The inhibition efficiency (IE) of imidazole and some of its derivatives (see Figure 7) against copper corrosion.
\r\n\tFrom the definition of Massive MIMO, the Book covers the important aspects of channel estimation, different efficiency parameters, and various practical deployment considerations. From the beginning, a very general, yet tractable, canonical system model with spatial channel correlation is required. This model is used to realistically assess the Spectral Efficiency and Energy Efficiency and is later extended to also include the impact of hardware impairments.
\r\n\r\n\tAs an overall framework, the authors and researchers who are working in the Area of Massive MIMO and 5G are expected to submit chapters covering these areas to give insight into research about MIMO.
",isbn:null,printIsbn:"979-953-307-X-X",pdfIsbn:null,doi:null,price:0,priceEur:0,priceUsd:0,slug:null,numberOfPages:0,isOpenForSubmission:!1,hash:"f6e96802bc79d6b8b0bab9ad24980cbc",bookSignature:"Dr. Sudhakar Radhakrishnan",publishedDate:null,coverURL:"https://cdn.intechopen.com/books/images_new/7638.jpg",keywords:"Multi Antenna Systems, Diversity, Space-time Codes, Rake Receiver, MIMO Wireless Communication, SVD, Equalising MIMO Systems, Predistortion, Beam Forming Principles, Increased Spectrum Efficiency, Interference Cancellation, Beam Former",numberOfDownloads:null,numberOfWosCitations:0,numberOfCrossrefCitations:0,numberOfDimensionsCitations:0,numberOfTotalCitations:0,isAvailableForWebshopOrdering:!0,dateEndFirstStepPublish:"October 18th 2019",dateEndSecondStepPublish:"March 6th 2020",dateEndThirdStepPublish:"May 5th 2020",dateEndFourthStepPublish:"July 24th 2020",dateEndFifthStepPublish:"September 22nd 2020",remainingDaysToSecondStep:"a year",secondStepPassed:!0,currentStepOfPublishingProcess:5,editedByType:null,kuFlag:!1,biosketch:null,coeditorOneBiosketch:null,coeditorTwoBiosketch:null,coeditorThreeBiosketch:null,coeditorFourBiosketch:null,coeditorFiveBiosketch:null,editors:[{id:"26327",title:"Dr.",name:"Sudhakar",middleName:null,surname:"Radhakrishnan",slug:"sudhakar-radhakrishnan",fullName:"Sudhakar Radhakrishnan",profilePictureURL:"https://mts.intechopen.com/storage/users/26327/images/system/26327.jpg",biography:"Dr. Sudhakar Radhakrishnan is a researcher in the field of Image processing and contributed a lot to the society. He is an editorial board member for 3 International journals namely International Journal of Computer Theory and Engineering, International Journal of Computer and Electrical Engineering and International Arab Journal of Information technology. He is currently an Associate editor of IEEE-Access a multidisciplinary Journal published by IEEE. He is a reviewer of 16 international journals namely IEEE Transactions on Systems, Man, and Cybernetics: Systems by IEEE, International Arab Journal of Information Technology coming from Zarqa University, International Journal of Computer and Electrical Engineering published by International Association of Computer Science and Information Technology Press (IACSIT),International Journal of Computer Theory and Engineering published by International Association of Computer Science and Information Technology Press (IACSIT), Journal of Electrical and Electronics Engineering Research, Iranian Journal of Electrical and Computer Engineering, Journal of Optical Engineering, Journal of Electronic Imaging, Imaging Science Journal, International Journal of Computational Science and Engineering (IJCSE), International journal of Image mining(IJIM), Int. J. of Biomedical Engineering and Technology (IJBET) , Journal for Image Analysis & Stereology from International Society for Stereology, ETRI journal from Korea,\tAEUE- International journal of Electronics and Communications and IET Image Processing. He wrote 2 books titled 'Research issues in Image compression using Wavelet variants” .'Practicing Signals and Systems Laboratory using MATLAB” and two Book chapters titled 'Wavelet based image compression” in book titled 'Computational Intelligence Techniques in Handling Image Processing and Pattern Recognition” 'Analysis of Hand Vein image s using hybrid techniques” in Hybrid Intelligence techniques for Image Analysis and Understanding”. He edited three books titled 'Effective video coding for Multimedia applications”, 'Applications of Digital Signal Processing through practical approach” 'Recent Advances in Image and Video Coding” Wavelet theory and its applications all published by IntechOpen.He has published 100 papers in international, national journals and conference proceedings. His areas of research include Digital Image Processing, Image Analysis, Wavelet Transforms, Communication Engineering, and Digital Signal Processing",institutionString:"Dr. Mahalingam College of Engineering and Technology",position:null,outsideEditionCount:0,totalCites:0,totalAuthoredChapters:"2",totalChapterViews:"0",totalEditedBooks:"5",institution:null}],coeditorOne:null,coeditorTwo:null,coeditorThree:null,coeditorFour:null,coeditorFive:null,topics:[{id:"11",title:"Engineering",slug:"engineering"}],chapters:null,productType:{id:"1",title:"Edited Volume",chapterContentType:"chapter",authoredCaption:"Edited by"},personalPublishingAssistant:{id:"280415",firstName:"Josip",lastName:"Knapic",middleName:null,title:"Mr.",imageUrl:"https://mts.intechopen.com/storage/users/280415/images/8050_n.jpg",email:"josip@intechopen.com",biography:"As an Author Service Manager my responsibilities include monitoring and facilitating all publishing activities for authors and editors. From chapter submission and review, to approval and revision, copy-editing and design, until final publication, I work closely with authors and editors to ensure a simple and easy publishing process. I maintain constant and effective communication with authors, editors and reviewers, which allows for a level of personal support that enables contributors to fully commit and concentrate on the chapters they are writing, editing, or reviewing. I assist authors in the preparation of their full chapter submissions and track important deadlines and ensure they are met. I help to coordinate internal processes such as linguistic review, and monitor the technical aspects of the process. As an ASM I am also involved in the acquisition of editors. Whether that be identifying an exceptional author and proposing an editorship collaboration, or contacting researchers who would like the opportunity to work with IntechOpen, I establish and help manage author and editor acquisition and contact."}},relatedBooks:[{type:"book",id:"112",title:"Effective Video Coding for Multimedia Applications",subtitle:null,isOpenForSubmission:!1,hash:"09a9826a6f8e7d58cf8516c609b4fa05",slug:"effective-video-coding-for-multimedia-applications",bookSignature:"Sudhakar Radhakrishnan",coverURL:"https://cdn.intechopen.com/books/images_new/112.jpg",editedByType:"Edited by",editors:[{id:"26327",title:"Dr.",name:"Sudhakar",surname:"Radhakrishnan",slug:"sudhakar-radhakrishnan",fullName:"Sudhakar Radhakrishnan"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"5364",title:"Recent Advances in Image and Video Coding",subtitle:null,isOpenForSubmission:!1,hash:"fda66fbfe658c4c51b5c45c7cd5f3f59",slug:"recent-advances-in-image-and-video-coding",bookSignature:"Sudhakar Radhakrishnan",coverURL:"https://cdn.intechopen.com/books/images_new/5364.jpg",editedByType:"Edited by",editors:[{id:"26327",title:"Dr.",name:"Sudhakar",surname:"Radhakrishnan",slug:"sudhakar-radhakrishnan",fullName:"Sudhakar Radhakrishnan"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"4655",title:"Applications of Digital Signal Processing through Practical Approach",subtitle:null,isOpenForSubmission:!1,hash:"b20308efd28e8a487949997c8d673fb8",slug:"applications-of-digital-signal-processing-through-practical-approach",bookSignature:"Sudhakar Radhakrishnan",coverURL:"https://cdn.intechopen.com/books/images_new/4655.jpg",editedByType:"Edited by",editors:[{id:"26327",title:"Dr.",name:"Sudhakar",surname:"Radhakrishnan",slug:"sudhakar-radhakrishnan",fullName:"Sudhakar Radhakrishnan"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"7623",title:"Coding Theory",subtitle:null,isOpenForSubmission:!1,hash:"db1156342e3a1a46ff74cad035a3886b",slug:"coding-theory",bookSignature:"Sudhakar Radhakrishnan and Muhammad Sarfraz",coverURL:"https://cdn.intechopen.com/books/images_new/7623.jpg",editedByType:"Edited by",editors:[{id:"26327",title:"Dr.",name:"Sudhakar",surname:"Radhakrishnan",slug:"sudhakar-radhakrishnan",fullName:"Sudhakar Radhakrishnan"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"6547",title:"Wavelet Theory and Its Applications",subtitle:null,isOpenForSubmission:!1,hash:"18c8eeba76232a47936f09f42fc739e6",slug:"wavelet-theory-and-its-applications",bookSignature:"Sudhakar Radhakrishnan",coverURL:"https://cdn.intechopen.com/books/images_new/6547.jpg",editedByType:"Edited by",editors:[{id:"26327",title:"Dr.",name:"Sudhakar",surname:"Radhakrishnan",slug:"sudhakar-radhakrishnan",fullName:"Sudhakar Radhakrishnan"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"1591",title:"Infrared Spectroscopy",subtitle:"Materials Science, Engineering and Technology",isOpenForSubmission:!1,hash:"99b4b7b71a8caeb693ed762b40b017f4",slug:"infrared-spectroscopy-materials-science-engineering-and-technology",bookSignature:"Theophile Theophanides",coverURL:"https://cdn.intechopen.com/books/images_new/1591.jpg",editedByType:"Edited by",editors:[{id:"37194",title:"Dr.",name:"Theophanides",surname:"Theophile",slug:"theophanides-theophile",fullName:"Theophanides Theophile"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"3092",title:"Anopheles mosquitoes",subtitle:"New insights into malaria vectors",isOpenForSubmission:!1,hash:"c9e622485316d5e296288bf24d2b0d64",slug:"anopheles-mosquitoes-new-insights-into-malaria-vectors",bookSignature:"Sylvie Manguin",coverURL:"https://cdn.intechopen.com/books/images_new/3092.jpg",editedByType:"Edited by",editors:[{id:"50017",title:"Prof.",name:"Sylvie",surname:"Manguin",slug:"sylvie-manguin",fullName:"Sylvie Manguin"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"3161",title:"Frontiers in Guided Wave Optics and Optoelectronics",subtitle:null,isOpenForSubmission:!1,hash:"deb44e9c99f82bbce1083abea743146c",slug:"frontiers-in-guided-wave-optics-and-optoelectronics",bookSignature:"Bishnu Pal",coverURL:"https://cdn.intechopen.com/books/images_new/3161.jpg",editedByType:"Edited by",editors:[{id:"4782",title:"Prof.",name:"Bishnu",surname:"Pal",slug:"bishnu-pal",fullName:"Bishnu Pal"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"72",title:"Ionic Liquids",subtitle:"Theory, Properties, New Approaches",isOpenForSubmission:!1,hash:"d94ffa3cfa10505e3b1d676d46fcd3f5",slug:"ionic-liquids-theory-properties-new-approaches",bookSignature:"Alexander Kokorin",coverURL:"https://cdn.intechopen.com/books/images_new/72.jpg",editedByType:"Edited by",editors:[{id:"19816",title:"Prof.",name:"Alexander",surname:"Kokorin",slug:"alexander-kokorin",fullName:"Alexander Kokorin"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"1373",title:"Ionic Liquids",subtitle:"Applications and Perspectives",isOpenForSubmission:!1,hash:"5e9ae5ae9167cde4b344e499a792c41c",slug:"ionic-liquids-applications-and-perspectives",bookSignature:"Alexander Kokorin",coverURL:"https://cdn.intechopen.com/books/images_new/1373.jpg",editedByType:"Edited by",editors:[{id:"19816",title:"Prof.",name:"Alexander",surname:"Kokorin",slug:"alexander-kokorin",fullName:"Alexander Kokorin"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}}]},chapter:{item:{type:"chapter",id:"60412",title:"Band Gap Modulated Tunnel FET",doi:"10.5772/intechopen.76098",slug:"band-gap-modulated-tunnel-fet",body:'Tunnel field effect transistor (TFET) is an asymmetrical gated p-i-n device. Unlike thermionic conduction in metal-oxide-semiconductor FETs (MOSFETs), its working principle is based on a band-to-band tunneling (BTBT) mechanism [1, 2]. This amendment results in a reduced subthreshold swing (SS), low off-state leakage currents, and less short-channel effects. Recently, numerous structural and material designs of TFETs have been proposed with an objective to achieve improvement in subthreshold swing (SS) and off current. A few of them are bandgap-engineered TFETs [3], graphene nanoribbon TFETs [4], gate-engineered TFET [5], and strained silicon-germanium TFETs [6]. Double-gate TFET [7], dual-material gate TFET [8], hetero-gate dielectric TFET [9], and heterojunction TFETs [10] have also been investigated for improved electrical parameters of TFET. Generally, TFETs have a very low current as compared to ITRS requirement. In order to get a high ON current, a high-k gate dielectrics are preferred. High-k gate dielectrics causes improved capacitive coupling between the gate and the source-channel tunnel junction, resulting in an increased current in TFET. Moreover, to decline the effective oxide thickness at the tunnel junction, high-k gate oxide is used so that the gate-tunneling current can be reduced. Actually, due to these reasons, the recent trend is to use high-k materials as a better replacement of the conventional SiO2 (silicon dioxide). On the other hand, it causes a significant ambipolar current. The gate-drain underlap structure in association with heterojunction can be adopted to diminish ambipolar current [2]. A silicon-germanium (SiGe) layer is used at the tunnel junction so that bandgap and tunnel width can be modulated. Electrical parameters have been investigated for various Ge-mole fractions.
Technology Computer Aided Design (TCAD) simulation is a complex iterative mathematical process, and hence various analytical models have been proposed in order to develop a better understanding of the physics-based principles of TFETs and obtain results not constrained by computational time [11]. A number of analytical models based on Poisson equation have been proposed in the study for different geometries [12, 13, 14]. In this chapter, a mole fraction-dependent model has been proposed and validated.
This chapter is organized as follows: first, the heterojunction gate-drain underlap tunnel is discussed, and in the second section, the electrical parameters of the heterojunction gate-drain underlap tunnel FET (UL-HTFET) is investigated with the help of TCAD simulation. The third section discusses the physics-based compact model and the validation of the model with simulated results. In the last section, the effect of temperature on the electrical parameters is investigated.
A 2-D structure of the proposed UL-HTFET is shown in Figure 1. Here, a p + source and n + drain with an intrinsic channel and a δp + Si1-xGex layer at the source-channel tunnel junction are present. The δp + layer can be replaced by a δn + layer too.
A 2-D geometry of the device (UL-HTFET).
The effect of germanium mole fraction on the UL-HTFET is investigated. Aluminum with work function (4.1 eV) is considered as the gate material. The proposed device spans across a total length of 100 nm with a length of the channel equal to 20 nm. The δp + Si1-xGex layer extends from the source-channel junction up to 1 nm into the channel under the gate. The various doping concentrations are used such as source, 1021 cm−3; drain, 5 × 1019 cm−3; δp + layer, 1018 cm−3; and intrinsic region, 1016 cm−3. In n-channel, the operation of TFET positive gate and drain voltages is applied with respect to the source. Here, voltage at the source is considered as the reference voltage.
The tunnel FET works on the principle of band-to-band tunneling. Here, SiGe layer is added at the channel near the source-channel junction to enhance the on-current.
Figure 2 shows the Ids-Vgs characteristics of the Si/Ge heterojunction UL-HTFET at different lengths of Lp. When the HTFET is turned on, it shows very high on-current due to the effective bandgap narrowing at the interface of source-channel junction. The Ids-Vgs curves are mainly dependent on n + −doped pocket length (Lp) as shown in Figure 2; as Lp gets longer, the effective area for tunneling width is extended for HTFET. However, the low off-state current in UL-HTFET (9.205 × 10−20 A/μm) when Lp is less than 2 nm, and this indicates that the ambipolar-tunneling effect at drain channel is suppressed. When Lp is 2 nm, as observed, the tunneling width becomes extremely thin to concede tunneling current at Vgs = −0.5 V. This tunneling current interrupts UL-HTFET device performance at off-state. The low Ioff can be achieved at Lp = 1 and 2 nm, and Ion is greatly higher at Lp = 4 nm in TFET. Therefore, an optimum Lp can be located at 1 nm where high ion is achieved and the leakage is suppressed as shown in Ids-Vgs characteristics.
Transfer characteristics for varying Lp lengths at Vds = 0.7 V.
In Figure 3, the Id-Vgs characteristics of the UL-HTFET is shown. The mole fraction of SiGe layer is varied. With germanium mole fraction of 0.4, the best Ion/Ioff ratio has been achieved (1012). For Ge-mole fractions below 0.5, the device exhibits a better ratio. As the mole fraction increases beyond 0.5, the properties of the n + layer align more with those of germanium than of silicon. With an increase in mole fraction greater than 0.4, the on-current increases but the increase in off-current is more. This is due to an effective band bending at the source-channel tunnel junction by which the tunnel width can be modulated. For a reduced tunnel width in ON state (Vgs = 1 V), more ON current is achieved. However, at OFF state, the current is due to thermionic emission as the tunnel current is insignificant.
