particular interest lies in the study of the antimicrobial mechanism via membrane disruption of essential oils against multi-drug resistance bacteria through various biochemical, molecular and proteomic approaches. Ultimately, he hopes to uncover and determine novel biomarkers related to antibiotic resistance that can be developed into new therapeutic strategies.",institutionString:"Higher Colleges of Technology",position:null,outsideEditionCount:0,totalCites:0,totalAuthoredChapters:"8",totalChapterViews:"0",totalEditedBooks:"0",institution:{name:"Higher Colleges of Technology",institutionURL:null,country:{name:"United Arab Emirates"}}},equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"9560",title:"Creativity",subtitle:"A Force to Innovation",isOpenForSubmission:!1,hash:"58f740bc17807d5d88d647c525857b11",slug:"creativity-a-force-to-innovation",bookSignature:"Pooja Jain",coverURL:"https://cdn.intechopen.com/books/images_new/9560.jpg",editedByType:"Edited by",editors:[{id:"316765",title:"Dr.",name:"Pooja",middleName:null,surname:"Jain",slug:"pooja-jain",fullName:"Pooja Jain"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"9669",title:"Recent Advances in Rice Research",subtitle:null,isOpenForSubmission:!1,hash:"12b06cc73e89af1e104399321cc16a75",slug:"recent-advances-in-rice-research",bookSignature:"Mahmood-ur- Rahman Ansari",coverURL:"https://cdn.intechopen.com/books/images_new/9669.jpg",editedByType:"Edited by",editors:[{id:"185476",title:"Dr.",name:"Mahmood-Ur-",middleName:null,surname:"Rahman Ansari",slug:"mahmood-ur-rahman-ansari",fullName:"Mahmood-Ur- Rahman Ansari"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"9550",title:"Entrepreneurship",subtitle:"Contemporary Issues",isOpenForSubmission:!1,hash:"9b4ac1ee5b743abf6f88495452b1e5e7",slug:"entrepreneurship-contemporary-issues",bookSignature:"Mladen Turuk",coverURL:"https://cdn.intechopen.com/books/images_new/9550.jpg",editedByType:"Edited by",editors:[{id:"319755",title:"Prof.",name:"Mladen",middleName:null,surname:"Turuk",slug:"mladen-turuk",fullName:"Mladen Turuk"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10065",title:"Wavelet Theory",subtitle:null,isOpenForSubmission:!1,hash:"d8868e332169597ba2182d9b004d60de",slug:"wavelet-theory",bookSignature:"Somayeh Mohammady",coverURL:"https://cdn.intechopen.com/books/images_new/10065.jpg",editedByType:"Edited by",editors:[{id:"109280",title:"Dr.",name:"Somayeh",middleName:null,surname:"Mohammady",slug:"somayeh-mohammady",fullName:"Somayeh Mohammady"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"9313",title:"Clay Science and Technology",subtitle:null,isOpenForSubmission:!1,hash:"6fa7e70396ff10620e032bb6cfa6fb72",slug:"clay-science-and-technology",bookSignature:"Gustavo Morari Do Nascimento",coverURL:"https://cdn.intechopen.com/books/images_new/9313.jpg",editedByType:"Edited by",editors:[{id:"7153",title:"Prof.",name:"Gustavo",middleName:null,surname:"Morari Do Nascimento",slug:"gustavo-morari-do-nascimento",fullName:"Gustavo Morari Do Nascimento"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"9888",title:"Nuclear Power Plants",subtitle:"The Processes from the Cradle to the Grave",isOpenForSubmission:!1,hash:"c2c8773e586f62155ab8221ebb72a849",slug:"nuclear-power-plants-the-processes-from-the-cradle-to-the-grave",bookSignature:"Nasser Awwad",coverURL:"https://cdn.intechopen.com/books/images_new/9888.jpg",editedByType:"Edited by",editors:[{id:"145209",title:"Prof.",name:"Nasser",middleName:"S",surname:"Awwad",slug:"nasser-awwad",fullName:"Nasser Awwad"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"8098",title:"Resources of Water",subtitle:null,isOpenForSubmission:!1,hash:"d251652996624d932ef7b8ed62cf7cfc",slug:"resources-of-water",bookSignature:"Prathna Thanjavur Chandrasekaran, Muhammad Salik Javaid, Aftab Sadiq",coverURL:"https://cdn.intechopen.com/books/images_new/8098.jpg",editedByType:"Edited by",editors:[{id:"167917",title:"Dr.",name:"Prathna",middleName:null,surname:"Thanjavur Chandrasekaran",slug:"prathna-thanjavur-chandrasekaran",fullName:"Prathna Thanjavur Chandrasekaran"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"9644",title:"Glaciers and the Polar Environment",subtitle:null,isOpenForSubmission:!1,hash:"e8cfdc161794e3753ced54e6ff30873b",slug:"glaciers-and-the-polar-environment",bookSignature:"Masaki Kanao, Danilo Godone and Niccolò