Id-Vgs characteristics of UL-HTFET with varying Ge-mole fractions.
The energy band diagram is plotted at different mole fractions at ON state (Vds = 0.7 V, Vgs = 1.2 V) shown in Figure 4. It is observed that at 0.8-mole fraction of germanium, the ON current is more. With an increase in Ge-mole fraction, the tunnel width reduces and hence enhanced ON current is achieved. In the inset of Figure 4, the variation of valence band with mole fraction is shown. The conduction band variation is insignificant with mole fraction.
Energy band diagram at ON state.
In Figure 5, the electric field is shown at different mole fractions. The peak electric field is observed around 20-nm length along the lateral direction. This is the source-channel tunnel junction. A high electric field at this location is due to the presence of a large tunnel barrier. With the increased mole fraction (at x = 1), a highest peak is observed, and hence tunneling probability will increase and be responsible for the increased current in ON state.
Electric field along the channel length in UL-HTFET.
The ON/OFF current ratio and the subthreshold swing are shown in Figure 6. The best ION/IOFF ratio is achieved for Ge-mole fraction of 0.3. In TFETs, an abrupt Id-Vgs plot is obtained where the subthreshold swing varies with gate voltage. Therefore, two types of SS [15] are defined in TFETs: one is the average SS and the other is known as point SS. The average SS is defined mathematically as
where VT is the threshold voltage and VOFF is the value of gate voltage at which the drain current just begins to take off. IT and IOFF are the drain currents at the respective voltages. Point SS, on the other hand, is the minimum SS at any point on the Id-Vgs plot. The plot of average SS for different Ge-mole fractions is shown in Figure 6. A remarkable average SS (37 mV/dec) is achieved at 0.2 Ge-mole fraction.
ON and OFF current ratios (ION/ IOFF) and subthreshold swing (SS) versus Ge-mole fraction.
In regions 1–4 of Figure 1, the 2-D Poisson’s equation is considered and the 1-D Poisson’s equation is solved on region 5 due to the absence of gate overlap. The following assumptions have been considered while modeling [12, 13, 14, 15, 16]:
No trap charges are considered.
There are no immobile charges in gate dielectric.
Gate leakage current is zero.
Source-channel and channel-drain depletion regions do not have any kind of mobile charges.
In regions I–IV, the 2-D Poisson’s equation is given as follows:
where the subscript
The 2-D potential is approximated as parabolic along the depth of the device. So, the assumption for the 2-D potential is considered as
where
In each of the four regions, three vertical boundary conditions must be satisfied to confirm the continuity of potential and electric field at the gate insulator–semiconductor interface (
where
Using the boundary conditions of Eq. (4), we obtain the coefficients of Eq. (3) as follows:
Using the coefficients of Eq. (6) in the polynomial in Eq. (3), the 2-D Poisson’s equation can be expressed as
with
Eq. (7) has a solution of the form:
The surface potentials for regions I–IV of the device are represented by Eq. (8). For region V, we apply 1-D Poisson’s equation:
to get
The coefficients
where
where
Using Eqs. (8) and (10), the lateral electric field for the five regions is given as
for i = 1, 2, 3, 4 corresponding to regions I, II, III, or IV.
and
The vertical electric fields for the different regions are expressed using Eqs. (3) and Eq. (10) as
for i = 1, 2, 3, 4 corresponding to regions I, II, III, or IV.
and
The drain current is calculated by integrating the band-to-band generation rate
where
where
The developed analytical models are validated with simulation data from TCAD. Figure 7 shows the plot of lateral electric field at the surface of the UL-HTFET in the channel region for different Ge-mole fractions of the silicon-germanium layer, at
Variation of lateral electric field at the surface in the channel for different Ge-mole fractions.
A plot of vertical electric field at the surface of the device versus horizontal position in the channel region is shown in Figure 8 for different values of Ge-mole fractions at a fixed drain voltage of 0.7 V and a gate voltage of 1.2 V. For all the cases, it has been observed that the modeled results closely approach the simulated results. The simulated vertical electric field is slightly different as compared to the modeled ones near the junction of silicon-germanium-silicon in the channel region; however, at other positions in the channel, there is a close match between the modeled and the simulated values of vertical electric field.
Variation of vertical electric field at the surface in the channel for different Ge-mole fractions.
The variation of drain current with gate voltage has been computed and portrayed in Figure 9. There is a close match between the model and the simulated data.
ID-Vgs characteristics at Ge-mole fraction equal to 0.5, gate voltage equal to 1.2 V, and drain voltage equal to 0.7 V.
An algorithm for the extraction of threshold voltage in heterojunction TFET is presented in Figure 10 [17]. The algorithm uses the analytical model of Section 4 to plot multiple curves of surface potential versus position for different gate voltages and fixed drain voltage. The advantage of this algorithm is that the procedure is completely computational, and the threshold voltage can be determined without deriving the transfer characteristics. Moreover, the method can be extended to fit different threshold voltage extraction methods by changing the fitting parameter [17].
Algorithm for the extraction of threshold voltage in heterojunction and homojunction TFETs [17].
The model takes into account the dependence of temperature. The method involves geometrical constructions on a plot of surface potential versus position and using mathematical parameters to define a variable range_point.
A plot of threshold voltage versus temperature is shown in Figure 11. The plot shows that for high-k gate dielectric TFET, the threshold voltage rises with an increase in temperature, whereas for low-k dielectric, the threshold voltage remains almost constant. The simulated values of threshold voltage have been derived using linear extrapolation method of determining threshold voltage. The method involves the construction of a tangent at the point on the transfer characteristics where the transconductance is maximum. The value at which the tangent intersects the gate voltage axis is taken to be the threshold voltage.
A plot of threshold voltage versus temperature for dielectric constants, 3.9 and 22.
This chapter has presented a comprehensive evaluation of a bandgap-modulated UL-HTFET. The simulation analyses have examined the different electrical parameters and their dependence on the pocket length, mole fraction of the SiGe layer, and gate voltage. An impressive on-off current ratio of >1012 and a subthreshold swing less than 60 mV/dec are observed. An analytical model based on 2-D Poisson equation has been developed for the gate-drain underlap heterojunction TFET. The modeled values of surface potential, electric field, and drain current satisfy the results of the simulation. Furthermore, a temperature-dependent algorithm has been discussed to extract threshold voltage in heterojunction TFETs, and a validation has been presented for the plot of threshold voltage at different temperatures.
The authors would like to acknowledge Computational Laboratory, Department of Electronics and Communication Engineering, National Institute of Technology Silchar, India, for supporting the work.
Corrosion is an undesirable natural (i.e., spontaneous) phenomenon that involves the degradation of material via its electrochemical and/or chemical reactions with the components of the adjacent aggressive environment. Metals and their alloys are known as the most susceptible materials for corrosion phenomena, which are the subject of the current chapter. This spontaneous process results in significant economic and safety losses in many industrial fields, as well as in non-industrial ones [1]. According to the recent NACE’s study [2], the financial loss due to the corrosion is around 2.5 trillion $ (USD), which is about 4.2% of the total gross domestic product. In the aim to face against metallic corrosion and corresponding outcomes, the implementation of corrosion inhibitor compounds is a well-known method due to its economic rentability, high efficiency, and simple utilization. By definition, a corrosion inhibitor is a chemical compound that is added, at a lower concentration, into the aggressive medium to prevent or retard (to an acceptable level) the corrosion of considered metallic material [3, 4].
There is a broad agreement in the corrosion literature that the inhibitor compounds protect metal against corrosion via their adsorption, namely, through chemical or/and physical adsorptions process, into the metal surface, which forms protective film upon the surface. Afterward, the formed compact film acts as a protective barrier on metal against aggressive species existing in the surrounding environment [5, 6]. Chemical adsorption involves the sharing of electrons between inhibitor molecules and the atoms of metal surface that leads to form coordination bonds, whereas physical bonding involves the electrostatic and/or van der Waals interactions between the inhibitor molecules and metal surface [7].
Among employed corrosion inhibitors in the industrial area, organic inhibitors are the most used ones, which are employed mainly in acidic media during the acid pickling, acid descaling, and acid cleaning processes of metallic materials [8, 9]. These organic compounds are characterized by the presence of lone pair electrons of heteroatoms (i.e., O, N, P, and S), functional groups (e.g., alcohols, acids, and amines), and/or multiple bonds on their molecular skeletons, which act as the favorable sites of adsorption during the inhibitor-metal interactions [10]. The adsorption process of inhibitors, hence their protection ability, is related to many factors like chemical composition and charge nature of the metal surface, electronic and molecular structures of considered inhibitor, solution’s pH, temperature, inhibited solution/metal contact time, hydrodynamic conditions, and so on [11].
A wide range of organic heterocyclic molecules have been used as anti-corrosion compounds for many metal/medium systems, and others are still being explored by several researchers over the world. Especially, heterocyclic molecules containing nitrogen, oxygen, and/or sulfur atoms, such as azole, oxazole, and thiazole compounds or their derivatives, have shown remarkable protection effectiveness against metallic corrosion in several aggressive media. Figure 1 shows the molecular structure of azole moieties, which are used as corrosion inhibitors for various metallic materials. These compounds are five-atom aromatic ring molecules that contain a nitrogen atom and at least one other nitrogen, oxygen, or sulfur atom as part of the ring [12]. The azole-based compounds can be divided into three major classes, namely, N-, N&O-, and N&S-containing azole sets. In addition to their attractive molecular structures, i.e., presence of heteroatoms, double bonds, and their planar structure, azole-based compounds are soluble in almost any polar aggressive environments, particularly in acidic media.
Molecular structures of the core rings of some azole-based compounds used as corrosion inhibitors.
In this context, the inhibition of metallic corrosion by using these compounds is a well-studied academic and industrial topic. Figure 2(a) illustrates the number of produced publications over this topic in the last 50 years. As can be seen from this histogram, the increase of publication number demonstrates an exponential behavior, which reveals that the current topic is an active one. According to available corrosion literature (Figure 2(b)), nitrogen-azole derivatives (N-azoles) are extensively studied and reported as corrosion inhibitors in comparison with thiazole (N&S-azoles) and oxazole (N&O-azoles) ones. It is important to outline that recently considerable attention is directed toward the synthesizing of new azole, thiazole, and oxazole substituted derivatives with higher prevention capacities and stability for different metal/medium combinations.
(a) The number of produced publications per each year from 1969 to 2020 and (b) its corresponding percentage repartition for each azole-based compounds set (i.e., N-azole, N&O-azole, and N&S-azole derivatives) according to the Scopus® database.
To quantify the prevention ability (i.e., inhibition efficiency) and/or to characterize the inhibition behavior/mechanism of azole-based compounds toward metallic corrosion, direct and indirect experimental techniques are used. Regarding direct techniques, they include weight loss (WL), the volume of liberated hydrogen gas (VG), and temperature variations (TV) [13, 14, 15, 16]. Among them, the WL method is widely used because it can be employed in either concentrated or diluted corrosive solutions contrary to VG or TV ones. Besides, the indirect techniques include some direct current (DC) and alternating current (AC) electrochemical techniques, especially potentiodynamic polarization (PDP), electrochemical impedance spectroscopy (EIS), and electrochemical frequency modulation (EFM). In recent works, several researchers have limited their experimental investigations in the use of electrochemical techniques due to their high precision, the possibility to understand the action mechanism, minimal time, and material consumptions [17, 18, 19]. The inhibition efficiency of an exanimated inhibitor compounds can be calculated using Eq. ((1) in which
In the present chapter, we aim to present the application of azole-based compounds as anti-corrosion agents for metals and their alloys in the corrosive aqueous media, as well as related highlighted outcomes in recent years. For this purpose, the current chapter will be divided into three sections. We begin by the application of N-azoles as corrosion inhibitors. Afterward, we move to illustrate the main findings in the case of N&S-azoles (i.e., thiazole derivatives). Finally, we end the present chapter by their N&O-azoles (i.e., oxazole derivatives).
Among available suggestions for metal inhibition against its corrosion, N-azole compounds have shown a remarkable ability to prevent metallic degradation in different corrosive environments. For example, good inhibition effectiveness was outlined in the case of iron and copper as well as their alloys in almost any mineral acid, saline, and alkaline solutions. In this context, numerous corrosion inhibitors containing different N-azole nucleus structures (Figure 1) were tested and reported in the literature [20, 21, 22, 23, 24]. Figure 3 displays the produced publications dealing with the inhibition of metal corrosion using these inhibitors in the latest 50 years. It is evident from this chart that triazole-based compounds are widely served as inhibitors compared to imidazole, pyrazole, and tetrazole ones, respectively. Subsequently, we will discuss the property of triazole- and imidazole-based compounds to retard the corrosion of metallic materials.
Distribution of produced publications related to the use of N-azole family corrosion inhibitors according to the Scopus® database.
Triazole moiety can be found in numerous compounds that are used in a wide application range, especially in the medical field as antimicrobial, anti-inflammatory, anticancer, and antifungal drugs [20, 21]. On the other hand, the existence of three nitrogen atoms in the same molecule with a planar geometry has attracted the attention of many corrosion scientists to evaluate the protective effect of triazole molecules against metallic corrosion. Good inhibition property of either 1,2,4- or 1,2,3-triazole molecules is noted in the case of various metals, e.g., copper, iron, and its alloys in acid and non-acid media [22, 23, 24]. Recently, more attention has been focused on the development of new stable anti-corrosion compounds containing triazole core rings [25, 26]. As a result, these compounds have shown a remarkable affinity toward metallic surfaces, leading to the formation of a protective organic film on the surface of the protected metal. Furthermore, in most cases, the inhibition efficiency of these compounds increases by increasing their concentration. The role of triazole-based compounds as corrosion inhibitors for copper, iron, aluminum, zinc, and its alloys has been outlined in many corrosive media [27, 28, 29, 30, 31]. Among considered media, there are H2SO4, HCl, HNO3, H3PO4, and NaOH solutions at different concentrations, as well as natural/artificial seawater, sulfate, and chloride environments [32]. Figure 4 shows the molecular structures of some 1,2,4-triazole derivatives used as effective corrosion inhibitors.
Some 1,2,4-triazole-based compounds used as corrosion inhibitors.
It was found that the nature of side substitutions of the triazole moiety has strongly influenced its ability to prevent corrosion phenomena. For instance, Resende et al. [33] have evaluated the inhibition capacity of three newly synthesized 1,2,3-triazole derivatives (C-1, C-2, and C-3, Figure 5) through click chemistry reaction against carbon steel corrosion in acid media. They observed that the recorded inhibition efficiency of these heterocyclic molecules depends on the substituent nature, which is ranked as C-2 (96%) > C-1 (92%) > C-3 (72%) at 250 mg L−1 of inhibitors after 24 hours of immersion. Moreover, C-2 and C-1 inhibitors exhibited an excellent inhibition trend in comparison with a commercial inhibitor as reported by the authors. In another study, additionally to O&N heteroatoms and phenyl rings characterizing C-1 and C-2 compounds, the introduction of phosphorus atom (P) was done to synthesis two new ecologically 1,2,3-triazole derivatives (C-4 and C-5, Figure 5). The corrosion assays demonstrated that the addition of dimethylamino (▬N(CH3)2) functional group in the side phenyl ring has improved the prevention efficiency of newly examined inhibitors from 91 to 94% at 1 mM for mild steel in 1 M HCl solution. An inhibition efficiency over 80% is also achieved by using other 1,2,3-triazole derivatives, e.g., C-6, C-7, C-8, C-9, and C-10 in Figure 5 [34, 35, 36, 37].
Some 1,2,3-triazole derivatives used as corrosion inhibitors.
It is well-known for more than 60 years that the combination of triazole core ring with benzene one, the so-called benzotriazole (C-1 in Figure 6), as well as their derivatives can act as efficient and stable corrosion inhibitors during long contact time for several metal/solution systems, especially for copper and its alloys [38]. For instance, this bicyclic aromatic molecule behaves as a useful inhibitor for pure copper, Cu90Zn10, and Cu60Zn40 alloys in chloride environments such as 3.5% NaCl solutions and artificial seawater [39, 40]. The good corrosion prevention capacity was also obtained both for dynamic and stagnate conditions at lower concentrations. Nonetheless, lesser inhibition efficiencies of benzotriazole and its derivatives are gained in acidic media than the base and near-neutral ones, which is due to the dissolution of formed protective film on the metal surface in acid media [38, 41]. A literature examination discloses that benzotriazole showed a particular ability to control the corrosion of AA2024 aluminum alloy in 5 mM NaCl solution as compared to 1,2,4-triazole and amino-1,2,4-triazole, and in its presence both anodic and cathodic dissolutions were reduced [27]. Additionally, in sulfide-polluted 3.5% NaCl solution, an excellent inhibition performance of 93% is obtained for carbon steel at 5 mM of benzotriazole [42].
Some benzotriazole family corrosion inhibitors.
As the main way to enhance the capability of benzotriazole to control metallic corrosion, there is the chemical modification of its molecular structure. This strategy aims to introduce more adsorption sites within the benzotriazole skeleton by adding functional groups and conjugated systems. In this regard, various benzotriazole-based derivatives were synthesized and tested as corrosion inhibitors. For instance, a new heterocyclic derivative consisting of two benzotriazole molecules and 1,3,4-thiadiazole moiety (C-2, Figure 6) exhibited good inhibition efficiency for copper in chloride environments both at acidic and near-neutral pH, 79 and 87% at 1 mM, respectively [41]. Recently, two structural benzotriazole derivatives (C-3 and C-4, Figure 6) have been reported as useful anti-corrosion compounds against the degradation of brass alloy in an artificial seawater. For example, at 150 ppm the inhibitors offer 82 and 92% as corrosion reduction percentages for C-4 and C-3, respectively [39]. Furthermore, Ravichandran et al. [43] have carried out a comparative study on three benzotriazole-based inhibitors, namely, C-1, C-5, and C-6 as depicted in Figure 6, for brass alloy corrosion in 3% NaCl solution. The associated outcomes of this study reveal that all tested heterocyclic molecules behave as efficient corrosion inhibitors and the inhibition efficiency increases as follows: C-1 (77%) < C-5 (90%) < C-6 (93%) at lower concentration (150 ppm). The observed protection is attributed to the formation of inhibitor Cu(I) complexes on the metal surface, which isolate the surface from aggressive agents in the solution. Many other novel benzotriazole derivatives with more or less complex molecular structures have been reported in the literature as potent anti-corrosion compounds such as C-7, C-8, C-9, C-10, and C-11 derivatives in Figure 6 [44, 45, 46].
It is important to specify that the introduction of further functional groups into the benzotriazole skeleton has not usually improved its inhibition performance. For instance, it was outlined that the alcohol-benzotriazole derivative (C-12, Figure 6) exhibited reduced inhibition efficiency compared to simple benzotriazole for pure copper immersed in 3% NaCl medium [47]. Besides, without performed additional chemical modifications on the benzotriazole molecular skeleton, the improvement of its inhibition performance can be also done via the synergism effect with other additive species, e.g., halide and metallic ions and organic and inorganic compounds [48, 49]. As reported by Bokati et al. [50], the addition of phosphate (Na3PO4) and molybdate (Na2MoO4) compounds into corrosive solution (natural seawater) have enhanced the inhibition efficiency of benzotriazole, particularly for copper, as compared to mild steel alloy. Additionally, the mixture of benzotriazole/Ce3+ was proven to have greater synergistic inhibition effect for zinc/iron and aluminum/copper model galvanic couples in NaCl solution [51, 52].
An additional N-containing azole variety compound that has also received sufficient attention is imidazole and its derivatives as well. Such attention is due to its non-toxicity and appropriate molecular and electronic structures to act as a corrosion inhibitor: the compound is planar and aromatic and contains 2 N heteroatoms. Its mechanism of action as an inhibitor is the same as stated for other reported azole compounds. An increase of concentration leads to an enhancement of its protection capacity, while in many cases the temperature has shown an undesirable effect: its increase can imply a reduction of observed inhibition property of imidazole-based inhibitors. The tendency of imidazole heterocyclic molecules to inhibit metal corrosion, especially for copper, has been extended to synthesis novel derivatives having excellent inhibition efficiency for a longer time. The latter extension aimed to introduce additional favorable centers of adsorption via some functional or non-functional groups such as ▬SH, ▬NH2, ▬COH, ▬OCH3, ▬SCH2Phe, and ▬Phe [53, 54, 55, 56, 57]. Figure 7 illustrates the chemical structure of some substituted imidazole moieties used as corrosion inhibitors. It was outlined that imidazole-based compounds showed interesting activity to act as anti-corrosion agents in several corrosive environments like HNO3, HCl, H2SO4, NaCl, and NaOH media, with the higher prevention efficiencies noted in chloride and in sulfuric acid solutions. Table 1 shows the inhibition data related to the application of some imidazole derivative (Figure 7) as retarder compounds against copper corrosion in various media [58, 59, 60, 61, 62, 63, 64]. On the other hand, the synergism effect has also been used to improve further the attained inhibition efficiency, which was performed by adding supplementary additives, e.g., halide ions, into the inhibited solution [60].
Molecular structures of some substituted imidazole derivatives used as corrosion inhibitors.
Inhibitor | Media | IE ([inh.]) |
---|---|---|
Imidazole | 0.5 M H2SO4/3% NaCl/0.1 M NaOH | 55% (0.5 M)/50% (0.1 mM)/46% (2 mM) |
C-1 | 1 M H2SO4/1 M HCl/3% NaCl | 70% (10 mM)/90% (10 mM)/61% (10 mM) |
C-7 | 0.5 M H2SO4/3% NaCl | 93% (0.5 M)/94% (5 mM) |
C-8 | 0.5 M 2SO4/0.5 M HCl/3%NaCl | 88% (0.05 M)/54% (0.1 M)/93% (0.7 mM) |
The inhibition efficiency (IE) of imidazole and some of its derivatives (see Figure 7) against copper corrosion.
[inh.]: inhibitor concentration.
Another common anti-corrosion compound among imidazole-based derivatives is benzimidazole, which is a heterocyclic aromatic molecule with planar geometry consisting of an imidazole and a benzene moiety (C-1, Figure 8). It was discovered for the first time by Hoebrecker as a part of vitamin B12 [65]. In the last decades, benzimidazole, as well as its derivatives, has been reported as effective anti-corrosion agents for many metallic materials such as mild and carbon steels [66, 67]. The property of benzimidazole-based inhibitor to retard corrosion rate was attributed to the formation of an adsorbed protective film on the metal surface, which can consist of metal-benzimidazole complex or adsorbed benzimidazole molecules [68, 69]. As stated for benzotriazole, numerous benzimidazole derivatives with different structural compositions have been synthesized and then used as corrosion inhibitors. In this regard, simple benzimidazole derivatives showed potent inhibition effect, and in order to obtain them the chemical modification of benzimidazole core is carried out by the insertion of different functional groups. Among introduced groups, there are ▬SH, ▬NH2, ▬OH, ▬SCH3, ▬CH2NH2, ▬CH2OH, ▬Cl, ▬Br, and carbon chain with different lengths [70, 71, 72, 73, 74, 75, 76, 77, 78]. Figure 8 summarizes the chemical structures of some benzimidazole-based derivatives employed as corrosion inhibitors and their corresponding inhibition data.
Molecular structures of some reported benzimidazole-based derivatives as corrosion inhibitors, as well as corresponding inhibition data, which are presented as “inhibition efficiency, % (inhibitor concentration, mM)/corrosive medium, M/metal.” Abbreviations: CS, carbon steel; MS, mild steel; Fe, pure iron; Cu, copper; Zn, zinc; Al, aluminum.
An additional strategy to enhance the performance of benzimidazole to inhibit metallic corrosion is the combination of the latter heterocyclic molecule with other aromatic systems like benzene or triazole core rings without and with further substituent groups. Under this view, various hybrid benzimidazole/aromatic ring-based derivatives have been reported as anti-corrosion molecules [79, 80, 81, 82, 83, 84, 85, 86]. Figure 9 summarizes some benzimidazole/aromatic ring class inhibitors, as well as corresponding inhibition data. Even in very corroding media, benzimidazole/aromatic ring derivatives have shown excellent ability to protect metallic materials against corrosion in these media. For instance, it was found that C-9 and C-10 (Figure 9) derivatives could offer good protection against mild steel corrosion in a 15% HCl solution. The maximum corrosion retardation of 91% was pointed out for C-9 derivative with ▬OCH3 side phenyl substituent at 200 ppm concentration [87, 88].
Molecular structures of some reported benzimidazole/aromatic ring derivatives set as corrosion inhibitors as well as corresponding inhibition data.
On the other hand, several simple and complex bridged benzimidazole derivatives (i.e., bis-benzimidazoles) were employed as potent corrosion inhibitors in which different chain bridges are implemented as linear carbon chains without and with heteroatoms. Figure 10 presents some bis-benzimidazole corrosion retarders. For instance, 1,4-bis-benzimidazolyl-butane (C-1 in Figure 10) exhibited an efficiency of 98% at 0.68 mM inhibitor for mild steel in acid media [89], while at lower concentration (0.10 mM) the insertion of a nitrogen atom in the carbon bridge (C-2, Figure 10) provided good inhibition efficiency of 89% [71]. Ahamad et al. [90] reported the connection of two benzimidazoles via di-sulfur-bridge for the synthesis of the novel derivative (C-3, Figure 10). The corrosion tests reveal the excellent property of bridged benzimidazole inhibitors to control mild steel corrosion both in hydrochloric and in sulfuric acid media, with the attained inhibition efficiencies around 98%. Furthermore, it was found that some bis-benzimidazole derivatives can offer higher inhibition prevention for prolonged immersion time as reported by Dutta et al. [91] for C-4, C-5, C-6, and C-7 compounds, with the lower recorded efficiency 88% after 4-day immersion of mild steel in 1 M HCl solution. The length of the carbon chain of the benzimidazole bridge has influenced the ability of these derivatives to retard corrosion. In this context, three bis-benzimidazole derivatives (C-8, C-9 and C-10, Figure 10) exhibited a significant tendency to reduce mild steel corrosion in acid environment, with an inhibition percentage up to 94% obtained at 0.1 mM for the derivative with longer carbon chain (i.e., C-10).
Molecular structures of some used bis-benzimidazole corrosion retarder’s type.
To understand the action mechanism of an inhibitor compound at an atomic scale, the calculation of some electronic and molecular parameters using a chemical computational approach corresponding to the adsorption process is required. In this context, Kokalj’s team and other groups have studied in-depth the role of the molecular and electronic structures of many N-azole inhibitor molecules for their inhibition property for various metallic materials [92, 93, 94, 95, 96, 97]. Density functional theory (DFT)-based calculations have been employed by these scientists to quantify the interaction magnitude of considered inhibitor molecules with the chosen metal surfaces, as well as their adsorption configuration onto these surfaces through qualitative analysis.
Referring to previous works [98, 99, 100], heterocycle-based inhibitors with both sulfur and nitrogen atoms in their structure were offered outstanding prevention activities in comparison with those containing only sulfur or nitrogen atoms. In this regard, several N&S-containing azole compounds (Figure 1), like thiazole and thiadiazole derivatives, have been attested to be operational inhibitors against the corrosion of many metallic materials in a wide variety of corrosive media. Based on the available corrosion literature, special attention is devoted to thiadiazole-based compounds compared to thiazole ones. Such attention trend is based on the fact that the presence of further heteroatoms (N atoms) on those heterocyclic molecules can raise their adsorption onto the metal surface and consequently enhance their inhibition effectiveness.
In addition to the potent affinity of pre-existing heteroatoms (i.e., N and S atoms) in the 1,3-thiazole ring to interact with the metal surface during the inhibition process, the attachment of the latest ring with further substituents to improve its inhibition efficiency was recently reported. In this view, many 1,3-thiazole-based derivatives are developed via different synthesizing reaction procedures. Conferring to obtained results, these new derivatives were shown to have a great tendency to reduce the dissolution of various metallic substrates. For instance, Raviprabha and Bhat [101] have evaluated the anti-corrosion property of ethyl-2-amino-4-methyl-1,3-thiazole-5-carboxylate derivative (C-1, Figure 11) for AA6061 aluminum alloy in 0.05 M HCl medium. Based on the calculated thermodynamic parameters corresponding to the adsorption process of C-1 molecules, the chemisorption process of derivative molecules is proposed as a potential mechanism of inhibition. Moreover, it was disclosed that an increase in temperature level implies an elevation of inhibition activity of evaluated 1,3-thiazole derivative, with the prevention percentage of 93% at 333 K and 100 ppm of C-1. Another similar 1,3-thiazole derivative (C-2, Figure 11) with pyridinium ring also showed a good capacity to regulate copper dissolution in molar HCl solution, with a maximum of 94% as prevention efficiency achieved at 10−3 M.
Molecular structures of some 1,3-thiazole-based derivatives used as anti-corrosion agents.
The nature and position of added substituents in a 1,3-thiazole ring-based inhibitor can considerably influence its inhibition performance. Recently, two mono-substituted 1,3-thiazole derivatives (C-3 and C-4,Figure 11) have revealed this behavior, which were used to protect X65 steel alloy largely employed in pipelines for natural gas transportation purposes. The ethenone-substituted 1,3-thiazole derivative (C-4) exhibited superior performance to control X65 steel dissolution than isobutyl one (C-3), in which the recorded prevention efficiency at 5 × 10−3 M is being around 90 and 70%, for C-3 and C-4, respectively [102].
In addition to lateral substituents, which contain supplementary electron-donating centers (e.g., functional groups, aromatic and azole rings), the inhibition performance of 1,3-thiazole-based derivatives is also improved by increasing their electron-donating capability via attachment with a benzene ring. In this regard, Chugh et al. [103] have synthesized four new derivatives based on benzo[d]thiazole core structure (C-5, Figure 11), which exhibited an increased anti-corrosion property by replacing hydrogen atom (IE = 79%) of R substituent (on the lateral benzene ring) by chlorine atom (IE = 85%), methyl group (IE = 88%), and finally ▬NH2 functional group (IE = 90%). In the same way, the combination of benzo[d]thiazole bi-rings with imidazoline ring (C-6, Figure 11) is found to act as an efficient corrosion inhibitor in the water-glycol medium [104]. More complex 1,3-thiazole derivative molecules were evaluated and reported as good corrosion inhibitors at lower concentrations, e.g., ceftriaxone 1,3-thiazole derivative (C-7, Figure 11) demonstrated an inhibition percentage of 95% at 400 ppm for mild steel in acidic environment [105]. Table 2 illustrates the relevant outcomes on the use of two other 1,3-thiazole-based compounds as corrosion inhibitors [106, 107].
Relevant data related to the application of some 1,3-thiazole-based compounds as corrosion inhibitors.
1,3,4-Thiadiazoles, another class of thiazole heterocyclic molecules, have been widely examined for their uses in numerous fields such as agrochemical and pharmaceutical areas. For example, sulfamethoxazole and methazolamide are market drugs that contain a 1,3,4-thiadiazole ring [108, 109]. On the other hand, the use of 1,3,4-thiadiazole-based compounds as inhibitor additives also reduced the degradation of metals caused by the surrounding aggressive environment. Many 1,3,4-thiadiazole derivatives were reported to act as potent anti-corrosion agents in different operating conditions. The molecular structure of this five-atom ring type is characterized by the incorporation of an additional nitrogen atom into the 1,3-thiazole ring in 4 position. The presence of further heteroatoms in conjugated 1,3,4-thiadiazole-based molecules plays a curious role in their protection activities. The latest feature is due to the highest tendency of heteroatoms with the conjoint multi-bonds to facilitate the adsorption of these compounds onto the metal surface, and subsequently formed protective film isolates the substrate from solution components.
Several 1,3,4-thiadiazole derivatives with different attached hydrocarbon chains were synthesized and evaluated as corrosion inhibitors. It was found that the size and shape of inserted substituents, as well as their chemical properties, can influence the performance of developed 1,3,4-thiadiazole derivatives to retard metal dissolution. For instance, the substitution of mercapto groups at 2 and 5 positions of the thiadiazole nucleus by ethyldisulfanyl (C-1, Figure 12) augmented the achieved inhibition efficiency from 82.4 to 88.1% at 0.4 mM of inhibitors toward copper corrosion in PAO base oil environment. Concerning the protection activity of these compounds, it was attributed to their physical adsorption on copper oxide surface as theoretically expected and experimentally verified [110]. Moreover, a series of 2,5-dimercapto-1,3,4-thiadiaxole derivatives was also reported as anti-corrosion compounds by Wei and Gemmill et al. [111, 112]. Molecular structures of some reported derivatives are summarized in Figure 13.
Molecular structures of some 1,3,4-thiadiazole-based derivatives used as anti-corrosion agents.
Some 2,5-dimercapto-1,3,4-thiadiaxole anti-corrosion compounds.
In recent years, microwave irradiation heating has been used as a convenient green method for the synthesis of different heterocyclic inhibitors [113] from which we mention 2-amino-5-alkyl-1,3,4-thiadiazole derivatives, with the corresponding synthesizing scheme displayed in Figure 14. The length of the side alkyl chain impacted their capacity to control the dissolution of mild steel in 1 M H2SO4 solution, with the inhibition effectiveness increase with rising chain length, except for ▬C13H27 alkyl case for which the prevention efficiency rapidly decreases [114]. Additionally, the replacement of the alkyl chain of 2-amino-5-alkyl-1,3,4-thiadiazole by mercapto substituent (▬SH) was led to a perfect protection efficiency of 99.3% [115].