Dematteis",coverURL:"https://cdn.intechopen.com/books/images_new/9644.jpg",editedByType:"Edited by",editors:[{id:"51959",title:"Dr.",name:"Masaki",middleName:null,surname:"Kanao",slug:"masaki-kanao",fullName:"Masaki Kanao"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}}]},subject:{topic:{id:"1243",title:"Human Development",slug:"human-development",parent:{title:"Ontogeny",slug:"ontogeny"},numberOfBooks:1,numberOfAuthorsAndEditors:11,numberOfWosCitations:4,numberOfCrossrefCitations:8,numberOfDimensionsCitations:11,videoUrl:null,fallbackUrl:null,description:null},booksByTopicFilter:{topicSlug:"human-development",sort:"-publishedDate",limit:12,offset:0},booksByTopicCollection:[{type:"book",id:"1846",title:"Human Development",subtitle:"Different Perspectives",isOpenForSubmission:!1,hash:"08a36865ba2fe419b8c33b21b96b2647",slug:"human-development-different-perspectives",bookSignature:"Maria Lucia Seidl-de-Moura",coverURL:"https://cdn.intechopen.com/books/images_new/1846.jpg",editedByType:"Edited by",editors:[{id:"108479",title:"Dr.",name:"Maria Lucia",middleName:null,surname:"Seidl-De-Moura",slug:"maria-lucia-seidl-de-moura",fullName:"Maria Lucia Seidl-De-Moura"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}}],booksByTopicTotal:1,mostCitedChapters:[{id:"36951",doi:"10.5772/36474",title:"Human Development: The Role of Biology and Culture",slug:"human-development-the-role-of-biology-and-culture",totalDownloads:11165,totalCrossrefCites:2,totalDimensionsCites:4,book:{slug:"human-development-different-perspectives",title:"Human Development",fullTitle:"Human Development - Different Perspectives"},signatures:"Maria Lucia Seidl-de-Moura and Deise Maria Leal Fernandes Mendes",authors:[{id:"108479",title:"Dr.",name:"Maria Lucia",middleName:null,surname:"Seidl-De-Moura",slug:"maria-lucia-seidl-de-moura",fullName:"Maria Lucia Seidl-De-Moura"},{id:"108957",title:"Dr.",name:"Deise Maria",middleName:null,surname:"Leal Fernandes Mendes",slug:"deise-maria-leal-fernandes-mendes",fullName:"Deise Maria Leal Fernandes Mendes"}]},{id:"36952",doi:"10.5772/37595",title:"Inter-Functionality Between Mind, Biology and Culture: Some Epistemological Issues Concerning Human Psychological Development",slug:"interfunctionality-between-biology-culture-and-mind-some-epistemological-issues-concerning-human-psy",totalDownloads:2196,totalCrossrefCites:5,totalDimensionsCites:4,book:{slug:"human-development-different-perspectives",title:"Human Development",fullTitle:"Human Development - Different Perspectives"},signatures:"Arnulf Kolstad",authors:[{id:"113442",title:"Prof.",name:"Arnulf",middleName:null,surname:"Kolstad",slug:"arnulf-kolstad",fullName:"Arnulf Kolstad"}]},{id:"36955",doi:"10.5772/45788",title:"Does Environmental Degradation Affect Human Development and Sustainable Economic Development? Case of Pakistan",slug:"does-environmental-degradation-affect-human-development-and-sustainable-economic-development-case-of",totalDownloads:6793,totalCrossrefCites:1,totalDimensionsCites:3,book:{slug:"human-development-different-perspectives",title:"Human Development",fullTitle:"Human Development - Different Perspectives"},signatures:"Shaista Alam",authors:[{id:"116739",title:"Dr.",name:"Shaista",middleName:null,surname:"Alam",slug:"shaista-alam",fullName:"Shaista Alam"}]}],mostDownloadedChaptersLast30Days:[{id:"36952",title:"Inter-Functionality Between Mind, Biology and Culture: Some Epistemological Issues Concerning Human Psychological Development",slug:"interfunctionality-between-biology-culture-and-mind-some-epistemological-issues-concerning-human-psy",totalDownloads:2199,totalCrossrefCites:5,totalDimensionsCites:4,book:{slug:"human-development-different-perspectives",title:"Human Development",fullTitle:"Human Development - Different Perspectives"},signatures:"Arnulf Kolstad",authors:[{id:"113442",title:"Prof.",name:"Arnulf",middleName:null,surname:"Kolstad",slug:"arnulf-kolstad",fullName:"Arnulf Kolstad"}]},{id:"36951",title:"Human Development: The Role of Biology and Culture",slug:"human-development-the-role-of-biology-and-culture",totalDownloads:11167,totalCrossrefCites:2,totalDimensionsCites:4,book:{slug:"human-development-different-perspectives",title:"Human Development",fullTitle:"Human Development - Different Perspectives"},signatures:"Maria Lucia Seidl-de-Moura and Deise Maria Leal Fernandes Mendes",authors:[{id:"108479",title:"Dr.",name:"Maria