Synthesis route of 2-amino-5-alkyl-1,3,4-thiadiazole derivatives under microwave irradiations.
On the other hand, four novel 1,3,4-thiadiazole-thiosemicarbazones derivatives and their cobalt(II) ion complexes (C-2, Figure 12) have been found to play the important role as anti-corrosion agents for carbon steel in acid media. However, the tests revealed that the molecular structure of these compounds has a little effect on the obtained inhibition efficiencies, which are around 90% in the presence of 500 ppm inhibitors [17]. Based on 1,3,4-thiadiazol-2-amine, new heterocyclic scaffold derivative (C-3, Figure 12) was synthesized and reported as an excellent inhibitor (IE = 91% at 0.5 mM) against mild steel corrosion in the molar hydrochloric acid medium [116, 117]. Another derivative of 1,3,4-thiadiazol-2-amine (C-4, Figure 12) has been also reported to act as a useful inhibitor for copper in de-aerated, aerated, and oxygenated 3% NaCl solutions, with a maximum efficiency of 94% obtained at 5 mM of the inhibitor [118]. Besides, 1,3,4-thiadiazol-containing organic inhibitors also served to improve the anti-corrosion property of some coatings. For instance, 2-acetylamino-5-mercapto-1,3,4-thiadiazole (C-5,Figure 12) has shown a good ability to improve the protective quality of chitosan coatings on zinc, for which the protection efficiency passed from 64 to 91% in the presence of C-5 derivative [119].
In addition to N&S-containing azole corrosion inhibitors, oxazole-based compounds (i.e., N&O-containing azoles) have gained considerable attention in recent years in this regard. Oxadiazole molecule consists of a five-membered heterocyclic ring with at least one nitrogen and an oxygen atom. These N&O-containing heterocycles are interesting molecules that exist in wide biological-based compounds like diuretics, anxiolytics, and local anesthetics. Moreover, oxazole shows an antimycotic activity and can be used as anti-inflammatory agents as well as antibacterial toward pneumoniae, micrococcus, and Staphylococcus aureus [120, 121].
Numerous N&O-containing azole heterocyclic molecules have been studied and reported as efficient anti-corrosion agents for various metallic materials, especially in acidic media [122, 123, 124, 125, 126]. Such beneficial effects are related to their special affinity to adsorb on the metallic surfaces. Moreover, these compounds possess lone pair electrons on the oxygen and nitrogen atoms, which can interact favorably with the vacant orbitals of metal, leading to formation of protective barrier film [127]. Figure 15 shows the produced publications related to the inhibition of metal corrosion employing oxazole-based inhibitors in the last 50 years. It is clear from this figure that among available N&O-containing azole compounds, the oxazole, isoxazole, 1,2,4-oxadiazole, and 1,3,4-oxadiazole ones (Figure 1) are frequently used for corrosion inhibition purposes. Noticeable attention is focused on 1,2,4- and 1,3,4-oxadiazole inhibitors, mainly due to the presence of several nitrogen atoms on their five-membered heterocycle in comparison to other N&O-azoles.
Distribution of produced publication percentage related to the corrosion inhibition using oxazole-based compounds according to the Scopus® database.
Due to its excellent descaling properties, sulfamic acid (NH2HSO3) is used in a large variety of industrial applications such as cleaning of heat exchangers and cooling water systems. As compared to other acids like hydrochloric acid, sulfamic acid shows a lower corrosion rate of stainless steel (SS) without the problem of chloride-induced stress corrosion cracking of SS. In order to reduce further this corrosion, the addition of inhibitor compounds into sulfamic media is mandatory. As effective inhibitor candidates, four new synthesized oxazole derivatives have been reported as good corrosion inhibitors for 316 L-type SS in 0.6 M NH2HSO3 solution by Fouda et al. [122]. The molecular structures of reported oxazole derivatives are presented in Figure 16 (C-1, C-2, C-3, and C-4). According to weight loss experiments and electrochemical tests via different techniques, a good prevention ability around 90% is recorded at lower concentration (i.e., 2 × 10−4 M) of investigated derivatives after a moderate immersion time (3 h), especially for the fourth derivative (C-4). In addition to the presence of benzene ring and nitrogen and oxygen atoms, the good inhibition property of C-4 derivative as compared to the other ones is attributed to the existence of four aromatic rings as substituents, which results in its larger molecular size and planar geometry, leading to highest coverage of the metal surface area by adsorbed C-4 molecule. Based on this study, it can be outlined that the substitution of oxazole core ring by biggest lateral substituents can effectively improve the inhibition property of oxazole derivatives at lower concentrations.
Chemical structures of newly synthesized benzo and 2-henyl oxazole derivatives.
The protection activity of other oxazole derivatives set has been reported in recently published work [123]. The authors of this work have synthesized a series of three 2-phenyl oxazole derivatives with different substitutions at the carbon five of the oxazole ring (C-5, C-6, and C-7, Figure 16). A significant reduction of mild steel dissolution rate in molar hydrochloric acid solution is observed in the presence of these derivatives. The protective effect of synthesized oxazole compounds can be clearly revealed in Figure 17, in which i-E curve decrease is shown in the presence of these compounds as their concentrations rise (colored lines) compared to the blank solution (black line). Accordingly, the order of corrosion inhibition is as follows: C-6 (94.7%) > C-7 (85.9%) > C-5 (78.6%) at 10−3 M concentration. Using quantum chemical computations via the DFT-B3LYP/6-31G(d,p) method, the highest inhibition activity of the C-6 oxazole derivative is attributed to its great reactivity with the metal surface, which is induced by the benzene-1-sulfonate substituent. The presence of sulfur atom can cause the elevation of oxazole compounds adsorption process onto the metal surface, which reflects the good prevention capacity of these compounds.
Potentiodynamic curves of mild steel in 1 M HCl without and with synthesized 2-phenyl oxazole derivatives (C-6, C-7, and C-8, Figure 16) at different concentrations [112].
In order to get great protection performance, the synthesis of new oxazole derivatives in which other azole-based core rings are incorporated has been reported. In this context, three new benzoimidazole/1,3,4-oxadiazole derivatives (C-1, C-2, and C-3, Figure 18) were reported as efficient organic inhibitors for mild steel dissolution in acidic solutions [124, 125, 126]. These compounds exhibited an interesting effect in both sulfuric and hydrochloric acid solutions, which are largely used for the metal cleaning process in several industrial fields. It should be kept in mind that the higher reduction of corrosion rate caused by adding these inhibitors is obtained in hydrochloric acid than the sulfuric one, which reveals the possible effect of aggressive media on the inhibition activity of used benzoimidazole/1,3,4-oxadiazole inhibitors. Moreover, the nature of considered acid can influence also the trend of recorded inhibition efficiencies, e.g., in HCl solution; the order is C-1 (≈92%) > C-2, while in H2SO4 one is C-2 (75%) > C-1 > C-3 at the same concentration. Such conclusions are in good agreement with those of Bentiss et al. [128], which used other 1,3,4-oxadiazole derivatives (C-4 and C-5, Figure 18). This means that the corrosive environments can influence the inhibition efficiency of oxadiazole compounds [90]. On the other hand, the substitution of a small carbon chain (e.g., ethyl in the case of C-2,Figure 18) by another one with the bigger size (e.g., propyl in the case of C-3,Figure 18) cannot usually induce an enhancement of the inhibition ability of oxazole-based inhibitors. The SEM images of mild steel surface in Figure 19 confirm the efficacy of C-2 derivative as an effective corrosion inhibitor.
Chemical structures of examined 1,3,4-oxadiazole derivatives.
SEM images of mild steel samples (a) before and after immersion in 0.5 M HCl solution, (b) without and (c) with C-2 benzoimidazole/1,3,4-oxadiazole derivative [115].
A novel synthesizing procedure of 3,5-disubstituted 1,2,4-oxadiazole molecule was proposed by Outirite et al. [129]. By means of this procedure, three new 1,2,4-oxadiazole derivatives with pyridinium substituents (Figure 20) have been synthesized and reported as excellent corrosion inhibitors for C38 carbon steel in 1 M hydrochloric acid solution [130]. It is well-known that an increase of inhibitor concentration in the corrosive medium mainly leads to an enhancement of its prevention activity. Under this fact, the inhibition capacity of the latest listed derivatives was elevated by raising their amount in considered corrosive solution. On the other hand, the position of nitrogen atoms in pyridine substituents was shown not to have a notable influence on the anti-corrosion property of evaluated compounds. Nevertheless, a remarkable inhibition efficiency of around 95% was obtained at 8 × 10−4 M of synthesized 1,2,4-oxadiazole derivatives.
Chemical structures of 1,2,4-oxadiazole derivatives with pyridinium substituents.
Several isoxazole-based molecules have also demonstrated noticeable protective performance for various metallic materials, such as Cu90Ni10 alloy and galvanized and mild steels, under different operating conditions. For instance, two new 5-phenylisoxazole derivatives have been developed and evaluated by Dominguez-Crespo et al. (C-1 and C-2, Figure 21) [131]. According to experimental tests, 5-phenylisoxazole compounds exhibited great prevention effectiveness toward the degradation of galvanized steel and copper/nickel alloy. At 5 ppm as inhibitor concentration, the recorded prevention percentages are 100 and 93% for C-2 and C-1 in the case of galvanized steel, while in the case of Cu90Ni10 alloy they are 88 and 68% for C-2 and C-1 compounds. It is interesting to underline that achieved protection efficiencies are comparable to those of the commercial inhibitors (working under the same conditions). Another isoxazole derivative has been found to be an adequate inhibitor for mild steel in 1 M HCl aggressive solution [132]. The molecular structure of the new synthesized derivative (C-3) is depicted in Figure 21. Both experimental and theoretical approaches pointed out that evaluated C-3 derivative acts as an effective corrosion inhibitor, in which its inhibition performance reaches 93% at 10−3 M.
Chemical structures of isoxazole derivatives.
Rather than employing oxazole derivatives, another novel strategy to enhance the anti-corrosion activity of these compounds is the use of its metal complexes. In the recent work, Najeeb [133] has reported the good performance of some metal complexes of a 1,3,4-oxadiazole derivative (C-6, Figure 18) against the corrosion of mild steel in 1 M HNO3 medium. As core metal ions, Najeeb has tested Co(II), Ni(II), and Cu(II) ions. As a major outcome of this work, an increase of inhibition efficiency was observed via the metallic complexing process, and the following order of the inhibition efficiency is outlined: Co(II)-oxadiazole > Ni(II)-oxadiazole > Cu(II)-oxadiazole > oxadiazole. Moreover, the inhibition performance of these heterocyclic oxygen/nitrogen compounds can be synergistically enhanced by adding halide ions into the inhibition systems [134].
As was revealed in the literature, many other oxazole-based derivatives have recently stated as good anti-corrosion compounds for several metallic materials that immersed in different corrosive environments. Table 3 illustrates the relevant data related to the use of some oxazole-based compounds as corrosion inhibitors [134, 135, 136].
Relevant data related to the application of some oxazole-based compounds as corrosion inhibitors for mild steel.
In the current chapter, we focused on the application of azole-based compounds as inhibitor agents against metallic corrosion. Almost N-, N&S-, and N&O-azole-containing compounds were found to provide good protection property for numerous metal (or alloy)/medium systems. In this context, three main strategies were adopted to enhance the capability of these compounds to inhibit the corrosion. The first one is based on the synergistic effect, in which supplementary additives (e.g., halide ions) are added into the corrosive media containing azole-based compound, while the chemical modification of azole molecular structures is the second strategy. The latest one is widely used and aimed to introduce further active sites of adsorption within these heterocyclic molecules. Recently, the metallic complex of azole compounds was also reported as an effective strategy to improve their prevention capacity. It is important to outline that N-azole compounds are extensively studied and reported as inhibitors for many metal/medium combinations in comparison with N&S- and N&O-azole ones. Consequently, more attention should be directed to examine the latest two-azole classes, especially oxazole-based compounds.
We believe financial barriers should not prevent researchers from publishing their findings. With the need to make scientific research more publicly available and support the benefits of Open Access, more and more institutions and funders are dedicating resources to assist faculty members and researchers cover Open Access Publishing Fees (OAPFs). In addition, IntechOpen provides several further options presented below, all of which are available to researchers, and could secure the financing of your Open Access publication.
",metaTitle:"Waiver Policy",metaDescription:"We feel that financial barriers should never prevent researchers from publishing their research. With the need to make scientific research more publically available and support the benefits of Open Access, more institutions and funders have dedicated funds to assist their faculty members and researchers cover the APCs associated with publishing in Open Access. Below we have outlined several options available to secure financing for your Open Access publication.",metaKeywords:null,canonicalURL:"/page/waiver-policy",contentRaw:'[{"type":"htmlEditorComponent","content":"At IntechOpen, the majority of OAPFs are paid by an Author’s institution or funding agency - Institutions (73%) vs. Authors (23%).
\\n\\nThe first step in obtaining funds for your Open Access publication begins with your institution or library. IntechOpen’s publishing standards align with most institutional funding programs. Our advice is to petition your institution for help in financing your Open Access publication.
\\n\\nHowever, as Open Access becomes a more commonly used publishing option for the dissemination of scientific and scholarly content, in addition to institutions, there are a growing number of funders who allow the use of grants for covering OA publication costs, or have established separate funds for the same purpose.
\\n\\nPlease consult our Open Access Funding page to explore some of these funding opportunities and learn more about how you could finance your IntechOpen publication. Keep in mind that this list is not definitive, and while we are constantly updating and informing our Authors of new funding opportunities, we recommend that you always check with your institution first.
\\n\\nFor Authors who are unable to obtain funding from their institution or research funding bodies and still need help in covering publication costs, IntechOpen offers the possibility of applying for a Waiver.
\\n\\nOur mission is to support Authors in publishing their research and making an impact within the scientific community. Currently, 14% of Authors receive full waivers and 6% receive partial waivers.
\\n\\nWhile providing support and advice to all our international Authors, waiver priority will be given to those Authors who reside in countries that are classified by the World Bank as low-income economies. In this way, we can help ensure that the scientific work being carried out can make an impact within the worldwide scientific community, no matter where an Author might live.
\\n\\nThe application process is open after your submitted manuscript has been accepted for publication. To apply, please fill out a Waiver Request Form and send it to your Author Service Manager. If you have an official letter from your university or institution showing that funds for your OA publication are unavailable, please attach that as well. The Waiver Request will normally be addressed within one week from the application date. All chapters that receive waivers or partial waivers will be designated as such online.
\\n\\nDownload Waiver Request Form
\\n\\nFeel free to contact us at oapf@intechopen.com if you have any questions about Funding options or our Waiver program. If you have already begun the process and require further assistance, please contact your Author Service Manager, who is there to assist you!
\\n\\nNote: All data represented above was collected by IntechOpen from 2013 to 2017.
\\n"}]'},components:[{type:"htmlEditorComponent",content:'At IntechOpen, the majority of OAPFs are paid by an Author’s institution or funding agency - Institutions (73%) vs. Authors (23%).
\n\nThe first step in obtaining funds for your Open Access publication begins with your institution or library. IntechOpen’s publishing standards align with most institutional funding programs. Our advice is to petition your institution for help in financing your Open Access publication.
\n\nHowever, as Open Access becomes a more commonly used publishing option for the dissemination of scientific and scholarly content, in addition to institutions, there are a growing number of funders who allow the use of grants for covering OA publication costs, or have established separate funds for the same purpose.
\n\nPlease consult our Open Access Funding page to explore some of these funding opportunities and learn more about how you could finance your IntechOpen publication. Keep in mind that this list is not definitive, and while we are constantly updating and informing our Authors of new funding opportunities, we recommend that you always check with your institution first.
\n\nFor Authors who are unable to obtain funding from their institution or research funding bodies and still need help in covering publication costs, IntechOpen offers the possibility of applying for a Waiver.
\n\nOur mission is to support Authors in publishing their research and making an impact within the scientific community. Currently, 14% of Authors receive full waivers and 6% receive partial waivers.
\n\nWhile providing support and advice to all our international Authors, waiver priority will be given to those Authors who reside in countries that are classified by the World Bank as low-income economies. In this way, we can help ensure that the scientific work being carried out can make an impact within the worldwide scientific community, no matter where an Author might live.
\n\nThe application process is open after your submitted manuscript has been accepted for publication. To apply, please fill out a Waiver Request Form and send it to your Author Service Manager. If you have an official letter from your university or institution showing that funds for your OA publication are unavailable, please attach that as well. The Waiver Request will normally be addressed within one week from the application date. All chapters that receive waivers or partial waivers will be designated as such online.
\n\nDownload Waiver Request Form
\n\nFeel free to contact us at oapf@intechopen.com if you have any questions about Funding options or our Waiver program. If you have already begun the process and require further assistance, please contact your Author Service Manager, who is there to assist you!
\n\nNote: All data represented above was collected by IntechOpen from 2013 to 2017.
\n'}]},successStories:{items:[]},authorsAndEditors:{filterParams:{sort:"featured,name"},profiles:[{id:"6700",title:"Dr.",name:"Abbass A.",middleName:null,surname:"Hashim",slug:"abbass-a.-hashim",fullName:"Abbass A. Hashim",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/6700/images/1864_n.jpg",biography:"Currently I am carrying out research in several areas of interest, mainly covering work on chemical and bio-sensors, semiconductor thin film device fabrication and characterisation.\nAt the moment I have very strong interest in radiation environmental pollution and bacteriology treatment. The teams of researchers are working very hard to bring novel results in this field. I am also a member of the team in charge for the supervision of Ph.D. students in the fields of development of silicon based planar waveguide sensor devices, study of inelastic electron tunnelling in planar tunnelling nanostructures for sensing applications and development of organotellurium(IV) compounds for semiconductor applications. I am a specialist in data analysis techniques and nanosurface structure. I have served as the editor for many books, been a member of the editorial board in science journals, have published many papers and hold many patents.",institutionString:null,institution:{name:"Sheffield Hallam University",country:{name:"United Kingdom"}}},{id:"54525",title:"Prof.",name:"Abdul Latif",middleName:null,surname:"Ahmad",slug:"abdul-latif-ahmad",fullName:"Abdul Latif Ahmad",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:null},{id:"20567",title:"Prof.",name:"Ado",middleName:null,surname:"Jorio",slug:"ado-jorio",fullName:"Ado Jorio",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"Universidade Federal de Minas Gerais",country:{name:"Brazil"}}},{id:"47940",title:"Dr.",name:"Alberto",middleName:null,surname:"Mantovani",slug:"alberto-mantovani",fullName:"Alberto Mantovani",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:null},{id:"12392",title:"Mr.",name:"Alex",middleName:null,surname:"Lazinica",slug:"alex-lazinica",fullName:"Alex Lazinica",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/12392/images/7282_n.png",biography:"Alex Lazinica is the founder and CEO of IntechOpen. After obtaining a Master's degree in Mechanical Engineering, he continued his PhD studies in Robotics at the Vienna University of Technology. Here he worked as a robotic researcher with the university's Intelligent Manufacturing Systems Group as well as a guest researcher at various European universities, including the Swiss Federal Institute of Technology Lausanne (EPFL). During this time he published more than 20 scientific papers, gave presentations, served as a reviewer for major robotic journals and conferences and most importantly he co-founded and built the International Journal of Advanced Robotic Systems- world's first Open Access journal in the field of robotics. Starting this journal was a pivotal point in his career, since it was a pathway to founding IntechOpen - Open Access publisher focused on addressing academic researchers needs. Alex is a personification of IntechOpen key values being trusted, open and entrepreneurial. Today his focus is on defining the growth and development strategy for the company.",institutionString:null,institution:{name:"TU Wien",country:{name:"Austria"}}},{id:"19816",title:"Prof.",name:"Alexander",middleName:null,surname:"Kokorin",slug:"alexander-kokorin",fullName:"Alexander Kokorin",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/19816/images/1607_n.jpg",biography:"Alexander I. Kokorin: born: 1947, Moscow; DSc., PhD; Principal Research Fellow (Research Professor) of Department of Kinetics and Catalysis, N. Semenov Institute of Chemical Physics, Russian Academy of Sciences, Moscow.\r\nArea of research interests: physical chemistry of complex-organized molecular and nanosized systems, including polymer-metal complexes; the surface of doped oxide semiconductors. He is an expert in structural, absorptive, catalytic and photocatalytic properties, in structural organization and dynamic features of ionic liquids, in magnetic interactions between paramagnetic centers. The author or co-author of 3 books, over 200 articles and reviews in scientific journals and books. He is an actual member of the International EPR/ESR Society, European Society on Quantum Solar Energy Conversion, Moscow House of Scientists, of the Board of Moscow Physical Society.",institutionString:null,institution:{name:"Semenov Institute of Chemical Physics",country:{name:"Russia"}}},{id:"62389",title:"PhD.",name:"Ali Demir",middleName:null,surname:"Sezer",slug:"ali-demir-sezer",fullName:"Ali Demir Sezer",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/62389/images/3413_n.jpg",biography:"Dr. Ali Demir Sezer has a Ph.D. from Pharmaceutical Biotechnology at the Faculty of Pharmacy, University of Marmara (Turkey). He is the member of many Pharmaceutical Associations and acts as a reviewer of scientific journals and European projects under different research areas such as: drug delivery systems, nanotechnology and pharmaceutical biotechnology. Dr. Sezer is the author of many scientific publications in peer-reviewed journals and poster communications. Focus of his research activity is drug delivery, physico-chemical characterization and biological evaluation of biopolymers micro and nanoparticles as modified drug delivery system, and colloidal drug carriers (liposomes, nanoparticles etc.).",institutionString:null,institution:{name:"Marmara University",country:{name:"Turkey"}}},{id:"61051",title:"Prof.",name:"Andrea",middleName:null,surname:"Natale",slug:"andrea-natale",fullName:"Andrea Natale",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:null},{id:"100762",title:"Prof.",name:"Andrea",middleName:null,surname:"Natale",slug:"andrea-natale",fullName:"Andrea Natale",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"St David's Medical Center",country:{name:"United States of America"}}},{id:"107416",title:"Dr.",name:"Andrea",middleName:null,surname:"Natale",slug:"andrea-natale",fullName:"Andrea Natale",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"Texas Cardiac Arrhythmia",country:{name:"United States of America"}}},{id:"64434",title:"Dr.",name:"Angkoon",middleName:null,surname:"Phinyomark",slug:"angkoon-phinyomark",fullName:"Angkoon Phinyomark",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/64434/images/2619_n.jpg",biography:"My name is Angkoon Phinyomark. I received a B.Eng. degree in Computer Engineering with First Class Honors in 2008 from Prince of Songkla University, Songkhla, Thailand, where I received a Ph.D. degree in Electrical Engineering. My research interests are primarily in the area of biomedical signal processing and classification notably EMG (electromyography signal), EOG (electrooculography signal), and EEG (electroencephalography signal), image analysis notably breast cancer analysis and optical coherence tomography, and rehabilitation engineering. I became a student member of IEEE in 2008. During October 2011-March 2012, I had worked at School of Computer Science and Electronic Engineering, University of Essex, Colchester, Essex, United Kingdom. In addition, during a B.Eng. I had been a visiting research student at Faculty of Computer Science, University of Murcia, Murcia, Spain for three months.\n\nI have published over 40 papers during 5 years in refereed journals, books, and conference proceedings in the areas of electro-physiological signals processing and classification, notably EMG and EOG signals, fractal analysis, wavelet analysis, texture analysis, feature extraction and machine learning algorithms, and assistive and rehabilitative devices. I have several computer programming language certificates, i.e. Sun Certified Programmer for the Java 2 Platform 1.4 (SCJP), Microsoft Certified Professional Developer, Web Developer (MCPD), Microsoft Certified Technology Specialist, .NET Framework 2.0 Web (MCTS). I am a Reviewer for several refereed journals and international conferences, such as IEEE Transactions on Biomedical Engineering, IEEE Transactions on Industrial Electronics, Optic Letters, Measurement Science Review, and also a member of the International Advisory Committee for 2012 IEEE Business Engineering and Industrial Applications and 2012 IEEE Symposium on Business, Engineering and Industrial Applications.",institutionString:null,institution:{name:"Joseph Fourier University",country:{name:"France"}}},{id:"55578",title:"Dr.",name:"Antonio",middleName:null,surname:"Jurado-Navas",slug:"antonio-jurado-navas",fullName:"Antonio Jurado-Navas",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/55578/images/4574_n.png",biography:"Antonio Jurado-Navas received the M.S. degree (2002) and the Ph.D. degree (2009) in Telecommunication Engineering, both from the University of Málaga (Spain). He first worked as a consultant at Vodafone-Spain. From 2004 to 2011, he was a Research Assistant with the Communications Engineering Department at the University of Málaga. In 2011, he became an Assistant Professor in the same department. From 2012 to 2015, he was with Ericsson Spain, where he was working on geo-location\ntools for third generation mobile networks. Since 2015, he is a Marie-Curie fellow at the Denmark Technical University. His current research interests include the areas of mobile communication systems and channel modeling in addition to atmospheric optical communications, adaptive optics and statistics",institutionString:null,institution:{name:"University of Malaga",country:{name:"Spain"}}}],filtersByRegion:[{group:"region",caption:"North America",value:1,count:5774},{group:"region",caption:"Middle and South America",value:2,count:5239},{group:"region",caption:"Africa",value:3,count:1721},{group:"region",caption:"Asia",value:4,count:10411},{group:"region",caption:"Australia and Oceania",value:5,count:897},{group:"region",caption:"Europe",value:6,count:15810}],offset:12,limit:12,total:118377},chapterEmbeded:{data:{}},editorApplication:{success:null,errors:{}},ofsBooks:{filterParams:{sort:"dateEndThirdStepPublish"},books:[{type:"book",id:"10231",title:"Proton Therapy",subtitle:null,isOpenForSubmission:!0,hash:"f4a9009287953c8d1d89f0fa9b7597b0",slug:null,bookSignature:"",coverURL:"https://cdn.intechopen.com/books/images_new/10231.jpg",editedByType:null,editors:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10652",title:"Visual Object Tracking",subtitle:null,isOpenForSubmission:!0,hash:"96f3ee634a7ba49fa195e50475412af4",slug:null,bookSignature:"",coverURL:"https://cdn.intechopen.com/books/images_new/10652.jpg",editedByType:null,editors:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10653",title:"Optimization Algorithms",subtitle:null,isOpenForSubmission:!0,hash:"753812dbb9a6f6b57645431063114f6c",slug:null,bookSignature:"",coverURL:"https://cdn.intechopen.com/books/images_new/10653.jpg",editedByType:null,editors:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10655",title:"Motion Planning",subtitle:null,isOpenForSubmission:!0,hash:"809b5e290cf2dade9e7e0a5ae0ef3df0",slug:null,bookSignature:"",coverURL:"https://cdn.intechopen.com/books/images_new/10655.jpg",editedByType:null,editors:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10657",title:"Service Robots",subtitle:null,isOpenForSubmission:!0,hash:"5f81b9eea6eb3f9af984031b7af35588",slug:null,bookSignature:"",coverURL:"https://cdn.intechopen.com/books/images_new/10657.jpg",editedByType:null,editors:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10662",title:"Pedagogy",subtitle:null,isOpenForSubmission:!0,hash:"c858e1c6fb878d3b895acbacec624576",slug:null,bookSignature:"",coverURL:"https://cdn.intechopen.com/books/images_new/10662.jpg",editedByType:null,editors:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10673",title:"The Psychology of Trust",subtitle:null,isOpenForSubmission:!0,hash:"1f6cac41fd145f718ac0866264499cc8",slug:null,bookSignature:"",coverURL:"https://cdn.intechopen.com/books/images_new/10673.jpg",editedByType:null,editors:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10675",title:"Hydrostatics",subtitle:null,isOpenForSubmission:!0,hash:"c86c2fa9f835d4ad5e7efd8b01921866",slug:null,bookSignature:"",coverURL:"https://cdn.intechopen.com/books/images_new/10675.jpg",editedByType:null,editors:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10677",title:"Topology",subtitle:null,isOpenForSubmission:!0,hash:"85eac84b173d785f989522397616124e",slug:null,bookSignature:"",coverURL:"https://cdn.intechopen.com/books/images_new/10677.jpg",editedByType:null,editors:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10678",title:"Biostatistics",subtitle:null,isOpenForSubmission:!0,hash:"f63db439474a574454a66894db8b394c",slug:null,bookSignature:"",coverURL:"https://cdn.intechopen.com/books/images_new/10678.jpg",editedByType:null,editors:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10679",title:"Mass Production",subtitle:null,isOpenForSubmission:!0,hash:"2dae91102099b1a07be1a36a68852829",slug:null,bookSignature:"",coverURL:"https://cdn.intechopen.com/books/images_new/10679.jpg",editedByType:null,editors:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10689",title:"Risk Management in Construction",subtitle:null,isOpenForSubmission:!0,hash:"e3805b3d2fceb9d33e1fa805687cd296",slug:null,bookSignature:"",coverURL:"https://cdn.intechopen.com/books/images_new/10689.jpg",editedByType:null,editors:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}}],filtersByTopic:[{group:"topic",caption:"Agricultural and Biological Sciences",value:5,count:18},{group:"topic",caption:"Biochemistry, Genetics and Molecular Biology",value:6,count:5},{group:"topic",caption:"Business, Management and Economics",value:7,count:2},{group:"topic",caption:"Chemistry",value:8,count:8},{group:"topic",caption:"Computer and Information Science",value:9,count:6},{group:"topic",caption:"Earth and Planetary Sciences",value:10,count:7},{group:"topic",caption:"Engineering",value:11,count:20},{group:"topic",caption:"Environmental Sciences",value:12,count:2},{group:"topic",caption:"Immunology and Microbiology",value:13,count:4},{group:"topic",caption:"Materials Science",value:14,count:5},{group:"topic",caption:"Mathematics",value:15,count:1},{group:"topic",caption:"Medicine",value:16,count:25},{group:"topic",caption:"Neuroscience",value:18,count:2},{group:"topic",caption:"Pharmacology, Toxicology and Pharmaceutical Science",value:19,count:3},{group:"topic",caption:"Physics",value:20,count:3},{group:"topic",caption:"Psychology",value:21,count:4},{group:"topic",caption:"Robotics",value:22,count:1},{group:"topic",caption:"Social Sciences",value:23,count:3},{group:"topic",caption:"Technology",value:24,count:1},{group:"topic",caption:"Veterinary Medicine and Science",value:25,count:1}],offset:12,limit:12,total:202},popularBooks:{featuredBooks:[{type:"book",id:"9521",title:"Antimicrobial Resistance",subtitle:"A One Health Perspective",isOpenForSubmission:!1,hash:"30949e78832e1afba5606634b52056ab",slug:"antimicrobial-resistance-a-one-health-perspective",bookSignature:"Mihai Mareș, Swee Hua Erin Lim, Kok-Song Lai and Romeo-Teodor Cristina",coverURL:"https://cdn.intechopen.com/books/images_new/9521.jpg",editors:[{id:"88785",title:"Prof.",name:"Mihai",middleName:null,surname:"Mares",slug:"mihai-mares",fullName:"Mihai Mares"}],equalEditorOne:{id:"190224",title:"Dr.",name:"Swee Hua Erin",middleName:null,surname:"Lim",slug:"swee-hua-erin-lim",fullName:"Swee Hua Erin Lim",profilePictureURL:"https://mts.intechopen.com/storage/users/190224/images/system/190224.png",biography:"Dr. Erin Lim is presently working as an Assistant Professor in the Division of Health Sciences, Abu Dhabi Women\\'s College, Higher Colleges of Technology in Abu Dhabi, United Arab Emirates and is affiliated as an Associate Professor to Perdana University-Royal College of Surgeons in Ireland, Selangor, Malaysia. She obtained her Ph.D. from