Lucia",middleName:null,surname:"Seidl-De-Moura",slug:"maria-lucia-seidl-de-moura",fullName:"Maria Lucia Seidl-De-Moura"},{id:"108957",title:"Dr.",name:"Deise Maria",middleName:null,surname:"Leal Fernandes Mendes",slug:"deise-maria-leal-fernandes-mendes",fullName:"Deise Maria Leal Fernandes Mendes"}]},{id:"36953",title:"Development of Bipedal and Quadrupedal Locomotion in Humans from a Dynamical Systems Perspective",slug:"development-of-bipedal-and-quadrupedal-locomotion-in-humans-from-a-dynamical-systems-perspective",totalDownloads:5681,totalCrossrefCites:0,totalDimensionsCites:0,book:{slug:"human-development-different-perspectives",title:"Human Development",fullTitle:"Human Development - Different Perspectives"},signatures:"Uner Tan",authors:[{id:"63626",title:"Prof.",name:"Uner",middleName:null,surname:"Tan",slug:"uner-tan",fullName:"Uner Tan"}]},{id:"36955",title:"Does Environmental Degradation Affect Human Development and Sustainable Economic Development? Case of Pakistan",slug:"does-environmental-degradation-affect-human-development-and-sustainable-economic-development-case-of",totalDownloads:6795,totalCrossrefCites:1,totalDimensionsCites:3,book:{slug:"human-development-different-perspectives",title:"Human Development",fullTitle:"Human Development - Different Perspectives"},signatures:"Shaista Alam",authors:[{id:"116739",title:"Dr.",name:"Shaista",middleName:null,surname:"Alam",slug:"shaista-alam",fullName:"Shaista Alam"}]},{id:"36956",title:"Food Insecurity and Nutritional Status in the Population of High Degree of Poverty in Northeast, Brazil",slug:"food-insecurity-and-nutritional-status-in-the-population-of-high-degree-of-poverty-in-northeast-braz",totalDownloads:1762,totalCrossrefCites:0,totalDimensionsCites:0,book:{slug:"human-development-different-perspectives",title:"Human Development",fullTitle:"Human Development - Different Perspectives"},signatures:"Juliana Souza Oliveira, Pedro Israel Cabral de Lira, Marilia de Carvalho Lima and Malaquias Batista Filho",authors:[{id:"118229",title:"Dr.",name:"Malaquias",middleName:null,surname:"Batista Filho",slug:"malaquias-batista-filho",fullName:"Malaquias Batista Filho"},{id:"119092",title:"Dr.",name:"Juliana",middleName:null,surname:"Souza Oliveira",slug:"juliana-souza-oliveira",fullName:"Juliana Souza Oliveira"},{id:"119093",title:"Dr.",name:"Pedro Israel",middleName:null,surname:"Cabral De Lira",slug:"pedro-israel-cabral-de-lira",fullName:"Pedro Israel Cabral De Lira"},{id:"150774",title:"Dr.",name:"Marília",middleName:null,surname:"De Carvalho Lima",slug:"marilia-de-carvalho-lima",fullName:"Marília De Carvalho Lima"}]},{id:"36954",title:"Human Development with Fractional Mobility",slug:"development-dynamics-from-different-positions-a-study-in-the-human-development",totalDownloads:1454,totalCrossrefCites:0,totalDimensionsCites:0,book:{slug:"human-development-different-perspectives",title:"Human Development",fullTitle:"Human Development - Different Perspectives"},signatures:"Atanu Sengupta and Abhijit Ghosh",authors:[{id:"117233",title:"Dr",name:null,middleName:null,surname:"Sengupta",slug:"sengupta",fullName:"Sengupta"}]}],onlineFirstChaptersFilter:{topicSlug:"human-development",limit:3,offset:0},onlineFirstChaptersCollection:[],onlineFirstChaptersTotal:0},preDownload:{success:null,errors:{}},aboutIntechopen:{},privacyPolicy:{},peerReviewing:{},howOpenAccessPublishingWithIntechopenWorks:{},sponsorshipBooks:{sponsorshipBooks:[{type:"book",id:"10176",title:"Microgrids and Local Energy Systems",subtitle:null,isOpenForSubmission:!0,hash:"c32b4a5351a88f263074b0d0ca813a9c",slug:null,bookSignature:"Prof. Nick Jenkins",coverURL:"https://cdn.intechopen.com/books/images_new/10176.jpg",editedByType:null,editors:[{id:"55219",title:"Prof.",name:"Nick",middleName:null,surname:"Jenkins",slug:"nick-jenkins",fullName:"Nick Jenkins"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}}],offset:8,limit:8,total:1},route:{name:"chapter.detail",path:"/books/different-aspects-of-beh-et-s-disease/beh-et-s-disease-and-pregnancy",hash:"",query:{},params:{book:"different-aspects-of-beh-et-s-disease",chapter:"beh-et-s-disease-and-pregnancy"},fullPath:"/books/different-aspects-of-beh-et-s-disease/beh-et-s-disease-and-pregnancy",meta:{},from:{name:null,path:"/",hash:"",query:{},params:{},fullPath:"/",meta:{}}}},function(){var e;(e=document.currentScript||document.scripts[document.scripts.length-1]).parentNode.removeChild(e)}()