Universiti Putra Malaysia in 2010 with a National Science Fellowship awarded from the Ministry of Science, Technology and Innovation Malaysia and has been actively involved in research ever since. Her main research interests include analysis of carriage and transmission of multidrug resistant bacteria in non-conventional settings, besides an interest in natural products for antimicrobial testing. She is heavily involved in the elucidation of mechanisms of reversal of resistance in bacteria in addition to investigating the immunological analyses of diseases, development of vaccination and treatment models in animals. She hopes her work will support the discovery of therapeutics in the clinical setting and assist in the combat against the burden of antibiotic resistance.",institutionString:"Abu Dhabi Women’s College",position:null,outsideEditionCount:0,totalCites:0,totalAuthoredChapters:"3",totalChapterViews:"0",totalEditedBooks:"0",institution:{name:"Perdana University",institutionURL:null,country:{name:"Malaysia"}}},equalEditorTwo:{id:"221544",title:"Dr.",name:"Kok-Song",middleName:null,surname:"Lai",slug:"kok-song-lai",fullName:"Kok-Song Lai",profilePictureURL:"https://mts.intechopen.com/storage/users/221544/images/system/221544.jpeg",biography:"Dr. Lai Kok Song is an Assistant Professor in the Division of Health Sciences, Abu Dhabi Women\\'s College, Higher Colleges of Technology in Abu Dhabi, United Arab Emirates. He obtained his Ph.D. in Biological Sciences from Nara Institute of Science and Technology, Japan in 2012. Prior to his academic appointment, Dr. Lai worked as a Senior Scientist at the Ministry of Science, Technology and Innovation, Malaysia. His current research areas include antimicrobial resistance and plant-pathogen interaction. His particular interest lies in the study of the antimicrobial mechanism via membrane disruption of essential oils against multi-drug resistance bacteria through various biochemical, molecular and proteomic approaches. Ultimately, he hopes to uncover and determine novel biomarkers related to antibiotic resistance that can be developed into new therapeutic strategies.",institutionString:"Higher Colleges of Technology",position:null,outsideEditionCount:0,totalCites:0,totalAuthoredChapters:"8",totalChapterViews:"0",totalEditedBooks:"0",institution:{name:"Higher Colleges of Technology",institutionURL:null,country:{name:"United Arab Emirates"}}},equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10020",title:"Operations Management",subtitle:"Emerging Trend in the Digital Era",isOpenForSubmission:!1,hash:"526f0dbdc7e4d85b82ce8383ab894b4c",slug:"operations-management-emerging-trend-in-the-digital-era",bookSignature:"Antonella Petrillo, Fabio De Felice, Germano Lambert-Torres and Erik Bonaldi",coverURL:"https://cdn.intechopen.com/books/images_new/10020.jpg",editors:[{id:"181603",title:"Dr.",name:"Antonella",middleName:null,surname:"Petrillo",slug:"antonella-petrillo",fullName:"Antonella Petrillo"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9560",title:"Creativity",subtitle:"A Force to Innovation",isOpenForSubmission:!1,hash:"58f740bc17807d5d88d647c525857b11",slug:"creativity-a-force-to-innovation",bookSignature:"Pooja Jain",coverURL:"https://cdn.intechopen.com/books/images_new/9560.jpg",editors:[{id:"316765",title:"Dr.",name:"Pooja",middleName:null,surname:"Jain",slug:"pooja-jain",fullName:"Pooja Jain"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10192",title:"Background and Management of Muscular Atrophy",subtitle:null,isOpenForSubmission:!1,hash:"eca24028d89912b5efea56e179dff089",slug:"background-and-management-of-muscular-atrophy",bookSignature:"Julianna Cseri",coverURL:"https://cdn.intechopen.com/books/images_new/10192.jpg",editors:[{id:"135579",title:"Dr.",name:"Julianna",middleName:null,surname:"Cseri",slug:"julianna-cseri",fullName:"Julianna Cseri"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9243",title:"Coastal Environments",subtitle:null,isOpenForSubmission:!1,hash:"8e05e5f631e935eef366980f2e28295d",slug:"coastal-environments",bookSignature:"Yuanzhi Zhang and X. San Liang",coverURL:"https://cdn.intechopen.com/books/images_new/9243.jpg",editors:[{id:"77597",title:"Prof.",name:"Yuanzhi",middleName:null,surname:"Zhang",slug:"yuanzhi-zhang",fullName:"Yuanzhi Zhang"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9385",title:"Renewable Energy",subtitle:"Technologies and Applications",isOpenForSubmission:!1,hash:"a6b446d19166f17f313008e6c056f3d8",slug:"renewable-energy-technologies-and-applications",bookSignature:"Tolga Taner, Archana Tiwari and Taha Selim Ustun",coverURL:"https://cdn.intechopen.com/books/images_new/9385.jpg",editors:[{id:"197240",title:"Associate Prof.",name:"Tolga",middleName:null,surname:"Taner",slug:"tolga-taner",fullName:"Tolga Taner"}],equalEditorOne:{id:"186791",title:"Dr.",name:"Archana",middleName:null,surname:"Tiwari",slug:"archana-tiwari",fullName:"Archana Tiwari",profilePictureURL:"https://mts.intechopen.com/storage/users/186791/images/system/186791.jpg",biography:"Dr. Archana Tiwari is Associate Professor at Amity University, India. Her research interests include renewable sources of energy from microalgae and further utilizing the residual biomass for the generation of value-added products, bioremediation through microalgae and microbial consortium, antioxidative enzymes and stress, and nutraceuticals from microalgae. She has been working on algal biotechnology for the last two decades. She has published her research in many international journals and has authored many books and chapters with renowned publishing houses. She has also delivered talks as an invited speaker at many national and international conferences. Dr. Tiwari is the recipient of several awards including Researcher of the Year and Distinguished Scientist.",institutionString:"Amity University",position:null,outsideEditionCount:0,totalCites:0,totalAuthoredChapters:"3",totalChapterViews:"0",totalEditedBooks:"1",institution:{name:"Amity University",institutionURL:null,country:{name:"India"}}},equalEditorTwo:{id:"197609",title:"Prof.",name:"Taha Selim",middleName:null,surname:"Ustun",slug:"taha-selim-ustun",fullName:"Taha Selim Ustun",profilePictureURL:"https://mts.intechopen.com/storage/users/197609/images/system/197609.jpeg",biography:"Dr. Taha Selim Ustun received a Ph.D. in Electrical Engineering from Victoria University, Melbourne, Australia. He is a researcher with the Fukushima Renewable Energy Institute, AIST (FREA), where he leads the Smart Grid Cybersecurity Laboratory. Prior to that, he was a faculty member with the School of Electrical and Computer Engineering, Carnegie Mellon University, Pittsburgh, PA, USA. His current research interests include power systems protection, communication in power networks, distributed generation, microgrids, electric vehicle integration, and cybersecurity in smart grids. He serves on the editorial boards of IEEE Access, IEEE Transactions on Industrial Informatics, Energies, Electronics, Electricity, World Electric Vehicle and Information journals. Dr. Ustun is a member of the IEEE 2004 and 2800, IEC Renewable Energy Management WG 8, and IEC TC 57 WG17. He has been invited to run specialist courses in Africa, India, and China. He has delivered talks for the Qatar Foundation, the World Energy Council, the Waterloo Global Science Initiative, and the European Union Energy Initiative (EUEI). His research has attracted funding from prestigious programs in Japan, Australia, the European Union, and North America.",institutionString:"Fukushima Renewable Energy Institute, AIST (FREA)",position:null,outsideEditionCount:0,totalCites:0,totalAuthoredChapters:"1",totalChapterViews:"0",totalEditedBooks:"0",institution:{name:"National Institute of Advanced Industrial Science and Technology",institutionURL:null,country:{name:"Japan"}}},equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"8985",title:"Natural Resources Management and Biological Sciences",subtitle:null,isOpenForSubmission:!1,hash:"5c2e219a6c021a40b5a20c041dea88c4",slug:"natural-resources-management-and-biological-sciences",bookSignature:"Edward R. Rhodes and Humood Naser",coverURL:"https://cdn.intechopen.com/books/images_new/8985.jpg",editors:[{id:"280886",title:"Prof.",name:"Edward R",middleName:null,surname:"Rhodes",slug:"edward-r-rhodes",fullName:"Edward R Rhodes"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10065",title:"Wavelet Theory",subtitle:null,isOpenForSubmission:!1,hash:"d8868e332169597ba2182d9b004d60de",slug:"wavelet-theory",bookSignature:"Somayeh Mohammady",coverURL:"https://cdn.intechopen.com/books/images_new/10065.jpg",editors:[{id:"109280",title:"Dr.",name:"Somayeh",middleName:null,surname:"Mohammady",slug:"somayeh-mohammady",fullName:"Somayeh Mohammady"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9644",title:"Glaciers and the Polar Environment",subtitle:null,isOpenForSubmission:!1,hash:"e8cfdc161794e3753ced54e6ff30873b",slug:"glaciers-and-the-polar-environment",bookSignature:"Masaki Kanao, Danilo Godone and Niccolò Dematteis",coverURL:"https://cdn.intechopen.com/books/images_new/9644.jpg",editors:[{id:"51959",title:"Dr.",name:"Masaki",middleName:null,surname:"Kanao",slug:"masaki-kanao",fullName:"Masaki Kanao"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9550",title:"Entrepreneurship",subtitle:"Contemporary Issues",isOpenForSubmission:!1,hash:"9b4ac1ee5b743abf6f88495452b1e5e7",slug:"entrepreneurship-contemporary-issues",bookSignature:"Mladen Turuk",coverURL:"https://cdn.intechopen.com/books/images_new/9550.jpg",editors:[{id:"319755",title:"Prof.",name:"Mladen",middleName:null,surname:"Turuk",slug:"mladen-turuk",fullName:"Mladen Turuk"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9027",title:"Human Blood Group Systems and Haemoglobinopathies",subtitle:null,isOpenForSubmission:!1,hash:"d00d8e40b11cfb2547d1122866531c7e",slug:"human-blood-group-systems-and-haemoglobinopathies",bookSignature:"Osaro Erhabor and Anjana Munshi",coverURL:"https://cdn.intechopen.com/books/images_new/9027.jpg",editors:[{id:"35140",title:null,name:"Osaro",middleName:null,surname:"Erhabor",slug:"osaro-erhabor",fullName:"Osaro Erhabor"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"8558",title:"Aerodynamics",subtitle:null,isOpenForSubmission:!1,hash:"db7263fc198dfb539073ba0260a7f1aa",slug:"aerodynamics",bookSignature:"Mofid Gorji-Bandpy and Aly-Mousaad Aly",coverURL:"https://cdn.intechopen.com/books/images_new/8558.jpg",editors:[{id:"35542",title:"Prof.",name:"Mofid",middleName:null,surname:"Gorji-Bandpy",slug:"mofid-gorji-bandpy",fullName:"Mofid Gorji-Bandpy"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}}],offset:12,limit:12,total:5249},hotBookTopics:{hotBooks:[],offset:0,limit:12,total:null},publish:{},publishingProposal:{success:null,errors:{}},books:{featuredBooks:[{type:"book",id:"9521",title:"Antimicrobial Resistance",subtitle:"A One Health Perspective",isOpenForSubmission:!1,hash:"30949e78832e1afba5606634b52056ab",slug:"antimicrobial-resistance-a-one-health-perspective",bookSignature:"Mihai Mareș, Swee Hua Erin Lim, Kok-Song Lai and Romeo-Teodor Cristina",coverURL:"https://cdn.intechopen.com/books/images_new/9521.jpg",editors:[{id:"88785",title:"Prof.",name:"Mihai",middleName:null,surname:"Mares",slug:"mihai-mares",fullName:"Mihai Mares"}],equalEditorOne:{id:"190224",title:"Dr.",name:"Swee Hua Erin",middleName:null,surname:"Lim",slug:"swee-hua-erin-lim",fullName:"Swee Hua Erin Lim",profilePictureURL:"https://mts.intechopen.com/storage/users/190224/images/system/190224.png",biography:"Dr. Erin Lim is presently working as an Assistant Professor in the Division of Health Sciences, Abu Dhabi Women\\'s College, Higher Colleges of Technology in Abu Dhabi, United Arab Emirates and is affiliated as an Associate Professor to Perdana University-Royal College of Surgeons in Ireland, Selangor, Malaysia. She obtained her Ph.D. from Universiti Putra Malaysia in 2010 with a National Science Fellowship awarded from the Ministry of Science, Technology and Innovation Malaysia and has been actively involved in research ever since. Her main research interests include analysis of carriage and transmission of multidrug resistant bacteria in non-conventional settings, besides an interest in natural products for antimicrobial testing. She is heavily involved in the elucidation of mechanisms of reversal of resistance in bacteria in addition to investigating the immunological analyses of diseases, development of vaccination and treatment models in animals. She hopes her work will support the discovery of therapeutics in the clinical setting and assist in the combat against the burden of antibiotic resistance.",institutionString:"Abu Dhabi Women’s College",position:null,outsideEditionCount:0,totalCites:0,totalAuthoredChapters:"3",totalChapterViews:"0",totalEditedBooks:"0",institution:{name:"Perdana University",institutionURL:null,country:{name:"Malaysia"}}},equalEditorTwo:{id:"221544",title:"Dr.",name:"Kok-Song",middleName:null,surname:"Lai",slug:"kok-song-lai",fullName:"Kok-Song Lai",profilePictureURL:"https://mts.intechopen.com/storage/users/221544/images/system/221544.jpeg",biography:"Dr. Lai Kok Song is an Assistant Professor in the Division of Health Sciences, Abu Dhabi Women\\'s College, Higher Colleges of Technology in Abu Dhabi, United Arab Emirates. He obtained his Ph.D. in Biological Sciences from Nara Institute of Science and Technology, Japan in 2012. Prior to his academic appointment, Dr. Lai worked as a Senior Scientist at the Ministry of Science, Technology and Innovation, Malaysia. His current research areas include antimicrobial resistance and plant-pathogen interaction. His particular interest lies in the study of the antimicrobial mechanism via membrane disruption of essential oils against multi-drug resistance bacteria through various biochemical, molecular and proteomic approaches. Ultimately, he hopes to uncover and determine novel biomarkers related to antibiotic resistance that can be developed into new therapeutic strategies.",institutionString:"Higher Colleges of Technology",position:null,outsideEditionCount:0,totalCites:0,totalAuthoredChapters:"8",totalChapterViews:"0",totalEditedBooks:"0",institution:{name:"Higher Colleges of Technology",institutionURL:null,country:{name:"United Arab Emirates"}}},equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10020",title:"Operations Management",subtitle:"Emerging Trend in the Digital Era",isOpenForSubmission:!1,hash:"526f0dbdc7e4d85b82ce8383ab894b4c",slug:"operations-management-emerging-trend-in-the-digital-era",bookSignature:"Antonella Petrillo, Fabio De Felice, Germano Lambert-Torres and Erik Bonaldi",coverURL:"https://cdn.intechopen.com/books/images_new/10020.jpg",editors:[{id:"181603",title:"Dr.",name:"Antonella",middleName:null,surname:"Petrillo",slug:"antonella-petrillo",fullName:"Antonella Petrillo"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9560",title:"Creativity",subtitle:"A Force to Innovation",isOpenForSubmission:!1,hash:"58f740bc17807d5d88d647c525857b11",slug:"creativity-a-force-to-innovation",bookSignature:"Pooja Jain",coverURL:"https://cdn.intechopen.com/books/images_new/9560.jpg",editors:[{id:"316765",title:"Dr.",name:"Pooja",middleName:null,surname:"Jain",slug:"pooja-jain",fullName:"Pooja Jain"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10192",title:"Background and Management of Muscular Atrophy",subtitle:null,isOpenForSubmission:!1,hash:"eca24028d89912b5efea56e179dff089",slug:"background-and-management-of-muscular-atrophy",bookSignature:"Julianna Cseri",coverURL:"https://cdn.intechopen.com/books/images_new/10192.jpg",editors:[{id:"135579",title:"Dr.",name:"Julianna",middleName:null,surname:"Cseri",slug:"julianna-cseri",fullName:"Julianna Cseri"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9243",title:"Coastal Environments",subtitle:null,isOpenForSubmission:!1,hash:"8e05e5f631e935eef366980f2e28295d",slug:"coastal-environments",bookSignature:"Yuanzhi Zhang and X. San Liang",coverURL:"https://cdn.intechopen.com/books/images_new/9243.jpg",editors:[{id:"77597",title:"Prof.",name:"Yuanzhi",middleName:null,surname:"Zhang",slug:"yuanzhi-zhang",fullName:"Yuanzhi Zhang"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9385",title:"Renewable Energy",subtitle:"Technologies and Applications",isOpenForSubmission:!1,hash:"a6b446d19166f17f313008e6c056f3d8",slug:"renewable-energy-technologies-and-applications",bookSignature:"Tolga Taner, Archana Tiwari and Taha Selim Ustun",coverURL:"https://cdn.intechopen.com/books/images_new/9385.jpg",editors:[{id:"197240",title:"Associate Prof.",name:"Tolga",middleName:null,surname:"Taner",slug:"tolga-taner",fullName:"Tolga Taner"}],equalEditorOne:{id:"186791",title:"Dr.",name:"Archana",middleName:null,surname:"Tiwari",slug:"archana-tiwari",fullName:"Archana Tiwari",profilePictureURL:"https://mts.intechopen.com/storage/users/186791/images/system/186791.jpg",biography:"Dr. Archana Tiwari is Associate Professor at Amity University, India. Her research interests include renewable sources of energy from microalgae and further utilizing the residual biomass for the generation of value-added products, bioremediation through microalgae and microbial consortium, antioxidative enzymes and stress, and nutraceuticals from microalgae. She has been working on algal biotechnology for the last two decades. She has published her research in many international journals and has authored many books and chapters with renowned publishing houses. She has also delivered talks as an invited speaker at many national and international conferences. Dr. Tiwari is the recipient of several awards including Researcher of the Year and Distinguished Scientist.",institutionString:"Amity University",position:null,outsideEditionCount:0,totalCites:0,totalAuthoredChapters:"3",totalChapterViews:"0",totalEditedBooks:"1",institution:{name:"Amity University",institutionURL:null,country:{name:"India"}}},equalEditorTwo:{id:"197609",title:"Prof.",name:"Taha Selim",middleName:null,surname:"Ustun",slug:"taha-selim-ustun",fullName:"Taha Selim Ustun",profilePictureURL:"https://mts.intechopen.com/storage/users/197609/images/system/197609.jpeg",biography:"Dr. Taha Selim Ustun received a Ph.D. in Electrical Engineering from Victoria University, Melbourne, Australia. He is a researcher with the Fukushima Renewable Energy Institute, AIST (FREA), where he leads the Smart Grid Cybersecurity Laboratory. Prior to that, he was a faculty member with the School of Electrical and Computer Engineering, Carnegie Mellon University, Pittsburgh, PA, USA. His current research interests include power systems protection, communication in power networks, distributed generation, microgrids, electric vehicle integration, and cybersecurity in smart grids. He serves on the editorial boards of IEEE Access, IEEE Transactions on Industrial Informatics, Energies, Electronics, Electricity, World Electric Vehicle and Information journals. Dr. Ustun is a member of the IEEE 2004 and 2800, IEC Renewable Energy Management WG 8, and IEC TC 57 WG17. He has been invited to run specialist courses in Africa, India, and China. He has delivered talks for the Qatar Foundation, the World Energy Council, the Waterloo Global Science Initiative, and the European Union Energy Initiative (EUEI). His research has attracted funding from prestigious programs in Japan, Australia, the European Union, and North America.",institutionString:"Fukushima Renewable Energy Institute, AIST (FREA)",position:null,outsideEditionCount:0,totalCites:0,totalAuthoredChapters:"1",totalChapterViews:"0",totalEditedBooks:"0",institution:{name:"National Institute of Advanced Industrial Science and Technology",institutionURL:null,country:{name:"Japan"}}},equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"8985",title:"Natural Resources Management and Biological Sciences",subtitle:null,isOpenForSubmission:!1,hash:"5c2e219a6c021a40b5a20c041dea88c4",slug:"natural-resources-management-and-biological-sciences",bookSignature:"Edward R. Rhodes and Humood Naser",coverURL:"https://cdn.intechopen.com/books/images_new/8985.jpg",editors:[{id:"280886",title:"Prof.",name:"Edward R",middleName:null,surname:"Rhodes",slug:"edward-r-rhodes",fullName:"Edward R Rhodes"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10065",title:"Wavelet Theory",subtitle:null,isOpenForSubmission:!1,hash:"d8868e332169597ba2182d9b004d60de",slug:"wavelet-theory",bookSignature:"Somayeh Mohammady",coverURL:"https://cdn.intechopen.com/books/images_new/10065.jpg",editors:[{id:"109280",title:"Dr.",name:"Somayeh",middleName:null,surname:"Mohammady",slug:"somayeh-mohammady",fullName:"Somayeh Mohammady"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9644",title:"Glaciers and the Polar Environment",subtitle:null,isOpenForSubmission:!1,hash:"e8cfdc161794e3753ced54e6ff30873b",slug:"glaciers-and-the-polar-environment",bookSignature:"Masaki Kanao, Danilo Godone and Niccolò Dematteis",coverURL:"https://cdn.intechopen.com/books/images_new/9644.jpg",editors:[{id:"51959",title:"Dr.",name:"Masaki",middleName:null,surname:"Kanao",slug:"masaki-kanao",fullName:"Masaki Kanao"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9550",title:"Entrepreneurship",subtitle:"Contemporary Issues",isOpenForSubmission:!1,hash:"9b4ac1ee5b743abf6f88495452b1e5e7",slug:"entrepreneurship-contemporary-issues",bookSignature:"Mladen Turuk",coverURL:"https://cdn.intechopen.com/books/images_new/9550.jpg",editors:[{id:"319755",title:"Prof.",name:"Mladen",middleName:null,surname:"Turuk",slug:"mladen-turuk",fullName:"Mladen Turuk"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}}],latestBooks:[{type:"book",id:"9243",title:"Coastal Environments",subtitle:null,isOpenForSubmission:!1,hash:"8e05e5f631e935eef366980f2e28295d",slug:"coastal-environments",bookSignature:"Yuanzhi Zhang and X. San Liang",coverURL:"https://cdn.intechopen.com/books/images_new/9243.jpg",editedByType:"Edited by",editors:[{id:"77597",title:"Prof.",name:"Yuanzhi",middleName:null,surname:"Zhang",slug:"yuanzhi-zhang",fullName:"Yuanzhi Zhang"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10020",title:"Operations Management",subtitle:"Emerging Trend in the Digital Era",isOpenForSubmission:!1,hash:"526f0dbdc7e4d85b82ce8383ab894b4c",slug:"operations-management-emerging-trend-in-the-digital-era",bookSignature:"Antonella Petrillo, Fabio De Felice, Germano Lambert-Torres and Erik Bonaldi",coverURL:"https://cdn.intechopen.com/books/images_new/10020.jpg",editedByType:"Edited by",editors:[{id:"181603",title:"Dr.",name:"Antonella",middleName:null,surname:"Petrillo",slug:"antonella-petrillo",fullName:"Antonella Petrillo"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"9521",title:"Antimicrobial Resistance",subtitle:"A One Health Perspective",isOpenForSubmission:!1,hash:"30949e78832e1afba5606634b52056ab",slug:"antimicrobial-resistance-a-one-health-perspective",bookSignature:"Mihai Mareș, Swee Hua Erin Lim, Kok-Song Lai and Romeo-Teodor Cristina",coverURL:"https://cdn.intechopen.com/books/images_new/9521.jpg",editedByType:"Edited by",editors:[{id:"88785",title:"Prof.",name:"Mihai",middleName:null,surname:"Mares",slug:"mihai-mares",fullName:"Mihai Mares"}],equalEditorOne:{id:"190224",title:"Dr.",name:"Swee Hua Erin",middleName:null,surname:"Lim",slug:"swee-hua-erin-lim",fullName:"Swee Hua Erin Lim",profilePictureURL:"https://mts.intechopen.com/storage/users/190224/images/system/190224.png",biography:"Dr. Erin Lim is presently working as an Assistant Professor in the Division of Health Sciences, Abu Dhabi Women\\'s College, Higher Colleges of Technology in Abu Dhabi, United Arab Emirates and is affiliated as an Associate Professor to Perdana University-Royal College of Surgeons in Ireland, Selangor, Malaysia. She obtained her Ph.D. from Universiti Putra Malaysia in 2010 with a National Science Fellowship awarded from the Ministry of Science, Technology and Innovation Malaysia and has been actively involved in research ever since. Her main research interests include analysis of carriage and transmission of multidrug resistant bacteria in non-conventional settings, besides an interest in natural products for antimicrobial testing. She is heavily involved in the elucidation of mechanisms of reversal of resistance in bacteria in addition to investigating the immunological analyses of diseases, development of vaccination and treatment models in animals. She hopes her work will support the discovery of therapeutics in the clinical setting and assist in the combat against the burden of antibiotic resistance.",institutionString:"Abu Dhabi Women’s College",position:null,outsideEditionCount:0,totalCites:0,totalAuthoredChapters:"3",totalChapterViews:"0",totalEditedBooks:"0",institution:{name:"Perdana University",institutionURL:null,country:{name:"Malaysia"}}},equalEditorTwo:{id:"221544",title:"Dr.",name:"Kok-Song",middleName:null,surname:"Lai",slug:"kok-song-lai",fullName:"Kok-Song Lai",profilePictureURL:"https://mts.intechopen.com/storage/users/221544/images/system/221544.jpeg",biography:"Dr. Lai Kok Song is an Assistant Professor in the Division of Health Sciences, Abu Dhabi Women\\'s College, Higher Colleges of Technology in Abu Dhabi, United Arab Emirates. He obtained his Ph.D. in Biological Sciences from Nara Institute of Science and Technology, Japan in 2012. Prior to his academic appointment, Dr. Lai worked as a Senior Scientist at the Ministry of Science, Technology and Innovation, Malaysia. His current research areas include antimicrobial resistance and plant-pathogen interaction. His particular interest lies in the study of the antimicrobial mechanism via membrane disruption of essential oils against multi-drug resistance bacteria through various biochemical, molecular and proteomic approaches. Ultimately, he hopes to uncover and determine novel biomarkers related to antibiotic resistance that can be developed into new therapeutic strategies.",institutionString:"Higher Colleges of Technology",position:null,outsideEditionCount:0,totalCites:0,totalAuthoredChapters:"8",totalChapterViews:"0",totalEditedBooks:"0",institution:{name:"Higher Colleges of Technology",institutionURL:null,country:{name:"United Arab Emirates"}}},equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"9560",title:"Creativity",subtitle:"A Force to Innovation",isOpenForSubmission:!1,hash:"58f740bc17807d5d88d647c525857b11",slug:"creativity-a-force-to-innovation",bookSignature:"Pooja Jain",coverURL:"https://cdn.intechopen.com/books/images_new/9560.jpg",editedByType:"Edited by",editors:[{id:"316765",title:"Dr.",name:"Pooja",middleName:null,surname:"Jain",slug:"pooja-jain",fullName:"Pooja Jain"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"9669",title:"Recent Advances in Rice Research",subtitle:null,isOpenForSubmission:!1,hash:"12b06cc73e89af1e104399321cc16a75",slug:"recent-advances-in-rice-research",bookSignature:"Mahmood-ur- Rahman Ansari",coverURL:"https://cdn.intechopen.com/books/images_new/9669.jpg",editedByType:"Edited by",editors:[{id:"185476",title:"Dr.",name:"Mahmood-Ur-",middleName:null,surname:"Rahman Ansari",slug:"mahmood-ur-rahman-ansari",fullName:"Mahmood-Ur- Rahman Ansari"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10192",title:"Background and Management of Muscular Atrophy",subtitle:null,isOpenForSubmission:!1,hash:"eca24028d89912b5efea56e179dff089",slug:"background-and-management-of-muscular-atrophy",bookSignature:"Julianna Cseri",coverURL:"https://cdn.intechopen.com/books/images_new/10192.jpg",editedByType:"Edited by",editors:[{id:"135579",title:"Dr.",name:"Julianna",middleName:null,surname:"Cseri",slug:"julianna-cseri",fullName:"Julianna Cseri"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"9550",title:"Entrepreneurship",subtitle:"Contemporary Issues",isOpenForSubmission:!1,hash:"9b4ac1ee5b743abf6f88495452b1e5e7",slug:"entrepreneurship-contemporary-issues",bookSignature:"Mladen Turuk",coverURL:"https://cdn.intechopen.com/books/images_new/9550.jpg",editedByType:"Edited by",editors:[{id:"319755",title:"Prof.",name:"Mladen",middleName:null,surname:"Turuk",slug:"mladen-turuk",fullName:"Mladen Turuk"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10065",title:"Wavelet Theory",subtitle:null,isOpenForSubmission:!1,hash:"d8868e332169597ba2182d9b004d60de",slug:"wavelet-theory",bookSignature:"Somayeh Mohammady",coverURL:"https://cdn.intechopen.com/books/images_new/10065.jpg",editedByType:"Edited by",editors:[{id:"109280",title:"Dr.",name:"Somayeh",middleName:null,surname:"Mohammady",slug:"somayeh-mohammady",fullName:"Somayeh Mohammady"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"9313",title:"Clay Science and Technology",subtitle:null,isOpenForSubmission:!1,hash:"6fa7e70396ff10620e032bb6cfa6fb72",slug:"clay-science-and-technology",bookSignature:"Gustavo Morari Do Nascimento",coverURL:"https://cdn.intechopen.com/books/images_new/9313.jpg",editedByType:"Edited by",editors:[{id:"7153",title:"Prof.",name:"Gustavo",middleName:null,surname:"Morari Do Nascimento",slug:"gustavo-morari-do-nascimento",fullName:"Gustavo Morari Do Nascimento"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"9888",title:"Nuclear Power Plants",subtitle:"The Processes from the Cradle to the Grave",isOpenForSubmission:!1,hash:"c2c8773e586f62155ab8221ebb72a849",slug:"nuclear-power-plants-the-processes-from-the-cradle-to-the-grave",bookSignature:"Nasser Awwad",coverURL:"https://cdn.intechopen.com/books/images_new/9888.jpg",editedByType:"Edited by",editors:[{id:"145209",title:"Prof.",name:"Nasser",middleName:"S",surname:"Awwad",slug:"nasser-awwad",fullName:"Nasser Awwad"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}}]},subject:{topic:{id:"100",title:"Climatology",slug:"earth-and-planetary-sciences-climatology",parent:{title:"Earth and Planetary Sciences",slug:"earth-and-planetary-sciences"},numberOfBooks:21,numberOfAuthorsAndEditors:692,numberOfWosCitations:963,numberOfCrossrefCitations:488,numberOfDimensionsCitations:1156,videoUrl:null,fallbackUrl:null,description:null},booksByTopicFilter:{topicSlug:"earth-and-planetary-sciences-climatology",sort:"-publishedDate",limit:12,offset:0},booksByTopicCollection:[{type:"book",id:"9389",title:"Global Warming and Climate Change",subtitle:null,isOpenForSubmission:!1,hash:"435d35b33ec04fe921640a514feb19e4",slug:"global-warming-and-climate-change",bookSignature:"John P. Tiefenbacher",coverURL:"https://cdn.intechopen.com/books/images_new/9389.jpg",editedByType:"Edited by",editors:[{id:"73876",title:"Dr.",name:"John P.",middleName:null,surname:"Tiefenbacher",slug:"john-p.-tiefenbacher",fullName:"John P. Tiefenbacher"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"7299",title:"Climate Change and Global Warming",subtitle:null,isOpenForSubmission:!1,hash:"4ae62fab8fc16c47936a1ac234a405d3",slug:"climate-change-and-global-warming",bookSignature:"Ata Amini",coverURL:"https://cdn.intechopen.com/books/images_new/7299.jpg",editedByType:"Edited by",editors:[{id:"179844",title:"Associate Prof.",name:"Ata",middleName:null,surname:"Amini",slug:"ata-amini",fullName:"Ata Amini"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"5876",title:"Glacier Evolution in a Changing World",subtitle:null,isOpenForSubmission:!1,hash:"807ab415fef80eae5053189b154da8aa",slug:"glacier-evolution-in-a-changing-world",bookSignature:"Danilo Godone",coverURL:"https://cdn.intechopen.com/books/images_new/5876.jpg",editedByType:"Edited by",editors:[{id:"313983",title:"Dr.",name:"Danilo",middleName:null,surname:"Godone",slug:"danilo-godone",fullName:"Danilo Godone"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"5221",title:"Topics in Climate Modeling",subtitle:null,isOpenForSubmission:!1,hash:"f3205fd51558e7d62187cbdf47e979c6",slug:"topics-in-climate-modeling",bookSignature:"Theodore Hromadka and Prasada Rao",coverURL:"https://cdn.intechopen.com/books/images_new/5221.jpg",editedByType:"Edited by",editors:[{id:"181008",title:"Dr.",name:"Theodore V.",middleName:"V.",surname:"Hromadka II",slug:"theodore-v.-hromadka-ii",fullName:"Theodore V. Hromadka II"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"4495",title:"Global Warming",subtitle:"Causes, Impacts and Remedies",isOpenForSubmission:!1,hash:"2d99bd0d03471f9871f0fcadd967ba53",slug:"global-warming-causes-impacts-and-remedies",bookSignature:"Bharat Raj Singh",coverURL:"https://cdn.intechopen.com/books/images_new/4495.jpg",editedByType:"Edited by",editors:[{id:"26093",title:"Dr.",name:"Bharat Raj",middleName:null,surname:"Singh",slug:"bharat-raj-singh",fullName:"Bharat Raj Singh"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"3380",title:"Climate Variability",subtitle:"Regional and Thematic Patterns",isOpenForSubmission:!1,hash:"28cb775691751f6829c82e78d725e4e8",slug:"climate-variability-regional-and-thematic-patterns",bookSignature:"Aondover Tarhule",coverURL:"https://cdn.intechopen.com/books/images_new/3380.jpg",editedByType:"Edited by",editors:[{id:"78083",title:"Dr.",name:"Aondover",middleName:null,surname:"Tarhule",slug:"aondover-tarhule",fullName:"Aondover Tarhule"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"3492",title:"Climate Change and Regional/Local Responses",subtitle:null,isOpenForSubmission:!1,hash:"60ca2b9d2e89a90cee7df35b5ae1289a",slug:"climate-change-and-regional-local-responses",bookSignature:"Yuanzhi Zhang and Pallav Ray",coverURL:"https://cdn.intechopen.com/books/images_new/3492.jpg",editedByType:"Edited by",editors:[{id:"87977",title:"Dr.",name:"Pallav",middleName:"Kumar",surname:"Ray",slug:"pallav-ray",fullName:"Pallav Ray"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"3162",title:"Climate Change",subtitle:"Realities, Impacts Over Ice Cap, Sea Level and Risks",isOpenForSubmission:!1,hash:"6ed24c01a5b46c314f59ea98100f0965",slug:"climate-change-realities-impacts-over-ice-cap-sea-level-and-risks",bookSignature:"Bharat Raj Singh",coverURL:"https://cdn.intechopen.com/books/images_new/3162.jpg",editedByType:"Edited by",editors:[{id:"26093",title:"Dr.",name:"Bharat Raj",middleName:null,surname:"Singh",slug:"bharat-raj-singh",fullName:"Bharat Raj Singh"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"3102",title:"Advances in Hurricane Research",subtitle:"Modelling, Meteorology, Preparedness and Impacts",isOpenForSubmission:!1,hash:"92a1a44953085414828e5969e9ac3434",slug:"advances-in-hurricane-research-modelling-meteorology-preparedness-and-impacts",bookSignature:"Kieran Hickey",coverURL:"https://cdn.intechopen.com/books/images_new/3102.jpg",editedByType:"Edited by",editors:[{id:"17924",title:"Dr.",name:"Kieran",middleName:"Richard",surname:"Hickey",slug:"kieran-hickey",fullName:"Kieran Hickey"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"2312",title:"Atmospheric Aerosols",subtitle:"Regional Characteristics - Chemistry and Physics",isOpenForSubmission:!1,hash:"5f0c63a1d9340befc07046080cd39569",slug:"atmospheric-aerosols-regional-characteristics-chemistry-and-physics",bookSignature:"Hayder Abdul-Razzak",coverURL:"https://cdn.intechopen.com/books/images_new/2312.jpg",editedByType:"Edited by",editors:[{id:"135965",title:"Dr.",name:"Hayder",middleName:null,surname:"Abdul-Razzak",slug:"hayder-abdul-razzak",fullName:"Hayder Abdul-Razzak"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"1571",title:"Doppler Radar Observations",subtitle:"Weather Radar, Wind Profiler, Ionospheric Radar, and Other Advanced Applications",isOpenForSubmission:!1,hash:"f6614a3df0bad532ed06d41891fe9c96",slug:"doppler-radar-observations-weather-radar-wind-profiler-ionospheric-radar-and-other-advanced-applications",bookSignature:"Joan Bech and Jorge Luis Chau",coverURL:"https://cdn.intechopen.com/books/images_new/1571.jpg",editedByType:"Edited by",editors:[{id:"113007",title:"Dr.",name:"Joan",middleName:null,surname:"Bech",slug:"joan-bech",fullName:"Joan Bech"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"1546",title:"Atmospheric Model Applications",subtitle:null,isOpenForSubmission:!1,hash:"30315ea16bedb67eebd4fb0e9f38f968",slug:"atmospheric-model-applications",bookSignature:"Ismail Yucel",coverURL:"https://cdn.intechopen.com/books/images_new/1546.jpg",editedByType:"Edited by",editors:[{id:"100229",title:"Dr.",name:"Ismail",middleName:null,surname:"Yucel",slug:"ismail-yucel",fullName:"Ismail Yucel"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}}],booksByTopicTotal:21,mostCitedChapters:[{id:"44055",doi:"10.5772/55140",title:"West African Monsoon in State-of-the-Science Regional Climate Models",slug:"west-african-monsoon-in-state-of-the-science-regional-climate-models",totalDownloads:4026,totalCrossrefCites:24,totalDimensionsCites:47,book:{slug:"climate-variability-regional-and-thematic-patterns",title:"Climate Variability",fullTitle:"Climate Variability - Regional and Thematic Patterns"},signatures:"M. B. Sylla, I. Diallo and J. S. Pal",authors:[{id:"158387",title:"Dr.",name:"Mouhamadou",middleName:"Bamba",surname:"Sylla",slug:"mouhamadou-sylla",fullName:"Mouhamadou Sylla"},{id:"166845",title:"MSc.",name:"Ismaila",middleName:null,surname:"Diallo",slug:"ismaila-diallo",fullName:"Ismaila Diallo"},{id:"166846",title:"Dr.",name:"Jeremy",middleName:null,surname:"Pal",slug:"jeremy-pal",fullName:"Jeremy Pal"}]},{id:"34744",doi:"10.5772/35368",title:"The JMA Nonhydrostatic Model and Its Applications to Operation and Research",slug:"the-jma-nonhydrostatic-model-and-its-applications-to-operation-and-research",totalDownloads:2631,totalCrossrefCites:35,totalDimensionsCites:46,book:{slug:"atmospheric-model-applications",title:"Atmospheric Model Applications",fullTitle:"Atmospheric Model Applications"},signatures:"Kazuo Saito",authors:[{id:"104090",title:"Dr.",name:"Kazuo",middleName:null,surname:"Saito",slug:"kazuo-saito",fullName:"Kazuo Saito"}]},{id:"19840",doi:"10.5772/23920",title:"Holocene Vegetation Responses to East Asian Monsoonal Changes in South Korea",slug:"holocene-vegetation-responses-to-east-asian-monsoonal-changes-in-south-korea",totalDownloads:6345,totalCrossrefCites:5,totalDimensionsCites:27,book:{slug:"climate-change-geophysical-foundations-and-ecological-effects",title:"Climate Change",fullTitle:"Climate Change - Geophysical Foundations and Ecological Effects"},signatures:"Sangheon Yi",authors:[{id:"54436",title:"Dr.",name:"Sangheon",middleName:null,surname:"Yi",slug:"sangheon-yi",fullName:"Sangheon Yi"}]}],mostDownloadedChaptersLast30Days:[{id:"27601",title:"Mud Volcano and Its Evolution",slug:"mud-volcano-and-its-evolution",totalDownloads:5188,totalCrossrefCites:1,totalDimensionsCites:21,book:{slug:"earth-sciences",title:"Earth Sciences",fullTitle:"Earth Sciences"},signatures:"Bambang P. Istadi, Handoko T. Wibowo, Edy Sunardi, Soffian Hadi and Nurrochmat Sawolo",authors:[{id:"60519",title:"Mr",name:"Bambang",middleName:null,surname:"Istadi",slug:"bambang-istadi",fullName:"Bambang Istadi"},{id:"60529",title:"Mr.",name:"Nurrochmat",middleName:null,surname:"Sawolo",slug:"nurrochmat-sawolo",fullName:"Nurrochmat Sawolo"},{id:"127917",title:"MSc.",name:"Handoko",middleName:"Teguh",surname:"Wibowo",slug:"handoko-wibowo",fullName:"Handoko Wibowo"},{id:"127918",title:"Dr.",name:"Edy",middleName:null,surname:"Sunardi",slug:"edy-sunardi",fullName:"Edy Sunardi"},{id:"127919",title:"Mr.",name:"Soffian",middleName:null,surname:"Hadi",slug:"soffian-hadi",fullName:"Soffian Hadi"}]},{id:"55514",title:"The Unknown Southernmost Glaciers of Europe",slug:"the-unknown-southernmost-glaciers-of-europe",totalDownloads:1152,totalCrossrefCites:2,totalDimensionsCites:3,book:{slug:"glacier-evolution-in-a-changing-world",title:"Glacier Evolution in a Changing World",fullTitle:"Glacier Evolution in a Changing World"},signatures:"Emil Gachev",authors:[{id:"204052",title:"Dr.",name:"Emil",middleName:null,surname:"Gachev",slug:"emil-gachev",fullName:"Emil Gachev"}]},{id:"42002",title:"Climate Change Adaptation Strategies in Sub-Saharan Africa: Foundations for the Future",slug:"climate-change-adaptation-strategies-in-sub-saharan-africa-foundations-for-the-future",totalDownloads:2985,totalCrossrefCites:7,totalDimensionsCites:14,book:{slug:"climate-change-realities-impacts-over-ice-cap-sea-level-and-risks",title:"Climate Change",fullTitle:"Climate Change - Realities, Impacts Over Ice Cap, Sea Level and Risks"},signatures:"P. J. M. Cooper, R. D. Stern, M. Noguer and J. M. Gathenya",authors:[{id:"147065",title:"Prof.",name:"Peter",middleName:null,surname:"Cooper",slug:"peter-cooper",fullName:"Peter Cooper"}]},{id:"41980",title:"Effects on Summer Monsoon and Rainfall Change Over China Due to Eurasian Snow Cover and Ocean Thermal Conditions",slug:"effects-on-summer-monsoon-and-rainfall-change-over-china-duo-to-eurasian-snow-cover-and-ocean-therma",totalDownloads:1990,totalCrossrefCites:3,totalDimensionsCites:13,book:{slug:"climate-change-realities-impacts-over-ice-cap-sea-level-and-risks",title:"Climate Change",fullTitle:"Climate Change - Realities, Impacts Over Ice Cap, Sea Level and Risks"},signatures:"Renhe Zhang, Bingyi Wu, Jinping Han and Zhiyan Zuo",authors:[{id:"144738",title:"Prof.",name:"Renhe",middleName:null,surname:"Zhang",slug:"renhe-zhang",fullName:"Renhe Zhang"},{id:"152519",title:"Prof.",name:"Bingyi",middleName:null,surname:"Wu",slug:"bingyi-wu",fullName:"Bingyi Wu"},{id:"154743",title:"Dr.",name:"Jinping",middleName:null,surname:"Han",slug:"jinping-han",fullName:"Jinping Han"},{id:"167668",title:"Dr.",name:"Zhiyan",middleName:null,surname:"Zuo",slug:"zhiyan-zuo",fullName:"Zhiyan Zuo"}]},{id:"19854",title:"Glaciers Shrinking in Nepal Himalaya",slug:"glaciers-shrinking-in-nepal-himalaya",totalDownloads:2953,totalCrossrefCites:0,totalDimensionsCites:10,book:{slug:"climate-change-geophysical-foundations-and-ecological-effects",title:"Climate Change",fullTitle:"Climate Change - Geophysical Foundations and Ecological Effects"},signatures:"Samjwal R. Bajracharya, Sudan B. Maharjan and Finu Shrestha",authors:[{id:"62372",title:"MSc.",name:"Samjwal",middleName:null,surname:"Bajracharya",slug:"samjwal-bajracharya",fullName:"Samjwal Bajracharya"},{id:"62373",title:"MSc",name:"Sudan",middleName:null,surname:"Maharjan",slug:"sudan-maharjan",fullName:"Sudan Maharjan"},{id:"136280",title:"Dr.",name:"Finu",middleName:null,surname:"Shrestha",slug:"finu-shrestha",fullName:"Finu Shrestha"}]},{id:"41039",title:"Elaboration of Technologies for the Diagnosis of Tropical Hurricanes Beginning in Oceans with Remote Sensing Methods",slug:"elaboration-of-technologies-for-the-diagnosis-of-tropical-hurricanes-beginning-in-oceans-with-remote",totalDownloads:1229,totalCrossrefCites:1,totalDimensionsCites:1,book:{slug:"advances-in-hurricane-research-modelling-meteorology-preparedness-and-impacts",title:"Advances in Hurricane Research",fullTitle:"Advances in Hurricane Research - Modelling, Meteorology, Preparedness and Impacts"},signatures:"A. G. Grankov, S. V. Marechek, A. A. Milshin, E. P. Novichikhin, S. P. Golovachev, N. K. Shelobanova and A. M. Shutko",authors:[{id:"151514",title:"PhD.",name:"Alexander",middleName:null,surname:"Grankov",slug:"alexander-grankov",fullName:"Alexander Grankov"},{id:"152038",title:"Prof.",name:"Vladimir",middleName:null,surname:"Krapivin",slug:"vladimir-krapivin",fullName:"Vladimir Krapivin"},{id:"152041",title:"Dr.",name:"Svyatoslav",middleName:null,surname:"Marechek",slug:"svyatoslav-marechek",fullName:"Svyatoslav Marechek"},{id:"152044",title:"Dr.",name:"Mariya",middleName:null,surname:"Marechek",slug:"mariya-marechek",fullName:"Mariya Marechek"},{id:"152045",title:"Mr.",name:"Alexander",middleName:null,surname:"Mil`shin",slug:"alexander-milshin",fullName:"Alexander Mil`shin"},{id:"152046",title:"Dr.",name:"Evgenii",middleName:null,surname:"Novichikhin",slug:"evgenii-novichikhin",fullName:"Evgenii Novichikhin"},{id:"152047",title:"Mr.",name:"Sergey",middleName:null,surname:"Golovachev",slug:"sergey-golovachev",fullName:"Sergey Golovachev"},{id:"152048",title:"Ms.",name:"Nadezda",middleName:null,surname:"Shelobanova",slug:"nadezda-shelobanova",fullName:"Nadezda Shelobanova"},{id:"152050",title:"Prof.",name:"Anatolii",middleName:null,surname:"Shutko",slug:"anatolii-shutko",fullName:"Anatolii Shutko"}]},{id:"63659",title:"Statistical Methodology for Evaluating Process-Based Climate Models",slug:"statistical-methodology-for-evaluating-process-based-climate-models",totalDownloads:785,totalCrossrefCites:0,totalDimensionsCites:0,book:{slug:"climate-change-and-global-warming",title:"Climate Change and Global Warming",fullTitle:"Climate Change and Global Warming"},signatures:"Firdos Khan and Jürgen Pilz",authors:null},{id:"19834",title:"Time Correlation Laws Inferred from Climatic Records: Long-Range Persistence and Alternative Paradigms",slug:"time-correlation-laws-inferred-from-climatic-records-long-range-persistence-and-alternative-paradigm",totalDownloads:1925,totalCrossrefCites:0,totalDimensionsCites:2,book:{slug:"climate-change-geophysical-foundations-and-ecological-effects",title:"Climate Change",fullTitle:"Climate Change - Geophysical Foundations and Ecological Effects"},signatures:"Maria Lanfredi, Tiziana Simoniello, Vincenzo Cuomo and Maria Macchiato",authors:[{id:"51545",title:"Dr.",name:"Maria",middleName:null,surname:"Lanfredi",slug:"maria-lanfredi",fullName:"Maria Lanfredi"},{id:"61365",title:"Dr.",name:"Tiziana",middleName:null,surname:"Simoniello",slug:"tiziana-simoniello",fullName:"Tiziana Simoniello"},{id:"61366",title:"Prof.",name:"Vincenzo",middleName:null,surname:"Cuomo",slug:"vincenzo-cuomo",fullName:"Vincenzo Cuomo"},{id:"61367",title:"Prof.",name:"Maria",middleName:"Francesca",surname:"Macchiato",slug:"maria-macchiato",fullName:"Maria Macchiato"}]},{id:"27603",title:"Laser Altimetry: What Can Be Learned About Geology and Surface Processes from Detailed Topography",slug:"laser-altimetry-what-can-be-learned-about-geology-and-surface-processes-from-detailed-topography",totalDownloads:1969,totalCrossrefCites:0,totalDimensionsCites:0,book:{slug:"earth-sciences",title:"Earth Sciences",fullTitle:"Earth Sciences"},signatures:"Tim Webster",authors:[{id:"71734",title:"Dr.",name:"Tim",middleName:null,surname:"Webster",slug:"tim-webster",fullName:"Tim Webster"}]},{id:"18725",title:"The Infrastructure Imperative of Climate Change: Risk-Based Climate Adaptation of Infrastructure",slug:"the-infrastructure-imperative-of-climate-change-risk-based-climate-adaptation-of-infrastructure",totalDownloads:1993,totalCrossrefCites:0,totalDimensionsCites:0,book:{slug:"climate-change-research-and-technology-for-adaptation-and-mitigation",title:"Climate Change",fullTitle:"Climate Change - Research and Technology for Adaptation and Mitigation"},signatures:"David B. Conner",authors:[{id:"59055",title:"MSc",name:"David",middleName:null,surname:"Conner",slug:"david-conner",fullName:"David Conner"}]}],onlineFirstChaptersFilter:{topicSlug:"earth-and-planetary-sciences-climatology",limit:3,offset:0},onlineFirstChaptersCollection:[],onlineFirstChaptersTotal:0},preDownload:{success:null,errors:{}},aboutIntechopen:{},privacyPolicy:{},peerReviewing:{},howOpenAccessPublishingWithIntechopenWorks:{},sponsorshipBooks:{sponsorshipBooks:[{type:"book",id:"10176",title:"Microgrids and Local Energy Systems",subtitle:null,isOpenForSubmission:!0,hash:"c32b4a5351a88f263074b0d0ca813a9c",slug:null,bookSignature:"Prof. Nick Jenkins",coverURL:"https://cdn.intechopen.com/books/images_new/10176.jpg",editedByType:null,editors:[{id:"55219",title:"Prof.",name:"Nick",middleName:null,surname:"Jenkins",slug:"nick-jenkins",fullName:"Nick Jenkins"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}}],offset:8,limit:8,total:1},route:{name:"chapter.detail",path:"/books/design-simulation-and-construction-of-field-effect-transistors/band-gap-modulated-tunnel-fet",hash:"",query:{},params:{book:"design-simulation-and-construction-of-field-effect-transistors",chapter:"band-gap-modulated-tunnel-fet"},fullPath:"/books/design-simulation-and-construction-of-field-effect-transistors/band-gap-modulated-tunnel-fet",meta:{},from:{name:null,path:"/",hash:"",query:{},params:{},fullPath:"/",meta:{}}}},function(){var e;(e=document.currentScript||document.scripts[document.scripts.length-1]).parentNode.removeChild(e)}()